Sample records for enzyme extraction optimization

  1. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  2. Extraction of Oil from Flaxseed (Linum usitatissimum L.) Using Enzyme-Assisted Three-Phase Partitioning.

    PubMed

    Tan, Zhi-Jian; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang; Wang, Chao-Yun

    2016-08-01

    In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.

  3. Enzyme-assisted supercritical carbon dioxide extraction of black pepper oleoresin for enhanced yield of piperine-rich extract.

    PubMed

    Dutta, Sayantani; Bhattacharjee, Paramita

    2015-07-01

    Black pepper (Piper nigrum L.), the King of Spices is the most popular spice globally and its active ingredient, piperine, is reportedly known for its therapeutic potency. In this work, enzyme-assisted supercritical carbon dioxide (SC-CO2) extraction of black pepper oleoresin was investigated using α-amylase (from Bacillus licheniformis) for enhanced yield of piperine-rich extract possessing good combination of phytochemical properties. Optimization of the extraction parameters (without enzyme), mainly temperature and pressure, was conducted in both batch and continuous modes and the optimized conditions that provided the maximum yield of piperine was in the batch mode, with a sample size of 20 g of black pepper powder (particle diameter 0.42 ± 0.02 mm) at 60 °C and 300 bar at 2 L/min of CO2 flow. Studies on activity of α-amylase were conducted under these optimized conditions in both batch and continuous modes, with varying amounts of lyophilized enzyme (2 mg, 5 mg and 10 mg) and time of exposure of the enzyme to SC-CO2 (2.25 h and 4.25 h). The specific activity of the enzyme increased by 2.13 times when treated in the continuous mode than in the batch mode (1.25 times increase). The structural changes of the treated enzymes were studied by (1)H NMR analyses. In case of α-amylase assisted extractions of black pepper, both batch and continuous modes significantly increased the yields and phytochemical properties of piperine-rich extracts; with higher increase in batch mode than in continuous. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Novel optimization strategy for tannase production through a modified solid-state fermentation system.

    PubMed

    Wu, Changzheng; Zhang, Feng; Li, Lijun; Jiang, Zhedong; Ni, Hui; Xiao, Anfeng

    2018-01-01

    High amounts of insoluble substrates exist in the traditional solid-state fermentation (SSF) system. The presence of these substrates complicates the determination of microbial biomass. Thus, enzyme activity is used as the sole index for the optimization of the traditional SSF system, and the relationship between microbial growth and enzyme synthesis is always ignored. This study was conducted to address this deficiency. All soluble nutrients from tea stalk were extracted using water. The aqueous extract was then mixed with polyurethane sponge to establish a modified SSF system, which was then used to conduct tannase production. With this system, biomass, enzyme activity, and enzyme productivity could be measured rationally and accurately. Thus, the association between biomass and enzyme activity could be easily identified, and the shortcomings of traditional SSF could be addressed. Different carbon and nitrogen sources exerted different effects on microbial growth and enzyme production. Single-factor experiments showed that glucose and yeast extract greatly improved microbial biomass accumulation and that tannin and (NH 4 ) 2 SO 4 efficiently promoted enzyme productivity. Then, these four factors were optimized through response surface methodology. Tannase activity reached 19.22 U/gds when the added amounts of tannin, glucose, (NH 4 ) 2 SO 4 , and yeast extract were 7.49, 8.11, 9.26, and 2.25%, respectively. Tannase activity under the optimized process conditions was 6.36 times higher than that under the initial process conditions. The optimized parameters were directly applied to the traditional tea stalk SSF system. Tannase activity reached 245 U/gds, which is 2.9 times higher than our previously reported value. In this study, a modified SSF system was established to address the shortcomings of the traditional SSF system. Analysis revealed that enzymatic activity and microbial biomass are closely related, and different carbon and nitrogen sources have different effects on microbial growth and enzyme production. The maximal tannase activity was obtained under the optimal combination of nutrient sources that enhances cell growth and tannase accumulation. Moreover, tannase production through the traditional tea stalk SSF was markedly improved when the optimized parameters were applied. This work provides an innovative approach to bioproduction research through SSF.

  5. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara.

    PubMed

    de Figueiredo, Vitória Ribeiro Garcia; Yamashita, Fábio; Vanzela, André Luis Laforga; Ida, Elza Iouko; Kurozawa, Louise Emy

    2018-04-01

    The objective of this study was to optimize the extraction of protein by applying a multi-enzymatic pretreatment to okara, a byproduct from soymilk processing. The multi-enzyme complex Viscozyme, containing a variety of carbohydrases, was used to hydrolyze the okara cell walls and facilitate extraction of proteins. Enzyme-assisted extraction was carried out under different temperatures (37-53 °C), enzyme concentrations (1.5-4%) and pH values (5.5-6.5) according to a central composite rotatable design. After extraction, the protein was concentrated by isoelectric precipitation. The optimal conditions for maximum protein content and recovery in protein concentrate were 53 °C, pH 6.2 and 4% of enzyme concentration. Under these conditions, protein content of 56% (dry weight basis) and a recovery of 28% were obtained, representing an increase of 17 and 86%, respectively, compared to the sample with no enzymatic pretreatment. The multi-enzyme complex Viscozyme hydrolyzed the structural cell wall polysaccharides, improving extraction and obtaining protein concentrate from the okara. An electrophoretic profile of the protein concentrate showed two distinct bands, corresponding to the acidic and basic subunits of the protein glycinin. There were no limiting amino acids in the protein concentrate, which had a greater content of arginine.

  6. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    PubMed

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Enhanced extraction of astragalosides from Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment.

    PubMed

    Yan, Ming-Ming; Chen, Cai-Yun; Zhao, Bao-Shan; Zu, Yuan-Gang; Fu, Yu-Jie; Liu, Wei; Efferth, Thomas

    2010-10-01

    The optimal conditions for extraction of astragalosides III and IV (AGs III and IV) in Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment were studied on the basis of a Box-Behnken design and response surface methodology. Experimental results showed that negative pressure, amount of enzyme and incubation temperature were the main factors governing the enzyme pretreatment of Radix Astragali. The optimum parameters were obtained as follows: negative pressure -0.08 Mpa, amount of enzyme 1.48% (w/w of materials) and incubation temperature 45 degrees C. Under the optimal conditions, the maximal extraction yields of AGs III and IV were 0.103 and 0.325 mg/g, which were 41.67% and 65.31% increased as compared to those without enzyme pretreatment, respectively. The effect of negative pressure cavitation and enzyme pretreatment on the structural changes of plant cells was observed by scanning electron microscopy. In conclusion, negative pressure cavitation-accelerated enzyme pretreatment was proved to be environment-friendly and economical, and could be used in secondary metabolites production. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing.

    PubMed

    Zhang, Yanjun; Mo, Limei; Chen, Feng; Lu, Minquan; Dong, Wenjiang; Wang, Qinghuang; Xu, Fei; Gu, Fenglin

    2014-02-19

    Production of vanillin from natural green vanilla pods was carried out by enzyme-assisted extraction combined with pre-freezing and thawing. In the first step the green vanilla pods were pre-frozen and then thawed to destroy cellular compartmentation. In the second step pectinase from Aspergillus niger was used to hydrolyze the pectin between the glucovanillin substrate and β-glucosidase. Four main variables, including enzyme amount, reaction temperature, time and pH, which were of significance for the vanillin content were studied and a central composite design (CCD) based on the results of a single-factor tests was used. Response surface methodology based on CCD was employed to optimize the combination of enzyme amount, reaction temperature, time, and pH for maximum vanillin production. This resulted in the optimal condition in regards of the enzyme amount, reaction temperature, time, and pH at 84.2 mg, 49.5 °C, 7.1 h, and 4.2, respectively. Under the optimal condition, the experimental yield of vanillin was 4.63% ± 0.11% (dwb), which was in good agreement with the value predicted by the model. Compared to the traditional curing process (1.98%) and viscozyme extract (2.36%), the optimized method for the vanillin production significantly increased the yield by 133.85% and 96%, respectively.

  9. Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate.

    PubMed

    Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele

    2004-07-25

    The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.

  10. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  11. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves.

    PubMed

    Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen

    2014-07-30

    Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.

  12. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  13. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.

    PubMed

    Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T

    2006-05-01

    A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.

  14. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun.

    PubMed

    De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava

    2015-10-01

    Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2'- azinobis (3-ethylbenzothiazoline-6 - sulfonic acid.

  15. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun

    PubMed Central

    De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K.; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava

    2015-01-01

    Background: Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Objective: Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. Materials and Methods: The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Results: Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Conclusion: Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. SUMMARY The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2’- azinobis (3-ethylbenzothiazoline-6 – sulfonic acid. PMID:27013789

  16. Proteolytic enzymes from Bromelia antiacantha as tools for controlled tissue hydrolysis in entomology.

    PubMed

    Macció, Laura; Vallés, Diego; Cantera, Ana Maria

    2013-12-01

    A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.

  17. Enzyme-assisted extraction of bioactives from plants.

    PubMed

    Puri, Munish; Sharma, Deepika; Barrow, Colin J

    2012-01-01

    Demand for new and novel natural compounds has intensified the development of plant-derived compounds known as bioactives that either promote health or are toxic when ingested. Enhanced release of these bioactives from plant cells by cell disruption and extraction through the cell wall can be optimized using enzyme preparations either alone or in mixtures. However, the biotechnological application of enzymes is not currently exploited to its maximum potential within the food industry. Here, we discuss the use of environmentally friendly enzyme-assisted extraction of bioactive compounds from plant sources, particularly for food and nutraceutical purposes. In particular, we discuss an enzyme-assisted extraction of stevioside from Stevia rebaudiana, as an example of a process of potential value to the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity.

    PubMed

    Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong

    2018-05-01

    Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal.

    PubMed

    Bayar, Nadia; Friji, Marwa; Kammoun, Radhouane

    2018-02-15

    In this study, pectin was isolated from Opuntia ficus indica (OFI) cladodes after removing mucilage using the xylanase and cellulase. The process variables were optimized by the Box Behnken design with three factors at three levels. The optimal extraction condition obtained was: liquid to solid (LS), cellulase to xylanase and enzymes to matter ratios of 22ml/g, 2:1U/U and 4U/g, respectively. The simulated extraction yield of 17.91% was validated by the experimental result (16.67±0.30). The enzyme-extracted pectin from OFI cladodes (EAEPC) was low methylated, with a high uronic acid content, a water and oil holding capacity of 5.42g/g and 1.23g/g, respectively, a good foam and emulsion stability and important DPPH radical scavenging activity. Both the OFI cladodes and enzymatic process present promising alternatives to traditional sources and extraction processes of pectin, respectively. EAEPC thus represents a promising additive in food industries. Copyright © 2017. Published by Elsevier Ltd.

  20. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    PubMed

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii.

    PubMed

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro . β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. The factors investigated include the enzyme concentration (0.5%-2.5%), ultrasound time (10 min -3 0 min), and extraction temperature (30°C-50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC 50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD.

  2. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii

    PubMed Central

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Background: Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. Objective: A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro. Materials and Methods: β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. Results: The factors investigated include the enzyme concentration (0.5%–2.5%), ultrasound time (10 min−3 0 min), and extraction temperature (30°C–50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. Conclusions: The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. SUMMARY The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD: PMID:29576707

  3. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms.

    PubMed

    Poojary, Mahesha M; Orlien, Vibeke; Passamonti, Paolo; Olsen, Karsten

    2017-11-01

    In this study, enzyme-assisted extraction was performed to extract umami taste and total free amino acids (FAAs) from the six different mushrooms including shiitake (Lentinus edodes), oyster (Pleurotus ostreatus), tea tree (Agrocybe aegerita) and, white, brown and portobello champignons (Agaricus bisporus). β-Glucanase and Flavourzyme® were used as the enzymes for cell wall and proteins hydrolysis, respectively. It was found that β-glucanase treatment alone did not enhance the extraction efficiency, however in combination, β-glucanase and Flavourzyme® enhanced the extraction efficiency significantly up to 20-fold compared to conventional HCl mediated extraction, depending on the mushroom species. The optimal conditions for the enzyme treatment were: water as extraction solvent (initial pH = 7), enzyme concentration of 5% v/w each of β-glucanase and Flavourzyme®, temperature 50°C and an incubation time of 1h. White and brown champignons were found to be the richest source of umami taste FAAs (26.75±1.07 and 25.6±0.9mg/g DM, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian

    2016-01-01

    Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production. PMID:27018039

  6. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).

    PubMed

    Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira

    2016-12-01

    In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    PubMed

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  8. Medium Optimization for the Production of Fibrinolytic Enzyme by Paenibacillus sp. IND8 Using Response Surface Methodology

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    Production of fibrinolytic enzyme by a newly isolated Paenibacillus sp. IND8 was optimized using wheat bran in solid state fermentation. A 25 full factorial design (first-order model) was applied to elucidate the key factors as moisture, pH, sucrose, yeast extract, and sodium dihydrogen phosphate. Statistical analysis of the results has shown that moisture, sucrose, and sodium dihydrogen phosphate have the most significant effects on fibrinolytic enzymes production (P < 0.05). Central composite design (CCD) was used to determine the optimal concentrations of these three components and the experimental results were fitted with a second-order polynomial model at 95% level (P < 0.05). Overall, 4.5-fold increase in fibrinolytic enzyme production was achieved in the optimized medium as compared with the unoptimized medium. PMID:24523635

  9. Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications.

    PubMed

    Talat, Mahe; Singh, Ashwani Kumar; Srivastava, O N

    2011-08-01

    In the present study, enzyme urease has been immobilized on amine-functionalized gold nanoparticles (AuNPs). AuNPs were synthesized using natural precursor, i.e., clove extract and amine functionalized through 0.004 M L: -cysteine. Enzyme (urease) was extracted and purified from the vegetable waste, i.e., seeds of pumpkin to apparent homogeneity (sp. activity 353 U/mg protein). FTIR spectroscopy and transmission electron microscopy was used to characterize the immobilized enzyme. The immobilized enzyme exhibited enhanced activity as compared with the enzyme in the solution, especially, at lower enzyme concentration. Based on the evaluation of activity assay of the immobilized enzyme, it was found that the immobilized enzyme was quite stable for about a month and could successfully be used even after eight cycles having enzyme activity of about 47%. In addition to this central composite design (CCD) with the help of MINITAB version 15 Software was utilized to optimize the process variables viz., pH and temperature affecting the enzyme activity upon immobilization on AuNPs. The results predicted by the design were found in good agreement (R2 = 96.38%) with the experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed the individual and cumulative effect of pH and temperature on enzyme activity indicating that the activity increased with the increase of pH up to 7.5 and temperature 75 °C. The effects of each variables represented by main effect plot, 3D surface plot, isoresponse contour plot and optimized plot were helpful in predicting results by performing a limited set of experiments.

  10. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  11. Chitinolytic and chitosanolytic activities from crude cellulase extract produced by A. niger grown on apple pomace through Koji fermentation.

    PubMed

    Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Kaur, Surinder; Valero, Jose R; Verma, Mausam

    2011-12-01

    Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase 79.24+/- 4.22 IU/gram fermented substrate (gfs) and CMCase 124.04+/-7.78 IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase 96.67+/-4.18 IU/gfs and CMCase 146.50+/-11.92 IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of 70.28+/-3.34 IU/gfs and 60.18+/-3.82 to 64.20+/-4.12 IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.

  12. Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia sinensis) Plants.

    PubMed

    Dong, Fang; Zhou, Ying; Zeng, Lanting; Watanabe, Naoharu; Su, Xinguo; Yang, Ziyin

    2017-01-13

    1-Phenylethanol (1PE) can be used as a fragrance in food flavoring and cosmetic industries and as an intermediate in the pharmaceutical industry. 1PE can be synthesized from acetophenone, and the cost of 1PE is higher than the cost of acetophenone. Therefore, it is important to establish an effective and low-cost approach for producing 1PE. Our previous studies found that tea ( Camellia sinensis ) flowers, which are an abundant and waste resource, contained enzymes that could transform acetophenone to 1PE. In the present study, we extracted crude enzymes from tea flowers and optimized the production conditions of 1PE using response surface methodology. The optimized conditions were an extraction pH of 7.0, a reaction pH of 5.3, a reaction temperature of 55 °C, a reaction time of 100 min, a coenzyme NADPH concentration of 3.75 μmol/mL in the reaction assay, and a substrate acetophenone concentration of 1.25 μmol/mL in the reaction assay. The results provide essential information for future industrial 1PE production using plant-derived enzymes.

  13. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.

    PubMed

    Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata

    2018-04-16

    Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.

  14. Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect.

    PubMed

    Li, Xiao-Juan; Li, Zhu-Gang; Wang, Xun; Han, Jun-Yan; Zhang, Bo; Fu, Yu-Jie; Zhao, Chun-Jian

    2016-12-01

    Cavitation-accelerated aqueous enzymatic extraction (CAEE) of seed oil from Cucurbita pepo was performed. An enzyme cocktail comprised of cellulose, pectinase and proteinase can work synergistically in releasing the oil. The CAEE extraction conditions were optimized by a Plackett-Burman design followed by a central composite methodology. A maximal extraction yield of 58.06% was achieved under optimal conditions of vacuum degree -0.07, enzyme amount 1.05% and extraction time 69min. As compared to soxhlet extraction (SE)-derived oil, CAEE-derived oil exhibited similar physical properties and better oxidation stability. In addition, chemical composition analyzing showed that the content of linoleic acid obtained by CAEE (47.67%) was higher than that of SE (44.51%). Moreover, the IC50 of oil obtained by CAEE and SE, as measured by α-amylase inhibition assay, were 40.68μg/mL and 45.46μg/mL. All results suggest that CAEE represents an excellent alternative protocol for production of oil from oil-bearing materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques.

    PubMed

    Zhang, Ruilin; Chen, Jian; Zhang, Xuewu

    2018-01-01

    Due to the rigid cell wall of Chlorella species, it is still challenging to effectively extract significant amounts of protein. Mass methods were used for the extraction of intracellular protein from microalgae with biological, mechanical and chemical approaches. In this study, based on comparison of different extraction methods, a new protocol was established to maximize extract amounts of protein, which was involved in ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Under the optimized conditions, 72.4% of protein was extracted from the microalgae Chlorella pyrenoidosa, which should contribute to the research and development of Chlorella protein in functional food and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enzymatic added extraction and clarification of fruit juices-A review.

    PubMed

    Sharma, Harsh P; Patel, Hiral; Sugandha

    2017-04-13

    Enzymatic treatment for juice extraction is most commonly used now a days. The enzymatic process is claimed to offer a number of advantages over mechanical-thermal comminution of several fruit pulps. Enzymes are an integral component of modern fruit juice manufacturing and are highly suitable for optimizing processes. Their main purposes are: increase extraction of juice from raw material, increase processing efficiency (pressing, solid settling or removal), and generate a final product that is clear and visually attractive. Juice extraction can be done by using various mechanical processes, which may be achieved through diffusion extraction, decanter centrifuge, screw type juice extractor, fruit pulper and by different types of presses. Enzymatic treatment prior to mechanical extraction significantly improves juice recovery compared to any other extraction process. Enzymatic hydrolysis of the cell walls increases the extraction yield, reducing sugars, soluble dry matter content and galacturonic acid content and titrable acidity of the products. Enzymatic degradation of the biomaterial depends upon the type of enzyme, incubation time, incubation temperature, enzyme concentration, agitation, pH and use of different enzyme combinations. We can conclude from the technical literature that use of the enzymes i.e. cellulases, pectinases, amylases and combination of these enzymes can give better juice yield with superior quality of the fruit juice. Pectinase enzyme can give maximum juice yield i.e. 92.4% at 360 minutes incubation time, 37°C incubation temperature and 5 mg/100 g of enzyme concentration. Whereas the combination of two enzymes i.e. pectin methyl esterase (PME) and polygalacturonase (PG) at 120 minutes of incubation time, 50°C of incubation temperature and 0.05 mg/100 gm of enzymatic concentration can give the maximum yield of 96.8% for plum fruits. This paper discusses the use of enzymes in fruit juice production focusing on the juice recovery, clarity and effect of the particular enzyme on the biochemical properties of the fruit juices.

  17. Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.

    PubMed

    Martins, Z E; Pinho, O; Ferreira, I M P L V O

    2018-05-01

    The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.

  18. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications

    PubMed Central

    Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui

    2017-01-01

    Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60–70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials. PMID:28168200

  19. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications.

    PubMed

    Simair, Altaf Ahmed; Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui

    2017-01-01

    Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α -amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60-70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.

  20. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.

  1. Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes.

    PubMed

    Zhao, Yong-Ming; Wang, Jin; Wu, Zhi-Gang; Yang, Jian-Ming; Li, Wei; Shen, Li-Xia

    2016-12-01

    In this study, the enzyme-assisted extraction of polysaccharides from Lentinus edodes (LEPs) was optimized by response surface methodology, and a preliminary characterization of the extracted LEPs and their anti-proliferative activities were investigated. An orthogonal assay was constructed to determine the optimal amounts of cellulase, papain and pectinase, which were 15, 20 and 15g/kg, respectively. Then effects of extraction conditions were evaluated and optimized using a Box-Behnken design. The results showed that the highest polysaccharides yield of 15.65% was achieved with an extraction temperature of 54°C, pH 5.0, enzymatic treatment time of 93min and a liquid/material ratio of 29:1mL/g, which correlated well with the predicted yield of 15.58%. Subsequently, the crude LEPs were further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions, which were designated as LEP-1 and LEP-2 and their monosaccharide compositions were characterized by GC. Fourier-transform infrared spectra demonstrated that LEP-1 and LEP-2 were distinct from each other regarding their chemical structures. In addition, the LEPs exhibited inhibition of cell proliferation on HCT-116 and HeLa cells in vitro. In summary, this study provides an efficient enzyme-assisted extraction for LEPs, which can be used as natural antitumor agents in the pharmaceutical and functional food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    A potent fibrinolytic enzyme-producing Bacillus cereus IND1 was isolated from the Indian food, rice. Solid-state fermentation was carried out using agroresidues for the production of fibrinolytic enzyme. Among the substrates, wheat bran supported more enzyme production and has been used for the optimized enzyme production by statistical approach. Two-level full-factorial design demonstrated that moisture, supplementation of beef extract, and sodium dihydrogen phosphate have significantly influenced enzyme production (P < 0.05). A central composite design resulted in the production of 3699 U/mL of enzyme in the presence of 0.3% (w/w) beef extract and 0.05% (w/w) sodium dihydrogen phosphate, at 100% (v/w) moisture after 72 h of fermentation. The enzyme production increased fourfold compared to the original medium. This enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl-cellulose ion-exchange chromatography, Sephadex G-75 gel filtration chromatography, and casein-agarose affinity chromatography and had an apparent molecular mass of 29.5 kDa. The optimum pH and temperature for the activity of fibrinolytic enzyme were found to be 8.0 and 60°C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0) and showed 27% ± 6% enzyme activity after initial denaturation at 60°C for 1 h. In vitro assays revealed that the enzyme could activate plasminogen and significantly degraded the fibrin net of blood clot, which suggests its potential as an effective thrombolytic agent. PMID:25003130

  3. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  4. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall Degrading Enzyme Activity of Fungal Culture Extracts

    USDA-ARS?s Scientific Manuscript database

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospe...

  5. Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols.

    PubMed

    Pyner, Alison; Nyambe-Silavwe, Hilda; Williamson, Gary

    2017-10-04

    We optimized the assays used to measure inhibition of rat and human α-glucosidases (sucrase and maltase activities), intestinal enzymes which catalyze the final steps of carbohydrate digestion. Cell-free extracts from fully differentiated intestinal Caco-2/TC7 monolayers were shown to be a suitable source of sucrase-isomaltase, with the same sequence as human small intestine, and were compared to a rat intestinal extract. The kinetic conditions of the assay were optimized, including comparison of enzymatic and chromatographic methods to detect the monosaccharide products. Human sucrase activity was more susceptible than the rat enzyme to inhibition by acarbose (IC 50 (concentration required for 50% inhibition) = 2.5 ± 0.5 and 12.3 ± 0.6 μM, respectively), by a polyphenol-rich green tea extract, and by pure (-)-epigallocatechin gallate (EGCG) (IC 50 = 657 ± 150 and 950 ± 86 μM respectively). In contrast, the reverse was observed when assessing maltase activity (e.g. IC 50 = 677 ± 241 and 14.0 ± 2.0 μM for human and rat maltase, respectively). 5-Caffeoylquinic acid did not significantly inhibit maltase and was only a very weak inhibitor of sucrase. The data show that for sucrase and maltase activities, inhibition patterns of rat and human enzymes are generally qualitatively similar but can be quantitatively different.

  6. Techno-economical evaluation of protein extraction for microalgae biorefinery

    NASA Astrophysics Data System (ADS)

    Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.

  7. Expression and Characterization of Acidothermus celluloyticus E1 Endoglucanase in Transgenic Duckweed Lemna minor 8627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Cheng, J. J.; Himmel, M. E.

    2007-01-01

    Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less

  8. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage

    NASA Astrophysics Data System (ADS)

    Le Vien, Nguyen Thi; Nguyen, Pham Bao; Cuong, Lam Duc; An, Trinh Thi Thua; Dao, Dong Thi Anh

    2017-09-01

    Glycosaminoglycans (GAGs) are natural biocompounds which join to construct cartilage tissuses, it can be extracted from cartilage of sharks, pigs, cows, chickens, etc. GAGs contain a Chondroitin sulfate (CS) content which is a supplement of functional food used for preventing and supporting treatment of arthritis and eye diseases. Therefore, the GAGs extraction from byproducts of the industry of cattle and poultry slaughter to identify the CS content by papain enzyme is necessary. In this study, the optimal hydrolysis conditions were obtained by response surface methodology (RSM). The independent variables were coded as: pH (x1), enzyme concentration (x2), incubation temperature (x3) and hydrolysis time (x4). The results of the analysis of variance (ANOVA) shown that the variables actively affected GAGs content. The optimal conditions of hydrolysis were derived at pH of 7.1, ratio of enzyme per substances of 0.62% w/wpo, temperature of 65°C and hydrolysis time of 230 minutes, GAGs content reached 14.3% of the dry matter of raw material. Analyzes by HPLC revealed that 56.17% of the dry preparations of GAGs were CS compound, were equivalent to 8.11% of the dry matter of chicken keel cartilage. Molecular weight of the dry preparations GAGs was 259.6 kDa. The dry preparations included the contents of moisture 12.2%, protein 8.42%, lipid 0%, ash 10.03% and extracted GAGs 69.35%.

  10. Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits.

    PubMed

    Beom Kim, Seon; Kim, CheongTaek; Liu, Qing; Hee Jo, Yang; Joo Choi, Hak; Hwang, Bang Yeon; Kyum Kim, Sang; Kyeong Lee, Mi

    2016-08-01

    Coumarin derivatives have been reported to inhibit melanin biosynthesis. The melanogenesis inhibitory activity of osthol, a major coumarin of the fruits of Cnidium monnieri Cusson (Umbelliferae), and optimized extraction conditions for the maximum yield from the isolation of osthol from C. monnieri fruits were investigated. B16F10 melanomas were treated with osthol at concentration of 1, 3, and 10 μM for 72 h. The expression of melanogenesis genes, such as tyrosinase, TRP-1, and TRP-2 was also assessed. For optimization, extraction factors such as extraction solvent, extraction time, and sample/solvent ratio were tested and optimized for maximum yield of osthol using response surface methodology with the Box-Behnken design (BBD). Osthol inhibits melanin content in B16F10 melanoma cells with an IC50 value of 4.9 μM. The melanogenesis inhibitory activity of osthol was achieved not by direct inhibition of tyrosinase activity but by inhibiting melanogenic enzyme expressions, such as tyrosinase, TRP-1, and TRP-2. The optimal condition was obtained as a sample/solvent ratio, 1500 mg/10 ml; an extraction time 30.3 min; and a methanol concentration of 97.7%. The osthol yield under optimal conditions was found to be 15.0 mg/g dried samples, which were well matched with the predicted value of 14.9 mg/g dried samples. These results will provide useful information about optimized extraction conditions for the development of osthol as cosmetic therapeutics to reduce skin hyperpigmentation.

  11. Enzyme-Assisted Extraction Optimization, Characterization and Antioxidant Activity of Polysaccharides from Sea Cucumber Phyllophorus proteus.

    PubMed

    Qin, Yujing; Yuan, Qingxia; Zhang, Yuexing; Li, Jialu; Zhu, Xinjiao; Zhao, Lingling; Wen, Jing; Liu, Jikai; Zhao, Longyan; Zhao, Jinhua

    2018-03-06

    Enzyme-assisted extraction optimization, characterization and in vitro antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus (PPP) were investigated in the present study. The optimal extraction conditions with a yield of 6.44 ± 0.06% for PPP were determined as follows: Extraction time of 2.89 h, ratio of extraction solvent to raw material of 16.26 mL/g, extraction pH of 6.83, exraction temperature of 50 °C and papain concentration of 0.15%. Three purified fractions, PPP-1a, PPP-1b and PPP-2 with molecular weights of 369.60, 41.73 and 57.76 kDa, respectively, were obtained from PPP by chromatography of FPA98Cl and Sepharose CL-6B columns. Analysis of monosaccharide compositions showed that PPP-1a consisted of N -acetyl-galactosamine (GalNAc), galactose (Gal) and fucose (Fuc), PPP-1b of Fuc as the only monosaccharide and PPP-2 of glucuronic acid, GalNAc and Fuc. Sulfate contents of PPP, PPP-1a, PPP-1b and PPP-2 were determined to be 21.9%, 20.6%, 25.2% and 28.0% ( w / w ), respectively. PPP and PPP-1a had higher molecular weight and intrinsic viscosity than those of the PPP-1b and PPP-2. PPP, PPP-1a, PPP-1b and PPP-2 exhibited obvious activities of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide radical and ABTS radical in different extent, which suggested that the polysaccharides from Phyllophorus proteus may be novel agents having potential value for antioxidation.

  12. Impact of Extraction Parameters on the Recovery of Lipolytic Activity from Fermented Babassu Cake

    PubMed Central

    Silva, Jaqueline N.; Godoy, Mateus G.; Gutarra, Melissa L. E.; Freire, Denise M. G.

    2014-01-01

    Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644

  13. Aroma enhancement and enzymolysis regulation of grape wine using β-glycosidase

    PubMed Central

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Adding β-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45°C, enzymolysis time of 90 min, and enzyme amount of 58.32 U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072

  14. A comparative study of extraction techniques for maximum recovery of glutamate decarboxylase (GAD) from Aspergillus oryzae NSK

    PubMed Central

    2013-01-01

    Background γ-Amino butyric acid (GABA) is a major inhibitory neurotransmitter of the mammalian central nervous system that plays a vital role in regulating vital neurological functions. The enzyme responsible for producing GABA is glutamate decarboxylase (GAD), an intracellular enzyme that both food and pharmaceutical industries are currently using as the major catalyst in trial biotransformation process of GABA. We have successfully isolated a novel strain of Aspergillus oryzae NSK that possesses a relatively high GABA biosynthesizing capability compared to other reported GABA-producing fungal strains, indicating the presence of an active GAD. This finding has prompted us to explore an effective method to recover maximum amount of GAD for further studies on the GAD’s biochemical and kinetic properties. The extraction techniques examined were enzymatic lysis, chemical permeabilization, and mechanical disruption. Under the GAD activity assay used, one unit of GAD activity is expressed as 1 μmol of GABA produced per min per ml enzyme extract (U/ml) while the specific activity was expressed as U/mg protein. Results Mechanical disruption by sonication, which yielded 1.99 U/mg of GAD, was by far the most effective cell disintegration method compared with the other extraction procedures examined. In contrast, the second most effective method, freeze grinding followed by 10% v/v toluene permeabilization at 25°C for 120 min, yielded only 1.17 U/mg of GAD, which is 170% lower than the sonication method. Optimized enzymatic lysis with 3 mg/ml Yatalase® at 60°C for 30 min was the least effective. It yielded only 0.70 U/mg of GAD. Extraction using sonication was further optimized using a one-variable-at-a-time approach (OVAT). Results obtained show that the yield of GAD increased 176% from 1.99 U/mg to 3.50 U/mg. Conclusion Of the techniques used to extract GAD from A. oryzae NSK, sonication was found to be the best. Under optimized conditions, about 176% of GAD was recovered compared to recovery under non optimized conditions. The high production level of GAD in this strain offers an opportunity to conduct further studies on GABA production at a larger scale. PMID:24321181

  15. Investigation on ultrasonication mediated biosurfactant disintegration method in sludge flocs for enhancing hydrolytic enzymes activity and polyhydroxyalkanoates.

    PubMed

    Sethupathy, A; Sivashanmugam, P

    2018-06-04

    In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.

  16. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    PubMed

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.

  17. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    PubMed

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  18. Optimization and validation of enzyme-linked immunosorbent assay for the determination of endosulfan residues in food samples.

    PubMed

    Zhang, Yan; Liu, Jun W; Zheng, Wen J; Wang, Lei; Zhang, Hong Y; Fang, Guo Z; Wang, Shuo

    2008-02-01

    In this study, an enzyme-linked immunosorbent assay (ELISA) was optimized and applied to the determination of endosulfan residues in 20 different kinds of food commodities including vegetables, dry fruits, tea and meat. The limit of detection (IC(15)) was 0.8 microg kg(-1) and the sensitivity (IC(50)) was 5.3 microg kg(-1). Three simple extraction methods were developed, including shaking on the rotary shaker at 250 r min(-1) overnight, shaking on the rotary shaker for 1 h and thoroughly mixing for 2 min. Methanol was used as the extraction solvent in this study. The extracts were diluted in 0.5% fish skin gelatin (FG) in phosphate-buffered saline (PBS) at various dilutions in order to remove the matrix interference. For cabbage (purple and green), asparagus, Japanese green, Chinese cabbage, scallion, garland chrysanthemum, spinach and garlic, the extracts were diluted 10-fold; for carrots and tea, the extracts were diluted 15-fold and 900-fold, respectively. The extracts of celery, adzuki beans and chestnuts, were diluted 20-fold to avoid the matrix interference; ginger, vegetable soybean and peanut extracts were diluted 100-fold; mutton and chicken extracts were diluted 10-fold and for eel, the dilution was 40-fold. Average recoveries were 63.13-125.61%. Validation was conducted by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The results of this study will be useful to the wide application of an ELISA for the rapid determination of pesticides in food samples.

  19. [Complex enzyme combined with ultrasound extraction technology, physicochemical properties and antioxidant activity of Hedysarum polysaccharides].

    PubMed

    Yang, Xiu-Yan; Xue, Zhi-Yuan; Yang, Ya-Fei; Fang, Yao-Yao; Zhou, Xiang-Lin; Zhao, Liang-Gong; Feng, Shi-Lan

    2018-06-01

    In this study, complex enzymes combined with ultrasonic extraction technology(MC) were used, to select optimal extraction combinations by single factor and orthogonal test, with Hedysarum polysaccharides yield and content as the comprehensive indexes. The components, physicochemical properties and antioxidant activity of Hedysarum polysaccharides from complex enzyme combined with ultrasonic extraction(HPS-MC)and the Hedysarum polysaccharides from hot water extraction(HPS-R)were analyzed. The results showed that:complex enzymes had significant effect on the yield and content of Hedysarum polysaccharides, and the ultrasonic power could significantly improve the content of Hedysarum polysaccharides. The optimum technological parameters were as follows: complex enzyme ratio 1:1, ultrasonic power 105 W, ultrasonic time 60 min, and enzymatic hydrolysis pH 5, achieving (14.01±0.64)% and (92.45±1.47)% respectively for the yield and content of Polysaccharides. As compared with HPS-R, the molecular weight, absolute viscosity and protein content of HPS-MC were decreased, while the content of uronic acid was increased. In the antioxidant system, the concentration of polysaccharide was within the range of 1-7 g·L⁻¹; the antioxidant activity of HPS-MC was higher than that of HPS-R, and HPS-MC (80%) with the lowest molecular weight showed a significant dose effect relationship with the increase of the experimental concentration. In conclusion, MC is a simple, convenient, economical and environmentally friendly extraction technology, and the Hedysarum polysaccharides extracted by this method have obvious antioxidant activity. Copyright© by the Chinese Pharmaceutical Association.

  20. Optimization of cellulase production by Penicillium sp.

    PubMed

    Prasanna, H N; Ramanjaneyulu, G; Rajasekhar Reddy, B

    2016-12-01

    The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.

