A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates
ERIC Educational Resources Information Center
Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.
2015-01-01
Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…
Measurement of Enzyme Kinetics by Use of a Blood Glucometer: Hydrolysis of Sucrose and Lactose
ERIC Educational Resources Information Center
Heinzerling, Peter; Schrader, Frank; Schanze, Sascha
2012-01-01
An alternative analytical method for measuring the kinetic parameters of the enzymes invertase and lactase is described. Invertase hydrolyzes sucrose to glucose and fructose and lactase hydrolyzes lactose to glucose and galactose. In most enzyme kinetics studies, photometric methods or test strips are used to quantify the derivates of the…
Valero, E; Varón, R; García-Carmona, F
1995-01-01
A kinetic study is made of a system consisting of a specific enzymic cycling assay coupled to an enzymic reaction. A kinetic analysis of this system is presented, and the accumulation of chromophore involved in the cycle is seen to be parabolic, i.e. the rate of the reaction increases continuously with constant acceleration. The system is illustrated by the measurement of alkaline phosphatase activity using beta-NADP+ as substrate. The enzymes alcohol dehydrogenase and diaphorase are used to cycle beta-NAD+ in the presence of ethanol and p-Iodonitrotetrazolium Violet. During each turn of the cycle, one molecule of the tetrazolium salt is reduced to an intensely coloured formazan. A simple procedure for evaluating the kinetic parameters involved in the system and for optimizing this cycling assay is described. The method is applicable to the measurement of any enzyme, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be employed in enzyme immunoassays to increase the magnitude of the measured response. PMID:7619054
New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda
2014-01-01
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.
Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy.
Wu, Zeng-Qiang; Jia, Wen-Zhi; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua
2012-12-18
In biological metabolism, a given metabolic process usually occurs via a group of enzymes working together in sequential pathways. To explore the metabolism mechanism requires the understanding of the multienzyme coupled catalysis systems. In this paper, an approach has been proposed to study the kinetics of a two-enzyme coupled reaction using SECM combining numerical simulations. Acetylcholine esterase and choline oxidase are immobilized on cysteamine self-assembled monolayers on tip and substrate gold electrodes of SECM via electrostatic interactions, respectively. The reaction kinetics of this two-enzyme coupled system upon various separation distance precisely regulated by SECM are measured. An overall apparent Michaelis-Menten constant of this enzyme cascade is thus measured as 2.97 mM at an optimal tip-substrate gap distance of 18 μm. Then, a kinetic model of this enzyme cascade is established for evaluating the kinetic parameters of individual enzyme by using the finite element method. The simulated results demonstrate the choline oxidase catalytic reaction is the rate determining step of this enzyme cascade. The Michaelis-Menten constant of acetylcholine esterase is evaluated as 1.8 mM. This study offers a promising approach to exploring mechanism of other two-enzyme coupled reactions in biological system and would promote the development of biosensors and enzyme-based logic systems.
Direct measurement of catalase activity in living cells and tissue biopsies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaglione, Christine N.; Xu, Qijin; Ramanujan, V. Krishnan, E-mail: Ramanujanv@csmc.edu
Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Usingmore » catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. - Highlights: • A novel, direct measurement of Catalase enzyme activity via, oxygen sensing method. • Steady-stateprofiles of Catalase activity follow the Michaelis-Menten Kinetics. • Catalase-specific activity demonstrated using genetic and pharmacological tools. • Overcomes limitations of spectroscopic methods and indirect calorimetric approaches. • Clear demonstration of the applicability in cancer cells and aging animal tissues.« less
Amyloglucosidase enzymatic reactivity inside lipid vesicles
Li, Mian; Hanford, Michael J; Kim, Jin-Woo; Peeples, Tonya L
2007-01-01
Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG) (EC 3.2.1.3) from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose) formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations. PMID:18271982
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
Direct measurement of catalase activity in living cells and tissue biopsies.
Scaglione, Christine N; Xu, Qijin; Ramanujan, V Krishnan
2016-01-29
Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies - can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Direct Measurement of Catalase Activity in Living Cells and Tissue Biopsies
Scaglione, Christine N; Xu, Qijin; Ramanujan, V. Krishnan
2016-01-01
Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharamacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. PMID:26772884
21 CFR 862.2500 - Enzyme analyzer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...
21 CFR 862.2500 - Enzyme analyzer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...
21 CFR 862.2500 - Enzyme analyzer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...
21 CFR 862.2500 - Enzyme analyzer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...
21 CFR 862.2500 - Enzyme analyzer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...
Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.
Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung
2017-07-06
Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.
NASA Astrophysics Data System (ADS)
Kabulski, Jarod L.
The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein-protein interactions on drug metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minjing; Qian, Wei-jun; Gao, Yuqian
The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less
SigrafW: An easy-to-use program for fitting enzyme kinetic data.
Leone, Francisco Assis; Baranauskas, José Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida
2005-11-01
SigrafW is Windows-compatible software developed using the Microsoft® Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent dissociation constant (K). The estimation of V, K, and the sum of the squares of residuals is performed using a Wilkinson nonlinear regression at any Hill coefficient (n). In contrast to many currently available kinetic analysis programs, SigrafW shows several advantages for the determination of kinetic parameters of both hyperbolic and nonhyperbolic saturation curves. No initial estimates of the kinetic parameters are required, a measure of the goodness-of-the-fit for each calculation performed is provided, the nonlinear regression used for calculations eliminates the statistical bias inherent in linear transformations, and the software can be used for enzyme kinetic simulations either for educational or research purposes. Persons interested in receiving a free copy of the software should contact Dr. F. A. Leone. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.
Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment
NASA Astrophysics Data System (ADS)
Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary
1999-05-01
Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.
Modeling of uncertainties in biochemical reactions.
Mišković, Ljubiša; Hatzimanikatis, Vassily
2011-02-01
Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to changes in metabolite levels according to the irreversible Michelis-Menten kinetics. The efficient sampling procedure allows easy, scalable, implementation of this methodology to modeling of large-scale biochemical networks. © 2010 Wiley Periodicals, Inc.
Penning, Trevor M
2016-07-01
Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily. Copyright © 2015 Elsevier Ltd. All rights reserved.
2017-01-01
ABSTRACT Sulbactam is one of four β-lactamase inhibitors in current clinical use to counteract drug resistance caused by degradation of β-lactam antibiotics by these bacterial enzymes. As a β-lactam itself, sulbactam is susceptible to degradation by β-lactamases. I investigated the Michaelis-Menten kinetics of sulbactam hydrolysis by 14 β-lactamases, representing clinically widespread groups within all four Ambler classes, i.e., CTX-M-15, KPC-2, SHV-5, and TEM-1 for class A; IMP-1, NDM-1, and VIM-1 for class B; Acinetobacter baumannii ADC-7, Pseudomonas aeruginosa AmpC, and Enterobacter cloacae P99 for class C; and OXA-10, OXA-23, OXA-24, and OXA-48 for class D. All of the β-lactamases were able to hydrolyze sulbactam, although they varied widely in their kinetic constants for the reaction, even within each class. I also investigated the inactivation kinetics of the inhibition of these enzymes by sulbactam. The class A β-lactamases varied widely in their susceptibility to inhibition, the class C and D enzymes were very weakly inhibited, and the class B enzymes were essentially or completely unaffected. In addition, we measured the sulbactam turnover number, the sulbactam/enzyme molar ratio required for complete inhibition of each enzyme. Class C enzymes had the lowest turnover numbers, class A enzymes varied widely, and class D enzymes had very high turnover numbers. These results are valuable for understanding which β-lactamases ought to be well inhibited by sulbactam. Moreover, since sulbactam has intrinsic antibacterial activity against Acinetobacter species pathogens, these results contribute to understanding β-lactamase-mediated sulbactam resistance in Acinetobacter, especially due to the action of the widespread class D enzymes. PMID:28971872
Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii
NASA Astrophysics Data System (ADS)
Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili
2013-05-01
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
Bezerra, Rui M F; Fraga, Irene; Dias, Albino A
2013-01-01
Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2010-01-01
A novel assay employing D-enantiomers of phospholipids as diluents for characterizing surface kinetics of lipid hydrolysis by phospholipases is introduced. The rationale of the method are: (i) D-enantiomers resist hydrolysis because of the stereoselectivity of the enzymes toward L-enantiomers and (ii) mixtures of L+D-lipids at various L:D ratios but constant L+D-lipid concentrations yield a surface dilution series of variable L-lipid concentration with constant medium properties. Kinetic characterization of bee-venom phospholipase A2 activity at bile salt + phospholipid aggregate-water interfaces was performed using the mixed L+D-lipid surface dilution assay and interface kinetic parameters were obtained. The assay applies to bio-membrane models as well. Activity was measured by pH-Stat methods. Aggregation numbers and interface hydration/microviscosity measured by time resolved fluorescence quenching and electron spin resonance respectively confirmed that interface properties were indeed invariant in a surface dilution series, supporting rationale (ii) and were used to calculate substrate concentrations. Activity data show excellent agreement with a kinetic model derived with D-enantiomers as diluents and also that D-phospholipids bind to the enzyme but resist hydrolysis; underscoring rationale (i). The assay is significant to enabling determination of interface specific kinetic parameters for the first time and thereby characterization of interface specificity of lipolytic enzymes. PMID:20727845
Examinations of the Chemical Step in Enzyme Catalysis.
Singh, P; Islam, Z; Kohen, A
2016-01-01
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions. © 2016 Elsevier Inc. All rights reserved.
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.
Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika
2016-01-01
Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.
Using enzyme folding to explore the mechanism of therapeutic touch: a feasibility study.
Strickland, Mallory L; Boylan, Helen M
2010-07-01
The goal of this research is to design a novel model using protein folding to study Therapeutic Touch, a noncontact form of energy manipulation healing. Presented is a feasibility study suggesting that the denaturation path of ribonuclease A may be a useful model to study the energy exchange underlying therapeutic touch. The folding of ribonuclease A serves as a controlled energy-requiring system in which energy manipulation can be measured by the degree of folding achieved. A kinetic assay and fluorescence spectroscopy are used to assess the enzyme-folding state. The data suggest that the kinetic assay is a useful means of assessing the degree of refolding, and specifically, the enzyme function. However, fluorescence spectroscopy was not shown to be an effective measurement of enzyme structure for the purposes of this work. More research is needed to assess the underlying mechanism of therapeutic touch to complement the existing studies. An enzyme-folding model may provide a useful means of studying the energy exchange in therapeutic touch.
Activation energy of extracellular enzymes in soils from different biomes.
Steinweg, J Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A
2013-01-01
Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones.
Value of bilirubin oxidase and its mutants in the diagnosis of hyperbilirubinemia.
Zhang, Lei; Zhang, Xiao; Luo, Zhi-Ying
2005-11-01
To elucidate the significance of the coordination amino acid residues in bilirubin oxidase (BO) and their kinetic characteristics, and evaluate whether BO mutants may serve as better diagnostic agent for hyperbilirubinemia. The BO mutants I402G and C457S were obtained by site-directed mutagenesis and confirmed by amino acid sequence analysis. Ru-incorporated C457S mutant was obtained by direct incubation of ruthenium compounds with the mutant. The electron paramagnetic resonance (EPR) spectra of the recombinant BO and the mutants were investigated, and the enzyme kinetics of the recombinant BO and I402G mutant were measured with bilirubin as the substrate at 25 degrees C. The BO mutants were expressed and purified successfully. The mutant I402G showed low enzyme activity, and had C457S virtually no enzyme activity. Nevertheless Ru-incorporation conferred higher enzyme activity to C457S mutant. The enzyme kinetic investigations revealed that the kinetic parameter k(cat) of the recombinant BO and I402G mutant was 235.8 min(-1) and 6.9 min(-1), respectively, suggesting higher enzyme activity of the recombinant BO. The coordinating amino acids have important significance in maintaining the integrity of active centers and enzyme activities of recombinant BO and its mutants. The enzyme activities of the mutants I402G and C457S are much lower than those of recombinant BO, therefore they are not appropriate for diagnostic purpose. Ru-incorporation facilitates the formation of a new intact active center in C457S mutant, which therefore acquires enzyme activity.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Her, Cheenou; Krishnan, V. V.
2018-02-01
The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.
Matosevic, S; Lye, G J; Baganz, F
2010-01-01
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.
Valério, Alexsandra; Nicoletti, Gabrieli; Cipolatti, Eliane P; Ninow, Jorge L; Araújo, Pedro H H; Sayer, Cláudia; de Oliveira, Débora
2015-03-01
With the objective to obtain immobilized Candida antarctica lipase B (CalB) with good activity and improved utilization rate, this study evaluated the influence of enzyme and crodamol concentrations and initiator type on the CalB enzyme immobilization in nanoparticles consisting of poly(methyl methacrylate) (PMMA) obtained by miniemulsion polymerization. The kinetic study of immobilized CalB enzyme in PMMA nanoparticles was evaluated in terms of monomer conversion, particle size, zeta potential, and relative activity. The optimum immobilization condition for CalB was compared with free enzyme in the p-NPL hydrolysis activity measurement. Results showed a higher CalB enzyme stability after 20 hydrolysis cycles compared with free CalB enzyme; in particular, the relative immobilized enzyme activity was maintained up to 40%. In conclusion, PMMA nanoparticles proved to be a good support for the CalB enzyme immobilization and may be used as a feasible alternative catalyst in industrial processes.
Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor
2009-01-01
Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor. PMID:19769373
Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D
2014-03-06
The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.
Enzyme Kinetics: The Use of Amylose Azure.
ERIC Educational Resources Information Center
Cusimano, Vincent J.
1978-01-01
Amylose azure can be used as a chromogenic substrate for alpha-amylase in studying the effects of temperature and pH enzyme action. This is a model system which students can use to measure the energy of activation using the Arrhenius plot. (Author/BB)
The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase
ERIC Educational Resources Information Center
Splittgerber, A. G.; And Others
1975-01-01
Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)
ERIC Educational Resources Information Center
Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces
2008-01-01
Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…
Shah, Naman B; Duncan, Thomas M
2014-02-18
We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε's conformations is predominant. The assay measures kinetics of ε's binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε's conformational changes.
Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman
2016-06-01
Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.
Real-time monitoring of enzyme activity in a mesoporous silicon double layer
Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.
2009-01-01
A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037
Enzyme efficiency: An open reaction system perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kinshuk, E-mail: kb36@rice.edu; Bhattacharyya, Kamal, E-mail: pchemkb@gmail.com
2015-12-21
A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for verymore » small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.« less
Using Trypsin & Soybean Trypsin Inhibitor to Teach Principles of Enzyme Kinetics
ERIC Educational Resources Information Center
Howard, David R.; Herr, Julie; Hollister, Rhiannon
2006-01-01
Trypsin and soybean trypsin inhibitor (Kunitz inhibitor) can be used in a relatively simple and inexpensive student exercise to demonstrate the usefulness of enzyme kinetics. The study of enzyme kinetics is essential to biology because enzymes play such a crucial role in the biochemical pathways of all living organisms. The data from enzyme…
Nonlinear Analysis of Experimental Measurements 7.6. Theoretical Chemistry
2015-01-26
Jianshu Cao, Robert J. Silbey, Jaeyoung Sung. Quantitative Interpretation of the Randomness in Single Enzyme Turnover Times, Biophysical Journal...Universality of Poisson Indicator and Fano Factor of Transport Event Statistics in Ion Channels and Enzyme Kinetics., J. Phys. B: At. Mol. Opt. Phys...TOTAL: 4 01/26/2015 Received Book 4.00 Jianshu Cao, Jianlan Wu. GENERALIZED MICHAELIS–MENTENEQUATION FOR CONFORMATION- MODULATEDMONOMERIC ENZYMES , New
Tang, J. Y.
2015-09-03
The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ] T of v with respect the total enzyme concentration [ E ] T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ] T of v with respect to the total substrate concentration [ S ] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E ] T, and persistently over-predicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S ] T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E ] T and ∂ ln v / ∂ ln [ S ] T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less
Camarillo-Cadena, Menandro; Garza-Ramos, Georgina; Peimbert, Mariana; Pérez-Hernández, Gerardo; Zubillaga, Rafael A
2011-06-01
β-glucosidase B (BglB), 1,4-β-D: -glucanohydrolase, is an enzyme with various technological applications for which some thermostable mutants have been obtained. Because BglB denatures irreversibly with heating, the stabilities of these mutants are assessed kinetically. It, therefore, becomes relevant to determine whether the measured rate constants reflect one or several elementary kinetic steps. We have analyzed the kinetics of heat denaturation of BglB from Paenibacillus polymyxa under various conditions by following the loss of secondary structure and enzymatic activity. The denaturation is accompanied by aggregation and an initial reversible step at low temperatures. At T ≥ T ( m ), the process follows a two-state irreversible mechanism for which the kinetics does not depend on the enzyme concentration. This behavior can be explained by a Lumry-Eyring model in which the difference between the rates of the irreversible and the renaturation steps increases with temperature. Accordingly, at high scan rates (≥1 °C min(-1)) or temperatures (T ≥ T ( m )), the measurable activation energy involves only the elementary step of denaturation.
Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
Du, Bin; Zielinski, Daniel C; Kavvas, Erol S; Dräger, Andreas; Tan, Justin; Zhang, Zhen; Ruggiero, Kayla E; Arzumanyan, Garri A; Palsson, Bernhard O
2016-06-06
The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches.
Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
Liebermeister, Wolfram; Klipp, Edda
2006-01-01
Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669
Different enzyme kinetic models.
Seibert, Eleanore; Tracy, Timothy S
2014-01-01
As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.
2013-01-01
Background PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. Results Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. Conclusions Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences. PMID:23916145
Modified kinetics of enzymes interacting with nanoparticles
NASA Astrophysics Data System (ADS)
Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.
2015-08-01
Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.
An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.
Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S
2016-06-01
We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.
Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation.
Kivi, Rait; Loog, Mart; Jemth, Per; Järv, Jaak
2013-10-01
Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].
NASA Technical Reports Server (NTRS)
Gelb, W. G.; Brandts, J. F.; Nordin, J. H.
1973-01-01
Honeybee and rabbit muscle GPDH were studied to obtain information at the chemical level regarding anomolous saturation kinetics of the honeybee enzyme. Results demonstrate that the enzyme's sulfhydryl groups are implicated in the process. Measured by DTNB titration, native honeybee GPDH has one less active SH than the native rabbit muscle enzyme and displays changes in overall sulfhydryl reactivity after preincubation with G-3-P or G-3-P plus NAD+. The total DTNB reactive sulfhydryls of rabbit muscle GPDH are not changed by preincubation with NAD+ or G-3-P; honeybee GPDH, under certain conductions of preincubation with these ligands, shows a decrease of two total DTNB reactive SH groups. This difference has been confirmed by an independent experiment in which the two enzymes were carboxymethylated with C-14 bromoacetic acid.
ERIC Educational Resources Information Center
Hardee, John R.; Delgado, Bryan; Jones, Wray
2011-01-01
The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-01
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-28
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
Barenholz, Uri; Davidi, Dan; Reznik, Ed; Bar-On, Yinon; Antonovsky, Niv; Noor, Elad; Milo, Ron
2017-01-01
A set of chemical reactions that require a metabolite to synthesize more of that metabolite is an autocatalytic cycle. Here, we show that most of the reactions in the core of central carbon metabolism are part of compact autocatalytic cycles. Such metabolic designs must meet specific conditions to support stable fluxes, hence avoiding depletion of intermediate metabolites. As such, they are subjected to constraints that may seem counter-intuitive: the enzymes of branch reactions out of the cycle must be overexpressed and the affinity of these enzymes to their substrates must be relatively weak. We use recent quantitative proteomics and fluxomics measurements to show that the above conditions hold for functioning cycles in central carbon metabolism of E. coli. This work demonstrates that the topology of a metabolic network can shape kinetic parameters of enzymes and lead to seemingly wasteful enzyme usage. DOI: http://dx.doi.org/10.7554/eLife.20667.001 PMID:28169831
Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students
ERIC Educational Resources Information Center
Flurkey, William H.; Inlow, Jennifer K.
2017-01-01
An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…
Müller-Matthesius, R
1975-05-01
The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.
Chen, Haoyuan; Piccirilli, Joseph A; Harris, Michael E; York, Darrin M
2015-11-01
Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remain controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2'O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2'O-ransphosphorylation reactions catalyzed by metal ions and enzymes. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015. Published by Elsevier B.V.
Hwang, I Y; Reardon, K F; Tessari, J D; Yang, R S
1996-04-01
A gas-liquid system was developed for enzyme kinetic study with volatile organic chemicals (VOCs) by modification of the gas uptake method for the in vivo physiologically based pharmacokinetic experiment. This gas-liquid system, designed in our laboratory, is composed of: 1) a diffusion chamber for adjusting initial vapor concentration by mixing ambient air and the VOCs; 2) a condenser for maintaining the liquid level in the incubation chamber; 3) a stainless-steel metal bellows pump for recirculating vapor in this system; 4) a gas chromatograph equipped with an autosampler and a flame ionization detector; and 5) a computer for controlling automation and data processing. Trichloroethylene (TCE) was used as a model chemical, and enzyme kinetics were studied by measuring the depletion of TCE in the gas phase of the system. TCE-at initial concentrations of 56, 620, and 1240 ppm-was incubated with rat liver microsomes and a NADPH regenerating system in a 100-ml round-bottom flask. Based on parallel enzyme assays using p-nitrophenol as a substrate, cytochrome P450IIE1, activity remained stable up to 3 hr under the incubation conditions (37 degrees C and pH 7.4) whereas addition of glutathione into the incubation mixture did not affect TCE metabolism. Kinetic constants were analyzed using a two-compartment pharmacokinetic model and the computer software SimuSolv. Statistical optimization using the maximum-likelihood method produced apparent in vitro Vmax and KM values of 0.55 nmol/mg protein/min and 0.9 microM, respectively. In addition, this newly developed methodology has a number of advantages over those reported in the literature, including the potential utility of determining tissue partition coefficients of VOCs for physiologically based pharmacokinetic modeling. We conclude that this gas-liquid system is suitable for determination of kinetic constants near realistic environmental concentrations of VOCs including TCE.
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2008-12-25
Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Optical fluorescence-guided imaging is increasingly used to guide surgery and endoscopic procedures. Sprayable enzyme-activatable probes are particularly useful because of high target-to-background ratios that increase sensitivity for tiny cancer foci. However, green fluorescent activatable probes suffers from interference from autofluorescence found in biological tissue. Dynamic imaging followed by the kinetic analysis could be detected local enzyme activity and used to differentiate specific fluorescence arising from an activated probe in a tumor from autofluorescence in background tissues especially when low concentrations of the dye are applied to detect tiny cancer foci. Serial fluorescence imaging was performed using various concentrations of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) which was sprayed on the peritoneal surface with tiny implants of SHIN3-dsRed ovarian cancer tumors. Temporal differences in signal between specific green fluorescence in cancer foci and non-specific autofluorescence in background tissue was measured and processed into three kinetic maps reflecting maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC), respectively. Especially at lower concentrations, kinetic maps derived from dynamic fluorescence imaging were clearly superior to unprocessed images for detection small cancer foci.
Astashkin, Andrei V; Feng, Changjian
2015-11-12
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R
1993-01-01
A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361
2014-08-01
chemical warfare nerve agents (CWNA). Enzymes identified in these screens should be capable of catalytically neutralizing the target agent under...soluble form. 4. Large-scale production of selected enzyme candidates, and their kinetic, structural and pharmacological evaluation 6...employed, with an enzyme protein concentration of 0.5-2 mM in the assay cuvette, the activity measured was indistinguishable from the rate of
Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation.
Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Robinson, Heather N; Li, Xiang; Mao, Chengde; Choi, Jong Hyun
2015-07-29
Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ∼1 nm s(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.
Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique
2014-07-01
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.
Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H
1986-01-01
A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism.
Kinetics of suicide substrates. Practical procedures for determining parameters.
Waley, S G
1985-01-01
Many clinically important or mechanistically interesting inhibitors react with enzymes by a branched pathway in which inactivation of the enzyme and formation of product are competing reactions. The steady-state kinetics for this pathway [Waley (1980) Biochem. J. 185, 771-773] gave equations for progress curves that were cumbersome. A convenient linear plot is now described. The time (t1/2) for 50% inactivation of the enzyme (this is also the time for 50% formation of product), or for 50% loss of substrate, is measured in a series of experiments in which the concentration of inhibitor, [I]0, is varied; in these experiments the ratio of the concentration of enzyme to the concentration of inhibitor is kept fixed. Then a plot of [I]0 X t1/2 against [I]0 is linear, and the kinetic parameters can be found from the slope and intercept. Furthermore, simplifications of the equations for progress curves are described that are valid when the concentration of inhibitors is high, or is low, or when the extent of reaction is low. The use of simulated data has shown that the recommended methods are not unduly sensitive to experimental error. PMID:4004802
A Century of Enzyme Kinetic Analysis, 1913 to 2013
Johnson, Kenneth A.
2013-01-01
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893
Schomburg, Ida; Chang, Antje; Placzek, Sandra; Söhngen, Carola; Rother, Michael; Lang, Maren; Munaretto, Cornelia; Ulas, Susanne; Stelzer, Michael; Grote, Andreas; Scheer, Maurice; Schomburg, Dietmar
2013-01-01
The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.
Multienzyme kinetics and sequential metabolism.
Wienkers, Larry C; Rock, Brooke
2014-01-01
Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.
Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.
2014-01-01
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611
Wang, Zhi-Jiang; Zheng, Li; Yang, Jun-Mo; Kang, Yani; Park, Yong-Doo
2018-06-01
Fucoidans are complex sulfated polysaccharides that have a wide range of biological activities. Previously, we reported the various effects of Fucus vesiculosus fucoidan on tyrosinase and B16 melanoma cells. In this study, to identify fucoidan-targeted proteins in B16 melanoma cells, we performed a proteomics study and integrated enzyme kinetics. We detected 19 candidate proteins dysregulated by fucoidan treatment. Among the probed proteins, the enzyme kinetics of two candidate enzymes, namely lactate dehydrogenase (LDH) as an upregulated protein and superoxide dismutase (SOD) as a downregulated enzyme, were determined. The enzyme kinetics results showed that Fucus vesiculosus fucoidan significantly inhibited LDH catalytic function while it did not affect SOD activity even at a high dose, while only slightly decreased activity (up to 10%) at a low dose. Based on our previous and present observations, fucoidan could inhibit B16 melanoma cells growth via regulating proteins/enzymes expression levels such as LDH and SOD known as cell survival biomarkers. Interestingly, both expression level and enzyme catalytic activity of LDH were regulated by fucoidan, which could directly induce the apoptotic effect on B16 melanoma cells along with SOD downregulation. This study highlights how combining proteomics with enzyme kinetics can yield valuable insights into fucoidan targets. Copyright © 2018 Elsevier B.V. All rights reserved.
A Simulation Game for the Study of Enzyme Kinetics and Inhibition.
ERIC Educational Resources Information Center
Chayoth, Reuben; Cohen, Annette
1996-01-01
Presents a simulation game that facilitates understanding of the concepts of enzyme kinetics and inhibition. The first part of the game deals with the relationship between enzyme activity and substrate concentration while the second part deals with characterization of competitive and noncompetitive inhibition of enzyme activity. (JRH)
Carbonic Anhydrase Catalysis: An Experiment on Enzyme Kinetics.
ERIC Educational Resources Information Center
Spyridis, Greg T.; And Others
1985-01-01
Describes an undergraduate enzyme kinetics experiment which uses bovine erythrocyte carbonic anhydrase, a very stable enzyme commercially available in lyophilized form. Includes background information, reactions involved, procedures used, and the calculation of typical results obtained. (JN)
Niland, Courtney N.; Jankowsky, Eckhard; Harris, Michael E.
2016-01-01
Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High Throughput Sequencing Kinetics (HTS-Kin) uses high throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigate the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we find that high-throughput sequencing, and experimental reproducibility contribute their own sources of error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed. PMID:27296633
ERIC Educational Resources Information Center
Nairn, Robert; Cresswell, Will; Nairn, Jacqueline
2015-01-01
The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu
The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined.more » KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less
Extracellular enzyme kinetics scale with resource availability
Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kineticsmore » resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.« less
Ruffet, M. L.; Droux, M.; Douce, R.
1994-02-01
Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.
Ruffet, M. L.; Droux, M.; Douce, R.
1994-01-01
Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109
ENZVU--An Enzyme Kinetics Computer Simulation Based upon a Conceptual Model of Enzyme Action.
ERIC Educational Resources Information Center
Graham, Ian
1985-01-01
Discusses a simulation on enzyme kinetics based upon the ability of computers to generate random numbers. The program includes: (1) enzyme catalysis in a restricted two-dimensional grid; (2) visual representation of catalysis; and (3) storage and manipulation of data. Suggested applications and conclusions are also discussed. (DH)
Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.
Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter
2011-03-01
Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.
Chen, Haoyuan; Piccirilli, Joseph A.; Harris, Michael E.; York, Darrin M.
2016-01-01
Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remains controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2′O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2′O-transphosphorylation reactions catalyzed by metal ions and enzymes. PMID:25812974
A century of enzyme kinetic analysis, 1913 to 2013.
Johnson, Kenneth A
2013-09-02
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
A new method to characterize the kinetics of cholinesterases inhibited by carbamates.
