Biochemical Platform Processing Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The objective of this project is to facilitate deployment of enzyme-based biomass conversion technology. The immediate goal is to explore integration issues that impact process performance and to demonstrate improved performance of the lower-cost enzymes being developed by Genencor and Novozymes.
ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project
NASA Technical Reports Server (NTRS)
1986-01-01
Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.
Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques
2017-06-26
SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and
Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.
Cravatt, Benjamin F; Wright, Aaron T; Kozarich, John W
2008-01-01
Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.
Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-26
This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.
SynTec Final Technical Report: Synthetic biology for Tailored Enzyme cocktails
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Janine; Teter, Sarah
Using a novel enzyme screening method inspired by synthetic biology, Novozymes developed new technology under SynTec which allows for more rapidly tailoring of enzyme cocktails. The methodology can be applied to specific feedstocks, and or coupled to address a specific hydrolytic conversion process context. Using combinatorial high throughput screening of libraries of enzyme domains, we can quickly assess which combination of catalytic modules delivers the best performance for a specific condition. To demonstrate the effectiveness of the screening process, we measured performance of the output catalytic cocktail compared to CTec3/HTec3. SynTec benchmark cocktail - blend of Cellic® CTec3 and HTec3.more » The test substrate was - ammonia fiber expansion pretreated corn stover (AFEX™ PCS).CTec3/HTec3 was assayed at the optimal pH and temperature, and also in the absence of any pH adjustment. The new enzyme cocktail discovered under SynTec was assayed in the absence of any pH adjustment and at the optimal temperature. Conversion is delivered by SynTec enzyme at significant dose reduction relative to CTec3/HTec3 at the controlled pH optimum, and without titrant required to maintain pH, which delivers additional cost savings relative to current state of the art process. In this 2.5 year $4M project, the team delivered an experimental cocktail that significantly outperformed CTec3/HTec3 for a specific substrate, and for specific hydrolysis conditions. As a means of comparing performance improvement delivered per research dollar spent, we note that SynTec delivered a similar performance improvement to the previous award, in a shorter time and with fewer resources than for the previously successful DOE project DECREASE, a 3.5 year, $25M project, though this project focused on a different substrate and used different hydrolysis conditions. The newly implemented technology for rapid sourcing of new cellulases and hemicellulases from nature is an example of Novozymes' continued innovation that results in more effective products for the advanced biofuel market.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Feng
The main objective of this project is to design novel nano-structured carriers and strategies to co-localize multiple enzymes to mimic the functionalities of MECs. In order to achieve this goal, distinct approaches for enzyme co-localization were developed and evaluated. Specifically, we investigated different polymeric nano-carriers, both flexible and rigid, as platforms for co-localization, as well as distinct enzyme attachment techniques using model enzyme systems using glucose oxidase and horseradish peroxidase to control the spatial arrangement of the multiple enzymes on the nanocarriers. This platform technology can be potentially used to co-localize various enzyme systems and its broad applicability will bemore » tested using the sclareol biosynthesis process to control the formation of products through the formation of MECs with multiple enzymes NgCPS and sSsSS to regulate the pathway of reactive intermediate to enhance the final product conversion rate.« less
Applications of micellar enzymology to clean coal technology. [Laccase from Polyporus versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, C.T.
1990-07-24
This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophen (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dando, Neal; Gershenzon, Mike; Ghosh, Rajat
2012-07-31
The overall goal of this DOE Phase 2 project was to further develop and conduct pilot-scale and field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO 2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stabilitymore » in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO 2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO 2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.« less
Multi-Laboratory Validation of Estrone (E1) ELISA Methods
This project is a round-robin evaluation of commercially available Enzyme-Linked Immunosorbent Assay (ELISA) technology to quantitatively or qualitatively measure the hormone estrone (E1) in combined animal feeding operation (CAFO) receiving streams. ELISA is meant to be a simpl...
From immunology to MRI data anlysis: Problems in mathematical biology
NASA Astrophysics Data System (ADS)
Waters, Ryan Samuel
This thesis represents a collection of four distinct biological projects rising from immunology and metabolomics that required unique and creative mathematical approaches. One project focuses on understanding the role IL-2 plays in immune response regulation and exploring how these effects can be altered. We developed several dynamic models of the receptor signaling network which we analyze analytically and numerically. In a second project focused also on MS, we sought to create a system for grading magnetic resonance images (MRI) with good correlation with disability. The goal is for these MRI scores to provide a better standard for large-scale clinical drug trials, which limits the bias associated with differences in available MRI technology and general grader/participant variability. The third project involves the study of the CRISPR adaptive immune system in bacteria. Bacterial cells recognize and acquire snippets of exogenous genetic material, which they incorporate into their DNA. In this project we explore the optimal design for the CRISPR system given a viral distribution to maximize its probability of survival. The final project involves the study of the benefits for colocalization of coupled enzymes in metabolic pathways. The hypothesized kinetic advantage, known as `channeling', of putting coupled enzymes closer together has been used as justification for the colocalization of coupled enzymes in biological systems. We developed and analyzed a simple partial differential equation of the diffusion of the intermediate substrate between coupled enzymes to explore the phenomena of channeling. The four projects of my thesis represent very distinct biological problems that required a variety of techniques from diverse areas of mathematics ranging from dynamical modeling to statistics, Fourier series and calculus of variations. In each case, quantitative techniques were used to address biological questions from a mathematical perspective ultimately providing insight back to the biological problems which motivated them.
DOE EiR at Oakridge National Lab 2008/09
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Michael
2012-11-30
This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less
Effect of Atmospheric Pressure Plasma and Subsequent Enzymatic Treatment on Flax Fabrics
NASA Astrophysics Data System (ADS)
Zhong, Shaofeng; Yang, Bin; Ou, Qiongrong
2015-09-01
The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge (APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics. The changes of surface morphology and structure, physico-mechanical properties, hydrophilicity, bending properties, whiteness, and dyeing properties of the treated substrate were investigated. The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics, endowing the flax fabrics with good bending properties, water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone. supported by the Science and Technology Project of the Education Department of Zhejiang Province, China (No. Y201432680) and the Professional Leaders Leading Project of the Education Department of Zhejiang Province, China (No. lj2013131), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Education Department of Zhejiang Province, China (No. 1097802072012001)
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project
NASA Technical Reports Server (NTRS)
1988-01-01
Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
Recent Progress and Development of Crystal Structure Analysis of Enzymes and Other Proteins
NASA Astrophysics Data System (ADS)
Tanokura, Masaru; Nagata, Koji; Miyazono, Ken-Ichi; Miyakawa, Takuya; Okai, Masahiko
Structural biology has made tremendous progress in this decade. Here we briefly introduce the Target Proteins Research Program, a national project promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The program aims to reveal the structure and function of proteins that are of great importance in both academic research and industrial application. We also summarize the results of structure-function analyses of (i) transcriptional regulatory proteins useful for the breading of drought and heat stress tolerant crops, (ii) useful enzymes for the production of chiral compounds, and (iii) useful enzymes for the degradation of environmental pollution substances. These results can be utilized in various areas of industries, to enhance food production, to improve the efficiency of pharmaceutical compound production, and to promote the bioremediation of contaminated soil and water.
Applications of micellar enzymology to clean coal technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, C.T.
1990-10-26
This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid Dibenzothiophene (DBT) and ethlyphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies. A goal of this project is to define amore » reverse micelle system that optimizes the catalytic activity of enzymes toward desulfurization of model compounds and ultimately coal samples. Among the variables which will be examined are the surfactant, the solvent, the water:surfactant ration and the pH and ionic strength of the aqueous phase. Studies were carried out with HRP, Type I RZ=1.2 and Type VI RZ=3.2 and laccase from Polyporus versicolor. Substrates for HRP assays included hydrogen peroxide, DBT, DBT sulfoxide, and DBT sulfone. Buffers included sodium phosphate. For formation of reverse micelle solutions the surfactant AOT, di(2-ethyl-hexyl)sodium sulphosuccinate, was obtained from Sigma Chemical Co. Isooctant was used as organic solvent. 12 refs., 5 figs., 3 tabs.« less
Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul
2015-01-01
The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, A P
The recovery and conversion of heavy oils is limited due to the high viscosity of these crudes and their high heteroatom content. Conventional technology relies on thermochemical hydrogenation and hydrodesulfurization to address these problems and is energy intensive due to the high operating temperature and pressure. This project was initiated to explore biological catalysts for adding hydrogen to the heavy oil molecules. Biological enzymes are efficient at hydrogen splitting at very mild conditions such as room temperature and pressure, however, they are very specific in terms of the substrates they hydrogenate. The goal of the project was to investigate howmore » the specificity of these enzymes can be altered to develop catalysts for oil upgrading. Three approaches were used. First was to perform chemical modification of the enzyme surface to improve binding of other non-natural substrates. Second approach was to expose the deeply buried catalytic active site of the enzyme by removal of protein scaffolding to enable better interaction with other substrates. The third approach was based on molecular biology to develop genetically engineered systems for enabling targeted structural changes in the enzyme. The first approach was found to be limited in success due to the non-specificity of the chemical modification and inability to target the region near the active site or the site of substrate binding. The second approach produced a smaller catalyst capable of catalyzing hydrogen splitting, however, further experimentation is needed to address reproducibility and stability issues. The third approach which targeted cloning of hydrogenase in alternate hosts demonstrated progress, although further work is necessary to complete the cloning process. The complex nature of the hydrogenase enzyme structure-function relationship and role of various ligands in the protein require significant more research to better understand the enzyme and to enable success in strategies in developing catalysts with broader specificity as that required for crude upgrading.« less
Ethanol from Agriculture for Arkansas and America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Elizabeth E
The purpose of this project was to develop technology that would facilitate production of sugars from agricultural residues to enable biofuels and biobased product manufacturing. Our primary technology is to use genetic engineering to put bacterial and fungal cellulase genes into corn kernels, using the grain as the production system for the enzymes. At the beginning of this DoE funded program, we were producing two cellulases—E1 endocellulase from a bacterium found in a hot spring at Yellowstone National Park, and CBH I exocellulase from a wood rot fungus. Our team developed several new regulatory sequences (promoters) that increased enzyme proteinmore » accumulation in two kernel compartments (embryo and endosperm). We were also able to capitalize on the diverse genetics of corn to increase protein accumulation. High oil germplasm in particular was instrumental in this increase. A second task in the program was to produce enzymes and proteins that enhanced the activity of the E1 and CBH I enzymes. Our team produced CBH II, from the same wood rot fungus at a level that enabled highly enhanced deconstruction activity of E1 and CBH I in a synergistic manner. We analyzed an additional protein, expansin from cucumber that was expressed in the maize grain expression system. This protein had been previously shown to enhance cellulase activity (D. Cosgrove, Penn State University), and required a large-scale production platform. Our team showed that the corn production system allows industrial amounts of active expansin to be harvested from the grain. One of the challenges of any new production system is to maximize recovery of active ingredient from the raw materials at a cost compatible with its final use. Our team showed that low pH extraction of grain solubilized the enzymes without contamination of native corn protein and active product could be concentrated through ultrafiltration. The final outcomes of this project were the following: 3 cellulase enzymes and the synergistic protein expansin produced at high levels in corn grain, new promoters and combinations of promoters to enhance protein accumulation in grain, application of unique germplasm pools to enhance protein accumulation, and highly efficient processing enabling cost-effective production of cellulases that are highly active in biomass deconstruction.« less
Research status and development of application fields in enzyme technology
NASA Astrophysics Data System (ADS)
Ji, Y. B.; Wang, S. W.; Yu, M.; Ru, X.; Wei, C.; Zhu, H. J.; Li, Z. Y.; Zhao, H.; Qiao, A. N.; Guo, S. Z.; Lu, L.
2018-01-01
Biological enzymes are catalyzed by living cells, most of which are proteins, and very few are RNA. Biological engineering as a new high-tech has been rapid development, Enzyme manufacturing and application areas are gradually expanding, In this paper, the status and progress of the application of enzyme technology are reviewed by reviewing the literature. and aims to provide reference for the application of enzyme technology and provide scientific basis for its future research and development in new field.
Strategies for design of improved biocatalysts for industrial applications.
Madhavan, Aravind; Sindhu, Raveendran; Binod, Parameswaran; Sukumaran, Rajeev K; Pandey, Ashok
2017-12-01
Biocatalysts are creating increased interest among researchers due to their unique properties. Several enzymes are efficiently produced by microorganisms. However, the use of natural enzymes as biocatalysts is hindered by low catalytic efficiency and stability during various industrial processes. Many advanced enzyme technologies have been developed to reshape the existing natural enzymes to reduce these limitations and prospecting of novel enzymes. Frequently used enzyme technologies include protein engineering by directed evolution, immobilisation techniques, metagenomics etc. This review summarizes recent and emerging advancements in the area of enzyme technologies for the development of novel biocatalysts and further discusses the future directions in this field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay
NASA Astrophysics Data System (ADS)
Sasagawa, Kiyotaka; Kim, Soo Heyon; Miyazawa, Kazuya; Takehara, Hironari; Noda, Toshihiko; Tokuda, Takashi; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun
2014-03-01
Digital enzyme linked immunosorbent assay (ELISA) is an ultra-sensitive technology for detecting biomarkers and viruses etc. As a conventional ELISA technique, a target molecule is bonded to an antibody with an enzyme by antigen-antibody reaction. In this technology, a femto-liter droplet chamber array is used as reaction chambers. Due to its small volume, the concentration of fluorescent product by single enzyme can be sufficient for detection by a fluorescent microscopy. In this work, we demonstrate a miniaturized lensless imaging device for digital ELISA by using a custom image sensor. The pixel array of the sensor is coated with a 20 μm-thick yellow filter to eliminate excitation light at 470 nm and covered by a fiber optic plate (FOP) to protect the sensor without resolution degradation. The droplet chamber array formed on a 50μm-thick glass plate is directly placed on the FOP. In the digital ELISA, microbeads coated with antibody are loaded into the droplet chamber array, and the ratio of the fluorescent to the non-fluorescent chambers with the microbeads are observed. In the fluorescence imaging, the spatial resolution is degraded by the spreading through the glass plate because the fluorescence is irradiated omnidirectionally. This degradation is compensated by image processing and the resolution of ~35 μm was achieved. In the bright field imaging, the projected images of the beads with collimated illumination are observed. By varying the incident angle and image composition, microbeads were successfully imaged.
[Advances on enzymes and enzyme inhibitors research based on microfluidic devices].
Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi
2010-06-01
With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.
Manisha; Yadav, Sudesh Kumar
2017-12-01
Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, Sonja; House, Alan; Liu, Kun
An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. Themore » vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.« less
JPRS Report, Science & Technology, Japan, MITI’s Large-Scale R&D Projects Reviewed
1990-02-08
pollutions, red tide, Active enzymes etc. for cleaners and detergents -- .... .... Intermediates aw materials for r rcosmetics and and medicines moisturizers...PN 00 1H carq 1 0 HZc4 IO -l~ to u .ci~’ *H 0 w 1 Q 0 r - 0 0J w H 04P 04- c0 a) 00 bD O44 0 w w 0 -p 00 021.J4 COQ )a > u0-0 T1 CL Cfp p P H -H14 OL
2011-10-30
stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low- cost high-capacity celiulosic...NOVEL ENZYMATIC CARBOHYDRATE-TO-HYDROGEN TECHNOLOGY BY ENZYME ENGINEERING Grant/Contract Number: FA9550-08-1-0145 Program Manager: Dr. Walt...bbtransformation (SyPaB) is the implementation of complicated biochemical reactions by in vitro assembly of enzyme and coenzymes. Different from in vivo
NASA Astrophysics Data System (ADS)
Isomae, Kazuro
Enzyme air-filter media according to the bactericidal effect as an environmental green technology acquired the high appraisal and the result in the domestic and foreign clean room and the air conditioning field. The mechanism of this enzyme technology, safety, and the bactericidal effect in the real environment are discussed by using the electron microscopic picture etc. And it proposes to apply these technologies to the cultural asset preservation.
The synthesis of starch from carbon dioxide using isolubilized stabilized enzymes
NASA Technical Reports Server (NTRS)
Bassham, J. A.; Bearden, L.; Wilke, C.; Carroad, P.; Mitra, G.; Ige, R.
1972-01-01
Systems for artificial manufacture of starch and for delineation of technological areas, and the rationale for studying them are considered. A discussion of the enzyme-catalyzed routes of synthesis available and a choice as to the most promising route are presented. A discussion of the enzymes involved, of enzyme insolubilization technology, and of possible engineering approaches, with examples in the form of model calculations for both reactors and separators, are also presented.
Study on the technology of compound enzymatic hydrolysis of whole passion fruit
NASA Astrophysics Data System (ADS)
Yang, Yu-xia; Duan, Zhen-hua; Kang, Chao; Zhu, Xiang-hao; Li, Ding-jin
2017-12-01
Fresh Whole Passion Fruit was used as raw material, The enzymatic hydrolysis technology of Passion Fruit by Complex enzyme were studied, The effects of enzyme dosage, Enzyme ratio(cellulose: pectinase), pH, temperature and time on the hydrolysis were investigated by single-tests and orthogonal tests, the hydrolysis indicators of single-factor tests and orthogonal tests were juice yield. The optimal hydrolysis conditions of Passion Fruit by Complex enzyme were enzyme dosage 0.12%, Enzyme ratio 5:1, hydrolysis temperature 50°C, pH4.0 and time 3.5 h. Under such conditions, juice yield of Passion Fruit was 92.91%.
An in silico DNA cloning experiment for the biochemistry laboratory.
Elkins, Kelly M
2011-01-01
This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. Copyright © 2010 Wiley Periodicals, Inc.
Technology Prospecting on Enzymes: Application, Marketing and Engineering
Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning
2012-01-01
Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658
Applications of Microbial Enzymes in Food Industry.
Raveendran, Sindhu; Parameswaran, Binod; Ummalyma, Sabeela Beevi; Abraham, Amith; Mathew, Anil Kuruvilla; Madhavan, Aravind; Rebello, Sharrel; Pandey, Ashok
2018-03-01
The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.
Applications of Microbial Enzymes in Food Industry
2018-01-01
Summary The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed. PMID:29795993
2003-03-01
and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX . . . . . A-48 CU-1318 – Engineering Transgenic...1317 Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX...A A-48 PROJECT SUMMARY PROJECT TITLE & ID: Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro
Coordinated development of leading biomass pretreatment technologies.
Wyman, Charles E; Dale, Bruce E; Elander, Richard T; Holtzapple, Mark; Ladisch, Michael R; Lee, Y Y
2005-12-01
For the first time, a single source of cellulosic biomass was pretreated by leading technologies using identical analytical methods to provide comparative performance data. In particular, ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime approaches were applied to prepare corn stover for subsequent biological conversion to sugars through a Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, and Texas A&M University. An Agricultural and Industrial Advisory Board provided guidance to the project. Pretreatment conditions were selected based on the extensive experience of the team with each of the technologies, and the resulting fluid and solid streams were characterized using standard methods. The data were used to close material balances, and energy balances were estimated for all processes. The digestibilities of the solids by a controlled supply of cellulase enzyme and the fermentability of the liquids were also assessed and used to guide selection of optimum pretreatment conditions. Economic assessments were applied based on the performance data to estimate each pretreatment cost on a consistent basis. Through this approach, comparative data were developed on sugar recovery from hemicellulose and cellulose by the combined pretreatment and enzymatic hydrolysis operations when applied to corn stover. This paper introduces the project and summarizes the shared methods for papers reporting results of this research in this special edition of Bioresource Technology.
Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis
2015-01-01
High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.