  1. Effect of Culture Conditions on the Production of an Extracellular Protease by Bacillus sp. Isolated from Soil Sample of Lavizan Jungle Park

    PubMed Central

    Akhavan Sepahy, Abbas; Jabalameli, Leila

    2011-01-01

    Soil samples of Tehran jungle parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from Lavizan park, in north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus sp. strain CR-179 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by Bacillus sp. strain CR-179. Protease production by this Bacillus cultivated in liquid cultures reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose, and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein, and beef extract. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which is indicating the enzyme to be thermoalkaline protease. PMID:22191016

  2. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    PubMed

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  3. Enhancement of Synthetic Trichoderma-Based Enzyme Mixtures for Biomass Conversion with an Alternative Family 5 Glycosyl Hydrolase from Sporotrichum thermophile

    PubMed Central

    Ye, Zhuoliang; Zheng, Yun; Li, Bingyao; Borrusch, Melissa S.; Storms, Reginald; Walton, Jonathan D.

    2014-01-01

    Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4- glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance within GH5_5. PMID:25295862

  4. Enhancement of synthetic Trichoderma-based enzyme mixtures for biomass conversion with an alternative family 5 glycosyl hydrolase from Sporotrichum thermophile.

    PubMed

    Ye, Zhuoliang; Zheng, Yun; Li, Bingyao; Borrusch, Melissa S; Storms, Reginald; Walton, Jonathan D

    2014-01-01

    Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4-glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance within GH5_5.

  5. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).

    PubMed

    Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin

    2015-07-15

    This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties. Copyright © 2015. Published by Elsevier Ltd.

  6. Optimization, purification, and characterization of L-asparaginase from Actinomycetales bacterium BkSoiiA.

    PubMed

    Dash, Chitrangada; Mohapatra, Sukanti Bala; Maiti, Prasanta Kumar

    2016-01-01

    Actinobacteria are promising source of a wide range of important enzymes, some of which are produced in industrial scale, with others yet to be harnessed. L-Asparaginase is used as an antineoplastic agent. The present work deals with the production and optimization of L-asparaginase from Actinomycetales bacterium BkSoiiA using submerged fermentation in M9 medium. Production optimization resulted in a modified M9 medium with yeast extract and fructose as carbon and nitrogen sources, respectively, at pH 8.0, incubated for 120 hr at 30 ± 2 °C. The crude enzyme was purified to near homogeneity by ammonium sulfate precipitation following dialysis, ion-exchange column chromatography, and finally gel filtration. The sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) revealed an apparent molecular weight of 57 kD. The enzyme was purified 95.06-fold and showed a final specific activity of 204.37 U/mg with 3.49% yield. The purified enzyme showed maximum activity at a pH 10.0 and was stable at pH 7.0 to 9.0. The enzyme was activated by Mn(2+) and strongly inhibited by Ba(2+). All these preliminary characterization suggests that the L-asparaginase from the source may be a tool useful to pharmaceutical industries after further research.

  7. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    PubMed

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.

  8. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.

    PubMed

    Suwannarangsee, Surisa; Arnthong, Jantima; Eurwilaichitr, Lily; Champreda, Verawat

    2014-10-01

    Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, β-glucosidase, xylanase, and β-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of β-glucosidase and core hemicellulases (xylanase and β-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external β-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

  9. Enzymatic Removal of Diacetyl from Beer 1

    PubMed Central

    Thompson, Janet W.; Shovers, J.; Sandine, W. E.; Elliker, P. R.

    1970-01-01

    Use of diacetyl reductase, a reduced nicotinamide adenine dinucleotide (NADH)-requiring enzyme, to eliminate diacetyl off-flavor in beer was studied. The crude enzyme was extracted from Aerobacter aerogenes and partially purified by ammonium sulfate precipitation or Sephadex chromatography. In the semipure state, the enzyme was inactivated by lyophilization; in a crude state, the lyophilized extract remained stable for at least 4 months at — 20 C. A 50% reduction in specific activity within 5 min was observed when crude diacetyl reductase was suspended (5 mg of protein/ml) in phosphate buffer at pH 5.5 or below; a similar inactivation rate was observed when the crude enzyme was dissolved in a 5% aqueous ethyl alcohol solution. Effective crude enzyme activity in beer at a natural pH of 4.1 required protection of the enzyme in 10% gelatin. Incorporation of yeast cells with the gel-protected enzyme provided regeneration of NADH. Combinations of yeast, enzyme, and gelatin were tested to obtain data analyzed by regression analysis to determine the optimal concentration of each component of the system required to reduce the level of diacetyl in spiked (0.5 ppm) beer to less than 0.12 ppm within 48 hr at 5 C. The protected enzyme system was also effective in removing diacetyl from orange juice (pH 3.8) and some distilled liquors. PMID:4318450

  10. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.

    PubMed

    Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato

    2017-02-01

    Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.

  11. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Combining supercritical fluid extraction of soil herbicides with enzyme immunoassay analysis.

    PubMed

    Stearman, G K

    2001-10-01

    Supercritical fluid extraction (SFE) of soil herbicides followed by enzyme immunoassay analysis (EIA) is explained in a step-by-step process. Extracted herbicides, include 2,4-D, simazine, atrazine, and alachlor. The herbicide, trifluralin was not successfully analyzed by EIA because of crossreacting metabolites. Problems with SFE, including uneven packing of cells, leaks, uneven flow and clogging, can largely be eliminated as the method parameters are optimized. It was necessary to add modifiers including methanol or acetone to the SF CO2 to increase the solubility of the analytes. Detection limits of 2.5 ng/g soil for atrazine and alachlor and 15 ng/g soil for simazine and 2,4-D without concentration of the sample were achieved. Recoveries above 80% and relative standard deviations (RSDs) less than 15% for 2,4-D simazine, atrazine and alachlor were achieved. Atrazine and alachlor recoveries were above 90% with RSDs below 10%. Forty soil samples could be extracted and analyzed in an 8-h day.

  13. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities.

    PubMed

    Jiao, Jiao; Li, Zhu-Gang; Gai, Qing-Yan; Li, Xiao-Juan; Wei, Fu-Yao; Fu, Yu-Jie; Ma, Wei

    2014-03-15

    Microwave-assisted aqueous enzymatic extraction (MAAEE) of pumpkin seed oil was performed in this study. An enzyme cocktail comprised of cellulase, pectinase and proteinase (w/w/w) was found to be the most effective in releasing oils. The highest oil recovery of 64.17% was achieved under optimal conditions of enzyme concentration (1.4%, w/w), temperature (44°C), time (66 min) and irradiation power (419W). Moreover, there were no significant variations in physicochemical properties of MAAEE-extracted oil (MAAEEO) and Soxhlet-extracted oil (SEO), but MAAEEO exhibited better oxidation stability. Additionally, MAAEEO had a higher content of linoleic acid (57.33%) than SEO (53.72%), and it showed stronger antioxidant activities with the IC50 values 123.93 and 152.84, mg/mL, according to DPPH radical scavenging assay and β-carotene/linoleic acid bleaching test. SEM results illustrated the destruction of cell walls and membranes by MAAEE. MAAEE is, therefore, a promising and environmental-friendly technique for oil extraction in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Ultrasonic-assisted enzymatic extraction of phenolics from broccoli (Brassica oleracea L. var. italica) inflorescences and evaluation of antioxidant activity in vitro.

    PubMed

    Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong

    2015-06-01

    An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris AM2.

    PubMed

    Neviani, E; Boquien, C Y; Monnet, V; Thanh, L P; Gripon, J C

    1989-09-01

    An aminopeptidase was purified from cell extracts of Lactococcus lactis subsp. cremoris AM2 by ion-exchange chromatography. After electrophoresis of the purified enzyme in the presence or absence of sodium dodecyl sulfate, one protein band was detected. The enzyme was a 300-kilodalton hexamer composed of identical subunits not linked by disulfide bridges. Activity was optimal at 40 degrees C and pH 7 and was inhibited by classical thiol group inhibitors. The aminopeptidase hydrolyzed naphthylamide-substituted amino acids, as well as dipeptides and tripeptides. Longer protein chains such as the B chain of insulin were hydrolyzed, but at a much slower rate. The Michaelis constant (K(m)) and the maximal rate of hydrolysis (V(max)) were, respectively, 4.5 mM and 3,600 pkat/mg for the substrate l-histidyl-beta-naphthylamide. Amino acid analysis showed that the enzyme contained low levels of hydrophobic residues. The partial N-terminal sequence of the first 19 residues of the mature enzyme was determined. Polyclonal antibodies were obtained from the purified enzyme, and after immunoblotting, there was no cross-reaction between these antibodies and other proteins in the crude extract.

  17. Improvement of halophilic cellulase production from locally isolated fungal strain.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2015-07-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett-Burman design and the Face Centered Central Composite Design (FCCCD). Plackett-Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization.

  18. Improvement of halophilic cellulase production from locally isolated fungal strain

    PubMed Central

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2014-01-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett–Burman design and the Face Centered Central Composite Design (FCCCD). Plackett–Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization. PMID:26150755

  19. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach.

    PubMed

    Kumar, Mukesh; Singh, Amrinder; Beniwal, Vikas; Salar, Raj Kumar

    2016-12-01

    Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.

  20. Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio.

    PubMed

    Liu, Jun-Guo; Xing, Jian-Min; Chang, Tian-Shi; Liu, Hui-Zhou

    2006-03-01

    Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25 degrees C and 35 degrees C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.

  1. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    PubMed

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  2. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.

    PubMed

    Shirodkar, Priyanka V; Muraleedharan, Usha Devi

    2017-11-26

    Amylases are a group of enzymes with a wide variety of industrial applications. Enhancement of α-amylase production from the marine protists, thraustochytrids has been attempted for the first time by applying statistical-based experimental designs using response surface methodology (RSM) and genetic algorithm (GA) for optimization of the most influencing process variables. A full factorial central composite experimental design was used to study the cumulative interactive effect of nutritional components viz., glucose, corn starch, and yeast extract. RSM was performed on two objectives, that is, growth of Ulkenia sp. AH-2 (ATCC® PRA-296) and α-amylase activity. When GA was conducted for maximization of the enzyme activity, the optimal α-amylase activity was found to be 71.20 U/mL which was close to that obtained by RSM (71.93 U/mL), both of which were in agreement with the predicted value of 72.37 U/mL. Optimal growth at the optimized process variables was found to be 1.89A 660nm . The optimized medium increased α-amylase production by 1.2-fold.

  3. Use of a plant-derived enzyme template for the production of the green-note volatile hexanal.

    PubMed

    Schade, Frank; Thompson, John E; Legge, Raymond L

    2003-11-05

    Hexanal is a key organoleptic element of green-note that is found in both fragrances and flavors. We report a novel process for the production of hexanal using immobilized enzyme templates extracted from different plant sources in combination with hollow-fiber ultrafiltration for in situ separation. Enzyme templates, known to be responsible for the synthesis of hexanal from linoleic acid (18:2), were isolated from naturally enriched tissues including carnation petals, strawberry and tomato leaves. These templates were immobilized in an alginate matrix and used as a biocatalyst in a packed-bed bioreactor. Continuous product recovery was achieved using a hollow-fiber ultrafiltration unit. The effects of pH, reaction temperature, and substrate and enzyme concentrations were studied and their effects on hexanal generation identified and optimized. Utilizing optimized conditions, hexanal production 112-fold higher than endogenous steady-state levels in a corresponding amount of plant tissue could be achieved over a 30-minute period. Based on the reactor studies, product inhibition also appears to be an important factor for bioreactor-based hexanal production. Copyright 2003 Wiley Periodicals, Inc.

  4. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  5. Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction.

    PubMed

    Ortiz, Gastón E; Ponce-Mora, María C; Noseda, Diego G; Cazabat, Gabriela; Saravalli, Celina; López, María C; Gil, Guillermo P; Blasco, Martín; Albertó, Edgardo O

    2017-02-01

    The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl 2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min -1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.

  6. A preliminary study of continuous milk coagulation using Cynara cardunculus flower extract and calf rennet immobilized on magnetic particles.

    PubMed

    Liburdi, Katia; Emiliani Spinelli, Sara; Benucci, Ilaria; Lombardelli, Claudio; Esti, Marco

    2018-01-15

    The aim of this study was to develop a bioreactor design for continuous milk coagulation using a biocatalyst composed of immobilized animal and vegetable rennet on aminated magnetic particles, which has been proven to be an appropriate carrier for enzyme immobilization. Calf and vegetable (Cynara cardunculus) rennets were covalently immobilized on CLEA® magnetic supports and the immobilization procedure was optimized in batch mode, by evaluating protein loading, caseinolytic activity and the coagulation properties of skim milk powder and cow's milk. Subsequently the optimal temperature of immobilized coagulant was defined and a technically-friendly enzyme bioreactor was developed in order to carry out a continuous milk coagulation process with the aim of producing soft cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Extraction optimization and in vitro and in vivo anti-postprandial hyperglycemia effects of inhibitor from Phoenix dactylifera L. parthenocarpic fruit.

    PubMed

    El Abed, Hanen; Chakroun, Mouna; Fendri, Imen; Makni, Mohamed; Bouaziz, Mohamed; Drira, Noureddine; Mejdoub, Hafedh; Khemakhem, Bassem

    2017-04-01

    Phoenix dactylifera L. plays an important role in social, economic, and ecological Tunisian sectors. Some date palms produce parthenocarpic fruit named Sish. The aqueous ethanolic extract from P. dactylifera parthenocarpic dates demonstrated a potent inhibition of the enzymes related to type II diabetes. In this work, extraction optimization of amylase inhibitors was carried out using Box-Behnken Design. Bioactivity-guided fractionation of the 70% aqueous ethanol extract was performed to identify the active compounds. The physicochemical results by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed the presence of 13 phenolic compounds. The in vitro study showed that the extract exhibited a more specific inhibitor of α-glucosidase than α-amylase with an IC 50 value of 0.6 and 2.5mg/mL, respectively. The in vivo study of this extract effect on the postprandial hyperglycemia activity showed a decrease in plasma glucose levels after 30min stronger than the Acarbose effect. These results confirmed the anti-postprandial hyperglycemia activity of the aqueous ethanolic extract from P. dactylifera parthenocarpic dates, which could lend support for its pharmaceutical use. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation.

    PubMed

    Xie, Hui; Zhu, Lusheng; Ma, Tingting; Wang, Jun; Wang, Jinhua; Su, Jun; Shao, Bo

    2010-01-01

    The free enzyme extracted from WZ-I, which was identified as Fusarium LK. ex Fx, could effectively degrade chlorpyrifos, an organophosphate insecticide. The methods of immobilizing this free enzyme and determined its degradation-related characteristics were investigated. The properties of the immobilized enzyme were compared with those of the free enzyme. The optimal immobilization of the enzyme was achieved in a solution of 30 g/L sodium alginate at 4 degrees C for 4-12 hr. The immobilized enzyme showed the maximal activity at pH 8.0, 45 degrees C. The maximum initial rate and the substrate concentration of the immobilized enzyme were less than that of the free enzyme. The immobilized enzyme, therefore, had a higher capacity to withstand a broader range of temperatures and pH conditions than the free enzyme. With varying pH and temperatures, the immobilized enzyme was more active than the free enzyme in the degradation reaction. In addition, the immobilized enzyme exhibited only a slight loss in its initial activity, even after three repeated uses. The results showed that the immobilized enzyme was more resistant to different environmental conditions, suggesting that it was viable for future practical use.

  9. Optimization, Purification, and Starch Stain Wash Application of Two New α-Amylases Extracted from Leaves and Stems of Pergularia tomentosa

    PubMed Central

    El Abed, Hanen; Belghith, Hafedh; Ben Abdallah, Ferjani; Belghith, Karima

    2017-01-01

    A continuous research is attempted to fulfil the highest industrial demands of natural amylases presenting special properties. New α-amylases extracted from stems and leaves of Pergularia tomentosa, which is widespread and growing spontaneously in Tunisia, were studied by the means of their activities optimization and purification. Some similarities were recorded for the two identified enzymes: (i) the highest amylase activity showed a promoted thermal stability at 50°C; (ii) the starch substrate at 1% enhanced the enzyme activity; (iii) the two α-amylases seem to be calcium-independent; (iv) Zn2+, Cu2+, and Ag2+ were considered as important inhibitors of the enzyme activity. Following the increased gradient of elution on Mono Q-Sepharose column, an increase in the specific activity of 11.82-fold and 10.92-fold was recorded, respectively, for leaves and stems with the presence of different peaks on the purification profiles. Pergularia amylases activities were stable and compatible with the tested commercial detergents. The combination of plant amylase and detergent allowed us to enhance the wash performance with an increase of 35.24 and 42.56%, respectively, for stems and leaves amylases. Characterized amylases were reported to have a promoted potential for their implication notably in detergent industry as well as biotechnological sector. PMID:29392138

  10. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    PubMed

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  11. Biochemical characterisation of an allantoate-degrading enzyme from French bean (Phaseolus vulgaris): the requirement of phenylhydrazine.

    PubMed

    Raso, María José; Muñoz, Alfonso; Pineda, Manuel; Piedras, Pedro

    2007-10-01

    In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the atmospheric nitrogen fixed in nodules is used for synthesis of the ureides allantoin and allantoic acid, the major long distance transport forms of organic nitrogen in these species. The purpose of this investigation was to characterise the allantoate degradation step in Phaseolus vulgaris. The degradation of allantoin, allantoate and ureidoglycolate was determined "in vivo" using small pieces of chopped seedlings. With allantoate and ureidoglycolate as substrates, the determination of the reaction products required the addition of phenylhydrazine to the assay mixture. The protein associated with the allantoate degradation has been partially purified 22-fold by ultracentrifugation and batch separation with DEAE-Sephacel. This enzyme was specific for allantoate and could not use ureidoglycolate as substrate. The activity was completely dependent on phenylhydrazine, which acts as an activator at low concentrations and decreases the affinity of the enzyme for the substrate at higher concentrations. The optimal pH for the activity of the purified protein was 7.0 and the optimal temperature was 37 degrees C. The activity was completely inhibited by EDTA and only manganese partially restored the activity. The level of activity was lower in extracts obtained from leaves and fruits of French bean grown with nitrate than in plants actively fixing nitrogen and, therefore, relying on ureides as nitrogen supply. This is the first time that an allantoate-degrading activity has been partially purified and characterised from a plant extract. The allosteric regulation of the enzyme suggests a critical role in the regulation of ureide degradation.

  12. alpha-Galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factors from soymilk.

    PubMed

    Patil, Aravind Goud G; K, Praveen Kumar S; Mulimani, Veerappa H; Veeranagouda, Yaligara; Lee, Kyoung

    2010-11-01

    A bacterial strain capable of producing extracellular alpha-galactosidase was isolated from sugar cane industrial waste soil sample. Microbiological, physiological, and biochemical studies revealed that isolate belonged to Bacillus sp,. Furthermore, 16S rDNA sequence analysis of new isolates was identified as Bacillus megaterium VHM1. The production of alpha-galactosidase was optimized by various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen source, respectively for the production of alpha-galactosidase. The enzyme showed an optimum pH at 7.5 and was stable over a pH between 5 and 9. The enzyme was optimally active in 55degreesC and the enzyme was thermostable with half life of 120 minutes at 55 degrees C and lost their 90%, residual activity in 120 minutes at 60 degrees C. alpha-Galactosidase was strongly inhibited by Ag2, Cu2, and Hg2+ at 1mM concentration. The metal ions Fe2, Mn2+, and Mg2+ had no effect on alpha-galactosidase activity, Zn2+,Ni2+, and Ca2+ reduced the enzyme activity slightly. The B megaterium VHM1 enzyme treatment completely hydrolyzed flatulence-causing sugars of soymilk within one and half hour.

  13. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3.

    PubMed

    Gong, Jin-Song; Lu, Zhen-Ming; Shi, Jing-Song; Dou, Wen-Fang; Xu, Hong-Yu; Zhou, Zhe-Min; Xu, Zheng-Hong

    2011-10-01

    Microbial transformation of glycinonitrile into glycine by nitrile hydrolase is of considerable interest to green chemistry. A novel fungus with high nitrile hydrolase was newly isolated from soil samples and identified as Fusarium oxysporum H3 through 18S ribosomal DNA, 28S ribosomal DNA, and the internal transcribed spacer sequence analysis, together with morphology characteristics. After primary optimization of culture conditions including pH, temperature, carbon/nitrogen sources, inducers, and metal ions, the enzyme activity was greatly increased from 326 to 4,313 U/L. The preferred carbon/nitrogen sources, inducer, and metal ions were glucose and yeast extract, caprolactam, and Cu(2+), Mn(2+), and Fe(2+), respectively. The maximum enzyme formation was obtained when F. oxysporum H3 was cultivated at 30 °C for 54 h with the initial pH of 7.2. There is scanty report about the optimization of nitrile hydrolase production from nitrile-converting fungus.

  14. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity increased. Silicase activity did not change across nitrogen treatments despite a shift in microbial community with varied nitrogen concentration. Samples treated with different nitrogen concentrations had similar levels of diversity, however the microbial community composition differed with added nitrogen. The results demonstrated that adding nitrogen to rice straw during thermophilic decomposition nurtured a more active microbial community and promoted enzyme secretion thus improving the ability to discover enzymes for rice straw deconstruction. These results can inform future experiments for cultivating a unique, thriving compost-derived microbial community that can successfully decompose rice straw. Understanding the silicase activity of microorganisms may alleviate the challenges associated with silica in various feedstocks.

  15. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  16. Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate.

    PubMed

    Singh, Santosh K; Singh, Sanjay K; Tripathi, Vinayak R; Khare, Sunil K; Garg, Satyendra K

    2011-12-28

    Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. The pre-screening medium amended with optimized (w/v) 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml(-1) at 72 h incubation. Enzyme production increased to 431 Uml(-1) when Mg2+ (0.01%, w/v) was supplemented. Optimization of physical factors further enhanced protease to 514 Uml(-1) at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH), thereafter predicted by response surface methodology yielded 617 U protease ml(-1) at glucose 1.25% (w/v), yeast extract 0.5% (w/v), MgSO4 0.01% (w/v) and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml(-1) at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml(-1)) in protease production compared to un-optimized conditions (65 Uml(-1)). This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium.

  17. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae).

    PubMed

    Ahmed, Afnan Sh; Ahmed, Qamaruddin; Saxena, Anil Kumar; Jamal, Parveen

    2017-01-01

    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.

  18. Inhibitory effect of burdock leaves on elastase and tyrosinase activity.

    PubMed

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-10-01

    Burdock ( Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30-50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties.

  19. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    PubMed Central

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties. PMID:28912875

  20. Catalytic Properties of Amylolytic Enzymes Produced by Gongronella butleri Using Agroindustrial Residues on Solid-State Fermentation

    PubMed Central

    Cavalheiro, Gabriéla Finoto; Sanguine, Isadora Stranieri; Santos, Flávia Regina da Silva; da Costa, Ana Carolina; Fernandes, Matheus; da Paz, Marcelo Fossa; Fonseca, Gustavo Graciano

    2017-01-01

    Amylases catalyze the hydrolysis of starch, a vegetable polysaccharide abundant in nature. These enzymes can be utilized in the production of syrups, alcohol, detergent, pharmaceutical products, and animal feed formulations. The aim of this study was to optimize the production of amylases by the filamentous fungus Gongronella butleri by solid-state fermentation and to evaluate the catalytic properties of the obtained enzymatic extract. The highest amylase production, 63.25 U g−1 (or 6.32 U mL−1), was obtained by culturing the fungus in wheat bran with 55% of initial moisture, cultivated for 96 h at 25°C. The enzyme presented optimum activity at pH 5.0 and 55°C. The amylase produced was stable in a wide pH range (3.5–9.5) and maintained its catalytic activity for 1 h at 40°C. Furthermore, the enzymatic extract hydrolyzed starches from different vegetable sources, presenting predominant dextrinizing activity for all substrates evaluated. However, the presence of glucose was observed in a higher concentration during hydrolysis of corn starch, indicating the synergistic action of endo- and exoamylases, which enables the application of this enzymatic extract to produce syrups from different starch sources. PMID:29376074

  1. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves.

    PubMed

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evaluation of microextraction by packed sorbent, liquid-liquid microextraction and derivatization pretreatment of diet-derived phenolic acids in plasma by gas chromatography with triple quadrupole mass spectrometry.

    PubMed

    Bustamante, Luis; Cárdenas, Diana; von Baer, Dietrich; Pastene, Edgar; Duran-Sandoval, Daniel; Vergara, Carola; Mardones, Claudia

    2017-09-01

    Miniaturized sample pretreatments for the analysis of phenolic metabolites in plasma, involving protein precipitation, enzymatic deconjugation, extraction procedures, and different derivatization reactions were systematically evaluated. The analyses were conducted by gas chromatography with mass spectrometry for the evaluation of 40 diet-derived phenolic compounds. Enzyme purification was necessary for the phenolic deconjugation before extraction. Trimethylsilanization reagent and two different tetrabutylammonium salts for derivatization reactions were compared. The optimum reaction conditions were 50 μL of trimethylsilanization reagent at 90°C for 30 min, while tetrabutylammonium salts were associated with loss of sensitivity due to rapid activation of the inert gas chromatograph liner. Phenolic acids extractions from plasma were optimized. Optimal microextraction by packed sorbent performance was achieved using an octadecylsilyl packed bed and better recoveries for less polar compounds, such as methoxylated derivatives, were observed. Despite the low recovery for many analytes, repeatability using an automated extraction procedure in the gas chromatograph inlet was 2.5%. Instead, using liquid-liquid microextraction, better recoveries (80-110%) for all analytes were observed at the expense of repeatability (3.8-18.4%). The phenolic compounds in gerbil plasma samples, collected before and 4 h after the administration of a calafate extract, were analyzed with the optimized methodology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions.

    PubMed

    Sankaranarayanan, Mugesh; Seol, Eunhee; Kim, Yeonhee; Chauhan, Ashish Singh; Park, Sunghoon

    2017-03-01

    Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster ® /B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.

  4. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    PubMed

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass.

    PubMed

    Ghio, Silvina; Insani, Ester M; Piccinni, Florencia E; Talia, Paola M; Grasso, Daniel H; Campos, Eleonora

    2016-01-01

    A novel bacterial isolate with polysaccharides degrading activity was identified as Paenibacillus sp., and named Paenibacillus sp. A59. Even though it is a strict mesophile, optimal xylanase activity of the crude enzymatic extract was achieved between 50°C and 70°C and more than 60% of the activity was retained after incubation for 48h at 50°C, indicating thermotolerance of the enzymes involved. The extract was also active on pre-treated sugarcane residue (SCR) and wheat straw, releasing xylobiose and xylose as the main products, therefore confirming its predominantly xylanolytic activity. By zymograms and mass spectrometry of crude enzymatic extracts of xylan or SCR cultures, a 32kDa GH10 beta- 1,4- endoxylanase with xylanase and no CMCase activity was identified. We named this enzyme XynA and it was the only xylanase identified under both conditions assayed, suggesting that it is a good candidate for recombinant expression and evaluation in hemicelluloses deconstruction applications. Also, a protein with two S-layer homology domains (SLH) and a large uncharacterized C-terminal domain as well as an ABC substrate binding protein were identified in crude extracts of SCR cultures. We propose that Paenibacillus sp. A59 uses a system similar to anaerobic and other Gram positive bacteria, with SLH-domain proteins anchoring polysaccharide-degrading enzymes close to the membrane and the substrate binding protein assisting translocation of simple sugars to the cell interior. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    PubMed

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  7. Extraction Optimization of Tinospora cordifolia and Assessment of the Anticancer Activity of Its Alkaloid Palmatine

    PubMed Central

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective. To optimize the conditions for the extraction of alkaloid palmatine from Tinospora cordifolia by using response surface methodology (RSM) and study its anticancerous property against 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Methods. The effect of three independent variables, namely, extraction temperature, time, and cycles was investigated by using central composite design. A single topical application of DMBA (100 μg/100 μL of acetone), followed 2 weeks later by repeated application of croton oil (1% in acetone three times a week) for 16 weeks, exhibited 100 percent tumor incidence (Group 2). Results. The highest yield of alkaloid from Tinospora cordifolia could be achieved at 16 hours of extraction time under 40°C with 4 extraction cycles. Alkaloid administration significantly decreases tumor size, number, and the activity of serum enzyme when compared with the control (Group 2). In addition, depleted levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and increased DNA damage were restored in palmatine treated groups. Conclusion. The data of the present study clearly indicate the anticancer potential of palmatine alkaloid in DMBA induced skin cancer model in mice. PMID:24379740

  8. In vitro metabolic engineering for the salvage synthesis of NAD(.).

    PubMed

    Honda, Kohsuke; Hara, Naoya; Cheng, Maria; Nakamura, Anna; Mandai, Komako; Okano, Kenji; Ohtake, Hisao

    2016-05-01

    Excellent thermal and operational stabilities of thermophilic enzymes can greatly increase the applicability of biocatalysis in various industrial fields. However, thermophilic enzymes are generally incompatible with thermo-labile substrates, products, and cofactors, since they show the maximal activities at high temperatures. Despite their pivotal roles in a wide range of enzymatic redox reactions, NAD(P)(+) and NAD(P)H exhibit relatively low stabilities at high temperatures, tending to be a major obstacle in the long-term operation of biocatalytic chemical manufacturing with thermophilic enzymes. In this study, we constructed an in vitro artificial metabolic pathway for the salvage synthesis of NAD(+) from its degradation products by the combination of eight thermophilic enzymes. The enzymes were heterologously produced in recombinant Escherichia coli and the heat-treated crude extracts of the recombinant cells were directly used as enzyme solutions. When incubated with experimentally optimized concentrations of the enzymes at 60°C, the NAD(+) concentration could be kept almost constant for 15h. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes.

    PubMed

    Gagaoua, Mohammed; Hoggas, Naouel; Hafid, Kahina

    2015-02-01

    The present work describes for the first time an elegant non-chromatographic method, the three phase partitioning for the purification and recovery of zingibain, a milk-clotting enzyme, from Zingiber officinale rhizomes. Factors affecting partitioning efficiency such as (NH4)2SO4 saturation, crude extract to t-butanol ratio and pH on zingibain partitioning were investigated. Optimal purification parameters were 50% (NH4)2SO4 saturation with 1.0:1.0 ratio of crude extract:t-butanol at pH 7.0, which gave 14.91 purification fold with 215% recovery of zingibain. The enzyme was found to be exclusively partitioned in the aqueous phase. The enzyme showed a prominent single band on SDS-PAGE. It is a monomeric protein of 33.8 kDa and its isoelectric point is 4.38. The enzyme exhibited maximal proteolytic activity at a temperature of 60 °C and pH 7.0. It was found to be stable at 40-65 °C during 2 h. The enzyme was found to be highly stable against numerous metal ions and its activity was enhanced by Ca(2+), K(+) and Na(+). It was completely inhibited by heavy metal ions such as Cu(2+) and Hg(2+) and partially by Cd(+). Zingibain milk-clotting activity (MCA) was found to be highly stable when stored under freezing (-20 °C) for 30 days compared at 4 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Production, partial purification and characterization of xylanase using Nicotiana tabacum leaf dust as substrate.

    PubMed

    Acharya, Komal P; Shilpkar, Prateek

    2016-03-01

    Isolated Bacillus sp. was used in the present study for production of xylanase from Nicotiana tabacum leaf dust. The strain was able to give a maximum of 1.77 Uml⁻¹ xylanase activity under optimized fermentation conditions which was further increased upto 2.77 Uml⁻¹ after extraction and partial purification of enzyme. After partial purification, the enzyme was characterized and it gave the highest xylanase activity at pH 7.0, when 0.2 ml enzyme was incubated with 2.0% substrate (Nicotiana tabacum leaf dust) for 60 min at 60°C. Saccharification study of Nicotiana tabacum leaf dust with partially purified enzyme revealed that 18.4% reducing sugar was released in 20 hrs incubation, and TLC and HPTLC analysis showed that xylose and glucose sugars were obtained after hydrolysis of substrate. FTIR analysis confirmed decomposition of substrate.

  11. Isolation, optimization, and partial purification of amylase from Chrysosporium asperatum by submerged fermentation.

    PubMed

    Sanghvi, Gaurav V; Koyani, Rina; Rajput, Kishore S

    2011-05-01

    A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at 30 degrees C and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at 50 degrees C for 20 min, and no inhibitory effect of Ca+2 ions on amylase production was observed.

  12. Optimization and purification of L-asparaginase produced by Streptomyces tendae TK-VL_333.

    PubMed

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2010-01-01

    Cultural factors affecting the production of L-asparaginase by Streptomyces tendae isolated from laterite soil samples of Guntur region were investigated on glycerol-asparagine-salts (modified ISP-5) broth. Optimal yields of L-asparaginase were recorded in the culture medium with the initial pH 7.0 incubated at 30 degrees C for 72 h. The strain utilized sucrose (2%) and yeast (2%) extract as carbon and nitrogen sources for L-asparaginase production. The productivity of L-asparaginase was slightly enhanced when the strain was treated with cell-disrupting agents like EDTA. The crude enzyme was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-100 and CM-Sephadex G-50 gel filtration. By employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was recorded as 97.4 kDa. This is the first report on production and purification of L-asparaginase from S. tendae.

  13. Transcription in Yeast: Separation and Properties of Multiple RNA Polymerases

    PubMed Central

    Adman, Ray; Schultz, Loren D.; Hall, Benjamin D.

    1972-01-01

    Four peaks of DNA-directed RNA polymerase activity are resolved by salt gradient elution of a sonicated yeast cell extract on DEAE-Sephadex. The enzymes, which are named IA, IB, II, and III in order of elution, all appear to come from cell nuclei. Only enzyme II is sensitive to α-amanitin. All enzymes are more active with Mn++ than with Mg++ as divalent ion. Enzymes IB and II have salt optima in the range 0.05-0.10 M (NH4)2SO4, whereas enzyme III is maximally active at 0.20-0.25 M (NH4)2SO4. With optimal salt concentration and saturating DNA, the template preference ratio, activity on native calfthymus DNA divided by activity on denatured calf-thymus DNA, is 2.2 for IB, 0.4 for II, and 3.5 for III. None of the yeast polymerases was inhibited by rifamycin SV. Rifamycin AF/013 effectively inhibited polymerases IB, II, and III. PMID:4558656

  14. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-06-01

    Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.

  15. Purification and biochemical characterization of ionically unbound polyphenol oxidase from Musa paradisiaca leaf.

    PubMed

    Diwakar, Sanjeev Kumar; Mishra, Sarad Kumar

    2011-01-01

    An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol(-1). It showed higher specificity with catechol (K(m) = 8 mM) as compared to 4-methylcatechol (K(m) = 10 mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.

  16. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review.

    PubMed

    Nadar, Shamraja S; Rao, Priyanka; Rathod, Virendra K

    2018-06-01

    An interest in the development of extraction techniques of biomolecules from various natural sources has increased in recent years due to their potential applications particularly for food and nutraceutical purposes. The presence of polysaccharides such as hemicelluloses, starch, pectin inside the cell wall, reduces the extraction efficiency of conventional extraction techniques. Conventional techniques also suffer from low extraction yields, time inefficiency and inferior extract quality due to traces of organic solvents present in them. Hence, there is a need of the green and novel extraction methods to recover biomolecules. The present review provides a holistic insight to various aspects related to enzyme aided extraction. Applications of enzymes in the recovery of various biomolecules such as polyphenols, oils, polysaccharides, flavours and colorants have been highlighted. Additionally, the employment of hyphenated extraction technologies can overcome some of the major drawbacks of enzyme based extraction such as longer extraction time and immoderate use of solvents. This review also includes hyphenated intensification techniques by coupling conventional methods with ultrasound, microwave, high pressure and supercritical carbon dioxide. The last section gives an insight on application of enzyme immobilization as a strategy for large scale extraction. Immobilization of enzymes on magnetic nanoparticles can be employed to enhance the operational performance of the system by multiple use of expensive enzymes making them industrially and economically feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities.