Xiao, Qiaoling; Zhou, Huimin; Wei, Hong; Du, Huaqiao; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco
2017-09-10
The inhibition of cholinesterases (ChEs) by carbamates includes a carbamylation (inhibition) step, in which the drug transfers its carbamate moiety to the active site of the enzyme and a decarbamylation (activity recovery) step, in which the carbamyl group is hydrolyzed from the enzyme. The carbamylation and decarbamylation kinetics decide the extent and the duration of the inhibition, thus the full characterization of candidate carbamate inhibitors requires the measurement of the kinetic constants describing both steps. Carbamylation and decarbamylation rate constants are traditionally measured by two separate set of experiments, thus making the full characterization of candidate inhibitors time-consuming. In this communication we show that by the analysis of the area under the inhibition-time curve of cholinesterases inhibited by carbamates it is possible to calculate the decarbamylation rate constant from the same data traditionally used to characterize only the carbamylation kinetics, therefore it is possible to obtain a full characterization of the inhibition with a single set of experiments. The characterization of the inhibition kinetics of human and dog plasma butyrylcholinesterase and of human acetylcholinesterase by bambuterol and bambuterol monocarbamate enantiomers was used to demonstrate the validity of the approach. The results showed that the proposed method provides reliable estimations of carbamylation and decarbamylation rate constants thus representing a simple and useful approach to reduce the time required for the characterization of carbamate inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.
KINEXP: Computer Simulation in Enzyme Kinetics.
ERIC Educational Resources Information Center
Gelpi, Josep Lluis; Domenech, Carlos
1988-01-01
Describes a program which allows students to identify and characterize several kinetic inhibitory mechanisms. Uses the generic model of reversible inhibition of a monosubstrate enzyme but can be easily modified to run other models such as bisubstrate enzymes. Uses MS-DOS BASIC. (MVL)
Rolland, N; Ruffet, M L; Job, D; Douce, R; Droux, M
1996-02-15
A synthetic gene encoding the mature spinach- chloroplast O-acetylserine (thiol)-lyase was constructed and expressed in an Escherichia coli strain carrying the T7 RNA polymerase system. The pure recombinant protein was obtained at high yield (6 mg/l cell culture) using a new purification procedure that includes affinity chromatography on Green A agarose. Its specific activity was of the order of 1000 U/mg, and its physical properties were similar to those previously reported for the natural enzyme isolated from spinach chloroplasts. In particular the recombinant enzyme, as for the natural enzyme, behaved as a homodimer composed of two identical subunits each of Mr 35000. From steady-state kinetic studies using sulfide or 5-thio(2-nitrobenzoate) (Nbs) as alternative nucleophilic co-substrates, the enzyme exhibited positive kinetic co-operativity with respect to O-acetylserine [Ser(Ac)] in the presence of sulfide and a negative kinetic co-operativity in the presence of Nbs. Binding of Ser(Ac) to the enzyme was also investigated by absorbance and fluorescence measurements to obtain insight into the role of pyridoxal 5'-phosphate and of the single tryptophan residue (Trp176) present in the enzyme molecule. Addition of Ser(Ac) to the enzyme provoked the disappearance of the 409-nm absorbance band of the pyridoxal 5'-phosphate Schiff base and the appearance of two new absorbance bands, the one located between 320 nm and 360 nm and the other centered at 470 nm. Also, the fluorescence emission of the pyridoxal 5'-phosphate Schiff base was quenched upon addition of Ser(Ac) to the enzyme. These changes were most presumably due to the formation of a Schiff base intermediate between alpha-aminoacrylate and the pyridoxal 5'-phosphate cofactor. The fluorescence emission of Trp176 was also quenched upon Ser(Ac) binding to the enzyme. Quantitative analysis of the absorbance and fluorescence equilibrium data disclosed a co-operative behavior in Ser(Ac) binding, in agreement with the steady-state kinetic results. Fluorescence quenching experiments with the acrylamide and iodide revealed that the indole ring of Trp176 was largely exposed and located within the pyridoxal 5'-phosphate active site. These results are consistent with the finding that the native enzyme is composed of two identical subunits. Yet, presumably due to subunit-subunit interactions, the enzyme exhibits two non-equivalent pyridoxal-5'-phosphate-containing active sites.
Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A
1989-01-01
We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819
A Hands-On Classroom Simulation to Demonstrate Concepts in Enzyme Kinetics
ERIC Educational Resources Information Center
Junker, Matthew
2010-01-01
A classroom exercise is described to introduce enzyme kinetics in an undergraduate biochemistry or chemistry course. The exercise is a simulation in which a student acts as an enzyme that "catalyzes" the unscrewing of a nut from a bolt. With other students assisting, the student enzyme carries out reactions with bolt-nut substrates under different…
Eis, C; Watkins, M; Prohaska, T; Nidetzky, B
2001-01-01
Initial-velocity measurements for the phospholysis and synthesis of alpha,alpha-trehalose catalysed by trehalose phosphorylase from Schizophyllum commune and product and dead-end inhibitor studies show that this enzyme has an ordered Bi Bi kinetic mechanism, in which phosphate binds before alpha,alpha-trehalose, and alpha-D-glucose is released before alpha-D-glucose 1-phosphate. The free-energy profile for the enzymic reaction at physiological reactant concentrations displays its largest barriers for steps involved in reverse glucosyl transfer to D-glucose, and reveals the direction of phospholysis to be favoured thermodynamically. The pH dependence of kinetic parameters for all substrates and the dissociation constant of D-glucal, a competitive dead-end inhibitor against D-glucose (K(i)=0.3 mM at pH 6.6 and 30 degrees C), were determined. Maximum velocities and catalytic efficiencies for the forward and reverse reactions decrease at high and low pH, giving apparent pK values of 7.2--7.8 and 5.5--6.0 for two groups whose correct protonation state is required for catalysis. The pH dependences of k(cat)/K are interpreted in terms of monoanionic phosphate and alpha-D-glucose 1-phosphate being the substrates, and of the pK value seen at high pH corresponding to the phosphate group in solution or bound to the enzyme. The K(i) value for the inhibitor decreases outside the optimum pH range for catalysis, indicating that binding of D-glucal is tighter with incorrectly ionized forms of the complex between the enzyme and alpha-D-glucose 1-phosphate. Each molecule of trehalose phosphorylase contains one Mg(2+) that is non-dissociable in the presence of metal chelators. Measurements of the (26)Mg(2+)/(24)Mg(2+) ratio in the solvent and on the enzyme by using inductively coupled plasma MS show that exchange of metal ion between protein and solution does not occur at measurable rates. Tryptic peptide mass mapping reveals close structural similarity between trehalose phosphorylases from basidiomycete fungi. PMID:11389683
Shetty, A. S.; Gaertner, F. H.
1973-01-01
(i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 × 10−6 and 5.4 × 10−4 M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals. PMID:4266242
Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz
2015-08-07
Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.
Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W
1987-01-01
The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results. PMID:3032390
Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W
1987-01-01
The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results.
Mathematical model for internal pH control in immobilized enzyme particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, J.K.; Rousseau, I.
A mathematical model has been developed for the internal pH control in immobilized enzyme particles. This model describes the kinetics of a coupled system of two enzymes, immobilized in particles of either planar, cylindrical, or spherical shape. The enzyme kinetics are assumed to be of a mixed type, including Michaelis-Menten kinetics, uncompetitive substrate inhibition, and competitive and noncompetitive product inhibition. In a case study we have considered the enzyme combination urease and penicillin acylase, whose kinetics are coupled through the pH dependence of the kinetic parameters. The hydrolysis of urea by urease yields ammonia and carbon dioxide, whereas benzylpenicillin (Pen-G)more » is converted to 6-animo penicillanic acid and phenyl acetic acid by penicillin acylase. The production of acids by the latter enzyme will cause a decrease in pH. Because of the presence of the ammonia-carbon dioxide system, however, the pH may be kept under control. In order to obtain information about the optimum performance of this enzymatic pH controller, we have computed the effectiveness factor and the conversion in a CSTR at different enzyme loadings. The results of the computer simulations indicate that a high conversion of Pen-G may be achieved (80-90%) at bulk pH values of about 7.5 - 8. 27 references.« less
Xiu, G H; Jiang, L; Li, P
2001-07-05
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.
Barker, R; Boden, N; Cayley, G; Charlton, S C; Henson, R; Holmes, M C; Kelly, I D; Knowles, P F
1979-01-01
Benzylamine oxidase from pig plasma has been studied by a variety of chemical and physical techniques. 1. Analytical ultracentrifugation, gel electrophoresis and isoelectric-focusing studies suggest that the enzyme is composed of two subunits with closely similar primary structures. 2. E.s.r. and n.m.r. measurements show that the enzyme contains two well-separated (greater than 0.6 nm) Cu2+ ions at chemically distinct sites. Each Cu2+ ion is coordinated by two water molecules, one 'axial' and the other 'equatorial'. Both water molecules undergo fast exchange (10(5)--10(8) s-1) with solvent and are deprotonated in the pH range 8--9, but only the equatorial water molecule is displaced by the inhibitors N3- and CN-. 3. Kinetic and e.s.r. measurements show that azide and cyanide compete against O2 binding and also make the two Cu2+ sites identical. It is concluded that Cu2+ must participate in the re-oxidation of reduced enzyme by molecular O2. PMID:218560
Probing the Intermediacy of Covalent RNA Enzyme Complexes in RNA Modification Enzymes
Chervin, Stephanie M.; Kittendorf, Jeffrey D.; Garcia, George A.
2009-01-01
Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT). PMID:17673081
Saa, Pedro; Nielsen, Lars K.
2015-01-01
Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic behaviour of these enzymes, but it also provided insights about the particular features underpinning the observed kinetics. Overall, this framework will enable systematic parameterization and sampling of enzymatic reactions. PMID:25874556
A Comprehensive Enzyme Kinetic Exercise for Biochemistry
ERIC Educational Resources Information Center
Barton, Janice S.
2011-01-01
This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…
Cotten, Cameron; Reed, Jennifer L
2013-01-30
Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.
2013-01-01
Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254
Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas
2012-01-01
Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503
Müntze, Gesche Mareike; Baur, Barbara; Schäfer, Wladimir; Sasse, Alexander; Howgate, John; Röth, Kai; Eickhoff, Martin
2015-02-15
Penicillinase-modified AlGaN/GaN field-effect transistors (PenFETs) are utilized to systematically investigate the covalently immobilized enzyme penicillinase under different experimental conditions. We demonstrate quantitative evaluation of covalently immobilized penicillinase layers on pH-sensitive field-effect transistors (FETs) using an analytical kinetic PenFET model. This kinetic model is explicitly suited for devices with thin enzyme layers that are not diffusion-limited, as it is the case for the PenFETs discussed here. By means of the kinetic model it was possible to extract the Michaelis constant of covalently immobilized penicillinase as well as relative transport coefficients of the different species associated with the enzymatic reaction which, exempli gratia, give information about the permeability of the enzymatic layer. Based on this analysis we quantify the reproducibility and the stability of the analyzed PenFETs over the course of 33 days as well as the influence of pH and buffer concentration on the properties of the enzymatic layer. Thereby the stability measurements reveal a Michalis constant KM of (67 ± 13)μM while the chronological development of the relative transport coefficients suggests a detachment of physisorbed penicillinase during the first two weeks since production. Our results show that AlGaN/GaN PenFETs prepared by covalent immobilization of a penicillinase enzyme layer present a powerful tool for quantitative analysis of enzyme functionality. Copyright © 2014 Elsevier B.V. All rights reserved.
Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily
2016-01-01
Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Barteri, Mario; De Carolis, Roberta; Marinelli, Fiorenzo; Tomassetti, Goliardo; Montemiglio, Linda Celeste
2016-01-01
This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry.
Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587
Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.
Zheng, Jianqiu; Doskey, Paul V
2015-02-17
An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.
Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R
2001-02-01
The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.
NASA Technical Reports Server (NTRS)
Lieberman, M. M.; Lanyi, J. K.
1972-01-01
The effect of salt on the activity, stability, and allosteric properties of catabolic threonine deaminase from Halobacterium cutirubrum was studied. The enzyme exhibits sigmoidal kinetics with the substrate, threonine. The Hill slope is 1.55 at pH 10. The enzyme is activated by ADP at low substrate concentrations. In the presence of this effector, sigmoidal kinetics are no longer observed. At pH 10, in the absence of ADP, enzyme activity increases with increasing NaCl concentration from 0 to 4 M.
Muthu, Pravin; Lutz, Stefan
2016-04-05
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enzyme Kinetics in Microgravity
NASA Astrophysics Data System (ADS)
Liu, C. C.; Licata, V. J.
2010-04-01
The kinetics of some enzymes have been found to be enhanced by the microgravity environment. This is a relatively small effect, but is sufficient to have physiological effects and to impact pharmaceutical therapy in microgravity.
SigrafW: An Easy-to-Use Program for Fitting Enzyme Kinetic Data
ERIC Educational Resources Information Center
Leone, Francisco Assis; Baranauskas, Jose Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida
2005-01-01
SigrafW is Windows-compatible software developed using the Microsoft[R] Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent…
The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.
ERIC Educational Resources Information Center
Splittgerber, A. G.; Sohl, Julie
1988-01-01
Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)
Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase
ERIC Educational Resources Information Center
Bassingthwaighte, James B.; Chinn, Tamara M.
2013-01-01
Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…
ERIC Educational Resources Information Center
Stefanidis, Lazaros; Scinto, Krystal V.; Strada, Monica I.; Alper, Benjamin J.
2018-01-01
Most biochemical transformations involve more than one substrate. Bisubstrate enzymes catalyze multiple chemical reactions in living systems and include members of the transferase, oxidoreductase, and ligase enzyme classes. Working knowledge of bisubstrate enzyme kinetic models is thus of clear importance to the practicing biochemist. However,…
The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications
ERIC Educational Resources Information Center
Silverstein, Todd
2011-01-01
Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…
Introducing Michaelis-Menten Kinetics through Simulation
ERIC Educational Resources Information Center
Halkides, Christopher J.; Herman, Russell
2007-01-01
We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…
A Simple Classroom Teaching Technique to Help Students Understand Michaelis-Menten Kinetics
ERIC Educational Resources Information Center
Runge, Steven W.; Hill, Brent J. F.; Moran, William M.
2006-01-01
A new, simple classroom technique helps cell biology students understand principles of Michaelis-Menten enzyme kinetics. A student mimics the enzyme and the student's hand represents the enzyme's active site. The catalytic event is the transfer of marbles (substrate molecules) by hand from one plastic container to another. As predicted, increases…
Berry, Hugues
2002-10-01
Conventional equations for enzyme kinetics are based on mass-action laws, that may fail in low-dimensional and disordered media such as biological membranes. We present Monte Carlo simulations of an isolated Michaelis-Menten enzyme reaction on two-dimensional lattices with varying obstacle densities, as models of biological membranes. The model predicts that, as a result of anomalous diffusion on these low-dimensional media, the kinetics are of the fractal type. Consequently, the conventional equations for enzyme kinetics fail to describe the reaction. In particular, we show that the quasi-stationary-state assumption can hardly be retained in these conditions. Moreover, the fractal characteristics of the kinetics are increasingly pronounced as obstacle density and initial substrate concentration increase. The simulations indicate that these two influences are mainly additive. Finally, the simulations show pronounced S-P segregation over the lattice at obstacle densities compatible with in vivo conditions. This phenomenon could be a source of spatial self organization in biological membranes.
Berry, Hugues
2002-01-01
Conventional equations for enzyme kinetics are based on mass-action laws, that may fail in low-dimensional and disordered media such as biological membranes. We present Monte Carlo simulations of an isolated Michaelis-Menten enzyme reaction on two-dimensional lattices with varying obstacle densities, as models of biological membranes. The model predicts that, as a result of anomalous diffusion on these low-dimensional media, the kinetics are of the fractal type. Consequently, the conventional equations for enzyme kinetics fail to describe the reaction. In particular, we show that the quasi-stationary-state assumption can hardly be retained in these conditions. Moreover, the fractal characteristics of the kinetics are increasingly pronounced as obstacle density and initial substrate concentration increase. The simulations indicate that these two influences are mainly additive. Finally, the simulations show pronounced S-P segregation over the lattice at obstacle densities compatible with in vivo conditions. This phenomenon could be a source of spatial self organization in biological membranes. PMID:12324410
Mechanism of Na+ binding to thrombin resolved by ultra-rapid kinetics
Gianni, Stefano; Ivarsson, Ylva; Bah, Alaji; Bush-Pelc, Leslie A.; Di Cera, Enrico
2007-01-01
The interaction of Na+ and K+ with proteins is at the basis of numerous processes of biological importance. However, measurement of the kinetic components of the interaction has eluded experimentalists for decades because the rate constants are too fast to resolve with conventional stopped-flow methods. Using a continuous-flow apparatus with a dead time of 50 μs we have been able to resolve the kinetic rate constants and entire mechanism of Na+ binding to thrombin, an interaction that is at the basis of the procoagulant and prothrombotic roles of the enzyme in the blood. PMID:17935858
Prediction of distal residue participation in enzyme catalysis
Brodkin, Heather R; DeLateur, Nicholas A; Somarowthu, Srinivas; Mills, Caitlyn L; Novak, Walter R; Beuning, Penny J; Ringe, Dagmar; Ondrechen, Mary Jo
2015-01-01
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues. PMID:25627867
ERIC Educational Resources Information Center
Grunwald, Sandra K.; Krueger, Katherine J.
2008-01-01
Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…
Thermal inactivation kinetics of β-galactosidase during bread baking.
Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I
2017-06-15
In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Knies, Jennifer L.; Kingsolver, Joel G.
2013-01-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477
Knies, Jennifer L; Kingsolver, Joel G
2010-08-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram
2016-11-01
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified.
A Study in Enzyme Kinetics Using an Ion-Specific Electrode.
ERIC Educational Resources Information Center
Turchi, Sandra; And Others
1989-01-01
Describes an undergraduate biochemistry laboratory experiment on enzyme kinetics using the D-amino acid oxidase system and an ammonia electrode. Preparation of an ammonia standard curve, a sample preparation, and inhibition studies are discussed. (YP)
An Operational Definition of the Steady State in Enzyme Kinetics.
ERIC Educational Resources Information Center
Barnsley, E. A.
1990-01-01
The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)
Biosensors for the determination of environmental inhibitors of enzymes
NASA Astrophysics Data System (ADS)
Evtugyn, Gennadii A.; Budnikov, Herman C.; Nikolskaya, Elena B.
1999-12-01
Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.
Slow domain reconfiguration causes power-law kinetics in a two-state enzyme.
Grossman-Haham, Iris; Rosenblum, Gabriel; Namani, Trishool; Hofmann, Hagen
2018-01-16
Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.
Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites
Porter, Carol M.
2011-01-01
Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502
Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2016-01-01
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185
Kinetic Landscape of a Peptide Bond-Forming Prolyl Oligopeptidase
2017-01-01
Prolyl oligopeptidase B from Galerina marginata (GmPOPB) has recently been discovered as a peptidase capable of breaking and forming peptide bonds to yield a cyclic peptide. Despite the relevance of prolyl oligopeptidases in human biology and disease, a kinetic analysis pinpointing rate-limiting steps for a member of this enzyme family is not available. Macrocyclase enzymes are currently exploited to produce cyclic peptides with potential therapeutic applications. Cyclic peptides are promising druglike molecules because of their stability and conformational rigidity. Here we describe an in-depth kinetic characterization of a prolyl oligopeptidase acting as a macrocyclase enzyme. By combining steady-state and pre-steady-state kinetics, we propose a kinetic sequence in which a step after macrocyclization limits steady-state turnover. Additionally, product release is ordered, where the cyclic peptide departs first followed by the peptide tail. Dissociation of the peptide tail is slow and significantly contributes to the turnover rate. Furthermore, trapping of the enzyme by the peptide tail becomes significant beyond initial rate conditions. The presence of a burst of product formation and a large viscosity effect further support the rate-limiting nature of a physical step occurring after macrocyclization. This is the first detailed description of the kinetic sequence of a macrocyclase enzyme from this class. GmPOPB is among the fastest macrocyclases described to date, and this work is a necessary step toward designing broad-specificity efficient macrocyclases. PMID:28332820
ERIC Educational Resources Information Center
Guerra, Nelson Pérez
2017-01-01
A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…
Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas
2010-10-01
Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.
A new study of the kinetics of curd production in the process of cheese manufacture.
Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez
2017-11-01
We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.
A Kinetic Experiment for the Biochemistry Laboratory.
ERIC Educational Resources Information Center
Palmer, Richard E.
1986-01-01
Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)
Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf
2006-10-01
Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.
Schnell, Santiago; Chappell, Michael J; Evans, Neil D; Roussel, Marc R
2006-01-01
A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.
Experimental Evidence for a Hydride Transfer Mechanism in Plant Glycolate Oxidase Catalysis*
Dellero, Younès; Mauve, Caroline; Boex-Fontvieille, Edouard; Flesch, Valérie; Jossier, Mathieu; Tcherkez, Guillaume; Hodges, Michael
2015-01-01
In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The 12C/13C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the 13C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes. PMID:25416784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjon, A.; Iborra, J.L.; Gomez, J.L.
A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumars, P.A.; Mayer, L.M.
1999-04-19
The authors assayed digestive capabilities of marine deposit feeders (animals that eat sediments) by using fluorescently tagged substrates and contact-angle measurements of surfactancy. Polychaetes on average showed higher enzyme activities and surfactancy than echinoderms. They found that surfactants produced by deposit feeders substantially enhance their abilities to solubilize hydrophobic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Amounts solubilized were consistent with incorporation into micelles of the surfactant. Kinetics of PAH uptake could be explained by passive diffusion. The authors also found that the digestive strategies of deposit feeders often produce concentrations of proteins (digestive enzymes plus products of protein digestion)more » that are sufficient to solubilize metals. Histidine residues in these proteins were found to be critical for copper binding.« less
ERIC Educational Resources Information Center
Werner, R. Marshall; Johnson, Austin
2017-01-01
Understanding how to perform an enzyme assay is a critical learning skill in the undergraduate biochemistry curriculum. Students in biochemistry typically have been exposed to the use of NMR spectroscopy as a tool to determine chemical structure, but rarely are they exposed to the utility of NMR to evaluate enzyme kinetics. Furthermore, coverage…
ERIC Educational Resources Information Center
House, Chloe; Meades, Glen; Linenberger, Kimberly J.
2016-01-01
Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…
Liposomal Encapsulation Enzymes: From Medical Applications to Kinetic Characteristics.
Jahadi, M; Khosravi-Darani, K
2017-01-01
Liposomes and nanoliposomes as small vesicles composed of phospholipid bilayer (entrapping one or more hydrophilic or lipophilic components) have recently found several potential applications in medicine and food industry. These vesicles may protect the core materials from moisture, heat and other extreme conditions. They may also provide controlled release of various bioactive agents, including food ingredients at the right place and time. Potential applications of enzyme-loaded liposomes are in the medical or biomedical field, particularly for the enzymereplacement therapy, as well as cheese industry for production of functional foods with improved health beneficial impacts on the consumer. Encapsulation process has a recondite impact on enzymes. In fact, liposome preparation techniques may alter the pH and temperature optima, affinity of the enzyme to substrate (Km), and maximum rate of reaction (Vmax). In addition, in this paper, the impact of process variables on the kinetic characteristics of enzymes encapsulated in liposomes was investigated. Also, the effects of enzyme entrapment in liposomes, prepared by different methods, on the catalytic efficiency of enzyme, as well as its kinetic properties and stability compared to native (free) enzymes has been reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, J. Y.
The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less
Tang, J. Y.
2015-12-01
The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less
NASA Astrophysics Data System (ADS)
Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.
2013-06-01
Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.
The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function
Johnson, Troy A.; Holyoak, Todd
2012-01-01
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136
Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P
2006-08-10
Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.
Yu, L; Ishida, T; Ozawa, K; Akutsu, H; Horiike, K
2001-03-01
Two distinct forms of acetate kinase were purified to homogeneity from a sulfate-reducing bacterium Desulfovibrio vulgaris Miyazaki F. The enzymes were separated from the soluble fraction of the cells on anion exchange columns. One acetate kinase (AK-I) was a homodimer (alpha(S)(2)) and the other (AK-II) was a heterodimer (alpha(S)alpha(L)). On SDS-PAGE, alpha(L) and alpha(S) subunits migrated as bands of 49.3 and 47.8 kDa, respectively, but they had an identical N-terminal amino acid sequence. A rapid HPLC method was developed to directly measure ADP and ATP in assay mixtures. Initial velocity data for AK-I and AK-II were collected by this method and analyzed based on a random sequential mechanism, assuming rapid equilibrium for the substrate binding steps. All kinetic parameters for both the forward acetyl phosphate formation and the reverse ATP formation catalyzed by AK-I and AK-II were successfully determined. The two enzymes showed similar kinetic properties in Mg(2+) requirement, pH-dependence and magnitude of kinetic parameters. These results suggest that two forms of acetate kinase are produced to finely regulate the enzyme function by post-translational modifications of a primary gene product in Desulfovibrio vulgaris.
NASA Astrophysics Data System (ADS)
Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile
2018-04-01
Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p < 0.05) with increasing drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.
Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet
2007-01-01
In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.
Liu, Xiaoxia; Yang, Jiqing; Sun, Shucheng; Guo, Liping; Yang, Li
2016-10-01
We present here an easy-to-operate and efficient method for enzyme and inhibition assays of urease, which is a widely distributed and important enzyme that catalyzes the hydrolysis of urea to ammonia and CO 2 . The assay was achieved by integrating CE technique and rapid on-line derivatization method, allowing us to continuously drive the sample to the capillary, thus to measure the amount of the product ammonia from the beginning to the end of the reaction. The method exhibits excellent repeatability with RSD as low as 2.5% for the initial reaction rate (n = 5), with the LOD of ammonia of 20 μM (S/N = 5). The enzyme activity as well as the inhibition of urease by Cu 2+ were investigated using the present method. The results show that Cu 2+ is a noncompetitive inhibitor on urease, in accordance with the result published in the literature. The enzyme activity and inhibition kinetic constants were obtained and were found to be consistent with the results of traditional off-line enzyme assays. Our study indicates that the present approach is a reliable and convenient method for analysis of the urease activity and inhibition kinetics by continuous on-line monitoring of the ammonium formation based on CE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of time-course experiments for kinetic model discrimination.
Lages, Nuno F; Cordeiro, Carlos; Sousa Silva, Marta; Ponces Freire, Ana; Ferreira, António E N
2012-01-01
Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction.In this work, a method is proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We focus on models with systems of ordinary differential equations as the underlying mathematical description. The method provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-objective optimization problems was used.The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme, glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-substrate mechanism for the kinetics of yeast glyoxalase I.
Preuveneers, M. J.; Peacock, D.; Crook, E. M.; Clark, J. B.; Brocklehurst, K.
1973-01-01
1. The reversible NAD+-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0°C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrate–NAD+ oxidoreductase, EC 1.1.1.30), was studied by initial-velocity, dead-end inhibition and product-inhibition analysis. 2. The reactions were carried out on (a) the soluble enzyme from Rhodopseudomonas spheroides and (b) an insoluble derivative of this enzyme prepared by its covalent attachment to DEAE-cellulose by using 2-amino-4,6-dichloro-s-triazine as coupling agent. 3. The insolubilized enzyme preparation contained 5mg of protein/g wet wt. of total material, and when freshly prepared its specific activity was 1.2μmol/min per mg of protein, which is 67% of that of the soluble dialysed enzyme. 4. The reactions catalysed by both the enzyme in solution and the insolubilized enzyme were shown to follow sequential pathways in which the nicotinamide nucleotides bind obligatorily first to the enzyme. Evidence is presented for kinetically significant ternary complexes and that the rate-limiting step(s) of both catalyses probably involves isomerization of the enzyme–nicotinamide nucleotide complexes and/or dissociation of the nicotinamide nucleotides from the enzyme. Both catalyses therefore are probably best described as ordered Bi Bi mechanisms, possibly with multiple enzyme–nicotinamide nucleotide complexes. 5. The kinetic parameters and the calculable rate constants for the catalysis by the soluble enzyme are similar to the corresponding parameters and rate constants for the catalysis by the insolubilized enzyme. PMID:4352835
Beyond Vmax and Km: How details of enzyme function influence geochemical cycles
NASA Astrophysics Data System (ADS)
Steen, A. D.
2015-12-01
Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pazhanisamy, S.; Pratt, R.F.
The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-(((phenylacetyl)glycyl)oxy)benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presencemore » of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.« less
Kinetic studies of L-asparaginase from Penicillium digitatum.
Shrivastava, Abhinav; Khan, Abdul Arif; Shrivastav, Archana; Jain, Sudhir K; Singhal, Pradeep K
2012-01-01
L-Asparaginase is an enzyme used in the treatment of acute lymphoblastic leukemia and other related malignancies. Its further use includes reduction of asparagine concentration in food products, which may lead to formation of acrylamide. Currently bacterial asparaginase is produced at industrial scale, but the enzyme isolated from bacterial origin is often associated with adverse reactions. These side effects require development of asparaginase from alternative sources. In the present study, Penicillium digitatum was explored for the production of extracellular L-asparaginase using modified Czapek-Dox media. The enzyme was purified about 60.95-fold and then kinetic study showed that the Km value of the enzyme was 1 × 10⁻⁵ M. The optimum pH and temperature for the enzyme were 7.0 and 30°C, respectively. The optimum incubation period for L-asparaginase was 15 min. This work concludes that this enzyme can be a suitable candidate due to its strong kinetic properties, and further research can usher into development of asparaginase formulation from fungal origin with less adverse effects.