Biomedical Engineering Bionanosystems Research at Louisiana Tech University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, James; Lvov, Yuri; Hegab, Hisham
2010-03-25
The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticatedmore » research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.« less
Rojas, Meliza Lindsay; Trevilin, Júlia Hellmeister; Funcia, Eduardo Dos Santos; Gut, Jorge Andrey Wilhelms; Augusto, Pedro Esteves Duarte
2017-05-01
Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Coleman, Aaron B.
2010-01-01
Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…
Recent advances in enzyme extraction strategies: A comprehensive review.
Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K
2017-08-01
The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Assay optimisation and technology transfer for multi-site immuno-monitoring in vaccine trials
Harris, Stephanie A.; Satti, Iman; Bryan, Donna; Walker, K. Barry; Dockrell, Hazel M.; McShane, Helen; Ho, Mei Mei
2017-01-01
Cellular immunological assays are important tools for the monitoring of responses to T-cell-inducing vaccine candidates. As these bioassays are often technically complex and require considerable experience, careful technology transfer between laboratories is critical if high quality, reproducible data that allows comparison between sites, is to be generated. The aim of this study, funded by the European Union Framework Program 7-funded TRANSVAC project, was to optimise Standard Operating Procedures and the technology transfer process to maximise the reproducibility of three bioassays for interferon-gamma responses: enzyme-linked immunosorbent assay (ELISA), ex-vivo enzyme-linked immunospot and intracellular cytokine staining. We found that the initial variability in results generated across three different laboratories reduced following a combination of Standard Operating Procedure harmonisation and the undertaking of side-by-side training sessions in which assay operators performed each assay in the presence of an assay ‘lead’ operator. Mean inter-site coefficients of variance reduced following this training session when compared with the pre-training values, most notably for the ELISA assay. There was a trend for increased inter-site variability at lower response magnitudes for the ELISA and intracellular cytokine staining assays. In conclusion, we recommend that on-site operator training is an essential component of the assay technology transfer process and combined with harmonised Standard Operating Procedures will improve the quality, reproducibility and comparability of data produced across different laboratories. These data may be helpful in ongoing discussions of the potential risk/benefit of centralised immunological assay strategies for large clinical trials versus decentralised units. PMID:29020010
Enzymes- An Existing and Promising Tool of Food Processing Industry.
Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata
2016-01-01
The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.
Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.
Sivaperumal, P; Kamala, K; Rajaram, R
Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.
Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis
2016-04-01
in many immune cell types and its activation decreases T-cell activity leading to tumor immune escape. Since the rate limiting enzyme TDO2 increases...What were the major goals of the project? Our overall goals were to test the hypotheses that the ability to upregulate kynurenine via the enzyme TDO2...discipline(s) of the project? " o This research is strongly suggesting that TDO2 is likely the primary enzyme that catabolizes tryptophan that should
Oxidative Reactions with Nonaqueous Enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan S. Dordick; Douglas Clark; Brian H Davison
2001-12-30
The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Delivery of Formulated Industrial Enzymes with Acoustic Technology.
Hwang, Jennifer Dorcas; Ortiz-Maldonado, Mariliz; Paramonov, Sergey
2016-02-01
Industrial enzymes are instrumental in many applications, including carbohydrate processing, fabric and household care, biofuels, food, and animal nutrition, among others. Enzymes have to be active and stable not only in harsh application conditions, but also during shipment and storage. In protein stability studies, formulated concentrated enzyme solutions are frequently diluted gravimetrically prior to enzyme activity measurements, making it challenging to move toward more high-throughput techniques using conventional robotic equipment. Current assay methods pose difficulties when measuring highly concentrated proteins. For example, plastic pipette tips can introduce error because proteins adsorb to the tip surface, despite the presence of detergents, decreasing precision and overall efficiency of protein activity assays. Acoustic liquid handling technology, frequently used for various dilute small-molecule assays, may overcome such problems. Originally shown to effectively deliver dilute solutions of small molecules, this technology is used here as an effective alternative to the aforementioned challenge with viscous concentrated protein solutions. Because the acoustic liquid handler transfers nanoliter quantities of liquids without using pipette tips and without sample loss, it rapidly and uniformly prepares assay plates for enzyme activity measurements within minutes. This increased efficiency transforms the nature of enzyme stability studies toward high precision and throughput. © 2015 Society for Laboratory Automation and Screening.
Proceedings: Fourteenth annual EPRI conference on fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-01
EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less
Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.
Parte, S; Sirisha, V L; D'Souza, J S
Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine ecosystem is avoided. © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...
Scientific Communication and the Unified Laboratory Sequence1
NASA Astrophysics Data System (ADS)
Silverstein, Todd P.; Hudak, Norman J.; Chapple, Frances H.; Goodney, David E.; Brink, Christina P.; Whitehead, Joyce P.
1997-02-01
The "Temperature Dependent Relaxation Kinetics" lab was first implemented in 1987; it uses stopped-flow pH jump techniques to determine rate constants and activation parameters (H, S, G) for a reaction mechanism. Two new experiments (Monoamine Oxidase, and Molecular Modeling) will be implemented in the fall of 1997. The "Monoamine Oxidase" project uses chromatography and spectrophotometry to purify and characterize the enzyme. Subsequent photometric assays explore the enzyme's substrate specificity, activation energy, and denaturation. Finally, in the "Molecular Modeling"project, students characterize enzyme - substrate and drug - receptor interactions. Energy minimization protocols are used to make predictions about protein structure and ligand binding, and to explore pharmacological and biomedical implications. With these additions, the twelve Unified Laboratory projects introduce our chemistry majors to nearly all of the instrumental methods commonly encountered in modern chemistry.
Enzyme processes for pulp and paper : a review of recent developments
William R. Kenealy; Thomas W. Jeffries
2003-01-01
The pulp and paper industry is applying new, ecologically sound technology in its manufacturing processes. Many interesting enzymatic applications have been proposed in the literature. Implemented technologies tend to change the existing industrial process as little as possible. Commercial applications include xylanases in prebleaching kraft pulps and various enzymes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, M; Kochergin, V; Hess, R
2005-03-31
Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less
Kashibe, Masayoshi; Matsumoto, Kengo; Hori, Yuichiro
2017-01-01
Controlled release is one of the key technologies for medical innovation, and many stimulus-responsive nanocarriers have been developed to utilize this technology. Enzyme activity is one of the most useful stimuli, because many enzymes are specifically activated in diseased tissues. However, controlled release stimulated by enzyme activity has not been frequently reported. One of the reasons for this is the lack of versatility of carriers. Most of the reported stimulus-responsive systems involve a sophisticated design and a complicated process for the synthesis of stimulus-responsive nanocarrier components. The purpose of this study was to develop versatile controlled release systems triggered by various stimuli, including enzyme activity, without modifying the nanocarrier components. We developed two controlled release systems, both of which comprised a liposome as the nanocarrier and a membrane-damaging peptide, temporin L (TL), and its derivatives as the release-controllers. One system utilized branched peptides for proteases, and the other utilized phosphopeptides for phosphatases. In our systems, the target enzymes converted the non-membrane-damaging TL derivatives into membrane-damaging peptides and released the liposome inclusion. We demonstrated the use of our antimicrobial peptide-based controlled release systems for different enzymes and showed the promise of this technology as a novel theranostic tool. PMID:28451373
Enzymes: A Workshop for Secondary School Students.
ERIC Educational Resources Information Center
Bering, C. Larry
1994-01-01
Describes the weekend science workshop on enzymes and includes several projects that involve students directly, parts of which can be incorporated into a traditional chemistry, biology, or physical science course at the secondary level. Subjects include catalysts and catalytic converters in cars, enzymes as consumer products and in industrial…
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications.
Pyzocha, Neena K; Chen, Sidi
2018-02-16
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Hydrogen from Water in a Novel Recombinant Cyanobacterial System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weyman, Philip D; Smith, Hamillton O.
2014-12-03
Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other moremore » expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being “brought to life” from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80° C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future projects focusing on photobiological H2 production. H2 is an excellent carbon-free storage molecule for solar energy. The vast diversity of hydrogenases is only now being appreciated as the number of bacterial genome sequences that are publically available has eclipsed the 10,000 mark and metagenomic DNA sequencing data from a wide variety of environments are now available. While this project focused on experiments with two hydrogenases, future work will have access to a much wider database of sequences to express and test in cyanobacteria. The results from this project justify and encourage future biotechnological approaches to realize direct H2 production from photobiological sources.« less
A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond
Bose, Sutapa; Rai, Vivek
2013-01-01
Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields. PMID:24106701
Enzyme Analysis to Determine Glucose Content
NASA Astrophysics Data System (ADS)
Carpenter, Charles; Ward, Robert E.
Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.
Extremophilic Enzymatic Response: Role of Proteins in Controlling Selenium Nanoparticle Synthesis
2014-11-28
Thermophiles ; Regensburg, Germany. September 2013. 2.- “Identification of one enzyme Involved in selenium nanoparticles Biosynthesis in Geobacillus...Objective To study the role of at least one protein ( enzyme ) from E1 (GWE1) on the synthesis of nano-Se particles. Note: This project...To identify protein(s) or enzyme (s) involved in nanoparticles formation. To identify the proteins or enzyme (s) involved in nanoparticles formation
Calvo-Lerma, Joaquim; Martinez-Jimenez, Celia P; Lázaro-Ramos, Juan-Pablo; Andrés, Ana; Crespo-Escobar, Paula; Stav, Erlend; Schauber, Cornelia; Pannese, Lucia; Hulst, Jessie M; Suárez, Lucrecia; Colombo, Carla; Barreto, Celeste; de Boeck, Kris; Ribes-Koninckx, Carmen
2017-01-01
Introduction For the optimal management of children with cystic fibrosis, there are currently no efficient tools for the precise adjustment of pancreatic enzyme replacement therapy, either for advice on appropriate dietary intake or for achieving an optimal nutrition status. Therefore, we aim to develop a mobile application that ensures a successful nutritional therapy in children with cystic fibrosis. Methods and analysis A multidisciplinary team of 12 partners coordinate their efforts in 9 work packages that cover the entire so-called ‘from laboratory to market’ approach by means of an original and innovative co-design process. A cohort of 200 patients with cystic fibrosis aged 1–17 years are enrolled. We will develop an innovative, clinically tested mobile health application for patients and health professionals involved in cystic fibrosis management. The mobile application integrates the research knowledge and innovative tools for maximising self-management with the aim of leading to a better nutritional status, quality of life and disease prognosis. Bringing together different and complementary areas of knowledge is fundamental for tackling complex challenges in disease treatment, such as optimal nutrition and pancreatic enzyme replacement therapy in cystic fibrosis. Patients are expected to benefit the most from the outcomes of this innovative project. Ethics and dissemination The project is approved by the Ethics Committee of the coordinating organisation, Hospital Universitari La Fe (Ref: 2014/0484). Scientific findings will be disseminated via journals and conferences addressed to clinicians, food scientists, information and communications technology experts and patients. The specific dissemination working group within the project will address the wide audience communication through the website (http://www.mycyfapp.eu), the social networks and the newsletter. PMID:28302638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Michael G.
The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plantmore » cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.« less
Some Nutritional, Technological and Environmental Advances in the Use of Enzymes in Meat Products
Marques, Anne y Castro; Maróstica, Mário Roberto; Pastore, Gláucia Maria
2010-01-01
The growing consumer demand for healthier products has stimulated the development of nutritionally enhanced meat products. However, this can result in undesirable sensory consequences to the product, such as texture alterations in low-salt and low-phosphate meat foods. Additionally, in the meat industry, economical aspects have stimulated researchers to use all the animal parts to maximize yields of marketable products. This paper aimed to show some advances in the use of enzymes in meat processing, particularly the application of the proteolytic enzymes transglutaminase and phytases, associated with nutritional, technological, and environmental improvements. PMID:21048865
Biomedical Applications of Enzymes From Marine Actinobacteria.
Kamala, K; Sivaperumal, P
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.
Japan Report, Science and Technology.
1987-05-06
Figure 17. Microcapsule Type Enzyme Immobilized Membrane Such metabolites as creatinine, uric acid , and vitamin B12 are relatively easily adsorbed by...WEST EUROPE ivory AFRICA (SUB-SAHARA) tan SCIENCE $ TECHNOLOGY gray WORLDWIDES pewter The changes that are of interest to readers of this report...condition and that they are unstable in strong acids , strong bases, organic solvents, and heat. Ordinarily, an enzyme docks with a substrate in an
Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.
Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung
2017-07-06
Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.
Converting Enzymes into Tools of Industrial Importance.
Prasad, Shivcharan; Roy, Ipsita
2018-01-01
Enzymes have applications in numerous biotechnological products and processes that are commonly used in the production of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes, however, are optimized to function under physiological conditions. Any change in reaction conditions results in their activity as well as stability being compromised. Hence, most of the natural biomolecules are not suitable for industrial applications. Modifications are required to develop efficient and successful reagents as per demand. Protein engineering can be applied to cope up with these situations. This review describes some of the novel uses/unusual properties of enzymes as biological catalysts. It explains the different ways in which enzymes can be and have been used under non-native conditions. Different strategies have been discussed regarding stabilization of enzyme as well optimum conditions of its uses in different industries. The following patents databases were consulted: European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), Patent scope Search International and National Patent Collections (WIPO) and Google Patents. The review illustrates the width of the umbrella of applications covered by biocatalysts. Employing the tools of solvent and protein engineering, viz. non-aqueous media, additives, immobilization, mutagenesis, to name a few; biotechnology has been able to make enzyme catalyzed processes an essential components of the industrialist's armoury. The article lists a number of successful examples, both of patented technology as well as biocatalysts which are currently being used in the industry, to highlight the accomplishments of technologies which have been adopted till now for making enzyme technology industrially viable. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teter, Sarah A
Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000-more » 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0.5 kg kettle reactors) was performed to compare the starting enzyme mixture CZP00005 with CTec3 alone; these results indicated a 1.9X dose- reduction for 80% conversion. The CTec3 composition does not include the best available enzyme components from the DECREASE effort. While these components are not yet available in a commercial product, experimental mixtures were assayed in a smaller scale assay using DECREASE PCS, at high solids loadings (21.5% TS). The results indicated that the newer mixtures required 2.9X-less enzyme for 90% conversion, and 3.2X-less enzyme for 80% conversion, relative to the starting enzyme cocktail. In conclusion, CTec3 delivers a 1.8-1.9X dose reduction on NREL PCS at high solids loadings, and the next generation enzyme from Novozymes will continue to show dramatically improved biochemical performance. CTec3 allows reduced costs today, and the experimental cocktails point to continued biotechnological improvements that will further drive down costs for biorefineries of tomorrow.« less
Industrial applications of enzyme biocatalysis: Current status and future aspects.
Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung
2015-11-15
Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
A multi-step chromatographic strategy to purify three fungal endo-β-glucanases.
McCarthy, Tracey; Tuohy, Maria G
2011-01-01
Fungi and fungal enzymes have traditionally occupied a central role in biotechnology. Understanding the biochemical properties of the variety of enzymes produced by these eukaryotes has been an area of research interest for decades and again more recently due to global interest in greener bio-production technologies. Purification of an individual enzyme allows its unique biochemical and functional properties to be determined, can provide key information as to the role of individual biocatalysts within a complex enzyme system, and can inform both protein engineering and enzyme production strategies in the development of novel green technologies based on fungal biocatalysts. Many enzymes of current biotechnological interest are secreted by fungi into the extracellular culture medium. These crude enzyme mixtures are typically complex, multi-component, and generally also contain other non-enzymatic proteins and secondary metabolites. In this chapter, we describe a multi-step chromatographic strategy required to isolate three new endo-β-glucanases (denoted EG V, EG VI, and EG VII) with activity against cereal mixed-linkage β-glucans from the thermophilic fungus Talaromyces emersonii. This work also illustrates the challenges frequently involved in isolating individual extracellular fungal proteins in general.
The Enzyme Function Initiative†
Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.
2011-01-01
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID:21999478
The Enzyme Function Initiative.
Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V
2011-11-22
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts. © 2011 American Chemical Society
Immobilized enzyme reactors in HPLC and its application in inhibitor screening: A review
Fang, Si-Meng; Wang, Hai-Na; Zhao, Zhong-Xi; Wang, Wei-Hong
2011-01-01
This paper sets out to summarize the literatures based on immobilized enzyme bio-chromatography and its application in inhibitors screening in the last decade. In order to screen enzyme inhibitors from a mass of compounds in preliminary screening, multi-pore materials with good biocompatibility are used for the supports of immobilizing enzymes, and then the immobilized enzyme reactor applied as the immobilized enzyme stationary phase in HPLC. Therefore, a technology platform of high throughput screening is gradually established to screen the enzyme inhibitors as new anti-tumor drugs. Here, we briefly summarize the selective methods of supports, immobilization techniques, co-immobilized enzymes system and the screening model. PMID:29403726
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less
Egg Yolk Lecithin: A Biochemical Laboratory Project
ERIC Educational Resources Information Center
White, Bernard J.; And Others
1974-01-01
Describes an undergraduate laboratory project involving lecithin which integrates two general aspects of lipid methodology: chromatographic techniques and use of enzymes specificity to obtain structural information. (Author/SLH)
Molecular engineering of industrial enzymes: recent advances and future prospects.
Yang, Haiquan; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian
2014-01-01
Many enzymes are efficiently produced by microbes. However, the use of natural enzymes as biocatalysts has limitations such as low catalytic efficiency, low activity, and low stability, especially under industrial conditions. Many protein engineering technologies have been developed to modify natural enzymes and eliminate these limitations. Commonly used protein engineering strategies include directed evolution, site-directed mutagenesis, truncation, and terminal fusion. This review summarizes recent advances in the molecular engineering of industrial enzymes and discusses future prospects in this field. We expect this review to increase interest in and advance the molecular engineering of industrial enzymes.
Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-08-01
High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
Simon, Gabriel M; Cravatt, Benjamin F
2010-04-09
Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.
Biotechnological Processes in Microbial Amylase Production
Arshad, M. K. Md; Lakshmipriya, Thangavel; Hashim, Uda; Chinni, Suresh V.
2017-01-01
Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales. PMID:28280725
Biotechnological Processes in Microbial Amylase Production.
Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V
2017-01-01
Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
Linking_Learning: Migrant Education Technology Projects, 1999.
ERIC Educational Resources Information Center
Carson, Nancy
1999-01-01
The two issues of Linking_Learning published in 1999 update the education community and others regarding six migrant education technology projects funded by the U.S. Department of Education. The projects are the Anchor School Project, InTime (Integrating Technology into Migrant Education), MECHA, KMTP (Kentucky Migrant Technology Project),…
JPRS Report, Science & Technology: China.
1989-01-31
et al.; GUANGXUE XUEBAO, No 8, Aug 88] 130 Hardening Treatment for the Surface of 50 SiMnP Steel for High Power Laser [Yu Hongtao , Cao Tianshun...and Qian Bin [6929 2430]; helped with the technical work; the tool enzyme unit provided the enzymes; and the Shanghai Biological Products Institute...154 [Article by Yu Hongtao ]0060 3163 3447] and Cao Tianshun [2580 1131 7311] of Angang College of Technology] [Abstract] The article proposes a
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato
2017-02-01
Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.
Future of biosensors: a personal view.
Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F
2014-01-01
Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.
Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.
Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J
2017-09-01
Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
In situ bioremediation in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porta, A.; Young, J.K.; Molton, P.M.