    PubMed

    Ferri, Maura; Rondini, Greta; Calabretta, Maria Maddalena; Michelini, Elisa; Vallini, Veronica; Fava, Fabio; Roda, Aldo; Minnucci, Giordano; Tassoni, Annalisa

    2017-10-25

    The present work aimed at optimizing a two-step enzymatic plus solvent-based process for the recovery of bioactive compounds from white grape (Vitis vinifera L., mix of Trebbiano and Verdicchio cultivars) pomace, the winemaking primary by-product. Phenolic compounds solubilised by water enzyme-assisted and ethanol-based extractions of wet (WP) and dried (DP) pomace were characterised for composition and tested for antioxidant, anti-tyrosinase and anti-inflammatory bioactivities. Ethanol treatment led to higher phenol yields than water extraction, while DP samples showed the highest capacity of releasing polyphenols, most probably as a positive consequence of the pomace drying process. Different compositions and bioactivities were observed between water and ethanol extracts and among different treatments and for the first time the anti-tyrosinase activity of V. vinifera pomace extracts, was here reported. Enzymatic treatments did not significantly improve the total amount of solubilised compounds; Celluclast in DP led to the recovery of extracts enriched in specific compounds, when compared to control. The best extracts (enzymatic plus ethanol treatment total levels) were obtained from DP showing significantly higher amounts of polyphenols, flavonoids, flavanols and tannins and exerted higher antioxidant and anti-tyrosinase activities than WP total extracts. Conversely, anti-inflammatory capacity was only detected in water (with and without enzyme) extracts, with WP samples showing on average a higher activity than DP. The present findings demonstrate that white grape pomace constitute a sustainable source for the extraction of phytochemicals that might be exploited as functional ingredients in the food, nutraceutical, pharmaceutical or cosmetic industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Culturing and extraction of Coprococcus comes, absorption of serumagglutinins by soluble fractions and relation between agglutinins and antibodies in sera of patients with Crohn's disease.

    PubMed

    Hazenberg, M P; Pennock-Schröder, A M; van de Merwe, J P

    1986-01-01

    Agglutinating antibodies to Coprococcus comes and three other obligately anaerobic coccoid rods from the intestinal flora are used in the diagnosis of Crohn's disease. Further studies on the pathogenetic role as well as the development of more sensitive and specific methods for detecting antibodies require extraction of the antigen fractions. Culturing methods to obtain C. comes with optimal antigen presentation and isolation of soluble antigen fractions were therefore developed. Hot water extraction of whole cells and subsequent removal of proteins with trichloroacetic acid provided a fraction that absorbed serum agglutinins, was useful for an enzyme-linked immunosorbent assay and induced agglutinating antibodies in rats.

  19. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale.

    PubMed

    Wang, Hong-Bin

    2014-03-15

    In the present study, we investigated the cellulase-assisted extraction and antibacterial activity of water-soluble polysaccharides from the dandelion Taraxacum officinale. The extraction conditions, optimized for improving yield, were as follows: time, 46.11 min; temperature, 54.87 °C; pH, 4.51 and cellulase enzyme, 4000 U/g. Under these conditions, the yield of polysaccharides from dandelion (PD) reached 20.67% (w/w). The sugar content of PD was 95.6% (w/w), and it displayed high antibacterial activity at a concentration of 100mg/mL against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These results indicate that PD may be a viable option for use as a food preservative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae).

    PubMed

    Er, Hui Meng; Cheng, En-Hsiang; Radhakrishnan, Ammu Kutty

    2007-09-25

    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.

  1. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  2. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-03-01

    This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    PubMed

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  4. Characteristics of a leucine aminoacyl transfer RNA synthetase from Tritrichomonas augusta.

    PubMed

    Horner, J; Champney, W S; Samuels, R

    1991-04-01

    This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.

  5. β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics.

    PubMed

    Cardoso, Beatriz B; Silvério, Sara C; Abrunhosa, Luís; Teixeira, José A; Rodrigues, Lígia R

    2017-09-18

    β-galactosidase (EC 3.2.1.23) are interesting enzymes able to catalyze lactose hydrolysis and transfer reactions to produce lactose-based prebiotics with potential application in the pharmaceutical and food industry. In this work, Aspergillus lacticoffeatus is described, for the first time, as an effective β-galactosidase producer. The extracellular enzyme production was evaluated in synthetic and alternative media containing cheese whey and corn steep liquor. Although β-galactosidase production occurred in all media (expect for the one composed solely by cheese whey), the highest enzymatic activity values (460U/mL) were obtained for the synthetic medium. Ochratoxin A production in synthetic medium was also evaluated and 9days of fermentation was identified as a suitable fermentation time to obtain a crude extract enzyme with mycotoxin concentration below the legal comparable value established for wine and grape juices (2ng/mL). The optimal pH and temperature for the crude extract enzyme was found in the range of 3.5-4.5 and 50-60°C, respectively. The β-galactosidase activity was reduced in the presence of Ba 2+ , Fe 2+ , Li + , K + and galactose, while additives (except for ascorbic acid) and detergents exhibited a positive effect on enzymatic activity. This enzyme was able to catalyze the synthesis of prebiotics, namely lactulose (2.5g/L) and a galacto-oligosaccharide (trisaccharide, 6.3g/L), either when whole cells or crude enzyme was used as biocatalyst. The lactulose production using fungal whole cells is herein reported for the first time. Additionally, A. lacticoffeatus was also found to produce an enzyme with fructosyltransferase activity and other prebiotics, namely fructo-oligosaccharide 1-kestose (2.4g/L). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    PubMed

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  7. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    PubMed

    Young, Eric M; Zhao, Zheng; Gielesen, Bianca E M; Wu, Liang; Benjamin Gordon, D; Roubos, Johannes A; Voigt, Christopher A

    2018-05-09

    Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the construction of strain libraries from which the maximum information can be extracted without sampling every possible combination. We use Saccharomyces cerevisiae as a host for a novel six-gene pathway to itaconic acid, selected by comparing alternative shunt pathways that bypass the mitochondrial TCA cycle. The pathway is distinctive for the use of acetylating acetaldehyde dehydrogenase to increase cytosolic acetyl-CoA pools, a bacterial enzyme to synthesize citrate in the cytosol, and an itaconic acid exporter. Precise control over the expression of each gene is enabled by a set of promoter-terminator pairs that span a 174-fold range. Two large combinatorial libraries (160 variants, 2.4Mb and 32 variants, 0.6Mb) are designed where the expression levels are selected by statistical methods (I-optimal response surface methodology, full factorial, or Plackett-Burman) with the intent of extracting different types of guiding information after the screen. This is applied to the design of a third library (24 variants, 0.5Mb) intended to alleviate a bottleneck in cis-aconitate decarboxylase (CAD) expression. The top strain produces 815mg/l itaconic acid, a 4-fold improvement over the initial strain achieved by iteratively balancing pathway expression. Including a methylated product in the total, the strain produces 1.3g/l combined itaconic acids. Further, a regression analysis of the libraries reveals the optimal expression level of CAD as well as pairwise interdependencies between genes that result in increased titer and purity of itaconic acid. This work demonstrates adapting algorithmic design strategies to guide automated yeast strain construction and learn information after each iteration. Copyright © 2018. Published by Elsevier Inc.

  8. Chemopreventive effects of free and bound phenolics associated to steep waters (nejayote) obtained after nixtamalization of different maize types.

    PubMed

    Rojas-García, Carlos; García-Lara, Silverio; Serna-Saldivar, Sergio O; Gutiérrez-Uribe, Janet A

    2012-03-01

    Free and bound phenolics extracts from nejayote solids were obtained after optimally lime-cooking blue, normal white, red, normal yellow, high-carotenoid and quality protein maize types. The extraction yield ranged from 4.47 to 10.05%. Bound phenolics extracts had higher content of total phenolics, antioxidant activity and ferulic acid compared to the free phenolics extracts. In general, free phenolics extracts were less cytotoxic than the bound phenolics counterparts. Bound phenolics extracts had higher induction of quinone reductase (QR) and particularly the normal yellow nejayote exerted the highest chemopreventive index tested in Hepa1c1c7 cells. When tested for monofunctional phase 2 induction capacity in BPrc1 cells, the bound phenolics extracts of blue, normal white and quality protein nejayotes were better inducers than the normal yellow counterpart. Particularly, the free phenolics extract of the white maize nejayote induced BPrc1 cells QR and exerted a higher chemopreventive index compared to the bound phenolics extract. Therefore, the nejayote of the normal white maize was the best source of monofunctional phase 2 enzyme inducers.

  9. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill.

    PubMed

    Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai

    2013-11-01

    Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  11. Response surface optimization of the substance colour indigo production by amylase enzyme

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Megawati, Kusdianto, Nugraha, Deny Aditia; Novitasari, Lilis

    2017-03-01

    Indigofera leaf production in Indonesia reaches 30 tons of dry matter per hectare per year. Indigo which produce exclusive blue colour already used to dyeing textile, specially "Batik". Batik cloth using natural dyes has artistic value and distinctive colours, as well as ethnic and exclusive impression that have a high value. Indigofera leaves containing blue dye that can be obtained through hydrolysis and oxidation. The hydrolysis reaction using enzyme catalyst. The research objective is to obtain optimum operating conditions of the hydrolysis reaction in the extraction of blue dye with a cellulase enzyme catalyst. Indigofera used leaves 5 month old and tools used include reactors, stirrer, aerator, autoclaves, incubators and ovens. Optimization parameters are studied an α-amylase enzyme concentration of 2.5-10 wt%, pH 5-9 and a reaction time of 4-10 days. The concentration of blue dye was analyzed by gravimetric method. Experimental data were analyzed by the method of Response Surface Methodology and central composite design, the model corresponding linear model with a mathematical equation Y = 6.22763 - 0.02584X1 - 1.25889X2 - 0.42239X3+0.00694X12+ 0.08872X22+ 0.03747X32+ 0.01372X1X2 -0.00582X1X3 - 0.00208X2X3 The optimum operating conditions in the range of studied enzym concentration of 3.1 wt%, pH 7.4 and the hydrolysis reaction time of 5.6 days with a yield dye of 1,42 %.

  12. Kinetic and thermodynamic parameters, and partial characterization of the crude extract of tannase produced by Saccharomyces cerevisiae CCMB 520.

    PubMed

    Lopes, Lúzia Morgana de Melo; Costa Batista, Larissa Hayannyelly; Gouveia, Marcos Juliano; Leite, Tonny Cley Campos; de Mello, Marcelo Rodrigues Figueira; de Assis, Sandra Aparecida; de Sena, Amanda Reges

    2018-05-01

    Tannase can be used in different industrial sectors such as in food (juices and wine) and pharmaceutical production (trimethoprim) because it catalyses the hydrolysis of hydrolysable tannins. The aim of the current study is to assess the tannase found in the crude extract of Saccharomyces cerevisiae CCMB 520, and to set its catalytic and thermodynamic properties. The enzyme was optimally active at pH 6.0 and temperature 30 °C. Tannase was activated by Na + , Ca 2+ , K + at 5 × 10 -3  mol/L. The half-life at 30 °C was 3465.7 min. The activation energy was 40.32 kJ/mol. The Gibbs free energy, enthalpy and entropy at 30 °C were 85.40, 48.10 and -0.12 kJ/mol K, respectively. Our results suggest that the tannase found in the crude extract of S. cerevisiae is an attractive enzyme for industrial applications, such as for beverage manufacturing and gallic acid production, due its catalytic and thermodynamic properties (heat-stable and resistant to metal ions).

  13. Competing charge transfer pathways at the photosystem II-electrode interface

    PubMed Central

    Zhang, Jenny Z.; Sokol, Katarzyna P.; Paul, Nicholas; Romero, Elisabet; van Grondelle, Rienk; Reisner, Erwin

    2016-01-01

    The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general. PMID:27723748

  14. Microbial production of nattokinase: current progress, challenge and prospect.

    PubMed

    Cai, Dongbo; Zhu, Chengjun; Chen, Shouwen

    2017-05-01

    Nattokinase (EC 3.4.21.62) is a profibrinolytic serine protease with a potent fibrin-degrading activity, and it has been produced by many host strains. Compared to other fibrinolytic enzymes (urokinase, t-PA and streprokinase), nattokinase shows the advantages of having no side effects, low cost and long life-time, and it has the potential to be used as a drug for treating cardiovascular disease and served as a functional food additive. In this review, we focused on screening of producing strains, genetic engineering, fermentation process optimization for microbial nattokinase production, and the extraction and purification of nattokinase were also discussed in this particular chapter. The selection of optimal nattokinase producing strain was the crucial starting element for improvement of nattokinase production. Genetic engineering, protein engineering, fermentation optimization and process control have been proved to be the effective strategies for enhancement of nattokinase production. Also, extraction and purification of nattokinase are critical for the quality evaluation of nattokinase. Finally, the prospect of microbial nattokinase production was also discussed regarding the recent progress, challenge, and trends in this field.

  15. Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves.

    PubMed

    Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro

    2012-01-01

    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).

  16. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  17. Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis.

    PubMed

    Eckert, Catherine; Lecerf, Maxime; Dubost, Lionel; Arthur, Michel; Mesnage, Stéphane

    2006-12-01

    The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan.

  18. Functional Analysis of AtlA, the Major N-Acetylglucosaminidase of Enterococcus faecalis▿

    PubMed Central

    Eckert, Catherine; Lecerf, Maxime; Dubost, Lionel; Arthur, Michel; Mesnage, Stéphane

    2006-01-01

    The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan. PMID:17041059

  19. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1

    PubMed Central

    Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P.

    2014-01-01

    Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates. PMID:24323699

  1. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    PubMed

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.

  2. Lignin oxidation and pulp delignification by laccase and mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourbonnais, R.; Paice, M.G.; Reid, I.D.

    1996-10-01

    The phenol oxidizing enzyme laccase is produced abundantly by the lignin-degrading fungus Trametes versicolor. We found previously that laccase can oxidize veratryl alcohol and other non-phenolic lignin model compounds when a mediator such as 2,2{prime}-azinobis(3-ethylbenzthiazoline-5-sulphonate) (ABTS) was present. The laccase/mediator couple was also shown to be effective for delignification of kraft pulps. Two different isozymes of laccase produced by this fungus were purified and their reactivities towards lignins and kraft pulps were studied. The mediator ABTS was shown to be essential for pulp delignification and to reverse the polymerization of kraft lignin by either laccase. Pulp delignification with laccase andmore » ABTS was also optimized. resulting in up to 55% lignin removal from kraft pulp following sequential enzyme treatments and alkaline extractions. Several variables were surveyed including enzyme and mediator dosage, oxygen pressure, temperature, reaction time, and pH.« less

  3. Use of an enzyme-assisted method to improve protein extraction from olive leaves.

    PubMed

    Vergara-Barberán, M; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F

    2015-02-15

    The improvement of protein extraction from olive leaves using an enzyme-assisted protocol has been investigated. Using a cellulase enzyme (Celluclast® 1.5L), different parameters that affect the extraction process, such as the influence and amount of organic solvent, enzyme amount, pH and extraction temperature and time, were optimised. The influence of these factors was examined using the standard Bradford assay and the extracted proteins were characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum extraction parameters were: 30% acetonitrile, 5% (v/v) Celluclast® 1.5L at pH 5.0 and 55°C for 15min. Under these conditions, several protein extracts from olive leaves of different genetic variety (with a total protein amount comprised between 1.87 and 6.64mgg(-1)) were analysed and compared by SDS-PAGE, showing differences in their electrophoretic protein profiles. The developed enzyme-assisted extraction method has shown a faster extraction, higher recovery and reduced solvent usage with respect to the use of the non-enzymatic methods described in literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bioactive characteristics and optimization of tamarind seed protein hydrolysate for antioxidant-rich food formulations.

    PubMed

    Bagul, Mayuri B; Sonawane, Sachin K; Arya, Shalini S

    2018-04-01

    Tamarind seed has been a source of valuable nutrients such as protein (contains high amount of many essential amino acids), essential fatty acids, and minerals which are recognized as additive to develop perfect balanced functional foods. The objective of present work was to optimize the process parameters for extraction and hydrolysis of protein from tamarind seeds. Papain-derived hydrolysates showed a maximum degree of hydrolysis (39.49%) and radical scavenging activity (42.92 ± 2.83%) at optimized conditions such as enzyme-to-substrate ratio (1:5), hydrolysis time (3 h), hydrolysis temperature (65 °C), and pH 6. From this study, papain hydrolysate can be considered as good source of natural antioxidants in developing food formulations.

  5. Recovery and purification of chitosanase produced by Bacillus cereus using expanded bed adsorption and central composite design.

    PubMed

    de Araújo, Nathália Kelly; Pimentel, Vanessa Carvalho; da Silva, Nayane Macedo Portela; de Araújo Padilha, Carlos Eduardo; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2016-02-01

    This study presents a system for expanded bed adsorption for the purification of chitosanase from broth extract in a single step. A chitosanase-producing strain was isolated and identified as Bacillus cereus C-01 and used to produce chitosanases. The expanded bed adsorption conditions for chitosanase purification were optimized statistically using STREAMLINE(TM) DEAE and a homemade column (2.6 × 30.0 cm). Dependent variables were defined by the quality criteria purification factor (P) and enzyme yield to optimize the chromatographic process. Statistical analyses showed that the optimum conditions for the maximum P were 150 cm/h load flow velocity, 6.0 cm settled bed height, and 7.36 cm distributor height. Distributor height had a strong influence on the process, considerably affecting both the P and enzyme yield. Optimizing the purification variables resulted in an approximately 3.66-fold increase in the P compared with the value under nonoptimized conditions. This system is promising for the recovery of chitosanase from B. cereus C-01 and is economically viable because it promotes the reduction steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    PubMed Central

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  7. Bioethanol production from raffinate phase of supercritical CO2 extracted Stevia rebaudiana leaves.

    PubMed

    Coban, Isik; Sargin, Sayit; Celiktas, Melih Soner; Yesil-Celiktas, Ozlem

    2012-09-01

    The extracts of Stevia rebaudiana are marketed as dietary supplements and utilized as natural sweetening agent in food products. Subsequent to extraction on industrial scale, large quantities of solid wastes are produced. The aim of this study was to investigate the bioconversion efficiency of supercritical CO(2) extracted S. rebaudiana residues. Therefore, leaves were extracted with supercritical CO(2) and ethanol mixture in order to obtain glycosides, then the raffinate phase was hydrolyzed by both dilute acid and various concentrations of cellulase and β-glucosidase cocktail. The maximum yield of reducing sugars reached 25.67 g/L under the optimal conditions of enzyme pretreatment, whereas 32.00 g/L was reached by consecutive enzymatic and acid hydrolyses. Bioethanol yield (20 g/L, 2.0% inoculum, 2 days) based on the sugar consumed was 45.55% corresponding to a productivity of 0.19 kg/m(3)h which demonstrates challenges to be utilized as a potential feedstock for the production of bioethanol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of Salts on the Halophilic Alga Dunaliella viridis1

    PubMed Central

    Johnson, Mary K.; Johnson, Emmett J.; MacElroy, Robert D.; Speer, Henry L.; Bruff, Barbara S.

    1968-01-01

    Determinations of the salt sensitivity of enzymes extracted from the halophilic alga Dunaliella viridis revealed that pentose phosphate isomerase, ribulose diphosphate carboxylase, glucose-6-phosphate dehydrogenase, and phosphohexose isomerase were inhibited by NaCl concentrations far lower than that in the growth medium (3.75 m). The inhibition was reversible and was not prevented by preparing the extracts in the presence of salt. Potassium, lithium, and cesium chlorides were equally inhibitory. In contrast, whole cells require rather high levels of NaCl for optimal growth, whereas growth is inhibited by low levels of the other cations. The results suggest a specific mechanism for the exclusion of sodium from the interior of the cell. Images PMID:5646631

  9. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    PubMed

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  10. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    PubMed Central

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  11. Ultrasound-assisted three-phase partitioning of polyphenol oxidase from potato peel (Solanum tuberosum).

    PubMed

    Niphadkar, Sonali S; Rathod, Virendra K

    2015-01-01

    Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.

  12. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    PubMed

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  13. Determination of the inhibitory effect of green tea extract on glucose-6-phosphate dehydrogenase based on multilayer capillary enzyme microreactor.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li

    2016-08-01

    Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    PubMed

    Saggu, Sandeep Kaur; Mishra, Prakash Chandra

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  15. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil

    PubMed Central

    Saggu, Sandeep Kaur

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production. PMID:29190780

  16. Cloning and characterization of d-threonine aldolase from the green alga Chlamydomonas reinhardtii.

    PubMed

    Hirato, Yuki; Tokuhisa, Mayumi; Tanigawa, Minoru; Ashida, Hiroyuki; Tanaka, Hiroyuki; Nishimura, Katsushi

    2017-03-01

    d-Threonine aldolase (DTA) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent interconversion of d-threonine and glycine plus acetaldehyde. The enzyme is a powerful tool for the stereospecific synthesis of various β-hydroxy amino acids in synthetic organic chemistry. In this study, DTA from the green alga Chlamydomonas reinhardtii was discovered and characterized, representing the first report to describe the existence of eukaryotic DTA. DTA was overexpressed in recombinant Escherichia coli BL21 (DE3) cells; the specific activity of the enzyme in the cell-free extract was 0.8 U/mg. The recombinant enzyme was purified to homogeneity by ammonium sulfate fractionation, DEAE-Sepharose, and Mono Q column chromatographies (purified enzyme 7.0 U/mg). For the cleavage reaction, the optimal temperature and pH were 70 °C and pH 8.4, respectively. The enzyme demonstrated 90% of residual activity at 50 °C for 1 h. The enzyme catalyzed the synthesis of d- and d-allo threonine from a mixture of glycine and acetaldehyde (the diastereomer excess of d-threonine was 18%). DTA was activated by several divalent metal ions, including manganese, and was inhibited by PLP enzyme inhibitors and metalloenzyme inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ohmic heating pretreatment of algal slurry for production of biodiesel.

    PubMed

    Yodsuwan, Natthawut; Kamonpatana, Pitiya; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2018-02-10

    Suspensions of the model microalga Chlorella sp. TISTR 8990 were pretreated by ohmic heating to facilitate release of lipids from the cells in subsequent extraction and lipase-mediated transesterification to biodiesel. After ohmic pretreatment, the moist biomass was suspended in a system of water, hexane, methanol and immobilized lipase for extraction of lipids and simultaneous conversion to biodiesel. The ohmic pretreatment was optimized using an experimental design based on Taguchi method to provide treated biomass that maximized the biodiesel yield in subsequent extraction-transesterification operation. The experimental factors were the frequency of electric current (5-10 5  Hz), the processing temperature (50-70 °C), the algal biomass concentration in the slurry (algal fresh weight to water mass ratio of 1-3) and the incubation time (1-3 min). Extraction-transesterification of the pretreated biomass was carried out at 40 °C for 24 h using a reaction systems of a fixed composition (i.e. biomass, hexane, methanol, water and immobilized enzyme). Compared to control (i.e. untreated biomass), the ohmic pretreatment under optimal conditions (5 Hz current frequency, 70 °C, 1:2 mass ratio of biomass to water, incubation time of 2-min) increased the rate of subsequent transesterification by nearly 2-fold. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.

    PubMed

    Nakazawa, Hikaru; Kawai, Tetsushi; Ida, Noriko; Shida, Yosuke; Shioya, Kouki; Kobayashi, Yoshinori; Okada, Hirofumi; Tani, Shuji; Sumitani, Jun-Ichi; Kawaguchi, Takashi; Morikawa, Yasushi; Ogasawara, Wataru

    2016-01-01

    The ability of the Trichoderma reesei X3AB1strain enzyme preparations to convert cellulosic biomass into fermentable sugars is enhanced by the replacement of xyn3 by Aspergillus aculeatus β-glucosidase 1 gene (aabg1), as shown in our previous study. However, subsequent experiments using T. reesei extracts supplemented with the glycoside hydrolase (GH) family 10 xylanase III (XYN III) and GH Family 11 XYN II showed increased conversion of alkaline treated cellulosic biomass, which is rich in xylan, underscoring the importance of XYN III. To attain optimal saccharifying potential in T. reesei, we constructed two new strains, C1AB1 and E1AB1, in which aabg1 was expressed heterologously by means of the cbh1 or egl1 promoters, respectively, so that the endogenous XYN III synthesis remained intact. Due to the presence of wild-type xyn3 in T. reesei E1AB1, enzymes prepared from this strain were 20-30% more effective in the saccharification of alkaline-pretreated rice straw than enzyme extracts from X3AB1, and also outperformed recent commercial cellulase preparations. Our results demonstrate the importance of XYN III in the conversion of alkaline-pretreated cellulosic biomass by T. reesei. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Polymer-based alternative method to extract bromelain from pineapple peel waste.

    PubMed

    Novaes, Letícia Celia de Lencastre; Ebinuma, Valéria de Carvalho Santos; Mazzola, Priscila Gava; Pessoa, Adalberto

    2013-01-01

    Bromelain is a mixture of proteolytic enzymes present in all tissues of the pineapple (Ananas comosus Merr.), and it is known for its clinical therapeutic applications, food processing, and as a dietary supplement. The use of pineapple waste for bromelain extraction is interesting from both an environmental and a commercial point of view, because the protease has relevant clinical potential. We aimed to study the optimization of bromelain extraction from pineapple waste, using the aqueous two-phase system formed by polyethylene glycol (PEG) and poly(acrylic acid). In this work, bromelain partitioned preferentially to the top/PEG-rich phase and, in the best condition, achieved a yield of 335.27% with a purification factor of 25.78. The statistical analysis showed that all variables analyzed were significant to the process. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff.

    PubMed

    Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann

    2014-11-01

    Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.

  1. Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro.

    PubMed

    Liu, Zaizhi; Mo, Kailin; Fei, Shimin; Zu, Yuangang; Yang, Lei

    2017-08-01

    Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment-based extraction strategy was used to research the efficiency of an ultrasound-assisted method for proanthocyanidins extraction. The Plackett-Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box-Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic-assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti-nutritional properties. In summary, an ultrasound-assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: processing parameter optimization.

    PubMed

    Barba, Francisco José; Criado, María Nieves; Belda-Galbis, Clara Miracle; Esteve, María José; Rodrigo, Dolores

    2014-04-01

    Response surface methodology was used to evaluate the optimal high pressure processing treatment (300-500 MPa, 5-15 min) combined with Stevia rebaudiana (Stevia) addition (0-2.5% (w/v)) to guarantee food safety while maintaining maximum retention of nutritional properties. A fruit extract matrix was selected and Listeria monocytogenes inactivation was followed from the food safety point of view while polyphenoloxidase (PPO) and peroxidase (POD) activities, total phenolic content (TPC) and antioxidant capacity (TEAC and ORAC) were studied from the food quality point of view. A combination of treatments achieved higher levels of inactivation of L. monocytogenes and of the oxidative enzymes, succeeding in completely inactivating POD and also increasing the levels of TPC, TEAC and ORAC. A treatment of 453 MPa for 5 min with a 2.5% (w/v) of Stevia succeeded in inactivating over 5 log cycles of L. monocytogenes and maximizing inactivation of PPO and POD, with the greatest retention of bioactive components. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Optimisation of low temperature extraction of banana juice using commercial pectinase.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu

    2014-05-15

    The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. THE PURIFICATION OF AN ALKALINE PROTEINASE OBTAINED FROM ASPERGILLUS ORYZAE AND THE DETERMINATION OF ITS PROPERTIES.

    DTIC Science & Technology

    Aspergillopeptidase B, an alkaline protease in A , oryzae extracts, was obtained in highly purified form by conventional fractionation techniques. The...enzyme is a compact protein of 17,900 m.w. with a neutral isoelectric point. It contains no S-containing amino acids, phosphorus or metal ions. It is...composed of a single polypeptide chain with N-terminal glycine and C-terminal alanine residues. The protease activity toward casein is optimal at pH

  5. Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology.

    PubMed

    Periasamy, Rathinasamy; Palvannan, Thayumanavan

    2010-12-01

    Production of laccase using a submerged culture of Pleurotus orstreatus IMI 395545 was optimized by the Taguchi orthogonal array (OA) design of experiments (DOE) methodology. This approach facilitates the study of the interactions of a large number of variables spanned by factors and their settings, with a small number of experiments, leading to considerable savings in time and cost for process optimization. This methodology optimizes the number of impact factors and enables to calculate their interaction in the production of industrial enzymes. Eight factors, viz. glucose, yeast extract, malt extract, inoculum, mineral solution, inducer (1 mM CuSO₄) and amino acid (l-asparagine) at three levels and pH at two levels, with an OA layout of L18 (2¹ × 3⁷) were selected for the proposed experimental design. The laccase yield obtained from the 18 sets of fermentation experiments performed with the selected factors and levels was further processed with Qualitek-4 software. The optimized conditions shared an enhanced laccase expression of 86.8% (from 485.0 to 906.3 U). The combination of factors was further validated for laccase production and reactive blue 221 decolorization. The results revealed an enhanced laccase yield of 32.6% and dye decolorization up to 84.6%. This methodology allows the complete evaluation of main and interaction factors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  6. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  7. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    PubMed

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  8. ENZYMES OF GLUCOSE AND PYRUVATE CATABOLISM IN CELLS, SPORES, AND GERMINATED SPORES OF CLOSTRIDIUM BOTULINUM1

    PubMed Central

    Simmons, Richard J.; Costilow, Ralph N.

    1962-01-01

    Simmons, R. J. (Michigan State University, East Lansing), and R. N. Costilow. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bacteriol. 84:1274–1281. 1962.—An investigation was made of the enzymes of vegetative cells, spores, and germinated spores of Clostridium botulinum 62-A to elucidate a pathway of glucose metabolism. Manometric studies were conducted with intact cells, and various enzymes and enzyme systems were assayed in cell-free and spore-free extracts by use of spectrophotometric and colorimetric procedures. Glucose fermentation was found to be inducible; glucokinase was the controlling enzyme. All other enzymes of the Embden-Meyerhof-Parnas (EMP) pathway were found in both induced and non-induced cells, but they were in relatively low concentrations in the latter. This, plus the fact that no glucose-6-phosphate dehydrogenase was detected, led to the conclusion that glucose is catabolized primarily by the EMP system. A number of glycolytic enzymes were also found in extracts of spores and germinated spores of this organism, but the activities were extremely low as compared with activities in cell extracts. A phosphoroclastic-type reaction was readily demonstrated in both glucose-adapted and non-adapted cells, but not in spores and germinated spores. However, both acetokinase and phosphotransacetylase, as well as coenzyme A transphorase, were detected in spores and germinated-spore extracts, although at very low activity levels as compared with cell extracts. The specific activity of diaphorase in spore extracts was about one-half that of corresponding cell extracts, and the activity of reduced diphosphopyridine nucleotide (DPNH) oxidase was actually higher in the spore extracts. In addition, the DPNH oxidase in spore extracts was considerably more heat-stable than that in extracts of cells or germinated spores. PMID:13977433

  9. [Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].

    PubMed

    Liber, E E; Dorozhko, A I; Pomortseva, N V

    1978-06-01

    The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.

  10. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger.

    PubMed

    Izmirlioglu, Gulten; Demirci, Ali

    2016-06-01

    Glucoamylase is one of the most common enzymes used in the food industry to break down starch into its monomers. Glucoamylase production and its activity are highly dependent on medium composition. Starch is well known as a glucoamylase inducer, and utilization of industrial starchy potato waste is an inexpensive way of improving glucoamylase production. Since glucoamylase production is highly dependent on medium composition, in this study medium optimization for glucoamylase production was considered to enhance glucoamylase activity. Among the evaluated microbial species, Aspergillus niger van Tieghem was found to be the best glucoamylase-producing fungus. The Plackett-Burman design was used to screen various medium ingredients, and malt extract, FeSO4 .7H2 O and CaCl2 ·2H2 O were found to have significant effects on glucoamylase production. Finally, malt extract, FeSO4 .7H2 O and CaCl2 .2H2 O were optimized by using a central composite design of response surface methodology. The results showed that the optimal medium composition for A. niger van Tieghem was 50 g L(-1) industrial waste potato mash supplemented with 51.82 g L(-1) malt extract, 9.27 g L(-1) CaCl2 ·2H2 O and 0.50 g L(-1) FeSO4 .7H2 O. At the end of optimization, glucoamylase activity and glucose production were improved 126% and 98% compared to only industrial waste potato mash basal medium; 274.4 U mL(-1) glucoamylase activity and 41.7 g L(-1) glucose levels were achieved, respectively. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    PubMed

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  12. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    NASA Astrophysics Data System (ADS)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  13. Use of lignocellulose biomass for endoxylanase production by Streptomyces termitum.

    PubMed

    de Sales, Alenir Naves; de Souza, Angélica Cristina; Moutta, Rondinele de Oliveira; Ferreira-Leitão, Viridiana Santana; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2017-05-28

    Actinobacteria isolates from Brazilian Cerrado soil were evaluated for their ability to produce enzymes of the cellulolytic and xylanolytic complex using lignocellulose residual biomass. Preliminary semiquantitative tests, made in Petri plates containing carboxymethylcellulose and beechwood xylan, indicated 11 potential species producing enzymes, all belonging to the genus Streptomyces. The species were subsequently grown in pure substrates in submerged fermentation and analyzed for the production of enzymes endoglucanase, β-glucosidase, endoxylanase, and β-xylosidase. The best results were obtained for endoxylanase enzyme production with Streptomyces termitum(UFLA CES 93). The strain was grown on lignocellulose biomass (bagasse, straw sugarcane, and cocoa pod husk) that was used in natura or acid pretreated. The medium containing sugarcane bagasse in natura favored the production of the endoxylanase that was subsequently optimized through an experimental model. The highest enzyme production 0.387 U mL -1 , (25.8 times higher), compared to the lowest value obtained in one of the trials, was observed when combining 2.75% sugar cane bagasse and 1.0 g L -1 of yeast extract to the alkaline medium (pH 9.7). This is the first study using S. termitum as a producer of endoxylanase.

  14. Production, Purification, and Characterization of Polygalacturonase from Mucor circinelloides ITCC 6025

    PubMed Central

    Thakur, Akhilesh; Pahwa, Roma; Singh, Smarika; Gupta, Reena

    2010-01-01

    Mucor circinelloides produced an extracellular polygalacturonase enzyme, the production of which was enhanced when various production parameters were optimized. Maximum polygalacturonase (PGase) activity was obtained in 48 h at 30°C and pH 4.0 with pectin methyl ester (1% w/v) as carbon source and a combination of casein hydrolysate (0.1% w/v) and yeast extract (0.1% w/v) as nitrogen source. The enzyme was purified to homogeneity (13.3-fold) by Sephacryl S-100 gel-filtration chromatography. Its molecular weight was 66 kDa on SDS-PAGE. The enzyme was found to have K m and V max values of 2.2 mM and 4.81 IU/ml at 0.1% to 0.5% (w/v) concentration of the substrate. The addition of phenolic acids (0.05 mM), metal ions such as Mn+2, Co+2, Mg+2, Fe+3, Al+3, Hg+2, and Cu+2, and thiols had inhibitory effect on the enzyme. The enzyme showed maximum activity in the presence of polygalacturonic acid (0.1% w/v) at pH 5.5 and 42°C. PMID:21048861

  15. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine

    PubMed Central

    Bergamaschi, Mateus M.; Barnes, Allan; Queiroz, Regina H. C.; Hurd, Yasmin L.

    2013-01-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex—a cannabis plant extract containing 1:1 Δ9-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x2 weighting with linear ranges (r2>0.990) of 2.5–100 ng/mL for non-hydrolyzed CBD and 2.5–500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7–105.3 %, imprecision 1.4–6.4 % CV and extraction efficiency 82.5–92.7 % (no hydrolysis) and 34.3–47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  16. Isolation of an inducible amidase from Pseudomonas acidovorans AE1.

    PubMed

    Alt, J; Krisch, K

    1975-04-01

    A bacterial strain, AEI, which hydrolysed acetanilide, was isolated from soil and identified as Pseudomonas acidovorans. Numerous amides, esters and enzyme inhibitors were tested as amidase inducers. Phenacetin was chosen as inducer for the large scale cultivation of these organisms because it was less toxic to the bacteria than acetanilide. The induction increased the enzymic activity 250-fold. In comparison, the type culture strain of P. acidovorans, ATTCCI5668, had no amidase activity which could be induced by phenacetin. Optimal growth conditions were established with respect to the concentration of carbon source and inducer so that about 10% of the extractable bacterial protein consisted of the amidase. The organisms were lysed with lysozyme in the presence of EDTA and the enzyme was isolated mainly by column chromatography procedures. A preparation form 60 g (wet wt) bacteria yielded about 100 mg highly purified amidase with a specific activity of 137 mugmol substrate hydrolysed/min/mg protien. In addition to acetanilide, the purified enzyme hydrolysed several other amides and esters. As standard substrate, p-nitroacetanilide was chosen.

  17. Effects of controlled gas environments in microbial enhancement of plant protein recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudgett, R.E.; Bajracharya, R.