ERIC Educational Resources Information Center
Gonzalez-Cruz, Javier; Rodriguez-Sotres, Rogelio; Rodriguez-Penagos, Mireya
2003-01-01
Enzyme kinetics is a difficult subject for students to learn and for tutors to teach. During the practicals included in the biochemical courses at the Faculty of Chemistry of Universidad Nacional Autonoma de Mexico, we found that the students acquire good training in the calculations to obtain kinetic parameters such as K[subscript m], V[subscript…
2012-01-01
Backgrounds Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate. Results In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses. Conclusion We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general. PMID:23031230
Enzymatically triggered rupture of polymersomes.
Jang, Woo-Sik; Park, Seung Chul; Reed, Ellen H; Dooley, Kevin P; Wheeler, Samuel F; Lee, Daeyeon; Hammer, Daniel A
2016-01-28
Polymersomes are robust vesicles made from amphiphilic block co-polymers. Large populations of uniform giant polymersomes with defined, entrapped species can be made by templating of double-emulsions using microfluidics. In the present study, a series of two enzymatic reactions, one inside and the other outside of the polymersome, were designed to induce rupture of polymersomes. We measured how the kinetics of rupture were affected by altering enzyme concentration. These results suggest that protocells with entrapped enzymes can be engineered to secrete contents on cue.
Prediction of distal residue participation in enzyme catalysis.
Brodkin, Heather R; DeLateur, Nicholas A; Somarowthu, Srinivas; Mills, Caitlyn L; Novak, Walter R; Beuning, Penny J; Ringe, Dagmar; Ondrechen, Mary Jo
2015-05-01
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues. 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.
ERIC Educational Resources Information Center
Nichols, C. S.; Cromartie, T. H.
1979-01-01
Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)
Flexer, Victoria; Mano, Nicolas
2010-02-15
We propose here a new method for the direct and continuous measurement of O(2) and glucose generated during photosynthesis. Our system is based on amperometric enzyme biosensors comprising immobilized redox enzymes (glucose oxidase (GOx) and bilirubin oxidase (BOD)) and redox hydrogels "wiring" the enzyme reaction centers to electrodes. We found that these electrodes, implanted into a living plant, responded in real time to visible light as an external stimulus triggering photosynthesis. They proved to be highly selective and fast enough and may be a valuable tool in understanding photosynthesis kinetics. Furthermore, we demonstrate that with our electrodes we could harvest glucose and O(2) produced during photosynthesis to produce energy, transforming sunlight into electricity in a simple, green, renewable, and sustainable way.
Vrzheshch, P V
2015-01-01
Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.
Yang, Qi; Luo, Kun; Li, Xiao-ming; Wang, Dong-bo; Zheng, Wei; Zeng, Guang-ming; Liu, Jing-jin
2010-05-01
In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge and the kinetic analysis of hydrolysis process were evaluated. The results indicated that amylase treatment displayed higher hydrolysis efficiency than that of protease. VSS reduction greatly increased to 39.70% for protease and 54.24% for amylase at the enzyme dosage of 6% (w/w), respectively. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50 degrees Celsius, which could be well described by the amended Arrhenius equation. Mixed-enzyme had great impact on sludge solubilisation than single enzyme. The mixture of two enzymes (protease:amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10% (control test) to 68.43% at the temperature of 50 degrees Celsius. Correspondingly, the concentration of reducing sugar and NH(4)(+)-N improved about 377% and 201%, respectively. According to the kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics. Compared with control test, the hydrolysis rate improved significantly at 50 degrees Celsius when either single enzyme or mixed-enzyme was added. Copyright 2009. Published by Elsevier Ltd.
Davidi, Dan; Noor, Elad; Liebermeister, Wolfram; Bar-Even, Arren; Flamholz, Avi; Tummler, Katja; Barenholz, Uri; Goldenfeld, Miki; Shlomi, Tomer; Milo, Ron
2016-01-01
Turnover numbers, also known as kcat values, are fundamental properties of enzymes. However, kcat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are kcat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate kmaxvivo, the observed maximal catalytic rate of an enzyme inside cells. Comparison with kcat values from Escherichia coli, yields a correlation of r2= 0.62 in log scale (p < 10−10), with a root mean square difference of 0.54 (3.5-fold in linear scale), indicating that in vivo and in vitro maximal rates generally concur. By accounting for the degree of saturation of enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between kmaxvivo and kcat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a high-throughput method for extracting enzyme kinetic constants from omics data. PMID:26951675
Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme
2011-03-18
11]. To facilitate measurement of additional kinetic constants, secreted forms of wt and V146H/L363E hCE1 were expressed in Spodoptera frugiperda Sf21...Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda , and COS7 cells for recombinant gene expression
Wilson, Kerry A; Finch, Craig A; Anderson, Phillip; Vollmer, Frank; Hickman, James J
2015-01-01
Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
Filimonov, I S; Berzova, A P; Barkhatov, V I; Krivoshey, A V; Trushkin, N A; Vrzheshch, P V
2018-02-01
The kinetic mechanism of the interaction of nonsteroidal anti-inflammatory drugs (NSAIDs) with their main pharmacological target, prostaglandin H synthase (PGHS), has not yet been established. We showed that inhibition of PGHS-1 from sheep vesicular glands by naproxen (a representative of NSAIDs) demonstrates a non-competitive character with respect to arachidonic acid and cannot be described within a framework of the commonly used kinetic schemes. However, it can be described by taking into account the negative cooperativity of naproxen binding to the cyclooxygenase active sites of the PGHS-1 homodimer (the first naproxen molecule forms a more stable complex (K 1 = 0.1 µM) with the enzyme than the second naproxen molecule (K 2 = 9.2 µM)). An apparent non-competitive interaction of PGHS-1 with naproxen is due to slow dissociation of the enzyme-inhibitor complexes. The same experimental data could also be described using commonly accepted kinetic schemes, assuming that naproxen interacts was a mixture of two enzyme species with the inhibition constants K α = 0.05 µM and K β = 18.3 µM. Theoretical analysis and numerical calculations show that the phenomenon of kinetic convergence of these two models has a general nature: when K 2 > K 1 , the kinetic patterns (for transient kinetics and equilibrium state) generated by the cooperative model could be described by a scheme assuming the presence of two enzyme forms with the inhibition constants K α = K 1 /2, K β = 2·K 2 . When K 2 < K 1 , the cooperative model can be presented as a scheme with two inhibitor molecules simultaneously binding to the enzyme with the observed inhibition constant K (K = K 1 ·K 2 ). The assumption on the heterogeneity of the enzyme preparation in relation to its affinity to the inhibitor can be used instead of the assumption on the negative cooperativity of the enzyme-inhibitor interactions for convenient and easy practical description of such phenomena in enzymology, biotechnology, pharmacology, and other fields of science.
Appreciating Formal Similarities in the Kinetics of Homogeneous, Heterogeneous, and Enzyme Catalysis
ERIC Educational Resources Information Center
Ashby, Michael T.
2007-01-01
Because interest in catalysts is widespread, the kinetics of catalytic reactions have been investigated by widely diverse groups of individuals, including chemists, engineers, and biologists. This has lead to redundancy in theories, particularly with regard to the topics of homogeneous, heterogeneous, and enzyme catalysis. From a pedagogical…
Making Enzyme Kinetics Dynamic via Simulation Software
ERIC Educational Resources Information Center
Potratz, Jeffrey P.
2017-01-01
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Enzyme Kinetics and the Michaelis-Menten Equation
ERIC Educational Resources Information Center
Biaglow, Andrew; Erickson, Keith; McMurran, Shawnee
2010-01-01
The concepts presented in this article represent the cornerstone of classical mathematical biology. The central problem of the article relates to enzyme kinetics, which is a biochemical system. However, the theoretical underpinnings that lead to the formation of systems of time-dependent ordinary differential equations have been applied widely to…
Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H
1993-12-01
Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.
The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization
Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram
2016-01-01
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified. PMID:27812109
Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.
Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D
2002-12-20
A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.
Pazhanisamy, S; Pratt, R F
1989-08-22
The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-[[(phenylacetyl)glycyl]oxy]benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first [Pazhanisamy, S., Govardhan, C. P., & Pratt, R. F. (1989) Biochemistry (first of three papers in this issue)]. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presence of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.(ABSTRACT TRUNCATED AT 250 WORDS)
A binomial stochastic kinetic approach to the Michaelis-Menten mechanism
NASA Astrophysics Data System (ADS)
Lente, Gábor
2013-05-01
This Letter presents a new method that gives an analytical approximation of the exact solution of the stochastic Michaelis-Menten mechanism without computationally demanding matrix operations. The method is based on solving the deterministic rate equations and then using the results as guiding variables of calculating probability values using binomial distributions. This principle can be generalized to a number of different kinetic schemes and is expected to be very useful in the evaluation of measurements focusing on the catalytic activity of one or a few individual enzyme molecules.
Walsh, T P; Clarke, F M; Masters, C J
1977-01-01
The kinetic parameters of fructose bisphosphate aldolase (EC 4.1.2.13) were shown to be modified on binding of the enzyme to the actin-containing filaments of skeletal muscle. Although binding to F-actin or F-actin-tropomyosin filaments results in relative minor changes in kinetic properties, binding to F-actin-tropomyosin-troponin filaments produces major alterations in the kinetic parameters, and, in addition, renders them Ca2+-sensitive. These observations may be relevant to an understanding of the function of this enzyme within the muscle fibre. PMID:889571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, H.R.; Cheng, T.C.; DeFrank, J.J.
1992-06-01
In the present studies, cholinesterase was used for monitoring the enzymatic activities of the JD6.5 organophosphorus acid anhydrase. The kinetic data indicated that: (1) the first order of kinetic constants (k) and Vmax values of the enzymatic reactions increased as the concentrations of the enzyme increased; (2) while the half-life (tl/2) of diisopropylfluorophosphate (DFP) hydrolysis decreased as the enzyme concentrations increased; (3) the minimum time required for hydrolysis of 9mM of DFP was 3 min at the concentrations of the enzyme present; Km values of DFP were found to be in range of 5mM; and (4) both MnCl2 and NaClmore » were found to be required for the optimal activity of the enzyme.« less
Baranczewski, Pawel; Edlund, Per Olof; Postlind, Hans
2006-03-18
An important step in the drug development process is identification of enzymes responsible for metabolism of drug candidates and determination of enzyme kinetic parameters. These data are used to increase understanding of the pharmacokinetics and possible metabolic-based drug interactions of drug candidates. The aim of the present study was to characterize the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 [1-(3-{2-[(2-ethoxy-3-pyridinyl)oxy]ethoxy}-2-pyrazinyl)-2(R)-methylpiperazine], a potent and selective 5HT2c-receptor agonist. The enzyme kinetic parameters were determined for formation of three main metabolites of BVT.2938 using human liver microsomes and expressed cytochrome P450 (CYP) isoforms. The major metabolite was formed by hydroxylation of the pyridine ring (CL(int)=27 microl/mgmin), and was catalysed by both CYP2D6*1 and CYP1A1, with K(m) values corresponding to 1.4 and 2.7 microM, respectively. The results from enzyme kinetic studies were confirmed by incubation of BVT.2938 in the presence of the chemical inhibitor of CYP2D6*1, quinidine. Quinidine inhibited the formation of the major metabolite by approximately 90%. Additionally, studies with recombinant expressed CYP isoforms from rat indicated that formation of the major metabolite of BVT.2938 was catalysed by CYP2D2. This result was further confirmed by experiments with liver slices from different rat strains, where the formation of the metabolite correlated with phenotype of CYP2D2 isoform (Sprague-Dawley male, extensive; Dark Agouti male, intermediate; Dark Agouti female, poor metabolizer). The present study showed that the major metabolite of BVT.2938 is formed by hydroxylation of the pyridine ring and catalysed by CYP2D6*1. CYP1A1 is also involved in this reaction and its role in extra-hepatic metabolism of BVT.2938 might be significant.
Sucharitakul, Jeerus; Tongsook, Chanakan; Pakotiprapha, Danaya; van Berkel, Willem J. H.; Chaiyen, Pimchai
2013-01-01
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover. PMID:24129570
Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.
Oyen, David; Steyaert, Jan; Barlow, John N
2014-04-01
We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.
[Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].
Liber, E E; Dorozhko, A I; Pomortseva, N V
1978-06-01
The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.
Boyd, Ryan A; Gandin, Anthony; Cousins, Asaph B
2015-11-01
The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3 (-), and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3 (-) limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. © 2015 American Society of Plant Biologists. All Rights Reserved.
Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar
2013-04-01
Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.
Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.
Flurkey, William H; Inlow, Jennifer K
2017-05-01
An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is collected in the absence and presence of the inhibitor. A Microsoft Excel template is used to plot the data and to fit the Michaelis-Menten equation to the data to determine the kinetic parameters V max and K m . The exercise is designed to clarify and reinforce concepts covered in an accompanying biochemistry lecture course. It has been used with positive results in an upper-level biochemistry laboratory course for junior/senior students majoring in chemistry or biology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):270-276, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Kinetic analysis of cooperative interactions induced by Mn2+ binding to the chloroplast H(+)-ATPase.
Hiller, R; Carmeli, C
1990-07-03
The kinetics of Mn2+ binding to three cooperatively interacting sites in chloroplast H(+)-ATPase (CF1) were measured by EPR following rapid mixing of the enzyme with MnCl2 with a time resolution of 8 ms. Mixing of the enzyme-bound Mn2+ with MgCl2 gave a measure of the rate of exchange. The data could be best fitted to a kinetic model assuming three sequential, positively cooperative binding sites. (1) In the latent CF1, the binding to all three sites had a similar on-rate constants of (1.1 +/- 0.04) X 10(4) M-1s-1. (2) Site segregation was found in the release of ions with off-rate constants of 0.69 +/- 0.04 s-1 for the first two and 0.055 +/- 0.003 s-1 for the third. (3) Addition of one ADP per CF1 caused a decrease in the off-rate constants to 0.31 +/- 0.02 and 0.033 +/- 0.008 s-1 for the first two and the third sites, respectively. (4) Heat activation of CF1 increased the on-rate constant to (4.2 +/- 0.92) X 10(4) M-1s-1 and the off-rate constants of the first two and the third site to 1.34 +/- 0.08 and 0.16 +/- 0.07 s-1, respectively. (5) The calculated thermodynamic dissociation constants were similar to those previously obtained from equilibrium binding studies. These findings were correlated to the rate constants obtained from studies of the catalysis and regulation of the H(+)-ATPase. The data support the suggestion that regulation induces sequential progress of catalysis through the three active sites of the enzyme.
Principles for circadian orchestration of metabolic pathways.
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O
2017-02-14
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.
Principles for circadian orchestration of metabolic pathways
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim
2017-01-01
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888
NASA Astrophysics Data System (ADS)
Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark
2015-03-01
The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.
Phosphorescent nanosensors for in vivo tracking of histamine levels.
Cash, Kevin J; Clark, Heather A
2013-07-02
Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.
Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts
Mendz, George; Hazell, Stuart
1998-01-01
The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591
Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S
2017-12-01
Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.
Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase: Kinetics and Specificity†
Frantom, Patrick A.; Seravalli, Javier; Ragsdale, Stephen W.; Fitzpatrick, Paul F.
2006-01-01
Tyrosine hydroxylase (TyrH) is a pterin-dependent enzyme that catalyzes the hydroxylation of tyrosine to form dihydroxyphenylalanine. The oxidation state of the active site iron atom plays a central role in the regulation of the enzyme. The kinetics of reduction of ferric TyrH by several reductants were determined by anaerobic stopped-flow spectroscopy. Anaerobic rapid freeze–quench EPR confirmed that the change in the near-UV absorbance of TyrH upon adding reductant corresponded to iron reduction. Tetrahydrobiopterin reduces wild-type TyrH following a simple second-order mechanism with a rate constant of 2.8 ± 0.1 mM−1 s−1. 6-Methyltetrahydropterin reduces the ferric enzyme with a second-order rate constant of 6.1 ± 0.1 mM−1 s−1 and exhibits saturation kinetics. No EPR signal for a radical intermediate was detected. Ascorbate, glutathione, and 1,4-benzoquinone all reduce ferric TyrH, but much more slowly than tetrahydrobiopterin, suggesting that the pterin is a physiological reductant. E332A TyrH, which has an elevated Km for tetrahydropterin in the catalytic reaction, is reduced by tetrahydropterins with the same kinetic parameters as those of the wild-type enzyme, suggesting that BH4 does not bind in the catalytic conformation during the reduction. Oxidation of ferrous TyrH by molecular oxygen can be described as a single-step second-order reaction, with a rate constant of 210 mM−1 s−1. S40E TyrH, which mimics the phosphorylated state of the enzyme, has oxidation and reduction kinetics similar to those of the wild-type enzyme, suggesting that phosphorylation does not directly regulate the interconversion of the ferric and ferrous forms. PMID:16475826
W. W. "Mo" Cleland: a catalytic life.
Dunaway-Mariano, Debra; Holden, Hazel M; Raushel, Frank M
2013-12-23
Professor W. Wallace Cleland, the architect of modern steady-state enzyme kinetics, died on March 6, 2013, from injuries sustained in a fall outside of his home. He will be most remembered for giving the enzyme community Ping-Pong kinetics and the invention of dithiothreitol (DTT). He pioneered the utilization of heavy atom isotope effects for the elucidation of the chemical mechanisms of enzyme-catalyzed reactions. His favorite research journal was Biochemistry, in which he published more than 135 papers beginning in 1964 with the disclosure of DTT.
2008-12-01
1 DEVELOPMENT OF ULTRASONICALLY LEVITATED DROPS AS MICROREAC- TORS FOR STUDY OF ENZYME KINETICS AND POTENTIAL AS A UNIVERSAL PORTABLE ANALYSIS...microfluidic systems are incompatible with the chemistry one wishes to study. We have devel- oped an alternative approach. We use ultrasonically levitated ...since at least the 1940’s, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fab- ricated the
NASA Astrophysics Data System (ADS)
Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza
2016-02-01
Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.
Vazquez, Alexei; de Menezes, Marcio A; Barabási, Albert-László; Oltvai, Zoltan N
2008-10-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.
Vazquez, Alexei; de Menezes, Marcio A.; Barabási, Albert-László; Oltvai, Zoltan N.
2008-01-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. PMID:18846199
Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.
2014-01-01
DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944
Bazire, Alexandre; Gillon, Emilie; Lockridge, Oksana; Vallet, Virginie; Nachon, Florian
2011-04-01
The organophosphorus insecticide, demeton-S-methyl (DSM), is considered as a good surrogate of the highly toxic nerve agent VX for skin absorption studies due to similar physico-chemical properties and in vitro percutaneous penetration profile. But, when skin distribution was estimated by measuring inhibition of cholinesterase activity, the results were poorly reproducible. The various grades of commercial DSM solutions were suspected to be the origin of the discrepancies. This hypothesis was tested by measuring inhibition of human acetyl- and butyrylcholinesterase by two commercial DSM solutions. The inhibition rate was independent on the enzyme concentration confirming pseudo-first order conditions. But complete inhibition of butyrylcholinesterase activity was achieved only when the DSM concentration was at least 1500-fold higher than the enzyme concentration. Besides, complete inhibition of acetylcholinesterase was never achieved. Mass spectrometry analysis of the inhibited butyrylcholinesterase adducts identified monomethoxyphosphorylated-serine, the aged product of inhibition by DSM or a derivative with a modified leaving group. Neither spontaneous reactivation nor aging of the dimethoxyphosphorylated-serine could account for the inhibition kinetics observed, suggesting an overly complicated kinetic scheme not compatible with the requirement of a titration experiment. In conclusion, cholinesterase-based analytical methods should be avoided for DSM titration in skin penetration studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Simple Simulator to Teach Enzyme Kinetics Dynamics. Application in a Problem-Solving Exercise
ERIC Educational Resources Information Center
Torres, Néstor; Santos, Guido
2017-01-01
Enzyme kinetics is an essential part of biochemistry programs, which have been gaining importance in recent years for their applications in biotechnology and biomedicine. The teaching and learning of these issues has been traditionally hampered by difficulties that stem mainly from the dynamic and mathematical nature of the topic and the…
Effects of Nanoparticle Size on Multilayer Formation and Kinetics of Tethered Enzymes.
Lata, James P; Gao, Lizeng; Mukai, Chinatsu; Cohen, Roy; Nelson, Jacquelyn L; Anguish, Lynne; Coonrod, Scott; Travis, Alexander J
2015-09-16
Despite numerous applications, we lack fundamental understanding of how variables such as nanoparticle (NP) size influence the activity of tethered enzymes. Previously, we showed that biomimetic oriented immobilization yielded higher specific activities versus nonoriented adsorption or carboxyl-amine binding. Here, we standardize NP attachment strategy (oriented immobilization via hexahistidine tags) and composition (Ni-NTA coated gold NPs), to test the impact of NP size (⌀5, 10, 20, and 50 nm) on multilayer formation, activity, and kinetic parameters (kcat, KM, kcat/KM) of enzymes representing three different classes: glucose-6-phosphate isomerase (GPI), an isomerase; Glyceraldehyde-3-phosphate dehydrogenase S (GAPDHS), an oxidoreductase; and pyruvate kinase (PK), a transferase. Contrary to other reports, we observed no trend in kinetic parameters for individual enzymes when found in monolayers (<100% enzyme coverage), suggesting an advantage for oriented immobilization versus other attachment strategies. Saturating the NPs to maximize activity per NP resulted in enzyme multilayer formation. Under these conditions, total activity per NP increased with increasing NP size. Conversely, specific activity for all three enzymes was highest when tethered to the smallest NPs, retaining a remarkable 73-94% of the activity of free/untethered enzymes. Multilayer formations caused a clear trend of kcat decreasing with increasing NP size, yet negligible change in KM. Understanding the fundamental relationships between NP size and tethered enzyme activity enables optimized design of various applications, maximizing activity per NP or activity per enzyme molecule.
Enzyme and microbial sensors for environmental monitoring
NASA Astrophysics Data System (ADS)
Wollenberger, U.; Neumann, B.; Scheller, Frieder W.
1993-03-01
Biosensors employing the biocatalyst on a different level of integration have been developed for monitoring environmental pollution. These probes range from laboratory specimen to commercial detectors applied to analyzers. This paper presents a selection of recent developments on amperometric enzyme and microbial biosensors. A monoenzymatic bulk type carbon electrode is described for biosensing organic hydroperoxides in aqueous solutions. Here, peroxidase is immobilized within the electrode body and the direct electron transfer between electrode and enzyme is measured. Both, reversible and irreversible inhibitors of acetylcholinesterase have been quantified by using a kinetically controlled acetylcholine enzyme sequence electrode. The inhibitory effect of pesticides such as butoxycarboxime, dimethoate, and trichlorfon could be quantified within 6 min in micrometers olar concentrations. Different multi-enzyme electrodes have been developed for the determination of inorganic phosphate. These sensors represent examples of sequentially acting enzymes in combination with enzymatic analyte recycling. Using this type of amplification nanomolar concentrations could be measured. A very fast responding microbial sensor for biological oxygen demand has been developed by immobilizing Trichosporon cutaneum onto an oxygen electrode. With this whole cell sensor waste water can be assayed with a sample frequency of 20 per hour and a working stability of more than 30 days.
Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.
Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios
2011-07-01
The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.
Kinetic intermediates of unfolding of dimeric prostatic phosphatase.
Kuciel, Radosława; Mazurkiewicz, Aleksandra; Dudzik, Paulina
2007-01-01
Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.
Kinetics of leather dyeing pretreated with enzymes: role of acid protease.
Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan
2009-04-01
In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.
Napper, A D; Bennett, S P; Borowski, M; Holdridge, M B; Leonard, M J; Rogers, E E; Duan, Y; Laursen, R A; Reinhold, B; Shames, S L
1994-01-01
A mixture of ananain (EC 3.4.22.31) and comosain purified from crude pineapple stem extract was found to contain numerous closely related enzyme forms. Chromatographic separation of the major enzyme forms was achieved after treatment of the mixture with thiol-modifying reagents: reversible modification with 2-hydroxyethyl disulphide provided enzyme for kinetic studies, and irreversible alkylation with bromotrifluoroacetone or iodoacetamide gave enzyme for structural analyses by 19F-n.m.r. and electrospray mass spectrometry respectively. Structural and kinetic analyses revealed comosain to be closely related to stem bromelain (EC 3.4.22.32), whereas ananain differed markedly from both comosain and stem bromelain. Nevertheless, differences were seen between comosain and stem bromelain in amino acid composition and kinetic specificity towards the epoxide inhibitor E-64. Differences between five isolatable alternative forms of ananain were characterized by amidolytic activity, thiol stoichiometry and accurate mass determinations. Three of the enzyme forms displayed ananain-like amidolytic activity, whereas the other two forms were inactive. Thiol-stoichiometry determinations revealed that the active enzyme forms contained one free thiol, whereas the inactive forms lacked the reactive thiol required for enzyme activity. M.s. provided direct evidence for oxidation of the active-site thiol to the corresponding sulphinic acid. Images Figure 3 Figure 4 PMID:8053898
Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.
Bhaumik, D; Datta, A K
1988-04-01
The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.
Warming rate drives microbial limitation and enzyme expression during peat decomposition
NASA Astrophysics Data System (ADS)
Inglett, P.; Sihi, D.; Inglett, K. S.
2015-12-01
Recent developments of enzyme-based decomposition models highlight the importance of enzyme kinetics with warming, but most modeling exercises are based on studies with a step-wise warming. This approach may mask the effect of temperature in controlling in-situ activities as in most ecosystems soil temperature change more gradually than air temperature. We conducted an experiment to test the effects of contrasting warming rates on the kinetics of C, N, and P degradation enzymes in subtropical peat soils. We also wanted to evaluate if the stoichiometry of enzyme kinetics shifts under contrasting warming rates and if so, how does it relate to the stoichiometry in microbial biomass. Contrasting warming rates altered microbial biomass stoichiometry leading to differing patterns of enzyme expression and microbial nutrient limitation. Activity (higher Vmax) and efficiency (lower Km) of C acquisition enzymes were greater in the step treatment; however, expressions of nutrient (N and P) acquiring enzymes were enhanced in the ramp treatment at the end of the experiment. In the step treatment, there was a typical pattern of an initial peak in the Vmax and drop in the Km for all enzyme groups followed by later adjustments. On the other hand, a consistent increase in Vmax and decline in Km of all enzyme groups were observed in the slow warming treatment. These changes were sufficient to alter microbial identity (as indicated by enzyme Km and biomass stoichiometry) with two apparently stable endpoints under contrasting warming rates. This observation resembles the concept of alternate stable states and highlights a need for improved representation of warming in models.
Hothi, Parvinder; Hay, Sam; Roujeinikova, Anna; Sutcliffe, Michael J; Lee, Michael; Leys, David; Cullis, Paul M; Scrutton, Nigel S
2008-11-24
Quantitative structure-activity relationships are widely used to probe C-H bond breakage by quinoprotein enzymes. However, we showed recently that p-substituted benzylamines are poor reactivity probes for the quinoprotein aromatic amine dehydrogenase (AADH) because of a requirement for structural change in the enzyme-substrate complex prior to C-H bond breakage. This rearrangement is partially rate limiting, which leads to deflated kinetic isotope effects for p-substituted benzylamines. Here we report reactivity (driving force) studies of AADH with p-substituted phenylethylamines for which the kinetic isotope effect (approximately 16) accompanying C-H/C-(2)H bond breakage is elevated above the semi-classical limit. We show bond breakage occurs by quantum tunnelling and that within the context of the environmentally coupled framework for H-tunnelling the presence of the p-substituent places greater demand on the apparent need for fast promoting motions. The crystal structure of AADH soaked with phenylethylamine or methoxyphenylethylamine indicates that the structural change identified with p-substituted benzylamines should not limit the reaction with p-substituted phenylethylamines. This is consistent with the elevated kinetic isotope effects measured with p-substituted phenylethylamines. We find a good correlation in the rate constant for proton transfer with bond dissociation energy for the reactive C-H bond, consistent with a rate that is limited by a Marcus-like tunnelling mechanism. As the driving force becomes larger, the rate of proton transfer increases while the Marcus activation energy becomes smaller. This is the first experimental report of the driving force perturbation of H-tunnelling in enzymes using a series of related substrates. Our study provides further support for proton tunnelling in AADH.
Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.
Ouedraogo, Daniel; Ball, Jacob; Iyer, Archana; Reis, Renata A G; Vodovoz, Maria; Gadda, Giovanni
2017-10-15
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity. Copyright © 2017 Elsevier Inc. All rights reserved.
Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan
2003-02-01
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.
ERIC Educational Resources Information Center
Field, Christopher Ryan
2009-01-01
Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…
ERIC Educational Resources Information Center
Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.
2015-01-01
Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…
This manuscript presents a summary of in vitro rate and affinity data for xenobiotic biotransformation enzymes in fish...One potential use of this data summary is to support in vitro to in vivo metabolism extrapolations which can be used as inputs to chemical kinetic models for f...
Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.
Liu, Kuan-Miao; Liu, Kuan-Ju
2016-01-01
Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.
Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.
2014-01-01
Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976
Xu, Yingying; Lee, Jinhyuk; Lü, Zhi-Rong; Mu, Hang; Zhang, Qian; Park, Yong-Doo
2016-07-01
Understanding the mechanism of acetaldehyde dehydrogenase 1 (ALDH1) folding is important because this enzyme is directly involved in several types of cancers and other diseases. We investigated the urea-mediated unfolding of ALDH1 by integrating kinetic inhibition studies with computational molecular dynamics (MD) simulations. Conformational changes in the enzyme structure were also analyzed using intrinsic and 1-anilinonaphthalene-8-sulfonate (ANS)-binding fluorescence measurements. Kinetic studies revealed that the direct binding of urea to ALDH1 induces inactivation of ALDH1 in a manner of mixed-type inhibition. Tertiary structural changes associated with regional hydrophobic exposure of the active site were observed. The urea binding regions on ALDH1 were predicted by docking simulations and were partly shared with active site residues of ALDH1 and with interface residues of the oligomerization domain for tetramer formation. The docking results suggest that urea prevents formation of the ALDH1 normal shape for the tetramer state as well as entrance of the substrate into the active site. Our study provides insight into the structural changes that accompany urea-mediated unfolding of ALDH1 and the catalytic role associated with conformational changes.