1993-06-01
Site remediation activity in Europe is increasing, even if not at the forced pace of the US. Although there is a better understanding of the benefits of bioremediation than of other approaches, especially about in situ bioremediation of contaminated soils, relatively few projects have been carried out full-scale in Europe or in the US. Some engineering companies and large industrial companies in Europe are investigating bioremediation and biotreatment technologies, in some cases to solve their internal waste problems. Technologies related to the application of microorganisms to the soil, release of nutrients into the soil, and enhancement of microbial decontamination aremore » being tested through various additives such as surfactants, ion exchange resins, limestone, or dolomite. New equipment has been developed for crushing and mixing or injecting and sparging the microorganisms, as have new reactor technologies (e.g., rotating aerator reactors, biometal sludge reactors, and special mobile containers for simultaneous storage, transportation, and biodegradation of contaminated soil). Some work has also been done with immobilized enzymes to support and restore enzymatic activities related to partial or total xenobiotic decontamination. Finally, some major programs funded by public and private institutions confirm that increasing numbers of firms have a working interest in bioremediation.« less
Kumar, Deepak; Murthy, Ganti S
2011-09-05
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
2011-01-01
Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958
Projects in Technology Education and Fostering Learning: The Potential and Its Realization
NASA Astrophysics Data System (ADS)
Barak, Moshe; Shachar, Ahron
2008-06-01
The current study aimed at examining the efficacy of technological projects as learning tools by exploring the following questions: the extent to which projects in technology develop students as independent learners; the types of knowledge the students deal with in working on their projects; the role of problem-solving in technological projects; and how projects integrate into traditional schooling. The subjects were 53 high school (12th grade) students who prepared graduating projects in technology under the supervision of nine teachers. Data were collected by observing the students in the laboratory, administrating two questionnaires to both the students and the teachers, and analyzing 25 portfolios prepared by the students of their projects. The findings indicate that projects in technology provide a good opportunity to engage students in challenging tasks that enhance their learning skills. To maximize this potential, it is necessary to employ the project method from the early stages of learning technology. It is especially important that teachers having a strong engineering orientation also acquire pedagogical knowledge on issues such as fostering independent learning, creativity, peer learning and reflective practice in the technological classroom.
MSFC Technology Year in Review 2015
NASA Technical Reports Server (NTRS)
Reynolds, David; Tinker, Mike
2015-01-01
MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.
Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza
2015-03-01
Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.
Reeve, Holly A; Ash, Philip A; Park, HyunSeo; Huang, Ailun; Posidias, Michalis; Tomlinson, Chloe; Lenz, Oliver; Vincent, Kylie A
2017-01-15
The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry We focus on reactions involving the H + /H 2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H 2 -driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H 2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis. © 2017 The Author(s).
PCP IMMUMOASSAY TECHNOLOGIES - INNOVATIVE TECHNOLOGY EVALUATION REPORT
Three enzyme-linked immunosorbent assay technologies for pentachlorophenol (PCP) testing in soil and water were evaluated. Penta RISc Test Systems (formerly ENSYS, Inc.), EnviroGard™ PCP Immunoassay Test Kit (Millipore Corp.), and Pentachlorophenol RaPID Assay (formerly Ohmicron ...
Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform.
Previte, Michael J R; Aslan, Kadir; Geddes, Chris D
2007-09-15
We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to achieve more than 500-fold increases in "on-demand" photon flux from chemically catalyzed chemiluminescent reactions. We also report a 6-fold increase in photon flux from HRP-catalyzed assays on disposable coverslips functionalized with HRP and placed proximal to the substrates modified with thin-film aluminum triangle disjointed "bow-tie" structures. In addition, we demonstrate the applicability of this technology to develop multiplexed or high-throughput chemiluminescent assays. We also demonstrate the clinical and biological relevance of this technology platform by affixing aluminum structures in proximity to HRP protein immobilized on nitrocellulose to improve the sensitivity for this model Western blot scheme by 50-fold. We believe analytical applications that rely on enzyme-catalyzed chemiluminescence, such as immunoassays, may greatly benefit from this new platform technology.
Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L
2015-08-10
The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.
Applications and Methods for Continuous Monitoring of Physiological Chemistry
2016-02-04
product and test platform to verify the performance characteristics of the enzymes when used in diagnostic device fabrication. 1.3 Results This...project had three primary objectives: 1. Engineer a cortisol oxidase enzyme suitable for use in diagnostic devices 2. Large scale production and...for both animal and human use , and for direct sale to other entities to manufacture biosensors and other products for human monitoring. The enzymes
Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis
2014-01-01
The activity of endogenous deteriorative enzymes together with microbial growth (with associated enzymatic activity) and/or other non-enzymatic (usually oxidative) reactions considerably shorten the shelf life of fruits and vegetable products. Thermal processing is commonly used by the food industry for enzyme and microbial inactivation and is generally effective in this regard. However, thermal processing may cause undesirable changes in product's sensory as well as nutritional attributes. Over the last 20 years, there has been a great deal of interest shown by both the food industry and academia in exploring alternative food processing technologies that use minimal heat and/or preservatives. One of the technologies that have been investigated in this context is high-pressure processing (HPP). This review deals with HPP focusing on its effectiveness for controlling quality-degrading enzymes in horticultural products. The scientific literature on the effects of HPP on plant enzymes, mechanism of action, and intrinsic and extrinsic factors that influence the effectiveness of HPP for controlling plant enzymes is critically reviewed. HPP inactivates vegetative microbial cells at ambient temperature conditions, resulting in a very high retention of the nutritional and sensory characteristics of the fresh product. Enzymes such as polyphenol oxidase (PPO), peroxidase (POD), and pectin methylesterase (PME) are highly resistant to HPP and are at most partially inactivated under commercially feasible conditions, although their sensitivity towards pressure depends on their origin as well as their environment. Polygalacturonase (PG) and lipoxygenase (LOX) on the other hand are relatively more pressure sensitive and can be substantially inactivated by HPP at commercially feasible conditions. The retention and activation of enzymes such as PME by HPP can be beneficially used for improving the texture and other quality attributes of processed horticultural products as well as for creating novel structures that are not feasible with thermal processing.
Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M
2003-01-01
Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.
NASA Astrophysics Data System (ADS)
Samidjan, Istiyanto; Rachmawati, Diana
2018-02-01
One solution is to utilize engineering technology cultivation floating cage net polka dot grouper (ducker grouper), which is given artificial feed enriched with phytase enzymes. The objectives of this study was to examine the use of technology engineering floating net on ducker grouper on artificial feed that is enriched with different dose phytase enzymes to accelerate growth and survival. The research method used ducker grouper fish size 15,5 ± 0,5 cm in the net cages unit (1 m x 1 m x 1 m), 250 fish per cage, using 12 cages. Each net-cages was made of polyethylens netting, mesh size 12.5 mm. with complete randomized design (CRD) 4 treatment and 3 replication were feed Artificial enriched of phytase enzyme with the doses of A (0 FTU · kg-1 diet), B (200 FTU · kg-1 diet), C (500 FTU · kg-1 diet), and D (800 FTU · kg-1 diet) phytase enzyme. Feed was given 2 times a day in the morning and afternoon with 5% biomass per day. Data includes the growth of absolute weight polka dot grouper, FCR, and survival rate analyzed variety and Test Tukey.The result of the research showed that the difference of artificial feeding enriched phytase enzyme significantly (P <0,05) to growth, food conversion ratio (FCR), survival rete of polka dot grouper. The best treatment at C (500 mg / kg of feed) increase growth of absolute weight of 128.75 g, 1.75 (FCR), and a survival rate of 93.5%.
Finding Sequences for over 270 Orphan Enzymes
Shearer, Alexander G.; Altman, Tomer; Rhee, Christine D.
2014-01-01
Despite advances in sequencing technology, there are still significant numbers of well-characterized enzymatic activities for which there are no known associated sequences. These ‘orphan enzymes’ represent glaring holes in our biological understanding, and it is a top priority to reunite them with their coding sequences. Here we report a methodology for resolving orphan enzymes through a combination of database search and literature review. Using this method we were able to reconnect over 270 orphan enzymes with their corresponding sequence. This success points toward how we can systematically eliminate the remaining orphan enzymes and prevent the introduction of future orphan enzymes. PMID:24826896
Chemical Approaches to Probe Metabolic Networks
Medina-Cleghorn, Daniel; Nomura, Daniel K.
2013-01-01
One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways. PMID:23296751
Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.
Measuring the metastatic potential of cancer cells
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Gratzner, Howard; Atassi, M. Z.
1993-01-01
Cancer cells must secrete proteolytic enzymes to invade adjacent tissues and migrate to a new metastatic site. Urokinase (uPA) is a key enzyme related to metastasis in cancers of the lung, colon, gastric, uterine, breast, brain, and malignant melanoma. A NASA technology utilization project has combined fluorescence microscopy, image analysis, and flow cytometry, using fluorescent dyes, and urokinase-specific antibodies to measure uPA and abnormal DNA levels (related to cancer cell proliferation) inside the cancer cells. The project is focused on developing quantitative measurements to determine if a patient's tumor cells are actively metastasizing. If a significant number of tumor cells contain large amounts of uPA (esp. membrane-bound) then the post-surgical chemotherapy or radiotherapy can be targeted for metastatic cells that have already left the primary tumor. These analytical methods have been applied to a retrospective study of biopsy tissues from 150 node negative, stage 1 breast cancer patients. Cytopathology and image analysis has shown that uPA is present in high levels in many breast cancer cells, but not found in normal breast. Significant amounts of uPA also have been measured in glioma cell lines cultured from brain tumors. Commercial applications include new diagnostic tests for metastatic cells, in different cancers, which are being developed with a company that provides a medical testing service using flow cytometry for DNA analysis and hormone receptors on tumor cells from patient biopsies. This research also may provide the basis for developing a new 'magic bullet' treatment against metastasis using chemotherapeutic drugs or radioisotopes attached to urokinase-specific monoclonal antibodies that will only bind to metastatic cells.
Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Silva, Maria Cristina; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil
2016-01-01
The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.
SU833912
Title: Bioinspired Design and Directed Evolution of Iron Containing Enzymes for Green Synthetic Processes and BioremediationEdward I. Solomon, Shaun D. Wong, Lei Liu, Caleb B. Bell, IIICynthia Nolt-Helms
Project Period: August 15, 2008 - August 14,...
Epigenetic Control of Prolyl and Asparaginyl Hydroxylases in Prostate Cancer
2011-07-01
transcriptionally and translationally silenced. We therefore proposed a study that focuses on the epigenetic control of these crucial enzymes . In this report...control of these enzymes . Last, we will explain our future direction of the project after the award period has expired. Hypoxia Inducible Factor, HIF...silenced. We therefore proposed a study that focuses on the epigenetic control of these crucial enzymes . In this report, we present data demonstrating our
Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.
Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus
2016-07-01
Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
DeYoung, H. Garrett
1983-01-01
New technologies have been developed to diagnose such disorders as cancer, heart disease, and defects of the newborn in presymptomatic stages. Several technologies, including amniocentesis, radioimmunoassay, enzyme immunoassay, multichannel analysis and others are discussed. Development of these technologies and issues related to their use are…
Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.
Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise
2012-11-01
Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.
Projecting technology change to improve space technology planning and systems management
NASA Astrophysics Data System (ADS)
Walk, Steven Robert
2011-04-01
Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.
Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review.
Nadar, Shamraja S; Rao, Priyanka; Rathod, Virendra K
2018-06-01
An interest in the development of extraction techniques of biomolecules from various natural sources has increased in recent years due to their potential applications particularly for food and nutraceutical purposes. The presence of polysaccharides such as hemicelluloses, starch, pectin inside the cell wall, reduces the extraction efficiency of conventional extraction techniques. Conventional techniques also suffer from low extraction yields, time inefficiency and inferior extract quality due to traces of organic solvents present in them. Hence, there is a need of the green and novel extraction methods to recover biomolecules. The present review provides a holistic insight to various aspects related to enzyme aided extraction. Applications of enzymes in the recovery of various biomolecules such as polyphenols, oils, polysaccharides, flavours and colorants have been highlighted. Additionally, the employment of hyphenated extraction technologies can overcome some of the major drawbacks of enzyme based extraction such as longer extraction time and immoderate use of solvents. This review also includes hyphenated intensification techniques by coupling conventional methods with ultrasound, microwave, high pressure and supercritical carbon dioxide. The last section gives an insight on application of enzyme immobilization as a strategy for large scale extraction. Immobilization of enzymes on magnetic nanoparticles can be employed to enhance the operational performance of the system by multiple use of expensive enzymes making them industrially and economically feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Biosensor development in clinical analysis].
Boitieux, J L; Desmet, G; Thomas, D
1985-01-01
The use of enzymes immobilized or as markers formed the subject of more than thousand publications in the field of industry or biomedical applications, during the last five years. Recently, some authors published works concerning immobilization of total microorganisms for catalytic purposes, others use the enzymatic activity for marking molecules involved in immunological analysis processes. Together industrial biotechnology and medical analysis laboratory are interested with the evolution of these procedures involving the activity of immobilized enzymes. Enzyme immobilization allowed the lowering of analysis costs for, in this case, the enzyme can be used several times. We take account of the two main cases which are encountered during utilization of immobilized enzymes of analytical purposes. The enzyme is used directly for the catalysed reaction or it is used as enzymatic marker. These both aspects are developed mainly for the elaboration of enzymatic and immunoenzymatic electrodes and the realization of automatic computerized devices allowing continuous estimation of numerous biological blood parameters. From these two precise examples, glucose and antigen determination, the authors show the evolution of these technologies in the field of immobilized enzymes or captors and the analysis of signals given by these electrodes requiring a computerized treatment. This new technology opens to important potentialities in the analytical field. The automatization of these devices allowing the control in real time, will probably make easier the optimization steps of procedures actually used in the biomedical sphere.
Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk
2012-01-01
A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272
Smart Gun Technology project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D.R.
The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness inmore » models of a smart firearm.« less
Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms.
Thallinger, Barbara; Prasetyo, Endry N; Nyanhongo, Gibson S; Guebitz, Georg M
2013-01-01
With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calvo-Lerma, Joaquim; Martinez-Jimenez, Celia P; Lázaro-Ramos, Juan-Pablo; Andrés, Ana; Crespo-Escobar, Paula; Stav, Erlend; Schauber, Cornelia; Pannese, Lucia; Hulst, Jessie M; Suárez, Lucrecia; Colombo, Carla; Barreto, Celeste; de Boeck, Kris; Ribes-Koninckx, Carmen
2017-03-16
For the optimal management of children with cystic fibrosis, there are currently no efficient tools for the precise adjustment of pancreatic enzyme replacement therapy, either for advice on appropriate dietary intake or for achieving an optimal nutrition status. Therefore, we aim to develop a mobile application that ensures a successful nutritional therapy in children with cystic fibrosis. A multidisciplinary team of 12 partners coordinate their efforts in 9 work packages that cover the entire so-called 'from laboratory to market' approach by means of an original and innovative co-design process. A cohort of 200 patients with cystic fibrosis aged 1-17 years are enrolled. We will develop an innovative, clinically tested mobile health application for patients and health professionals involved in cystic fibrosis management. The mobile application integrates the research knowledge and innovative tools for maximising self-management with the aim of leading to a better nutritional status, quality of life and disease prognosis. Bringing together different and complementary areas of knowledge is fundamental for tackling complex challenges in disease treatment, such as optimal nutrition and pancreatic enzyme replacement therapy in cystic fibrosis. Patients are expected to benefit the most from the outcomes of this innovative project. The project is approved by the Ethics Committee of the coordinating organisation, Hospital Universitari La Fe (Ref: 2014/0484). Scientific findings will be disseminated via journals and conferences addressed to clinicians, food scientists, information and communications technology experts and patients. The specific dissemination working group within the project will address the wide audience communication through the website (http://www.mycyfapp.eu), the social networks and the newsletter. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOT National Transportation Integrated Search
2015-01-01
As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
ERIC Educational Resources Information Center
Pinelo, Manuel; Nielsen, Michael K.; Meyer, Anne S.
2011-01-01
In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments. The exercise shows the impact of enzyme-catalyzed…
2006-07-31
Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro- Substituted Explosives TNT, RDX...Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted Explosives TNT, RDX, and HMX Final Technical Report 5a. CONTRACT NUMBER... Phytoremediation has been shown to provide a cost-effective alternative to classical technologies for cleaning up nitro-substituted explosive
Production of Enzymes from Marine Actinobacteria.
Zhao, X Q; Xu, X N; Chen, L Y
Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.
Ares Project Technology Assessment: Approach and Tools
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Tyson, Richard
2010-01-01
Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.
ERIC Educational Resources Information Center
Wang, Heng
2017-01-01
Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…
The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.
REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA
This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...
Comparing Efficiency Projections (released in AEO2010)
2010-01-01
Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.
Directed evolution: an approach to engineer enzymes.
Kaur, Jasjeet; Sharma, Rohit
2006-01-01
Directed evolution is being used increasingly in industrial and academic laboratories to modify and improve commercially important enzymes. Laboratory evolution is thought to make its biggest contribution in explorations of non-natural functions, by allowing us to distinguish the properties nurtured by evolution. In this review we report the significant advances achieved with respect to the methods of biocatalyst improvement and some critical properties and applications of the modified enzymes. The application of directed evolution has been elaborately demonstrated for protein solubility, stability and catalytic efficiency. Modification of certain enzymes for their application in enantioselective catalysis has also been elucidated. By providing a simple and reliable route to enzyme improvement, directed evolution has emerged as a key technology for enzyme engineering and biocatalysis.
Testing the Effect of Meat Tenderizer on Human Hair: A Class Project for Nonscience Majors.
ERIC Educational Resources Information Center
Jones, Marjorie A.
2003-01-01
Uses a commercially available meat tenderizer for the source of an enzyme that can degrade meat protein and asks students to test the effects of incubating human hair in water with or without this enzyme. Teaches scientific methodology and the importance of experimental controls. (Author/YDS)
Kai, Junhai; Puntambekar, Aniruddha; Santiago, Nelson; Lee, Se Hwan; Sehy, David W; Moore, Victor; Han, Jungyoup; Ahn, Chong H
2012-11-07
In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.
ERIC Educational Resources Information Center
Fischer, Mark A.
2014-01-01
One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
Enzyme-Responsive Delivery of Multiple Proteins with Spatiotemporal Control.
Zhu, Suwei; Nih, Lina; Carmichael, S Thomas; Lu, Yunfeng; Segura, Tatiana
2015-06-24
Orchestrated biological materials such as enzymes and growth factors regulate the growth of tissues and organs. A chirality-controlled, single-protein technology is devised to tailor the spatiotemporally defined delivery of therapeutic proteins in response to natural enzymes present at wound sites. Sustained delivery of one protein and sequential delivery of two proteins are demonstrated for stroke and skin wound healing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1987-06-15
001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS
Cowan, Don A; Fernandez-Lafuente, Roberto
2011-09-10
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.
Space Technology for Rural Education; Brazil Experiment. Project SACI.
ERIC Educational Resources Information Center
Cusack, Mary Ann
An eight-year project--Project SACI--begun in 1969 is introducing technology into Brazil's educational system. It is based upon the hypotheses that technology can deliver education to more students, increase achievement, and provide cost-effective teacher education. To rest these hypotheses, Project SACI aims to bring satellite transmission of…
A Novel Technology to Investigate Students' Understandings of Enzyme Representations
ERIC Educational Resources Information Center
Linenberger, Kimberly J.; Bretz, Stacey Lowery
2012-01-01
Digital pen-and-paper technology, although marketed commercially as a bridge between old and new note-taking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students' learning, specifically their understanding of…
Markham, Jennifer N.; Tao, Ling; Davis, Ryan; ...
2016-08-25
Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markham, Jennifer N.; Tao, Ling; Davis, Ryan
Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less
Enzymatic test kits, generally designed to be handheld and portable, detect the presence of chemical agents, carbamate pesticides, and/or organophosphate pesticides by relying on the reaction of the cholinesterase enzyme. Under normal conditions, the enzyme reacts as expected wi...
This verification test was conducted according to procedures specifiedin the Test/QA Planfor Verification of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kis for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Samples. Deviations to the...