    Controlled gas environments were maintained by a novel aeration system in solid substrate fermentations for enhanced protein recovery from pressed alfalfa residues. High O/sub 2/ pressures stimulated biomass and enzyme production by an Aspergillus species, isolated from alfalfa, which produced cellulase and pectinase activities in growth-associated metabolism. High CO/sub 2/ pressures also stimulated enzyme production, but had less effect on biomass production, as established from the dissimilation of plant solids. Cellulase and pectinase activities were generally related to protein recoveries. Recoveries were greater than or equal to 50% higher than those obtained by mechanical extraction, with maximum recoveries of greatermore » than or equal to 70% of crude protein contents. Protein not recovered at high cellulase and pectinase activities were believed to be in structurally bound forms not amenable to recovery by nonproteolytic enzymes. Buffering at pH 8 and autoclaving of residues prior to fermentation had little effect on protein recoveries. Controlled gas environments are seen to offer an interesting potential for optimizing industrial fermentation processes for the production of microbial enzymes.« less

  18. Sequence-independent construction of ordered combinatorial libraries with predefined crossover points.

    PubMed

    Jézéquel, Laetitia; Loeper, Jacqueline; Pompon, Denis

    2008-11-01

    Combinatorial libraries coding for mosaic enzymes with predefined crossover points constitute useful tools to address and model structure-function relationships and for functional optimization of enzymes based on multivariate statistics. The presented method, called sequence-independent generation of a chimera-ordered library (SIGNAL), allows easy shuffling of any predefined amino acid segment between two or more proteins. This method is particularly well adapted to the exchange of protein structural modules. The procedure could also be well suited to generate ordered combinatorial libraries independent of sequence similarities in a robotized manner. Sequence segments to be recombined are first extracted by PCR from a single-stranded template coding for an enzyme of interest using a biotin-avidin-based method. This technique allows the reduction of parental template contamination in the final library. Specific PCR primers allow amplification of two complementary mosaic DNA fragments, overlapping in the region to be exchanged. Fragments are finally reassembled using a fusion PCR. The process is illustrated via the construction of a set of mosaic CYP2B enzymes using this highly modular approach.

  19. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    NASA Astrophysics Data System (ADS)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  20. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2006-11-10

    Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.

  1. L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of L-asparaginase gene

    NASA Astrophysics Data System (ADS)

    Meena, Balakrishnan; Anburajan, Lawrance; Sathish, Thadikamala; Vijaya Raghavan, Rangamaran; Dharani, Gopal; Valsalan Vinithkumar, Nambali; Kirubagaran, Ramalingam

    2015-07-01

    Marine actinobacteria are known to be a rich source for novel metabolites with diverse biological activities. In this study, a potential extracellular L-asparaginase was characterised from the Streptomyces griseus NIOT-VKMA29. Box-Behnken based optimization was used to determine the culture medium components to enhance the L-asparaginase production. pH, starch, yeast extract and L-asparagine has a direct correlation for enzyme production with a maximum yield of 56.78 IU mL-1. A verification experiment was performed to validate the experiment and more than 99% validity was established. L-Asparaginase biosynthesis gene (ansA) from Streptomyces griseus NIOT-VKMA29 was heterologously expressed in Escherichia coli M15 and the enzyme production was increased threefold (123 IU mL-1) over the native strain. The ansA gene sequences reported in this study encloses several base substitutions with that of reported sequences in GenBank, resulting in altered amino acid sequences of the translated protein.

  2. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    PubMed

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.

    2018-05-17

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss inmore » sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified.« less

  4. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology.

    PubMed

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M; El-Ewasy, Sara M

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology.

  5. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology

    PubMed Central

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806

  6. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide.

    PubMed

    Lenucci, Marcello Salvatore; De Caroli, Monica; Marrese, Pier Paolo; Iurlaro, Andrea; Rescio, Leonardo; Böhm, Volker; Dalessandro, Giuseppe; Piro, Gabriella

    2015-03-01

    This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. High-level production of β-1,3-1,4-glucanase by Rhizomucor miehei under solid-state fermentation and its potential application in the brewing industry.

    PubMed

    Yang, S Q; Xiong, H; Yang, H Y; Yan, Q J; Jiang, Z Q

    2015-01-01

    To improve the β-1,3-1,4-glucanase production by Rhizomucor miehei under solid-state fermentation (SSF) for industrial application. The fermentation conditions for β-1,3-1,4-glucanase production by R. miehei CAU432 under SSF were optimized using a 'one-factor-at-a-time' method. Under the optimized fermentation conditions, viz. oatmeal (0·45-0·9 mm) as sole carbon source, 5% (w/w) peptone as sole nitrogen source, initial moisture of 80% (w/w), initial culture pH of 5·0, incubation temperature of 50°C and incubation time of 6 days, the highest β-1,3-1,4-glucanase activity of 20,025 U g(-1) dry substrate was achieved, which represents the highest yield for β-1,3-1,4-glucanase production ever reported. The crude enzyme was extracted and purified to homogeneity with a purification fold of 4·6 and a recovery yield of 9·0%. The addition of the purified β-1,3-1,4-glucanase in mash obviously reduced its filtration time (24·6%) and viscosity (2·61%). The optimal fermentation conditions for maximal β-1,3-1,4-glucanase production under SSF was obtained, and the enzyme was suitable for application in the malting process. The high production yield and excellent capability of the enzyme may enable it great potential in industries, especially in brewing industry. © 2014 The Society for Applied Microbiology.

  8. Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth.

    PubMed

    Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon

    2013-06-01

    A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.

  9. Role of Proteases in Extra-Oral Digestion of a Predatory Bug, Andrallus spinidens

    PubMed Central

    Zibaee, Arash; Hoda, Hassan; Mahmoud, Fazeli-Dinan

    2012-01-01

    Roles of salivary proteases in the extra-oral digestion of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) were studied by using 2% azocasein as a general substrate and specific protease substrates, as well as synthetic and endogenous inhibitors. It was found that salivary glands of A. spinidens have two anterior, two lateral, and two posterior lobes. Azocasein was used to measure the activity of general proteases in the salivary glands using different buffer solutions. The enzyme had the highest activity at pH 8. General protease activity was highest at 40 °C and was stable for 6–16 hours. The use of specific substrates showed that trypsin-like, chymotrypsin-like, aminopeptidase, and carboxypeptidase are the active proteases present in salivary glands, by the maximum activity of trypsin-like protease in addition to their optimal pH between 8–9. Ca2+ and Mg2+ increased proteolytic activity about 216%, while other ions decreased it. Specific inhibitors including SBTI, PMSF, TLCK, and TPCK significantly decreased enzyme activity, as well as the specific inhibitors of methalloproteases including phenanthroline, EGTA, and TTHA. Extracted endogenous trypsin inhibitors extracted from potential prey, Chilo suppressalis, Naranga aenescens, Pieris brassicae, Hyphantria cunea, and Ephestia kuhniella, had different effects on trypsin-like protease activity of A. spinidens salivary glands. With the exception of C. suppressalis, the endogenous inhibitors significantly decreased enzyme activity in A. spinidens. PMID:22954419

  10. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2015-12-28

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  12. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    PubMed

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Maximizing the efficiency of multienzyme process by stoichiometry optimization.

    PubMed

    Dvorak, Pavel; Kurumbang, Nagendra P; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-09-05

    Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93.

    PubMed

    Salihi, Ahsan; Asoodeh, Ahmad; Aliabadian, Mansour

    2017-01-01

    In this study, Aspergillus oryzae CH93 was isolated from soil sample and examined using molecular analysis. Following culture of A. oryzae CH93 under optimal enzyme production, a 47.5kDa extracellular protease was purified using ammonium sulfate precipitation and Q-Sepharose chromatography. The optimal pH 8 and temperature of 50°C obtained for the isolated protease. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), H 2 O 2 decreased activity, while Triton X-100 and phenylmethanesulfonyl fluoride (PMSF) had no inhibitory effect on the enzyme activity; meanwhile, 2-mercaptoethanol and ethylenediaminetetraacetic acid (EDTA) declined the protease activity. Isoamyl alcohol and acetone (30%) enhanced activity whereas 2-propanol, isopropanol and dimethyl sulfoxide (DMSO) (30%) reduced protease activity. The enzyme exhibited a half-life of 100min at its optimum temperature. Among five substrates of bovine serum albumin (BSA), N-acetyl-l-tyrosine ethyl ester monohydrate (ATEE), casein, azocasein and gelatin results showed that casein is the best substrate with V max of 0.1411±0.004μg/min and K m of 2.432±0.266μg/ml. In conclusion, the extracted protease from A. oryzae CH93 as a fungal source possessed biochemical features which could be useful in some application usages. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa.

    PubMed

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-09-18

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.

  16. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa

    PubMed Central

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-01-01

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings. PMID:26393637

  17. Characterization of a Fourth Tungsten-Containing Enzyme from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Roy, Roopali; Adams, Michael W. W.

    2002-01-01

    Pyrococcus furiosus grows optimally near 100°C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S0), if present, to H2S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S0 is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S0, suggesting that it may have a role in S0 metabolism. PMID:12446645

  18. Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Roy, Roopali; Adams, Michael W W

    2002-12-01

    Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.

  19. Extraction of erythrocyte enzymes for the preparation of polyhemoglobin-catalase-superoxide dismutase.

    PubMed

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.

  20. Effect of high hydrostatic pressure treatment on isoquercetin production from rutin by commercial α-L-rhamnosidase.

    PubMed

    Kim, Do-Yeon; Yeom, Soo-Jin; Park, Chang-Su; Kim, Yeong-Su

    2016-10-01

    To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.

  1. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  2. Determination of some significant batch culture conditions affecting acetyl-xylan esterase production by Penicillium notatum NRRL-1249

    PubMed Central

    2011-01-01

    Background Acetyl-xylan esterase (AXE, EC 3.1.1.72) hydrolyses acetate group from the linear chain of xylopyranose residues bound by β-1,4-linkage. The enzyme finds commercial applications in bio-bleaching of wood pulp, treating animal feed to increase digestibility, processing food to increase clarification and converting lignocellulosics to feedstock and fuel. In the present study, we report on the production of an extracellular AXE from Penicillium notatum NRRL-1249 by solid state fermentation (SSF). Results Wheat bran at a level of 10 g (with 4 cm bed height) was optimized as the basal substrate for AXE production. An increase in enzyme activity was observed when 7.5 ml of mineral salt solution (MSS) containing 0.1% KH2PO4, 0.05% KCl, 0.05% MgSO4.7H2O, 0.3% NaNO3, 0.001% FeSO4.2H2O and 0.1% (v/w) Tween-80 as an initial moisture content was used. Various nitrogen sources including ammonium sulphate, urea, peptone and yeast extract were compared for enzyme production. Maximal enzyme activity of 760 U/g was accomplished which was found to be highly significant (p ≤ 0.05). A noticeable enhancement in enzyme activity was observed when the process parameters including incubation period (48 h), initial pH (5), 0.2% (w/w) urea as nitrogen source and 0.5% (v/w) Tween-80 as a stimulator were further optimized using a 2-factorial Plackett-Burman design. Conclusion From the results it is clear that an overall improvement of more than 35% in terms of net enzyme activity was achieved compared to previously reported studies. This is perhaps the first report dealing with the use of P. notatum for AXE production under batch culture SSF. The Plackett-Burman model terms were found highly significant (HS), suggesting the potential commercial utility of the culture used (df = 3, LSD = 0.126). PMID:21575210

  3. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation.

    PubMed

    Vijayaraghavan, Ponnuswamy; Arun, Arumugaperumal; Al-Dhabi, Naif Abdullah; Vincent, Samuel Gnana Prakash; Arasu, Mariadhas Valan; Choi, Ki Choon

    2016-01-01

    Hydrolytic enzymes, such as cellulases and proteases, have various applications, including bioethanol production, extraction of fruit and vegetable juice, detergent formulation, and leather processing. Solid-substrate fermentation has been an emerging method to utilize low-cost agricultural residues for the production of these enzymes. Although the production of carboxy methyl cellulase (CMCase) and protease in solid state fermentation (SSF) have been studied extensively, research investigating multienzyme production in a single fermentation process is limited. The production of multienzymes from a single fermentation system could reduce the overall production cost of enzymes. In order to achieve enhanced production of enzymes, the response surface methodology (RSM) was applied. Bacillus subtilis IND19 utilized cow dung substrates for the production of CMCase and protease. A central composite design and a RSM were used to determine the optimal concentrations of peptone, NaH2PO4, and medium pH. Maximum productions of CMCase and protease were observed at 0.9 % peptone, 0.78 % NaH2PO4, and medium pH of 8.41, and 1 % peptone, 0.72 % NaH2PO4, and medium pH of 8.11, respectively. Under the optimized conditions, the experimental yield of CMCase and protease reached 473.01 and 4643 U/g, which were notably close to the predicted response (485.05 and 4710 U/g). These findings corresponded to an overall increase of 2.1- and 2.5-fold in CMCase and protease productions, respectively. Utilization of cow dung for the production of enzymes is critical to producing multienzymes in a single fermentation step. Cow dung is available in large quantity throughout the year. This report is the first to describe simultaneous production of CMCase and protease using cow dung. This substrate could be directly used as the culture medium without any pretreatment for the production of these enzymes at an industrial scale.

  4. Optimization of GC/TOF MS analysis conditions for assessing host-gut microbiota metabolic interactions: Chinese rhubarb alters fecal aromatic amino acids and phenol metabolism.

    PubMed

    Yin, Shan; Guo, Pan; Hai, Dafu; Xu, Li; Shu, Jiale; Zhang, Wenjin; Khan, Muhammad Idrees; Kurland, Irwin J; Qiu, Yunping; Liu, Yumin

    2017-12-01

    In this paper, an optimized method based on gas chromatography/time-of-flight mass spectrometry (GC-TOFMS) platform has been developed for the analysis of gut microbial-host related co-metabolites in fecal samples. The optimization was performed with proportion of chloroform (C), methanol (M) and water (W) for the extraction of specific metabolic pathways of interest. Loading Bi-plots from the PLS regression model revealed that high concentration of chloroform emphasized the extraction of short chain fatty acids and TCA intermediates, while the higher concentration of methanol emphasized indole and phenyl derivatives. Low level of organic solution emphasized some TCA intermediates but not for indole and phenyl species. The highest sum of the peak area and the distribution of metabolites corresponded to the extraction of methanol/chloroform/water of 225:75:300 (v/v/v), which was then selected for method validation and utilized in our application. Excellent linearity was obtained with 62 reference standards representing different classes of gut microbial-host related co-metabolites, with correlation coefficients (r 2 ) higher than 0.99. Limit of detections (LODs) and limit of qualifications (LOQs) for these standards were below 0.9 nmol and 1.6 nmol, respectively. The reproducibility and repeatability of the majority of tested metabolites in fecal samples were observed with RSDs lower than 15%. Chinese rhubarb-treated rats had elevated indole and phenyl species, and decreased levels of polyamine such as putrescine, and several amino acids. Our optimized method has revealed host-microbe relationships of potential importance for intestinal microbial metabolite receptors such as pregnane X receptor (PXR) and aryl hydrocarbon receptor (AHR) activity, and for enzymes such as ornithine decarboxylase (ODC). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts.

    PubMed

    Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S

    2016-05-30

    Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.

  6. Effects of stinging nettle root extracts and their steroidal components on the Na+,K(+)-ATPase of the benign prostatic hyperplasia.

    PubMed

    Hirano, T; Homma, M; Oka, K

    1994-02-01

    The effects of organic-solvent extracts of Urtica dioica (Urticaceae) on the Na+,K(+)-ATPase of the tissue of benign prostatic hyperplasia (BPH) were investigated. The membrane Na+,K(+)-ATPase fraction was prepared from a patient with BPH by a differential centrifugation of the tissue homogenate. The enzyme activity was inhibited by 10(-4)-10(-5) M of ouabain. The hexane extract, the ether extract, the ethyl acetate extract, and the butanol extract of the roots caused 27.6-81.5% inhibition of the enzyme activity at 0.1 mg/ml. In addition, a column extraction of stinging nettle roots using benzene as an eluent afforded efficient enzyme inhibiting activity. Steroidal components in stinging nettle roots, such as stigmast-4-en-3-one, stigmasterol, and campesterol inhibited the enzyme activity by 23.0-67.0% at concentrations ranging from 10(-3)-10(-6) M. These results suggest that some hydrophobic constituents such as steroids in the stinging nettle roots inhibited the membrane Na+,K(+)-ATPase activity of the prostate, which may subsequently suppress prostate-cell metabolism and growth.

  7. Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan; Hopkins, David L

    2013-01-15

    Two plant enzyme extracts from kiwifruit and asparagus were evaluated for their ability to hydrolyse commercially available substrates and proteins present in both beef connective tissue and topside myofibrillar extracts. The results show significant differences in protease activity depending on the assay used. Protease assays with connective tissue and meat myofibrillar extracts provide a more realistic evaluation of the potential of the enzymes for application in meat tenderization. Overall, the kiwifruit protease extract was found to be more effective at hydrolysing myofibrillar and collagen proteins than the asparagus protease extract. The two protease extracts appeared to target meat myofibrillar and collagen proteins differently, suggesting the potential of a synergistic effect of these proteases in improving the tenderness of specific cuts of meat, based on their intrinsic protein composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Production of multi-fiber modifying enzyme from Mamillisphaeria sp. for refining of recycled paper pulp.

    PubMed

    Laothanachareon, Thanaporn; Khonzue, Parichart; Rattanaphan, Nakul; Tinnasulanon, Phungjai; Apawasin, Saowanee; Paemanee, Atchara; Ruanglek, Vasimon; Tanapongpipat, Sutipa; Champreda, Verawat; Eurwilaichitr, Lily

    2011-01-01

    Enzymatic modification of pulp is receiving increasing interest for energy reduction at the refining step of the paper-making process. In this study, the production of a multi-fiber modifying enzyme from Mamillisphaeria sp. BCC8893 was optimized in submerged fermentation using a response-surface methodology. Maximal production was obtained in a complex medium comprising wheat bran, soybean, and rice bran supplemented with yeast extract at pH 6.0 and a harvest time of 7 d, resulting in 9.2 IU/mL of carboxymethyl cellulase (CMCase), 14.9 IU/mL of filter paper activity (FPase), and 242.7 IU/mL of xylanase. Treatment of old corrugated container pulp at 0.2-0.3 IU of CMCase/g of pulp led to reductions in refining energy of 8.5-14.8%. The major physical properties were retained, including tensile and compression strength. Proteomic analysis showed that the enzyme was a complex composite of endo-glucanases, cellobiohydrolases, beta-1,4-xylanases, and beta-glucanases belonging to various glycosyl hydrolase families, suggestive of cooperative enzyme action in fiber modification, providing the basis for refining efficiency.

  9. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    NASA Astrophysics Data System (ADS)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  10. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves.

    PubMed

    Wang, Lu; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2017-09-30

    Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL), the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β -glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE) greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.

  11. Cardoon-based rennets for cheese production.

    PubMed

    Almeida, Carla Malaquias; Simões, Isaura

    2018-06-01

    The use of crude aqueous extracts of Cynara cardunculus flowers as coagulants in the production of high-quality sheep and goat cheeses-as are the cases of several Portuguese and Spanish cheese varieties with Protected Designation of Origin status-has been maintained since ancient times. The unique rheological attributes and sensory properties characteristic of these cheeses have always suggested that this plant coagulant (and, therefore, its isolated milk-clotting proteases) could be used as alternative rennet in the dairy industry, particularly suited for the production of sheep and goat cheeses. However, the lack of standardization of C. cardunculus crude flower extracts, whose quality and performance depends on numerous factors, has always hampered the application of this plant rennet in industrial production scales. To overcome these limitations, and to aim at developing more effective solutions with potential for scalability of production and commercial application, several strategies have been undertaken in more recent years to establish new cardoon-based rennets. This review provides an overview on these developments and on the currently available solutions, which range from producing standardized formulations of native cardoon enzymes, to the optimization of the heterologous production of cardosins and cyprosins to generate synthetic versions of these milk-clotting enzymes. Challenges and emerging opportunities are also discussed.

  12. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf.

    PubMed

    Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-06-27

    A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions: Extracts of fish and dialysates of semipermeable membrane devices: Chapter 26

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.

    1996-01-01

    Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in SPMD dialysates.

  14. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry.

    PubMed

    Yao, Li; Lv, Yin-Zhi; Zhang, Li-Juan; Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Zhang, Qian-Qian; Ying, Guang-Guo

    2018-05-25

    Personal care products (PCPs) are ubiquitous in aquatic environments owing to the continuous discharge of domestic wastewater from highly urbanized regions. These PCPs can be adsorbed by fish and thereafter usually enter the bile of the fish through biliary excretion. In this study, a sensitive method based on a combination of hybrid solvent precipitation and dispersive solid phase extraction (d-SPE) purification was developed to simultaneously extract and detect 24 PCPs, namely, 16 biocides, 4 synthetic musks, and 4 benzotriazoles, from fish bile. Hybrid precipitation on solid phase extraction (SPE) tubes was applied to remove phospholipids and proteins, and a d-SPE procedure was used for further purification. The extraction solvents for the hybrid precipitation/SPE tubes and d-SPE materials were optimized. The method performance for bile samples both with and without enzyme hydrolysis using β-glucuronidase/aryl-sulfatase were validated. The 24 PCPs in fish bile were spiked with standard concentrations of 10 ng/mL, 20 ng/mL, 100 ng/mL, and 200 ng/mL to evaluate recoveries, which ranged from 70 to 120% for 16, 16, 22, and 21 analytes with hydrolysis, respectively, and 70-120% for 14, 15, 23, and 23 analytes without hydrolysis, respectively. The quantification limits for target PCPs were in the range 0.26-7.38 ng/mL [excluding musk xylene (MX) and musk ketone (MK)] and 0.20-9.48 ng/mL (excluding MX and MK) for bile samples with and without enzyme hydrolysis, respectively. After enzyme hydrolysis, 12 PCPs were detected in bile from fish collected from the Yangtze River, with a maximum detected concentration of 460 ng/mL, for triclosan (TCS). The hydrolysis reaction indicated that high percentages of glucuronide and sulfate metabolites for some PCPs, i.e. four parabens and TCS, existed in the bile. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase.

    PubMed

    Delabona, Priscila da Silva; Cota, Júnio; Hoffmam, Zaira Bruna; Paixão, Douglas Antonio Alvaredo; Farinas, Cristiane Sanchez; Cairo, João Paulo Lourenço Franco; Lima, Deise Juliana; Squina, Fábio Marcio; Ruller, Roberto; Pradella, José Geraldo da Cruz

    2013-03-01

    Supplementation of cellulase cocktails with accessory enzymes can contribute to a higher hydrolytic capacity in releasing fermentable sugars from plant biomass. This study investigated which enzymes were complementary to the enzyme set of Trichoderma harzianum in the degradation of sugarcane bagasse. Specific activities of T. harzianum extract on different substrates were compared with the extracts of Penicillium echinulatum and Trichoderma reesei, and two commercial cellulase preparations. Complementary analysis of the secretome of T. harzianum was also used to identify which enzymes were produced during growth on pretreated sugarcane bagasse. These analyses enabled the selection of the enzymes pectinase and α-L-arabinofuranosidase (AF) to be further investigated as supplements to the T. harzianum extract. The effect of enzyme supplementation on the efficiency of sugarcane bagasse saccharification was evaluated using response surface methodology. The supplementation of T. harzianum enzymatic extract with pectinase and AF increased the efficiency of hydrolysis by up to 116%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Investigation of repressive and enhancive effects of fruit extracts on the activity of glucose-6-phophatase.

    PubMed

    Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira

    2016-11-01

    Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.

  17. High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels.

    PubMed

    El Kantar, Sally; Boussetta, Nadia; Rajha, Hiba N; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène

    2018-05-01

    Orange peels are a biomass rich in carbohydrates and polyphenols and characterized by their low lignin content. This work focuses on finding the best combination between physical and biological treatments to enhance the extraction of fermentable sugars and polyphenols. High voltage electrical discharges (HVED) (0 to 900 kJ/kg) or enzymatic hydrolysis with Viscozyme® L (12 FBGU/g) were applied on fresh or defatted orange peels for the extraction of polyphenols and fermentable sugars. An HVED energy input of 222 kJ/kg was optimal for the extraction of reducing sugars (19 g/100 g DM) and polyphenols (0.7 g/100 g DM). However, enzymatic hydrolysis allowed a higher extraction of reducing sugars (50 g/100 g DM). HVED were then applied prior or simultaneously to enzymatic hydrolysis to maximize the extraction of biomolecules from orange peels. Thus, the results clearly showed that the HVED pretreatment of orange peels is efficient to enhance the accessibility of cellulosic biomass to enzymes. HVED (222 kJ/kg) prior to enzymatic hydrolysis (12 FBGU/g), was the most effective combination of these two processes to get an intensive extraction of biomolecules from orange peels. Copyright © 2017. Published by Elsevier Ltd.

  18. Absence of Photoreactivating Enzyme in Candida albicans, Candida stellatoidea, and Candida tropicalis

    PubMed Central

    Miller, Glendon R.; Sarachek, Alvin

    1974-01-01

    In vitro assays demonstrate photoreactivating enzyme activity in extracts of Candida pseudotropicalis but not in extracts of Candida albicans, Candida stellatoidea, or Candida tropicalis. PMID:4604052

  19. Production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching.

    PubMed

    Thomas, Leya; Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2015-06-01

    Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 degrees C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.

  20. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste.

    PubMed

    Bhange, Khushboo; Chaturvedi, Venkatesh; Bhatt, Renu

    2016-06-01

    The present study is an attempt to optimize simultaneous production of keratinolytic protease, amylase and biosurfactant from feather meal, potato peel and rape seed cake in a single media by response surface methodology to evaluate their biochemical properties for detergent additive. The optimization was carried out using 20 run, 3 factor and 5-level of central composite design on design expert software which resulted in a 1.2, 0.84 and 2.28 fold increase in protease, amylase and biosurfactant production. The proteolytic activity was found to be optimum at pH 9.0 and 60 °C while optimum amylolytic activity was recorded at pH 6.0 and 70 °C respectively. Both enzymes were found to be stable in the presence of organic solvents, ionic and commercial detergent and oxidizing agents. The biosurfactant was extracted with chloroform and was found to be stable at varying pH and temperature; however a reduction in the activity was observed at temperature higher than 70 °C. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.

  1. Chromatographic analysis of tryptophan metabolites

    PubMed Central

    Sadok, Ilona; Gamian, Andrzej

    2017-01-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049

  2. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies

    PubMed Central

    Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S.

    2015-01-01

    Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids. PMID:26023840

  3. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies.

    PubMed

    Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S

    2015-05-27

    Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids.

  4. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    PubMed

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. © 2016 Authors.

  5. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart

    PubMed Central

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4–9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. PMID:26839417

  6. 21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... commercial extracts containing the active enzyme rennin (CAS Reg. No. 9001-98-3), also known as chymosin (International Union of Biochemistry Enzyme Commission (E.C.) 3.4.23.4). Rennet is the aqueous extract prepared... clear solution containing the active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation...

  7. 21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... commercial extracts containing the active enzyme rennin (CAS Reg. No. 9001-98-3), also known as chymosin (International Union of Biochemistry Enzyme Commission (E.C.) 3.4.23.4). Rennet is the aqueous extract prepared... clear solution containing the active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation...

  8. A Novel Acid-Stable Endo-Polygalacturonase from Penicillium oxalicum CZ1028: Purification, Characterization, and Application in the Beverage Industry.

    PubMed

    Cheng, Zhong; Chen, Dong; Lu, Bo; Wei, Yutuo; Xian, Liang; Li, Yi; Luo, Zhenzhen; Huang, Ribo

    2016-06-28

    Acidic endo-polygalacturonases are the major part of pectinase preparations and extensively applied in the clarification of fruits juice, vegetables extracts, and wines. However, most of the reported fungal endo-polygalacturonases are active and stable under narrow pH range and low temperatures. In this study, an acidic endo-polygalacturonase (EPG4) was purified and characterized from a mutant strain of Penicillium oxalicum. The N-terminal amino acid sequence of EPG4 (ATTCTFSGSNGAASASKSQT) was different from those of reported endopolygalacturonases. EPG4 displayed optimal pH and temperature at 5.0 and 60-70°C towards polygalacturonic acid (PGA), respectively, and was notably stable at pH 2.2-7.0. When tested against pectins, EPG4 showed enzyme activity over a broad acidic pH range (>15.0% activity at pH 2.2-6.0 towards citrus pectin; and >26.6% activity at pH 2.2-7.0 towards apple pectin). The Km and Vmax values were determined as 1.27 mg/ml and 5,504.6 U/mg, respectively. The enzyme hydrolyzed PGA in endo-manner, releasing oligo-galacturonates from PGA, as determined by TLC. Addition of EPG4 (3.6 U/ml) significantly reduced the viscosity (by 42.4%) and increased the light transmittance (by 29.5%) of the papaya pulp, and increased the recovery (by 24.4%) of the papaya extraction. All of these properties make the enzyme a potential application in the beverage industry.

  9. Onion skin waste as a valorization resource for the by-products quercetin and biosugar.

    PubMed

    Choi, In Seong; Cho, Eun Jin; Moon, Jae-Hak; Bae, Hyeun-Jong

    2015-12-01

    Onion skin waste (OSW), which is produced from processed onions, is a major industrial waste. We evaluated the use of OSW for biosugar and quercetin production. The carbohydrate content of OSW was analyzed, and the optimal conversion conditions were evaluated by varying enzyme mixtures and loading volumes for biosugar production and quercetin extraction. The enzymatic conversion rate of OSW to biosugar was 98.5% at 0.72 mg of cellulase, 0.16 mg of pectinase, and 1.0mg of xylanase per gram of dry OSW. Quercetin extraction also increased by 1.61-fold after complete enzymatic hydrolysis. In addition, the newly developed nano-matrix (terpyridine-immobilized silica-coated magnetic nanoparticles-zinc (TSMNP-Zn matrix) was utilized to separate quercetin from OSW extracts. The nano-matrix facilitated easy separation and purification of quercetin. Using the TSMNP-Zn matrix the quercetin was approximately 90% absorbed. In addition, the recovery yield of quercetin was approximately 75% after treatment with ethylenediaminetetraacetic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Application of Response Surface Methodology for Optimization of Extracellular Glucoamylase Production by Candida guilliermondii.

    PubMed

    Mohamed, Lagzouli; Kettani, Youssfi El; Ali, Aitounejjar; Mohamed, Elyachioui; Mohamed, Jadal

    2017-01-01

    Glucoamylase is among the most important enzymes in biotechnology. The present study aims to determine better conditions for growth and glucoamylase production by Candida guilliermondii and to reduce the overall cost of the medium using Box-Behnken design with one central point and response surface methodology. Box-Behnken factorial design based on three levels was carried out to obtain optimal medium combination of five independent variables such as initial pH, soluble starch, CH4N2O, yeast extract and MgSO4. Forty one randomized mediums were incubated in flask on a rotary shaker at 105 rpm for 72 h at 30°C. The production of biomass was found to be pH and starch dependent, maximum production when the starch concentration was 8 g L-1 and the initial pH was 6, while maximum glucoamylase production was found at 6.5 of initial pH, 4 g L-1 yeast extract and 6 g L-1 starch, whereas yeast extract and urea were highly significant, but interacted negatively. Box-Behnken factorial design used for the analysis of treatment combinations gave a second-order polynomial regression model with R2 = 0.976 for Biomass and R2 = 0.981 for glucoamylase. The final biomass and glucoamylase activity obtained was very close to the calculated parameters according to the p-values (p<0.001), the predicted optimal parameters were confirmed and provides a basis for further studies in baking additives and in the valuation of starch waste products.

  11. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    PubMed

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested. Copyright © 2016. Published by Elsevier Ltd.

  12. Purification and characterization of a liver-derived beta-N-Acetylhexosaminidase from marine mammal Sotalia fluviatilis.

    PubMed

    Gomes Júnior, J E; Souza, D S L; Nascimento, R M; Lima, A L M; Melo, J A T; Rocha, T L; Miller, R N G; Franco, O L; Grossi-de-Sa, M F; Abreu, L R D

    2010-04-01

    A beta-N-Acetylhexosaminidase (EC 3.2.1.52) was purified from hepatic extracts of Sotalia fluviatilis, order Cetacea. The protein was purified by using ammonium sulfate fractionation and four subsequent chromatographies (Biogel A 1.5 m, Chitin, Deae-Biogel and hydroxyapatite resins). After these purification steps, the enzyme was purified 380.5-fold with an 8.4% yield. The molecular mass (10 kDa) was estimated by SDS-PAGE and MALDI-TOF analysis. A Km of 2.72 mM and Vmax 9.5 x 10(-6) micromol/(min x mg) were found for this enzyme, determined by p-nitrophenyl-beta-D: -hexosaminide substrate digestion. Optimal pH and temperature for beta-N-Acetylhexosaminidase activity were 5.0 and 60 degrees C, respectively. Enzyme activity was inhibited by sodium selenate (Na(2)SeO(4)), mercuric chloride (HgCl(2)) and sodium dodecyl sulfate (C(12)H(25)SO(4)Na), and activated by zinc, calcium, barium and lithium ions. Characterization of the beta-N-Acetylhexosaminidase in Sotalia fluviatilis can be a basis for physiological studies in this species.

  13. Identification of a Novel α-Galactosidase from the Hyperthermophilic Archaeon Sulfolobus solfataricus†

    PubMed Central

    Brouns, Stan J. J.; Smits, Nicole; Wu, Hao; Snijders, Ambrosius P. L.; Wright, Phillip C.; de Vos, Willem M.; van der Oost, John

    2006-01-01

    Sulfolobus solfataricus is an aerobic crenarchaeon that thrives in acidic volcanic pools. In this study, we have purified and characterized a thermostable α-galactosidase from cell extracts of S. solfataricus P2 grown on the trisaccharide raffinose. The enzyme, designated GalS, is highly specific for α-linked galactosides, which are optimally hydrolyzed at pH 5 and 90°C. The protein consists of 74.7-kDa subunits and has been identified as the gene product of open reading frame Sso3127. Its primary sequence is most related to plant enzymes of glycoside hydrolase family 36, which are involved in the synthesis and degradation of raffinose and stachyose. Both the galS gene from S. solfataricus P2 and an orthologous gene from Sulfolobus tokodaii have been cloned and functionally expressed in Escherichia coli, and their activity was confirmed. At present, these Sulfolobus enzymes not only constitute a distinct type of thermostable α-galactosidases within glycoside hydrolase clan D but also represent the first members from the Archaea. PMID:16547025

  14. In vitro evaluation of Bacopa monniera extract and individual constituents on human recombinant monoamine oxidase enzymes.

    PubMed

    Singh, Rajbir; Ramakrishna, Rachumallu; Bhateria, Manisha; Bhatta, Rabi Sankar

    2014-09-01

    Bacopa monniera is a traditional Ayurvedic medicinal plant that has been used worldwide for its nootropic action. Chemically standardized extract of B. monniera is now available as over the counter herbal remedy to enhance memory in children and adults. Considering the nootropic action of B. monniera, we evaluated the effect of clinically available B. monniera extract and six of B. monniera constituents (bacoside A3, bacopaside I, bacopaside II, bacosaponin C, bacosine, and bacoside A mixture) on recombinant human monoamine oxidase (MAO) enzymes. The effect of B. monniera extract and individual constituents on human recombinant MAO-A and MAO-B enzymes was evaluated using MAO-Glo(TM) assay kit (Promega Corporation, USA), following the instruction manual. IC50 and mode of inhibition were measured for MAO enzymes. Bacopaside I and bacoside A mixture inhibited the MAO-A and MAO-B enzymes. Bacopaside I exhibited mixed mode of inhibition with IC50 and Ki values of 17.08 ± 1.64 and 42.5 ± 3.53 µg/mL, respectively, for MAO-A enzyme. Bacopaside I is the major constituent of B. monniera, which inhibited the MAO-A enzyme selectively. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  16. Characterization of the aqueous extract of the root of Aristolochia indica: evaluation of its traditional use as an antidote for snake bites.

    PubMed

    Bhattacharjee, Payel; Bhattacharyya, Debasish

    2013-01-09

    The aqueous extract of the roots of Aristolochia indica is used as a decoction for the ailment of a number of diseases including snake bite treatment. Though the alcoholic extract of the different parts of the plant are well studied, information on the aqueous extract is limited. We have estimated aristolochic acid, different enzymes, enzyme inhibitors and anti-snake venom potency of its root extract. Reverse phase-HPLC was used to quantify aristolochic acid. Zymography, DQ-gelatin assay and atomic force microscopy were done to demonstrate gelatinase and collagenase activities of the extract. SDS-PAGE followed by MS/MS analysis revealed the identity of major protein components. Toxicity of the extract was estimated on animal model. Interaction of the extract with Russell's viper venom components was followed by Rayleigh scattering and enzyme assay. The aristolochic acid content of the root extract is 3.08 ± 1.88 × 10(-3)mg/ml. The extract possesses strong gelatinolytic, collagenase, peroxidase and nuclease activities together with l-amino acid oxidase and protease inhibitory potencies. Partial proteomic studies indicated presence of starch branching enzymes as major protein constituent of the extract. The extract did not show any acute and sub-chronic toxicity in animals at lower doses, but high dose causes liver and kidney damage. The extract elongated duration of survival of animals after application of Russell's viper venom. Considering the low aristolochic acid content of the extract, its consumption for a short time at moderate dose does not appear to cause serious toxicity. Strong inhibition of l-amino acid oxidase may give partial relief from snake bite after topical application of the extract. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit-rotting fungi.