Lisi, George P.; Currier, Allen A.; Loria, J. Patrick
2018-01-01
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent. PMID:29468164
Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan
2002-05-01
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.
Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso
2016-11-01
A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.
Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J
2016-01-01
Multiple substrate enzymes present a particular challenge when it comes to understanding their activity in a complex system. Although a single target may be easy to model, it does not always present an accurate representation of what that enzyme will do in the presence of multiple substrates simultaneously. Therefore, there is a need to find better ways to both study these enzymes in complicated systems, as well as accurately describe the interactions through kinetic parameters. This review looks at different methods for studying multiple substrate enzymes, as well as explores options on how to most accurately describe an enzyme's activity within these multi-substrate systems. Identifying and defining this enzymatic activity should help clear the way to using in vitro systems to accurately predicting the behavior of multi-substrate enzymes in vivo. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015. Published by Elsevier B.V.
Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase.
Lankin, V Z; Shumaev, K B; Tikhaze, A K; Kurganov, B I
2017-07-01
Se-containing glutathione peroxidase (GSH-Px) is one of the key enzymes of the body's antioxidant system. The kinetic characteristics of GSH-Px (substrate is tert-butyl hydroperoxide) after modification of the enzyme by various concentrations of natural dicarbonyls (glyoxal, methylglyoxal, malonic dialdehyde) were studied. It was shown that dicarbonyls affected both K m and V max for GSH-Px. It is suggested that the effect of various dicarbonyls on GSH-Px depends on the molecular mechanisms of their interaction with the amino acid residues of the enzyme.
NASA Astrophysics Data System (ADS)
Kristoffersen, Emil L.; Jørgensen, Line A.; Franch, Oskar; Etzerodt, Michael; Frøhlich, Rikke; Bjergbæk, Lotte; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R.
2015-05-01
Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01474c
Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M
2015-11-01
In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT). Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.
2018-01-01
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033
Edwards, J Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle Nee; French, Alfred D; Condon, Brian D
2018-03-13
Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity ( K m ) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased K m observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency ( k cat / K m ), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.
The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome
Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo
2016-01-01
During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086
NASA Astrophysics Data System (ADS)
Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam
2013-12-01
In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.
Controlling enzymatic activity by immobilization on graphene oxide
NASA Astrophysics Data System (ADS)
Bolibok, Paulina; Wiśniewski, Marek; Roszek, Katarzyna; Terzyk, Artur P.
2017-04-01
In this study, graphene oxide (GO) has been applied as a matrix for enzyme immobilization. The protein adsorption capacity of GO is much higher than of other large surface area carbonaceous materials. Its structure and physicochemical properties are reported beneficial also for enzymatic activity modifications. The experimental proof was done here that GO-based biocatalytic systems with immobilized catalase are modifiable in terms of catalyzed reaction kinetic constants. It was found that activity and stability of catalase, considered here as model enzyme, closely depend on enzyme/GO ratio. The changes in kinetic parameters can be related to secondary structure alterations. The correlation between enzyme/GO ratio and kinetic and structure parameters is reported for the first time and enables the conscious control of biocatalytic processes and their extended applications. The biological activity of obtained biocatalytic systems was confirmed in vitro by the use of functional test. The addition of immobilized catalase improved the cells' viability after they were exposed to hydrogen peroxide and tert-butyl-hydroperoxide used as source of reactive oxygen species.
Cipolla, Alexandre; D'Amico, Salvino; Barumandzadeh, Roya; Matagne, André; Feller, Georges
2011-01-01
The mutants Mut5 and Mut5CC from a psychrophilic α-amylase bear representative stabilizing interactions found in the heat-stable porcine pancreatic α-amylase but lacking in the cold-active enzyme from an Antarctic bacterium. From an evolutionary perspective, these mutants can be regarded as structural intermediates between the psychrophilic and the mesophilic enzymes. We found that these engineered interactions improve all the investigated parameters related to protein stability as follows: compactness; kinetically driven stability; thermodynamic stability; resistance toward chemical denaturation, and the kinetics of unfolding/refolding. Concomitantly to this improved stability, both mutants have lost the kinetic optimization to low temperature activity displayed by the parent psychrophilic enzyme. These results provide strong experimental support to the hypothesis assuming that the disappearance of stabilizing interactions in psychrophilic enzymes increases the amplitude of concerted motions required by catalysis and the dynamics of active site residues at low temperature, leading to a higher activity. PMID:21900238
Gelain, Lucas; da Cruz Pradella, José Geraldo; da Costa, Aline Carvalho
2015-12-01
A mathematical model to describe the kinetics of enzyme production by the filamentous fungus Trichoderma harzianum P49P11 was developed using a low cost substrate as main carbon source (pretreated sugarcane bagasse). The model describes the cell growth, variation of substrate concentration and production of three kinds of enzymes (cellulases, beta-glucosidase and xylanase) in different sugarcane bagasse concentrations (5; 10; 20; 30; 40 gL(-1)). The 10 gL(-1) concentration was used to validate the model and the other to parameter estimation. The model for enzyme production has terms implicitly representing induction and repression. Substrate variation was represented by a simple degradation rate. The models seem to represent well the kinetics with a good fit for the majority of the assays. Validation results indicate that the models are adequate to represent the kinetics for a biotechnological process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Substrate specificity and kinetic properties of alpha-galactosidases from Vicia faba.
Dey, P M; Pridham, J B
1969-10-01
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.
The kinetics of inhibition of erythrocyte cholinesterase by monomethylcarbamates
Reiner, E.; Simeon-Rudolf, V.
1966-01-01
1. The kinetics of the interaction of erythrocyte cholinesterase with 1-naphthyl N-methylcarbamate, 2-isopropoxyphenyl N-methylcarbamate and phenyl N-methylcarbamate were studied. Rate constants for inhibition and rate constants for spontaneous reactivation were determined. The calculated rate constants for spontaneous reactivation agreed well with those obtained experimentally. 2. The degree of inhibition obtained after preincubation of enzyme and inhibitor was found to be independent of both the substrate concentration and the dilution of the inhibited enzyme. 3. The reaction between the enzyme and the inhibitor was consistent with carbamates being regarded as poor substrates of cholinesterases. There was no evidence for the formation of a reversible complex between the enzyme and the carbamate. PMID:5941343
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A.
2015-01-01
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key towards understanding the regulation of polyamine levels in bacteria during pathogenesis. PMID:25623305
Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa
2015-03-01
Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graziano,V.; McGrath, W.; Yang, L.
The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, K{sub D}, have varied more than 650000-fold, from <1 nM to more than 200 {mu}M. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimermore » equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded K{sub D} values of 5.8 {+-} 0.8 {mu}M (obtained from the entire scattering curve), 6.5 {+-} 2.2 {mu}M (obtained from the radii of gyration), and 6.8 {+-} 1.5 {mu}M (obtained from the forward scattering). The K{sub D} from chemical cross-linking was 12.7 {+-} 1.1 {mu}M, and from enzyme kinetics, it was 5.2 {+-} 0.4 {mu}M. While each of these three techniques can present different, potential limitations, they all yielded similar K{sub D} values.« less
Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina
2016-09-01
Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations.
Purification and characterization of two fully deuterated enzymes
NASA Technical Reports Server (NTRS)
Crespi, H. L.; Katz, J. J.; Parmerter, S.; Rokop, S.
1969-01-01
Comparative data reveal little difference between kinetic and thermal stabilities of pure preparations of two ordinary enzymes and their fully deuterated counterparts. The effects of temperature on the enzymes proved to be consistent with earlier results.
Lodola, A; Shore, J D; Parker, D M; Holbrook, J
1978-01-01
1. The mechanisms of the reduction of oxaloacetate and of 3-fluoro-oxaloacetate by NADH catalysed by cytoplasmic pig heart malate dehydrogenase (MDH) were investigated. 2. One mol of dimeric enzyme produces 1.7+/-0.4 mol of enzyme-bound NADH when mixed with saturating NAD+ and L-malate at a rate much higher than the subsequent turnover at pH 7.5. 3. Transient measurements of protein and nucleotide fluorescence show that the steady-state complex in the forward direction is MDH-NADH and in the reverse direction MDH-NADH-oxaloacetate. 4. The rate of dissociation of MDH-NADH was measured and is the same as Vmax. in the forward direction at pH 7.5. Both NADH-binding sites are kinetically equivalent. The rate of dissociation varies with pH, as does the equilibrium binding constant for NADH. 5. 3-Fluoro-oxaloacetate is composed of three forms (F1, F2 and S) of which F1 and F2 are immediately substrates for the enzyme. The third form, S, is not a substrate, but when the F forms are used up form S slowly and non-enzymically equilibrates to yield the active substrate forms. S is 2,2-dihydroxy-3-fluorosuccinate. 6. The steady-state compound during the reduction of form F1 is an enzyme form that does not contain NADH, probably MDH-NAD+-fluoromalate. The steady-state compound for form F2 is an enzyme form containing NADH, probably MDH-NADH-fluoro-oxaloacetate. 7. The rate-limiting reaction in the reduction of form F2 shows a deuterium isotope rate ratio of 4 when NADH is replaced by its deuterium analogue, and the rate-limiting reaction is concluded to be hydride transfer. 8. A novel titration was used to show that dimeric cytoplasmic malate dehydrogenase contains two sites that can rapidly reduce the F1 form of 3-fluoro-oxaloacetate. The enzyme shows 'all-of-the-sites' behaviour. 9. Partial mechanisms are proposed to explain the enzyme-catalysed transformations of the natural and the fluoro substrates. These mechanisms are similar to the mechanism of pig heart lactate dehydrogenase and this, and the structural results of others, can be explained if the two enzymes are a product of divergent evolution. PMID:217361
Thai, Yen-Chi; Szekrenyi, Anna; Qi, Yuyin; Black, Gary W; Charnock, Simon J; Fessner, Wolf-Dieter
2018-04-01
Enantiomerically pure 1-(6-methoxynaphth-2-yl) and 1-(6-(dimethylamino)naphth-2-yl) carbinols are fluorogenic substrates for aldo/keto reductase (KRED) enzymes, which allow the highly sensitive and reliable determination of activity and kinetic constants of known and unknown enzymes, as well as an immediate enantioselectivity typing. Because of its simplicity in microtiter plate format, the assay qualifies for the discovery of novel KREDs of yet unknown specificity among this vast enzyme superfamily. The suitability of this approach for enzyme typing is illustrated by an exemplary screening of a large collection of short-chain dehydrogenase/reductase (SDR) enzymes arrayed from a metagenomic approach. We believe that this assay format should match well the pharmaceutical industry's demand for acetophenone-type substrates and the continuing interest in new enzymes with broad substrate promiscuity for the synthesis of chiral, non-racemic carbinols. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Taking Ockham's razor to enzyme dynamics and catalysis.
Glowacki, David R; Harvey, Jeremy N; Mulholland, Adrian J
2012-01-29
The role of protein dynamics in enzyme catalysis is a matter of intense current debate. Enzyme-catalysed reactions that involve significant quantum tunnelling can give rise to experimental kinetic isotope effects with complex temperature dependences, and it has been suggested that standard statistical rate theories, such as transition-state theory, are inadequate for their explanation. Here we introduce aspects of transition-state theory relevant to the study of enzyme reactivity, taking cues from chemical kinetics and dynamics studies of small molecules in the gas phase and in solution--where breakdowns of statistical theories have received significant attention and their origins are relatively better understood. We discuss recent theoretical approaches to understanding enzyme activity and then show how experimental observations for a number of enzymes may be reproduced using a transition-state-theory framework with physically reasonable parameters. Essential to this simple model is the inclusion of multiple conformations with different reactivity.
The interaction of the Eco R1 restriction enzyme E.coli with nucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, Donald F.
1979-11-01
The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less
Ceramic membrane microfilter as an immobilized enzyme reactor.
Harrington, T J; Gainer, J L; Kirwan, D J
1992-10-01
This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.
Van, Linh M; Heydari, Amir; Yang, Jiansong; Hargreaves, Judith; Rowland-Yeo, Karen; Lennard, Martin S; Tucker, Geoffrey T; Rostami-Hodjegan, Amin
2006-11-01
MDMA (3-4-methylenedioxymethamphetamine, commonly known as Ecstasy) is a potent mechanism-based inhibitor (MBI) of cytochrome P450 2D6 (CYP2D6), causing quasi-irreversible inhibition of the enzyme in vitro. An evaluation of the in vivo implications of this phenomenon depends on the accuracy of the estimates of the parameters that define the inhibition in vitro, namely k(inact) (the maximal inhibition rate) and KI (the inactivation constant). These values are determined in two steps, pre-incubation of the enzyme with the inhibitor (enzyme inactivation), followed by dilution and further incubation to measure residual enzyme activity with a probe substrate. The aim of this study was to assess the impact of different dilutions and probe substrate concentrations on the estimates of k(inact) and KI using recombinantly expressed CYP2D6. Enzyme activity was measured by the conversion of dextromethorphan (DEX) to dextrorphan (DOR). Dilution factors of 1.25, 2, 5, 10, 25 and 50 (DEX at 30 microM) gave mean (+/-SE) values of k(inact) (min-1) of 0.20+/-0.06, 0.21+/-0.05, 0.31+/-0.06, 0.37+/-0.11, 0.51+/-0.10 and 0.58+/-0.08, respectively, and KI (microM) values (after correction for non-specific microsomal binding) of 2.22+/-1.90, 2.80+/-1.34, 5.78+/-2.07, 6.36+/-2.93, 3.99+/-1.57 and 4.86+/-1.37, respectively. Accordingly, high (e.g. 50 fold) and low (e.g. 1.25 fold) dilutions were associated with statistically significant differences in kinetic values (p <0.05). Varying DEX concentration (10-100 microM) was not associated with significant changes in k(inact) and KI values when a five-fold dilution was used (with the exception of a lower KI at 10 microM DEX). High dilution was also shown to reduce non-specific microsomal binding of MDMA. The changes in the two kinetic parameters were dependent on the experimental procedure and shown to be unlikely to have a material influence on the maximum inhibition of CYP2D6 expected in vivo after typical recreational doses of MDMA (50-100 mg), since the potency of inhibition was high. The different values of the kinetic parameters were predicted to have a marginal influence on the time for recovery of enzyme activity following re-synthesis of CYP2D6.
Li, Chen-Chen; Zhang, Yan; Tang, Bo; Zhang, Chun-Yang
2018-06-05
We combine single-molecule detection with magnetic separation for simultaneous measurement of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycosylase (UDG) based on excision repair-initiated endonuclease IV (Endo IV)-assisted signal amplification. This method can sensitively detect multiple DNA glycosylases, and it can be further applied for the simultaneous measurement of enzyme kinetic parameters and screening of both hOGG1 and UDG inhibitors.
Conesa, Celia; FitzGerald, Richard J
2013-10-23
The kinetics and thermodynamics of the thermal inactivation of Corolase PP in two different whey protein concentrate (WPC) hydrolysates with degree of hydrolysis (DH) values of ~10 and 21%, and at different total solids (TS) levels (from 5 to 30% w/v), were studied. Inactivation studies were performed in the temperature range from 60 to 75 °C, and residual enzyme activity was quantified using the azocasein assay. The inactivation kinetics followed a first-order model. Analysis of the activation energy, thermodynamic parameters, and D and z values, demonstrated that the inactivation of Corolase PP was dependent on solution TS. The intestinal enzyme preparation was more heat sensitive at low TS. Moreover, it was also found that the enzyme was more heat sensitive in solutions at higher DH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartwig, S.; Frister, T.; Alemdar, S.
2015-03-20
An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was cloned and expressed. • Fusion to SUMO and cold-shock induction enhanced soluble yields in E. coli. • Ni{sup 2+}-IMAC purification of the SUMO-fused and unfused enzyme. • (+)-Zizaene identified as main cyclization product by GC–MS. • Enzyme kinetic parameters comparable to related sesquiterpene synthases.« less
Multifunctional enzymes from reduced genomes - model proteins for simple primordial metabolism?
Seelig, Burckhard
2017-08-01
Billions of years of evolution have yielded today's complex metabolic networks driven by efficient and highly specialized enzymes. In contrast, the metabolism of the earliest cellular life forms was likely much simpler with only a few enzymes of comparatively low activity. It has been speculated that these early enzymes had low specificities and in turn were able to perform multiple functions. In this issue of Molecular Microbiology, Ferla et al. describe examples of enzymes that catalyze chemically distinct reactions while using the same active site. Most importantly, the authors demonstrated that the comparatively weak activities of these multifunctional enzymes are each physiologically relevant. These findings contrast with simply promiscuous enzyme activities, which have been described numerous times but are not physiologically relevant. Ferla et al. elegantly combined initial bioinformatics searches for enzyme candidates with sound kinetic measurements, evolutionary considerations and even structural discussions. The phenomenon of multifunctionality appears to be a mechanism for bacteria with reduced genomes to compensate for their lack of certain enzymes. In the broader context of evolution, these organisms could be considered living model systems to study features of long-extinct early cellular life. © 2017 John Wiley & Sons Ltd.
French, Jarrod B; Cen, Yana; Vrablik, Tracy L; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A
2010-12-14
Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid (18)O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion, and the intermediacy of a thioester intermediate.
Dangkulwanich, Manchuta; Ishibashi, Toyotaka; Liu, Shixin; ...
2013-09-24
During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limitingmore » steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation.« less
Ho, Y C; Ho, K J
1988-04-01
Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.
Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.
Nadar, Shamraja S; Rathod, Virendra K
2017-08-22
Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.
Biochemical studies on Francisella tularensis RelA in (p)ppGpp biosynthesis
Wilkinson, Rachael C.; Batten, Laura E.; Wells, Neil J.; Oyston, Petra C.F.; Roach, Peter L.
2015-01-01
The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH (RelA/SpoT homologue; RelA, (p)ppGpp synthetase I; SpoT, (p)ppGpp synthetase II) superfamily that control concentrations of the ‘alarmones’ (p)ppGpp (guanosine penta- or tetra-phosphate). This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential anti-bacterial target. Current understanding of RelA-mediated responses is based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of F. tularensis RelA showed the similarities and differences of this enzyme compared with the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/ml. In contrast with other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp (5′,3′-dibisphosphate guanosine) with an EC50 of 60±1.9 μM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from E. coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia. PMID:26450927
Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ
2016-01-01
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877
Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi
2016-06-27
The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.
Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction.
Ranaldi, Francesco; Vanni, Paolo; Giachetti, Eugenio
2003-01-21
Two decades of research in microgravity have shown that certain biochemical processes can be altered by weightlessness. Approximately 10 years ago, our team, supported by the European Space Agency (ESA) and the Agenzia Spaziale Italiana, started the Effect of Microgravity on Enzyme Catalysis project to test the possibility that the microgravity effect observed at cellular level could be mediated by enzyme reactions. An experiment to study the cleavage reaction catalyzed by isocitrate lyase was flown on the sounding rocket MASER 7, and we found that the kinetic parameters were not altered by microgravity. During the 28th ESA parabolic flight campaign, we had the opportunity to replicate the MASER 7 experiment and to perform a complete steady-state analysis of the isocitrate lyase reaction. This study showed that both in microgravity and in standard g controls the enzyme reaction obeyed the same kinetic mechanism and none of the kinetic parameters, nor the equilibrium constant of the overall reaction were altered. Our results contrast with those of a similar experiment, which was performed during the same parabolic flight campaign, and showed that microgravity increased the affinity of lipoxygenase-1 for linoleic acid. The hypotheses suggested to explain this change effect of the latter were here tested by computer simulation, and appeared to be inconsistent with the experimental outcome.
A minimal kinetic model for a viral DNA packaging machine.
Yang, Qin; Catalano, Carlos Enrique
2004-01-20
Terminase enzymes are common to both eukaryotic and prokaryotic double-stranded DNA viruses. These enzymes possess ATPase and nuclease activities that work in concert to "package" a viral genome into an empty procapsid, and it is likely that terminase enzymes from disparate viruses utilize a common packaging mechanism. Bacteriophage lambda terminase possesses a site-specific nuclease activity, a so-called helicase activity, a DNA translocase activity, and multiple ATPase catalytic sites that function to package viral DNA. Allosteric interactions between the multiple catalytic sites have been reported. This study probes these catalytic interactions using enzyme kinetic, photoaffinity labeling, and vanadate inhibition studies. The ensemble of data forms the basis for a minimal kinetic model for lambda terminase. The model incorporates an ADP-driven conformational reorganization of the terminase subunits assembled on viral DNA, which is central to the activation of a catalytically competent packaging machine. The proposed model provides a unifying mechanism for allosteric interaction between the multiple catalytic sites of the holoenzyme and explains much of the kinetic data in the literature. Given that similar packaging mechanisms have been proposed for viruses as dissimilar as lambda and the herpes viruses, the model may find general utility in our global understanding of the enzymology of virus assembly.
The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase*♦
Tuz, Karina; Mezic, Katherine G.; Xu, Tianhao; Barquera, Blanca; Juárez, Oscar
2015-01-01
The sodium-dependent NADH dehydrogenase (Na+-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na+-NQR with the use of steady state kinetics and stopped flow analysis. Na+-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na+-NQR. This model provides a background to understand the current structural and functional information. PMID:26004776
Bomati, Erin K.; Noel, Joseph P.
2005-01-01
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607
Bomati, Erin K; Noel, Joseph P
2005-05-01
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.
Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase
2011-01-01
Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256
Heavy atom labeled nucleotides for measurement of kinetic isotope effects.
Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A
2015-11-01
Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced enzyme kinetic stability by increasing rigidity within the active site.
Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan
2014-03-14
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin
2016-01-01
In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.
Marcinkeviciene, J; Jiang, W; Locke, G; Kopcho, L M; Rogers, M J; Copeland, R A
2000-05-01
We report the identification, expression, and characterization of a second Dihydroorotate dehydrogenase (DHODase A) from the human pathogen Enterococcus faecalis. The enzyme consists of a polypeptide chain of 322 amino acids that shares 68% identity with the cognate type A enzyme from the bacterium Lactococcus lactis. E. faecalis DHODase A catalyzed the oxidation of l-dihydroorotate while reducing a number of substrates, including fumarate, coenzyme Q(0), and menadione. The steady-state kinetic mechanism has been determined with menadione as an oxidizing substrate at pH 7.5. Initial velocity and product inhibition data suggest that the enzyme follows a two-site nonclassical ping-pong kinetic mechanism. The absorbance of the active site FMN cofactor is quenched in a concentration-dependent manner by titration with orotate and barbituric acid, two competitive inhibitors with respect to dihydroorotate. In contrast, titration of the enzyme with menadione had no effect on FMN absorbance, consistent with nonoverlapping binding sites for dihyroorotate and menadione, as suggested from the kinetic mechanism. The reductive half-reaction has been shown to be only partially rate limiting, and an attempt to evaluate the slow step in the overall reaction has been made by simulating orotate production under steady-state conditions. Our data indicate that the oxidative half-reaction is a rate-limiting segment, while orotate, most likely, retains significant affinity for the reduced enzyme, as suggested by the product inhibition pattern. Copyright 2000 Academic Press.
Elimination of cannibalistic denaturation by enzyme immobilization or inhibition
Wu, Hua-Lin; Lace, Daniel A.; Bender, Myron L.
1981-01-01
The cannibalistic denaturation of α-chymotrypsin (EC 3.4.21.1) around neutral pH can be eliminated by immobilization (insolubilization) of the enzyme or by inhibition by specific reversible inhibitors, but the high-pH denaturation cannot be. The denaturation of the immobilized enzyme at high pH follows first-order kinetics, just as the denaturation of the soluble enzyme does. These results lend credence to the description of the denaturation of chymotrypsin as cannibalistic around neutrality and due to a hydroxide ion reaction at high pH; this interpretation followed from kinetic arguments given in the previous article [Wu, H.-L., Wastell, A. & Bender, M. L. (1981) Proc. Natl. Acad. Sci. USA 78, 4116-4117]. Elimination of denaturation around neutrality by immobilization may be the reason why membrane-bound enzymes are so common in vivo. PMID:16593052
The origins of enzyme kinetics.
Cornish-Bowden, Athel
2013-09-02
The equation commonly called the Michaelis-Menten equation is sometimes attributed to other authors. However, although Victor Henri had derived the equation from the correct mechanism, and Adrian Brown before him had proposed the idea of enzyme saturation, it was Leonor Michaelis and Maud Menten who showed that this mechanism could also be deduced on the basis of an experimental approach that paid proper attention to pH and spontaneous changes in the product after formation in the enzyme-catalysed reaction. By using initial rates of reaction they avoided the complications due to substrate depletion, product accumulation and progressive inactivation of the enzyme that had made attempts to analyse complete time courses very difficult. Their methodology has remained the standard approach to steady-state enzyme kinetics ever since. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Magalhães, Luana; de Oliveira, Arthur Henrique Cavalcante; de Souza Vasconcellos, Raphael; Mariotini-Moura, Christiane; de Cássia Firmino, Rafaela; Fietto, Juliana Lopes Rangel; Cardoso, Carmen Lúcia
2016-01-01
Nucleoside triphosphate diphosphohydrolase (NTPDase) is an enzyme belonging to the apyrase family that participates in the hydrolysis of the nucleosides di- and triphosphate to the corresponding nucleoside monophosphate. This enzyme underlies the virulence of parasites such as Leishmania. Recently, an NTPDase from Leishmania infantum (LicNTPDase-2) was cloned and expressed and has been considered as a new drug target for the treatment of leishmaniasis. With the intent of developing label-free online screening methodologies, LicNTPDase-2 was covalently immobilized onto a fused silica capillary tube in the present study to create an immobilized capillary enzyme reactor (ICER) based on LicNTPDase-2 (LicNTPDase-2-ICER). To perform the activity assays, a multidimensional chromatographic method was developed employing the LicNTPDase-2-ICER in the first dimension, and an analytical Ascentis C8 column was used in the second dimension to provide analytical separation of the substrates and products. The validated LicNTPDase-2-ICER method provided the following kinetic parameters of the immobilized enzyme: KM of 2.2 and 1.8mmolL(-1) for the ADP and ATP substrates, respectively. Suramin (1mmolL(-1)) was also shown to inhibit 32.9% of the enzymatic activity. The developed method is applicable to kinetic studies and enables the recognition of the ligands. Furthermore, a comparison of the values of LicNTPDase-2-ICER with those obtained with an LC method using free enzyme in solution showed that LicNTPDase-2-ICER-LC/UV was an accurate and reproducible method that enabled automated measurements for the rapid screening of ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
The Molecular Basis of Dominance
Kacser, Henrik; Burns, James A.
1981-01-01
The best known genes of microbes, mice and men are those that specify enzymes. Wild type, mutant and heterozygote for variants of such genes differ in the catalytic activity at the step in the enzyme network specified by the gene in question. The effect on the respective phenotypes of such changes in catalytic activity, however, is not defined by the enzyme change as estimated by in vitro determination of the activities obtained from the extracts of the three types. In vivo enzymes do not act in isolation, but are kinetically linked to other enzymes via their substrates and products. These interactions modify the effect of enzyme variation on the phenotype, depending on the nature and quantity of the other enzymes present. An output of such a system, say a flux, is therefore a systemic property, and its response to variation at one locus must be measured in the whole system. This response is best described by the sensitivity coefficient, Z, which is defined by the fractional change in flux over the fractional change in enzyme activity.(see PDF)Its magnitude determines the extent to which a particular enzyme "controls" a particular flux or phenotype and, implicitly, determines the values that the three phenotypes will have. There are as many sensitivity coefficients for a given flux as there are enzymes in the system. It can be shown that the sum of all such coefficients equals unity.(see PDF)Since n, the number of enzymes, is large, this summation property results in the individual coefficients being small. The effect of making a large change in enzyme activity therefore usually results in only a negligible change in flux. A reduction to 50% activity in the heterozygote, a common feature for many mutants, is therefore not expected to be detectable in the phenotype. The mutant would therefore be described as "recessive". The widespread occurrence of recessive mutants is thus seen to be the inevitable consequence of the kinetic structure of enzyme networks. The ad hoc hypothesis of "modifiers" selected to maximize the fitness of the heterozygote, as proposed by Fisher, is therefore unnecessary. It is based on the false general expectation of an intermediate phenotype in the heterozygote. Wright's analysis, substantially sound in its approach, proposed selection of a "safety factor" in enzyme activity. The derivation of the summation property explains why such safety factors are automatically present in almost all enzymes without selection. PMID:7297851
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; ...
2015-01-23
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence ofmore » a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis.« less
Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine
Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.
1997-01-01
Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830
Gul, Sheraz; Brown, Richard; May, Earl; Mazzulla, Marie; Smyth, Martin G; Berry, Colin; Morby, Andrew; Powell, David J
2004-11-01
DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.
Filippova, Ekaterina V; Kuhn, Misty L; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A; Anderson, Wayne F
2015-03-27
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence ofmore » a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis.« less
Enzyme reactor design under thermal inactivation.
Illanes, Andrés; Wilson, Lorena
2003-01-01
Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.
Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor.