Embedded enzymes catalyse capture
NASA Astrophysics Data System (ADS)
Kentish, Sandra
2018-05-01
Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.
Ramalho, Teodorico C.; DeCastro, Alexandre A.; Silva, Daniela R.; ...
2015-08-26
The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and helpmore » in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalho, Teodorico C.; DeCastro, Alexandre A.; Silva, Daniela R.
The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and helpmore » in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.« less
In-vitro engineering of novel bioactivity in the natural enzymes
NASA Astrophysics Data System (ADS)
Tiwari, Vishvanath
2016-10-01
Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Yang, Xiu-Yan; Xue, Zhi-Yuan; Yang, Ya-Fei; Fang, Yao-Yao; Zhou, Xiang-Lin; Zhao, Liang-Gong; Feng, Shi-Lan
2018-06-01
In this study, complex enzymes combined with ultrasonic extraction technology(MC) were used, to select optimal extraction combinations by single factor and orthogonal test, with Hedysarum polysaccharides yield and content as the comprehensive indexes. The components, physicochemical properties and antioxidant activity of Hedysarum polysaccharides from complex enzyme combined with ultrasonic extraction(HPS-MC)and the Hedysarum polysaccharides from hot water extraction(HPS-R)were analyzed. The results showed that:complex enzymes had significant effect on the yield and content of Hedysarum polysaccharides, and the ultrasonic power could significantly improve the content of Hedysarum polysaccharides. The optimum technological parameters were as follows: complex enzyme ratio 1:1, ultrasonic power 105 W, ultrasonic time 60 min, and enzymatic hydrolysis pH 5, achieving (14.01±0.64)% and (92.45±1.47)% respectively for the yield and content of Polysaccharides. As compared with HPS-R, the molecular weight, absolute viscosity and protein content of HPS-MC were decreased, while the content of uronic acid was increased. In the antioxidant system, the concentration of polysaccharide was within the range of 1-7 g·L⁻¹; the antioxidant activity of HPS-MC was higher than that of HPS-R, and HPS-MC (80%) with the lowest molecular weight showed a significant dose effect relationship with the increase of the experimental concentration. In conclusion, MC is a simple, convenient, economical and environmentally friendly extraction technology, and the Hedysarum polysaccharides extracted by this method have obvious antioxidant activity. Copyright© by the Chinese Pharmaceutical Association.
Dissecting enzyme function with microfluidic-based deep mutational scanning.
Romero, Philip A; Tran, Tuan M; Abate, Adam R
2015-06-09
Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.
Research on the application of BIM technology in the whole life cycle of construction projects
NASA Astrophysics Data System (ADS)
Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE
2018-05-01
BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.
Technology transfer for adaptation
NASA Astrophysics Data System (ADS)
Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia
2014-09-01
Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.
Software Engineering Research/Developer Collaborations in 2004 (C104)
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Markosian, Lawrance
2005-01-01
In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.
Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme
NASA Astrophysics Data System (ADS)
Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.
2018-05-01
Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.
ERIC Educational Resources Information Center
Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa
2013-01-01
Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…
Programmable DNA-Guided Artificial Restriction Enzymes.
Enghiad, Behnam; Zhao, Huimin
2017-05-19
Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.
Technology Infusion Strategy: Beginning with a Pilot Project is the Key.
ERIC Educational Resources Information Center
Ball, John
1996-01-01
Presents an effective way to start a technological revolution in schools by beginning with a single exciting project that incorporates new technologies and then letting interest in the project prompt others to action. (JRH)
Users speak out on technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Mark; Prochaska, Marty; Cromer, Paul
2001-02-25
This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less
Technology Base Research Project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, K.
1985-06-01
The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.
Project Trans(m)it: Creating Dance Collaboratively via Technology--A Best Practices Overview
ERIC Educational Resources Information Center
Weber, Rebecca; Mizanty, Megan; Allen, Lora
2017-01-01
Project Trans(m)it is a collaborative research project among a cohort of intercontinental artists exploring dance creation via technological platforms. This paper seeks to disseminate our practice-led research findings on "best practices" for transferring embodied information via technology, as well as posit how technology will shape and…
Top Level Summary of Technologies
NASA Technical Reports Server (NTRS)
Craig, Douglas, A.
2009-01-01
This document is a chart that reviews the technology of various NASA projects. Included in the chart is the title, a brief description of the technology, the funding status, a statement of the benefits, the date required, how the element connects to the Constellation project architecture, and how critical the technology is to the Constellation project.
ERIC Educational Resources Information Center
Goyette, Sharon Ramos; DeLuca, Jane
2007-01-01
The following project aimed at promoting integrated and long-lasting learning is described for an Immunology course, but it may be adapted to other disciplines. Students were asked to develop and carry out a research project to examine the relationship between immune function and stress. The experiments were required to include the assessment of…
Workplace Factors That Shape Information Technology Project Success
ERIC Educational Resources Information Center
Nguyen, Dan Schilling
2013-01-01
Information technology (IT) project success depends on having a project manager with effective decision making, leadership, and project management skills. Project success also depends on completing the project in a given budget, time, and scope. Despite these critical qualities of a successful project manager, little research has explored the…
Research review for information management
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1988-01-01
The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.
Technology base research project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1988-07-01
The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.
ERIC Educational Resources Information Center
Eichleay, Kristen; Pressman, Harvey
1987-01-01
Exemplary projects which help disabled people use technology (particularly computers) expand their employment opportunities include: Project Entry (Seattle); Georgia Computer Programmer Project (Atlanta); Perkins Project with Industry (Watertown, Massachusetts); Project Byte (Newton Massachusetts); Technology Relevant to You (St. Louis); Special…
Applications of Protein Hydrolysates in Biotechnology
NASA Astrophysics Data System (ADS)
Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.
By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.
ERIC Educational Resources Information Center
School Science Review, 1977
1977-01-01
Listed and described are student A-level biology projects in the following areas: Angiosperm studies (e.g., factors affecting growth of various plants), 7; Bacterial studies, 1; Insect studies, 2; Fish studies, 1; Mammal studies, 1; Human studies, 1; Synecology studies, 2; Environmental studies, 2; and Enzyme studies, 1. (CS)
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2010 CFR
2010-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2012 CFR
2012-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2014 CFR
2014-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2011 CFR
2011-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2013 CFR
2013-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
Collaborative project-based learning: an integrative science and technological education project
NASA Astrophysics Data System (ADS)
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-04-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects.
Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua
2016-09-22
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barriermore » at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.« less
Heux, S; Meynial-Salles, I; O'Donohue, M J; Dumon, C
2015-12-01
White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose. Copyright © 2015 Elsevier Inc. All rights reserved.
Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.
Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena
2016-11-08
Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O -glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher than the control) and the highest concentrations of linalool (20% higher), nerol (20% higher) and geraniol (100% higher), which are the most important terpenes in determining Muscat typicity. Co-immobilized enzymes were highly stable at winemaking conditions, so their reutilization is possible and technologically attractive by reducing the impact of enzyme cost on winemaking cost.
Developing a decision support system for R&D project portfolio selection with interdependencies
NASA Astrophysics Data System (ADS)
Ashrafi, Maryam; Davoudpour, Hamid; Abbassi, Mohammad
2012-11-01
Although investment in research and technology is a promising tool for technology centered organizations through obtaining their objectives, resource constraints make organizations select between their pool of research and technology projects through means of R&D project portfolio selection techniques mitigating corresponding risks and enhancing the overall value of project portfolio.
ERIC Educational Resources Information Center
Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong
2007-01-01
Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.
Space Transportation Technology Workshop: Propulsion Research and Technology
NASA Technical Reports Server (NTRS)
2000-01-01
This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.
Design as a Focus for Technology Integration: Lessons Learned from a PT3 Project
ERIC Educational Resources Information Center
Nelson, Wayne A.; Thomeczek, Melissa
2007-01-01
Plugging in to L.I.T.E.S. project (Leaders in Technology Enhanced Schools--a previously funded Technology Innovation Challenge grant project) at Southern Illinois University Edwardsville (SIUE) has been very successful in its attempts to enhance the technology integration skills of teacher education students, and to improve the capabilities of our…
Geothermal Project Consulting | Geothermal Technologies | NREL
Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects
Develop Improved Materials to Support the Hydrogen Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael C. Martin
The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less
Bioproduction of Chitooligosaccharides: Present and Perspectives
Jung, Woo-Jin; Park, Ro-Dong
2014-01-01
Chitin and chitosan oligosaccharides (COS) have been traditionally obtained by chemical digestion with strong acids. In light of the difficulties associated with these traditional production processes, environmentally compatible and reproducible production alternatives are desirable. Unlike chemical digestion, biodegradation of chitin and chitosan by enzymes or microorganisms does not require the use of toxic chemicals or excessive amounts of wastewater. Enzyme preparations with chitinase, chitosanase, and lysozymeare primarily used to hydrolyze chitin and chitosan. Commercial preparations of cellulase, protease, lipase, and pepsin provide another opportunity for oligosaccharide production. In addition to their hydrolytic activities, the transglycosylation activity of chitinolytic enzymes might be exploited for the synthesis of desired chitin oligomers and their derivatives. Chitin deacetylase is also potentially useful for the preparation of oligosaccharides. Recently, direct production of oligosaccharides from chitin and crab shells by a combination of mechanochemical grinding and enzymatic hydrolysis has been reported. Together with these, other emerging technologies such as direct degradation of chitin from crustacean shells and microbial cell walls, enzymatic synthesis of COS from small building blocks, and protein engineering technology for chitin-related enzymes have been discussed as the most significant challenge for industrial application. PMID:25353253
The production, properties, and applications of thermostable steryl glucosidases.
Aguirre, Andres; Eberhardt, Florencia; Hails, Guillermo; Cerminati, Sebastian; Castelli, María Eugenia; Rasia, Rodolfo M; Paoletti, Luciana; Menzella, Hugo G; Peiru, Salvador
2018-02-21
Extremophilic microorganisms are a rich source of enzymes, the enzymes which can serve as industrial catalysts that can withstand harsh processing conditions. An example is thermostable β-glucosidases that are addressing a challenging problem in the biodiesel industry: removing steryl glucosides (SGs) from biodiesel. Steryl glucosidases (SGases) must be tolerant to heat and solvents in order to function efficiently in biodiesel. The amphipathic nature of SGs also requires enzymes with an affinity for water/solvent interfaces in order to achieve efficient hydrolysis. Additionally, the development of an enzymatic process involving a commodity such as soybean biodiesel must be cost-effective, necessitating an efficient manufacturing process for SGases. This review summarizes the identification of microbial SGases and their applications, discusses biodiesel refining processes and the development of analytical methods for identifying and quantifying SGs in foods and biodiesel, and considers technologies for strain engineering and process optimization for the heterologous production of a SGase from Thermococcus litoralis. All of these technologies might be used for the production of other thermostable enzymes. Structural features of SGases and the feasibility of protein engineering for novel applications are explored.
Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur
2013-01-01
E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.
Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.
Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily
2015-11-24
Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, Daniel; Hager, Lowell; Manoj, Kelath Murali, E-mail: muralimanoj@vit.ac.in
2011-12-02
Highlights: Black-Right-Pointing-Pointer Azide is a well known heme-enzyme active site ligand and inhibitor. Black-Right-Pointing-Pointer Herein, azide is reported to enhance a set of heme-enzyme mediated reactions. Black-Right-Pointing-Pointer This effect is disconnected from native enzyme-azide binding. Black-Right-Pointing-Pointer Azide could enhance heme-enzyme reactions via a newly proposed mechanism. Black-Right-Pointing-Pointer Azide contained in reagents could impact reaction outcomes in redox biochemistry. -- Abstract: Azide is a well-known inhibitor of heme-enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme-enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radicalmore » based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme-enzyme systems and azide.« less
7 CFR 2.37 - Chief Information Officer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... technology program or project. (3) Providing advice and other assistance to the Secretary and other senior... selection of agency Chief Information Officers and agency major information technology system project... recommendations to Agency Heads for the removal or replacement of information technology project managers, when...
Technology Projects for the Classroom [and] Teacher's Guide.
ERIC Educational Resources Information Center
Kaufman, Allan; Flowers, Jim
This book presents 20 projects for technology education students. The emphasis is on problem solving and hands-on learning through projects dealing with a wide variety of technologies/industries, including the following: robotics, information storage and retrieval, communications, transportation, electronics, manufacturing, construction, materials…
Commercialization of a novel fermentation concept.
Mazumdar-Shaw, Kiran; Suryanarayan, Shrikumar
2003-01-01
Fermentation is the core of biotechnology where current methodologies span across technologies based on the use of either solid or liquid substrates. Traditionally, solid substrate fermentation technologies have been the widely practiced in the Far East to manufacture fermented foods such as soya sauce, sake etc. The Western World briefly used solid substrate fermentation for the manufacture of antibiotics and enzymes but rapidly replaced this technology with submerged fermentation which proved to be a superior technology in terms of automation, containment and large volume fermentation. Biocon India developed its enzyme technology based on solid substrate fermentation as a low-cost, low-energy option for the production of specialty enzymes. However, the limitations of applying solid substrate fermentation to more sophisticated biotechnology products as well as large volume fermentations were recognized by Biocon India as early as 1990 and the company embarked on a 8 year research and development program to develop a novel bioreactor capable of conducting solid substrate fermentation with comparable levels of automation and containment as those practiced by submerged fermentation. In addition, the novel technology enabled fed-batch fermentation, in situ extraction and other enabling features that will be discussed in this article. The novel bioreactor was christened the "PlaFractor" (pronounced play-fractor). The next level of research on this novel technology is now focused on addressing large volume fermentation. This article traces the evolution of Biocon India's original solid substrate fermentation to the PlaFractor technology and provides details of the scale-up and commercialization processes that were involved therein. What is also apparent in the article is Biocon India's commercially focused research programs and the perceived need to be globally competitive through low costs of innovation that address, at all times, processes and technologies that exhibit high degrees of conformance to the international standards of regulatory and good manufacturing practice.
Influences of Government Championship on the Technology Innovation Process at the Project-level
NASA Astrophysics Data System (ADS)
Yue, Xin
Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.
A study of over production and enhanced secretion of enzymes. Quarterly report 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashek, W.V.
1992-12-28
The current project is concerned with the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. The project is divided into two segments: over-production of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electron microscopical techniques. The former approach employs recombinant DNA procedures, ligation of appropriate nuclease generated DNA fragments into a vector and the subsequent transformation of Escherichia coli to yield E. coli harboring a C. versicolor DNA insert. The biochemistry/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO inhibitors to elevate C.versicolor`s ability to synthesizemore » and secrete lignocellulosic enzymes. In this connection, cell fractionation/kinetic analysis, TEM immunoelectron microscopic localization and TEM substrate localization of PPO are being employed to assess the route of secretion. Both approaches will culminate in the batch culture of either E. coli or C. versicolor, in a fermentor with the subsequent development of rapid isolation and purification procedures to yield elevated quantities of pure lignocellulosic enzymes. During the past year, research effort were directed toward determining the route of polyphenol oxidase (PPO) secretion by the wood-decay fungus, Coriolus versicolor. In addition, research activities were continued to over-produce and to purify PPO as well as define the time-dependent intra- and extra-cellular appearances of C. versicolor ligninases and cellulases.« less
Factors that Impact Software Project Success in Offshore Information Technology (IT) Companies
ERIC Educational Resources Information Center
Edara, Venkatarao
2011-01-01
Information technology (IT) projects are unsuccessful at a rate of 65% to 75% per year, in spite of employing the latest technologies and training employees. Although many studies have been conducted on project successes in U.S. companies, there is a lack of research studying the impact of various factors on software project success in offshore IT…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.
Nuclear rocket propulsion technology - A joint NASA/DOE project
NASA Technical Reports Server (NTRS)
Clark, John S.
1991-01-01
NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
Initiating the 2002 Mars Science Laboratory (MSL) Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.
14 CFR 1216.305 - Criteria for actions requiring environmental assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... spacecraft development and flight projects in space and terrestrial applications. (3) Specific experimental projects in aeronautics and space technology and energy technology applications. (4) Development and... technology applications (e.g., Research and Technology Base, Systems Technology Programs) other than...
Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification
NASA Astrophysics Data System (ADS)
Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo
An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.
Airframe Research and Technology for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Merski, N. Ronald; Glass, Christopher E.
2002-01-01
The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.
Aeronautical technology 2000: A projection of advanced vehicle concepts
NASA Technical Reports Server (NTRS)
1985-01-01
The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.
Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.
Nadar, Shamraja S; Rathod, Virendra K
2017-08-22
Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.
Changing Technology and Work: Northern Telecom. CAW Technology Project.
ERIC Educational Resources Information Center
Robertson, David; Wareham, Jeff
A project to examine the implications of technological change at Northern Telecom consisted of two major components: a technological survey and case study research. A questionnaire that contained more than 90 questions on technological change was distributed through local union technology committee meetings in Brampton, London, Belleville, and…
A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease
Farnham, Kate R.; Dube, Danielle H.
2015-01-01
Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574
A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.
Farnham, Kate R; Dube, Danielle H
2015-01-01
Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. © 2015 The International Union of Biochemistry and Molecular Biology.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
ERIC Educational Resources Information Center
Howell, Byron Winter
2010-01-01
The purpose of this quantitative study was to assess the relationship between ethical project management and information technology (IT) project success. The success of IT projects is important for organizational success, but the rate of IT projects is historically low, costing billions of dollars annually. Using four key ethical variables…
NASA Technical Reports Server (NTRS)
Strayer, Richard F.
1993-01-01
Biomass processing at the Kennedy Space Center CELSS breadboard project has focused on the evaluation of breadboard-scale enzymatic hydrolysis of wheat residue cellulose (25%, w/w). Five replicate runs of cellulase production by Trichoderma reesei (QM9414) and enzymatic hydrolysis of residue cellulose were completed. Enzymes were produced in 1 0 days (5 L, 25 g (dry weight) residue). Cellulose hydrolysis (12 L, 50 g (dry weight) residue) using these enzymes produced 5.5 to 6.0 g glucose liter(exp -1) in 7 days. Cellulose conversion efficiency was 29%. These processes are feasible technically on a breadboard scale, but would only increase the edible wheat yield 10%.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).
Gerlt, John A; Bouvier, Jason T; Davidson, Daniel B; Imker, Heidi J; Sadkhin, Boris; Slater, David R; Whalen, Katie L
2015-08-01
The Enzyme Function Initiative, an NIH/NIGMS-supported Large-Scale Collaborative Project (EFI; U54GM093342; http://enzymefunction.org/), is focused on devising and disseminating bioinformatics and computational tools as well as experimental strategies for the prediction and assignment of functions (in vitro activities and in vivo physiological/metabolic roles) to uncharacterized enzymes discovered in genome projects. Protein sequence similarity networks (SSNs) are visually powerful tools for analyzing sequence relationships in protein families (H.J. Atkinson, J.H. Morris, T.E. Ferrin, and P.C. Babbitt, PLoS One 2009, 4, e4345). However, the members of the biological/biomedical community have not had access to the capability to generate SSNs for their "favorite" protein families. In this article we announce the EFI-EST (Enzyme Function Initiative-Enzyme Similarity Tool) web tool (http://efi.igb.illinois.edu/efi-est/) that is available without cost for the automated generation of SSNs by the community. The tool can create SSNs for the "closest neighbors" of a user-supplied protein sequence from the UniProt database (Option A) or of members of any user-supplied Pfam and/or InterPro family (Option B). We provide an introduction to SSNs, a description of EFI-EST, and a demonstration of the use of EFI-EST to explore sequence-function space in the OMP decarboxylase superfamily (PF00215). This article is designed as a tutorial that will allow members of the community to use the EFI-EST web tool for exploring sequence/function space in protein families. Copyright © 2015 Elsevier B.V. All rights reserved.