    PubMed

    Choudhary, Bharti; Nagpure, Anand; Gupta, Rajinder K

    2014-12-01

    An antifungal actinomycete strain MT9 was isolated from Loktak Lake, Manipur, India and its cultural characteristics, fatty acid methyl ester, 16S rRNA gene analysis suggests that strain MT9 is identical to Streptomyces exfoliatus. Strain MT9 displayed strong and broad-spectrum antagonism towards several fruit-rotting fungi by mycelial growth suppression. Crude fungal cell-wall lytic enzymes, i.e., chitinase, β-1,3-glucanase, and protease produced by S. exfoliatus MT9 were optimally active at pH 8.0 and 50 °C, pH 5.0 and 60 °C, pH 9.0 and 70 °C, respectively. All three mycolytic enzymes had good stability over a wide pH range of 5.0-10.0, with protease being more thermostable than both chitinase and β-1,3-glucanase. Interestingly zymogram analysis revealed that S. exfoliatus MT9 secretes six distinct chitinase isoenzymes with approximate molecular weights of 9.42, 13.93, 27.87, 36.43, 54.95, 103.27 kDa, six active protease isoenzymes with apparent molecular weights of 12.45, 30.20, 37.45, 46.32, 52.46, 131.46 kDa, and an active band of 119.39 kDa as β-1,3-glucanase enzyme. Extracellular fluid and its organic solvent extracts also exhibited inhibitory activity to various fruit-rotting fungi. The MIC value of n-butanol extract was 2-25 µg/ml against tested fruit-rotting fungi. Antifungal secondary metabolite(s) was found to be polyene in nature. To the best of our knowledge, this is the first report on extracellular production of fungal cell-wall lytic enzymes and antifungal metabolites by bioactive S. exfoliatus MT9 under submerged fermentation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study of the production of alkaline keratinases in submerged cultures as an alternative for solid waste treatment generated in leather technology.

    PubMed

    Cavello, Ivana A; Chesini, Mariana; Hours, Roque A; Cavalitto, Sebastián F

    2013-01-01

    Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were 28℃ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 Uc/ml in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.

  19. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.

  20. The pectinases from Sphenophorus levis: Potential for biotechnological applications.

    PubMed

    Habrylo, Olivier; Evangelista, Danilo Elton; Castilho, Priscila Vasques; Pelloux, Jérôme; Henrique-Silva, Flávio

    2018-06-01

    Pectinases represent about one fifth of the enzyme worldwide market due their wide range of biotechnological applications. Current commercial pectinases are exclusively obtained from microbial sources, but here we report a pectin methylesterase (Sl-PME) and an endo-polygalacturonase (Sl-EPG) bioprospected from the sugarcane weevil, Sphenophorus levis, which revealed good potential for industrial applications. Sl-PME and Sl-EPG were overexpressed in Pichia pastoris, purified and enzymatically characterized. Sl-EPG presents optimal activity at pH 4-5 and 50 °C, showing that it can be used for juice extraction and clarification. On the other hand, Sl-PME presents optimal activity at pH 6-8 and 40 °C, and thus, suitable for both acidic and alkaline processing, such as coffee and tea fermentation. Sl-EPG shows V max  = 3.23 mM/min, K M  = 2.4 g/L and k cat  = 418.6 s -1 . While Sl-PME shows V max  = 0.14 mM/min, K M  = 4.1 g/L and k cat  = 1.7 s -1 . A PG inhibitor (PGIP2) weakly interfered in the Sl-EPG activity and Sl-PME was not affected by a usual PME inhibitor. Moreover, these enzymes manifested synergistic action towards methylesterified pectin. Here, we propose these enzymes as novel alternative tools for the current commercial pectinases. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline-oxidative pretreatment of hybrid poplar.

    PubMed

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A; Assad, Aline E; Stoklosa, Ryan J; Bansal, Namita; Semaan, Rachel; Saffron, Christopher M; Hodge, David B; Hegg, Eric L

    2018-01-01

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2 O 2 ) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2 O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2 O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2 O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2 O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2 O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2 O pre-extraction.

  2. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  3. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.; ...

    2018-05-17

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  4. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles.

    PubMed

    Dia, Vermont P; Wang, Zhaoqin; West, Megan; Singh, Vijay; West, Leslie; de Mejia, Elvira Gonzalez

    2015-04-01

    Anthocyanins are water-soluble pigments with health benefits and potential use as food colorants. The objectives of this work were to (1) determine optimum parameters for the extraction of anthocyanins from dried distillers grain with solubles (DDGS), (2) develop a method of anthocyanin extraction from DDGS, (3) quantify and identify the extracted anthocyanins, and (4) determine the effect of processing methods and corn cultivars on anthocyanin concentration. DDGS samples were prepared from purple (PC) and dark (DC) corn and processed using conventional enzymes (C) and granular starch hydrolyzing enzymes (GC). Three independent variables (ethanol concentration (0, 12.5, and 25%); liquid-to-solid ratio (30:1, 40:1, 50:1 mL/g); and extraction temperature (4, 22, and 40 °C)) and two dependent variables (anthocyanin concentration and a-value (redness)) were used. Results showed that dark corn DDGS gave anthocyanin concentration higher than that of purple corn. The GC process showed total anthocyanin concentration higher than that of the conventional method of DDGS production. The maximum anthocyanin concentration was obtained at 12.5% ethanol, 40:1 liquid-to-solid ratio, and 22 °C for C-PC [321.0 ± 37.3 μg cyanidin-3 glucoside (C3G) equivalent/g DDGS]. For GC-PC, 25% ethanol, 30:1 liquid-to-solid ratio, and 22 °C gave 741.4 ± 12.8 μg C3G equivalent/g DDGS. For GC-DC, 12.5% ethanol, 40:1 liquid-to-solid ratio, and 40 °C extraction gave 1573.4 ± 84.0 μg C3G equivalent/g DDGS. LC/MS-MS analysis showed that the major anthocyanins were cyanidin-3-glucoside, cyanidin-3-(6″-malonyl) glucoside, and peonidin-3-(6″malonyl) glucoside. In conclusion, anthocyanin extraction from colored corn DDGS can be optimized using 12.5% ethanol, 40:1 mL/g ratio, and 22 °C.

  5. Effect of Flavonoid-Rich Extract of Glycyrrhiza glabra on Gut-Friendly Microorganisms, Commercial Probiotic Preparations, and Digestive Enzymes.

    PubMed

    Asha, Mannanthendil Kumaran; Debraj, Debnath; Dethe, Shekhar; Bhaskar, Anirban; Muruganantham, Nithyanantham; Deepak, Mundkinajeddu

    2017-05-04

    Flavonoid-rich extract prepared from Glycyrrhiza glabra has been found to be beneficial in patients with functional dyspepsia and was reported to possess some gut health-promoting properties such as antioxidant, anti-inflammatory and anti-Helicobacter pylori activities. In the present study, the flavonoid-rich extract of Glycyrrhiza glabra was evaluated for its compatibility with probiotic strains (Lactobacillus casei, Lactobacillus fermentum, Lactobacillus plantarum, and Streptococcus thermophilus), commercial probiotic drinks, and digestive enzymes (pancreatic α-amylase, α-glucosidase, phytase, xylanase, and pancreatic lipase). Results of this study indicated that the flavonoid-rich extract of Glycyrrhiza glabra is compatible with the tested probiotic strains, probiotic drinks and digestive enzymes.

  6. Composition of the Essential Oil of Aristolochia Manshurientsis Kom

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuhong; Xin, Guang; Zhao, Lichun; Xiao, Zhigang; Xue, Bai

    2018-03-01

    This study demonstrated the chemical constituents of the essential oil of Aristolochia manshurientsis Kom and improved the essential oil efficiency by the enzyme-assisted extraction followed by hydrodistillation. The essential oils of Aristolochia manshurientsis Kom acquired by hydrodistillation after the solvent extraction with and without the assistance of cellulase have been investigated by gas chromatography/Mass spectrometry (GC-MS). The predominant constituents of both types of essential oils are camphene, 1,7,7-trimethyl-bicyclo [2.2.1] hept-2-yl acetate, 1,6-dimethyl-4-(1-methylethyl) naphthalene, caryophyllene oxide, borneol, and (-)-Spathulenol. The enzyme-assisted extraction not only increased extracting efficiency of the essential oil from 4.93% to 9.36%, but also facilitated the extraction of additional eight compounds such as 2-methano(-6,6-dimethyl) bicycle [3.1.1] hept-2-ene, (+)--terpineol and 1-propyl-3-(propen-1-yl) adamantane, which were not identified from the non-enzyme extraction sample.

  7. Effect of Proteolytic Enzymes and Ginger Extract on Tenderization of M. pectoralis profundus from Holstein Steer.

    PubMed

    Moon, Sung Sil

    2018-02-01

    The effects of proteolytic enzymes (bromelain and bromelain+papain) and a ginger extract were assessed on collagen content and solubility, thermal shrinkage temperature of connective tissue, pH, cooking loss, drip loss, and Warner-Bratzler shear force (WBSF) of M. pectoralis profundus isolated from the beef brisket cut. Both proteolytic enzymes and ginger extract led to a significant increase in cooking loss and collagen solubility compared with untreated controls. On the other hand, the peak ( T p ) thermal shrinkage temperature markedly decreased in all treatments compared with those in controls. Samples treated with bromelain, bromelain + papain, and ginger extract showed a significant decrease in WBSF by 36%, 40%, and 37%, respectively, compared with untreated controls. Our findings suggest that ginger extract are useful for postmortem tenderization of meat containing high levels of collagen, compared to control even though, bromelain and bromelain + papain treatments have higher collagen solubility than ginger extract.

  8. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    PubMed

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Production, Characterization of Tannase from Penicillium montanense URM 6286 under SSF Using Agroindustrial Wastes, and Application in the Clarification of Grape Juice (Vitis vinifera L.)

    PubMed Central

    Cruz, Roberta; Fonseca, Julyanna Cordoville; de Medeiros, Erika Valente; Maciel, Marília de Holanda Cavalcanti; Moreira, Keila Aparecida; Motta, Cristina Maria de Souza

    2014-01-01

    Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required. The objectives of this study were to evaluate the production of tannase by Aspergillus and Penicillium species through SSF using leaves and agroindustrial waste barbados cherry and mangaba fruit as substrate, select the best producer, optimize production, characterize the crude enzyme extract, and apply it the clarification of grape juice. Selecting the best producer was performed by planning Placket-Burman and RSM. P. montanense showed highest activity with 41.64 U/mL after 72 h of fermentation residue using barbados cherry, with 3.5% tannic acid and 70% moisture. The enzyme showed the highest activity at pH 9.0 and 50°C. The tannase of P. montanense was stable over a wide pH range and temperature and, when applied to grape juice, showed higher efficiency by reducing 46% of the tannin content after incubation 120 m. PMID:25506607

  10. Production, characterization of tannase from Penicillium montanense URM 6286 under SSF using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.).

    PubMed

    de Lima, Juliana Silva; Cruz, Roberta; Fonseca, Julyanna Cordoville; de Medeiros, Erika Valente; Maciel, Marília de Holanda Cavalcanti; Moreira, Keila Aparecida; Motta, Cristina Maria de Souza

    2014-01-01

    Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required. The objectives of this study were to evaluate the production of tannase by Aspergillus and Penicillium species through SSF using leaves and agroindustrial waste barbados cherry and mangaba fruit as substrate, select the best producer, optimize production, characterize the crude enzyme extract, and apply it the clarification of grape juice. Selecting the best producer was performed by planning Placket-Burman and RSM. P. montanense showed highest activity with 41.64 U/mL after 72 h of fermentation residue using barbados cherry, with 3.5% tannic acid and 70% moisture. The enzyme showed the highest activity at pH 9.0 and 50°C. The tannase of P. montanense was stable over a wide pH range and temperature and, when applied to grape juice, showed higher efficiency by reducing 46% of the tannin content after incubation 120 m.

  11. EVIDENCE FOR AN EXOCELLULAR SITE FOR THE ACID PHOSPHATASE OF SACCHAROMYCES MELLIS1

    PubMed Central

    Weimberg, Ralph; Orton, William L.

    1964-01-01

    Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Evidence for an exocellular site for the acid phosphatase of Saccharomyces mellis. J. Bacteriol. 88:1743–1754. 1964.—Evidence is presented which demonstrates an exocellular location for acid phosphatase in Saccharomyces mellis. Derepressed intact cells exhibit acid phosphatase activity. The properties of the system are similar to those shown by the enzyme in cell-free extracts. There is no increase in total activity when cell-free extracts are prepared. Enzymatically active cell walls were prepared by leaching acetone-dried cells of this yeast in dilute acetate buffer (pH 6.5) plus β-mercaptoethanol. The insoluble residue, consisting mainly of cell-wall material and containing the phosphatase, was treated with a variety of hydrolytic enzymes and other chemicals. Only papain and crude snail gut extracts dissociated the enzyme from the particulate fraction in nearly quantitative amounts. The mechanism of release by these two enzymes probably differs. Of all enzymes tested, only the snail gut extract digested the cell walls. By dividing the procedure for making protoplasts of S. mellis into two steps, acid phosphatase may be dissociated from resting cells and recovered as an active soluble enzyme. The first step is to pretreat the cells with a thiol reagent. The second step is to digest the cell wall by enzymes present in crude snail gut extracts. Arsenite must be included in the second step to protect the phosphatase from inactivation. The phosphatase is quantitatively released before the cell becomes osmotically fragile. Images PMID:14240965

  12. Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.

    PubMed

    Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere

    2014-11-01

    The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.

  13. Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the Thraustochytrid strain ONC-T18.

    PubMed

    Armenta, Roberto E; Burja, Adam; Radianingtyas, Helia; Barrow, Colin J

    2006-12-27

    A variety of techniques for extracting carotenoids from the marine Thraustochytrium sp. ONC-T18 was compared. Specifically, the organic solvents acetone, ethyl acetate, and petroleum ether were tested, along with direct and indirect ultrasonic assisted extraction (probe vs bath) methods. Techniques that used petroleum ether/acetone/water (15:75:10, v/v/v) with 3 h of agitation, or 5 min in an ultrasonic bath, produced the highest extraction yields of total carotenoids (29-30.5 microg g-1). Concentrations up to 11.5 microg g-1 of canthaxanthin and 17.5 microg g-1 of beta;-carotene were detected in extracts stored for 6 weeks. Astaxanthin and echinenone were also detected as minor compounds. Extracts with and without antioxidants showed similar carotenoid concentration profiles. However, total carotenoid concentrations were approximately 8% higher when antioxidants were used. Finally, an easy-to-perform and inexpensive method to detect co-enzymes in ONC-T18 was also developed using silica gel TLC plates. Five percent methanol in toluene as a mobile phase consistently eluted co-enzyme Q10 standards and could separate the co-enzyme fractions present in ONC-T18.

  14. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation.

    PubMed

    Burnett, B P; Jia, Q; Zhao, Y; Levy, R M

    2007-09-01

    A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.

  15. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey.

    PubMed

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-06-01

    Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  16. Screening of Actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology.

    PubMed

    Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy

    2011-01-01

    Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.

  17. In vitro antidiabetic activity of various crude extracts of Boletus variipes

    NASA Astrophysics Data System (ADS)

    Muniandy, Sutha; Fazry, Shazrul; Daud, Fauzi; Senafi, Sahidan

    2015-09-01

    Diabetes mellitus is a complex metabolic disease that progressively spread worldwide and difficult to treat due to various physical and metabolic complications. Current treatment using synthetic drugs has lead to various undesirable side effects. Here we determined the effect of Boletus variipes extracts on diabetes related enzymes. In this study, hot water, cold water and methanol extracts of B. variipes were utilized in order to assess their in vitro antidiabetic activity by measuring the effect on α-amylase and α-glucosidase enzyme. Hot water extract possessed the highest inhibition activity of α-amylase and α-glucosidase in a concentration dependent manner with the IC50 value 87 mg/mL and 89 mg/mL respectively. The methanol extract also showed inhibition activity of α-amylase and α-glucosidase but significantly lower than the hot water extract. Whereas cold water extract did not show any inhibition activity towards both the enzymes. Therefore, it is hypothesized that the hot water extract of Boletus variipes contains bioactive compound that can inhibit alpha-amylase and alpha-glucosidase enzyme activity. At the request of all authors of the paper an updated version was published on 11 May 2016. The original version identified the species of mushroom as Boletus variipes, but new findings have proved the species of mushroom to be Boletus qriseipurpureus. The species name has been updated throughout the revised version of this paper.

  18. Enhancement of Penicillium echinulatum glycoside hydrolase enzyme complex.

    PubMed

    dos Santos Costa, Patrícia; Büchli, Fernanda; Robl, Diogo; Delabona, Priscila da Silva; Rabelo, Sarita Candida; Pradella, José Geraldo da Cruz

    2016-05-01

    The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.

  19. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed Central

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-01-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes. Images PMID:1592816

  20. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-06-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.

  1. Enzymatic Removal of Diacetyl from Beer

    PubMed Central

    Tolls, T. N.; Shovers, J.; Sandine, W. E.; Elliker, P. R.

    1970-01-01

    Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase. PMID:4315861

  2. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    PubMed Central

    Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra

    2012-01-01

    Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates. PMID:23198138

  3. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  4. Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis).

    PubMed

    Yuliarti, Oni; Goh, Kelvin K T; Matia-Merino, Lara; Mawson, John; Brennan, Charles

    2015-11-15

    Gold kiwifruit pomace extracted using citric acid, water and enzyme (Celluclast 1.5L) were studied in terms of pectin yield, protein, ash, non-starch polysaccharide, galacturonic acid (GalA), neutral sugar composition, molar mass (Mw), viscosity and degree of branching. Water-extracted pectin was considered closest to its native form. Enzyme extracted pectin showed the highest yield (∼ 4.5%w/w) as compared with the acid and water extraction methods (∼ 3.6-3.8%w/w). Pectin obtained from different extraction methods showed different degree of branching. The Mw and root mean square (RMS) radius varied with the extraction methods with values of 8.4 × 10(5) g/mol and 92 nm, 8.5 × 10(5)g/mol and 102 nm, 6.7 × 10(5) g/mol and 52 nm for acid, water and enzymatic extraction methods, respectively. Similar trend was observed for pectin viscosity, with water-extracted pectin giving a slightly higher viscosity followed by acid and enzyme-extracted pectin. This study showed that gold kiwifruit pomace pectin has potential application in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Recent advances in enzyme extraction strategies: A comprehensive review.

    PubMed

    Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K

    2017-08-01

    The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion.

    PubMed

    Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi

    2016-12-16

    Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion.

  7. Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.

    2018-02-01

    This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.

  8. Sea buckthorn (Hippophae rhamnoides) proanthocyanidins inhibit in vitro enzymatic hydrolysis of protein.

    PubMed

    Arimboor, Ranjith; Arumughan, C

    2011-08-01

    Interactions of phenolics with other food constituents and digestive enzymes are likely to have interference with the digestion and bioavailability of food and phenolics. In this study the effect of sea buckthorn proanthocyanidins on in vitro digestion of protein was evaluated. Optimization of the extraction conditions showed that maximum recovery of sea buckthorn proanthocyanidins was obtained with acidified acetone; water mixture (60% to 70%, v/v). Crude proanthocyanidin extracts thus prepared were purified using sephadex gel column chromatography and their average degree of polymerization and the effects on enzymatic hydrolysis of bovine serum albumin as influenced by their protein precipitation capacities were studied. Average degree of polymerization of proanthocyanidins in berry pulp, kernel, seed coat, and leaves was 7.4, 5.6, 8.2, and 10.6, respectively. The EC50 values for the protein precipitation by the PA of berry pulp, kernel seed coat, and leaves were 44.2, 44.1, 65.8, and 39.8 μg, respectively. Relative enzymatic hydrolysis of the protein-proanthocyanidin complexes was 44.1% to 60.3% for pepsin and 57.5% to 67.7% for trypsin. Interactions of sea buckthorn proanthocyanidins with food proteins and digestive enzymes might alter the protein digestibility and phenolic bioavailabilty. © 2011 Institute of Food Technologists®

  9. Enzyme-linked immunosorbent assay for a soluble antigen of Renibacterium salmoninarum, the causative agent for salmonid bacterial kidney disease

    USGS Publications Warehouse

    Pascho, R.J.; Mulcahy, D.

    1987-01-01

    A double-antibody enzyme-linked immunosorbent assay (ELISA) for detection of a soluble fraction of Renibacterium salmoninarum was developed from components extracted from the supernatant of an R. salmoninarum broth culture. The Costar® Serocluster™ EIA microplate gave the highest absorbance and signal-to-noise ratios among seven types tested. Including Tween 80 in the wash buffer resulted in higher absorbances than Tween 20 when antigen was present. Background absorbance did not increase when Tween 80 was added to the wash buffer, but did when Tween 80 replaced Tween 20 in antigen and conjugate diluents. Adsorption of coating antibody peaked within 4 h at 37 °C and 16 h at 4 °C. Antigen attachment to antibody-coated microplate wells depended more on incubation temperature than duration; we adopted a 3-h incubation at 25 °C. Conjugate incubation for longer than 1 h at 37 °C or 3 h at 25 °C resulted in unacceptable background levels. No cross-reactions resulted from heat-extracted antigens of 10 other species of bacteria. The optimized ELISA is a 6-h test that enables detection of levels of soluble antigen as low as 2–20 ng.

  10. Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain.

    PubMed

    Ademiluyi, Adedayo O; Ogunsuyi, Opeyemi B; Oboh, Ganiyu

    2016-09-01

    Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na + /K + ATPase] system of neurotransmission was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe 2+ and Cu 2+ chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na + /K + ATPase (in vitro). Both extracts also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the EC 50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activity as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na + /K + ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Laboratory Exercise to Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash

    ERIC Educational Resources Information Center

    Pinelo, Manuel; Nielsen, Michael K.; Meyer, Anne S.

    2011-01-01

    In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments. The exercise shows the impact of enzyme-catalyzed…

  12. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    PubMed

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  13. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  14. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Aslam, Nighat; Walton, Jonathan D

    2010-08-01

    The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion. (c) 2010 Wiley Periodicals, Inc.

  15. Screening of Neem extracts for microbial anti-chaperone activity by employing in vitro enzyme refolding assay.

    PubMed

    Patki, Jyoti M; Shah, Priyanka

    2017-10-01

    Microbial heat shock proteins (Hsps) play an important role in pathogenesis and development of resistance to existing drugs. New compounds that target microbial molecular chaperones have the potential of combating the challenge of anti-microbial resistance. The present study was aimed at assessing the employment of in vitro enzyme refolding assay to detect anti-chaperone activity of Neem ( Azadirachta indica ) extracts. Protein extracts of thermotolerant Escherichia coli cells were used as a source of Hsps or chaperones. Thermotolerance was found to be induced by pre-treating E. coli cells at 47 °C before subjecting them to a lethal temperature of 55 °C. This thermotolerance correlated with over-expression of specific proteins and reduced aggregation as evident from the SDS-PAGE profiles. Refolding assays of denatured enzymes exhibited 45% activity regain in presence of cell protein extracts containing chaperones compared to less than 5% regain in BSA negative controls. The chaperone activity was found to be ATP dependent. Addition of Neem extracts to refolding reaction mixtures distinctly reduced the activity regain (20%) in a dose dependent manner (500 and 1000 ppm). The negative influence of plant extract on refolding of the enzyme in the presence of chaperones gives evidence to its anti-chaperone activity. We propose that the employment of in vitro enzyme refolding assays will help not only to analyze the activity of known and putative chaperones but also to screen natural compounds for anti-microbial-Hsp activity.

  16. Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans

    PubMed Central

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun

    2011-01-01

    Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695

  17. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Walton, Jonathan D

    2010-10-12

    Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.

  18. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  19. Evaluation of enzyme treatment conditions on extraction of anthocyanins from Prunus nepalensis L.

    PubMed

    Swer, Tanya L; Chauhan, Komal; Paul, Prodyut K; Mukhim, C

    2016-11-01

    The study was designed to investigate the effect of enzyme assisted extraction of anthocyanins from Sohiong fruit (Prunus nepalensis) under varied time, temperature and treatment conditions. Highest anthocyanins yield was obtained by coupling enzymatic treatment along with solvent extraction simultaneously. Additionally, effect of enzyme type, enzyme concentration, reaction time and temperature were evaluated subsequently in following experiments. Cellulase treatment (10% E/S) for 180min at 4°C exhibited highest yield of 984.40±3.84mg C3G/100gdm which accounts to 14.61% higher yield when compared to conventional method (858.84±6.88mg C3G/100gdm). The study provides an economical alternative for commercial extraction of anthocyanins from Sohiong fruit which can be used as a colourant for various food and other products and owing to its antioxidizing properties can be effective for the prevention and treatment of diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Immunochemical-based method for detection of hazelnut proteins in processed foods.

    PubMed

    Ben Rejeb, Samuel; Abbott, Michael; Davies, David; Querry, Jessica; Cléroux, Chantal; Streng, Christine; Delahaut, Philippe; Yeung, Jupiter M

    2003-01-01

    A competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect hazelnut by using polyclonal antibodies generated against a protein extract of roasted hazelnut. No cross-reactivity was observed in tests against 39 commodities, including many common allergens, tree nuts, and legumes. Hazelnut protein standard solutions at 0.45 ng/mL [inhibition concentration (IC80) of the competitive test] were clearly identified by the ELISA. An extraction and quantification method was developed and optimized for chocolate, cookies, breakfast cereals, and ice cream, major food commodities likely to be cross-contaminated with undeclared hazelnut during food processing. No sample cleanup was required when extracts were diluted 10-fold. Recovery results were generated with blank matrixes spiked at 4 levels from 1 to 10 microg/g hazelnut protein. With the developed extraction and sample handling procedure, hazelnut proteins were recovered at 64-83% from chocolate and at 78-97% from other matrixes. A confirmatory technique was developed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer. The developed methods were applied to a small market survey of chocolate products and allowed the identification of undeclared hazelnut in these products.

  1. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    PubMed

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  2. HPLC-DAD Analysis and In-Vitro Property of Polyphenols Extracts from (Solanum Aethiopium) Fruits on α -Amylase, α -Glucosidase and Angiotensin - 1- Converting Enzyme Activities

    PubMed Central

    Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.

    2014-01-01

    AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with  different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760

  3. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    PubMed

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  4. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasayco, M.L.; Prestwich, G.D.

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor ofmore » this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.« less

  5. Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metallopeptidase activity.

    PubMed

    Kiss, Anna K; Derwińska, Małgorzata; Dawidowska, Anna; Naruszewicz, Marek

    2008-09-10

    In this study, for the first time, we used the in vitro metallopeptidase model for the identification of a potential novel activity of defatted evening primrose seed extracts. Prepared extracts of different polarity (aqueous, 60% ethanolic, isopropanolic, and 30% isopropanolic) at concentrations of 1.5-100 microg/mL exhibited a significant and dose dependent inhibition of three tested enzymes. The 50% inhibition of enzymes activity showed that aminopeptidase N (APN) was the enzyme affected to the greatest extent with IC50 at the level of 2.8 microg/mL and 2.9 microg/mL for aqueous and 30% isopropanolic extracts, respectively. The activity of neutral endopeptidase (NEP) was quite strongly inhibited by the extracts as well. The HPLC-DAD analysis and bioguided fractionation led to the identification of four active compounds: (-)-epicatechin gallate, proanthocyanidin B3, oenothein B, and penta-O-galloyl-beta-D-glucose (PGG). Oenothein B has been shown previously to inhibit metallopeptidases. The three other compounds are known to inhibit angiotensin-converting enzyme (ACE), but they have not been previously reported to inhibit the NEP and APN activity. PGG and procyanidins with different degrees of polymerization, as the dominating compounds in O. paradoxa seeds, seemed to play a role in the crude extract activity.

  6. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    PubMed Central

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-01-01

    Objective(s): Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Conclusion: Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes. PMID:25140204

  7. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  8. Treatment of bran containing bread by baking enzymes; effect on the growth of probiotic bacteria on soluble dietary fiber extract in vitro.

    PubMed

    Saarinen, Markku T; Lahtinen, Sampo J; Sørensen, Jens F; Tiihonen, Kirsti; Ouwehand, Arthur C; Rautonen, Nina; Morgan, Andrew

    2012-01-01

    Different ways of treating bran by baking enzymes prior to dough making and the baking process were used to increase the amount of water-soluble dietary fiber (DF) in wheat bread with added bran. Soluble DF was extracted from the bread with water and separated from the digestible material with gastrointestinal tract enzymes and by solvent precipitation. The baking enzyme mixtures tested (xylanase and glucanase/cellulase, with and without lipase) increased the amounts of soluble arabinoxylan and protein resistant to digestion. The isolated fiber was used as a growth substrate for 11 probiotic and intestinal Bifidobacterium strains, for commensal strains of Bacteroides fragilis and Escherichia coli, and for potential intestinal pathogenic strains of E. coli O157:H7, Salmonella typhimurium, and Clostridium perfringens. Fermentation analyses indicated that the tested strains had varying capacity to grow in the presence of the extracted fiber. Of the tested probiotic strains B. longum species generally showed the highest ability to utilize the fiber extracts, although the potential pathogens tested also showed an ability to grow on these fiber extracts. In sum, the enzymes used to improve the baking process for high-fiber bread can also be used to produce in situ soluble fiber material, which in turn can exert prebiotic effects on certain potentially beneficial microbes.

  9. In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean

    PubMed Central

    Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.

    2014-01-01

    Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218

  10. In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean.

    PubMed

    Oboh, Ganiyu; Ademosun, Ayokunle O; Ademiluyi, Adedayo O; Omojokun, Olasunkanmi S; Nwanna, Esther E; Longe, Kuburat O

    2014-01-01

    Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.

  11. Cholecystokinin-converting enzymes in brain.

    PubMed Central

    Malesci, A; Straus, E; Yalow, R S

    1980-01-01

    Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659

  12. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  13. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  14. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition.

    PubMed

    Rasheed, Dalia M; Porzel, Andrea; Frolov, Andrei; El Seedi, Hesham R; Wessjohann, Ludger A; Farag, Mohamed A

    2018-06-01

    Roselle (Hibiscus sabdariffa) is a functional food with potential health benefits, consumed either as hot or cold beverage. To ensure quality control of its various products, accurate measurement of active metabolites is warranted. Herein, we propose a combination of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and nuclear magnetic resonance (NMR) analytical platforms for the untargeted characterization of metabolites in two roselle cultivars, Aswan and Sudan-1. The analyses revealed 33 metabolites, including sugars, flavonoids, anthocyanins, phenolic and aliphatic organic acids. Their relative contents in cultivars were assessed via principle component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS). Impact of the different extraction methods (decoction, infusion and maceration) was compared by quantitative 1 H NMR spectroscopy, revealing cold maceration to be optimal for preserving anthocyanins, whereas infusion was more suited for recovering organic acids. The metabolite pattern revealed by the different extraction methods was found in good correlation for their ability to inhibit α-glucosidase enzyme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A biotransformation process for the production of cucurbitacin B from its glycoside using a selected Streptomyces sp.

    PubMed

    Mei, Jianfeng; Li, Sha; Jin, Hang; Tang, Lan; Yi, Yu; Wang, Hong; Ying, Guoqing

    2016-09-01

    Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-D-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.

  16. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning.

    PubMed

    Varakumar, Sadineni; Umesh, Kannamangalam Vijayan; Singhal, Rekha S

    2017-02-01

    Ginger (Zingiber officinale R.) is a popular spice used worldwide. The oleoresin consists of gingerols, shogaols and other non-volatiles as chief bioactive constituents. Three phase partitioning (TPP), a bioseparation technique, based on partitioning of polar constituents, proteins, and hydrophobic constituents in three phases comprising of water, ammonium sulphate and t-butanol, was explored for extraction of oleoresin and gingerols from dry powder. Parameters optimized for maximum recovery of gingerols and [6]-shogaol were ammonium sulphate concentration, ratio of t-butanol to slurry, solid loading and pH. Ultrasound and enzymatic pretreatments increased the yield of oleoresin and its phytoconstituents. Ultrasound pretreatment showed separation of starch in the bottom aqueous phase but is an additional step in extraction. Enzymatic pretreatment using accellerase increased the yield of [6]-, [8]-, [10]-gingerols and [6]-shogaol by 64.10, 87.8, 62.78 and 32.0% within 4h and is recommended. The efficacy of the enzymatic pretreatment was confirmed by SEM and FTIR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Systematic investigation of ethanolic extract from Leea macrophylla: Implications in wound healing.

    PubMed

    Joshi, Apurva; Joshi, Vinod K; Pandey, Deepali; Hemalatha, S

    2016-09-15

    Leea macrophylla Roxb. ex Hornem. (Leeaceae) commonly known as Hastikarnapalasa is mainly distributed throughout the tropical parts of India. Traditionally, the plant is found to be effective against guinea worm, ringworm and is applied to sores and wounds. The present study aims to validate traditional wound healing claim of Leea macrophylla scientifically. Box-Behnken design (BBD) was used to optimize the extraction process. The optimized root tuber extract of Leea macrophylla was standardized with chlorogenic acid by HPLC for the first time. Both oral and topical routes were selected as administrative means for the wound healing study using excision and incision wound model. For topical treatment bioadhesive gel was formulated and characterized for mechanical and physical characteristics by texture profile analysis (TPA) and scanning electron microscopy (SEM). The effect on wound healing was also assessed by evaluating antioxidant enzymes viz. glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), free radicals lipid peroxidation (LPO) and nitric oxide (NO), inflammatory marker myeloperoxidase (MPO), collagen markers hydroxyproline, hexosamine and hexuronic acid along with the histopathological examination. Furthermore, the effect on the level of the proinflammatory cytokines interleukin-1β (IL-1β), interleukin -6 (IL-6), tumor necrosis factor-α (TNF-α) and growth factor, vascular endothelial growth factor (VEGF) were determined. The expression of cell proliferation nuclear marker Ki-67 was also analyzed by Western blot analysis. With mesh openings Sieve no. 20, semi polar nature of solvent (92.5:7.5 ethanol-water blend) and extraction time of 18h, substantially greater extraction efficiency (29%) and phenolic yield (181.54mg/g) were obtained. The content of chlorogenic acid in ethanol extracts of Leea macrophylla was obtained as 9.01% w/w. In incision model, oral treatment with 500mg/kg ethanolic extract increased wound breaking strength by 23.41% while bioadhesive gel (5% w/v) showed a higher increase of 44.68%. Topical application produced complete wound contraction in 20 days against 22 days taken by oral treatment. Topical treatment also produced a significant (p<0.05) increase in antioxidants glutathione, superoxide dismutase and catalase whereas the level of enzymes lipid peroxidation and nitric oxide and inflammatory markers myeloperoxidase were reduced. Further advantageous effects were reflected by significantly (p<0.05) increased levels of hydroxyproline, hexosamine and hexuronic acid. Favorable effects on the level of proinflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor - α and growth factor, vascular endothelial growth factor were also observed. The wound healing potential of Leea macrophylla was further supported by its ability to promote cell proliferation during wound healing as demonstrated by Western blot analysis of proliferation marker Ki-67. The study justified traditional use of Leea macrophylla in wound healing and demonstrated that the bioadhesive gel of ethanolic extract produced faster and more significant healing as compared to oral treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves.

    PubMed

    Puri, Munish; Sharma, Deepika; Barrow, Colin J; Tiwary, A K

    2012-06-01

    Stevioside, a diterpene glycoside, is well known for its intense sweetness and is used as a non-caloric sweetener. Its potential widespread use requires an easy and effective extraction method. Enzymatic extraction of stevioside from Stevia rebaudiana leaves with cellulase, pectinase and hemicellulase, using various parameters, such as concentration of enzyme, incubation time and temperature, was optimised. Hemicellulase was observed to give the highest stevioside yield (369.23±0.11μg) in 1h in comparison to cellulase (359±0.30μg) and pectinases (333±0.55μg). Extraction from leaves under optimised conditions showed a remarkable increase in the yield (35 times) compared with a control experiment. The extraction conditions were further optimised using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain optimal extraction conditions. Based on RSM analysis, temperature of 51-54°C, time of 36-45min and the cocktail of pectinase, cellulase and hemicellulase, set at 2% each, gave the best results. Under the optimised conditions, the experimental values were in close agreement with the prediction model and resulted in a three times yield enhancement of stevioside. The isolated stevioside was characterised through 1 H-NMR spectroscopy, by comparison with a stevioside standard. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  20. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity.