Nanduri, Bindu; Byrd, Alicia K; Eoff, Robert L; Tackett, Alan J; Raney, Kevin D
2002-11-12
Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a monomer, then the burst amplitude in the pre-steady state might be similar to the concentration of enzyme, whereas if the helicase required oligomerization, then the amplitude would be significantly less than the enzyme concentration. DNA unwinding of an oligonucleotide substrate was conducted by using a Kintek rapid quench-flow instrument. The substrate consisted of 12 bp adjacent to 12 nucleotides of single-stranded DNA. Dda (4 nM) was incubated with substrate (16 nM) in buffer, and the unwinding reaction was initiated by the addition of ATP (5 mM) and Mg(2+) (10 mM). The reaction was stopped by the addition of 400 mM EDTA. Product formation exhibited biphasic kinetics, and the data were fit to the equation for a single exponential followed by a steady state. The amplitude of the first phase was 3.5 +/- 0.2 nM, consistent with a monomeric helicase. The burst amplitude of product formation was measured over a range of enzyme and substrate concentrations and remained consistent with a functional monomer. Thus, Dda can rapidly unwind oligonucleotide substrates as a monomer, indicating that the functional molecular motor component of a helicase can reside within a single polypeptide.
Bhat, Vikram; Welin, Eric R.; Guo, Xuelei; Stoltz, Brian M.
2017-01-01
An important subset of asymmetric synthesis is dynamic kinetic resolution, dynamic kinetic asymmetric processes and stereoablative transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes but recently various synthetic catalysts have been developed. This review summarizes major advances in non-enzymatic, transition metal promoted dynamic asymmetric transformations reported between 2005 and 2015. PMID:28164696
2015-01-01
Factor inhibiting HIF (FIH) is a cellular O2-sensing enzyme, which hydroxylates the hypoxia inducible factor-1α. Previously reported inverse solvent kinetic isotope effects indicated that FIH limits its overall turnover through an O2 activation step (HangaskyJ. A., SabanE., and KnappM. J. (2013) Biochemistry52, 1594−160223351038). Here we characterize the rate-limiting step for O2 activation by FIH using a suite of mechanistic probes on the second order rate constant kcat/KM(O2). Steady-state kinetics showed that the rate constant for O2 activation was slow (kcat/KM(O2)app = 3500 M–1 s–1) compared with other non-heme iron oxygenases, and solvent viscosity assays further excluded diffusional encounter with O2 from being rate limiting on kcat/KM(O2). Competitive oxygen-18 kinetic isotope effect measurements (18kcat/KM(O2) = 1.0114(5)) indicated that the transition state for O2 activation resembled a cyclic peroxohemiketal, which precedes the formation of the ferryl intermediate observed in related enzymes. We interpret this data to indicate that FIH limits its overall activity at the point of the nucleophilic attack of Fe-bound O2— on the C-2 carbon of αKG. Overall, these results show that FIH follows the consensus mechanism for αKG oxygenases, suggesting that FIH may be an ideal enzyme to directly access steps involved in O2 activation among the broad family of αKG oxygenases. PMID:25423620
Perfetto, Rosa; Del Prete, Sonia; Vullo, Daniela; Sansone, Giovanni; Barone, Carmela M A; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente
2017-08-28
The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule to the environment. Here, we report the cloning, expression, and purification of a particular CA, i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known as Crassostrea gigas ). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1, is highly effective as catalyst for the CO₂ hydration reaction, based on the measured kinetic parameters, i.e., k cat = 1.0 × 10⁶ s -1 and k cat / K M = 1.2 × 10⁸ M -1 ·s -1 . CgiNAP2X1 has a putative signal peptide, which probably allows an extracellular localization of the protein. The inhibition data demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with K I s in the range of 76-87 μM. These studies may add new information on the physiological role of the molluskan CAs in the biocalcification processes.
The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase.
Gilmour, R; Goodhew, C F; Pettigrew, G W; Prazeres, S; Moura, J J; Moura, I
1994-06-15
In work that is complementary to our investigation of the spectroscopic features of the cytochrome c peroxidase from Paracoccus denitrificans [Gilmour, Goodhew, Pettigrew, Prazeres, Moura and Moura (1993) Biochem. J. 294, 745-752], we have studied the kinetics of oxidation of cytochrome c by this enzyme. The enzyme, as isolated, is in the fully oxidized form and is relatively inactive. Reduction of the high-potential haem at pH 6 with ascorbate results in partial activation of the enzyme. Full activation is achieved by addition of 1 mM CaCl2. Enzyme activation is associated with formation of a high-spin state at the oxidized low-potential haem. EGTA treatment of the oxidized enzyme prevents activation after reduction with ascorbate, while treatment with EGTA of the reduced, partially activated, form abolishes the activity. We conclude that the active enzyme is a mixed-valence form with the low-potential haem in a high-spin state that is stabilized by Ca2+. Dilution of the enzyme results in a progressive loss of activity, the extent of which depends on the degree of dilution. Most of the activity lost upon dilution can be recovered after reconcentration. The M(r) of the enzyme on molecular-exclusion chromatography is concentration-dependent, with a shift to lower values at lower concentrations. Values of M(r) obtained are intermediate between those of a monomer (39,565) and a dimer. We propose that the active form of the enzyme is a dimer which dissociates at high dilution to give inactive monomers. From the activity of the enzyme at different dilutions, a KD of 0.8 microM can be calculated for the monomerdimer equilibrium. The cytochrome c peroxidase oxidizes horse ferrocytochrome c with first-order kinetics, even at high ferrocytochrome c concentrations. The maximal catalytic-centre activity ('turnover number') under the assay conditions used is 62,000 min-1, with a half-saturating ferrocytochrome c concentration of 3.3 microM. The corresponding values for the Paracoccus cytochrome c-550 (presumed to be the physiological substrate) are 85,000 min-1 and 13 microM. However, in this case, the kinetics deviate from first-order progress curves at all ferrocytochrome c concentrations. Consideration of the periplasmic environment in Paracoccus denitrificans leads us to propose that the enzyme will be present as the fully active dimer supplied with saturating ferrocytochrome c-550.
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro
2013-01-01
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062
Weis, David D; Nardozzi, Jonathan D
2005-04-15
The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoda, M.; Haniu, M.; Yanagibashi, K.
1987-01-27
The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C/sub 20/ and C/sub 21/ side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C/sub 17,20/-lyase reactions, which produce the corresponding C/sub 1//sup 9/ steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone analogue is a competitivemore » inhibitor of the enzyme with K/sub i/ values of 8.4 ..mu..M and 7.8 ..mu..M for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-((/sup 14/C)bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the /sup 14/C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also in tryptic digestion and peptide mapping.« less
Exact solutions for kinetic models of macromolecular dynamics.
Chemla, Yann R; Moffitt, Jeffrey R; Bustamante, Carlos
2008-05-15
Dynamic biological processes such as enzyme catalysis, molecular motor translocation, and protein and nucleic acid conformational dynamics are inherently stochastic processes. However, when such processes are studied on a nonsynchronized ensemble, the inherent fluctuations are lost, and only the average rate of the process can be measured. With the recent development of methods of single-molecule manipulation and detection, it is now possible to follow the progress of an individual molecule, measuring not just the average rate but the fluctuations in this rate as well. These fluctuations can provide a great deal of detail about the underlying kinetic cycle that governs the dynamical behavior of the system. However, extracting this information from experiments requires the ability to calculate the general properties of arbitrarily complex theoretical kinetic schemes. We present here a general technique that determines the exact analytical solution for the mean velocity and for measures of the fluctuations. We adopt a formalism based on the master equation and show how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space. With this analytic solution, we can then calculate the mean velocity and fluctuation-related parameters, such as the randomness parameter (a dimensionless ratio of the diffusion constant and the velocity) and the dwell time distributions, which fully characterize the fluctuations of the system, both commonly used kinetic parameters in single-molecule measurements. Furthermore, we show that this formalism allows calculation of these parameters for a much wider class of general kinetic models than demonstrated with previous methods.
Engelen, M.P.K.J.; Com, G.; Anderson, P.J.; Deutz, N.E.P.
2015-01-01
Background & Aims Adequate protein intake and digestion are necessary to prevent muscle wasting in cystic fibrosis (CF). Accurate and easy-to-use methodology to quantify protein maldigestion is lacking in CF. Objective To measure protein digestibility and the response to pancreatic enzyme intake in CF by using a new stable isotope methodology. Design In 19 CF and 8 healthy subjects, protein digestibility was quantified during continuous (sip) feeding for 6 hours by adding 15N-labeled spirulina protein and L-[ring-2H5]phenylalanine (PHE) to the nutrition and measuring plasma ratio [15N]PHE to [2H5]PHE. Pancreatic enzymes were ingested after 2 h in CF and the response in protein digestibility was assessed. To exclude difference in mucosal function, postabsorptive whole-body citrulline (CIT) production rate was measured by L-[5-13C-5,5-2H2]-CIT pulse and blood samples were taken to analyze tracer-tracee ratios. Results Protein digestibility was severely reduced in the CF group (47% of healthy subjects; P<0.001). Intake of pancreatic enzymes induced a slow increase in protein digestibility in CF until 90% of values obtained by healthy subjects. Maximal digestibility was reached at 100 min and maintained for 80 min. Stratification into CF children (n=10) and adults showed comparable values for protein digestibility and similar kinetic responses to pancreatic enzyme intake. Whole-body citrulline production was elevated in CF indicating preserved mucosal function. Conclusion Protein digestibility is severely compromised in patients with CF as measured by this novel and easy-to-use stable isotope approach. Pancreatic enzymes are able to normalize protein digestibility in CF, albeit with a severe delay. PMID:24268783
Enzymatic reactivity of glucose oxidase confined in nanochannels.
Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin
2014-05-15
The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties.
Dhital, Sushil; Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R; Gidley, Michael J
2017-03-24
Recent studies of the mechanisms determining the rate and extent of starch digestion by α-amylase are reviewed in the light of current widely-used classifications for (a) the proportions of rapidly-digestible (RDS), slowly-digestible (SDS), and resistant starch (RS) based on in vitro digestibility, and (b) the types of resistant starch (RS 1,2,3,4…) based on physical and/or chemical form. Based on methodological advances and new mechanistic insights, it is proposed that both classification systems should be modified. Kinetic analysis of digestion profiles provides a robust set of parameters that should replace the classification of starch as a combination of RDS, SDS, and RS from a single enzyme digestion experiment. This should involve determination of the minimum number of kinetic processes needed to describe the full digestion profile, together with the proportion of starch involved in each process, and the kinetic properties of each process. The current classification of resistant starch types as RS1,2,3,4 should be replaced by one which recognizes the essential kinetic nature of RS (enzyme digestion rate vs. small intestinal passage rate), and that there are two fundamental origins for resistance based on (i) rate-determining access/binding of enzyme to substrate and (ii) rate-determining conversion of substrate to product once bound.
Pereira, Félix Monteiro; Oliveira, Samuel Conceição
2016-11-01
In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.
Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.
Dölle, Christian; Ziegler, Mathias
2009-02-15
The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.
Srivastava, Garima; Singh, Kritika; Talat, Mahe; Srivastava, Onkar Nath; Kayastha, Arvind M.
2014-01-01
β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM) and Fourier Tansform Infrared (FTIR) spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries. PMID:25412079
Kinetic gating mechanism of DNA damage recognition by Rad4/XPC
NASA Astrophysics Data System (ADS)
Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; Park, Beomseok; Shim, Yoonjung; Kim, Youngchang; Liu, Lili; van Houten, Bennett; He, Chuan; Ansari, Anjum; Min, Jung-Hyun
2015-01-01
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.
Kinetic gating mechanism of DNA damage recognition by Rad4/XPC
Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; ...
2015-01-06
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivitymore » arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Lastly, kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.« less
Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru
2017-01-01
Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the materials and method for measurements should be carefully selected in order to accurately determine the activities of microbial extracellular hydrolytic enzymes in aquatic ecosystems; especially, low protein binding materials should be chosen to use at overall processes of the measurement. PMID:29067013
Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru
2017-01-01
Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the materials and method for measurements should be carefully selected in order to accurately determine the activities of microbial extracellular hydrolytic enzymes in aquatic ecosystems; especially, low protein binding materials should be chosen to use at overall processes of the measurement.
Huestis, Diana L; Oppert, Brenda; Marshall, Jeremy L
2009-01-01
Background Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. Results We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. Conclusion This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles. PMID:19460149
USDA-ARS?s Scientific Manuscript database
Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...
The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.
Abbott, Jamie A; Guth, Ethan; Kim, Cindy; Regan, Cathy; Siu, Victoria M; Rupar, C Anthony; Demeler, Borries; Francklyn, Christopher S; Robey-Bond, Susan M
2017-07-18
Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNA His binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.
Russell, Thomas R; Tu, Shiao-Chun
2004-10-12
Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.
Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finnegan, S.; Orville, A.; Yuan, H.
2010-09-15
The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction. Each reductive half-reaction is followed by an oxidative half-reaction where the reduced flavin is oxidized by oxygen. Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme. The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of amore » hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme. Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions. This is accompanied by a significant decrease in the overall rate of turnover with choline. Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid.« less
Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan
2010-03-01
We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.
An Open and Shut Case: The Interaction of Magnesium with MST Enzymes
2016-01-01
The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous ions is documented at nanomolar concentrations, which is a potentially physiologically relevant mode of regulation for siderophore biosynthesis in vivo. PMID:27373320
Invariance and optimality in the regulation of an enzyme
2013-01-01
Background The Michaelis-Menten equation, proposed a century ago, describes the kinetics of enzyme-catalyzed biochemical reactions. Since then, this equation has been used in countless, increasingly complex models of cellular metabolism, often including time-dependent enzyme levels. However, even for a single reaction, there remains a fundamental disconnect between our understanding of the reaction kinetics, and the regulation of that reaction through changes in the abundance of active enzyme. Results We revisit the Michaelis-Menten equation under the assumption of a time-dependent enzyme concentration. We show that all temporal enzyme profiles with the same average enzyme level yield identical substrate degradation– a simple analytical conclusion that can be thought of as an invariance principle, and which we validate experimentally using a β-galactosidase assay. The ensemble of all time-dependent enzyme trajectories with the same average concentration constitutes a space of functions. We develop a simple model of biological fitness which assigns a cost to each of these trajectories (in the form of a function of functions, i.e. a functional). We then show how one can use variational calculus to analytically infer temporal enzyme profiles that minimize the overall enzyme cost. In particular, by separately treating the static costs of amino acid sequestration and the dynamic costs of protein production, we identify a fundamental cellular tradeoff. Conclusions The overall metabolic outcome of a reaction described by Michaelis-Menten kinetics is ultimately determined by the average concentration of the enzyme during a given time interval. This invariance in analogy to path-independent phenomena in physics, suggests a new way in which variational calculus can be employed to address biological questions. Together, our results point to possible avenues for a unified approach to studying metabolism and its regulation. Reviewers This article was reviewed by Sergei Maslov, William Hlavacek and Daniel Kahn. PMID:23522082
Measurement of Enzyme Isotope Effects.
Kholodar, Svetlana A; Ghosh, Ananda K; Kohen, Amnon
2017-01-01
Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12 C, 14 N, and nonexchangeable 1 H by 13 C, 15 N, and 2 H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis. © 2017 Elsevier Inc. All rights reserved.
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.
USDA-ARS?s Scientific Manuscript database
Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...
Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.
2013-01-01
Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912
A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions.
Chang, Ivan; Baldi, Pierre
2013-05-15
Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation-reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus important, current models suffer from limitations to the steady-state domain, lack empirical validation or are too specialized to a single system or set of conditions. To address these limitations, we introduce a novel unifying modeling framework for kinetic descriptions of oxidoreductases. The framework is based on a set of seven elementary reactions that (i) form the basis for 69 pairs of enzyme state transitions for encoding various specific microscopic intra-enzyme reaction networks (micro-models), and (ii) lead to various specific macroscopic steady-state kinetic equations (macro-models) via thermodynamic assumptions. Thus, a synergistic bridge between the micro and macro kinetics can be achieved, enabling us to extract unitary rate constants, simulate reaction variance and validate the micro-models using steady-state empirical data. To help facilitate the application of this framework, we make available RedoxMech: a Mathematica™ software package that automates the generation and customization of micro-models. The Mathematica™ source code for RedoxMech, the documentation and the experimental datasets are all available from: http://www.igb.uci.edu/tools/sb/metabolic-modeling. pfbaldi@ics.uci.edu Supplementary data are available at Bioinformatics online.
Zoraghi, Roya; See, Raymond H; Gong, Huansheng; Lian, Tian; Swayze, Rick; Finlay, B Brett; Brunham, Robert C; McMaster, William R; Reiner, Neil E
2010-09-07
Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.
Biphasic Kinetic Behavior of E. coli WrbA, an FMN-Dependent NAD(P)H:Quinone Oxidoreductase
Kishko, Iryna; Harish, Balasubramanian; Zayats, Vasilina; Reha, David; Tenner, Brian; Beri, Dhananjay; Gustavsson, Tobias; Ettrich, Rüdiger; Carey, Jannette
2012-01-01
The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of this report is to bring under wider attention the apparently widespread phenomenon of two-plateau Michaelis-Menten plots. PMID:22952804
Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael
2015-11-01
The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.
Martins, S; Karmali, A; Serralheiro, M L
2006-08-15
A novel assay method was investigated for wild-type and recombinant mutant amidases (EC 3.5.1.4) from Pseudomonas aeruginosa by ammonium ion-selective electrode (ISE). The initial velocity is proportional to the enzyme concentration by using the wild-type enzyme. The specific activities of the purified amidase were found to be 88.2 and 104.2 U mg protein(-1) for the linked assay and ISE methods, respectively. The kinetic constants--Vmax, Km, and Kcat--determined by Michaelis-Menten plot were 101.13 U mg protein(-1), 1.12x10(-2) M, and 64.04 s(-1), respectively, for acrylamide as the substrate. On the other hand, the lower limit of detection and range of linearity of enzyme concentration were found to be 10.8 and 10.8 to 500 ng, respectively, for the linked assay method and 15.0 and 15.0 to 15,000 ng, respectively, for the ISE method. Hydroxylamine was found to act as an uncompetitive activator of hydrolysis reaction catalyzed by amidase given that there is an increase in Vmax and Km when acetamide was used as the substrate. However, the effect of hydroxylamine on the hydrolysis reaction was dependent on the type of amidase and substrate involved in the reaction mixture. The degrees of activation (epsilon(a)) of the wild-type and mutant (T103I and C91A) enzymes were found to be 2.54, 12.63, and 4.33, respectively, for acetamide as the substrate. However, hydroxylamine did not activate the reaction catalyzed by wild-type and altered (C91A and W138G) amidases by using acrylamide and acetamide, respectively, as the substrate. The activating effect of hydroxylamine on the hydrolysis of acetamide, acrylamide, and p-nitrophenylacetamide can be explained by the fact that additional formation of ammonium ions occurred due to the transferase activity of amidases. However, the activating effect of hydroxylamine on the hydrolysis of p-nitroacetanilide may be due to a change in conformation of enzyme molecule. Therefore, the use of ISE permitted the study of the kinetic properties of wild-type and mutant amidases because it was possible to measure initial velocity of the enzyme-catalyzed reaction in real time.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.
Enzyme Catalysis and the Gibbs Energy
ERIC Educational Resources Information Center
Ault, Addison
2009-01-01
Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)
Illustrating Enzyme Inhibition Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2012-01-01
Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…
ERIC Educational Resources Information Center
Smiley, Jeffrey A.
2002-01-01
The enzyme orotidine-5'-monophosphate decarboxylase is an attractive choice for the central theme of an integrated, research-based biochemistry laboratory course. A series of laboratory exercises common to most instructional laboratories, including enzyme assays, protein purification, enzymatic characterization, elementary kinetics, and…
Kebeish, R; El-Sayed, A; Fahmy, H; Abdel-Ghany, A
2016-10-01
L-asparaginase (EC 3.5.1.1), which catalyzes the deamidation of L-asparagine to L-aspartic acid and ammonia, has been widely used as a key therapeutic tool in the treatment of tumors. The current commercially available L-asparaginases, produced from bacteria, have signs of toxicity and hypersensitivity reactions during the course of tumor therapy. Therefore, searching for L-asparaginases with unique biochemical properties and fewer adverse effects was the objective of this work. In this study, cyanobacterial strain Synechococcus elongatus PCC6803 was found as a novel source of L-asparaginase. The L-asparaginase gene coding sequence (gi:939195038) was cloned and expressed in E. coli BL21(DE3), and the recombinant protein (Se.ASPII) was purified by affinity chromatography. The enzyme has high affinity towards L-asparagine and shows very weak affinity towards L-glutamine. The enzymatic properties of the recombinant enzyme were investigated, and the kinetic parameters (K m , V max ) were measured. The pH and temperature dependence profiles of the novel enzyme were analyzed. The work was extended to measure the antitumor properties of the novel enzyme against different human tumor cell lines.
Miskovic, Ljubisa; Alff-Tuomala, Susanne; Soh, Keng Cher; Barth, Dorothee; Salusjärvi, Laura; Pitkänen, Juha-Pekka; Ruohonen, Laura; Penttilä, Merja; Hatzimanikatis, Vassily
2017-01-01
Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2 -deficient S. cerevisiae strain. We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2 -deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
Bioreactors with immobilized lipases: state of the art.
Balcão, V M; Paiva, A L; Malcata, F X
1996-05-01
This review attempts to provide an updated compilation of studies reported in the literature pertaining to reactors containing lipases in immobilized forms, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to industrial applications of lipases (including control and economic considerations), as well as to methods of immobilization and configurations of reactors in which lipases are used. Features associated with immobilized lipase kinetics such as enzyme activities, adsorption properties, optimum operating conditions, and estimates of the lumped parameters in classical kinetic formulations (Michaelis-Menten model for enzyme action and first-order model for enzyme decay) are presented in the text in a systematic tabular form.
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417
Wang, Xiao-Tao; Lam, Veronica M S; Engel, Paul C
2005-09-01
Clones overexpressing clinical glucose 6-phosphate dehydrogenase (G6PD) mutants Union (c.1360C>T/p.Arg454Cys) and Andalus (c.1361G>A/p.Arg454His), have been constructed. These abolish a salt bridge between Arg454 and Asp 286. One mutant is reportedly a Class II clinical variant and the other a Class I. Kinetic studies of the purified proteins reveal that, for both mutants, kcat is about 10-fold decreased, thus giving a 90% decrease in the WHO assay, and also presumably under physiological conditions. In contrast with unfavourable changes in Vmax for both mutants, Km values for both G6P and NADP+ are decreased approximately 5-fold. Measurements with alternative substrates confirm that G6PD Union, like the wild-type enzyme, follows a rapid-equilibrium random-order mechanism, allowing calculation of enzyme-substrate dissociation constants from initial-rate parameters. The mutations result in several-fold tighter binding of glucose 6-phosphate to the free enzyme. Binding, however, is clearly less productive than with normal enzyme. G6PD mutations are thought to cause haemolytic anaemia by compromising enzyme stability. Both these mutants indeed show somewhat decreased thermostability. However, at 37 degrees C and with NADP+, the stability differences are only moderate. Decreased catalytic efficiency clearly contributes to the disease phenotype of these two mutants, entirely accounting for reported decrease in leukocyte G6PD levels, though not for still lower levels in erythrocytes. Neither the kinetic nor the stability effects appear to justify the different clinical classification of these mutations.
Breda, Ardala; Machado, Pablo; Rosado, Leonardo Astolfi; Souto, André Arigony; Santos, Diógenes Santiago; Basso, Luiz Augusto
2012-08-01
Tuberculosis (TB) is an ancient human chronic infectious disease caused mainly by Mycobacterium tuberculosis. The emergence of strains resistant to first and second line anti-TB drugs, associated with the increasing number of TB cases among HIV positive subjects, and the large number of individuals infected with latent bacilli have urged the development of new strategies to treat TB. Enzymes of nucleotide metabolism pathways provide promising molecular targets for the development of drugs, aiming at both active and latent TB. The orotate phosphoribosyltransferase (OPRT) enzyme catalyzes the synthesis of orotidine 5'-monophosphate from 5'-phospho-α-d-ribose 1'-diphosphate and orotic acid, in the de novo pyrimidine synthesis pathway. Based on the kinetic mechanism and molecular properties, here we describe the design, selection and synthesis of substrate analogs with inhibitory activity of M. tuberculosis OPRT (MtOPRT) enzyme. Steady-state kinetic measurements were employed to determine the mode of inhibition of commercially available and chemically derived compounds. The 6-Hydroxy-2-oxo-1,2-dihydropyridine-4-carboxylic acid (6) chemical compound and its derivative, 3-Benzylidene-2,6-dioxo-1,2,3,6-tetrahydropyridine-4-carboxylic acid (13), showed enzyme inhibition constants in the submicromolar range. Isothermal titration calorimetry data indicated that binding of both compounds to MtOPRT have negative enthalpy and favorable Gibbs free energy probably due to their high complementarity to the enzyme's binding pocket. Improvement of compound 13 hydrophobic character by addition of an aromatic ring substituent resulted in entropic optimization, reflected on a thermodynamic discrimination profile characteristic of high affinity ligands. These inhibitors represent lead compounds for further development of MtOPRT inhibitors with increased potency, which may be tested as anti-TB agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Nagel, Zachary D.; Cun, Shujian; Klinman, Judith P.
2013-01-01
A tetrameric thermophilic alcohol dehydrogenase from Bacillus stearothermophilus (ht-ADH) has been mutated at an aromatic side chain in the active site (Trp-87). The ht-W87A mutation results in a loss of the Arrhenius break seen at 30 °C for the wild-type enzyme and an increase in cold lability that is attributed to destabilization of the active tetrameric form. Kinetic isotope effects (KIEs) are nearly temperature-independent over the experimental temperature range, and similar in magnitude to those measured above 30 °C for the wild-type enzyme. This suggests that the rigidification in the wild-type enzyme below 30 °C does not occur for ht-W87A. A mutation at the dimer-dimer interface in a thermolabile psychrophilic homologue of ht-ADH, ps-A25Y, leads to a more thermostable enzyme and a change in the rate-determining step at low temperature. The reciprocal mutation in ht-ADH, ht-Y25A, results in kinetic behavior similar to that of W87A. Collectively, the results indicate that flexibility at the active site is intimately connected to a subunit interaction 20 Å away. The convex Arrhenius curves previously reported for ht-ADH (Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P. (1999) Nature 399, 496–499) are proposed to arise, at least in part, from a change in subunit interactions that rigidifies the substrate-binding domain below 30 °C, and impedes the ability of the enzyme to sample the catalytically relevant conformational landscape. These results implicate an evolutionarily conserved, long-range network of dynamical communication that controls C-H activation in the prokaryotic alcohol dehydrogenases. PMID:23525111
Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel
2015-01-01
Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
NASA Astrophysics Data System (ADS)
Hoang Thi Thu, Duyen; Razavi, Bahar S.
2016-04-01
Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192-211.
Halim, Amanatuzzakiah Abdul; Szita, Nicolas; Baganz, Frank
2013-12-01
The concept of de novo metabolic engineering through novel synthetic pathways offers new directions for multi-step enzymatic synthesis of complex molecules. This has been complemented by recent progress in performing enzymatic reactions using immobilized enzyme microreactors (IEMR). This work is concerned with the construction of de novo designed enzyme pathways in a microreactor synthesizing chiral molecules. An interesting compound, commonly used as the building block in several pharmaceutical syntheses, is a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT). This chiral amino alcohol can be synthesized from simple achiral substrates using two enzymes, transketolase (TK) and transaminase (TAm). Here we describe the development of an IEMR using His6-tagged TK and TAm immobilized onto Ni-NTA agarose beads and packed into tubes to enable multi-step enzyme reactions. The kinetic parameters of both enzymes were first determined using single IEMRs evaluated by a kinetic model developed for packed bed reactors. The Km(app) for both enzymes appeared to be flow rate dependent, while the turnover number kcat was reduced 3 fold compared to solution-phase TK and TAm reactions. For the multi-step enzyme reaction, single IEMRs were cascaded in series, whereby the first enzyme, TK, catalyzed a model reaction of lithium-hydroxypyruvate (HPA) and glycolaldehyde (GA) to L-erythrulose (ERY), and the second unit of the IEMR with immobilized TAm converted ERY into ABT using (S)-α-methylbenzylamine (MBA) as amine donor. With initial 60mM (HPA and GA each) and 6mM (MBA) substrate concentration mixture, the coupled reaction reached approximately 83% conversion in 20 min at the lowest flow rate. The ability to synthesize a chiral pharmaceutical intermediate, ABT in relatively short time proves this IEMR system as a powerful tool for construction and evaluation of de novo pathways as well as for determination of enzyme kinetics. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics
ERIC Educational Resources Information Center
Lechner, Joseph H.
2011-01-01
Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)
Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro
2016-12-15
Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deng, Gejing; Gu, Rong-Fang; Marmor, Stephen; Fisher, Stewart L; Jahic, Haris; Sanyal, Gautam
2004-06-29
An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated. Copyright 2004 Elsevier B.V.
1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study
Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.
2015-01-01
Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817
Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C
2016-01-01
Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.