Smart and intelligent sensor payload project
2009-04-01
Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).
Compartmentalization - A Prerequisite for Maintaining and Changing an Identity.
Rottmann, Philipp; Ward, Thomas; Panke, Sven
2016-01-01
The chemical manipulation of DNA is much more convenient than the manipulation of the bioproducts, such as enzymes, that it encodes. The optimization of bioproducts requires cycles of diversification of DNA followed by read-out of the information into the bioproduct. Maintaining the link between the information - the genotype - and the properties of the bioproduct - the phenotype - through some form of compartmentalization is therefore an essential aspect in directed evolution. While the ideal compartment is a biological cell, many projects involving more radical changes in the bioproduct, such as the introduction of novel cofactors, may not be suitable for expression of the information in cells, and alternative in vitro methods have to be applied. Consequently, the possibility to produce simple and advanced micro compartments at high rates and to combine them with the ability to translate the information into proteins represents a unique opportunity to explore demanding enzyme engineering projects that require the evaluation of at least hundreds of thousands of enzyme variants over multiple generations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.L.
1998-07-01
The project seeks to understand the biological and chemical processes involved in the secretion of the enzyme polyphenol oxidase (PPO) by the hyphae, the basic unit of the filamentous fungus Coriolus versicolor. These studies are made to determine rational strategies for enhanced secretion of PPO, both with the use of recombinant DNA techniques and without. This effort focuses on recombinant DNA techniques to enhance enzyme production. The major thrust of this project was two-fold: to mass produce C. versicolor tyrosinase (polyphenol oxidase) by genetic engineering as well as cultural manipulations; and to utilize PPO as a biocatalyst in the processingmore » of lignocellulose as a renewable energy resource. In this study, the assessment of genomic and cDNA recombinant clones with regards to the overproduction of PPO continued. Further, immunocytochemical techniques were employed to assess the mechanism(s) involved in the secretion of PPO by the hyphae. Also, factors influencing PPO secretion were examined.« less
Development of sanitation technologies in African context : how could we make it more sustainable?
NASA Astrophysics Data System (ADS)
Dakouré, M. S.; Traoré, M. B.; Sossou, S. K.; Maïga, A. H.
2017-03-01
Access to sanitation technologies remains one of the biggest challenges in sub-Saharan Africa. To overcome this gap, a sanitation project called “Ameli-EAUR” translated from French as improvement of water and sanitation in urban and rural areas, was implemented in Burkina Faso for 5 years (2010-2016). The technologies from the project were designed on the basis of agro-sanitation concept, leading to package containing a composting toilet, a grey water treatment facility and a set of urine collection and treatment. The study aimed to evaluate of Ameli-EAUR project, one year after the end, and identify some key factors of sustainability of technologies. As methodology, a survey and a technical diagnostic of implemented technologies were done. The results showed that, the pilot families stopped using all the technologies one year after the end of the project. However, two main lessons can be learnt: (1) in term of efficiency and effectiveness of the project the technology of composting toilet was not robust enough, leading to a rapid abandonment after the project (2) in term of impact and sustainability, the economic incentive of the resource oriented sanitation concept was very weak compared to the needed workload. The technologies development in this kind of project should be carried on and associated with a more inclusive system driven by economic incentive.
ERIC Educational Resources Information Center
Williamson, David J.
2011-01-01
The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…
2016-03-01
performance in an enzyme-linked immunosorbent assay ( ELISA ), with little regard for quantification of the full spectrum of variables affecting antibody...Program (ATP) Quality MS2 coat protein (MS2CP) Enzyme-linked immunosorbent assay ( ELISA ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...5 2.7 ELISA ................................................................................................................5
Clean Coal Technology Demonstration Program: Program Update 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assistant Secretary for Fossil Energy
1999-03-01
Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.
Wireless Technology in the Library: The RIT Experience: Overview of the Project.
ERIC Educational Resources Information Center
Pitkin, Pat
2001-01-01
Provides an overview of a project at RIT (Rochester Institute of Technology) that experimented with wireless technology, including laptop computers that circulate within the library building. Discusses project requirements, including ease of use, low maintenance, and low cost; motivation, including mobility; implementation; and benefits to the…
An Examination of the Determinants of Top Management Support of Information Technology Projects
ERIC Educational Resources Information Center
Mahoney, Michael L.
2011-01-01
Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…
The Early Childhood Interactive Technology Literacy Curriculum Project: A Final Report.
ERIC Educational Resources Information Center
Hutinger, Patricia; Robinsosn, Linda; Schneider, Carol; Johanson, Joyce
This final report describes the activities and outcomes of the Interactive Technology Literacy Curriculum (ITLC) project. This federally funded 5-year model demonstration project was designed to advance the availability, quality, use and effectiveness of computer technology in addressing the acquisition of emergent literacy among young children…
Collaborative Project-Based Learning: An Integrative Science and Technological Education Project
ERIC Educational Resources Information Center
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-01-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
Advanced Refrigerator/Freezer Technology Development. Technology Assessment
NASA Technical Reports Server (NTRS)
Gaseor, Thomas; Hunter, Rick; Hamill, Doris
1996-01-01
The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.
Bioinspired catalytic materials for energy-relevant conversions
NASA Astrophysics Data System (ADS)
Artero, Vincent
2017-09-01
The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.
Advanced structures technology and aircraft safety
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-08-01
The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of amore » variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.« less
Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates
NASA Astrophysics Data System (ADS)
Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe
2013-07-01
Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.
Modification of enzymes by use of high-pressure homogenization.
Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi
2018-07-01
High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
Enzyme reactor design under thermal inactivation.
Illanes, Andrés; Wilson, Lorena
2003-01-01
Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.
Hydrogen tomorrow: Demands and technology requirements
NASA Technical Reports Server (NTRS)
1975-01-01
National needs for hydrogen are projected and the technologies of production, handling, and utilization are evaluated. Research and technology activities required to meet the projected needs are determined.
7 CFR 2.24 - Assistant Secretary for Administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... determining whether to continue, modify, or terminate an information technology program or project. (iii..., computer conferencing, televideo technologies, and other applications of office automation technology which... information technology system project managers in accordance with OMB policies. (D) Providing recommendations...
This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne
2005-01-01
When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.
High pressure processing of fresh seafoods.
Simpson, B K
1998-01-01
Crude proteolytic enzyme extracts were prepared from the muscle tissues of two fish species, bluefish and sheephead, and subjected to high hydrostatic pressure treatments (from 1,000-3,000 atm), and monitored for residual activity for cathepsin C, collagenase, chymotrypsin-like and trypsin-like enzymes versus homologous enzymes from bovine. The fish enzymes were more sensitive to hydrostatic pressure than the mammalian enzymes. The extent of enzyme inactivation achieved depended on both the amount of pressure applied, the duration of pressurization, and on the source material. Pressure treatment of fresh fish flesh formed products whose color deteriorated (cooked appearance) with increasing pressure as well as holding time. Application of pressure also improved tissue firmness or strength of fresh fish up to 2,000 atm and a holding time of 10 min, beyond which texture generally deteriorated. The combined use of pressure in combination with the broad spectrum protease inhibitor, alpha 2-macroglobulin, enhanced the capacity of the hydrostatic pressure technology to achieve a more lasting inactivation of endogenous enzymes to form stable fish gels.
Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A
2015-03-18
Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrington, J.D.; Clark, D.S.
1989-01-01
This book presents recent advances in catalytic science and biotechnology. The chapters illustrate how many of the key challenges in biotechnology can be addressed by bringing together traditionally separate disciplines within chemistry and biology. The authors focus on emerging enabling technologies at the interfaces of catalysis and biology that will provide new opportunities for the chemicals industries. Key aspects to be presented within this major theme of catalysis and biotechnology are biomimetics and hybrid catalysts, biocatalytic applications of computers and expert systems, enzyme solid-state structure and immobilization, enzyme structure-activity relationships, and the use of enzymes under novel conditions.
NASA Astrophysics Data System (ADS)
Venkrbec, Vaclav; Bittnerova, Lucie
2017-12-01
Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.
Information Technology Team Projects in Higher Education: An International Viewpoint
ERIC Educational Resources Information Center
Lynch, Kathy; Heinze, Aleksej; Scott, Elsje
2007-01-01
It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…
Projecting technological change
Kenneth E. Skog
2007-01-01
Improving efficiency in the use of both wood and nonwood inputs has characterized the US forest sector over the last 50 years. This chapter explores methods used to reflect this pattern of technological change and others in the Timber Assessment Projection System models. The development and use of three types of technology projection methods are explained: (1)...
E-Learning and the Use of New Technologies in the "Kolumbus-Kids" Project in Germany
ERIC Educational Resources Information Center
Wegner, Claas; Homann, Wiebke; Strehlke, Friederike; Borgmann, Annika
2014-01-01
This article presents the science project "Kolumbus-Kids" as an example of the innovative use of "E-Learning" and other "new technologies" to advance student learning and new-media education. The project benefits from various technology-based education strategies and E-Learning scenarios which are employed during the…
ERIC Educational Resources Information Center
Yu, Wei
2013-01-01
This dissertation applied the quantitative approach to the data gathered from online survey questionnaires regarding the three objects: Information Technology (IT) Portfolio Management, IT-Business Alignment, and IT Project Deliverables. By studying this data, this dissertation uncovered the underlying relationships that exist between the…
The AECT HistoryMakers Project: Conversations with Leaders in Educational Technology
ERIC Educational Resources Information Center
Lockee, Barbara B.; Song, Kibong; Li, Wei
2014-01-01
The early beginnings and evolution of the field of educational technology (ET) have been documented by various scholars in the field. Recently, another form of historical documentation has been undertaken through a project of the Association for Educational Communications and Technology (AECT). The AECT HistoryMakers Project is a collaborative…
ERIC Educational Resources Information Center
Romeu, Jorge Luis
2008-01-01
This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…
NASA technology utilization applications. [transfer of medical sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module
ERIC Educational Resources Information Center
Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick
2017-01-01
Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2012 CFR
2012-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...
Protein Engineering Towards Natural Product Synthesis and Diversification
Zabala, Angelica O.; Cacho, Ralph A.; Tang, Yi
2014-01-01
A dazzling array of enzymes is used by nature in making structurally complex natural products. These enzymes constitute a molecular toolbox that may be used in the construction and fine-tuning of pharmaceutically active molecules. Aided by technological advancements in protein engineering, it is now possible to tailor the activities and specificities of these enzymes as biocatalysts in the production of both natural products and their unnatural derivatives. These efforts are crucial in drug discovery and development, where there is a continuous quest for more potent agents. Both rational and random evolution techniques have been utilized in engineering these enzymes. This review will highlight some examples from several large families of natural products. PMID:22006344
Building Technological Capability within Satellite Programs in Developing Countries
NASA Astrophysics Data System (ADS)
Wood, Danielle Renee
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.
Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T
2017-08-01
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
An Innovative Project in Educational Technology: The Panama-Venezuela Project.
ERIC Educational Resources Information Center
Rojas, Alicia Mabel
1980-01-01
Describes a project which is being implemented in the field of educational technology in Panama and Venezuela. The project emphasizes inservice training of a cadre of professionals who will direct efforts to identify and resolve significant problems in education. (Author/CHC)
Information Technology Project Processes: Understanding the Barriers to Improvement and Adoption
ERIC Educational Resources Information Center
Williams, Bernard L.
2009-01-01
Every year, organizations lose millions of dollars due to IT (Information Technology) project failures. Over time, organizations have developed processes and procedures to help reduce the incidence of challenged IT projects. Research has shown that IT project processes can work to help reduce the number of challenged projects. The research in this…
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Bellamy, Marvin; DeSantis, Charlie; Hess, John; Pattok, Tracy; Quintero, Andrew; Silver, R.
1996-01-01
ESS 2000 has the vision of enhancing the knowledge necessary to implement cost-effective, leading-edge ESS technologies and procedures in order to increase U.S. electronics industry competitiveness. This paper defines EES and discusses the factors driving the project, the objectives of the project, its participants, the three phases of the project, the technologies involved, and project deliverables.
A Synthesis and Survey of Critical Success Factors for Computer Technology Projects
ERIC Educational Resources Information Center
Baker, Ross A.
2012-01-01
The author investigated the existence of critical success factors for computer technology projects. Current research literature and a survey of experienced project managers indicate that there are 23 critical success factors (CSFs) that correlate with project success. The survey gathered an assessment of project success and the degree to which…
Electric energy savings from new technologies. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.
1986-09-01
Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In themore » Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.« less
ERIC Educational Resources Information Center
School Science Review, 1989
1989-01-01
Twenty-two activities are presented. Topics include: acid rain, microcomputers, fish farming, school-industry research projects, enzymes, equilibrium, assessment, science equipment, logic, Archimedes principle, electronics, optics, and statistics. (CW)
"Trojan Horse" strategy for deconstruction of biomass for biofuels production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann
2008-08-01
Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze themore » cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.« less
Characterization of lignocellulolytic enzymes from white-rot fungi.
Manavalan, Tamilvendan; Manavalan, Arulmani; Heese, Klaus
2015-04-01
The development of alternative energy sources by applying lignocellulose-based biofuel technology is critically important because of the depletion of fossil fuel resources, rising fossil fuel prices, security issues regarding the fossil fuel supply, and environmental issues. White-rot fungi have received much attention in recent years for their valuable enzyme systems that effectively degrade lignocellulosic biomasses. These fungi have powerful extracellular oxidative and hydrolytic enzymes that degrade lignin and cellulose biopolymers, respectively. Lignocellulosic biomasses from either agricultural or forestry wastes are abundant, low-cost feedstock alternatives in nature but require hydrolysis into simple sugars for biofuel production. This review provides a complete overview of the different lignocellulose biomasses and their chemical compositions. In addition, a complete list of the white-rot fungi-derived lignocellulolytic enzymes that have been identified and their molecular structures, mechanism of action in lignocellulose hydrolysis, and biochemical properties is summarized in detail. These enzymes include ligninolytic enzymes (laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase) and cellulolytic enzymes (endo-glucanase, cellobiohydrolase, and beta-glucosidase). The use of these fungi for low-cost lignocellulolytic enzyme production might be attractive for biofuel production.
Sirisha, V L; Jain, Ankita; Jain, Amita
Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.
Immobilization, stabilization and patterning techniques for enzyme based sensor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flounders, A.W.; Carichner, S.C.; Singh, A.K.
1997-01-01
Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less
Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.
Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul
2016-07-01
Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.
Advanced component technologies for energy-efficient turbofan engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1980-01-01
The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.
Europe Report, Science and Technology.
1986-06-18
amylase, heat stable alpha-amylase and glucoamylase for processing starch as a substrate for 71 glucose and its isomerization to fructose using an...continuous column process under laboratory conditions. We have demonstrated that these preparations isomerize glucose syrups up to 42 percent, converting...food industry is the leading consumer of microbial enzymes devouring about 80 percent of the world production of enzymes -- glucose isomerase, alpha
Brummer, Vladimir; Skryja, Pavel; Jurena, Tomas; Hlavacek, Viliam; Stehlik, Petr
2014-10-01
Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates-filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.
DOT National Transportation Integrated Search
2013-08-01
As mobile technology becomes widely available and affordable, transportation agencies can use this technology to : streamline operations involved within project inspection. This research, conducted in two phases, identified : opportunities for proces...
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... are unrelated to the grant project. (b) Unproven technology. Only projects that utilize technology with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.
ERIC Educational Resources Information Center
Schmitz, Kurt W.
2013-01-01
Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…
ERIC Educational Resources Information Center
Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint
Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…
NASA Technical Reports Server (NTRS)
Thomas, Leann; Utley, Dawn
2006-01-01
While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.
NASA Technical Reports Server (NTRS)
Bush, Harold
1991-01-01
Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.
Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne
2015-03-31
This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).
McIntosh Unit 4 PCFB demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, A.M.; Dryden, R.J.; Morehead, H.T.
1997-12-31
The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less
Technology Education Professional Enhancement Project
NASA Technical Reports Server (NTRS)
Hughes, Thomas A., Jr.
1996-01-01
The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.
Gupta, Sanjeev K; Shukla, Pratyoosh
2016-12-01
Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.
Airspace Technology Demonstration 3 (ATD-3): Applied Traffic Flow Management Project Overview
NASA Technical Reports Server (NTRS)
Gong, Chester
2016-01-01
ATD-3 Project Overview for 3rd Joint Workshop for KAIA-KARI - NASA ATM Research Collaboration. This presentation gives a high level description of the ATD-3 project and related technologies. These technologies include Multi-Flight Common Routes (MFCR), Traffic Aware Strategic Aircrew Requests (TASAR) and Dynamic Routes for Arrivals in Weather (DRAW).
Solar Thermal Power Systems parabolic dish project
NASA Technical Reports Server (NTRS)
Truscello, V. C.
1981-01-01
The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.
Experience in Use of Project Method during Technology Lessons in Secondary Schools of the USA
ERIC Educational Resources Information Center
Sheludko, Inna
2015-01-01
The article examines the opportunities and prospects for the use of experience of project method during "technology lessons" in US secondary schools, since the value of project technology implementation experience into the educational process in the USA for ensuring holistic development of children, preparing them for adult life, in…
Telescope technology for space-borne submillimeter astronomy
NASA Technical Reports Server (NTRS)
Lehman, David H.; Helou, George
1990-01-01
The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
Walz-Flannigan, Alisa; Kotsenas, Amy L; Hein, Shelly; Persons, Kenneth R; Langer, Steve G; Erickson, Bradley J; Tjelta, Jason A; Luetmer, Patrick H
2015-04-01
This article illustrates the importance of radiologist engagement in the successful implementation of radiology-information technology (IT) projects through the example of establishing a mobile image viewing solution for health care professionals. With an understanding of the types of decisions that benefit from radiologist input, this article outlines an overall project framework to provide a context for how radiologists might engage in the project cycle.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,
NASA Astrophysics Data System (ADS)
Shorikov, A. F.; Butsenko, E. V.
2017-10-01
This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.
ERIC Educational Resources Information Center
Hosford, Bryan
2017-01-01
Organizations continue to rely on information technology (IT) as a foundational element, yet poor IT project success continues to impact growth and innovation. Research into IT project success is widespread yet has focused on high-level project management attributes, not specific IT solutions. A review of the research literature revealed that the…
The Role of the Project Management Office on Information Technology Project Success
ERIC Educational Resources Information Center
Stewart, Jacob S.
2010-01-01
The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. Assessing critical success factors is another…
Manufacturing Methods and Technology (MMT) project execution report
NASA Astrophysics Data System (ADS)
Swim, P. A.
1982-10-01
This document is a summary compilation of the manufacturing methods and technology program project status reports (RCS DRCMT-301) submitted to IBEA from DARCOM major Army subcommands and project managers. Each page of the computerized section lists project number, title, status, funding, and projected completion date. Summary pages give information relating to the overall DARCOM program.
ERIC Educational Resources Information Center
McKay, Donald S., II
2012-01-01
Knowledge gained from completed information technology (IT) projects was not often shared with emerging project teams. Learning lessons from other project teams was not pursued because people lack time, do not see value in learning, fear a potentially painful process, and had concerns that sharing knowledge will hurt their career. Leaders could…
Teachers, Technology, and Policy: What Have We Learned?
ERIC Educational Resources Information Center
Sanchez, N. A.; Nichols, P.