    PubMed

    Wang, Huizhu; Li, Yan; Ren, Zhihui; Cong, Zhongcheng; Chen, Mengjie; Shi, Lin; Han, Xu; Pei, Jin

    2018-06-01

    An extraction assay applying microwave-assisted enzymatic treatment for polysaccharides in Rosa roxburghii was developed using response surface methodology. The process parameters were optimized using Plackett-Burman (PB) design and central composite design to enhance the Rosa roxburghii polysaccharide extraction yield. Specific conditions (microwave power, 575W; microwave time, 18min; liquid-to-material ratio, 13.5:1mL/g; and enzyme dose, 6.5g/mL) generated an experimental yield of 36.21±0.62%, which closely agreed with the predicted value of 35.75%. Purification with a DEAE-52 cellulose column generated two fractions, PR-1 (from 6.2×10 3 to 7.4KDa) and PR-2 (from 559.8 to 106.6KDa). Subsequently, the antioxidant activity and α-d-glucosidase inhibitory activity of the two polysaccharide fractions were assessed; PR-1 exhibited stronger antioxidant activity and α-d-glucosidase inhibitory activity than PR-2. Finally, the monosaccharide composition of PR-1 was determined by HPLC using a 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization method. The result showed that PR-1 contained mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose and fucose with molar percentages of 2.1%, 0.54%, 2.1%, 0.26%, 1.5%, 22.7%, 24.0%, 26.4%, 19.6% and 0.89%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  2. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  3. Application of enzymes, sodium tripolyphosphate and cation exchange resin for the release of extracellular polymeric substances from sewage sludge. Characterization of the extracted polysaccharides/glycoconjugates by a panel of lectins.

    PubMed

    Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer

    2007-06-30

    The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.

  4. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    PubMed

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.

  5. Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste.

    PubMed

    Godoy, Mateus G; Gutarra, Melissa L E; Castro, Aline M; Machado, Olga L T; Freire, Denise M G

    2011-08-01

    In countries with a strong agricultural base, such as Brazil, the generation of solid residues is very high. In some cases, these wastes present no utility due to their toxic and allergenic compounds, and so are an environmental concern. The castor bean (Ricinus communis) is a promising candidate for biodiesel production. From the biodiesel production process developed in the Petrobras Research Center using castor bean seeds, a toxic and alkaline waste is produced. The use of agroindustrial wastes in solid-state fermentation (SSF) is a very interesting alternative for obtaining enzymes at low cost. Therefore, in this work, castor bean waste was used, without any treatment, as a culture medium for fungal growth and lipase production. The fungus Penicillium simplicissimum was able to grow and produce an enzyme in this waste. In order to maximize the enzyme production, two sequential designs-Plackett-Burman (variable screening) followed by central composite rotatable design (CCRD)-were carried out, attaining a considerable increase in lipase production, reaching an activity of 155.0 U/g after 96 h of fermentation. The use of experimental design strategy was efficient, leading to an increase of 340% in the lipase production. Zymography showed the presence of different lipases in the crude extract. The partial characterization of such extract showed the occurrence of two lipase pools with distinct characteristics of pH and temperature of action: one group with optimal action at pH 6.5 and 45°C and another one at pH 9.0 and 25°C. These results demonstrate how to add value to a toxic and worthless residue through the production of lipases with distinct characteristics. This pool of enzymes, produced through a low cost methodology, can be applied in different areas of biotechnology.

  6. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    PubMed

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  7. Chickpea seeds germination rational parameters optimization

    NASA Astrophysics Data System (ADS)

    Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.

    2018-05-01

    The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.

  8. Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.

    PubMed

    Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén

    2007-06-13

    Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.

  9. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure.

    PubMed

    Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong

    2013-07-01

    A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.

  10. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.

    PubMed

    Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli

    2007-05-01

    Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.

  11. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    NASA Astrophysics Data System (ADS)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  12. Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra.

    PubMed

    Ali, Sajid; Khan, Abdul Latif; Ali, Liaqat; Rizvi, Tania Shamim; Khan, Sumera Afzal; Hussain, Javid; Hamayun, Muhammad; Al-Harrasi, Ahmed

    2017-07-01

    Fungal endophytes establish an important niche within the host plant through the secretion of chemical constituents. Isolation of bioactive metabolites could be a vital source for inhibiting the function of enzymes such as α-glucosidase and urease. The present study aimed to elucidate the potential of endophytes associated with Boswellia sacra through bioassay-guided isolation and identification of secondary metabolites with enzyme inhibitory ability. Endophytic fungal strains viz. Penicillium citrinum, P. spinulosum, Fusarium oxysporum, Alternaria alternata and Aspergillus caespitosus were identified through genomic DNA extraction, PCR amplification, sequencing and phylogenetic analysis. The enzymes inhibition analysis of the ethyl acetate extract from pure cultures suggested that P. citrinum possess significantly higher enzyme inhibitory activities compared to other strains. The active strain was subjected to chromatographic isolation and nuclear magnetic resonance methods to identify bioactive compounds. The bioactive extracts resulted in the isolation of 11-oxoursonic acid benzyl ester (1), n-nonane (2), 3-decene-1-ol (3), 2-Hydroxyphenyl acetic acid (4), and Glochidacuminosides A (5). Among pure compound, 11-oxoursonic acid benzyl ester (1) showed significantly higher enzyme inhibition activity compared to other metabolites. Our results suggest that the endophytic microorganism associated with the arid-land tree can offer a rich source of biologically active chemical constituents that could help discover lead drugs for enzyme inhibition.

  13. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties.

    PubMed

    Mocan, Andrei; Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Massafra, Chiara; Moldovan, Cadmiel; Sisea, Cristian; Petzer, Jacobus P; Petzer, Anél; Zara, Susi; Marconi, Guya Diletta; Zengin, Gokhan; Crișan, Gianina; Locatelli, Marcello

    2018-04-21

    In the present work, fourteen cultivars of Prunus domestica were analysed to investigate their phenolic pattern with the purpose of using the leaves as potential resources of bioactive compounds in the pharmaceutical and food industry. Microwave-assisted extraction (MAE), dispersive liquid-liquid microextraction and sugaring-out liquid-liquid extraction techniques were optimized in order to obtain an exhaustive multi-component panel of phenolic compounds. The best phenolic-enriched recovery was achieved using MAE in water:methanol (30:70), and this procedure was further applied for quantitative analysis of phenolic compounds in real samples. In order to prove the safeness of these extracts, the biological potential of the Prunus cultivars was tested by several in vitro antioxidant and enzyme inhibitory assays. Moreover, their cytotoxicity was evaluated on human gingival fibroblasts (HGFs), and in most of the cases the treatment with different concentrations of extracts didn't show cytotoxicity up to 500 μg/mL. Only 'Carpatin' and 'Minerva' cultivars, at 250 and 500 μg/mL, reduced partially cell viability of HGFs population. Noteworthy, Centenar cultivar was the most active for the α-glucosidase inhibition (6.77 mmolACAE/g extract), whereas Ialomița cultivar showed the best antityrosinase activity (23.07 mgKAE/g extract). Overall, leaves of P. domestica represent a rich alternative source of bioactive compounds. Copyright © 2018. Published by Elsevier Ltd.

  14. CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.

    PubMed

    Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram

    2016-01-01

    The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.

  15. CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.

    PubMed Central

    Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram

    2016-01-01

    Background: The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum. Materials & Methods: Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. Results: The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC50 values of greater than 500 μmol Conclusion: The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents. PMID:28480379

  16. Removal of interfering nucleotides from brain extracts containing substance p. Effect of drugs on brain concentrations of substance p

    PubMed Central

    Laszlo, I.

    1963-01-01

    Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136

  17. Applications of micellar enzymology to clean coal technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, C.T.

    1990-10-26

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid Dibenzothiophene (DBT) and ethlyphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies. A goal of this project is to define amore » reverse micelle system that optimizes the catalytic activity of enzymes toward desulfurization of model compounds and ultimately coal samples. Among the variables which will be examined are the surfactant, the solvent, the water:surfactant ration and the pH and ionic strength of the aqueous phase. Studies were carried out with HRP, Type I RZ=1.2 and Type VI RZ=3.2 and laccase from Polyporus versicolor. Substrates for HRP assays included hydrogen peroxide, DBT, DBT sulfoxide, and DBT sulfone. Buffers included sodium phosphate. For formation of reverse micelle solutions the surfactant AOT, di(2-ethyl-hexyl)sodium sulphosuccinate, was obtained from Sigma Chemical Co. Isooctant was used as organic solvent. 12 refs., 5 figs., 3 tabs.« less

  18. Biochemical characterization and molecular evidence of a laccase from the bird's nest fungus Cyathus bulleri.

    PubMed

    Vasdev, Kavita; Dhawan, Shikha; Kapoor, Rajeev Kumar; Kuhad, Ramesh Chander

    2005-08-01

    Cyathus bulleri, a bird's nest fungus, known to decolorize polymeric dye Poly R-478, was found to produce 8 U ml(-1) of laccase in malt extract broth. Laccase activity appeared as a single band on non-denaturing gel. Laccase was purified to homogeneity by anion exchange chromatography and gel filtration. The enzyme was a monomer with an apparent molecular mass of 60 kD, pI of 3.7 and was stable in the pH range of 2-6 with an optimum pH of 5.2. The optimal reaction temperature was 45 degrees C and the enzyme lost its activity above 70 degrees C. Enzyme could oxidize a broad range of various phenolic substrates. K(m) values for ABTS, 2,6-dimethoxyphenol, guaiacol, and ferulic acid were found to be 48.6, 56, 22, and 14 mM while K(cat) values were 204, 180, 95.6, and 5.2, respectively. It was completely inhibited by KCN, NaN(3), beta-mercaptoethanol, HgCl(2), and SDS, while EDTA had no effect on enzyme activity. The N-terminal amino acid sequence of C. bulleri laccase showed close homology to N-terminal sequences of laccase from other white-rot fungi. A 150 bp gene sequence encoding copper-binding domains I and II was most similar to the sequence encoding a laccase from Pycnoporus cinnabarinus with 74.8% level of similarity.

  19. Analysis of the Biotechnological Potential of a Lentinus crinitus Isolate in the Light of Its Secretome.

    PubMed

    Cambri, Geison; de Sousa, Mirta Mittelstedt Leal; Fonseca, Davi de Miranda; Marchini, Fabricio; da Silveira, Joana Lea Meira; Paba, Jaime

    2016-12-02

    Analysis of fungal secretomes is a prospection tool for the discovery of new catalysts with biotechnological applications. Since enzyme secretion is strongly modulated by environmental factors, evaluation of growth conditions is of utmost importance to achieve optimal enzyme production. In this work, a nonsequenced wood-rotting fungus, Lentinus crinitus, was used for secretome analysis by enzymatic assays and a proteomics approach. Enzyme production was assessed after the fungus was cultured in seven different carbon sources and three nitrogen-containing compounds. The biomass yields and secreted protein arrays differed drastically among growing conditions. A mixture of secreted extracts derived from solid and liquid cultures was inspected by shotgun mass spectrometry and two-dimensional gel electrophoresis (2-DE) prior to analysis via LC-MS/MS. Proteins were identified using mass spectrometry (MS)-driven BLAST. The spectrum of secreted proteins comprised CAZymes, oxidase/reductases, proteases, and lipase/esterases. Although preseparation by 2-DE improved the number of identifications (162) compared with the shotgun approach (98 identifications), the two strategies revealed similar protein patterns. Culture media with reduced water content stimulated the expression of oxidases/reductases, while hydrolases were induced during submerged fermentation. The diversity of proteins observed within both the CAZyme and oxidoreductase groups revealed in this fungus a powerful arsenal of enzymes dedicated to the breakdown and consumption of lignocellulose.

  20. Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9.

    PubMed

    Das, Arpan; Jana, Arijit; Paul, Tanmay; Halder, Suman Kumar; Ghosh, Kuntal; Maity, Chiranjit; Mohapatra, Pradeep Kumar Das; Pati, Bikas Ranjan; Mondal, Keshab Chandra

    2014-07-01

    An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4)  s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. GENPLAT: an Automated Platform for Biomass Enzyme Discovery and Cocktail Optimization

    PubMed Central

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-01-01

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase). PMID:22042431

  2. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    PubMed

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).

  3. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    NASA Astrophysics Data System (ADS)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  4. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    PubMed Central

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  6. Application of standard addition for the determination of carboxypeptidase activity in Actinomucor elegans bran koji.

    PubMed

    Fu, J; Li, L; Yang, X Q; Zhu, M J

    2011-01-01

    Leucine carboxypeptidase (EC 3.4.16) activity in Actinomucor elegans bran koji was investigated via absorbance at 507 nm after stained by Cd-nihydrin solution, with calibration curve A, which was made by a set of known concentration standard leucine, calibration B, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations inactive crude enzyme extract, and calibration C, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations crude enzyme extract. The results indicated that application of pure amino acid standard curve was not a suitable way to determine carboxypeptidase in complicate mixture, and it probably led to overestimated carboxypeptidase activity. It was found that addition of crude exact into pure amino acid standard curve had a significant difference from pure amino acid standard curve method (p < 0.05). There was no significant enzyme activity difference (p > 0.05) between addition of active crude exact and addition of inactive crude kind, when the proper dilute multiple was used. It was concluded that the addition of crude enzyme extract to the calibration was needed to eliminate the interference of free amino acids and related compounds presented in crude enzyme extract.

  7. [Optimization of Extraction Technology for Sericin from Silkworm Cocoon with Orthogonal Design].

    PubMed

    Zhao, Chun-ying; Wang, Yan; Li, Yun-feng; Chen, Zhi-hong

    2015-05-01

    To optimize the appropriate extracting technology for sericin from Silkworm cocoon. Using sericin extraction rates and sericin content as the indices. The single and orthogonal experiments were used to determine the best conditions. The optimal extraction technology for sericin from Silkworm cocoon was as follows: 1: 30 for the ratio of solid to liquid, 3 h reflux for 2 times of extraction and water temperature at 100 degrees C. The extraction rate of sericin from Silkworm cocoon was 27.1%. The optimal extraction technology is stable, feasible, and can provide reference for further pharmacological study on cocoon sericin.

  8. Production and purification of amylolytic enzymes for saccharification of microalgal biomass.

    PubMed

    Rodrigues, Éllen Francine; Ficanha, Aline Matuella Moreira; Dallago, Rogério Marcos; Treichel, Helen; Reinehr, Christian Oliveira; Machado, Tainara Paula; Nunes, Greice Borges; Colla, Luciane Maria

    2017-02-01

    The aim of this study was the production of amylolytic enzymes by solid state or submerged fermentations (SSF or SF, respectively), followed by purification using chemical process or microfiltration and immobilization of purified enzymes in a polyurethane support. The free and immobilized enzymes obtained were used to evaluate enzymatic hydrolysis of the polysaccharides of Spirulina. Microfiltration of the crude extracts resulted in an increase in their specific activity and thermal stability at 40°C and 50°C for 24h, as compared to extracts obtained by SSF and SF. Immobilization of polyurethane purified enzyme produced yields of 332% and 205% for the enzymes obtained by SF and SSF, respectively. Free or immobilized enzymes favor the generation of fermentable sugar, being the application of the purified and immobilized enzymes in the hydrolysis of microalgal polysaccharides considered a promising alternative towards development of the bioethanol production process from microalgal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immobilized Rhodotorula mucilaginosa: a novel urethanase-producing strain for degrading ethyl carbamate.

    PubMed

    Wu, Qun; Zhao, Yamin; Wang, Dong; Xu, Yan

    2013-12-01

    Rhodotorula mucilaginosa, producing the ethyl carbamate (EC)-degrading enzyme, urethanase, was newly isolated from the Chinese rice wine making process. It removed 80 % of EC when it was incubated with 5.0 g/L EC. It grew and stably produced urethanase, with pH ranging from 7.0 to 3.0. In addition, urethanase production by R. mucilaginosa was systematically optimized. Glucose, yeast extract, peptone, and inoculum size were selected with the Plackett-Burman design. They were further optimized via uniform design and determined to be 24.6 g/L, 2.5 g/L, 23.1 g/L, and 65.8 mL/500 mL, respectively. Urethanase activity reached 4,340.0 U/L in the optimal fermentation condition. Furthermore, cell immobilization of R. mucilaginosa in calcium alginate/chitosan was applied to improve cell resistance to environmental stresses. The immobilized cells removed 51.6 % of EC in commercial rice wine, which was 10 times more than that of the free cells. It indicated that the immobilized R. mucilaginosa was effective for degrading EC.

  10. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  11. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design

    PubMed Central

    Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan

    2013-01-01

    A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589

  12. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.

    PubMed

    de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I

    2013-12-11

    Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake.

  13. Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture.

    PubMed

    Almeida, Carla Malaquias; Gomes, David; Faro, Carlos; Simões, Isaura

    2015-01-01

    Different sheep and goat cheeses with world-renowned excellence are produced using aqueous extracts of Cynara cardunculus flowers as coagulants. However, the use of this vegetable rennet is mostly limited to artisanal scale production, and no effective solutions to large-scale industrial applications have been reported so far. In this sense, the development of a synthetic rennet based on the most abundant cardoon milk-clotting enzymes (cardosins) would emerge as a solution for scalability of production and for application of these proteases as alternative rennets in dairy industry. In this work, we report the development of a new cardosin B-derived rennet produced in the generally regarded as safe (GRAS) yeast Kluyveromyces lactis. Using a stepwise optimization strategy-consisting of culture media screening, complemented with a protein engineering approach with removal of the plant-specific domain, and a codon optimization step-we successfully improved cardosin B production yield (35×) in K. lactis. We demonstrated that the secreted enzyme displays similar proteolytic properties, such as casein digestion profiles as well as optimum pH (pH 4.5) and temperature (40 °C), with those of native cardosin B. From this optimization process resulted the rennet preparation Vegetable Rennet (VRen), requiring no downstream protein purification steps. The effectiveness of VRen in cheese production was demonstrated by manufacturing sheep, goat, and cow cheeses. Interestingly, the use of VRen resulted in a higher cheese yield for all three types of cheese when compared with synthetic chymosin. Altogether, these results clearly position VRen as an alternative/innovative coagulant for the cheese-making industry.

  14. Cellulase-assisted extraction of polysaccharides from Malva sylvestris: Process optimization and potential functionalities.

    PubMed

    Rostami, Hosein; Gharibzahedi, Seyed Mohammad Taghi

    2017-08-01

    Enzyme-assisted extraction process of the water-soluble Malva sylvestris polysaccharides (MSPs) was optimized using response surface methodology (RSM). The highest yield (10.40%) of MSPs was achieved at 5.64% cellulase, 55.65°C temperature, 3.4h time, and 5.22 pH. Three homogeneous polysaccharide fractions (MSP-1, MSP-2, MSP-3) were purified by DEAE-cellulose and Sephadex G-100 chromatography, which were composed of galactose, glucuronic acid, arabinose, rhamnose and mannose in different molar ratios with molecular weight range of 2.6×10 5 -8.8×10 5 Da. The fractions could significantly increase antioxidant, antitumor and antimicrobial activities in a dose-dependent pattern. MSP-2 revealed stronger antioxidant activities than MSP-1 and MSP-3, including reducing power and scavenging activity of DPPH and OH radicals. The antiproliferative activity of MSP-2 (1.0mg/mL) on the growth of A549 and HepG2 cells was 45.1% and 53.2%, respectively. The Gram-positive bacteria (Bacillus cereus PTCC 1015 and Staphylococcus aureus PTCC 1112) compared with Gram-negative ones (Escherichia coli PTCC 1763 and Salmonella typhimurium PTCC 1709) showed less sensitivity against the various MSPs (3-15mg/mL). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characteristics of alpha-glucosidase production from recombinant Aspergillus oryzae by membrane-surface liquid culture in comparison with various cultivation methods.

    PubMed

    Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro

    2004-01-01

    alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.

  16. A New Sucrase Enzyme Inhibitor from Azadirachta indica

    PubMed Central

    Abdelhady, Mohamed I. S.; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A.

    2016-01-01

    Background: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Materials and Methods: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. Results: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-4C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, NOESY and HMBC. Conclusion: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. SUMMARY Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica. PMID:27563214

  17. A New Sucrase Enzyme Inhibitor from Azadirachta indica.

    PubMed

    Abdelhady, Mohamed I S; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A

    2016-05-01

    Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-(4)C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC, NOESY and HMBC. Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica.

  18. Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran.

    PubMed

    Fuentes, Manuel; Pessela, Benevides C C; Maquiese, Jorgette V; Ortiz, Claudia; Segura, Rosa L; Palomo, Jose M; Abian, Olga; Torres, Rodrigo; Mateo, Cesar; Fernández-Lafuente, Roberto; Guisán, J M

    2004-01-01

    New and strong ionic exchange resins have been prepared by the simple and rapid ionic adsorption of anionic polymers (sulfate-dextran) on porous supports activated with the opposite ionic group (DEAE/MANAE). Ionic exchange properties of such composites were strongly dependent on the size of the ionic polymers as well as on the conditions of the ionic coating of the solids with the ionic polymers (optimal conditions were 400 mg of sulfate-dextran 5000 kDa per gram of support). Around 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans could be adsorbed on these porous composites even at pH 7. This interaction was stronger than that using conventional carboxymethyl cellulose (CMC) and even others such as supports coated with aspartic-dextran polymer. By means of the sequential use of the new supports and supports coated with polyethyleneimine (PEI), all proteins from crude extracts could be immobilized. In fact, a large percentage (over 50%) could be immobilized on both supports. Finally, some industrially relevant enzymes (beta-galactosidases from Aspergillus oryzae, Kluyveromyces lactis, and Thermussp. strain T2, lipases from Candida antarctica A and B, Candida rugosa, Rhizomucor miehei, and Rhyzopus oryzae and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recoveries and immobilization rates. After enzyme inactivation, the protein could be fully desorbed from the support, and then the support could be reused for several cycles. Moreover, in some instances the enzyme stability was significantly improved, mainly in the presence of organic solvents, perhaps as a consequence of the highly hydrophilic microenvironment of the support.

  19. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less

  20. Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma

    PubMed Central

    Kowsalya, R.; Kaliaperumal, Jagatheesh; Vaishnavi, M.; Namasivayam, Elangovan

    2015-01-01

    Background: Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. Materials and Methods: The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN) induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST), alanine aminotransferase (ALT), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST). The liver marker enzymes AST and ALT produced significant results in the protective action. Results: The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. Conclusion: The methanolic extract of C. dactylon possesses significant anticancer properties PMID:25992348

  1. Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma.

    PubMed

    Kowsalya, R; Kaliaperumal, Jagatheesh; Vaishnavi, M; Namasivayam, Elangovan

    2015-01-01

    Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN) induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST), alanine aminotransferase (ALT), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST). The liver marker enzymes AST and ALT produced significant results in the protective action. The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. The methanolic extract of C. dactylon possesses significant anticancer properties.

  2. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium.

    PubMed

    Qian, Linbo; Chen, Baoliang

    2012-01-01

    The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated. A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium. The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation, which was significantly higher than that from regions of T. versicolor or P. chrysosporium alone. The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition. A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated. After a 48 hr incubation period, the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%, while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T. versicolor. The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS). These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.

  3. A novel extracellular β-glucosidase from Trichosporon asahii: yield prediction, evaluation and application for aroma enhancement of Cabernet Sauvignon.

    PubMed

    Wang, Yuxia; Xu, Yan; Li, Jiming

    2012-08-01

    The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®

  4. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  5. Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy.

    PubMed

    Gordiienko, Iu A; Babets, Ya V; Kulinich, A O; Shevtsova, A I; Ushakova, G O

    2014-01-01

    Activity of trypsin-like enzymes (ATLE) and gelatinases A and B were studied in the blood plasma and extracts from cardiac muscle, cerebral cortex and cerebellum of rats with cardiomyopathy caused by anthracycline antibiotic doxorubicin against the background of preventive application of corvitin and α-ketoglutarate. ATLE significantly increased in blood plasma and extracts from cerebral cortex but decreased in extracts from cardiac muscle and cerebellum in doxorubicin cardiomyopathy (DCMP). In addition, a significant increase of activity of both gelatinases in plasma and tissue extracts was observed. Preventive administration of corvitin and α-ketoglutarate resulted in differently directed changes of activity of the above mentioned enzymes in heart and brain tissues. Obtained data confirm the hypothesis about activation of proteolysis under the influence of anthracycline antibiotics and testify to selective effect of corvitin and α-ketoglutarate on ATLE and gelatinases.

  6. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  7. Development of a Multianalyte Enzyme-Linked Immunosorbent Assay for Permethrin and Aroclors and Its Implementation for Analysis of Soil/Sediment and House Dust ExtractsExtracts

    EPA Science Inventory

    Development of a multianalyte enzyme-linked immunosorbent assay (ELISA) for detection of permethrin and aroclors 1248 or 1254, and implementation of the assay for analysis of soil/sediment samples are described. The feasibility of using the multianalyte ELISA to monitor aroclors ...

  8. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    PubMed

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  9. A Study on L-Asparaginase of Nocardia levis MK-VL_113

    PubMed Central

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2012-01-01

    An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis. PMID:22619604

  10. A study on L-asparaginase of Nocardia levis MK-VL_113.

    PubMed

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2012-01-01

    An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis.

  11. Optimization of Pressurized Liquid Extraction of Three Major Acetophenones from Cynanchum bungei Using a Box-Behnken Design

    PubMed Central

    Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui

    2012-01-01

    In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079

  12. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Ardakani, M. S.; Mclaren, A. D.; Pukite, A. H.

    1972-01-01

    An exploration was made of enzyme activities in soil, including abundance, persistence and localization of these activities. An attempt was made to develop procedures for the detection and assaying of enzymes in soils suitable for presumptive tests for life in planetary soils. A suitable extraction procedure for soil enzymes was developed and measurements were made of activities in extracts in order to study how urease is complexed in soil organic matter. Mathematical models were developed, based on enzyme action and microbial growth in soil, for rates of oxidation of nitrogen as nitrogen compounds are moved downward in soil by water flow. These biogeochemical models should be applicable to any percolating system, with suitable modification for special features, such as oxygen concetrations, and types of hydrodynamic flow.

  13. Indigofera suffruticosa Mill extracts up-regulate the expression of the π class of glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 in rat Clone 9 liver cells.

    PubMed

    Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li

    2013-09-01

    Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of π class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  15. Phenolic Extracts from Clerodendrum volubile Leaves Inhibit Cholinergic and Monoaminergic Enzymes Relevant to the Management of Some Neurodegenerative Diseases.

    PubMed

    Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti

    2017-05-04

    This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P < 0.05) higher inhibitory effects on Fe 2+ and QA-induced lipid peroxidation compared to BPE. FPE (162.61 mg GAE/g) had higher total phenol content than BPE. However, BPE (18.65 mg QE/g) had significantly higher total flavonoid content than FPE (13.32 mg QE/g). Phenolic acids (such as gallic acid, catechin, chlorogenic, caffeic, ellagic, p-Coumaric acids) and flavonoids (catechins, rutin and quercetin) were present in both extracts. This study revealed that the enzymes' inhibitory activities and antioxidant potentials of phenolic-rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.

  16. Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber): effect of enzyme-assisted processing.

    PubMed

    Koley, Tanmay Kumar; Walia, Shweta; Nath, Prerna; Awasthi, O P; Kaur, Charanjit

    2011-05-01

    Zizyphus (Indian ber) is an excellent source of several phenolic compounds. The effect of two cell wall degrading enzymes, namely pectinase and viscozyme, on the nutraceutical composition of Zizyphus juice was investigated in the present study. Enzyme assisted processing significantly (P < 0.05) improved the juice yield, total soluble solids, total phenolics and total antioxidant activity (AOX). There was significant increase in recovery of antioxidants, to the tune of 70.51%, 66%, and 45% respectively in ascorbic acid, total phenolics and total flavonoids through viscozyme. The in-vitro total AOX of juice extracted via enzyme-assisted processing was 20.9 and 15.59 μmol Trolox/ml in ferric-reducing antioxidant power and cupric-reducing antioxidant capacity assays, respectively. There was 41% increase in AOX of juice extracted with enzyme over straight pressed juice. Results indicate that enzyme-assisted processing can significantly improve the functional properties of the Zizyphus juice.

  17. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    PubMed

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC 50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension.

  18. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    PubMed

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Purification, optimization of assay, and stability studies of dextransucrase isolated from Weissella cibaria JAG8.

    PubMed

    Mohan Rao, T Jagan; Goyal, Arun

    2013-01-01

    Dextransucrase-producing (Gen Bank accession no. KC110687) Weissella cibaria JAG8 was isolated from apple. The cell-free extract containing dextransucrase with specific activity of 1.0 U/mg was purified by polyethylene glycol (PEG). A concentration of 33% (v/v) PEG-400 fractionation gave a specific activity of 20.0 U/mg, whereas 15% (w/v) PEG-1500 resulted in a specific activity of 10.6 U/mg. The PEG-400-purified enzyme was further purified by chromatography using a Sephacryl S-300HR column, which resulted in 37-fold purification with 37 U/mg. The non-denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of column-purified enzyme showed a single homogenous band of 177 kDa by silver staining. The production of dextran was confirmed by in situ detection of the activity band using periodic acid-Schiff's base staining. The optimum assay conditions for dextransucrase were 35°C, pH 5.4, and 5.0% (w/v) sucrose concentration. The enzyme followed Michaelis-Menten kinetics with Km of 13 mM and Vmax 27.5 U/mg. The enzyme was stable in 10-500 mM sodium acetate buffer, pH 5.4. A 22% increase in enzyme activity was observed with 2 mM magnesium chloride; 64% loss in enzyme activity was observed with 10 mM ethylenediamine tetraacetic acid (EDTA), whereas a complete loss in activity was observed with 5 M urea. The dextransucrase was stable up to 35°C and pH of 5.4 for 1 hr.

  20. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksoy, Pinar; Escande, Carlos; Seccion Biologia Celular, Facultad de Ciencias, Universidad de la Republica, Igua 4225, Montevideo

    2006-10-13

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1more » enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.« less

  1. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1

    PubMed Central

    Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.

    1989-01-01

    Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined. PMID:16666942

  2. Towards practical time-of-flight secondary ion mass spectrometry lignocellulolytic enzyme assays

    PubMed Central

    2013-01-01

    Background Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a surface sensitive mass spectrometry technique with potential strengths as a method for detecting enzymatic activity on solid materials. In particular, ToF-SIMS has been applied to detect the enzymatic degradation of woody lignocellulose. Proof-of-principle experiments previously demonstrated the detection of both lignin-degrading and cellulose-degrading enzymes on solvent-extracted hardwood and softwood. However, these preliminary experiments suffered from low sample throughput and were restricted to samples which had been solvent-extracted in order to minimize the potential for mass interferences between low molecular weight extractive compounds and polymeric lignocellulose components. Results The present work introduces a new, higher-throughput method for processing powdered wood samples for ToF-SIMS, meanwhile exploring likely sources of sample contamination. Multivariate analysis (MVA) including Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR) was regularly used to check for sample contamination as well as to detect extractives and enzyme activity. New data also demonstrates successful ToF-SIMS analysis of unextracted samples, placing an emphasis on identifying the low-mass secondary ion peaks related to extractives, revealing how extractives change previously established peak ratios used to describe enzyme activity, and elucidating peak intensity patterns for better detection of cellulase activity in the presence of extractives. The sensitivity of ToF-SIMS to a range of cellulase doses is also shown, along with preliminary experiments augmenting the cellulase cocktail with other proteins. Conclusions These new procedures increase the throughput of sample preparation for ToF-SIMS analysis of lignocellulose and expand the applications of the method to include unextracted lignocellulose. These are important steps towards the practical use of ToF-SIMS as a tool to screen for changes in plant composition, whether the transformation of the lignocellulose is achieved through enzyme application, plant mutagenesis, or other treatments. PMID:24034438

  3. [Effect of enzymolysis after acid and alkali pretreatment on extraction of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues].

    PubMed

    Dai, Xin-Xin; Shen, Fei; Su, Shu-Lan; Zhang, Sen; Guo, Sheng; Jiang, Shu; Qian, Da-Wei; Duan, Jin-Ao

    2016-09-01

    Salviae Miltiorrhizae Radix et Rhizoma residues were pre-treated with acid and alkali, degraded by using cellulose, and the effects of different processing methods on the extraction rate of tanshinones were compared to provide scientific basis for development and utilization of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. The results showed that in the Salviae Miltiorrhizae Radix et Rhizoma residues without pre-treatment, enzymatic hydrolysis time of 4.5 d could make most of the cellulose degraded when the concentration of substrate enzyme concentration was 6 U•mL-1, and the highest glucose concentration was 59.74 mg•g⁻¹. It was found that the best effect was achieved after alkali pre-treatment-cellulose C degradation among the different pre-treatment methods, and the glucose content reached 119.50 mg•g⁻¹, followed by the same concentration of acid pre-treatment-cellulose C degradation. The extraction amount of tanshinone ⅡA was increased by 82.54% after enzyme degradation, with a mass fraction of 2.451 mg•g⁻¹; extraction amount of tanshinone I was increased by 81.82% after enzyme degradation, with a mass fraction of 2.373 mg•g⁻¹; extraction amount of cryptotanshinone was increased by 64.4% after enzyme degradation, with a mass fraction of 1.080 mg•g⁻¹; extraction amount of dihydrotanshinone I was increased by 61.3% after enzyme degradation, with a mass fraction of 0.601 2 mg•g⁻¹. Acid and alkali pre-treatment combined with cellulose degradation could effectively improve the extraction rate of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. This method is operable and practical, and it is beneficial for improving the utilization efficiency of tanshinones (resource based chemicals) from Salviae Miltiorrhizae Radix et Rhizoma residues. Copyright© by the Chinese Pharmaceutical Association.

  4. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    PubMed

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  5. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    PubMed

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  6. Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.

    PubMed

    Du, Huanan; Zhang, Xu; Zhang, Ruchun; Zhang, Lu; Yu, Dianyu; Jiang, Lianzhou

    2017-12-01

    Rosa acicularis seed oil was extracted from Rosa acicularis seeds by the ultrasonic-assisted aqueous enzymatic method using cellulase and protease. Based on a single experiment, Plackett-Burman design was applied to ultrasonic-assisted aqueous enzymatic extraction of wild rose seed oil. The effects of enzyme amount, hydrolysis temperature and initial pH on total extraction rate of wild rose seed oil was studied by using Box-Behnken optimize methodology. Chemical characteristics of a sample of Rosa acicularis seeds and Rosa acicularis seed oil were characterized in this work. The tocopherol content was 200.6±0.3 mg/100 g oil. The Rosa acicularis seed oil was rich in linoleic acid (56.5%) and oleic acid (34.2%). The saturated fatty acids included palmitic acid (4%) and stearic acid (2.9%). The major fatty acids in the sn-2 position of triacylglycerol in Rosa acicularis oil were linoleic acid (60.6%), oleic acid (33.6%) and linolenic acid (3.2%). According to the 1,3-random-2-random hypothesis, the dominant triacylglycerols were LLL (18%), LLnL (1%), LLP (2%), LOL (10%), LLSt (1.2%), PLP (0.2%), LLnP (0.1%), LLnO (0.6%) and LOP (1.1%). This work could be useful for developing applications for Rosa acicularis seed oil.

  7. Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification.

    PubMed

    Wanmolee, Wanwitoo; Sornlake, Warasirin; Rattanaphan, Nakul; Suwannarangsee, Surisa; Laosiripojana, Navadol; Champreda, Verawat

    2016-11-21

    Efficient hydrolysis of lignocellulosic materials to sugars for conversion to biofuels and chemicals is a key step in biorefinery. Designing an active saccharifying enzyme system with synergy among their components is considered a promising approach. In this study, a lignocellulose-degrading enzyme system of Chaetomium globosum BCC5776 (CG-Cel) was characterized for its activity and proteomic profiles, and synergism with accessory enzymes. The highest cellulase productivity of 0.40 FPU/mL was found for CG-Cel under the optimized submerged fermentation conditions on 1% (w/v) EPFB (empty palm fruit bunch), 2% microcrystalline cellulose (Avicel®) and 1% soybean meal (SBM) at 30 °C, pH 5.8 for 6 d. CG-Cel worked optimally at 50-60 °C in an acidic pH range. Proteomics analysis by LC/MS/MS revealed a complex enzyme system composed of core cellulases and accessory hydrolytic/non-hydrolytic enzymes attacking plant biopolymers. A synergistic enzyme system comprising the CG-Cel, a β-glucosidase (Novozyme® 188) and a hemicellulase Accellerase® XY was optimized on saccharification of alkaline-pretreated rice straw by a mixture design approach. Applying a full cubic model, the optimal ratio of ternary enzyme mixture containing CG-Cel: Novozyme® 188: Accellerase® XY of 44.4:20.6:35.0 showed synergistic enhancement on reducing sugar yield with a glucose releasing efficiency of 256.4 mg/FPU, equivalent to a 2.9 times compared with that from CG-Cel alone. The work showed an approach for developing an active synergistic enzyme system based on the newly characterized C. globosum for lignocellulose saccharification and modification in bio-industries.