Olsen, Johan P; Alasepp, Kadri; Kari, Jeppe; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter
2016-06-01
The cellobiohydrolase cellulase Cel7A is extensively utilized in industrial treatment of lignocellulosic biomass under conditions of high product concentrations, and better understanding of inhibition mechanisms appears central in attempts to improve the efficiency of this process. We have implemented an electrochemical biosensor assay for product inhibition studies of cellulases acting on their natural substrate, cellulose. Using this method we measured the hydrolytic rate of Cel7A as a function of both product (inhibitor) concentration and substrate load. This data enabled analyses along the lines of conventional enzyme kinetic theory. We found that the product cellobiose lowered the maximal rate without affecting the Michaelis constant, and this kinetic pattern could be rationalized by two fundamentally distinct molecular mechanisms. One was simple reversibility, that is, an increasing rate of the reverse reaction, lowering the net hydrolytic velocity as product concentrations increase. Strictly this is not a case of inhibition, as no catalytically inactive is formed. The other mechanism that matched the kinetic data was noncompetitive inhibition with an inhibition constant of 490 ± 40 μM. Noncompetitive inhibition implies that the inhibitor binds with comparable strength to either free enzyme or an enzymesubstrate complex, that is, that association between enzyme and substrate has no effect on the binding of the inhibitor. This mechanism is rarely observed, but we argue, that the special architecture of Cel7A with numerous subsites for binding of both substrate and product could give rise to a true noncompetitive inhibition mechanism. Biotechnol. Bioeng. 2016;113: 1178-1186. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Robins, Lori I; Fogle, Emily J; Marlier, John F
2015-11-01
The hydrolysis of amides, oxoesters and thioesters is an important reaction in both organic chemistry and biochemistry. Kinetic isotope effects (KIEs) are one of the most important physical organic methods for determining the most likely transition state structure and rate-determining step of these reaction mechanisms. This method induces a very small change in reaction rates, which, in turn, results in a minimum disturbance of the natural mechanism. KIE studies were carried out on both the non-enzymatic and the enzyme-catalyzed reactions in an effort to compare both types of mechanisms. In these studies the amides and esters of formic acid were chosen because this molecular structure allowed development of methodology to determine heavy-atom solvent (nucleophile) KIEs. This type of isotope effect is difficult to measure, but is rich in mechanistic information. Results of these investigations point to transition states with varying degrees of tetrahedral character that fit a classical stepwise mechanism. This article is part of a special issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M
2003-01-01
Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.
Oldfield, C
1990-01-01
1. Equations are derived for the steady-state kinetics of substrate conversion by enzymes confined within the water-droplets of water-in-oil microemulsion systems. 2. Water-soluble substrates initially confined within droplets that do not contain enzyme are assumed to be converted into product only after they enter enzyme-containing droplets via the inter-droplet exchange process. 3. Hyperbolic (Michaelis-Menten) kinetics are predicted when the substrate concentration is varied in microemulsions of fixed composition. Both kcat. and Km are predicted to be dependent on the size and concentration of the water-droplets in the microemulsion. 4. The predicted behaviour is shown to be supported by published experimental data. A physical interpretation of the form of the rate equation is presented. 5. The rate equation for an oil-soluble substrate was derived assuming a pseudo-two-phase (oil & water) model for the microemulsion. Both kcat. and Km are shown to be independent of phi aq. Km is larger than the aqueous solution value by a factor approximately equal to the oil/water partition coefficient of the substrate. The validity of the rate equation is confirmed by published data. PMID:2264819
Goličnik, Marko
2011-01-01
The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.
2015-01-01
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) that typically harbor multiple intramolecular thioether linkages. For class II lanthipeptides, these cross-links are installed in a multistep reaction pathway by a single enzyme (LanM). The multifunctional nature of LanMs and the manipulability of their genetically encoded peptide substrates (LanAs) make LanM/LanA systems promising targets for the engineering of new antibacterial compounds. Here, we report the development of a semiquantitative mass spectrometry-based assay for kinetic characterization of LanM-catalyzed reactions. The assay was used to conduct a comparative kinetic analysis of two LanM enzymes (HalM2 and ProcM) that exhibit drastically different substrate selectivity. Numerical simulation of the kinetic data was used to develop models for the multistep HalM2- and ProcM-catalyzed reactions. These models illustrate that HalM2 and ProcM have markedly different catalytic efficiencies for the various reactions they catalyze. HalM2, which is responsible for the biosynthesis of a single compound (the Halβ subunit of the lantibiotic haloduracin), catalyzes reactions with higher catalytic efficiency than ProcM, which modifies 29 different ProcA precursor peptides during prochlorosin biosynthesis. In particular, the rates of thioether ring formation are drastically reduced in ProcM, likely because this enzyme is charged with installing a variety of lanthipeptide ring architectures in its prochlorosin products. Thus, ProcM appears to pay a kinetic price for its relaxed substrate specificity. In addition, our kinetic models suggest that conformational sampling of the LanM/LanA Michaelis complex could play an important role in the kinetics of LanA maturation. PMID:25409537
Beauvoit, Bertrand P.; Colombié, Sophie; Monier, Antoine; Andrieu, Marie-Hélène; Biais, Benoit; Bénard, Camille; Chéniclet, Catherine; Dieuaide-Noubhani, Martine; Nazaret, Christine; Mazat, Jean-Pierre; Gibon, Yves
2014-01-01
A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division. PMID:25139005
Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre
2011-01-01
Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with our experimentally fitted parameters to those of existing models. Finally, we present a complete perturbation study of these parameters to reveal how they can significantly and differentially influence global flux and operational thresholds, suggesting that this modeling approach could help enable the comparative analysis of mitochondria from different systems and pathological states. The procedures and results are available in Mathematica notebooks at http://www.igb.uci.edu/tools/sb/mitochondria-modeling.html. PMID:21931590
Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre
2011-01-01
Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with our experimentally fitted parameters to those of existing models. Finally, we present a complete perturbation study of these parameters to reveal how they can significantly and differentially influence global flux and operational thresholds, suggesting that this modeling approach could help enable the comparative analysis of mitochondria from different systems and pathological states. The procedures and results are available in Mathematica notebooks at http://www.igb.uci.edu/tools/sb/mitochondria-modeling.html.
9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.
Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B
2016-01-15
A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, H. S.; Li, M.; Qian, W.; Song, X.; Chen, X.; Scheibe, T. D.; Fredrickson, J.; Zachara, J. M.; Liu, C.
2016-12-01
Modeling environmental microbial communities at individual organism level is currently intractable due to overwhelming structural complexity. Functional guild-based approaches alleviate this problem by lumping microorganisms into fewer groups based on their functional similarities. This reduction may become ineffective, however, when individual species perform multiple functions as environmental conditions vary. In contrast, the functional enzyme-based modeling approach we present here describes microbial community dynamics based on identified functional enzymes (rather than individual species or their groups). Previous studies in the literature along this line used biomass or functional genes as surrogate measures of enzymes due to the lack of analytical methods for quantifying enzymes in environmental samples. Leveraging our recent development of a signature peptide-based technique enabling sensitive quantification of functional enzymes in environmental samples, we developed a genetically structured microbial community model (GSMCM) to incorporate enzyme concentrations and various other omics measurements (if available) as key modeling input. We formulated the GSMCM based on the cybernetic metabolic modeling framework to rationally account for cellular regulation without relying on empirical inhibition kinetics. In the case study of modeling denitrification process in Columbia River hyporheic zone sediments collected from the Hanford Reach, our GSMCM provided a quantitative fit to complex experimental data in denitrification, including the delayed response of enzyme activation to the change in substrate concentration. Our future goal is to extend the modeling scope to the prediction of carbon and nitrogen cycles and contaminant fate. Integration of a simpler version of the GSMCM with PFLOTRAN for multi-scale field simulations is in progress.
Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase.
Carro, Juan; Martínez-Júlvez, Marta; Medina, Milagros; Martínez, Angel T; Ferreira, Patricia
2017-11-01
The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme's active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.
The Power of Integrating Kinetic Isotope Effects into the Formalism of the Michaelis-Menten Equation
Klinman, Judith P.
2014-01-01
The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued to this day. This review discusses a family of eukaryotic copper proteins that includes dopamine β-monooxygenase, tyramine β-monooxygenase, and peptidylglycine α-amidating enzyme, responsible for the synthesis of the neuro-active compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. Highlighted are results that show how combining kinetic isotope effects with initial rate parameters permits an evaluation of: (i) the order of substrate binding to multi-substrate enzymes; (ii) the magnitude of individual rate constants in complex, multi-step reactions; (iii) the identification of chemical intermediates; and (iv) the role of non-classical (tunneling) behavior in C–H activation. PMID:23937475
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
Kinetics and inhibition of cyclomaltodextrinase from alkalophilic Bacillus sp. I-5.
Kim, M J; Park, W S; Lee, H S; Kim, T J; Shin, J H; Yoo, S H; Cheong, T K; Ryu, S; Kim, J C; Kim, J W; Moon, T W; Robyt, J F; Park, K H
2000-01-01
The cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 (CDase I-5) was expressed in Escherichia coli and the purified enzyme was used for characterization of the enzyme action. The hydrolysis products were monitored by both HPLC and high-performance ion chromatography analysis that enable the kinetic analysis of the cyclomaltodextrin (CD)-degrading reaction. Analysis of the kinetics of cyclomaltodextrin hydrolysis by CDase I-5 indicated that ring-opening of the cyclomaltodextrin was the major limiting step and that CDase I-5 preferentially degraded the linear maltodextrin chain by removing the maltose unit. The substrate binding affinity of the enzyme was almost same for those of cyclomaltodextrins while the rate of ring-opening was the fastest for cyclomaltoheptaose. Acarbose and methyl 6-amino-6-deoxy-alpha-d-glucopyranoside were relatively strong competitive inhibitors with K(i) values of 1.24 x 10(-3) and 8.44 x 10(-1) mM, respectively. Both inhibitors are likely to inhibit the ring-opening step of the CD degradation reaction. Copyright 2000 Academic Press.
Enzyme-Embedded, Microstructural Reactors for Industrial Biocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Sarah E.; Knipe, J. M.; Oakdale, J.
In this project we explored enzyme-catalyzed methane conversion to methanol. Industrial biological approaches to methane conversion using whole organisms are predicted to be more energy efficient than chemical approaches, but are limited by mass transfer of the gas phase reactants, methane and oxygen, to the organisms. We demonstrated that 3D printing the enzyme particulate Methane Mono Oxygenase (pMMO) embedded in a polymer can improve the kinetics of methane to methanol conversion. This improvement was likely due to the ability to increase the surface area of the catalytic material using 3D printing. We also demonstrated the first continuous use of pMMOmore » in a flow-through reactor. In order to understand the fundamental kinetic properties of pMMO, we conducted an in-depth study of pMMO kinetics using analytical tools developed in our lab. Finally, we developed a new copolymer system that allowed tuning of the gas permeability of the biocatalytic material.« less
Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.
Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A
2016-01-01
1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.
Willenbrock, F; Brocklehurst, K
1984-01-01
Cathepsin B (EC 3.4.22.1) from bovine spleen and the analogous enzyme from rat liver were investigated at 25 degrees C at I0.1 in acidic media by kinetic study of (a) the reactions of their catalytic-site thiol groups towards the two-protonic-state reactivity probe 2,2'-dipyridyl disulphide and (b) their catalysis of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide. Reactivity-probe kinetics showed that nucleophilic character is generated in the sulphur atom of cathepsin B by protonic dissociation with pKa 3.4, presumably to form an S-/ImH+ ion-pair. Substrate-catalysis kinetics showed that ion-pair formation is not sufficient to generate catalytic competence in cathepsin B, because catalytic activity is not generated as the pH is raised across pKa 3.4 but rather as it is raised across pKa 5-6 (5.1 for kcat; 5.6 for kcat./Km for the bovine spleen enzyme and 5.8 for kcat./Km for the rat liver enzyme). The implications of these results and of known structural differences between the catalytic sites of the rat liver enzyme and papain (EC 3.4.22.2) for the mechanism of cysteine-proteinase-catalysed hydrolysis are discussed. PMID:6534384
Solvent and α-secondary kinetic isotope effects on β-glucosidase.
Xie, Miaomiao; Byers, Larry D
2015-11-01
β-Glucosidase from sweet almond is a retaining, family 1, glycohydrolase. It is known that glycosylation of the enzyme by aryl glucosides occurs with little, if any, acid catalysis. For this reaction both the solvent and α-secondary kinetic isotope effects are 1.0. However, for the deglucosylation reaction (e.g., kcat for 2,4-dinitrophenyl-β-D-glucopyranoside) there is a small solvent deuterium isotope effect of 1.50 (±0.06) and an α-secondary kinetic isotope effect of 1.12 (±0.03). For aryl glucosides, kcat/KM is very sensitive to the pKa of the phenol leaving group [βlg≈-1; Dale et al., Biochemistry25 (1986) 2522-2529]. With alkyl glucosides the βlg is smaller (between -0.2 and -0.3) but still negative. This, coupled with the small solvent isotope effect on the pH-independent second-order rate constant for the glucosylation of the enzyme with 2,2,2-trifluoroethyl-β-glucoside [D2O(kcat/KM)=1.23 (±0.04)] suggests that there is more glycone-aglycone bond fission than aglycone oxygen protonation in the transition state for alkyl glycoside hydrolysis. The kinetics constants for the partitioning (between water and various alcohols) of the glucosyl-enzyme intermediate, coupled with the rate constants for the forward (hydrolysis) reaction provide an estimate of the stability of the glucosyl-enzyme intermediate. This is a relatively stable species with an energy about 2 to 4 kcal/mol higher than that of the ES complex. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
Thibodeaux, Christopher J.; Mansoorabadi, Steven O.; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen
2011-01-01
The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2–H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures. PMID:18229948
Low dielectric response in enzyme active site
Mertz, Edward L.; Krishtalik, Lev I.
2000-01-01
The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440
Evans, Rhiannon M; Armstrong, Fraser A
2014-01-01
Protein film electrochemistry is a technique which allows the direct control of redox-active enzymes, providing particularly detailed information on their catalytic properties. The enzyme is deposited onto a working electrode tip, and through control of the applied potential the enzyme activity is monitored as electrical current, allowing for direct study of inherent activity as electrons are transferred to and from the enzyme redox center(s). No mediators are used. Because the only enzyme present in the experiment is bound at the electrode surface, gaseous and liquid phase inhibitors can be introduced and removed whilst the enzyme remains in situ. Potential control means that kinetics and thermodynamics are explored simultaneously; the kinetics of a reaction can be studied as a function of potential. Steady-state catalytic rates are observed directly as current (for a given potential) and non-steady-state rates (such as interconversions between different forms of the enzyme) are observed from the change in current with time. The more active the enzyme, the higher the current and the better the signal-to-noise. In this chapter we outline the practical aspects of PFE for studying electroactive enzymes, using the Escherichia coli [NiFe]-hydrogenase 1 (Hyd-1) as an example.
von Herrath, M; Holzer, H
1988-05-01
As a prerequisite for future studies on the possible effect of sulphite, an anti-microbial agent, on gluconeogenesis in yeast, a comparative study of fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis, from yeast, liver and skeletal muscle is reported. In contrast to FBPase from yeast or liver, FBPase from skeletal muscle is approximately 1000-fold more sensitive to inhibition by 5' adenosine monophosphate and 30 to 250-fold less sensitive to inhibition by fructose-2,6-bisphosphate. The kinetic properties of the FBPases, determined by the ratios R(Mg2+/Mn2+) and R (pH 7/9) of the enzyme activities, measured at 10 mM Mg2+ and 2 mM Mn2+ and at pH 7.0 and 9.0, respectively, show a drastic difference between the skeletal muscle and the yeast or liver enzymes. The data support the idea that the enzymes from yeast and liver function in gluconeogenesis, whereas the enzyme from skeletal muscle is involved in other biological functions.
[Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].
Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping
2004-11-01
Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.
Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture
Buehler, Edward A.; Mesbah, Ali
2016-01-01
Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663
Juárez, Oscar; Shea, Michael E.; Makhatadze, George I.; Barquera, Blanca
2011-01-01
The Na+-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na+-NQR enables pumping of Li+, as well as Na+ across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na+-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with 22Na+ show that, in both its oxidized and reduced states, Na+-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states. PMID:21652714
Relationship between femtosecond-picosecond dynamics to enzyme catalyzed H-transfer
Cheatum, Christopher M.; Kohen, Amnon
2015-01-01
At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H→C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes. PMID:23539379
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W
1983-01-01
A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses. PMID:6300184
Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W
1983-02-01
A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses.
Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide.
Hiner, A N; Rodríguez-López, J N; Arnao, M B; Lloyd Raven, E; García-Cánovas, F; Acosta, M
2000-01-01
The activity of ascorbate peroxidase (APX) has been studied with H(2)O(2) and various reducing substrates. The activity decreased in the order pyrogallol>ascorbate>guaiacol>2, 2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The inactivation of APX with H(2)O(2) as the sole substrate was studied. The number of H(2)O(2) molecules required for maximal inactivation of the enzyme was determined as approx. 2.5. Enzymic activity of approx. 20% of the original remained at the end of the inactivation process (i.e. approx. 20% resistance) when ascorbate or ABTS was used as the substrate in activity assays. With pyrogallol or guaiacol no resistance was seen. Inactivation by H(2)O(2) followed over time with ascorbate or pyrogallol assays exhibited single-exponential decreases in enzymic activity. Hyperbolic saturation kinetics were observed in both assay systems; a similar dissociation constant (0.8 microM) for H(2)O(2) was obtained in each case. However, the maximum rate constant (lambda(max)) obtained from the plots differed depending on the assay substrate. The presence of reducing substrate in addition to H(2)O(2) partly or completely protected the enzyme from inactivation, depending on how many molar equivalents of reducing substrate were added. An oxygen electrode system has been used to confirm that APX does not exhibit a catalase-like oxygen-releasing reaction. A kinetic model was developed to interpret the experimental results; both the results and the model are compared and contrasted with previously obtained results for horseradish peroxidase C. The kinetic model has led us to the conclusion that the inactivation of APX by H(2)O(2) represents an unusual situation in which no enzyme turnover occurs but there is a partition of the enzyme between two forms, one inactive and the other with activity towards reducing substrates such as ascorbate and ABTS only. The partition ratio is less than 1. PMID:10816425
Jung, Jihye; Czabany, Tibor; Wilding, Birgit; Klempier, Norbert; Nidetzky, Bernd
2016-01-01
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = −80.3 kJ/mol; −TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4–7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s−1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s−1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1. 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = −2.3 kJ/mol; −TΔS = −19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data. PMID:27754868
Bak, Lasse K; Schousboe, Arne
2017-11-01
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate involving the coenzyme NAD + . Part of the foundation for the proposed shuttling of lactate from astrocytes to neurons during brain activation is the differential distribution of LDH isoenzymes between the two cell types. In this short review, we outline the basic kinetic properties of the LDH isoenzymes expressed in neurons and astrocytes, and argue that the distribution of LDH isoenzymes does not in any way govern directional flow of lactate between the two cellular compartments. The two main points are as follows. First, in line with the general concept of chemical catalysis, enzymes do not influence the thermodynamic equilibrium of a chemical reaction but merely the speed at which equilibrium is obtained. Thus, differential distribution of LDH isoenzymes with different kinetic parameters does not predict which cells are producing and which are consuming lactate. Second, the thermodynamic equilibrium of the reaction is toward the reduced substrate (i.e., lactate), which is reflected in the concentrations measured in brain tissue, suggesting that the reaction is at near-equilibrium at steady state. To conclude, the cellular distribution of LDH isoenzymes is of little if any consequence in determining any directional flow of lactate between neurons and astrocytes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A kinetic clutch governs uncoiling by type IB topoisomerases
NASA Astrophysics Data System (ADS)
Neuman, Keir
2013-03-01
Type IB topoisomerases (Top1B) are essential enzymes that relax excessive DNA supercoiling associated with replication and transcription and are important drug targets for cancer chemotherapy. The natural compound camptothecin (CPT) and the cancer chemotherapeutics derived from it, irinotecan and topotecan, are highly specific inhibitors of human nuclear Type IB topoisomerase (nTop1). We employed a magnetic-tweezers based single-molecule DNA supercoil relaxation assay to measure the torque dependence of human nuclear Top1 relaxation (nTop1) and inhibition by CPT. For comparison, we examined the human mitochondrial (Top1mt) topoisomerase and an N-terminal deletion mutant of nTop1 (Top68). Despite substantial sequence homology in their core domains, nTop1 and Top1mt exhibit dramatic differences in sensitivity to torque and CPT, with Top68 betraying intermediate characteristics. In particular, nTop1 displays nearly torque-independent religation probability, distinguishing it from other Top1B enzymes studied to date. Kinetic modeling reveals a hitherto unobserved torque-independent transition linking the DNA rotation and religation phases of the enzymatic cycle. The parameters of this transition determine the torque sensitivity of religation, and the efficiency of CPT binding. This ``kinetic clutch'' mechanism explains the molecular basis of CPT sensitivity and more generally provides a framework with which to interpret Top1B activity and inhibition.
Representing Rate Equations for Enzyme-Catalyzed Reactions
ERIC Educational Resources Information Center
Ault, Addison
2011-01-01
Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…
Gandhi, Vishal V.; Samuels, David C.
2011-01-01
Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides. PMID:21829339
Arbildi, Paula; Turell, Lucía; López, Verónica; Alvarez, Beatriz; Fernández, Verónica
2017-11-01
Glutathione transferases (GSTs) comprise a major detoxification system in helminth parasites, displaying both catalytic and non-catalytic activities. The kinetic mechanism of these enzymes is complex and depends on the isoenzyme which is being analyzed. Here, we characterized the kinetic mechanism of rEgGST1, a recombinant form of a cytosolic GST from Echinococcus granulosus (EgGST1), which is related to the Mu-class of mammalian enzymes, using the canonical substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Initial rate and product inhibition studies were consistent with a steady-state random sequential mechanism, where both substrates are bound to the enzyme before the products are released. Kinetic constants were also determined (pH 6.5 and 30 °C). Moreover, rEgGST1 lowered the pK a of GSH from 8.71 ± 0.07 to 6.77 ± 0.08, and enzyme-bound GSH reacted with CDNB 1 × 10 5 times faster than free GSH at pH 7.4. Finally, the dissociation of the enzyme-GSH complex was studied by means of intrinsic fluorescence, as well as that of the complex with the anthelminth drug mebendazole. This is the first report on mechanistic issues related to a helminth parasitic GST. Copyright © 2017 Elsevier Inc. All rights reserved.
Catalytic site interactions in yeast OMP synthase.
Hansen, Michael Riis; Barr, Eric W; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R
2014-01-15
The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding. Copyright © 2013. Published by Elsevier Inc.
Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB.
Yavuz, Sevgi; Kocabay, Samet; Çetinkaya, Serap; Akkaya, Birnur; Akkaya, Recep; Yenidunya, Ali Fazil; Bakıcı, Mustafa Zahir
2017-01-01
A thermostable metalloprotease, produced from an environmental strain of Candida kefyr 41 PSB, was purified 16 fold with a 60% yield by cold ethanol precipitation and affinity chromatography (bentonite-acrylamide-cysteine microcomposite). The purified enzyme appeared as a single protein band at 43kDa. Its optimum pH and temperature points were found to be 7.0 and 105°C, respectively. K m and V max values of the enzyme were determined to be 3.5mg/mL and 4.4μmolmL -1 min -1 , 1.65mg/mL and 6.1μmolmL -1 min -1 , using casein and gelatine as the substrates, respectively. The activity was inhibited by using ethylenediamine tetraacetic acid (EDTA), indicating that the enzyme was a metalloprotease. Stability of the enzyme was investigated by using thermodynamic and kinetic parameters. The thermal inactivation profile of the enzyme conformed to the first order kinetics. The half life of the enzyme at 95, 105, 115, 125 and 135°C was 1310, 610, 220, 150, and 86min, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Halper, Sean M; Cetnar, Daniel P; Salis, Howard M
2018-01-01
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
Substrate-dependent temperature sensitivity of soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Myachina, Olga; Blagodatskaya, Evgenia
2015-04-01
Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.
The construction, fouling and enzymatic cleaning of a textile dye surface.
Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J
2010-11-01
The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.
Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.
Raper, Austin T; Stephenson, Anthony A; Suo, Zucai
2018-02-28
The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.
Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee
2014-06-01
Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields.
Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa
2015-11-01
This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®
Zhang, Shihan; Lu, Hong; Lu, Yongqi
2013-12-03
A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 °C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified.
Exploring the specific features of interfacial enzymology based on lipase studies.
Aloulou, Ahmed; Rodriguez, Jorge A; Fernandez, Sylvie; van Oosterhout, Dirk; Puccinelli, Delphine; Carrière, Frédéric
2006-09-01
Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Keehyuk; Plapp, Bryce V.
The substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/Km) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB). Nevertheless, atomic resolution crystal structures of the S48T enzyme complexed with NAD+ and TFE or PFB are very similar to the structures formore » the wild-type enzyme. (The S48A substitution greatly diminishes catalytic activity.) The F93A substitution significantly decreases catalytic efficiency (V/Km) for ethanol and acetaldehyde while increasing activity for larger secondary alcohols and the enantioselectivity for the R-isomer relative to the S-isomer of 2-alcohols. The doubly substituted S48T/F93A enzyme has kinetic constants for primary and secondary alcohols similar to those for the F93A enzyme, but the effect of the S48T substitution is to decrease V/Km for (S)-2-alcohols without changing V/Km for (R)-2-alcohols. Thus, the S48T/F93A substitutions invert the enantioselectivity for alcohol oxidation, increasing the R/S ratio by 10, 590, and 200-fold for 2-butanol, 2-octanol, and sec-phenethyl alcohol, respectively. Transient kinetic studies and simulations of the ordered bi bi mechanism for the oxidation of the 2-butanols by the S48T/F93A ADH show that the rate of hydride transfer is increased about 7-fold for both isomers (relative to wild-type enzyme) and that the inversion of enantioselectivity is due to more productive binding for (R)-2-butanol than for (S)-2-butanol in the ternary complex. Molecular modeling suggests that both of the sec-phenethyl alcohols could bind to the enzyme and that dynamics must affect the rates of catalysis.« less
Huang, Min; Xie, Sheng-Xue; Ma, Ze-Qiang; Huang, Qing-Qing; Nan, Fa-Jun; Ye, Qi-Zhuang
2008-01-01
Two divalent metal ions are commonly seen in the active site cavity of methionine aminopeptidase, and at least one of the metal ions is directly involved in catalysis. Although ample structural and functional information is available for dimetalated enzyme, methionine aminopeptidase likely functions as a monometalated enzyme under physiological conditions. Information on structure, as well as catalysis and inhibition, of the monometalated enzyme is lacking. By improving conditions of high throughput screening, we identified a unique inhibitor with specificity toward the monometalated enzyme. Kinetic characterization indicates a mutual exclusivity in binding between the inhibitor and the second metal ion at the active site. This is confirmed by X-ray structure, and this inhibitor coordinates with the first metal ion and occupies the space normally occupied by the second metal ion. Kinetic and structural analyses of the inhibition by this and other inhibitors provide insight in designing effective inhibitors of methionine aminopeptidase. PMID:17948983
Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan
2015-11-24
Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.
Labrou, Nikolaos E; Muharram, Magdy Mohamed
2016-10-01
l-Asparaginases (l-ASNase, E.C. 3.5.1.1) catalyze the conversion of l-asparagine to l-aspartic acid and ammonia. In the present work, a new form of l-ASNase from a strain of Erwinia carotovora (EcaL-ASNase) was cloned, expressed in Escherichia coli as a soluble protein and characterized. The enzyme was purified to homogeneity by a single-step procedure comprising ion-exchange chromatography. The properties of the recombinant enzyme were investigated employing kinetic analysis and molecular modelling and the kinetic parameters (Km, kcat) were determined for a number of substrates. The enzyme was used to assemble a microplate-based biosensor that was used for the development of a simple assay for the determination of l-asparagine in biological samples. In this sensor, the enzyme was immobilized by crosslinking with glutaraldehyde and deposited into the well of a microplate in 96-well format. The sensing scheme was based on the colorimetric measurement of ammonia formation using the Nessler's reagent. This format is ideal for micro-volume applications and allows the use of the proposed biosensor in high-throughput applications for monitoring l-asparagine levels in serum and foods samples. Calibration curve was obtained for l-asparagine, with useful concentration range 10-200μΜ. The biosensor had a detection limit of 10μM for l-asparagine. The method's reproducibility was in the order of ±3-6% and l-asparagine mean recoveries were 101.5%. Copyright © 2016 Elsevier Inc. All rights reserved.
Romek, Katarzyna M; Remaud, Gérald S; Silvestre, Virginie; Paneth, Piotr; Robins, Richard J
2016-08-05
During the biosynthesis of natural products, isotopic fractionation occurs due to the selectivity of enzymes for the heavier or lighter isotopomers. As only some of the positions in the molecule are implicated in a given reaction mechanism, position-specific fractionation occurs, leading to a non-statistical distribution of isotopes. This can be accessed by isotope ratio monitoring (13)C NMR spectrometry. The solanaceous alkaloids S-(-)-nicotine and hyoscyamine (atropine) are related in having a common intermediate, but downstream enzymatic steps diverge, providing a relevant test case to: (a) elucidate the isotopic affiliation between carbon atoms in the alkaloids and those in the precursors; (b) obtain information about the kinetic isotope effects of as yet undescribed enzymes, thus to make predictions as to their possible mechanism(s). We show that the position-specific (13)C/(12)C ratios in the different moieties of these compounds can satisfactorily be related to their known precursors and to the known kinetic isotope effects of enzymes involved in their biosynthesis, or to similar reaction mechanisms. Thus, the pathway to the common intermediate, N-methyl-Δ(1)-pyrrolinium, is seen to introduce similar isotope distribution patterns in the two alkaloids independent of plant species, whereas the remaining atoms of each target compound, which are of different origins, reflect their specific metabolic ancestry. We further demonstrate that the measured (13)C distribution pattern can be used to deduce aspects of the reaction mechanism of enzymes still to be identified. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Romek, Katarzyna M.; Remaud, Gérald S.; Silvestre, Virginie; Paneth, Piotr; Robins, Richard J.