This paper summarizes Technology Integration Project efforts in four urban elementary schools that were involved in Professional Development Schools (PDSs). Project activities centered on: supporting the rooting of technology integration into school culture and teachers' efforts to integrate technology into their classrooms and strengthening the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varanasi, Sasidhar; Relue, Patricia
Economic bioethanol production is critically dependent upon the ability to convert both the hexose (C6) and pentose (C5) sugars resulting from cellulose and hemicellulose. C5 sugars are not readily fermentable by native Saccharomyces cerevisiae. Genetically Modified Organisms (GMOs) are designed to ferment xylose, but their stability, ethanol yield, environmental impact, and survival under conditions of industrial fermentation are unproven. In this project, we developed a novel approach for efficient fermentation of both C5 and C6 sugars using native S. Cerevisiae by exploiting its ability to produce ethanol from xylulose - the keto-isomer of xylose. While the isomerization of xylose tomore » xylulose can be accomplished via commercially (and cheaply) available Xylose Isomerase (XI) (Sweetzyme™), this conversion has an extremely unfavorable equilibrium (xylose:xylose is about 5:1). To address this, we developed two alternate strategies. In the first, the two enzymes XI and urease are coimmobilized on solid support particles to enable complete isomerization of xylose to xylulose under pH conditions suitable for fermentation, in a simultaneous-isomerization-fermentation (SIF) mode. The ability of our technology to conduct isomerization of xylose under pH conditions suitable for both saccharification and fermentation opens the possibility of SSF with native yeasts for the first time. Herein, we performed specific research tasks for implementation of our technology in several modes of operation, including simultaneous-isomerization-and-fermentation (SIF), simultaneous-saccharification-and-isomerization (SSI) followed by fermentation, and SSF mode with the biomass feedstock poplar. The projected economics of our process are very favorable in comparison to the costs associated with engineering, licensing and propagating GMOs. This novel fermentation technology is readily accessible to rural farming economies for implementation in cellulosic ethanol production facilities.« less
Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A
1990-01-01
Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.
Application of BIM technology in construction bidding
NASA Astrophysics Data System (ADS)
wei, Li
2017-12-01
bidding is a very important step of construction project. For the owners, bidding is the key link of selecting the best construction plan and saving the project cost to the maximum extent. For Construction Corporation, it is the key to show their construction technology which can improve the probability of winning the bid. this paper researches on the application of BIM technology in bidding process of construction project in detail, and discussesthe application of BIM technology in construction field comprehensively.
Touch and Go: COMET Project Brings Multitouch Technology to the Military
2011-05-01
Defense AT&L: May–June 2011 28 Touch and Go COMET Project Brings Multitouch Technology to the Military Claire Heininger Report Documentation...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Touch and Go. COMET Project Brings Multitouch Technology to the Military 5a...research agreement. Now, just 2 years later, the same team of engineers and developers are on the cutting edge of multitouch technology for the armed
78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... NASA Robotics Technologies project and NASA's work with the National Robotics Initiative; and an annual... Sail project --Update on NASA's Robotic Technologies and the National Robotics Initiative It is...
Terrestrial applications from space technology
NASA Technical Reports Server (NTRS)
Clarks, H.
1985-01-01
NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.
Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.
Integrating First-Year Technology and Finite Mathematics Courses
ERIC Educational Resources Information Center
Shafii-Mousavi, Morteza; Kochanowski, Paul
2006-01-01
This paper describes an interdisciplinary project-based mathematics course linked to a computer technology course. The linkage encourages an appreciation of mathematics and technology as students see an immediate use for these skills in completing actual real-world projects. Linking mathematics and technology integrates subjects taught in…
Bate, Paul; Warwicker, Jim
2004-07-02
Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.
Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project
NASA Technical Reports Server (NTRS)
Ghassemieh, Shakib M.
2014-01-01
This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.
An overview of the Communications Technology Satellite (CTS) project
NASA Technical Reports Server (NTRS)
Rapp, W.; Ogden, D.; Wright, D.
1982-01-01
The Communications Technology Satellite (CTS) project is reviewed. A technical description of the CTS spacecraft and its cognate hardware and operations is included. A historical treatise of the CTS project is provided. Also presented is an overview of the CTS experiments and demonstrations conducted during the course of the project.
Biocatalysis for the application of CO2 as a chemical feedstock.
Alissandratos, Apostolos; Easton, Christopher J
2015-01-01
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
The challenges of sequencing by synthesis.
Fuller, Carl W; Middendorf, Lyle R; Benner, Steven A; Church, George M; Harris, Timothy; Huang, Xiaohua; Jovanovich, Stevan B; Nelson, John R; Schloss, Jeffery A; Schwartz, David C; Vezenov, Dmitri V
2009-11-01
DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.
A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase
ERIC Educational Resources Information Center
Witherow, D. Scott
2016-01-01
This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…
Four new type I restriction enzymes identified in Escherichia coli clinical isolates
Kasarjian, Julie K. A.; Kodama, Yoshiaki; Iida, Masatake; Matsuda, Katsura; Ryu, Junichi
2005-01-01
Using a plasmid transformation method and the RM search computer program, four type I restriction enzymes with new recognition sites and two isoschizomers (EcoBI and Eco377I) were identified in a collection of clinical Escherichia coli isolates. These new enzymes were designated Eco394I, Eco826I, Eco851I and Eco912I. Their recognition sequences were determined to be GAC(5N)RTAAY, GCA(6N)CTGA, GTCA(6N)TGAY and CAC(5N)TGGC, respectively. A methylation sensitivity assay, using various synthetic oligonucleotides, was used to identify the adenines that prevent cleavage when methylated (underlined). These results suggest that type I enzymes are abundant in E.coli and many other bacteria, as has been inferred from bacterial genome sequencing projects. PMID:16040596
NASA Astrophysics Data System (ADS)
Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan
2016-04-01
Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).
Projection displays and MEMS: timely convergence for a bright future
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1995-09-01
Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
Projected progress in the engineering state-of-the-art. [for aerospace
NASA Technical Reports Server (NTRS)
Nicks, O. W.
1978-01-01
Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.
Human genome project: revolutionizing biology through leveraging technology
NASA Astrophysics Data System (ADS)
Dahl, Carol A.; Strausberg, Robert L.
1996-04-01
The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.
Professional development in optics and photonics education
NASA Astrophysics Data System (ADS)
Donnelly, Judith F.; Hanes, Fenna; Massa, Nicholas J.; Washburn, Barbara R.
2002-05-01
In recent years, several New England projects have promoted professional development and curriculum design in optics and photonics. Funded in part by the Advanced Technological Education (ATE) program of the National Science Foundation (NSF), these projects have prepared middle and high school teachers, college faculty and career counselors from more than 100 New England institutions to introduce fiber optics, telecommunications and photonics technology education. Four of these projects will be discussed here: (1) The New England Board of Higher Education's (NEBHE) Fiber Optics Technology Education Project, (FOTEP) was designed to teach fiber optics theory and to provide laboratory experiences at the secondary and postsecondary levels. (2) Springfield Technical Community College's Northeast Center for Telecommunications Technologies (NCTT) is developing curricula and instructional materials in lightwave, networking and wireless telecommunications technologies. (3) The Harvard-Smithsonian Center for Astrophysics project ComTech developed a 12-week, hands-on curriculum and teaching strategies for middle and high school science and technology teachers in telecommunications and focused on optical communication (fiber optics). (4) NEBHE's project PHOTON is preparing middle, secondary and postsecondary instructors to introduce theory and laboratory experiences in photonics, including geometric and wave optics as well as principles of lasers and photonics applications.
Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin
2017-09-14
Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.
Earthwork haul-truck cycle-time monitoring : a case study.
DOT National Transportation Integrated Search
2016-03-01
Recent developments in autonomous technologies have motivated practitioners to adopt new technologies in highway and : earthwork construction projects. This project set out to (1) identify new and emerging autonomous earthwork technologies and : (2) ...
Advanced Avionics and Processor Systems for Space and Lunar Exploration
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.
2009-01-01
NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.
Enzyme immobilisation in biocatalysis: why, what and how.
Sheldon, Roger A; van Pelt, Sander
2013-08-07
In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
2016-08-01
platforms. 15. SUBJECT TERMS Antibody Antibody Technology Program (ATP) Quality Enzyme-linked immunosorbent assay ( ELISA ) Biosurveillance Single-chain...2.6 Thermal Stress Test............................................................................................4 2.7 ELISA ...3.5 ELISA Results .................................................................................................11 3.6 SPR Results
Prostate Cancer Prevention Through Induction of Phase 2 Enzymes
2001-04-01
enzymes. During our Phase I Award, we identified sulforaphane as the most potent inducer of carcinogen defenses in the prostate cell. We have...characterized global effects of sulforaphane in prostate cancer cell lines using cDNA microarray technology that allows large-scale determination of changes...of sulforaphane ) and decreased risk of prostate cancer. These findings argue strongly for a preventive intervention trial involving supplementation
Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight
NASA Technical Reports Server (NTRS)
Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin
2014-01-01
The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.
Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean
2014-01-01
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.
How to Fund Technology Projects.
ERIC Educational Resources Information Center
Schnitzer, Denise K.
1995-01-01
The answer to financing technology projects may lie in developing grant proposals to submit to federal, state, and/or private organizations. The first step is to identify a need stemming from goals and objectives established in the school or district technology plan. Providing a well-researched rationale for purchasing and using technology is…
Strengthening 4-H Program Communication through Technology
ERIC Educational Resources Information Center
Robideau, Kari; Santl, Karyn
2011-01-01
Advances in technology are transforming how youth and parents interact with programs. The Strengthening 4-H Communication through Technology project was implemented in eight county 4-H programs in Northwest Minnesota. This article outlines the intentional process used to effectively implement technology in program planning. The project includes:…
ERIC Educational Resources Information Center
McCormack, Sherry L.; Zieman, Stuart
2017-01-01
Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... two phases: (1) Development and (2) research on effectiveness. Abstracts of projects funded under... approaches. Phase 2 projects must subject technology-based approaches to rigorous field-based research to... scientifically rigorous research or theory, that demonstrates the potential effectiveness of the technology-based...
Integrated Network Testbed for Energy Grid Research and Technology
Network Testbed for Energy Grid Research and Technology Experimentation Project Under the Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, NREL and partners completed five successful technology demonstrations at the ESIF. INTEGRATE is a $6.5-million, cost
Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes
2015-01-01
Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.
FHWA bicycle-pedestrian count technology pilot project : summary report
DOT National Transportation Integrated Search
2016-12-01
This report summarizes the Federal Highway Administration (FHWA)s one-year Bicycle-Pedestrian Count Technology Pilot Project. The purpose of the pilot project was to increase the organizational and technical capacity of Metropolitan Planning Organ...
Two-panel LCOS-based projection system: a potentially compact high-resolution avionics display
NASA Astrophysics Data System (ADS)
Sharp, Gary D.; Chen, Jianmin; Robinson, Michael B.; Korah, John K.
2003-09-01
Military displays have been limited first by the availability of CRT and then AMLCD for color multifunctional displays. Projection display technology has been offered as an alternative. With the growth of the LCOS based consumer projection display industry, commercially off the shelf (COTS) components and technology are becoming readily available. A projection display system addresses the lessons learned from the CRT or AMLCD based attempts. This approach presents multiple vendors and user defined aspect ratio, resolution, brightness and color. This paper will present the latest work at ColorLink, Inc. on a two-panel LCOS based projection light engine developed for the consumer industry driven Rear Projection Television (RPTV) market. This engine demonstrates throughput, contrast and color performance that exceeds military requirements using COTS technology and components. We will introduce the core technology and philosophy followed by this industry in defining such a product.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Technology transfer to a developing nation, Korea
NASA Technical Reports Server (NTRS)
Stone, C. A.; Uccetta, S. J.
1973-01-01
An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.
Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production
Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães
2011-01-01
Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707
Enzymatic desulfurization of coal: Third quarterly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis, Judith K.; Kitchell, Judith P.
Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.
FY2017 Technology Integration Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The 2017 Technology Integration Annual Progress Report covers 27 multi-year projects funded by the Vehicle Technologies Office. The report includes information on 20 competitively awarded projects, ranging from training on alternative fuels and vehicles for first responders, to safety training and design for maintenance facilities housing gaseous fuel vehicles, to electric vehicle community partner programs. It also includes seven projects conducted by several of VTO’s national laboratory partners, Argonne National Laboratory, Oak Ridge National Laboratory and the National Renewable Energy Laboratory. These projects range from a Technical Assistance project for business, industry, government and individuals, to the EcoCar 3 Studentmore » Competition, and the Fuel Economy Information Project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristann Gibson; Mervyn L. Tano; Albert Wing
1999-08-31
There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project wasmore » the placement of a Tribal intern in EM-22.« less
Finn, Jerry; Atkinson, Teresa
2009-11-01
The Technology Safety Project of the Washington State Coalition Against Domestic Violence was designed to increase awareness and knowledge of technology safety issues for domestic violence victims, survivors, and advocacy staff. The project used a "train-the-trainer" model and provided computer and Internet resources to domestic violence service providers to (a) increase safe computer and Internet access for domestic violence survivors in Washington, (b) reduce the risk posed by abusers by educating survivors about technology safety and privacy, and (c) increase the ability of survivors to help themselves and their children through information technology. Evaluation of the project suggests that the program is needed, useful, and effective. Consumer satisfaction was high, and there was perceived improvement in computer confidence and knowledge of computer safety. Areas for future program development and further research are discussed.
Overview of NASA's Thermal Control System Development for Exploration Project
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2010-01-01
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.
Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Jochem W.; Laird, Daniel
Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less
Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan
2018-02-07
Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.
Carbonic anhydrase enzymes regulate mast cell–mediated inflammation
Soteropoulos, Patricia
2016-01-01
Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715
Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.
ERIC Educational Resources Information Center
Reed, Michael D.; And Others
Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…
ERIC Educational Resources Information Center
Gosper, Maree Veroncia; McNeill, Margot Anne; Woo, Karen
2010-01-01
"The impact of web-based lecture technologies on current and future practice in learning and teaching" was a collaborative project across four Australian universities, funded by the Australian Learning and Teaching Council (ALTC). The project was both exploratory and developmental in nature and according to the project's external…
Concentrating Solar Power Projects - Chabei 64MW Molten Salt Parabolic
project Status Date: September 29, 2016 Project Overview Project Name: Chabei 64MW Molten Salt Parabolic Technology: Parabolic trough Turbine Capacity: Net: 64.0 MW Gross: 64.0 MW Status: Under development Do you have more information, corrections, or comments? Background Technology: Parabolic trough Status: Under
Concentrating Solar Power Projects by Technology | Concentrating Solar
) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block
Composites for Exploration Upper Stage
NASA Technical Reports Server (NTRS)
Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.
2016-01-01
The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Shawn St.; Farris, Ronald
2014-09-01
Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at Oregon Institute of Technology (OIT) at Klamath Falls, OR. The objectives of the project were to evaluate: (1) the effectiveness...
ERIC Educational Resources Information Center
Sandene, Brent; Horkay, Nancy; Bennett, Randy Elliot; Allen, Nancy; Braswell, James; Kaplan, Bruce; Oranje, Andreas
2005-01-01
This publication presents the reports from two studies, Math Online (MOL) and Writing Online (WOL), part of the National Assessment of Educational Progress (NAEP) Technology-Based Assessment (TBA) project. Funded by the National Center for Education Statistics (NCES), the Technology-Based Assessment project is intended to explore the use of new…
Simulations of chemical catalysis
NASA Astrophysics Data System (ADS)
Smith, Gregory K.
This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a dissociative, metaphosphate-like structure, stabilized by the Mg(II) ion and several hydrogen bonds. The calculated free-energy barrier is consistent with experimental values. Project 3 - Bacterial Enzyme Anthrax Lethal Factor In this dissertation, we report a hybrid quantum mechanical and molecular mechanical study of the catalysis of anthrax lethal factor, an important first step in designing inhibitors to help treat this powerful bacterial toxin. The calculations suggest that the zinc peptidase uses the same general base-general acid mechanism as in thermolysin and carboxypeptidase A, in which a zinc-bound water is activated by Glu687 to nucleophilically attack the scissile carbonyl carbon in the substrate. The catalysis is aided by an oxyanion hole formed by the zinc ion and the side chain of Tyr728, which provide stabilization for the fractionally charged carbonyl oxygen. Project 4 - Methanol Steam Reforming on PdZn alloy Recent experiments suggested that PdZn alloy on ZnO support is a very active and selective catalyst for methanol steam reforming (MSR). Plane-wave density functional theory calculations were carried out on the initial steps of MSR on both PdZn and ZnO surfaces. Our calculations indicate that the dissociation of both methanol and water is highly activated on flat surfaces of PdZn such as (111) and (100), while the dissociation barriers can be lowered significantly by surface defects, represented here by the (221), (110), and (321) faces of PdZn. The corresponding processes on the polar Zn-terminated ZnO(0001) surfaces are found to have low or null barriers. Implications of these results for both MSR and low temperature mechanisms are discussed.
Engineering Methane and Carbon Dioxide Pathways to Turn Renewable Biogas into Higher-Value Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenfield, Derek; Helman, Noah; Clarke, Elizabeth
The United States has a critical need for green manufacturing technologies that can produce a wide range of renewable products at low cost. Industrial Microbes develops biological processes that produce renewable chemicals from organic waste streams. The target chemical for this Phase I project is used to make paints, coatings, and polymers for a multi-billion-dollar market. In addition to the benefits from its green process, the company estimates that the new manufacturing process described here will result in 20-40% cost savings when used at commercial scale. This is possible because the company’s process utilizes waste biogas, an inexpensive feedstock, andmore » is highly efficient: the only byproduct is clean water. For this Phase I project, Industrial Microbes successfully built an enzyme pathway that solves the most difficult challenges of converting biogas into the target chemical. These challenges include the conversion of methane into soluble methanol; the identification of highly-active enzymes; and the production of the target chemical. The company has also completed proof-of-concept by demonstrating that its production strain can utilize raw biogas from a wastewater treatment plant. Achieving these goals required several breakthroughs in transferring enzymes from exotic microorganisms into a commercial one, used commonly for industrial-scale production. In Phase II, Industrial Microbes will work toward commercializing this process by improving carbon efficiency and speed of chemical production. Organic waste streams such as biogas are an underutilized source of renewable carbon and energy; efficient use of such waste streams will reduce the United States’ reliance on petroleum and lower greenhouse gas emissions. The process described here is one of few industrial processes that can convert biogas into commodity products, rather than burning it for energy. If renewable products can be made from biogas economically, companies and governments will find it attractive to collect organic waste streams for biogas production. This can prevent waste from ending up in landfills, where it breaks down into the greenhouse gases methane and carbon dioxide: landfills emit the equivalent greenhouse gases of 35 million cars every year. New uses of biogas will also help lower costs for making carbon-neutral biofuels, since biofuel production also generates waste that can be turned into biogas.« less
Moonlight project promotes energy-saving technology
NASA Astrophysics Data System (ADS)
Ishihara, A.
1986-01-01
In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.
Johnson Space Center Research and Technology Annual Report 1998-1999
NASA Technical Reports Server (NTRS)
Abbey, George W. S.
2004-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).
Development of Life Support System Technologies for Human Lunar Missions
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Ewert, Michael K.
2009-01-01
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Brown, Scott A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.« less
Lignocellulosic ethanol: Technology design and its impact on process efficiency.
Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel
2015-11-01
This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered. Copyright © 2014 Elsevier Inc. All rights reserved.
Discovery of digestive enzymes in carnivorous plants with focus on proteases.
Ravee, Rishiesvari; Mohd Salleh, Faris 'Imadi; Goh, Hoe-Han
2018-01-01
Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap) , Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants) , Cephalotus (Australian pitcher plants) , Genlisea (corkscrew plants) , and Utricularia (bladderworts). Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Restriction enzyme cutting site distribution regularity for DNA looping technology.
Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao
2014-01-25
The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. Copyright © 2013 Elsevier B.V. All rights reserved.
Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He
2012-01-01
Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.
This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.