  8. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil

    NASA Astrophysics Data System (ADS)

    Kusuma, Heri Septya; Mahfud, Mahfud

    2015-12-01

    Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.

  9. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues

    PubMed Central

    Nasr, Shaghayegh; Soudi, Mohammad Reza; Hatef Salmanian, Ali; Ghadam, Parinaz

    2013-01-01

    Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. Materials and Methods: Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-β-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce β-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-β-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. Results: The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. Conclusion:This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed. PMID:24570830

  10. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    PubMed Central

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry

    2009-01-01

    Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870

  11. Production of fibrinolytic protease from Streptomyces lusitanus isolated from marine sediments

    NASA Astrophysics Data System (ADS)

    SudeshWarma, S.; Merlyn keziah, S.; Subathra Devi, C.

    2017-11-01

    This study aim was to isolate, screen, characterize and optimize marine Streptomyces for fibrinolytic enzyme production. The potent actinomycete isolate was subjected to optimization. The parameters for optimization included pH, temperature, carbon, nitrogen sources. The crude supernatant produced was purified using size exclusion gel filtration chromatography. The optimized parameters for maximum productivity were found to be pH 7, 37°C, maltose and peptone respectively. The molecular weight of the purified enzyme was found to be 21kDa.

  12. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  13. Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial.

    PubMed

    Velliquette, Rodney A; Grann, Kerry; Missler, Stephen R; Patterson, Jennifer; Hu, Chun; Gellenbeck, Kevin W; Scholten, Jeffrey D; Randolph, R Keith

    2015-01-01

    Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans. Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of (14)C labeled TG synthesis in cells incubated with (14)C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity. Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model. These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects. This trial was registered with ClinicalTrials.gov NCT02333461.

  14. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads.

    PubMed

    Awad, Ghada E A; Amer, Hassan; El-Gammal, Eman W; Helmy, Wafaa A; Esawy, Mona A; Elnashar, Magdy M M

    2013-04-02

    A sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of invertase by Lactobacillus brevis Mm-6 isolated from breast milk. First, a 2-level Plackett-Burman design was applied to screen the bioprocess parameters that significantly influence the invertase production. The second optimization step was performed using fractional factorial design in order to optimize the amounts of variables have the highest positive significant effect on the invertase production. A maximal enzyme activity of 1399U/ml was more than five folds the activity obtained using the basal medium. Invertase was immobilized onto grafted alginate beads to improve the enzyme's stability. Immobilization process increased the operational temperature from 30 to 60°C compared to the free enzyme. The reusability test proved the durability of the grafted alginate beads for 15 cycles with retention of 100% of the immobilized enzyme activity to be more convenient for industrial uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Purification and Characterization of EDTA Monooxygenase from the EDTA-Degrading Bacterium BNC1

    PubMed Central

    Payne, Jason W.; Bolton, Harvey; Campbell, James A.; Xun, Luying

    1998-01-01

    The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35°C. Kms were 34.1 μM for uncomplexed EDTA and 8.5 μM for MgEDTA2−; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2−. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds. PMID:9683478

  16. A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research.

    PubMed

    Donovan, R S; Datti, A; Baek, M G; Wu, Q; Sas, I J; Korczak, B; Berger, E G; Roy, R; Dennis, J W

    1999-10-01

    Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37 degrees C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well beta-counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 beta1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewis(x) in O-glycans. A glycopolymer acceptor for beta1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5-6 fold increase in throughput compared to the corresponding solution-phase assay.

  17. Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme

    NASA Astrophysics Data System (ADS)

    Halimahtussadiyah, R.; Natsir, Muh.; Kurniawati, Desy; Utamy, Sukma Puspita

    2017-03-01

    Isolation and identification of chitinolytic bacteria from pohara river and optimation of chitinase enzyme production has been conducted. The aims of the study were isolation, characterize and optimaze of chitinase enzyme production. This study was carried out in three stages; isolation and selection of chitinolytic bacteria, characterization and identification of selected bacteria; optimization of the production of the enzyme (substrate concentration, temperature, and pH), and the determination of growth curve of T3 isolate. The chitinase activity assay was carried out using Schales method. The results of the screening obtained 6 isolates of potential bacteria of chitinolytic. The T3 isolate then was selected for the enzyme production, because it had the highest chitinolytic index of 22.31 mm. The morphological and biochemical observation showed that T3 isolate as a group of bacteria Aerobacter with Gram-negative nature, and shaped bacillus. The optimum condition for chitinase enzyme production was in chitin substrat concentration 0.06%, temperature of 30°C, and pH of 6.

  18. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers.

    PubMed

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-05-19

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction.

  19. Thermomyces lanuginosus STm: a source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (rubber dandelion)

    USDA-ARS?s Scientific Manuscript database

    Hydrolytic enzymes from a newly isolated strain of the thermophilic fungus Thermomyces lanuginosus were used to extract rubber from Taraxacum kok-saghyz commonly known as rubber (or Russian or Kazak(h)) dandelion. The fungus was isolated from garden soil and identified as Thermomyces lanuginosus STm...

  20. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  1. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  2. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb.

    PubMed

    Zhang, Lijin; Wang, Maoshan

    2017-02-01

    In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5.

    PubMed

    Wang, Yuxiao; Zhang, Likui; Zhu, Xinyuan; Li, Yuting; Shi, Haoqiang; Oger, Philippe; Yang, Zhihui

    2018-05-22

    Endonuclease V (Endo V) is an important enzyme for repairing deoxyinosine in DNA. While bacterial and eukaryotic endo Vs have been well studied, knowledge of archaeal endo Vs is limited. Here, we first presented biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba endo V). The recombinant enzyme possessed optimal endonuclease activity for cleaving deoxyinosine-containing DNA at 70-90 °C. Furthermore, Tba endo V can withstand 100 °C for 120 min without significant loss of its activity, suggesting the enzyme is thermostable. Tba endo V exhibited varying cleavage efficiencies at various pH levels from 6.0 to 11.0, among which an optimal pH for the enzyme was 8.0-9.0. In addition, a divalent metal ion was required for the enzyme to cleave DNA. Mn 2+ and Mg 2+ were optimal ions for the enzyme's activity whereas Ca 2+ , Zn 2+ and Co 2+ inhibited the enzyme activity. Moreover, the enzyme activity was suppressed by high NaCl concentration. Tba endo V bound to all DNA substrates; however, the enzyme exhibited a higher affinity for binding to deoxyinosine-containing DNA than normal DNA. Our work provides valuable information for revealing the role of Tba endo V in the base excision repair pathway for deoxyinosine repair in Thermococcus. Copyright © 2018. Published by Elsevier B.V.

  4. Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action.

    PubMed

    Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji

    2017-05-04

    Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.

  5. Screening for cocaine on Euro banknotes by a highly sensitive enzyme immunoassay.

    PubMed

    Abdelshafi, Nahla A; Panne, Ulrich; Schneider, Rudolf J

    2017-04-01

    This study focused on quantitative detection of cocaine on Euro banknotes in Germany. A sensitive direct competitive immunoassay was developed and optimized with a limit of detection (LOD) of 5.6ng/L. Exhaustive cocaine extraction by solvent was tested using different methanol concentrations and buffered solutions. Cross-reactivity studies were performed to determine the degree of interference of cocaine metabolites with the immunoassay. Sixty-five Euro banknotes obtained from different districts in Berlin were evaluated. A 100% contamination frequency with cocaine was detected. A comparison between the amount of cocaine extracted by cotton swabbing of one square centimeter of the banknote showed a good correlation for lower contamination levels. This assay showed high sensitivity of detecting pg of cocaine per 1cm 2 of one banknote by swabbing 1cm 2 : 0, 14, and 21pg/cm 2 . Moreover, three notes of different denominations revealed high cocaine concentration; 1.1mg/note, and twice 55µg/note. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanat

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions.more » Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.« less

  7. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger.

    PubMed

    Lima, Thâmarah de Albuquerque; Pontual, Emmanuel Viana; Dornelles, Leonardo Prezzi; Amorim, Poliana Karla; Sá, Roberto Araújo; Coelho, Luana Cassandra Breitenbach Barroso; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-10-01

    The digestive apparatus of termites may have several biotechnological applications, as well as being a target for pest control. This report discusses the detection of cellulases (endoglucanase, exoglucanase, and β-glucosidase), hemicellulases (β-xylosidase, α-l-arabinofuranosidase, and β-d-xylanase), α-amylase, and proteases (trypsin-like, chymotrypsin-like, and keratinase-type) in gut extracts from Nasutitermes corniger workers and soldiers. Additionally, the effects of pH (3.0-11.0) and temperature (30-100°C) on enzyme activities were evaluated. All enzymes investigated were detected in the gut extracts of worker and soldier termites. Endoglucanase and β-xylanase were the main cellulase and hemicellulase, respectively. Zymography for proteases of worker extracts revealed polypeptides of 22, 30, and 43kDa that hydrolyzed casein, and assays using protease inhibitors showed that serine proteases were the main proteases in worker and soldier guts. The determined enzyme activities and their response to different pH and temperature values revealed that workers and soldiers contained a distinct digestive apparatus. The ability of these termites to efficiently digest the main components of lignocellulosic materials stimulates the purification of gut enzymes. Further investigation into their biotechnological potential as well as whether the enzymes detected are produced by the termites or by their symbionts is needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  9. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro.

    PubMed

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  10. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  11. Central composite rotatable design for investigation of microwave-assisted extraction of okra pod hydrocolloid.

    PubMed

    Samavati, Vahid

    2013-10-01

    Microwave-assisted extraction (MAE) technique was employed to extract the hydrocolloid from okra pods (OPH). The optimal conditions for microwave-assisted extraction of OPH were determined by response surface methodology. A central composite rotatable design (CCRD) was applied to evaluate the effects of three independent variables (microwave power (X1: 100-500 W), extraction time (X2: 30-90 min), and extraction temperature (X3: 40-90 °C)) on the extraction yield of OPH. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of OPH. The optimal conditions to obtain the highest recovery of OPH (14.911±0.27%) were as follows: microwave power, 395.56 W; extraction time, 67.11 min and extraction temperature, 73.33 °C. Under these optimal conditions, the experimental values agreed with the predicted ones by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing OPH extraction. After method development, the DPPH radical scavenging activity of the OPH was evaluated. MAE showed obvious advantages in terms of high extraction efficiency and radical scavenging activity of extract within the shorter extraction time. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bacopa monniera Linn. extract modulates antioxidant and marker enzyme status in fibrosarcoma bearing rats.

    PubMed

    Rohini, G; Sabitha, K E; Devi, C S Shyamala

    2004-08-01

    Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.

  13. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  14. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    PubMed

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  15. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.

    PubMed

    Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram

    2016-11-01

    Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified.

  16. Production and partial purification of tannase from Aspergillus ficuum Gim 3.6.

    PubMed

    Ma, Wan-liang; Zhao, Fen-fen; Ye, Qin; Hu, Zhen-xing; Yan, Dong; Hou, Jie; Yang, Yang

    2015-01-01

    A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid-liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.

  17. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    PubMed

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  18. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  19. Comparison of a pectinolytic extract of Kluyveromyces marxianus and a commercial enzyme preparation in the production of Ives (Vitis labrusca) grape juice.

    PubMed

    Piemolini-Barreto, Luciani Tatsch; Antônio, Regina Vasconcellos; Echeverrigaray, Sergio

    2015-05-01

    This study analyses the effect of the crude enzymatic extract produced by Kluyveromyces marxianus (EEB) in the maceration and clarification of juice produced from Ives (Vitis labrusca) grapes compared to the commercial enzyme preparation Pectinex(®)Ultra Color (PEC). Treatments were conducted with a total pectinolytic activity of 1 U/mL of fruit juice, at 40 °C, for 60 min. After the enzymatic treatment, the juices were evaluated with respect to yield, viscosity, and degree of clarification, as well as the effect of the enzymes on polyphenol concentration, anthocyanins, and juice color. The results showed that both EEB and PEC increase yield, reduce viscosity and contribute to the clarification of grape juice. After enzyme treatment with the EEB preparation, the extraction yield increased 28.02 % and decreased 50.70 % in viscosity during the maceration of the pulp. During the juice production process clarification increased 11.91 %. With PEC, higher values for these parameters: 42.36, 63.20, and 26.81 % respectively, were achieved. The addition of EEB resulted in grape juice with better color intensity and extraction of phenolic compounds and anthocyanins. Considering all comparison criteria, the enzymatic extract of K. marxianus NRRL-Y-7571 can potentially be used in the production of juice.

  20. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    PubMed

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  1. Production of superparamagnetic nanobiocatalysts for green chemistry applications.

    PubMed

    Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2016-08-01

    Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.

  2. Dissolution profile of dolomite in chloric acid solution: The effect of chloric acid concentration and pulp density

    NASA Astrophysics Data System (ADS)

    Solihin, Indriani, Mubarok, M. Zaki

    2018-05-01

    Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.

  3. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    PubMed

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  4. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology.

    PubMed

    Parmar, Indu; Sharma, Sowmya; Rupasinghe, H P Vasantha

    2015-04-01

    The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.

  5. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  6. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen.

    PubMed

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-08-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 degrees C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  7. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen*

    PubMed Central

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-01-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  8. Inhibition properties of propolis extracts to some clinically important enzymes.

    PubMed

    Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2016-01-01

    The present study was conducted to envisage inhibition effects of propolis on the crucial enzymes, urease, xanthine oxidase (XO) and acetylcholinesterase (AChE). Some of the antioxidant properties of the propolis samples were determined using the total phenolic content (TPE) and total flavonoids in the eight different ethanolic propolis extracts (EPE) samples. Inhibition values of the enzymes were expressed as inhibition concentration (IC 50 ; mg/mL or μg/mL) causing 50% inhibition of the enzymes with donepezil, acetohydroxamic acid and allopurinol as reference inhibitors. All the propolis extracts exhibited variable inhibition effects on these enzymes, but the higher the phenolic contents the lower the inhibitions values (IC 50 = 0.074 to 1.560 mg/mL). IC 50 values of the P5 propolis sample having the highest TPE, obtained from Zonguldak, for AChE, urease and XO were 0.081 ± 0.009, 0.080 ± 0.006 and 0.074 ± 0.011 μg/mL, respectively. The EPE proved to be a good source of inhibitor agents that can be used as natural inhibitors to serve human health.

  9. Different extraction pretreatments significantly change the flavonoid contents of Scutellaria baicalensis

    PubMed Central

    Yu, Chunhao; Qu, Fengyun; Mao, Yanyong; Li, Dong; Zhen, Zhong; Nass, Rachael; Calway, Tyler; Wang, Yunwei; Yuan, Chun-Su; Wang, Chong-Zhi

    2014-01-01

    Context Scutellaria baicalensis is one of the most commonly used medicinal herbs, especially in traditional Chinese medicine. However, compared to many pharmacological studies of this botanical, much less attention has been paid to the quality control of the herb’s pretreatment prior to extract preparation, an issue that may affect therapeutic outcomes. Objective The current study was designed to evaluate whether different pretreatment conditions change the contents of its four major flavonoids in the herb, i.e., two glycosides (baicalin and wogonoside) and two aglycons (baicalein and wogonin). Materials and methods An HPLC assay was used to quantify the contents of these four flavonoids. The composition changes of four flavonoids by different pretreatment conditions including solvent, treatment time, temperature, pH value, and herb/solvent ratio were evaluated. Results After selection of the first order time-curve kinetics, our data showed that at 50°C, 1:5 herb/water (in w/v) ratio and pH 6.67 yielded an optimal conversion rate from flavonoid glycosides to their aglycons. In this optimized condition, the contents of baicalin and wogonoside were decreased to 1/70 and 1/13, while baicalein and wogonin were increased 3.5 and 3.1 folds, respectively, compared to untreated herb. Discussion and conclusion The markedly variable conversion rates by different pretreatment conditions complicated the quality control of this herb, mainly due to the high amount of endogenous enzymes of S. baicalensis. Optimal pretreatment conditions obtained from this study could be used obtain the highest level of desired constituents to achieve better pharmacological effects. PMID:23738852

  10. Different extraction pretreatments significantly change the flavonoid contents of Scutellaria baicalensis.

    PubMed

    Yu, Chunhao; Qu, Fengyun; Mao, Yanyong; Li, Dong; Zhen, Zhong; Nass, Rachael; Calway, Tyler; Wang, Yunwei; Yuan, Chun-Su; Wang, Chong-Zhi

    2013-10-01

    Scutellaria baicalensis Georgi (Labiatae) is one of the most commonly used medicinal herbs, especially in traditional Chinese medicine. However, compared to many pharmacological studies of this botanical, much less attention has been paid to the quality control of the herb's pretreatment prior to extract preparation, an issue that may affect therapeutic outcomes. The current study was designed to evaluate whether different pretreatment conditions change the contents of the four major flavonoids in the herb, i.e., two glycosides (baicalin and wogonoside) and two aglycones (baicalein and wogonin). A high-performance liquid chromatography assay was used to quantify the contents of these four flavonoids. The composition changes of four flavonoids by different pretreatment conditions, including solvent, treatment time, temperature, pH value and herb/solvent ratio were evaluated. After selection of the first order time-curve kinetics, our data showed that at 50 °C, 1:5 herb/water (in w/v) ratio and pH 6.67 yielded an optimal conversion rate from flavonoid glycosides to their aglycones. In this optimized condition, the contents of baicalin and wogonoside were decreased to 1/70 and 1/13, while baicalein and wogonin were increased 3.5- and 3.1-fold, respectively, compared to untreated herb. The markedly variable conversion rates by different pretreatment conditions complicated the quality control of this herb, mainly due to the high amount of endogenous enzymes of S. baicalensis. Optimal pretreatment conditions observed in this study could be used obtain the highest level of desired constituents to achieve better pharmacological effects.

  11. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    NASA Astrophysics Data System (ADS)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  12. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  13. New strategy to address DNA-methyl transferase activity in ovarian cancer cell cultures by monitoring the formation of 5-methylcytosine using HPLC-UV.

    PubMed

    Iglesias González, T; Blanco-González, E; Montes-Bayón, M

    2016-08-15

    Methylation of mammalian genomic DNA is catalyzed by DNA methyltransferases (DNMTs). Aberrant expression and activity of these enzymes has been reported to play an important role in the initiation and progression of tumors and its response to chemotherapy. Therefore, there is a great interest in developing strategies to detect human DNMTs activity. We propose a simple, antibody-free, label-free and non-radioactive analytical strategy in which methyltransferase activity is measured trough the determination of the 5-methylcytosine (5mC) content in DNA by a chromatographic method (HPLC-UV) previously developed. For this aim, a correlation between the enzyme activity and the concentration of 5mC obtained by HPLC-UV is previously obtained under optimized conditions using both, un-methylated and hemi-methylated DNA substrates and the prokaryotic methyltransferase M.SssI as model enzyme. The evaluation of the methylation yield in un-methylated known sequences (a 623bp PCR-amplicon) turned to be quantitative (110%) in experiments conducted in-vitro. Methylation of hemi-methylated and low-methylated sequences could be also detected with the proposed approach. The application of the methodology to the determination of the DNMTs activity in nuclear extracts from human ovarian cancer cells has revealed the presence of matrix effects (also confirmed by standard additions) that hampered quantitative enzyme recovery. The obtained results showed the high importance of adequate sample clean-up steps. Copyright © 2016. Published by Elsevier B.V.

  14. Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa.

    PubMed

    Molander, Marianne; Nielsen, Line; Søgaard, Søren; Staerk, Dan; Rønsted, Nina; Diallo, Drissa; Chifundera, Kusamba Zacharie; van Staden, Johannes; Jäger, Anna K

    2014-11-18

    Snakebite envenomation, every year, causes estimated 5-10,000 mortalities and results in more than 5-15,000 amputations in sub-Saharan Africa alone. Antiserum is not easily accessible in these regions or doctors are simply not available, thus more than 80% of all patients seek traditional practitioners as first-choice. Therefore it is important to investigate whether the plants used in traditional medicine systems contain compounds against the necrosis-inducing enzymes of snake venom. Extracts from traditionally used plants from DR Congo, Mali and South Africa were tested in hyaluronidase, phospholipase A2 and protease enzyme bioassays using Bitis arietans and Naja nigricollis as enzyme source. A total of 226 extracts from 94 different plant species from the three countries, Mali, Democratic Republic of Congo and South Africa were tested in phospholipase A2, proteases and hyaluronidase enzyme assays. Forty plant species showed more than 90% inhibition in one or more assay. Fabaceae, Anacardiaceae and Malvaceae were the families with the highest number of active species, and the active compounds were distributed in different plant parts depending on plant species. Polyphenols were removed in the search for specific enzyme inhibitors against hyaluronidase, phospholipase A2 or proteases from extracts with IC50 values below 100µg/ml. Water extracts of Pupalia lappacea, Combretum molle, Strychnos innocua and Grewia mollis and ethanol extract of Lannea acida and Bauhinia thonningii still showed IC50 values below 100µg/ml in either the hyaluronidase or protease bioassay after removal of polyphenols. As four of the active plants are widely distributed in the areas where the snake species Bitis arietans and Naja nigricollis occur a potential inhibitor of the necrotic enzymes is accessible for many people in sub-Saharan Africa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. A novel botanical formula prevents diabetes by improving insulin resistance.

    PubMed

    Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min

    2017-07-05

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized extracts of mulberry leaf, fenugreek seed and American ginseng at a ratio of 1:1.3:3.4 prevented the development of insulin resistance, impaired glucose tolerance and T2DM. Given the rising need for effective non-drug targeting of insulin resistance and progression to T2DM, complementary and alternative nutritional strategies without intolerable side effects could have meaningful impact on metabolic health and diabetes risks.

  16. Medium Optimization and Fermentation Kinetics for κ-Carrageenase Production by Thalassospira sp. Fjfst-332.

    PubMed

    Guo, Juanjuan; Zhang, Longtao; Lu, Xu; Zeng, Shaoxiao; Zhang, Yi; Xu, Hui; Zheng, Baodong

    2016-11-05

    Effective degradation of κ-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett-Burman design for significant variables, Box-Behnken experimental design and response surface methodology were used to optimize the culture conditions. Through statistical optimization, the optimum medium components were determined as follows: 2.0 g/L κ-carrageenan, 1.0 g/L yeast extract, 1.0 g/L FOS, 20.0 g/L NaCl, 2.0 g/L NaNO₃, 0.5 g/L MgSO₄·7H₂O, 0.1 g/L K₂HPO₄, and 0.1 g/L CaCl₂. The highest activity exhibited by Thalassospira sp. fjfst-332 was 267 U/mL, which makes it the most vigorous wild bacterium for κ-carrageenan production. In order to guide scaled-up production, two empirical models-the logistic equation and Luedeking-Piretequation-were proposed to predict the strain growth and enzyme production, respectively. Furthermore, we report the fermentation kinetics and every empirical equation of the coefficients (α, β, X ₀, X m and μ m ) for the two models, which could be used to design and optimize industrial processes.

  17. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction anticancer activity of extracts against HeLa cancer cells enhanced about 16.8%. The half inhibition concentration (IC50) value of optimized and unoptimized extract was found at concentration of 20.9 and 38.4 μg/mL respectively. Optimized extract showed more distinct anticancer activities against HeLa cancer cells in a concentration of 40 μg/mL (P < 0.01) without toxicity to normal cells. The results indicated that the pharmaceutical quality of ginger could be improved significantly by optimizing of extraction process using response surface methodology.

  18. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  19. An optimized and validated SPE-LC-MS/MS method for the determination of caffeine and paraxanthine in hair.

    PubMed

    De Kesel, Pieter M M; Lambert, Willy E; Stove, Christophe P

    2015-11-01

    Caffeine is the probe drug of choice to assess the phenotype of the drug metabolizing enzyme CYP1A2. Typically, molar concentration ratios of paraxanthine, caffeine's major metabolite, to its precursor are determined in plasma following administration of a caffeine test dose. The aim of this study was to develop and validate an LC-MS/MS method for the determination of caffeine and paraxanthine in hair. The different steps of a hair extraction procedure were thoroughly optimized. Following a three-step decontamination procedure, caffeine and paraxanthine were extracted from 20 mg of ground hair using a solution of protease type VIII in Tris buffer (pH 7.5). Resulting hair extracts were cleaned up on Strata-X™ SPE cartridges. All samples were analyzed on a Waters Acquity UPLC® system coupled to an AB SCIEX API 4000™ triple quadrupole mass spectrometer. The final method was fully validated based on international guidelines. Linear calibration lines for caffeine and paraxanthine ranged from 20 to 500 pg/mg. Precision (%RSD) and accuracy (%bias) were below 12% and 7%, respectively. The isotopically labeled internal standards compensated for the ion suppression observed for both compounds. Relative matrix effects were below 15%RSD. The recovery of the sample preparation procedure was high (>85%) and reproducible. Caffeine and paraxanthine were stable in hair for at least 644 days. The effect of the hair decontamination procedure was evaluated as well. Finally, the applicability of the developed procedure was demonstrated by determining caffeine and paraxanthine concentrations in hair samples of ten healthy volunteers. The optimized and validated method for determination of caffeine and paraxanthine in hair proved to be reliable and may serve to evaluate the potential of hair analysis for CYP1A2 phenotyping. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    PubMed

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  1. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.

    PubMed

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2017-05-05

    Ethno-botanical information from diabetic patients in Cuba led to the identification of Allophylus cominia as a possible source of new drugs for the treatment of type 2 diabetes mellitus (T2-DM). Chemical characterization of the extracts from A. cominia was carried out using chromatographic and spectroscopic methods. The extracts were tested for their activity on PTP1B, DPPIV, α-glucosidase enzymes and α-amylase. The flavonoid rich fractions from A. cominia inhibited DPPIV enzyme (75.3±2.33%) at 30µg/ml and produced a concentration-dependent inhibition against DPPIV with a Ki value of 2.6µg/ml. At 30µg/ml, flavonoids and pheophytins extracts significantly inhibited PTP1B enzyme (100±2.6% and 68±1% respectively). The flavonoids, pheophytin A and pheophytin B fractions showed significant concentration-dependent inhibition against PTP1B with Ki values of 3µg/ml, 0.64µg/ml and 0.88µg/ml respectively. At 30µg/ml, the flavonoid fraction significantly inhibited α-glucosidase enzyme (86±0.3%) in a concentration-dependent pattern with a Ki value of 2µg/ml. None of the fractions showed significant effects on α-amylase. Fatty acids, tannins, pheophytins A and B, and a mixture of flavonoids were detected in the methanolic extract from A. cominia. The identified flavonoids were mearnsitrin, quercitrin, quercetin-3-alloside, and naringenin-7-glucoside. The pharmacological effects of the extracts from A. cominia earlier observed in experimental diabetic models was confirmed in this study. Thus a new drug or formulation for the treatment of T2-DM could be developed from A. cominia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    PubMed

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  4. Antidyslipidemic and Antioxidant Activities of Hibiscus rosa sinensis Root Extract in Alloxan Induced Diabetic Rats.

    PubMed

    Kumar, Vishnu; Mahdi, Farzana; Khanna, Ashok Kumar; Singh, Ranjana; Chander, Ramesh; Saxena, Jitendra Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar

    2013-01-01

    The antidyslipidemic activity of Hibiscus rosa sinensis (Malvaceae) root extract has been studied in alloxan induced diabetic rats. In this model, oral administration of root extract (500 mg/kg bw. p.o.) for 15 days resulted in significant decreased in the levels of blood glucose, plasma lipids and reactivated post heparin lipoprotein lipase activity in alloxan induced diabetic rats. Furthermore, the root extract (50-500 μg) when tested for its antioxidant activity, inhibited the generation of super oxide anions and hydroxyl radicals, in both enzymic and non enzymic systems in vitro. The results of the present study demonstrated antidyslipidemic and antioxidant activities in root extract of H. rosa sinensis which could be used in prevention of diabetic-dyslipidemia and related complications.

  5. Effect of Tree Species on Enzyme Secretion by the Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes).

    PubMed

    Plotnikov, Evgeny V; Glukhova, Lubov B; Sokolyanskaya, Ludmila O; Karnachuk, Olga V; Solioz, Marc

    2016-01-01

    We compared cold and hot wood extracts of 3 endemic Siberian trees-namely, Prunus padus (bird cherry), Populus tremula (aspen), and Betula sp. (birch)-on biomass production and laccase and peroxidase secretion in submerged cultures by the medicinal mushroom Lentinus edodes. Of the conditions tested, only hot Prunus extracts stimulated biomass production, whereas all extracts stimulated laccase and peroxidase secretion, albeit to different extents. A large, differential stimulation of manganese peroxidase was observed by hot Prunus extracts. The results highlight important differences between tree species in the stimulation of biomass and enzyme production by L. edodes and point to potentially interesting stimulatory factors present in hot Prunus extracts. These findings are of relevance in the use of L. edodes for medicinal or biotechnological applications.

  6. In vitro α -amylase and α-glucosidase inhibitory potential of Trigonella foenum-graecum leaves extract

    PubMed Central

    Ganeshpurkar, Aditya; Diwedi, Varsha; Bhardwaj, Yash

    2013-01-01

    Trigonella foenum-graecum is one of the widely used herbs in food and medicine. The seeds of the plants are investigated for antidiabetic potential; however, no efforts have been done to explore the potential of leaves to modify carbohydrate metabolizing enzymes viz. α-amylase and α-glucosidase. The present work was designed to investigate the inhibitory potential of ethyl acetate and water extract of T. foenum-graecum on enzymes α-amylase and α-glucosidase. Different concentrations of extracts were used to study inhibition of enzymatic activity of α-amylase and α-glucosidase. A dose dependent inhibitory effect on enzymes was observed. The current study, for the first time, revealed α-amylase and α-glucosidase inhibitory potential of T. foenum-graecum and the study could be helpful to isolate and characterize compounds responsible for it. PMID:24049415

  7. l-Pyroglutamate Spontaneously Formed from l-Glutamate Inhibits Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.

    2001-01-01

    Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943

  8. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals

    PubMed Central

    Sharma, Krishna Kant; Shrivastava, Bhuvnesh; Sastry, V. R. B.; Sehgal, Neeta; Kuhad, Ramesh Chander

    2013-01-01

    The variables influencing laccase production by white-rot fungus Ganoderma sp. rckk-02 were optimized employing response surface methodology. Malt extract (6.0% w/v), lignin (0.5% w/v) and pH (5.5) were found to be the most significant factors for enhanced laccase production by 7 fold (226.0 U/ml) as compared to unoptimized growth conditions (32.0 U/ml). The N-terminal sequence of laccase revealed its distinct amino acid profile (S- I- R- N- S- G), which suggested it as a novel enzyme. The Far-UV CD spectrum of the laccase showed single broad negative trough at around 213 nm, a typical signature of all β proteins. The laccase was found to fall in the range of middle redox potential laccases. Purified laccase at dosage of 2.5 Ug−1 body weight when supplemented with pelleted diet of rats, a significant improvement (p < 0.05) in nutrients digestibility without causing any elevation of blood stress enzymes was observed. PMID:23416696

  9. The Relationship Between Endogenous β-Glucuronidase Activity and Biologically Active Flavones-Aglycone Contents in Hairy Roots of Baikal Skullcap.

    PubMed

    Dikaya, Varvara S; Solovyeva, Aleksandra I; Sidorov, Roman A; Solovyev, Pavel A; Stepanova, Anna Yu

    2018-02-01

    Here, we examine the relationship between contents of principal flavones in hairy roots of Scutellaria baicalensis with the activity of the β-glucuronidase (sGUS) enzyme during a culturing cycle. Using RP-HPLC, we show that the highest contents of aglycones, baicalin and wogonin is observed at the growth days 8, 14, and 71 and reach 45, 41, and 62% (based on the total weight of hairy roots of the Baikal skullcap), correspondingly. Their accumulation is accompanied by increase of the sGUS activity, which we determined fluorometrically. Moreover, the enzyme activity is characterized by significant and reasonable correlation only with the wogonin contents. Our results confirm a significant role of sGUS at the final steps of the metabolism in root-specific flavones of Baikal skullcap and suggest how one can optimize the conditions of culturing the hairy roots for biotechnological production of individual flavonoids. For example, at the culturing day 71 wogonin constituted over 80% of all flavones extracted from cells. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  11. Competitive enzyme-linked immunoassay for sialoglycoprotein of edible bird's nest in food and cosmetics.

    PubMed

    Zhang, Shiwei; Lai, Xintian; Liu, Xiaoqing; Li, Yun; Li, Bifang; Huang, Xiuli; Zhang, Qinlei; Chen, Wei; Lin, Lin; Yang, Guowu

    2012-04-11

    The proliferation of fake and inferior edible bird's nest (EBN) products has recently become an increasingly serious concern. To identify and classify EBN products, a competitive enzyme-linked immunoassay (ELISA) was developed to quantitate sialoglycoprotein in EBN used in food and cosmetic applications. The characteristic sialoglycoprotein in EBN was found, extracted, purified, and analyzed. Sialoglycoprotein, considered the main carrier of sialic acid in EBN, consisted of 106 and 128 kDa proteins. A monoclonal antibody that could recognize both proteins was prepared. The heat-treated process did not change the affinity of sialoglycoprotein with the antibody. An optimized ELISA method was established with a cross-reactivity of less than 0.1% and an IC(50) of 3.3 μg/mL. On the basis of different food and cosmetic samples, the limits of detection (LOD) were 10-18 μg/g. Recoveries of fortified samples at levels of 20 and 80 μg/g ranged from 81.5 to 96.5%, respectively. The coefficients of variation were less than 8.0%.

  12. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.

    PubMed

    Moore, Simon J; Lai, Hung-En; Needham, Hannah; Polizzi, Karen M; Freemont, Paul S

    2017-04-01

    Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly broad-specific and sensitive enzyme-linked immunosorbent assay for screening sulfonamides: Assay optimization and application to milk samples

    USDA-ARS?s Scientific Manuscript database

    A broad-specific and sensitive immunoassay for the detection of sulfonamides was developed by optimizing the conditions of an enzyme-linked immunosorbent assay (ELISA) in regard to different monoclonal antibodies (MAbs), assay format, immunoreagents, and several physicochemical factors (pH, salt, de...

  14. Analysis of A Drug Target-based Classification System using Molecular Descriptors.

    PubMed

    Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin

    2016-01-01

    Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.

  15. Biotechnological Production of Methyl-Branched Aldehydes.

    PubMed

    Fraatz, Marco Alexander; Goldmann, Michael; Geissler, Torsten; Gross, Egon; Backes, Michael; Hilmer, Jens-Michael; Ley, Jakob; Rost, Johanna; Francke, Alexander; Zorn, Holger

    2018-03-14

    A number of methyl-branched aldehydes impart interesting flavor impressions, and especially 12-methyltridecanal is a highly sought after flavoring compound for savory foods. Its smell is reminiscent of cooked meat and tallow. For the biotechnological production of 12-methyltridecanal, the literature was screened for fungi forming iso-fatty acids. Suitable organisms were identified and successfully grown in submerged cultures. The culture medium was optimized to increase the yields of branched fatty acids. A recombinant carboxylic acid reductase was used to reduce 12-methyltridecanoic acid to 12-methyltridecanal. The efficiency of whole-cell catalysis was compared to that of the purified enzyme preparation. After lipase-catalyzed hydrolysis of the fungal lipid extracts, the released fatty acids were converted to the corresponding aldehydes, including 12-methyltridecanal and 12-methyltetradecanal.

  16. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    PubMed Central

    Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.