2016-01-01
During the biosynthesis of natural products, isotopic fractionation occurs due to the selectivity of enzymes for the heavier or lighter isotopomers. As only some of the positions in the molecule are implicated in a given reaction mechanism, position-specific fractionation occurs, leading to a non-statistical distribution of isotopes. This can be accessed by isotope ratio monitoring 13C NMR spectrometry. The solanaceous alkaloids S-(−)-nicotine and hyoscyamine (atropine) are related in having a common intermediate, but downstream enzymatic steps diverge, providing a relevant test case to: (a) elucidate the isotopic affiliation between carbon atoms in the alkaloids and those in the precursors; (b) obtain information about the kinetic isotope effects of as yet undescribed enzymes, thus to make predictions as to their possible mechanism(s). We show that the position-specific 13C/12C ratios in the different moieties of these compounds can satisfactorily be related to their known precursors and to the known kinetic isotope effects of enzymes involved in their biosynthesis, or to similar reaction mechanisms. Thus, the pathway to the common intermediate, N-methyl-Δ1-pyrrolinium, is seen to introduce similar isotope distribution patterns in the two alkaloids independent of plant species, whereas the remaining atoms of each target compound, which are of different origins, reflect their specific metabolic ancestry. We further demonstrate that the measured 13C distribution pattern can be used to deduce aspects of the reaction mechanism of enzymes still to be identified. PMID:27288405
Sarangi, Nirod Kumar; Ganesan, M; Muraleedharan, K M; Patnaik, Archita
2017-04-01
Interfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(CO) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase. The enzyme-induced selective cleavage of the ester bond was spectroscopically monitored by the disappearance of the intense ν(CO) resonance at 1736cm -1 . Consequently, the in situ spectroscopic measurements evidenced selective ester hydrolysis of Triol C16 yielding Tetrol C 2 OH and Palmitic acid, which remained predominantly in the undissociated form at the interface. The conformation sensitive amide I (majorly ν(CO)) and the interfacial water reorganization suggested 2D ordering of the enzyme molecules following which interfacial reactions were employed towards probing the enzyme kinetics at the air/water interface. The investigation demonstrated further the potential of IRRAS spectroscopy for real-time monitoring the hydrolytic product formation and selectivity at biomimetic interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Enzymatic degradation of guar galactomannans: A rheological study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayal, Akash; Khan, S.A.
1995-12-01
Aqueous gels of guar gum and its derivatives are widely used in hydraulic fracturing for enhancing oil or gas production. Subsequently, these gels need to be degraded and flushed out of the wells to provide passage for oil or gas flow. The use of thermostable enzymes to hydrolyze the guar gums offers a novel and viable approach to polymer degradation for this application. Most wells of commercial interest are at high temperatures and the use of enzymatic degradation can lead to a significant expansion in the use of hydraulic fracturing for oil and gas recovery. In this study, steady shearmore » measurements are used to determine the effect of several enzymes on polymer viscosity. The effect of various parameters such as enzyme type and concentration, temperature of hydrolysis and pH of the solutions on the extent and kinetics of polymer degradation are discussed.« less
Substrate-induced inactivation of the OXA2 beta-lactamase.
Ledent, P; Frère, J M
1993-01-01
The hydrolysis time courses of 22 beta-lactam antibiotics by the class D OXA2 beta-lactamase were studied. Among these, only three appeared to correspond to the integrated Henri-Michaelis equation. 'Burst' kinetics, implying branched pathways, were observed with most penicillins, cephalosporins and with flomoxef and imipenem. Kinetic parameters characteristic of the different phases of the hydrolysis were determined for some substrates. Mechanisms generally accepted to explain such reversible partial inactivations involving branches at either the free enzyme or the acyl-enzyme were inadequate to explain the enzyme behaviour. The hydrolysis of imipenem was characterized by the occurrence of two 'bursts', and that of nitrocefin by a partial substrate-induced inactivation complicated by a competitive inhibition by the hydrolysis product. PMID:8240304
Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A
2017-11-01
Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraci, W.S.; Walsh, C.T.
1988-05-03
Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substratemore » PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.« less
Improved fiber-optic chemical sensor for penicillin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Healy, B.G.; Walt, D.R.
An optical penicillin biosensor is described, based on the enzyme penicillinase. The sensor is fabricated by selective photodeposition of analyte-sensitive polymer matrices on optical imaging fibers. The penicillin-sensitive matrices are fabricated by immobilizing the enzyme as micrometer-sized particles in a polymer hydrogel with a covalently bound pH indicator. An array of penicillin-sensitive and pH-sensitive matrices are fabricated on the same fiber. This array allows for the simultaneous, independent measurement of pH and penicillin. Independent measurement of the two analytes allows penicillin to be quantitated in the presence of a concurrent pH change. An analysis was conducted of enzyme kinetic parametersmore » in order to model the penicillin response of the sensor at all pH values. This analysis accounts for the varying activity of the immobilized penicillinase at different pH values. The sensor detects penicillin in the range 0.25-10.0 mM in the pH range 6.2-7.5. The sensor was used to quantify penicillin concentration produced during a Penicillium chrysogenum fermentation. 27 refs., 7 figs., 1 tab.« less
Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases.
Boehlein, Susan K; Shaw, Janine R; Hwang, Seon K; Stewart, Jon D; Curtis Hannah, L
2013-07-15
ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis. Copyright © 2013 Elsevier Inc. All rights reserved.
Shirdel, S Akram; Khalifeh, Khosrow; Ranjbar, Bijan; Golestani, Abolfazl; Khajeh, Khosro
2016-11-01
We had previously investigated the role of a loop on the activity and conformational stability of chondroitinase ABC Ι (cABC Ι) by constructing some representative mutants in which a network interaction around Asp 689 was manipulated. Here we extended our study by measuring the proteolytic resistance, long term and thermal stability as well as unfolding kinetics of these variants. Long term stability data at 4 and 25°C for 3 weeks indicates that all mutants remain considerably active at 4°C. Thermoinactivation rates for all variants shows that the wild type (WT) enzyme retained 50% of its activity after 2min keeping at 40°C, while L701T, H700N and H700N/L701T as conformationally stabilized variants, have slower inactivation rate. It was also found that compact and thermodynamically stabilized variants are more resistant to tryptolytic digestion. Also, kinetic curves of chemical unfolding of the enzyme variants from stopped-flow fluorescence measurements were best fitted into a three-exponential function with three rate constants and corresponding amplitudes. We found that the energy barrier of the fast unfolding phase is lower in stabilized variants; while the amplitude of this phase to the whole amplitude of the unfolding reaction is lower than that of destabilized variants, indicating more population of stabilized mutants unfold via slower unfolding phase. We concluded that the rate of local conformational change alone is not the same that is expected from global thermodynamic stability; however the corresponding amplitude can compensate the rate constant toward thermodynamic stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Enzyme activity in terrestrial soil in relation to exploration of the Martian surface
NASA Technical Reports Server (NTRS)
Mclaren, A. D.
1974-01-01
Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.
On the Error of the Dixon Plot for Estimating the Inhibition Constant between Enzyme and Inhibitor
ERIC Educational Resources Information Center
Fukushima, Yoshihiro; Ushimaru, Makoto; Takahara, Satoshi
2002-01-01
In textbook treatments of enzyme inhibition kinetics, adjustment of the initial inhibitor concentration for inhibitor bound to enzyme is often neglected. For example, in graphical plots such as the Dixon plot for estimation of an inhibition constant, the initial concentration of inhibitor is usually plotted instead of the true inhibitor…
Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds
van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.
1993-01-01
With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981
Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes
Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K
2014-01-01
The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840
Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B
2016-07-05
Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.
Engelen, M P K J; Com, G; Anderson, P J; Deutz, N E P
2014-12-01
Adequate protein intake and digestion are necessary to prevent muscle wasting in cystic fibrosis (CF). Accurate and easy-to-use methodology to quantify protein maldigestion is lacking in CF. To measure protein digestibility and the response to pancreatic enzyme intake in CF by using a new stable isotope methodology. In 19 CF and 8 healthy subjects, protein digestibility was quantified during continuous (sip) feeding for 6 h by adding (15)N-labeled spirulina protein and L-[ring-(2)H5]phenylalanine (PHE) to the nutrition and measuring plasma ratio [(15)N]PHE to [(2)H5]PHE. Pancreatic enzymes were ingested after 2 h in CF and the response in protein digestibility was assessed. To exclude difference in mucosal function, postabsorptive whole-body citrulline (CIT) production rate was measured by L-[5-(13)C-5,5-(2)H2]-CIT pulse and blood samples were taken to analyze tracer-tracee ratios. Protein digestibility was severely reduced in the CF group (47% of healthy subjects; P < 0.001). Intake of pancreatic enzymes induced a slow increase in protein digestibility in CF until 90% of values obtained by healthy subjects. Maximal digestibility was reached at 100 min and maintained for 80 min. Stratification into CF children (n = 10) and adults showed comparable values for protein digestibility and similar kinetic responses to pancreatic enzyme intake. Whole-body citrulline production was elevated in CF indicating preserved mucosal function. Protein digestibility is severely compromised in patients with CF as measured by this novel and easy-to-use stable isotope approach. Pancreatic enzymes are able to normalize protein digestibility in CF, albeit with a severe delay. Registration ClinicalTrials.gov = NCT01494909. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Villafraz, O; Rondón-Mercado, R; Cáceres, A J; Concepción, J L; Quiñones, W
2018-04-01
T. rangeli epimastigotes contain only a single detectable phosphoglycerate kinase (PGK) enzyme in their cytosol. Analysis of this parasite's recently sequenced genome showed a gene predicted to code for a PGK with the same molecular mass as the natural enzyme, and with a cytosolic localization as well. In this work, we have partially purified the natural PGK from T. rangeli epimastigotes. Furthermore, we cloned the predicted PGK gene and expressed it as a recombinant active enzyme. Both purified enzymes were kinetically characterized and displayed similar substrate affinities, with Km ATP values of 0.13 mM and 0.5 mM, and Km 3PGA values of 0.28 mM and 0.71 mM, for the natural and recombinant enzyme, respectively. The optimal pH for activity of both enzymes was in the range of 8-10. Like other PGKs, TrPGK is monomeric with a molecular mass of approximately 44 kDa. The enzyme's kinetic characteristics are comparable with those of cytosolic PGK isoforms from related trypanosomatid species, indicating that, most likely, this enzyme is equivalent with the PGKB that is responsible for generating ATP in the cytosol of other trypanosomatids. This is the first report of a glycolytic enzyme characterization from T. rangeli. Copyright © 2018 Elsevier Inc. All rights reserved.
Robertson, Brooklyn A.; Schroeder, Gottfried K.; Jin, Zhinan; Johnson, Kenneth A.; Whitman, Christian P.
2009-01-01
Isomer-specific 3-chloroacrylic acid dehalogenases catalyze the hydrolytic dehalogenation of the cis- and trans-isomers of 3-chloroacrylate to yield malonate semialdehyde. These reactions represent key steps in the degradation of the nematocide, 1,3-dichloropropene. The kinetic mechanism of cis-3-chloroacrylic acid dehalogenase (cis-CaaD) has now been examined using stopped-flow and chemical-quench techniques. Stopped-flow analysis of the reaction, following the fluorescence of an active site tryptophan, is consistent with a minimal three-step model involving substrate binding, chemistry, and product release. Chemical quench experiments show burst kinetics, indicating that product release is at least partially rate limiting. Global fitting of all of the kinetic results by simulation is best accommodated by a four-step mechanism. In the final kinetic model, the enzyme binds substrate and isomerizes to an alternate fluorescent form, chemistry occurs, and is followed by the ordered release of two products, with the release of the first product as the rate-limiting step. Bromide ion is a competitive inhibitor of the reaction indicating that it binds to the free enzyme rather than to the enzyme with one product still bound. This observation suggests that malonate semialdehyde is the first product released by the enzyme (rate limiting), followed by halide. A comparison of the unliganded cis-CaaD crystal structure with that of an inactivated cis-CaaD where the prolyl nitrogen of Pro-1 is covalently attached to (R)-2-hydroxypropanoate provides a possible explanation for the isomerization step. The structure of the covalently modified enzyme shows that a 7-residue loop comprised of residues 32-38 is closed down on the active site cavity where the backbone amides of two residues (Phe-37 and Leu-38) interact with the carboxylate group of the adduct. In the unliganded form, the same loop points away from the active site cavity. Similarly, substrate binding may cause this loop to close down on the active site and sequester the reaction from the external environment. PMID:19856961
Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria
2014-01-01
Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase.
Salvi, Francesca; Rodriguez, Isela; Hamelberg, Donald; Gadda, Giovanni
2016-03-15
Choline oxidase from Arthrobacter globiformis catalyzes the oxidation of choline to glycine betaine by using oxygen as an electron acceptor. A partially rate limiting isomerization of the reduced wild-type enzyme during the reaction with oxygen was previously detected using solvent viscosity effects. In this study, we hypothesized that the side chains of M62 and F357, located at the entrance to the active site of choline oxidase, may be related to the slow isomerization detected. We engineered a double-variant enzyme M62A/F357A. The kinetic characterization of the double-variant enzyme showed a lack of the isomerization detected in wild-type choline oxidase, and a lack of saturation with an oxygen concentration as high as 1 mM, while most other kinetic parameters were similar to those of wild-type choline oxidase. The kinetic characterization of the single-variant enzymes established that only the side chain of F357 plays a role in the isomerization of choline oxidase in the oxidative half-reaction. Molecular dynamics studies suggest that the slow isomerization related to F357 is possibly due to the participation of the phenyl ring in a newly proposed gating mechanism for a narrow tunnel, assumed to regulate the access of oxygen to the reduced cofactor.
NASA Astrophysics Data System (ADS)
Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2014-05-01
Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.
New Editions for the Apple II of the Chelsea Science Simulations.
ERIC Educational Resources Information Center
Pipeline, 1983
1983-01-01
Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)
Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.
Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang
2018-02-01
Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.
Yuan, Hongling; Gadda, Giovanni
2011-02-08
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.
Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.
Deol, Reema; Josephy, P David
2017-03-01
1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.
Aksu, T A; Esen, F; Dolunay, M S; Alicigüzel, Y; Yücel, G; Cali, S; Baykal, Y
1990-06-01
Glucose-6-phosphate dehydrogenase (1.1.1.49) activity was assessed in 1986-1988 in blood samples from 1,521 individuals from 375 families living an Antalya city and adjacent villages by Beutler's fluorescence spot test. The families were randomly selected by the State Statistical Institute. Complete deficiency occurred in 7.4% of males and 1.8% of females. Mean enzyme activity was 6.77 +/- 1.07 IU/g Hb in normals and ranged between 0 and 0.48 IU/g Hb in those considered deficient. Kinetic measurements made with partially purified enzyme showed that GdB+ and GdB- variants were present in normal and in deficient subjects, respectively.
Parameter estimation in tree graph metabolic networks.
Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J
2016-01-01
We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.
Lee, Irene; Berdis, Anthony J
2016-01-01
Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.
High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation.
Riahi, Esmaeil; Ramaswamy, Hosahalli S
2003-01-01
High-pressure (HP) inactivation kinetics of pectin methyl esterase (PME) in apple juice were evaluated. Commercial PME was dispensed in clarified apple juice, sealed in dual peel sterilizable plastic bags, and subjected to different high-pressure processing conditions (200-400 MPa, 0-180 min). Residual enzyme activity was determined by a titration method estimating the rate of free carboxyl group released by the enzyme acting on pectin substrate at pH 7.5 (30 degrees C). The effects of pressure level and pressure holding time on enzyme inactivation were significant (p < 0.05). PME from the microbial source was found to be more resistant (p < 0.05) to pressure inactivation than PME from the orange peel. Almost a full decimal reduction in the activity of commercial PME was achieved by HP treatment at 400 MPa for 25 min. Inactivation kinetics were evaluated on the basis of a dual effect model involving a pressure pulse effect and a first-order rate model, and the pressure sensitivity of rate constants was modeled by using the z-value concept.
Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin
2012-01-01
Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS-PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: k cat = 343 and 727 s -1 , K m = 0.25 and 0.16 mg mL -1 , k cat / K m (specificity constant) = 1374 and 4510 mg mL -1 s -1 , respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.
NASA Astrophysics Data System (ADS)
Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.
2016-07-01
The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g
Illustrating the Effect of pH on Enzyme Activity Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2014-01-01
Gibbs energy profiles provide students with a visual representation of the energy changes that occur during enzyme catalysis, making such profiles useful as teaching and learning tools. Traditional kinetic topics, such as the effect of pH on enzyme activity, are often not discussed in terms of Gibbs energy profiles. Herein, the symbolism of Gibbs…
Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, G.M.; De Moraes, F.F.
1997-12-31
Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less
A normalized plot as a novel and time-saving tool in complex enzyme kinetic analysis.
Bravo, I G; Busto, F; De Arriaga, D; Ferrero, M A; Rodríguez-Aparicio, L B; Martínez-Blanco, H; Reglero, A
2001-09-15
A new data treatment is described for designing kinetic experiments and analysing kinetic results for multi-substrate enzymes. Normalized velocities are plotted against normalized substrate concentrations. Data are grouped into n + 1 families across the range of substrate or product tested, n being the number of substrates plus products assayed. It has the following advantages over traditional methods: (1) it reduces to less than a half the amount of data necessary for a proper description of the system; (2) it introduces a self-consistency checking parameter that ensures the 'scientific reliability' of the mathematical output; (3) it eliminates the need for a prior knowledge of Vmax; (4) the normalization of data allows the use of robust and fuzzy methods suitable for managing really 'noisy' data; (5) it is appropriate for analysing complex systems, as the complete general equation is used, and the actual influence of effectors can be typified; (6) it is amenable to being implemented as a software that incorporates testing and electing among rival kinetic models.
Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.
Finnigan, William; Thomas, Adam; Cromar, Holly; Gough, Ben; Snajdrova, Radka; Adams, Joseph P; Littlechild, Jennifer A; Harmer, Nicholas J
2017-03-20
Carboxylic acid reductase enzymes (CARs) meet the demand in synthetic chemistry for a green and regiospecific route to aldehydes from their respective carboxylic acids. However, relatively few of these enzymes have been characterized. A sequence alignment with members of the ANL (Acyl-CoA synthetase/ NRPS adenylation domain/Luciferase) superfamily of enzymes shed light on CAR functional dynamics. Four unstudied enzymes were selected by using a phylogenetic analysis of known and hypothetical CARs, and for the first time, a thorough biochemical characterization was performed. Kinetic analysis of these enzymes with various substrates shows that they have a broad but similar substrate specificity. Electron-rich acids are favored, which suggests that the first step in the proposed reaction mechanism, attack by the carboxylate on the α-phosphate of adenosine triphosphate (ATP), is the step that determines the substrate specificity and reaction kinetics. The effects of pH and temperature provide a clear operational window for the use of these CARs, whereas an investigation of product inhibition by NADP + , adenosine monophosphate, and pyrophosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first. This study consolidates CARs as important and exciting enzymes in the toolbox for sustainable chemistry and provides specifications for their use as a biocatalyst.
A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells
NASA Astrophysics Data System (ADS)
Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.
2018-03-01
Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.
Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less
CD95-Mediated Proton Regulation.
Cophignon, Auréa; Poët, Mallorie; Monet, Michael; Tauc, Michel; Counillon, Laurent
2017-01-01
The Na + /H + exchanger NHE1 is at the crossroads of a large diversity of signaling pathways, whose activation modifies the cooperative response of the transporter to intracellular H + ions. Here we show how the activation of the Na + /H + exchanger NHE1 by the cleaved ligand of CD95 can be measured. We demonstrate two different methods designed to set intracellular pH at precise values. Then we show how these can be coupled to fast kinetics of lithium transport, which will enable to measure the NHE1 activity like for an enzyme, because they will yield rates of transport.
Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns.
Childs, Dorothee; Grimbs, Sergio; Selbig, Joachim
2015-06-15
Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase. © The Author 2015. Published by Oxford University Press.
Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam
2015-01-01
Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer
Buchegger, Wolfgang; Haller, Anna; van den Driesche, Sander; Kraft, Martin; Lendl, Bernhard; Vellekoop, Michael
2012-01-01
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions. PMID:22662071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toral-Barza, Lourdes; Zhang Weiguo; Lamison, Craig
The mammalian target of rapamycin (mTOR/TOR) is implicated in cancer and other human disorders and thus an important target for therapeutic intervention. To study human TOR in vitro, we have produced in large scale both the full-length TOR (289 kDa) and a truncated TOR (132 kDa) from HEK293 cells. Both enzymes demonstrated a robust and specific catalytic activity towards the physiological substrate proteins, p70 S6 ribosomal protein kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1), as measured by phosphor-specific antibodies in Western blotting. We developed a high capacity dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) for analysis of kinetic parameters. Themore » Michaelis constant (K {sub m}) values of TOR for ATP and the His6-S6K substrate were shown to be 50 and 0.8 {mu}M, respectively. Dose-response and inhibition mechanisms of several known inhibitors, the rapamycin-FKBP12 complex, wortmannin and LY294002, were also studied in DELFIA. Our data indicate that TOR exhibits kinetic features of those shared by traditional serine/threonine kinases and demonstrate the feasibility for TOR enzyme screen in searching for new inhibitors.« less
Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase
Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun
2014-01-01
The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042
Kurinomaru, Takaaki; Kuwada, Kengo; Tomita, Shunsuke; Kameda, Tomoshi; Shiraki, Kentaro
2017-07-20
Noncovalent binding of polyethylene glycol (PEG) to a protein surface is a unique protein handling technique to control protein function and stability. A diblock copolymer containing PEG and polyelectrolyte chains (PEGylated polyelectrolyte) is a promising candidate for noncovalent attachment of PEG to a protein surface because of the binding through multiple electrostatic interactions without protein denaturation. To obtain a deeper understanding of protein-polyelectrolyte interaction at the molecular level, we investigated the manner in which cationic PEGylated polyelectrolyte binds to anionic α-amylase in enzyme kinetic experiments and molecular dynamics (MD) simulations. Cationic PEG-block-poly(N,N-dimethylaminoethyl) (PEG-b-PAMA) inhibited the enzyme activity of anionic α-amylase due to binding of PAMA chains. Enzyme kinetics revealed that the inhibition of α-amylase activity by PEG-b-PAMA is noncompetitive inhibition manner. In MD simulations, the PEG-b-PAMA molecule was initially located at six different placements of the x-, y-, and z-axis ±20 Å from the center of α-amylase, which showed that the PEG-b-PAMA nonspecifically bound to the α-amylase surface, corresponding to the noncompetitive inhibition manner that stems from the polymer binding to an enzyme surface other than the active site. In addition, the enzyme activity of α-amylase in the presence of PEG-b-PAMA was not inhibited by increasing the ionic strength, consistent with the MD simulation; i.e., PEG-b-PAMA did not interact with α-amylase in high ionic strength conditions. The results reported in this paper suggest that enzyme inhibition by PEGylated polyelectrolyte can be attributed to the random electrostatic interaction between protein and polyelectrolyte.
Somyoonsap, Peechapack; Kitpreechavanich, Vichein
2013-01-01
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959
The enzymic hydrolysis of amygdalin
Haisman, D. R.; Knight, D. J.
1967-01-01
Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond β-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the β-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. PMID:4291788
Kalra, Sukirti; Paul, Manash K; Balaram, Hemalatha; Mukhopadhyay, Anup Kumar
2007-05-01
The thiopurine antimetabolite 6-mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). 6MP is mainly catabolized by both hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine oxidase (XOD) to form thioinosinic monophosphate (TIMP) (therapeutically active metabolite) and 6-thiouric acid (6TUA) (inactive metabolite), respectively. The activity of both the enzymes varies among ALL patients governing the active and the inactive metabolite profile within the immature lymphocytes. Therefore, an attempt was made to study the kinetic nature of the branched bi-enzyme system acting on 6MP and to quantitate TIMP and 6TUA formed when the two enzymes are present in equal and variable ratios. The quantification of the branched kinetics using spectrophotometric method presents problem due to the closely apposed lambda(max) of the substrates and products. Hence, employing an HPLC method, the quantification of the products was done with the progress of time. The limit of quantification (LOQ) of substrate was found to be 10nM and for products as 50 nM. The limit of detection (LOD) was found to be 1 nM for the substrate and the products. The method exhibited linearity in the range of 0.01-100 microM for 6MP and 0.05-100 microM for both 6TUA and TIMP. The amount of TIMP formed was higher than that of 6TUA in the bi-enzyme system when both the enzymes were present in equivalent enzymatic ratio. It was further found that enzymatic ratios play an important role in determining the amounts of TIMP and 6TUA. This method was further validated using actively growing T-ALL cell line (Jurkat) to study the branched kinetics, wherein it was observed that treatment of 50 microM 6MP led to the generation of 12 microM TIMP and 0.8 microM 6TUA in 6 h at 37 degrees C.
Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247.
Li, Y K; Chir, J; Chen, F Y
2001-01-01
A family 3 beta-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been cloned and overexpressed. The mechanistic action of the enzyme was probed by NMR spectroscopy and kinetic investigations, including substrate reactivity, secondary kinetic isotope effects and inhibition studies. The stereochemistry of enzymic hydrolysis was identified as occurring with the retention of an anomeric configuration, indicating a double-displacement reaction. Based on the k(cat) values with a series of aryl glucosides, a Bronsted plot with a concave-downward shape was constructed. This biphasic behaviour is consistent with a two-step mechanism involving the formation and breakdown of a glucosyl-enzyme intermediate. The large Bronsted constant (beta=-0.85) for the leaving-group-dependent portion (pK(a) of leaving phenols >7) indicates substantial bond cleavage at the transition state. Secondary deuterium kinetic isotope effects with 2,4-dinitrophenyl beta-D-glucopyanoside, o-nitrophenyl beta-D-glucopyanoside and p-cyanophenyl beta-D-glucopyanoside as substrates were 1.17+/-0.02, 1.19+/-0.02 and 1.04+/-0.02 respectively. These results support an S(N)1-like mechanism for the deglucosylation step and an S(N)2-like mechanism for the glucosylation step. Site-directed mutagenesis was also performed to study essential amino acid residues. The activities (k(cat)/K(m)) of the D247G and D247N mutants were 30000- and 200000-fold lower respectively than that of the wild-type enzyme, whereas the D247E mutant retained 20% of wild-type activity. These results indicate that Asp-247 is an essential amino acid. It is likely that this residue functions as a nucleophile in the reaction. This conclusion is supported by the kinetics of the irreversible inactivation of the wild-type enzyme by conduritol-B-epoxide, compared with the much slower inhibition of the D247E mutant and the lack of irreversible inhibition of the D247G mutant. PMID:11311148
Differential signatures of bacterial and mammalian IMP dehydrogenase enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R.; Evans, G.; Rotella, F.
1999-06-01
IMP dehydrogenase (IMPDH) is an essential enzyme of de novo guanine nucleotide synthesis. IMPDH inhibitors have clinical utility as antiviral, anticancer or immunosuppressive agents. The essential nature of this enzyme suggests its therapeutic applications may be extended to the development of antimicrobial agents. Bacterial IMPDH enzymes show bio- chemical and kinetic characteristics that are different than the mammalian IMPDH enzymes, suggesting IMPDH may be an attractive target for the development of antimicrobial agents. We suggest that the biochemical and kinetic differences between bacterial and mammalian enzymes are a consequence of the variance of specific, identifiable amino acid residues. Identification ofmore » these residues or combination of residues that impart this mammalian or bacterial enzyme signature is a prerequisite for the rational identification of agents that specifically target the bacterial enzyme. We used sequence alignments of IMPDH proteins to identify sequence signatures associated with bacterial or eukaryotic IMPDH enzymes. These selections were further refined to discern those likely to have a role in catalysis using information derived from the bacterial and mammalian IMPDH crystal structures and site-specific mutagenesis. Candidate bacterial sequence signatures identified by this process include regions involved in subunit interactions, the active site flap and the NAD binding region. Analysis of sequence alignments in these regions indicates a pattern of catalytic residues conserved in all enzymes and a secondary pattern of amino acid conservation associated with the major phylogenetic groups. Elucidation of the basis for this mammalian/bacterial IMPDH signature will provide insight into the catalytic mechanism of this enzyme and the foundation for the development of highly specific inhibitors.« less
Inhibition of Cell Wall-Associated Enzymes in Vitro and in Vivo with Sugar Analogs
Nagahashi, Gerald; Tu, Shu-I; Fleet, George; Namgoong, Sun K.
1990-01-01
Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised. PMID:16667291
Nakamura, Akira; Takakura, Yasuaki; Sugimoto, Naohisa; Takaya, Naoki; Shiraki, Kentaro; Hoshino, Takayuki
2008-09-01
An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.
An Optical Biosensing Platform using Reprecipitated Polyaniline Microparticles
NASA Astrophysics Data System (ADS)
Nemzer, Louis; Epstein, Arthur
2009-03-01
A great deal of effort remains focused on the goal of developing a continuous in vivo glucose monitoring system for patients with diabetes mellitus. We report a proof-of-concept study on a reagentless optical biosensing platform that circumvents the problems usually associated with direct glucose detection by utilizing the UV-VIS absorption properties of polyaniline, a biocompatible polymer. When the enzyme glucose oxidase is entrapped within reprecipitated polyaniline microparticles, a glucose molecule readily donates two protons and two electrons to the polyaniline, reversibly altering the polymer's oxidation state. The resultant change can be monitored by measuring the absorption at wavelengths that fall within the ``optical window'' for skin. The micro-structured morphology also insures a high surface-area to volume ratio. Data from in vitro prototype devices indicate that in the low enzyme-loading regime, the response can be fit to the Michaelis-Menten model for enzyme kinetics, but at higher enzyme loading, diffusion effects dominate. As a biosensing platform, the system also has the potential to be adapted to detect other biologically relevant analytes, including cholesterol and ethanol.