ERIC Educational Resources Information Center
ACTTive Teachnology, 1996
1996-01-01
Four issues of this newsletter published by Project ACTT (Activating Children Through Technology), an Early Education Program for Children with Disabilities Outreach Project on educational technology, include the following major articles: "Computer Applications and Young Children with Disabilities: Positive Outcomes" (Patricia Hutinger); "Project…
7 CFR 2.24 - Assistant Secretary for Administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... continue, modify, or terminate an information technology program or project. (iii) Provide advice and other... exchange, scheduling, computer conferencing, televideo technologies, and other applications of office... Chief Information Officers and agency major information technology system project managers in accordance...
7 CFR 2.24 - Assistant Secretary for Administration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... continue, modify, or terminate an information technology program or project. (iii) Provide advice and other... exchange, scheduling, computer conferencing, televideo technologies, and other applications of office... Chief Information Officers and agency major information technology system project managers in accordance...
Siddiqui, Khawar Sohail
2015-12-01
The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Shaw, T.
2014-01-01
The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Shaw, T.
2014-01-01
The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation.
ERIC Educational Resources Information Center
Children's Hospital Medical Center of Akron, OH.
The Preschool Technology Training Project was designed to develop and demonstrate a regional training model on the applications of assistive technology for preschoolers with disabilities. The goal of the training was to enable preschool special education teachers, related services personnel, and parents of young children with disabilities to…
ERIC Educational Resources Information Center
Xie, Yichun; Reider, David
2014-01-01
This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to…
ERIC Educational Resources Information Center
Emerson, Judith; Bishop, John
2012-01-01
Introduction: Seeing the Possibilities with Videophone Technology began as research project funded by the National Center for Technology Innovation. The project implemented a face-to-face social networking program for students with deaf-blindness to investigate the potential for increasing access and communication using videophone technology.…
How Undergraduate Students Use Social Media Technologies to Support Group Project Work
ERIC Educational Resources Information Center
McAliney, Peter J.
2013-01-01
Technology continues to evolve and become accessible to students in higher education. Concurrently, teamwork has become an important skill in academia and the workplace and students have adopted established technologies to support their learning in both individual and team project work. Given the emergence of social media technologies, I examined…
2010-04-29
Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to
ERIC Educational Resources Information Center
Williams, Roy
The Diffusion of Appropriate Educational Technology in Open and Distance Learning in Developing Countries project was designed to determine awareness and use of educational technologies and communications media in developing countries, to identify factors constraining wider use of educational technologies by developing nations, and to explore…
NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith
ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less
Temperature and UV light affect the activity of marine cell-free enzymes
NASA Astrophysics Data System (ADS)
Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico
2017-09-01
Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.
Technology Investments in the NASA Entry Systems Modeling Project
NASA Technical Reports Server (NTRS)
Barnhardt, Michael; Wright, Michael; Hughes, Monica
2017-01-01
The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission
Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K
2012-11-30
The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.
Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy
2016-01-01
Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870
Chloroplast 2010: A Database for Large-Scale Phenotypic Screening of Arabidopsis Mutants1[W][OA
Lu, Yan; Savage, Linda J.; Larson, Matthew D.; Wilkerson, Curtis G.; Last, Robert L.
2011-01-01
Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase. PMID:21224340
NASA Technical Reports Server (NTRS)
Rosen, Robert; Korsmeyer, David J.
1993-01-01
The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.
Patterns Cancer Prevention Through Induction of Phase 2 Enzymes
2003-04-01
2) enzymes. During our Phase I Award, we identified sulforaphane as the most potent inducer of carcinogen defenses in the prostate cell. We have...characterized global effects of sulforaphane in prostate cancer cell lines using cDNA microarray technology that allows large-scale determination of...changes in gene expression. These findings argue strongly for a preventive intervention trial involving with sulforaphane . During our Phase 2 Award, we used
Nanosizing a Metal-Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis
2016-10-05
Previously, biodegradable liposome nano- carriers have been shown to be effective at providing functionally significant amounts of highly purified enzymes in...AlexaFluor-647 dye was purchased from Life Technologies (Thermo Fisher Scientific). Methyl 6-(pinacolboryl)-2-naphthoate was synthesized using a published...Hitachi) and PXRD (Smartlab, Rigaku). Labeling OPAA with Fluorescent Dye . AlexaFluor-647-labeled OPAA (OPAA647) was prepared by reacting OPAA (0.5
Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally
2003-03-01
Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.
I-95 Corridor Coalition Project #3 (95-003) : surveillance requirements/technology
DOT National Transportation Integrated Search
1995-06-23
The purpose of this Surveillance Requirements/Technology (SR/T) Project is to develop an : implementation plan for a Corridor-wide traffic and environmental surveillance system using state-of-the-art and cost-effective technologies. To fulfill this p...
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2014 CFR
2014-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other... computer-based systems for message exchange, scheduling, computer conferencing, televideo technologies, and... removal or replacement of information technology project managers, when, in the opinion of the Chief...
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2013 CFR
2013-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other... computer-based systems for message exchange, scheduling, computer conferencing, televideo technologies, and... removal or replacement of information technology project managers, when, in the opinion of the Chief...
Truck size and weight enforcement technologies : state of the practice
DOT National Transportation Integrated Search
2009-05-01
This report is a deliverable of Task 2 of FHWAs Truck Size and Weight Enforcement Technology Project. The primary project objective was to recommend strategies to encourage the deployment of roadside technologies to improve truck size and weight e...
Targeted enzyme prodrug therapies.
Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C
2010-09-01
The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.
Porter, Joanne L; Boon, Priscilla L S; Murray, Tracy P; Huber, Thomas; Collyer, Charles A; Ollis, David L
2015-02-20
The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.
Johnson Space Center Research and Technology 1997 Annual Report
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.
JPRS Report, Science & Technology Europe
1988-10-13
material, for instance, the single-crystal matrix of a superalloy is reinforced by homogeneously distributed, very fine granules of ceramic...Products/research on new cheese development and cheese flavour problems Enzymes, flavourings , and natural colours for food and drink, pharmaceutical...and diag- nostic industries Dairy products/cheese production and flavour technology Dairy products, including alcohol produced from whey
JPRS Report, Science & Technology, Europe & Latin America
1988-04-06
courses and in polytechnics a growing number of undergraduate research theses [ tesi di laurea] are increasingly coming to resemble authentic feasibility...Information Science Eleven Priorities Research Priority Actions — Microbiological engineering —Enzyme engineering —Biotechnological engineering —Food...Foodstuffs Medicine Human and social sciences Technology, computer-integrated manufacturing Electronics, data processing Microbiological
Food irradiation: Technology transfer in Asia, practical experiences
NASA Astrophysics Data System (ADS)
Kunstadt, Peter; Eng, P.
1993-10-01
Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.
Smart gun technology requirements preliminary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D.R.; Brandt, D.J.; Tweet, K.D.
Goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing user-recognizing-and-authorizing surety technologies. This project is funded by the National Institute of Justice. This document reports the projects first objective: to find and document the requirements for a user-recognizing-and-authorizing firearm technology that law enforcement officers will value. This report details the problem of firearm takeaways in law enforcement, the methodology used to develop the law enforcement officers` requirements, and the requirements themselves.
ERIC Educational Resources Information Center
Hultén, Magnus
2013-01-01
In the state-of-the-art Glass Project run by the Swedish National Agency for Education during the second half of the 1960s, a new type of comprehensive technology education was developed. The project had little impact on school practice and was soon forgotten about. However, the project is interesting from several points of view. First, it…
ERIC Educational Resources Information Center
Wright, Gerald P.
2013-01-01
Despite over half a century of Project Management research, project success rates are still too low. Organizations spend a tremendous amount of valuable resources on Information Technology projects and seek to maximize the utility gained from their efforts. The author investigated the impact of software development methodology choice on ten…
ERIC Educational Resources Information Center
Massachusetts Inst. of Tech., Cambridge.
A staff development project to create closer integration and mutual support between specialized science and technology curricula and vocational education courses is described. Project activities are listed, and a statement of underlying assumptions is provided. A list of guidelines for coordinating shop and academic projects follows. Guidelines…
Improvement of Project Portfolio Management in an Information Technology Consulting Company
NASA Astrophysics Data System (ADS)
Kaewta, S.; Chutima, P.
2014-06-01
The scope of this research is to improve the efficiency of multiple project management in an information technology consulting company through the adaptation of the project portfolio management technique. The project management information system (PMIS) is implemented to establish effective communication channels so that internal and external teams as well as all relevant stakeholders can be employed to negotiate their work schedules. In addition, all activities created by multiple teams can be systematically reviewed and combined into a single checklist to be used as an agreed working plan for all team members. A general guideline for project portfolio management in information technology consulting companies is also proposed, which could results in a higher level of project on-time delivery.
Slade, Louise; Levine, Harry
2018-04-13
This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztekin, Aykut, E-mail: aoztekin@agri.edu.tr; Agri Ibrahim Cecen University Faculty of Arts and Sciences, Department of Chemistry, 04100-Agri; Almaz, Züleyha, E-mail: zturkoglu-2344@hotmail.com
2016-04-18
Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC{sub 50} values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (Thismore » research was supported by Ataturk University. Project Number: BAP-2015/98).« less
Zoological effects of variations in atmospheric oxygen levels
NASA Technical Reports Server (NTRS)
Kloek, G.
1982-01-01
The role of certain gene enzymes in survival in modified atmospheres was examined. Chromosome morphology was studied. Mortality and life span were measured. Equipment to deliver various gas mixtures to the flies was designed and fabricated. To study the gene enzymes a technique called starch gel electrophoresis was needed. Equipment and supplies for this work and the study of chromosome morphology was available on the market, although some of the equipment was fabricated to save the project money.
Project financing of district heating/cooling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, R.D.
1986-03-01
Two issues are discussed in detail: the project finance joint venture and technology transfers. An increase if the frequency of these issues has been served in project financings. An understanding of these issues is necessary to structure project financings of alternate energy projects in the future. Capitalization needs are outlined, and typical provisions of a joint finance structure are outlined. The issue of exclusivity as it applies to technology transfers is discussed.
Overview of NASA's Thermal Control System Development for Exploration Project
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2011-01-01
The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.
76 FR 66043 - Proposed Information Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... concerning its proposed renewal of Day of Service Project Promotion Tool. Anyone organizing a volunteer event will be able to register their projects, including: national service projects, corporations, volunteer..., electronic, mechanical, or other technological collection techniques or other forms of information technology...
ERIC Educational Resources Information Center
Grayson, Katherine
2007-01-01
In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…
News: Good chemical manufacturing process criteria
This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.
Immobilization of bacterial proteases on water-solved polymer by means of electron beam
NASA Astrophysics Data System (ADS)
Gonchar, A. M.; Auslender, V. L.
1996-12-01
Possibility of electron beam usage for proteases' immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease takes place due to free-radical linking of enzyme and carrier with formation of mycellium-like structures. Immobilization improves heat resistance of enzyme up to 60°C without substrate and up to 80°C in presence of substrate, widens range of pH activity in comparison with non-immobilized forms. Immobilized proteases do not contain peroxides or long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology.
ERIC Educational Resources Information Center
Tushnet, Naida C.
The Star Schools Program has funded projects to explore innovative educational applications of technology in distance education. Funded projects have applied a variety of technologies, including videodisks, compressed data transmission, fiber optic technology, and computer networks. Program evaluation is a mandated aspect of the program. This…
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chan, Lim-Ha
2011-01-01
This study investigated the effectiveness and impacts of process prompts on students' learning and computer self-efficacy within the technology-enabled project-based learning (PBL) context in an undergraduate educational technology course. If the aim is to prepare prospective teachers to effectively, efficiently, and engagingly use technologies in…
Science and Technology Concepts in a Design and Technology Project: A Pilot Study.
ERIC Educational Resources Information Center
Levinson, Ralph; Murphy, Patricia; McCormick, Robert
1997-01-01
This pilot study of a project involving the design and making of a moisture sensor indicated that science knowledge developed through science lessons could not be used in technology lessons. This is argued to be because knowledge is constructed in the various contexts and hence not generalizable. Implications for science and technology teaching…
Fuel conservative aircraft engine technology
NASA Technical Reports Server (NTRS)
Nored, D. L.
1978-01-01
Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the fourth in a series of six, describes the evaluative studies conducted during Phase II of the California Educational Technology Assessment Program, the California Technology Project (CTP), and the CTP Regional Consortia. The report begins with background information on the CTP, starting with the earlier statewide network of…
Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan
2015-12-07
As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, T.W.
1990-12-31
The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of the gene that encodes for ADPglucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. During the last two years we have obtained information on the structure of this enzyme from both potato tuber andmore » rice endosperm, using a combination of biochemical and molecular biological approaches. Moreover, we present evidence that this enzyme may be localized at discrete regions of the starch grain within the amyloplast, and plays a role in controlling overall starch biosynthesis in potato tubers.« less
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.
2012-04-01
The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.
Emerging Communication Technologies (ECT) Phase 4 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.
2005-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.
Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.;
2016-01-01
In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.
MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT
This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1995-12-01
IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.
NASA Astrophysics Data System (ADS)
Peterman, Karen; Kermish-Allen, Ruth; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra
2016-12-01
This article describes Energy for ME and Going Green! Middle Schoolers Out to Save the World, two Science, Technology, Engineering, and Mathematics (STEM) education programs with the common goal of improving students' attitudes about scientific careers. The authors represent two project teams, each with funding from the National Science Foundation's ITEST program. Using different approaches and technology, both projects challenged students to use electricity monitoring system data to create action plans for conserving energy in their homes and communities. The impact of each project on students' career interests was assessed via a multi-method evaluation that included the Career Interest Questionnaire (CIQ), a measure that was validated within the context of ITEST projects and has since become one of the instruments used most commonly across the ITEST community. This article explores the extent to which the CIQ can be used to document the effects of technology-enhanced STEM educational experiences on students' career attitudes and intentions in different environments. The results indicate that the CIQ, and the Intent subscale in particular, served as significant predictors of students' self-reported STEM career aspirations across project context. Results from each project also demonstrated content gains by students and demonstrated the impact of project participation and gender on student outcomes. The authors conclude that the CIQ is a useful tool for providing empirical evidence to document the impact of technology-enhanced science education programs, particularly with regard to Intent to purse a STEM career. The need for additional cross-project comparison studies is also discussed.
The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
Noor, Elad; Flamholz, Avi; Bar-Even, Arren; Davidi, Dan; Milo, Ron; Liebermeister, Wolfram
2016-11-01
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified.
NASA Technical Reports Server (NTRS)
Simpson, Robert W.
1994-01-01
An investigation of air transportation technology at MIT during 1992 - 1993 is presented. One completed project and two continuing research activities are under the sponsorship of the FAA/NASA Joint University Program. The completed project was on tracking aircraft around a turn with wind effects. Active research projects are on ASLOTS - an interactive adaptive system of automated approach spacing of aircraft and alerting in automated and datalink capable cockpits.
Live from Space Station Learning Technologies Project
NASA Technical Reports Server (NTRS)
2001-01-01
This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.
NASA Technical Reports Server (NTRS)
Hayati, Samad A.
2002-01-01
Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.
APRA-E: The First Seven Years: A Sampling of Project Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ellen D.
2016-08-23
Since 2009, ARPA-E has funded over 500 potentially transformational energy technology projects. Many of these projects have already demonstrated early indicators of technical and commercial success. ARPA-E has begun the process of analyzing and cataloging some of the agency’s most successful projects. This document is a compilation of the first volume of these impactful technologies.
ERIC Educational Resources Information Center
Ekiko, Mbong C.
2014-01-01
The research problem was the lack of knowledge about the effect of leadership style of the project champion on global information technology (IT) project outcomes, resulting in a high failure rate of IT projects accompanied by significant waste of resources. The purpose of this quantitative, nonexperimental study was to evaluate the relationship…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research (SBIR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial project managers interested in ARMD funding opportunities through NASA's SBIR program will find this report useful as well.
Faces of the Recovery Act: 1366 Technologies
Sachs, Ely; Mierlo, Frank van; Obama, Barack
2017-12-09
LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx
ERIC Educational Resources Information Center
Okongo, James
2014-01-01
The failure rate of information technology (IT) development projects is a significant concern for today's organizations. Perceptions of IT project risk and project performance have been identified as important factors by scholars studying the topic, and Wallace, Keil, and Rai (2004a) developed a survey instrument to measure how dimensions of…
Faces of the Recovery Act: 1366 Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, Ely; Mierlo, Frank van; Obama, Barack
2010-01-01
LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx
Interest high in EEC technology grants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
There has been high interest shown by oil companies and industrialists in the seventh round grants for hydrocarbon technology projects funded by the European Economic Community (EEC). So far, the EEC has obtained 63 applications for projects costing 668 million European units of account. A listing of the 1980 projects describes concepts, company, and country; EEC contributions; and a brief sketch of project objectives.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
47 CFR 90.548 - Interoperability Technical Standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Specification—New Technology Standards Project—Digital Radio Technical Standards, approved March 2005. (v) ANSI/TIA-102.BAEE-B-2010, Project 25 Radio Management Protocols—New Technology Standards Project—Digital... 2003. (iii) ANSI/TIA-102.BAEA-B-2012, Project 25 Data Overview—New Technology Standards Project—Digital...
Access: Exceptional Children and Technology.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. for Exceptional Children.
The Exceptional Children and New Technology project sought to meet the instructional needs of physically handicapped, emotionally disturbed, learning disabled, and mentally handicapped children through the use of computer technology. The goals of the project were to test the instructional value of adaptive/assistive devices with exceptional…
Curricular/Instructional Technology Resources.
ERIC Educational Resources Information Center
Roy, Loriene, Comp.
Part of a larger report on the Four Directions Project, an American Indian technology innovation project, this section includes 10 "pathfinders" to locating information on learning and instructional technology resources. The pathfinders were designed by students in the Graduate School of Library and Information Science at the University…
MINE WASTE TECHNOLOGY PROGRAM: RECENT RESULTS: LESSONS LEARNED AND FUTURE OPPORTUNITIES
In the EPA sponsored AML workshop, a number of Mine Waste Technology Program (MWTP) projects will be presented in order to highlight the most successful technology demonstrations. Recent results, lesson learned and future opportunities will be presented. The MWTP projects includ...
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
Advanced Air Transportation Technologies Project, Final Document Collection
NASA Technical Reports Server (NTRS)
Mogford, Richard H.; Wold, Sheryl (Editor)
2008-01-01
This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.
Application of radiation technology in biomedical materials; Fundamentals and applied
NASA Astrophysics Data System (ADS)
Hayashi, K.
1) IMMOBILIZATION OF HEMOGLOBIN Hemoglobin has been immobilized into Poly HEMA Matrix. To increase, Mechanical resistance, at first, CO was coodinated, after immobilization CO was eliminated by photo illumination by visible light from a W lamp and then O 2 was introduced. Oxygencoordiation ability was not damaged by immobilization. 2) REDUCTION MECHANISM OF ENZYME BY THE USE OF PULSE RADIOLYSIS Elementary process of Reduction Mechanism of Myoglobin, Hemoglobin, HRP and Cytochrome Oxidase were investigated in the time range of μsec≈nsec. In the of Cytochrome Oxidase, these are 4 metal ions inside of the Enzyme. The exact step of reduction of this enzyme was elucidated .
Assessment of pollution prevention and control technology for plating operations
NASA Technical Reports Server (NTRS)
Chalmer, Paul D.; Sonntag, William A.; Cushnie, George C., Jr.