    2017-01-01

    Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785

  17. A Multidirectional Perspective for Novel Functional Products: In vitro Pharmacological Activities and In silico Studies on Ononis natrix subsp. hispanica

    PubMed Central

    Yerlikaya, Serife; Zengin, Gokhan; Mollica, Adriano; Baloglu, Mehmet C.; Celik Altunoglu, Yasemin; Aktumsek, Abdurrahman

    2017-01-01

    The genus Ononis has important value as traditional drugs and foods. In the present work, we aimed to assess the chemical profiles and biological effects of Ononis natrix subsp. hispanica extracts (ethyl acetate, methanol, and water). For chemical profile, total and individual phenolic components were detected. For biological effects, antioxidant (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays), enzyme inhibitory (against cholinesterase, tyrosinase, α-amylase and α-glucosidase), antimicrobial, DNA protection and cytotoxic abilities were tested. The predominant phenolics were apigenin, luteolin, and quercetin in the tested extracts. Generally, the ethyl acetate and methanol extracts were noted as the most active in the antioxidant and enzyme inhibitory assays. Water extract with different concentrations indicated high level of DNA protection activity. Methanol and ethyl acetate extracts showed antibacterial effect against to Staphylococcus aureus and Staphylococcus epidermidis strains. The cytotoxic effects of O. natrix subsp. hispanica extracts on the survival of HeLa and PC3 cells were determined by MTT cell viability assay. Water and methanol extracts caused initiation of apoptosis for PC3 cell line. Furthermore, molecular docking was performed to better understand interactions between dominant phenolic compounds and selected enzymes. Our results clearly indicate that O. natrix subsp. hispanica could be considered a potential candidate for designing novel pharmaceuticals, cosmeceuticals and nutraceuticals. PMID:28919860

  18. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro).

    PubMed

    Spínola, Vítor; Castilho, Paula C

    2017-11-01

    The study was performed to assess, for the first time, the in vitro anti-diabetic potential of ten Asteraceae plant extracts to inhibit the activity of digestive enzymes (α-amylase, α-, β-glucosidases and lipase) responsible for hydrolysis/digestion of sugar and lipids. Prevention of advanced glycation end-products (AGEs) formation was evaluated in bovine serum albumin/ribose glycation reaction model. The phytochemical profiles and caffeoylquinic acids (CQAs) contents were determined for the methanolic extract of each plant. Analyzed plant extracts exhibited significant inhibitory activity against key digestive enzymes linked to type II diabetes and obesity. A strong inhibition was observed for glucosidases and mild activity towards amylase and lipase (compared to reference compounds). Moreover, some extracts exhibited potent ability to prevent formation of AGEs, implicated in some diabetic complications. Caffeoylquinic acids were dominant in all plant extracts and findings demonstrate that these compounds are the most relevant hypoglycemic and anti-glycation agents. From the obtained results, Argyranthemum pinnatifidum, Helichrysum melaleucum, and Phagnalon lowei are good candidates for further development of phyto-pharmaceutical preparations as complementary therapy for diabetes and obesity control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes.

    PubMed

    Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D

    2017-01-01

    Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  20. A Novel Local Recycling Mechanism That Enhances Enteric Bioavailability of Flavonoids and Prolongs Their Residence Time in the Gut

    PubMed Central

    Xia, Bijun; Zhou, Qiong; Zheng, Zhijie; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2013-01-01

    Recycling in the gastrointestinal tract is important for endogenous substances such as bile acids and for xenobiotics such as flavonoids. Although both enterohepatic and enteric recycling mechanisms are well recognized, no one has discussed the third recycling mechanism for glucuronides: local recycling. The intestinal absorption and metabolism of wogonin and wogonoside (wogonin-7-glucuronide) was characterized by using a four-site perfused rat intestinal model, and hydrolysis of wogonoside was measured in various enzyme preparations. In the perfusion model, the wogonoside and wogonin were inter-converted in all four perfused segments. Absorption of wogonoside and conversion to its aglycone at upper small intestine was inhibited in the presence of a glucuronidase inhibitor (saccharolactone) but was not inhibited by a LPH inhibitor gluconolactone or antibiotics. Further investigation indicated that hydrolysis of wogonoside in the blank intestinal perfusate was not correlated with bacteria counts. Kinetic studies indicated that Km values from blank duodenal and jejunal perfusate were essentially identical to the Km values from intestinal S9 fraction but were much higher (>2-fold) than those from the microbial enzyme extract. Lastly, jejunal perfusate and S9 fraction share the same optimal pH, which was different from those of fecal extract. In conclusion, local recycling of wogonin and wogonoside is the first demonstrated example that this novel mechanism is functional in the upper small intestine without significant contribution from bacteria β-glucuronidase. PMID:23033922

  1. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut.

    PubMed

    Xia, Bijun; Zhou, Qiong; Zheng, Zhijie; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2012-11-05

    Recycling in the gastrointestinal tract is important for endogenous substances such as bile acids and for xenobiotics such as flavonoids. Although both enterohepatic and enteric recycling mechanisms are well recognized, no one has discussed the third recycling mechanism for glucuronides: local recycling. The intestinal absorption and metabolism of wogonin and wogonoside (wogonin-7-glucuronide) was characterized by using a four-site perfused rat intestinal model, and hydrolysis of wogonoside was measured in various enzyme preparations. In the perfusion model, the wogonoside and wogonin were interconverted in all four perfused segments. Absorption of wogonoside and conversion to its aglycon at the upper small intestine was inhibited in the presence of a glucuronidase inhibitor (saccharolactone) but was not inhibited by lactase phlorizin hydrolase (LPH) inhibitor gluconolactone or antibiotics. Further investigation indicated that hydrolysis of wogonoside in the blank intestinal perfusate was not correlated with bacterial counts. Kinetic studies indicated that K(m) values from blank duodenal and jejunal perfusate were essentially identical to the K(m) values from intestinal S9 fraction but were much higher (>2-fold) than those from the microbial enzyme extract. Lastly, jejunal perfusate and S9 fraction share the same optimal pH, which was different from those of fecal extract. In conclusion, local recycling of wogonin and wogonoside is the first demonstrated example that this novel mechanism is functional in the upper small intestine without significant contribution from bacteria β-glucuronidase.

  2. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    PubMed

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  3. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.

  4. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    PubMed

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  5. Purification and characterization of a hexanol-degrading enzyme extracted from apple

    USDA-ARS?s Scientific Manuscript database

    An enzyme having activity towards n-hexanol was purified from apple and its biochemical characteristics were analyzed. The purification steps consisted of sedimentation with ammonium sulfate, DEAE Sepharose Fast Flow ion exchange chromatography and Sephadex G-100 column. The obtained enzyme had a yi...

  6. [Study on extraction and purification process of total ginsenosides from Radix Ginseng].

    PubMed

    Xie, Li-Ling; Ren, Li; Lai, Xian-Sheng; Cao, Jun-Hui; Mo, Quan-Yi; Chen, Wei-Wen

    2009-10-01

    To optimize the technological parameters of the extraction and purification process of total ginsenosides from Radix Ginseng. With the contents of ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1, the orthogonal design was adopted to optimize the extraction process. The purification process was studied by optimizing the elutive ratio of total ginsenosides as the marker. HPLC and spectrophotometer were employed for the study. The optimum conditions were as follows:Using 8 times volume of 75% ethanol extracting for 120 minutes and 2 times, the extraction temperature was 85 degrees C. AB-8 macroporous resin was selected, and the eluant was 4 BV 70% ethanol. The optimal conditions of extracting and purifying the total ginsenosides from Radix Ginseng is feasible.

  7. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts.

    PubMed

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-06-01

    One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.

  8. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli.

    PubMed

    Songsiriritthigul, Chomphunuch; Buranabanyat, Bancha; Haltrich, Dietmar; Yamabhai, Montarop

    2010-04-11

    Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannanase (EC 3.2.1.78), commonly named beta-mannanase, is an enzyme that can catalyze random hydrolysis of beta-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-beta-mannosidase gene (manB) from B. licheniformis. The mannan endo-1,4-beta-mannosidase gene (manB), commonly known as beta-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 x His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 +/- 96 units/mg. The optimal pH of the enzyme was between pH 6.0 - 7.0; whereas the optimal temperature was at 50 - 60 degrees C. The recombinant beta-mannanase was stable within pH 5 - 12 after incubation for 30 min at 50 degrees C, and within pH 6 - 9 after incubation at 50 degrees C for 24 h. The enzyme was stable at temperatures up to 50 degrees C with a half-life time of activity (tau1/2) of approximately 80 h at 50 degrees C and pH 6.0. Analysis of hydrolytic products by thin layer chromatography revealed that the main products from the bioconversion of locus bean gum and mannan were various manno-oligosaccharide products (M2 - M6) and mannose. Our study demonstrates an efficient expression and secretion system for the production of a relatively thermo- and alkali-stable recombinant beta-mannanase from B. licheniformis strain DSM13, suitable for various biotechnological applications.

  9. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781

  10. [Optimization of extraction process for tannins from Geranium orientali-tibeticum by supercritical CO2 method].

    PubMed

    Xie, Song; Tong, Zhi-Ping; Tan, Rui; Liu, Xiao-Zhen

    2014-08-01

    In order to optimize extraction process conditions of tannins from Geranium orientali-tibeticum by supercritical CO2, the content of tannins was determined by phosphomolybdium tungsten acid-casein reaction, with extraction pressure, extraction temper- ature and extraction time as factors, the content of tannins from extract of G. orientali-tibeticum as index, technology conditions were optimized by orthogonal test. Optimum technology conditions were as follows: extraction pressure was 25 MPa, extraction temperature was 50 °C, extracted 1.5 h. The content of tannins in extract was 12.91 mg x g(-1), extract rate was 3.67%. The method established could be used for assay the contents of tannin in G. orientali-tibeticum. The circulated extraction was an effective extraction process that was stable and feasible, and that provides a way of the extraction process conditions of tannin from G. orientali-tibeticum.

  11. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants.

    PubMed

    Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O

    2018-05-19

    Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.

  12. Exploring in vitro neurobiological effects and high-pressure liquid chromatography-assisted quantitation of chlorogenic acid in 18 Turkish coffee brands.

    PubMed

    Erdem, Sinem Aslan; Senol, F Sezer; Budakoglu, Esin; Orhan, Ilkay Erdogan; Sener, Bilge

    2016-01-01

    The hydroalcoholic extracts of the Turkish traditional coffee samples from 18 commercial brands were tested for their neurobiological effects through enzyme inhibition based on enzyme-linked immunosorbance microtiter assays against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, linked to Alzheimer's and Parkinson's diseases. The extracts were also subjected to several antioxidant test systems to define their antiradical, metal-chelation capacity, and reducing power. Total phenol and flavonoid contents in the extracts were delineated by spectrophotometric methods, while chlorogenic acid in the coffee samples was quantified by high-pressure liquid chromatography. The extracts displayed low to moderate inhibition (from 2.13 ± 0.01% to 36.12 ± 1.07% at 200 μg/mL) against the tested enzymes, whereas they had notable 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity up to 56.15 ± 2.03% at 200 μg/mL. The extracts exerted a remarkable ferric-reducing antioxidant power values, while chlorogenic acid was found to range between 0.288 ± 0.005% and 2.335 ± 0.010%. Copyright © 2015. Published by Elsevier B.V.

  13. Enzymatic process optimization for the in vitro production of isoprene from mevalonate.

    PubMed

    Cheng, Tao; Liu, Hui; Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xie, Congxia; Zhao, Guang; Xian, Mo

    2017-01-09

    As an important bulk chemical for synthetic rubber, isoprene can be biosynthesized by robust microbes. But rational engineering and optimization are often demanded to make the in vivo process feasible due to the complexities of cellular metabolism. Alternative synthetic biochemistry strategies are in fast development to produce isoprene or isoprenoids in vitro. This study set up an in vitro enzyme synthetic chemistry process using 5 enzymes in the lower mevalonate pathway to produce isoprene from mevalonate. We found the level and ratio of individual enzymes would significantly affect the efficiency of the whole system. The optimized process using 10 balanced enzyme unites (5.0 µM of MVK, PMK, MVD; 10.0 µM of IDI, 80.0 µM of ISPS) could produce 6323.5 µmol/L/h (430 mg/L/h) isoprene in a 2 ml in vitro system. In a scale up process (50 ml) only using 1 balanced enzyme unit (0.5 µM of MVK, PMK, MVD; 1.0 µM of IDI, 8.0 µM of ISPS), the system could produce 302 mg/L isoprene in 40 h, which showed higher production rate and longer reaction phase with comparison of the in vivo control. By optimizing the enzyme levels of lower MVA pathway, synthetic biochemistry methods could be set up for the enzymatic production of isoprene or isoprenoids from mevalonate.

  14. Chemolithoautotrophy and its Relation to Magnetism and Biomineralization in Marine Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Bazylinski, D. A.; Williams, T. J.; Zhang, C. L.; Scott, J. H.

    2005-12-01

    All cultured, marine, magnetite-producing, magnetotactic bacteria (MB) are capable of chemolithoautotrophy and use a number of electron donors to support this mode of growth including reduced sulfur compounds. Several vibrioid strains are known to rely on the Calvin-Benson-Bassham (CBB) cycle for autotrophy. An obligately microaerophilic, magnetite-producing, coccoid strain (MC-1) grew with sulfide and thiosulfate as electron donors and 14C-labelling experiments showed that virtually all cell C was derived from H14CO3-/14CO2 confirming autotrophy in this strain. Cell-free extracts of strain MC-1 did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity and nor were RubisCO genes found in the draft genome of the organism. Cell extracts also did not exhibit carbon monoxide dehydrogenase activity indicating that the acetyl-CoA pathway also does not function in strain MC-1. The 13C content of whole cells of strain MC-1 relative to the 13C content of the H14CO3-/14CO2 used for growth (Δδ13C) was -11.4 ppt. Cellular fatty acids showed enrichment of 13C relative to biomass. Activities for three key enzymes of the reverse or reductive tricarboxylic acid (rTCA) cycle were demonstrated for MC-1: fumarate reductase, pyruvate: acceptor oxidoreductase and 2-oxoglutarate: acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in cell-free extracts of strain MC-1 using commonly used assays for this enzyme, cell-free extract was found to rapidly cleave citrate, and the reaction was dependent upon the presence of ATP, coenzyme A and NADH. Thus, we infer the presence of an ATP-dependent citrate-cleaving enzyme or enzymes. The Δδ13C value and results from enzyme studies are consistent with the operation of the rTCA cycle for autotrophy in strain MC-1. Strain MC-1 appears to be the first known member of the alpha-Proteobacteria to assimilate CO2 during autotrophic growth using the rTCA cycle. Based on the type of chemolithoautotrophy described above, it is clear why marine magnetite-producing MB occupy a precise location, the oxic-anoxic interface, in vertical chemical gradients within chemically-stratified coastal environments: they must have an electron donor, sulfide and perhaps others, and an electron acceptor, O2. The presumed function of magnetosomes is that the magnetic dipole resulting from the magnetosomes aids the cell in locating and maintaining an optimal position within vertical chemical gradients. MB process large amounts of Fe in the biomineralization of magnetosomes: cells consist of 1-3% Fe (dry wt). Because of this, and the fact that many chemolithoautotrophic, non-magnetotactic bacteria occupy a similar niche, we have been investigating possible physiological reasons for the production of magnetosomes and the processing of such large amounts of Fe. We have found that some marine vibrioid strains grow in O2-gradient medium with Fe(II) as the electron donor. Cells appear to oxidize the Fe(II) and produce a layer of Fe oxyhydroxides within the gradient suggesting that cells obtain energy from the oxidation of Fe(II).

  15. Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts

    PubMed Central

    Mendz, George; Hazell, Stuart

    1998-01-01

    The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591

  16. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  17. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue.

    PubMed

    Gong, Ying; Zhang, Xiaofei; He, Li; Yan, Qiuli; Yuan, Fang; Gao, Yanxiang

    2015-03-01

    Polyphenols was extracted with subcritical water from the sea buckthorn seed residue (after oil recovery), and the extraction parameters were optimized using response surface methodology (RSM). The independent processing variables were extraction temperature, extraction time and the ratio of water to solid. The optimal extraction parameters for the extracts with highest ABTS radical scavenging activity were 120 °C, 36 min and the water to solid ratio of 20, and the maximize antioxidant capacity value was 32.42 mmol Trolox equivalent (TE)/100 g. Under the optimal conditions, the yield of total phenolics, total flavonoids and proanthocyanidins was 36.62 mg gallic acid equivalents (GAE)/g, 19.98 mg rutin equivalent (RE)/g and 10.76 mg catechin equivalents (CE)/g, respectively.

  18. Optimization of focused ultrasonic extraction of propellant components determined by gas chromatography/mass spectrometry.

    PubMed

    Fryš, Ondřej; Česla, Petr; Bajerová, Petra; Adam, Martin; Ventura, Karel

    2012-09-15

    A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 1. Screening of optimal extraction conditions using a D-optimal experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities.

    PubMed

    Wang, Bingyue; Liu, Qian; Huang, Yinghong; Yuan, Yueling; Ma, Qianqian; Du, Manling; Cai, Tiange; Cai, Yu

    2018-01-01

    Polysaccharide of Spirulina platensis (PSP) is a kind of water-soluble polysaccharide extracted from Spirulina platensis . It has been proved to have antitumor, antioxidation, antiaging, and antivirus properties. And it has a promising prospect for wide application. This study aims to identify an extraction process for high-purity polysaccharide in Spirulina (PSP) through a series of optimization methods and then evaluates its initial antiaging activities. Four kinds of extraction methods-hot-water extraction, alkali extraction, ultrasonic-assisted extraction, and freeze-thaw extraction-were compared to find the optimal one, which was further optimized by response surface methodology. PSP was obtained after the crude PSP was deproteinized and depigmented. The antiaging effects of PSP were preliminarily evaluated through in vitro cell experiments. The alkali extraction method was determined as the optimal method, with the optimized extraction process consisting of a solid-liquid ratio of 1 : 50, a pH value of 10.25, a temperature of 89.24°C, and a time of 9.99 h. The final PSP contained 71.65% of polysaccharide and 8.54% of protein. At a concentration of 50  μ g/mL, PSP exerted a significant promoting effect on the proliferation and traumatic fusion of human immortalized epidermal cells HaCaT. An extraction method for high-purity PSP with a high extraction rate was established, and in vitro results suggest antioxidation and antiaging activities.

  1. [Optimization of extraction technology from Paeoniae Radix Alba using response surface methodology].

    PubMed

    Jin, Lin; Zhao, Wan-shun; Guo, Qiao-sheng; Zhang, Wen-sheng; Ye, Zheng-liang

    2015-08-01

    To ensure the stability of chemistry components and the convenience of operation, ultrasound method was chosen to study in this investigation. As the total common peaks area in chromatograms was set to be evaluation index, the influence on the technology caused by extraction time, ethanol concentration and liquid-to-solid ratio was studied by using single factor methodology, and the extraction technology of Paeoniae Radix Alba was optimized by using response surface methodology. The results showed that the extracting results were most affected by ethanol concentration; liquid-to-solid ratio came the second and extraction time thirdly. The optimum ultrasonic-assisted extraction conditions were as follow: the ultrasonic extraction time was 20.06 min, the ethanol concentration in solvent was 72.04%, and the liquid-to-solid ratio was 53.38 mL · g(-1), the predicted value of total common peaks area was 2.1608 x 10(8). Under the extraction conditions after optimization, the total common peaks area was 2.1422 x 10(8), and the relative deviation between the measured and predicted value was 0.86%, so the optimized extraction technology for Paeoniae Radix Alba is suitable and feasible. Besides, for the purpose of extracting more sufficiently and completely, the optimized extraction technology had more advantages than the extraction method recorded in the monogragh of Paeoniae Radix Alba in Chinese Pharmacopoeia, which will come true the assessment and utilization comprehensively.

  2. Optimization of Aqueous Extraction from Kalanchoe pinnata Leaves to Obtain the Highest Content of an Anti-inflammatory Flavonoid using a Response Surface Model.

    PubMed

    Dos Santos Nascimento, Luana Beatriz; de Aguiar, Paula Fernandes; Leal-Costa, Marcos Vinicius; Coutinho, Marcela Araújo Soares; Borsodi, Maria Paula Gonçalves; Rossi-Bergmann, Bartira; Tavares, Eliana Schwartz; Costa, Sônia Soares

    2018-05-01

    The medicinal plant Kalanchoe pinnata is a phenolic-rich species used worldwide. The reports on its pharmacological uses have increased by 70% in the last 10 years. The leaves of this plant are the main source of an unusual quercetin-diglycosyl flavonoid (QAR, quercetin arabinopyranosyl rhamnopyranoside), which can be easily extracted using water. QAR possess a strong in vivo anti-inflammatory activity. To optimize the aqueous extraction of QAR from K. pinnata leaves using a three-level full factorial design. After a previous screening design, time (x 1 ) and temperature (x 2 ) were chosen as the two independent variables for optimization. Freeze-dried leaves were extracted with water (20% w/v), at 30°C, 40°C or 50°C for 5, 18 or 30 min. QAR content (determined by HPLC-DAD) and yield of extracts were analyzed. The optimized extracts were also evaluated for cytotoxicity. The optimal heating times for extract yield and QAR content were similar in two-dimensional (2D) surface responses (between 12.8 and 30 min), but their optimal extraction temperatures were ranged between 40°C and 50°C for QAR content and 30°C and 38°C for extract yield. A compromise region for both parameters was at the mean points that were 40°C for the extraction temperature and 18 min for the total time. The optimized process is faster and spends less energy than the previous one (water; 30 min at 55°C); therefore is greener and more attractive for industrial purposes. This is the first report of extraction optimization of this bioactive flavonoid. Copyright © 2018 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Human beta-glucuronidase. Measurement of its activity in gallbladder bile devoid of intrinsic interference.

    PubMed

    Ho, Y C; Ho, K J

    1988-04-01

    Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.

  4. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    PubMed Central

    Rose, Peter; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686

  5. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.

  6. [Study on the optimal extraction process of chaihushugan powder].

    PubMed

    Wang, Chun-yan; Zhang, Wan-ming; Zhang, Dan-shen; An, Fang; Tian, Jia-ming

    2009-11-01

    To study the optimal extraction process of chaihushugan powder by orthogonal design. RP-HPLC method was developed for the determination of saikosaponin a, ferulic acid, hesperidin and paeoniflorin in chaihushugan powder. The contents of the components and the extraction yield were selected as assessment indices. Four factors were study by L9 (3(4)), including the alcohol concentration, amount of alcohol, duration of extraction and times of extraction. The optimal extracting condition was 80% alcohol consumed as 10 times of crude herb amount, and extracting two times for 90 min each time. This study supplies theoretical base for the development of chaihushugan powder formulation.

  7. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    PubMed

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  8. Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts In Vitro

    PubMed Central

    Adefegha, Stephen A.; Oyeleye, Sunday I.; Oboh, Ganiyu

    2015-01-01

    Soursop fruit has been used in folklore for the management of type-2 diabetes and hypertension with limited information on the scientific backing. This study investigated the effects of aqueous extracts (1 : 100 w/v) of Soursop fruit part (pericarp, pulp, and seed) on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and hypertension [angiotensin-I converting enzyme (ACE)]. Radicals scavenging and Fe2+ chelation abilities and reducing property as well as phenolic contents of the extracts were also determined. Our data revealed that the extracts inhibited α-amylase and α-glucosidase and ACE activities dose-dependently. The effective concentration of the extract causing 50% antioxidant activity (EC50) revealed that pericarp extract had the highest α-amylase (0.46 mg/mL), α-glucosidase (0.37 mg/mL), and ACE (0.03 mg/mL) inhibitory activities while the seed extract had the least [α-amylase (0.76 mg/mL); α-glucosidase (0.73 mg/mL); and ACE (0.20 mg/mL)]. Furthermore, the extracts scavenged radicals, reduced Fe3+ to Fe2+, and chelated Fe2+. The phenolic contents in the extracts ranged from 85.65 to 560.21 mg/100 g. The enzymes inhibitory and antioxidants potentials of the extracts could be attributed to their phenolic distributions which could be among the scientific basis for their use in the management of diabetes and hypertension. However, the pericarp appeared to be most promising. PMID:26788368

  9. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    PubMed

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.).

    PubMed

    Feng, Kai; Xu, Zhi-Sheng; Liu, Jie-Xia; Li, Jing-Wen; Wang, Feng; Xiong, Ai-Sheng

    2018-06-01

    This study showed that a galactosyltransferase, AgUCGalT1, is involved in anthocyanin galactosylation in purple celery. Celery is a well-known vegetable because of its rich nutrients, low calories, and medicinal values. Its petioles and leaf blades are the main organs acting as nutrient sources. UDP-galactose: cyanidin 3-O-galactosyltransferase can transfer the galactosyl moiety from UDP-galactose to the 3-O-position of cyanidin through glycosylation. This process enhances the stability and water solubility of anthocyanins. In the present study, LC-MS data indicated that abundant cyanidin-based anthocyanins accumulated in the petioles of purple celery ('Nanxuan liuhe purple celery'). A gene encoding UDP-galactose: cyanidin 3-O-galactosyltransferase, namely AgUCGalT1, was isolated from purple celery and expressed in Escherichia coli BL21 (DE3). Sequence alignments revealed that the AgUCGalT1 protein contained a highly conserved putative secondary plant glycosyltransferase (PSPG) motif. The glycosylation product catalyzed by AgUCGalT1 was detected using UPLC equipment. The recombinant AgUCGalT1 had an optimal enzyme activity at 35 °C and pH 8.0, and showed highest enzyme activity toward cyanidin among the enzyme activities involving other substances, namely, peonidin, quercetin, and kaempferol. The expression levels of AgUCGalT1 were positively correlated with the total anthocyanin contents in purple and non-purple celery varieties. Crude enzymes extracted from purple celery exhibited glycosylation ability, whereas crude enzymes obtained from non-purple celery did not have this ability. This work provided evidence as a basis for investigations on the function of AgUCGalT1 in anthocyanin glycosylation in purple celery.

  11. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations in the Food Chemicals Codex, 3d ed. (1981), p...

  12. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...

  13. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...

  14. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...

  15. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...

  16. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity.

    PubMed

    Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo

    2017-11-01

    Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  17. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    PubMed

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    PubMed

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  19. A Workflow for Subsurface Pressure Control in Geological CO2 Storage: Optimization of Brine Extraction

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.

    2017-12-01

    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.

  20. Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003

    PubMed Central

    2012-01-01

    Background The Antarctic fungus Lecanicillium muscarium CCFEE 5003 is one of the most powerful chitinolytic organisms. It can produce high level of chitinolytic enzymes in a wide range of temperatures (5-30°C). Chitinolytic enzymes have lot of applications but their industrial production is still rather limited and no cold-active enzymes are produced. In view of massive production of L. muscarium chitinolytic enzymes, its cultivation in bioreactors is mandatory. Microbial cultivation and/or their metabolite production in bioreactors are sometime not possible and must be verified and optimized for possible exploitation. Agitation and aeration are the most important parameters in order to allow process up-scaling to the industrial level. Results In this study, submerged cultures of L. muscarium CCFEE 5003 were carried out in a 2-L bench-top CSTR bioreactor in order to optimise the production of chitinolytic enzymes. The effect of stirrer speed (range 200-500 rpm) and aeration rate (range 0.5-1.5 vvm) combination was studied, by Response Surface Methodology (RSM), in a medium containing 1.0% yeast nitrogen base and 1% colloidal chitin. Optimization was carried out, within a "quadratic D-optimal" model, using quantitative and quantitative-multilevel factors for aeration and agitation, respectively. The model showed very good correlation parameters (R2, 0.931; Q2, 0.869) and the maximum of activity (373.0 U/L) was predicted at ca. 327 rpm and 1.1 vvm. However, the experimental data showed that highest activity (383.7 ± 7.8 U/L) was recorded at 1 vvm and 300 rpm. Evident shear effect caused by stirrer speed and, partially, by high aeration rates were observed. Under optimized conditions in bioreactor the fungus was able to produce a higher number of chitinolytic enzymes than those released in shaken flasks. In addition, production was 23% higher. Conclusions This work demonstrated the attitude of L. muscarium CCFEE 5003 to grow in bench-top bioreactor; outlined the strong influence of aeration and agitation on its growth and enzyme production and identified the optimal conditions for possible production at the industrial level. PMID:22270226

  1. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization

    PubMed Central

    Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram

    2016-01-01

    Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified. PMID:27812109

  2. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.

    PubMed

    Buddhiwant, Priyanka; Bhavsar, Kavita; Kumar, V Ravi; Khire, Jayant M

    2016-08-17

    This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett-Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box-Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5-6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the "generally regarded as safe" (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF).

  3. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  4. Enzyme reactor design under thermal inactivation.

    PubMed

    Illanes, Andrés; Wilson, Lorena

    2003-01-01

    Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.

  5. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    PubMed

    Mishra, M R; Mishra, A; Pradhan, D K; Panda, A K; Behera, R K; Jha, S

    2013-09-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug.

  6. Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D

    2012-09-01

    In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract

    PubMed Central

    2015-01-01

    The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633

  8. Scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: taxonomy of the producing organism, fermentation, isolation, and physico-chemical properties.

    PubMed

    Nara, F; Tanaka, M; Hosoya, T; Suzuki-Konagai, K; Ogita, T

    1999-06-01

    We performed experiments to screen for neutral sphingomyelinase inhibitors using rat brain microsomes as an enzyme source. Among more than 10,000 microbial extracts tested, a mycelial extract of Trichopeziza mollissima SANK 13892 exhibited potent inhibitory activity. The active compound, scyphostatin, was purified by a series of chromatographies. Scyphostatin inhibited the enzyme with an IC50 value of 1.0 microM.

  9. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    PubMed

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. Georg Thieme Verlag KG Stuttgart · New York.

  10. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities.

    PubMed

    Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R

    2016-01-01

    This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species.

    PubMed

    Horta, Maria Augusta Crivelente; Filho, Jaire Alves Ferreira; Murad, Natália Faraj; de Oliveira Santos, Eidy; Dos Santos, Clelton Aparecido; Mendes, Juliano Sales; Brandão, Marcelo Mendes; Azzoni, Sindelia Freitas; de Souza, Anete Pereira

    2018-01-22

    Understanding relationships between genes responsible for enzymatic hydrolysis of cellulose and synergistic reactions is fundamental for improving biomass biodegradation technologies. To reveal synergistic reactions, the transcriptome, exoproteome, and enzymatic activities of extracts from Trichoderma harzianum, Trichoderma reesei and Trichoderma atroviride under biodegradation conditions were examined. This work revealed co-regulatory networks across carbohydrate-active enzyme (CAZy) genes and secreted proteins in extracts. A set of 80 proteins and respective genes that might correspond to a common system for biodegradation from the studied species were evaluated to elucidate new co-regulated genes. Differences such as one unique base pair between fungal genomes might influence enzyme-substrate binding sites and alter fungal gene expression responses, explaining the enzymatic activities specific to each species observed in the corresponding extracts. These differences are also responsible for the different architectures observed in the co-expression networks.

  12. Effects of aqueous eucalyptus extracts on seed germination, seedling growth and activities of peroxidase and polyphenoloxidase in three wheat cultivar seedlings (Triticum aestivum L.).

    PubMed

    Ziaebrahimi, L; Khavari-Nejad, R A; Fahimi, H; Nejadsatari, T

    2007-10-01

    Evaluation of allelopathic effects of this plant on other near cultivations especially wheat is the aim of this study. Effects of water extracts of eucalyptus leaves examined on germination and growth of three wheat cultivar seeds and seedlings. Results showed that: germination percentage strongly decreased, leaf and root lengths also affected and dry and wet weights of both roots and shoots showed similar change patterns. Activities of peroxidase and polyphenoloxidase as antioxidant enzymes in roots and shoots measured. Activity of peroxidases increased in stress conditions and roots showed more increased enzyme activity than leaves. Activity of polyphenoloxidases increased only in one of three cultivars and again roots showed more activity of this enzyme in response to eucalyptus extract. Suggest that detoxification process were conducted mainly in roots of seedlings.

  13. Ultrasensitive bioluminescent determinations of adenosine triphosphate (ATP) for investigating the energetics of host-grown microbes

    NASA Technical Reports Server (NTRS)

    Hanks, J. H.; Dhople, A. M.

    1975-01-01

    Stability and optimal concentrations of reagents were studied in bioluminescence assay of ATP levels. Luciferase enzyme was prepared and purified using Sephadex G-100. Interdependencies between enzyme and luciferin concentrations in presence of optimal Mg are illustrated. Optimal ionic strength was confirmed to be 0.05 M for the four buffers tested. Adapted features of the R- and H-systems are summarized, as well as the percentages of ATP pools released from representative microbes by heat and chloroform.

  14. Protective effect of Silybum marianum and Taraxacum officinale extracts against oxidative kidney injuries induced by carbon tetrachloride in rats.

    PubMed

    Karakuş, Ali; Değer, Yeter; Yıldırım, Serkan

    2017-11-01

    The protective effect of the extracts of the plants Silybum marianum and Taraxacum officinale by carbon tetrachloride (CCl 4 ) was researched. Sixty-six female Wistar albino rats were divided into six groups: Control, Silybum marianum, Taraxacum officinale, CCl 4 , Silybum marianum+ CCl 4 , Taraxacum officinale+CCl 4 . The Silybum marianum and Taraxacum officinale extracts were administered as 100 mg/kg/day by gavage. The CCl 4 was administered as 1.5 mL/kg (i.p.). At the end of the trial period, in the serums obtained from the animals, in the CCl 4 group it was found that the MDA level increased in the kidney tissue samples as well as in the ALP and GGT enzyme activities. It was also found that the GSH level and the GST enzyme activities decreased (p<.05). The microscopic evaluations showed that the CCl 4 caused a serious hydropic degeneration, coagulation necrosis, and mono-nuclear cell infiltration in the kidney cell. In the animals where CCl 4 and Silybum marianum and Taraxacum officinale extracts were applied together, it was found that the serum ALP and GGT enzyme activities decreased and that the MDA level decreased in the kidney tissue, and that the GSH level and GST enzyme activities increased. It was observed that the histopathological changes caused by the CCl 4 toxicity were corrected by applying the extracts. Eventually, it was determined that the Silybum marianum was more effective. Silybum marianum and Taraxacum officinale extracts which were used against histopathological changes in the kidney caused by toxication showed a corrective effect, which were supported by biochemical parameters.

  15. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath.

    PubMed Central

    Zahn, J A; Duncan, C; DiSpirito, A A

    1994-01-01

    An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline. Images PMID:7928947

  16. [Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].

    PubMed

    Xie, Hui; Zhu, Lu-sheng; Wang, Jun; Wang, Xiu-guo; Liu, Wei; Qian, Bo; Wang, Qian

    2005-11-01

    Degradation characteristics of chlorpyrifos insecticides was determined by the crude enzyme extracted from the isolated strain WZ-I ( Fusarium LK. ex Fx). The best separating condition and the degrading characteristic of chlorpyrifos were studied. Rate of degradation for chlorpyrifos by its intracellular enzyme, extracellular enzyme and cell fragment was 60.8%, 11.3% and 48%, respectively. The degrading enzyme was extracted after this fungus was incubated for 8 generations in the condition of noninducement, and its enzymic activity lost less, the results show that this enzyme is an intracellular and connatural enzyme. The solubility protein of the crude enzyme was determined with Albumin (bovine serum) as standard protein and the solubility protein of the crude enzyme was 3.36 mg x mL(-1). The pH optimum for crude enzyme was 6.8 for enzymatic degradation of chlorpyrifos, and it had comparatively high activity in the range of pH 6.0 - 9.0. The optimum temperature for enzymatic activity was at 40 degrees C, it still had comparatively high activity in the range of temperature 20-50 degrees C, the activity of enzyme rapidly reduced at 55 degrees C, its activity was 41% of the maximal activity. The crude enzyme showed Km value for chlorpyrifos of 1.049 26 mmol x L(-1), and the maximal enzymatic degradation rate was 0.253 5 micromol x (mg x min)(-1). Additional experimental evidence suggests that the enzyme had the stability of endure for temperature and pH, the crude enzyme of fungus WZ-I could effectively degrade chlorpyrifos.

  17. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    PubMed

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Application of enzymes in the production of RTD black tea beverages: a review.

    PubMed

    Kumar, Chandini S; Subramanian, R; Rao, L Jaganmohan

    2013-01-01

    Ready-to-drink (RTD) tea is a popular beverage in many countries. Instability due to development of haze and formation of tea cream is the common problem faced in the production of RTD black tea beverages. Thus decreaming is an important step in the process to meet the cold stability requirements of the product. Enzymatic decreaming approaches overcome some of the disadvantages associated with other conventional decreaming methods such as cold water extraction, chill decreaming, chemical stabilization, and chemical solubilization. Enzyme treatments have been attempted at three stages of black tea processing, namely, enzymatic treatment to green tea and conversion to black tea, enzymatic treatment to black tea followed by extraction, and enzymatic clarification of extract. Tannase is the most commonly employed enzyme (tannin acyl hydrolase EC 3.1.1.20) aiming at improving cold water extractability/solubility and decreasing tea cream formation as well as improving the clarity. The major enzymatic methods proposed for processing black tea having a direct or indirect bearing on RTD tea production, have been discussed along with their relative advantages and limitations.

  19. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.

    PubMed

    Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile

    2015-01-01

    Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential. © 2015 American Institute of Chemical Engineers.

  20. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less

Top