Menéndez, Orquídea; Schwarzenbolz, Uwe; Partschefeld, Claudia; Henle, Thomas
2009-05-27
Kinetics for the reaction of microbial transglutaminase (MTG) with individual caseins in a TRIS-acetate buffer at pH 6.0 was evaluated under atmospheric pressure (0.1 MPa) and high pressure (400 MPa) at 40 °C. The reaction was monitored under the following limitations: The kinetics from the initial velocities was obtained from nonprogressive enzymatic reactions assuming that the individual catalytic constants of reactive glutamine residues are represented by the reaction between MTG and casein monomers. Enzyme reaction kinetics carried out at 0.1 MPa at 40 °C showed Henri-Michaelis-Menten behavior with maximal velocities of 2.7 ± 0.02 × 10(-3), 0.8 ± 0.01 × 10(-3), and 1.3 ± 0.30 × 10(-3) mmol/L · min and K(m) values of 59 ± 2 × 10(-3), 64 ± 3 × 10(-3), and 50 ± 2 × 10(-3) mmol/L for β-, α(s1)-, and acid casein, respectively. Enzyme reaction kinetics of β-casein carried out at 400 MPa and 40 °C also showed a Henri-Michaelis-Menten behavior with a similar maximal velocity of 2.5 ± 0.33 × 10(-3) mmol/L · min, but, comparable to a competitive inhibition, the K(m) value increased to 144 ± 34 × 10(-3) mmol/L. The reaction of MTG with α(s1)-casein under high pressure did not fit in to Henri-Michaelis-Menten kinetics, indicating the complex influence of pressure on protein-enzyme interactions.
A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase.
Liebherr, Raphaela B; Renner, Max; Gorris, Hans H
2014-04-23
The mechanisms that drive the evolution of new enzyme activity have been investigated by comparing the kinetics of wild-type and in vitro evolved β-glucuronidase (GUS) at the single molecule level. Several hundred single GUS molecules were separated in large arrays of 62,500 ultrasmall reaction chambers etched into the surface of a fused silica slide to observe their individual substrate turnover rates in parallel by fluorescence microscopy. Individual GUS molecules feature long-lived but divergent activity states, and their mean activity is consistent with classic Michaelis-Menten kinetics. The large number of single molecule substrate turnover rates is representative of the activity distribution within an entire enzyme population. Partially evolved GUS displays a much broader activity distribution among individual enzyme molecules than wild-type GUS. The broader activity distribution indicates a functional division of work between individual molecules in a population of partially evolved enzymes that-as so-called generalists-are characterized by their promiscuous activity with many different substrates.
Sun, Ren; Wang, Liya
2014-10-07
Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.
Time-Temperature Indicator Based on Enzymatic Degradation of Dye-Loaded Polyhydroxybutyrate.
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia L
2017-09-01
An enzyme activated time-temperature indicator (TTI) which produces a direct colour change concomitant to variations in integrated time and temperature conditions is described. This direct colour change is realised by degrading a dye-loaded polyhydroxybutyrate (PHB) film by a depolymerase enzyme. The degradation of the PHB film by the enzyme causes the release of the dye in solution, which in turn undergoes an optical transition from clear to coloured with elapsing time. Macroscopic and microscopic optical observations confirms the uniform distribution of the dye in the PHB film. The dye release kinetics, mediated by the enzymatic reaction, are tested at different temperatures ranging from 4 to 37 °C, and are used to determine the suitability of a dye-loaded PHB as a time-temperature indicator for fresh food products based on kinetic parameters previously reported. The kinetic analysis shows that the activation energy of the dye release process is 74 kJ mol -1 , and that, at 37 °C, the dye would be totally released within 6 h. However, when incubated at 4 °C, the TTI requires in the range of 168 h (7 days) to release all the dye. These kinetics values highlight the potential of the TTI for monitoring fresh food products that have optimum shelf life around 4 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Keehyuk; Plapp, Bryce V
2017-10-01
The substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/K m ) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB). Nevertheless, atomic resolution crystal structures of the S48T enzyme complexed with NAD + and TFE or PFB are very similar to the structures for the wild-type enzyme. (The S48A substitution greatly diminishes catalytic activity.) The F93A substitution significantly decreases catalytic efficiency (V/K m ) for ethanol and acetaldehyde while increasing activity for larger secondary alcohols and the enantioselectivity for the R-isomer relative to the S-isomer of 2-alcohols. The doubly substituted S48T/F93A enzyme has kinetic constants for primary and secondary alcohols similar to those for the F93A enzyme, but the effect of the S48T substitution is to decrease V/K m for (S)-2-alcohols without changing V/K m for (R)-2-alcohols. Thus, the S48T/F93A substitutions invert the enantioselectivity for alcohol oxidation, increasing the R/S ratio by 10, 590, and 200-fold for 2-butanol, 2-octanol, and sec-phenethyl alcohol, respectively. Transient kinetic studies and simulations of the ordered bi bi mechanism for the oxidation of the 2-butanols by the S48T/F93A ADH show that the rate of hydride transfer is increased about 7-fold for both isomers (relative to wild-type enzyme) and that the inversion of enantioselectivity is due to more productive binding for (R)-2-butanol than for (S)-2-butanol in the ternary complex. Molecular modeling suggests that both of the sec-phenethyl alcohols could bind to the enzyme and that dynamics must affect the rates of catalysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Enzymes: principles and biotechnological applications
Robinson, Peter K.
2015-01-01
Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249
Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil
NASA Astrophysics Data System (ADS)
Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2015-04-01
Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic microorganisms in soil at these temperature ranges. We conclude that the temperature sensitivity (Q10) of enzyme activity declines at higher temperature and lower concentration of substrates in soil. Overall, our results suggest that the fine-scale (five degree) temperature resolution level needs to be considered in global earth system models especially at temperature thresholds for physiological groups of soil microorganisms. Refcences: Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336-340. doi:10.1038/ngeo846 Chen, R., Blagodatskaya, E., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Kuzyakov, Y., 2012. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy 45, 221-229. doi:10.1016/j.biombioe.2012.06.014 German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387-1397. doi:10.1016/j.soilbio.2011.03.017
Lipase-Mediated Kinetic Resolution: An Introductory Approach to Practical Biocatalysis
ERIC Educational Resources Information Center
Bandeira, Pamela T.; Thomas, Juliana C.; de Oliveira, Alfredo R. M.; Piovan, Leandro
2017-01-01
An experimental protocol that provides an excellent way to discuss concepts at the crossroads of organic chemistry and biochemistry employing biocatalysis is presented. By evaluating several reaction parameters (enzyme source, organic solvent, and acyl donor), it was possible to conduct an enzymatic kinetic resolution experiment using…
ERIC Educational Resources Information Center
Jones, Lawrence; Graham, Ian
1986-01-01
Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)
Sjögren, Erik; Nyberg, Joakim; Magnusson, Mats O; Lennernäs, Hans; Hooker, Andrew; Bredberg, Ulf
2011-05-01
A penalized expectation of determinant (ED)-optimal design with a discrete parameter distribution was used to find an optimal experimental design for assessment of enzyme kinetics in a screening environment. A data set for enzyme kinetic data (V(max) and K(m)) was collected from previously reported studies, and every V(max)/K(m) pair (n = 76) was taken to represent a unique drug compound. The design was restricted to 15 samples, an incubation time of up to 40 min, and starting concentrations (C(0)) for the incubation between 0.01 and 100 μM. The optimization was performed by finding the sample times and C(0) returning the lowest uncertainty (S.E.) of the model parameter estimates. Individual optimal designs, one general optimal design and one, for laboratory practice suitable, pragmatic optimal design (OD) were obtained. In addition, a standard design (STD-D), representing a commonly applied approach for metabolic stability investigations, was constructed. Simulations were performed for OD and STD-D by using the Michaelis-Menten (MM) equation, and enzyme kinetic parameters were estimated with both MM and a monoexponential decay. OD generated a better result (relative standard error) for 99% of the compounds and an equal or better result [(root mean square error (RMSE)] for 78% of the compounds in estimation of metabolic intrinsic clearance. Furthermore, high-quality estimates (RMSE < 30%) of both V(max) and K(m) could be obtained for a considerable number (26%) of the investigated compounds by using the suggested OD. The results presented in this study demonstrate that the output could generally be improved compared with that obtained from the standard approaches used today.
Lin, Fengming; Das, Debasis; Lin, Xiaoxia N; Marsh, E Neil G
2013-10-01
Long-chain acyl-CoA reductases (ACRs) catalyze a key step in the biosynthesis of hydrocarbon waxes. As such they are attractive as components in engineered metabolic pathways for 'drop in' biofuels. Most ACR enzymes are integral membrane proteins, but a cytosolic ACR was recently discovered in cyanobacteria. The ACR from Synechococcus elongatus was overexpressed in Escherichia coli, purified and characterized. The enzyme was specific for NADPH and catalyzed the reduction of fatty acyl-CoA esters to the corresponding aldehydes, rather than alcohols. Stearoyl-CoA was the most effective substrate, being reduced more rapidly than either longer or shorter chain acyl-CoAs. ACR required divalent metal ions, e.g. Mg(2+), for activity and was stimulated ~ 10-fold by K(+). The enzyme was inactivated by iodoacetamide and was acylated on incubation with stearoyl-CoA, suggesting that reduction occurs through an enzyme-thioester intermediate. Consistent with this, steady state kinetic analysis indicates that the enzyme operates by a 'ping-pong' mechanism with kcat = 0.36 ± 0.023 min(-1), K(m)(stearoyl-CoA) = 31.9 ± 4.2 μM and K(m)(NADPH) = 35.6 ± 4.9 μM. The slow turnover number measured for ACR poses a challenge for its use in biofuel applications where highly efficient enzymes are needed. © 2013 FEBS.
Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil
NASA Astrophysics Data System (ADS)
Hoang, D. T. T.
2016-12-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil
Yano, T; Mizuno, T; Kagamiyama, H
1993-02-23
The electron distribution within the coenzyme or coenzyme-substrate conjugate needs to be properly regulated during the catalytic process of aspartate aminotransferase (AspAT). Asn194 and Tyr225 may function in regulating the electron distribution through hydrogen-bonding to O(3') of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). The roles of Tyr225 have already been explored by site-directed mutagenesis (Inoue et al., 1991; Goldberg et al., 1991). In the present studies, the mutant enzymes Asn194-->Ala and Asn194-->Ala + Tyr225-->Phe were analyzed kinetically and spectroscopically and were compared with the wild-type and Tyr225-->Phe enzymes. The kinetic studies showed that Asn194 is not essential for AspAT catalysis, although the Kd values for the substrates were increased by 10- to 50-fold upon the replacement of Asn194. The measurements of the absorption and fluorescence excitation spectra revealed that the ratio of an enolimine to a ketoenamine form was considerably increased as a tautomeric form of the protonated PLP in the active site of the double mutant enzyme. The pH-pKd relationship for the binding of maleate to AspAT could be explained by a simple thermodynamic cycle where only one ionizing group (the imine nitrogen of the internal aldimine bond) affects the binding of maleate. The analyses of the pH-pKd curves for the wild-type and mutant enzymes showed that (i) the hydrogen bond between O(3') of PLP and Asn194 is weakened by the binding of maleate to AspAT, while the hydrogen bond between O(3') and Tyr225 is not changed, and that (ii) the replacement of Asn194 causes some effect hampering the binding of maleate.(ABSTRACT TRUNCATED AT 250 WORDS)
Microvolume, kinetic-dependent enzyme-linked immunosorbent assay for amoeba antibodies.
Mathews, H M; Walls, K W; Huong, A Y
1984-01-01
We describe a microvolume enzyme-linked immunosorbent assay based on enzyme rate kinetics. Antigens from Entamoeba histolytica were adsorbed in wells of disposable polystyrene strips containing 12 flat-bottom wells. After exposure to the serum of a patient and peroxidase-labeled anti-human immunoglobulin G, the rate of color change in specific substrate was determined by eight sequential readings of individual wells over a 2-min period with a microcomputer-controlled model MR-600 automated plate reader. The changes in absorbance readings were converted to slope values for each well by the microcomputer. Thus, 12 samples were read, and results were printed in ca. 3.5 min. Assay conditions are described and data are presented to show that this assay is quantitative for antibody and antigen concentration with a single-tube (well) dilution. PMID:6321547
Bacterial versus human thymidylate synthase: Kinetics and functionality
Strutzenberg, Timothy S.; Ghosh, Ananda K.; Iqbal, Tasnia; Kohen, Amnon
2018-01-01
Thymidylate Synthase (TSase) is a highly conserved enzyme that catalyzes the production of the DNA building block thymidylate. Structurally, functionally and mechanistically, bacterial and mammalian TSases share remarkable similarities. Because of this closeness, bacterial enzymes have long been used as model systems for human TSase. Furthermore, while TSase inhibitors have long served as chemotherapeutic drugs, no TSase inhibitor serves as an antibiotic. Despite their high resemblance, the mammalian TSases are distinct in a few known aspects, such as having a N-terminal tail and two insertions in the primary sequence and active/inactive conformations. Here, we aim to comprehensively characterize human (hs) TSase and delineate its contrasts and the similarities to the well-studied Escherichia coli (ec) TSase. We found that, in contrast to ecTSase, Mg2+ does not enhance reaction rates for hsTSase. The temperature dependence of intrinsic kinetic isotope effects (KIEs), on the other hand, suggests that Mg2+ has little or no impact on the transition state of hydride transfer in either enzyme, and that the transition state for the hydride transfer in hsTSase is looser than in ecTSase. Additionally, the substrates’ binding order is strictly ordered for ecTSase but slightly less ordered for hsTSase. The observed kinetic and functional differences between bacterial and human enzymes may aid in the development of antibiotic drugs with reduced toxicity. PMID:29715278
Dzhekieva, Liudmila; Kumar, Ish; Pratt, R F
2012-04-03
The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) < 1 mM) to the low-molecular mass PBPs but not to the high-molecular mass enzymes, both in membrane preparations and in whole cells. In two cases, E. coli PBP2 and PBP5, the dissociation constants obtained were very similar to those obtained with the pure enzymes in homogeneous solution. The boronic acids, therefore, are unable to induce tightly binding conformations of these enzymes in vivo. There is no evidence from these experiments that DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.
NASA Astrophysics Data System (ADS)
Veličković, D. V.; Dimitrijević, A. S.; Bihelović, F. J.; Jankov, R. M.; Milosavić, N.
2011-12-01
One of the key elements for understanding enzyme reactions is determination of its kinetic parameters. Since transglucosylation is kinetically controlled reaction, besides the reaction of synthesis, very important is the reaction of enzymatic hydrolysis of created product. Therefore, in this study, kinetic parameters for synthesis and secondary hydrolysis of pharmacologically active α isosalicin by baker's yeast maltase were calculated, and it was shown that specifity of maltase for hydrolysis is approximately 150 times higher then for synthesis.
Isolation, molecular properties, and kinetic characterization of lipoprotein lipase from rat heart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J.; Scanu, A.M.
1977-06-25
Lipoprotein lipase was isolated to electrophoretic and chromatographic purity from rat heart acetone/ether powder by a combination of n-butyl alcohol precipitation and heparin/sepharose affinity column chromatography. By sedimentation equilibrium ultracentrifugation in 6 M guanidine hydrochloride, and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme was found to have a minimum molecular weight of about 34,000. It had a relative abundance of glutamic acid and contains 3.3 percent carbohydrate by weight. The composition was as follows, in moles per 34,000 g: mannose (neutral sugars), 5.1; sialic acid, 0.8; and glucosamine, 2.3. When tested against a triolein emulsion, the enzyme was activemore » only in the presence of apolipoprotein glutamic acid (apo C-II); it was inactivated by 1 M NaCl and by apolipoproteins serine and alanine isolated from human serum very low density lipoprotein. In order to define the kinetics of hydrolysis of triglyceride by lipoprotein lipase, we carried out studies on monomolecular films of glyceryl tri(1-/sup 14/C)octanoate. In the presence of excess apo C-II, the hydrolysis followed first order time course and yielded a second order rate constant of 1.85 x 10/sup 5/ M/sup -1/ S/sup -1/. The apparent first order rate constants, k/sub exp/, were proportional to enzyme concentrations over at least a 5-fold range. When enzyme concentrations of 0.22, 0.35, and 0.66 ..mu..g/ml were used, the rate of hydrolysis increased as a function of apo C-II concentration and reached a maximum at a concentration of apo C-II corresponding to a molar ratio of enzyme to apo C-II of about 1 : 1, respectively, which suggests the formation of a stoichiometric complex. The availability of a pure enzyme and the knowledge of its kinetics should stimulate further studies on the molecular basis of enzyme action.« less
Rapid-Equilibrium Enzyme Kinetics
ERIC Educational Resources Information Center
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
Chahinian, Henri; Ali, Yassine Ben; Abousalham, Abdelkarim; Petry, Stefan; Mandrich, Luigi; Manco, Guiseppe; Canaan, Stephane; Sarda, Louis
2005-12-30
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.
Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZ α A- GlucPost -Stop in Pichia pastoris . Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL -1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a V max of 6.87 × 10 -5 mM s -1 , with an apparent K m of 5.36 × 10 -2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142
Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P
2015-07-28
The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the complex between FOMP and the open enzyme, that the tyrosyl phenol group stabilizes the closed form of ScOMPDC by hydrogen bonding to the substrate phosphodianion, and that the phenyl group of Y217 and F217 facilitates formation of the transition state for the rate-limiting conformational change. An analysis of kinetic data for mutant enzyme-catalyzed decarboxylation of OMP and FOMP provides estimates for the rate and equilibrium constants for the conformational change that traps FOMP at the enzyme active site.
Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.
Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M
2015-02-17
The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.
Interpretation of pH-activity Profiles for Acid-Base Catalysis from Molecular Simulations
Dissanayake, Thakshila; Swails, Jason; Harris, Michael E.; Roitberg, Adrian E.; York, Darrin M.
2015-01-01
The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pKa values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of “apparent pKa” values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In the present work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes, and test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid/base catalyst, to predict the macroscopic and microscopic pKa values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data, and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms. PMID:25615525
Giordano, Antonietta; Febbraio, Ferdinando; Russo, Consiglia; Rossi, Mosè; Raia, Carlo A
2005-06-01
The interaction of coenzyme with thermostable homotetrameric NAD(H)-dependent alcohol dehydrogenase from the thermoacidophilic sulphur-dependent crenarchaeon Sulfolobus solfataricus (SsADH) and its N249Y (Asn-249-->Tyr) mutant was studied using the high fluorescence sensitivity of its tryptophan residues Trp-95 and Trp-117 to the binding of coenzyme moieties. Fluorescence quenching studies performed at 25 degrees C show that SsADH exhibits linearity in the NAD(H) binding [the Hill coefficient (h) approximately 1) at pH 9.8 and at moderate ionic strength, in addition to positive co-operativity (h=2.0-2.4) at pH 7.8 and 6.8, and at pH 9.8 in the presence of salt. Furthermore, NADH binding is positively co-operative below 20 degrees C (h approximately 3) and negatively co-operative at 40-50 degrees C (h approximately 0.7), as determined at moderate ionic strength and pH 9.8. Steady-state kinetic measurements show that SsADH displays standard Michaelis-Menten kinetics between 35 and 45 degrees C, but exhibits positive and negative co-operativity for NADH oxidation below (h=3.3 at 20 degrees C) and above (h=0.7 at 70-80 degrees C) this range of temperatures respectively. However, N249Y SsADH displays non-co-operative behaviour in coenzyme binding under the same experimental conditions used for the wild-type enzyme. In loop 270-275 of the coenzyme domain and segments at the interface of dimer A-B, analyses of the wild-type and mutant SsADH structures identified the structural elements involved in the intersubunit communication and suggested a possible structural basis for co-operativity. This is the first report of co-operativity in a tetrameric ADH and of temperature-induced co-operativity in a thermophilic enzyme.
Xu, Zhen-Hua; Thomae, Bianca A; Eckloff, Bruce W; Wieben, Eric D; Weinshilboum, Richard M
2003-06-01
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy "sulfate donor" for reactions catalyzed by sulfotransferase (SULT) enzymes. The strict requirement of SULTs for PAPS suggests that PAPS synthesis might influence the rate of sulfate conjugation. In humans, PAPS is synthesized from ATP and SO(4)(2-) by two isoforms of PAPS synthetase (PAPSS): PAPSS1 and PAPSS2. As a step toward pharmacogenetic studies, we have resequenced the entire coding sequence of the human PAPSS1 gene, including exon-intron splice junctions, using DNA samples from 60 Caucasian-American and 58 African-American subjects. Twenty-one genetic polymorphisms were observed-1 insertion-deletion event and 20 single nucleotide polymorphisms (SNPs)-including two non-synonymous coding SNPs (cSNPs) that altered the following amino acids: Arg333Cys and Glu531Gln. Twelve pairs of these polymorphisms were tightly linked, and a total of twelve unequivocal haplotypes could be identified-two that were common to both ethnic groups and ten that were ethnic-specific. The Arg333Cys polymorphism, with an allele frequency of 2.5%, was observed only in DNA samples from Caucasian subjects. The Glu531Gln polymorphism was rare, with only a single copy of that allele in a DNA sample from an African-American subject. Transient expression in mammalian cells showed that neither of the non-synonymous cSNPs resulted in a change in the basal level of enzyme activity measured under optimal assay conditions. However, the Glu531Gln polymorphism altered the substrate kinetic properties of the enzyme. The Gln531 variant allozyme had a 5-fold higher K(m) value for SO(4)(2-) than did the wild-type allozyme and displayed monophasic kinetics for Na(2)SO(4). The wild-type allozyme (Glu531) showed biphasic kinetics for that substrate. These observations represent a step toward testing the hypothesis that genetic variation in PAPS synthesis catalyzed by PAPSS1 might alter in vivo sulfate conjugation.
SABIO-RK: an updated resource for manually curated biochemical reaction kinetics
Rey, Maja; Weidemann, Andreas; Kania, Renate; Müller, Wolfgang
2018-01-01
Abstract SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements. PMID:29092055
Periodic and stochastic thermal modulation of protein folding kinetics.
Platkov, Max; Gruebele, Martin
2014-07-21
Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.
NASA Astrophysics Data System (ADS)
Ambati, Jyothirmai
This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane rings formed from short-bridged precursors slow down but do not prevent gelation. The tuning of siloxane-based materials for adsorption technologies are also discussed here. In the first example, antioxidant enzyme loading is investigated as a means to reduce oxidative stress generated by silica nanoparticle drug carriers. Materials are engineered for promising enzyme loading and protection from proteolysis. Second, the potential of copper sulfate impregnation to enhance adsorption of ammonia by silica is explored by molecular simulation. KEYWORDS: Sol-gel Polymerization, Kinetic Investigation, Si NMR, Bridged Silanes, DFT Calculations.
NASA Astrophysics Data System (ADS)
Delfaus, Stephen; Latuga, Brian M.; Morse, Clinton; McCarney, Evan R.; Rossini, Connie J.; Augustine, Brian H.; Flythe, Michael D.; Rowe, Sean; Baron, Stephen F.; Dennis, Douglas E.
2003-11-01
In-situ atomic force microscopy (AFM) allows for the real-time acquisition and analysis of materials undergoing biological and chemical alterations. A co-polymer blend of poly 3-hydroxybutyrate / poly 3-hydroxyvalerate P(3HB-3HV) were spun-cast onto glass slides to create thin films with film thickness of 40 nm. This polymer is naturally biodegradable by a variety of bacterially produced enzymes. In this study, these materials were degraded by an untyped and concentrated Strptomyces sp. enzyme produced from soil. Using liquid-cell AFM in contact mode, we were able to observe biodegradation uniformly across the surface of the P(3HB-3HV) films beginning within 2 min of introduction of the enzyme. Height standards have been developed using microcontact printing of self assembled monolayers and selective dewetting to produce P(3HB-3HV) structures with dimensions as small as 10 mm. We will discuss the use of microfabricated height standards to measure biodegradation kinetics in these polymers.
Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil
2015-03-06
In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage
Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique
2016-01-01
Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106
Molecular basis of the activity of the phytopathogen pectin methylesterase
Fries, Markus; Ihrig, Jessica; Brocklehurst, Keith; Shevchik, Vladimir E; Pickersgill, Richard W
2007-01-01
We provide a mechanism for the activity of pectin methylesterase (PME), the enzyme that catalyses the essential first step in bacterial invasion of plant tissues. The complexes formed in the crystal using specifically methylated pectins, together with kinetic measurements of directed mutants, provide clear insights at atomic resolution into the specificity and the processive action of the Erwinia chrysanthemi enzyme. Product complexes provide additional snapshots along the reaction coordinate. We previously revealed that PME is a novel aspartic-esterase possessing parallel β-helix architecture and now show that the two conserved aspartates are the nucleophile and general acid-base in the mechanism, respectively. Other conserved residues at the catalytic centre are shown to be essential for substrate binding or transition state stabilisation. The preferential binding of methylated sugar residues upstream of the catalytic site, and demethylated residues downstream, drives the enzyme along the pectin molecule and accounts for the sequential pattern of demethylation produced by both bacterial and plant PMEs. PMID:17717531
Stability of Ensemble Models Predicts Productivity of Enzymatic Systems
Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.
2016-03-10
Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less
Pacheco, Josué; Niks, Dimitri; Hille, Russ
2018-03-01
We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δg ave = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.
Zhao, Liping; Qiao, Juan; Moon, Meyong Hee; Qi, Li
2018-06-16
Fabrication of polymer membranes with nanopores and a confinement effect toward enzyme immobilization has been an enabling endeavor. In the work reported here, an enzyme reactor based on a thermoresponsive magnetic porous block copolymer membrane was designed and constructed. Reversible addition-fragmentation chain transfer polymerization was used to synthesize the block copolymer, poly(maleic anhydride-styrene-N-isopropylacrylamide), with poly(N-isopropylacrylamide) as the thermoresponsive moiety. The self-assembly property of the block copolymer was used for preparation of magnetic porous thin film matrices with iron oxide nanoparticles. By covalent bonding of glutaminase onto the surface of the membrane matrices and changing the temperature to tune the nanopore size, we observed enhanced enzymolysis efficiency due to the confinement effect. The apparent Michaelis-Menten constant and the maximum rate of the enzyme reactor were determined (K m = 32.3 mM, V max = 33.3 mM min -1 ) by a chiral ligand exchange capillary electrochromatography protocol with L-glutamine as the substrate. Compared with free glutaminase in solution, the proposed enzyme reactor exhibits higher enzymolysis efficiency, greater stability, and greater reusability. Furthermore, the enzyme reactor was applied for a glutaminase kinetics study. The tailored pore sizes and the thermoresponsive property of the block copolymer result in the designed porous membrane based enzyme reactor having great potential for high enzymolysis performance. Graphical abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yechun; Yi, Hankuil; Wang, Melissa
2012-10-24
To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the firstmore » molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.« less
Chowdhury, Avisha; Mitra, Debarati
2015-01-01
Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption. © 2015 American Institute of Chemical Engineers.
USDA-ARS?s Scientific Manuscript database
Aspartate kinase (AK) and homoserine dehydrogenase (HSD) functions as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback inhibited by threonine. In plants, the biochemical properties of AK and bifunctional AK-HSD enzymes have been characterized, but the mol...
Transition state theory for enzyme kinetics
Truhlar, Donald G.
2015-01-01
This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760
USDA-ARS?s Scientific Manuscript database
Future fuel and specialty chemical production will benefit from the use of agricultural biomass. Efficient and effective use of agricultural biomass requires conversion to simple sugars by chemical pre-treatments and enzymes into simple sugars. Rhizopus oryzae, a filamentous fungus, makes enzymes ca...
Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise
ERIC Educational Resources Information Center
Dias, Albino A.; Pinto, Paula A.; Fraga, Irene; Bezerra, Rui M. F.
2014-01-01
In enzyme kinetic studies, linear transformations of the Michaelis-Menten equation, such as the Lineweaver-Burk double-reciprocal transformation, present some constraints. The linear transformation distorts the experimental error and the relationship between "x" and "y" axes; consequently, linear regression of transformed data…
Pozsgay, M; Michaud, C; Liebman, M; Orlowski, M
1986-03-25
The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A.
2000-10-01
The glucose oxidase-horseradish peroxidase coupled reaction using phenol and 4-aminoantipyrine is used for the kinetic determination of glucose in drinks and beverages. This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages. The method is optimized for student use in the temperature range of 18-28 °C and can be used in low-budget laboratories equipped with an inexpensive visible photometer. The mixed enzyme-chromogen solution that is used is stable for two months. Precision ranged from 5.1 to 12% RSD for analyses conducted during a period of two months by 48 students.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Dual role of imidazole as activator/inhibitor of sweet almond (Prunus dulcis) β-glucosidase.
Caramia, Sara; Gatius, Angela Gala Morena; Dal Piaz, Fabrizio; Gaja, Denis; Hochkoeppler, Alejandro
2017-07-01
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p -nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1-5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125-0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125-0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the K m of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.
Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S
2018-06-01
Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.
Benefits from Tween during enzymic hydrolysis of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaar, W.E.; Holtzapple, M.T.
1998-08-20
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tweenmore » loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.« less
Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.
Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah
2016-01-01
Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.
Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A
1995-08-01
Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.