1995-01-01
The National Center for Manufacturing Sciences (NCMS) is sponsoring an on-going project to assess pollution prevention and control technology available to the plating industry and to make this information available to those who can benefit from it. Completed project activities include extensive surveys of the plating industry and vendors of technologies and an indepth literature review. The plating industry survey was performed in cooperation with the National Association of Metal Finishers. The contractor that conducted the surveys and prepared the project products was CAI Engineering. The initial products of the project were made available in April, 1994. These products include an extensive report that presents the results of the surveys and literature review and an electronic database. The project results are useful for all those associated with pollution prevention and control in the plating industry. The results show which treatment, recovery and bath maintenance technologies have been most successful for different plating processes and the costs for purchasing and operating these technologies. The project results also cover trends in chemical substitution, the identification of compliance-problem pollutants, sludge generation rates, off-site sludge recovery and disposal options, and many other pertinent topics.
Marden, James H
2013-12-01
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. © 2013 John Wiley & Sons Ltd.
Alberta Education's Computer Technology Project.
ERIC Educational Resources Information Center
Thiessen, Jim
This description of activities initiated through the Computer Technology Project of the provincial education ministry in Alberta, Canada, covers the 2-year period beginning with establishment of the project by the Alberta Department of Education in October 1981. Activities described include: (1) the establishment of the Office of Educational…
42 CFR 495.342 - Annual HIT IAPD requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE... delays in meeting target dates in the approved HIT technology PAPD/IAPD and approved changes to it. (c) A... products. (d) A project activity schedule for the remainder of the project. (e) A project expenditure...
42 CFR 495.342 - Annual HIT IAPD requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE... delays in meeting target dates in the approved HIT technology PAPD/IAPD and approved changes to it. (c) A... products. (d) A project activity schedule for the remainder of the project. (e) A project expenditure...
EPA has developed a technology transfer handbook for the EMPACT MYSound Project. The handbook highlights information and monitoring technologies developed from the EMPACT Long Island Sound Marine Monitoring (MYSound) Project. As part of the MYSound effort, telemetering data-buoys...
The Earth Resources Data Project
NASA Technical Reports Server (NTRS)
Harwood, P.
1981-01-01
The Council of State Planning Agencies, in consultation with the National Governor's Association and NASA, initiated the Earth Resources Data Project to encourage the appropriate application of cost-effective science and technology to state natural resources issues and problems. This project was established to provide a focal point for identifying those issues associated with state use of remote sensing and related technology. One project goal is to elevate to the consciousness of state policy and program officials new technologies, such as LANDSAT, by association with major issues to which policy officials are attuned. The project assists the coordination between the states and NASA and promotes communication on those issues. A related project objective is to encourage technical assistance opportunities for states that will promote better use of remote sensing and natural resources data in state programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, B; Dawn S. Kaback, D; Eugene L. LeBoeuf, E
Beginning in 2006, the US Department of Energy (DOE) supported nine applied research projects to improve the protection of the Columbia River and mitigate the impacts of Hanford Site groundwater. These projects were funded through a supplemental Congressional budget allocation, and are now in various stages of completion in accordance with the research plans. The DOE Office of Environmental Management Groundwater and Soil Cleanup Technologies (EM-22) sponsored a technical peer review meeting for these projects in Richland WA, July 28-31, 2008. The overall objective of the peer review is to provide information to support DOE decisions about the status andmore » potential future application of the various technologies. The charge for the peer review panel was to develop recommendations for each of the nine 'technologies'. Team members for the July 2008 review were Brian Looney, Gene LeBoeuf, Dawn Kaback, Karen Skubal, Joe Rossabi, Paul Deutsch, and David Cocke. Previous project reviews were held in May 2007 and March-May of 2006. The team used the following four rating categories for projects: (a) Incorporate the technology/strategy in ongoing and future EM activities; (b) Finish existing scope of applied research and determine potential for EM activities when research program is finished; (c) Discontinue current development activities and do not incorporate technology/strategy into ongoing and future EM activities unless a significant and compelling change in potential viability is documented; and (d) Supplement original funded work to obtain the data needed to support a DOE decision to incorporate the technology into ongoing and future EM activities. The supplemental funding portfolio included two projects that addressed strontium, five projects that addressed chromium, one project that addressed uranium and one project that addressed carbon tetrachloride. The projects ranged from in situ treatment methods for immobilizing contaminants using chemical-based methods such as phosphate addition, to innovative surface treatment technologies such as electrocoagulation. Total funding for the nine projects was $9,900,000 in fiscal year (FY) 2006 and $2,000,000 in FY 2007. At the Richland meeting, the peer reviewers provided a generally neutral assessment of the projects and overall progress, and a generally positive assessment with regard to the principal investigators meeting their stated research objectives and performing the planned laboratory research and limited field work. Only one project, the Electrocoagulation Treatability Test, received a rating of 'discontinue' from the team because the project goals had not been met. Because this particular project has already ended, no action with respect to funding withdrawal is necessary. All other projects were recommended to be finished and/or incorporated into field efforts at Hanford. Specific technical comments and recommendations were provided by the team for each project.« less
Examining Thai high school students' developing STEM projects
NASA Astrophysics Data System (ADS)
Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.
2016-02-12
SECURITY CLASSIFICATION OF: This project examined China’s drive to become a world-class defense and dual -use technological and industrial power and...2211 China, science, technology, dual use, defense, security, innovation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10...Place in the Global Technology Order Report Title This project examined China’s drive to become a world-class defense and dual -use technological and
ERIC Educational Resources Information Center
Darrow, Melissa; And Others
This paper describes a project addressing the assistive technology training needs of teachers of children with disabilities in rural eastern North Carolina, through development of a multimedia software tutorial service. The project utilized both a special education/assistive technology professional and an instructional technology professional to…
Planning and leading of the technological processes by mechanical working with microsoft project
NASA Astrophysics Data System (ADS)
Nae, I.; Grigore, N.
2016-08-01
Nowadays, fabrication systems and methods are being modified; new processing technologies come up, flow sheets develop a minimum number of phases, the flexibility of the technologies grows up, new methods and instruments of monitoring and leading the processing operations also come up. The technological course (route, entry, scheme, guiding) referring to the series of the operation, putting and execution phases of a mark in order to obtain the final product from the blank is represented by a sequence of activities realized by a logic manner, on a well determined schedule, with a determined budget and resources. Also, a project can be defined as a series of specific activities, methodical structured which they aim to finish a specific objective, within a fixed schedule and budget. Within the homogeneity between the project and the technological course, this research is presenting the defining of the technological course of mechanical chip removing process using Microsoft Project. Under these circumstances, this research highlights the advantages of this method: the celerity using of other technological alternatives in order to pick the optimal process, the job scheduling being constrained by any kinds, the standardization of some processing technological operations.
Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland
1993-01-01
NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.
Tracing Impacts of Science and Technology Development
NASA Astrophysics Data System (ADS)
Powell, Jeanne
2003-03-01
ATP's Mission and Operations. The ATP partners with industry to accelerate the development of innovative technologies for broad national economic benefit. The program's focus is on co-funding collaborative, multi-disciplinary technologies and enabling technology platforms that appear likely to be commercialized, with private sector funding, once the high technical risks are reduced. Industry-led projects are selected for funding in rigorous competitions on the basis of technical and economic merit. Since 1990, ATP has co-funded 642 projects, with 1,329 participants and another 1,300 subcontractors. Measuring to Mission: Overview of ATP's Evaluation Program. ATP's multi-component evaluation strategy provides measures of progress and performance matched to the stage of project evolution; i.e., for the short-term, from the time of project selection and over the course of the R for the mid-term, as commercial applications are pursued, early products reach the market, and dissemination of knowledge created in the R projects occurs; and for the longer-term, as more fully-developed technologies diffuse across multiple products and industries. The approach is applicable to all public S programs and adaptable to private or university projects ranging from basic research to applied industrial R. Examples of Results. ATP's composite performance rating system assesses ATP's completed projects against multi-faceted performance criteria of Knowledge Creation and Dissemination and Commercialization Progress 2-3 years after the end of ATP-funded R. It generates scores ranging from zero to four stars. Results for ATP's first 50 completed projects show that 16are in the bottom group of zero or one stars. 60the middle group. It is understood that not all ATP projects will be successful given the program's emphasis on funding high-risk technology development that the private sector is unwilling and unable to fund alone. Different technologies have different timelines for commercialization and diffusion. ATP has contracted a number of in-depth case studies of individual projects and groups of related projects. Given that the full timeline for economic impact extends many years after ATP funding ends, some studies are prospective, and others are retrospective. Some are a mix of the two. Quantitative economic impacts from just a few or the projects funded to date provide strong evidence that the ATP is addressing its ultimate goal of broad economic benefits to the nation and generating value that vastly exceeds the cost of the program to date.
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Fung, Paul P.
2013-01-01
The Technology Watch (Tech Watch) project is a NASA project that is operated under the Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and focuses on ExMC technology gaps. The project coordinates the efforts of several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASAs goal to provide a safe and healthy environment for human exploration. In 2012, the Tech Watch project expanded the scope of activities to cultivate student projects targeted at specific ExMC gaps, generate gap reports for a majority of the ExMC gaps and maturate a gap report review process to optimize the technical and managerial aspects of ExMC gap status. Through numerous site visits and discussions with academia faculty, several student projects were initiated and/or completed this past year. A key element to these student projects was the ability of the project to align with a specific ExMC technology or knowledge gap. These projects were mentored and reviewed by Tech Watch leads at the various NASA centers. Another result of the past years efforts was the population of the ExMC wiki website that now contains more the three quarters of the ExMC gap reports. The remaining gap reports will be completed in FY13. Finally, the gap report review process for all ExMC gaps was initiated. This review process was instrumental in ensuring that each gap report was thoroughly reviewed for accuracy and relevant content prior to its public release. In the upcoming year, the gap report review process will be refined such that in addition to the gap report update, programmatic information related to gap closure will also be emphasized.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Technology transfer in the NASA Ames Advanced Life Support Division
NASA Technical Reports Server (NTRS)
Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul
1992-01-01
This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.
Faculty Collaboration on Multidisciplinary Web-Based Education.
ERIC Educational Resources Information Center
Saad, Ashraf; Uskov, Vladimir L.; Cedercreutz, Kettil; Geonetta, Sam; Spille, Jack; Abel, Dick
In 1998, faculty members at the University of Cincinnati started a project as an interdepartmental collaboration to investigate the use of World Wide Web-based instructional (WBI) tools. The project team included representatives from various areas such as information engineering technology, mechanical engineering technology, chemical technology,…
Technology Programs...For All or for Some?
ERIC Educational Resources Information Center
Giancola, Susan P.
2001-01-01
Introduces the Delaware Technology Innovation Challenge (DTIC) project which aims to increase parent involvement, generate more time for learning, and improve student achievement. Investigates whether evaluation findings of the project are reflective of the program's implementation or rather reveal a limitation of the technology. (Contains 20…
Data and Tools | Transportation Research | NREL
Projection Tool Lite Tool for projecting consumer demand for electric vehicle charging infrastructure at the technologies or for selecting a technology to invest in. Transportation-Related Consumer Preference Data Consumer preference data related to alternative fuel and advanced vehicle technologies to support the
A Case Study of Technology-Enhanced Historical Inquiry
ERIC Educational Resources Information Center
Yang, Shu Ching
2009-01-01
The paper describes the integration of web resources and technology as instructional and learning tools in oral history projects. The computer-mediated oral history project centred around interviews with community elders combined with new technologies to engage students in authentic historical inquiry. The study examined learners' affective…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.
The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro
2016-08-01
The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Lie; Hu, Danian
2017-09-01
The construction of nine high-end technical installations (hereafter Project NGI, for Nine Great Installations or ) in the 1960s and 1970s was an indispensable part of the development of China's defense and heavy industries. The project put more than 1400 machines into operation or trial operation during the Culture Revolution (1966-1976), and they served essential technical functions in sectors such as aviation, aerospace, machinery, metallurgy, and electronics, and directly advancing the development of these fields. It took more than a decade for Project NGI to go from planning to completion-a surprisingly uninterrupted and steady development while China fell into unprecedented turmoil. One important reason for Project NGI's success was the vital leadership of Shen Hong (, 1906-1998), the technical director of the project and a high-ranking official. Supported by state leaders such as Zhou Enlai and Nie Rongzhen, Shen and his colleagues adopted a suitable roadmap for technological development, coordinated the best-performing manufacturing forces in the country, and successfully manufactured the NGI machines. Project NGI is significant for the history of Chinese science, technology, and medicine during the Cultural Revolution not because it was technologically original, but because it represents an extraordinary case, in which the project's technological development seemed to be largely exempted from the interference of the turbulent Cultural Revolution. The project's national defense orientation, its pragmatism, and the contemporary dogma of self-reliance (), in addition to Shen Hong's political maneuvering, all contributed to the creation of a relatively calm and favorable environment around Project NGI. Despite the widespread turmoil in the country, Shen managed to assemble a stable and continuously productive team, which executed experiments, absorbed previously introduced Soviet technologies, stayed informed about advanced European and American technologies, and ultimately accomplished the construction of the NGI machines. Copyright © 2017 Elsevier Ltd. All rights reserved.
2010-08-27
adverse impact to critical missions caused by natural, accidental, or intentional events adversely affecting installation energy and utility supply...Report No. D-2010-RAM-019 August 27, 2010 Army Projects in the DOD Near Term Energy -Efficient Technologies Program Funded...Army Projects in the DOD Near Term Energy -Efficient Technologies Program Funded by the American Recovery and Reinvestment Act of 2009 5a. CONTRACT
Technology Foresight For Youth: A Project For Science and Technology Education in Sweden
NASA Astrophysics Data System (ADS)
Kendal, Anne Louise
"Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.
Project BILLET Curriculum Package. Bilingual Vocational Skill Training Program 1986-1987.
ERIC Educational Resources Information Center
Community Coll. of Rhode Island, Warwick.
This document describes a project that provided vocational skills and job-specific English-as-a-second-language (ESL) training to Spanish-speaking adults in Lincoln, Rhode Island. Project BILLET (Bilingual Learning and Employment Training) offered training in five vocational skill areas: machine technology, welding technology, geriatric nursing…
Managing Faculty Data at the University of Tennessee: The SEDONA Project
ERIC Educational Resources Information Center
Woodroof, Jon B.; Searcy, DeWayne L.
2004-01-01
Information technology plays an increasingly prominent role in the strategic initiatives of higher education institutions. Technology projects are becoming the largest projects on campus, approaching funding levels of bricks and mortar investments. Information systems are viewed as critical in attracting high-quality faculty, staff, and students,…
10 CFR 603.205 - Nature of the project.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Nature of the project. 603.205 Section 603.205 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Appropriate Use of Technology Investment Agreements § 603.205 Nature of the project. Judgments relating to the nature of the...
Becoming Little Scientists: Technologically-Enhanced Project-Based Language Learning
ERIC Educational Resources Information Center
Dooly, Melinda; Sadler, Randall
2016-01-01
This article outlines research into innovative language teaching practices that make optimal use of technology and Computer-Mediated Communication (CMC) for an integrated approach to Project-Based Learning. It is based on data compiled during a 10- week language project that employed videoconferencing and "machinima" (short video clips…
Frequently Asked Questions | NREL
technology partnership agreements include: Agreements for commercializing a technology when a partner seeks research and development agreements when a partner and the lab intend to collaborate on a project Strategic partnership projects agreements when a partner seeks technical services to complete a project but does not
Leadership Styles: Perceptions in Information Technology Project Teams
ERIC Educational Resources Information Center
Fune, Roy P.
2013-01-01
The purpose of this study was to uncover Information Technology (IT) Project Managers' and IT Professionals' perceptions of effective leadership styles as they apply to project success. There have been prior studies dealing with the differences in perceptions between IT Functional Manager's leadership self-perception versus staff perceptions of…
Project-Based Learning in Electronic Technology: A Case Study
ERIC Educational Resources Information Center
Li, Li
2015-01-01
A case study of project-based learning (PBL) implemented in Tianjin University of Technology and Education is presented. This multidiscipline project is innovated to meet the novel requirements of industry while keeping its traditional effectiveness in driving students to apply knowledge to practice and problem-solving. The implementation of PBL…
Collaborative Learning in Technological Project Design
ERIC Educational Resources Information Center
Hong, Jon-Chao; Yu, Kuang-Chao; Chen, Mei-Yung
2011-01-01
The POWERTECH contest in Taiwan was established in an attempt to promote inventiveness and technology to elementary school pupils. The POWERTECH contest is designed as a collaborative learning system for project design. Project design is comprised of technical processes, which include the construction of an artifact and improvement of its…
10 CFR 603.205 - Nature of the project.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Nature of the project. 603.205 Section 603.205 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Appropriate Use of Technology Investment Agreements § 603.205 Nature of the project. Judgments relating to the nature of the...
10 CFR 603.205 - Nature of the project.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Nature of the project. 603.205 Section 603.205 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Appropriate Use of Technology Investment Agreements § 603.205 Nature of the project. Judgments relating to the nature of the...
10 CFR 603.205 - Nature of the project.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Nature of the project. 603.205 Section 603.205 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Appropriate Use of Technology Investment Agreements § 603.205 Nature of the project. Judgments relating to the nature of the...
10 CFR 603.205 - Nature of the project.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Nature of the project. 603.205 Section 603.205 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Appropriate Use of Technology Investment Agreements § 603.205 Nature of the project. Judgments relating to the nature of the...
Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power
linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region
Assistive Technology Design in Special Education. Issue Brief 2.
ERIC Educational Resources Information Center
Burnette, Jane
The issue brief discusses technological principles, issues, and design features discovered or used by projects funded by the Office of Special Education Programs (OSEP). Information was obtained from interviews with project directors who were asked about their project experiences, the features and design principles essential to the success of…
NASA's Morphing Project Research Summaries in Fiscal Year 2002
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Waszak, Martin R.
2005-01-01
The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.
Strategic enzyme patterning for microfluidic biofuel cells
NASA Astrophysics Data System (ADS)
Kjeang, E.; Sinton, D.; Harrington, D. A.
The specific character of biological enzyme catalysts enables combined fuel and oxidant channels and simplified non-compartmentalized fuel cell assemblies. In this work, a microstructured enzymatic biofuel cell architecture is proposed, and species transport phenomena combined with consecutive chemical reactions are studied computationally in order to provide guidelines for optimization. This is the first computational study of this technology, and a 2D CFD model for species transport coupled with laminar fluid flow and Michaelis-Menten enzyme kinetics is established. It is shown that the system is reaction rate limited, indicating that enzyme specific turnover numbers are key parameters for biofuel cell performance. Separated and mixed enzyme patterns in different proportions are analyzed for various Peclet numbers. High fuel utilization is achieved in the diffusion dominated and mixed species transport regimes with separated enzymes arranged in relation to individual turnover rates. However, the Peclet number has to be above a certain threshold value to obtain satisfying current densities. The mixed transport regime is particularly attractive while current densities are maintained close to maximum levels. Optimum performance is achieved by mixed enzyme patterning tailored with respect to individual turnover rates, enabling high current densities combined with nearly complete fuel utilization.
Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review
Ravindran, Rajeev; Jaiswal, Amit K.
2016-01-01
Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years. PMID:28952592
Mini review on role of β-galactosidase in lactose intolerance
NASA Astrophysics Data System (ADS)
A, Nivetha; V, Mohanasrinivasan
2017-11-01
This review mainly focuses on the role and properties of β-galactosidase in lactose intolerance and its industrial application. β-Galactosidase, hydrolyses the lactose into glucose and galactose and it is most commonly used in food based technology, particularly in the dairy manufacturing industry. This catalyst mainly focus for the improvement of new and novel products with hydrolyzed lactose, which can be appropriate for the lactose-intolerant persons, to improve the technological, texture and scientific properties of non-fermented dairy products. β-Galactosidase derived from the group of saccharides which is a converting enzymes in the family of hydrolases. They are broadly distributed in the several biological living systems. The enzymatic hydrolysis of lactose is also preferred in food based technology due to the low soluble range of lactose. The concentration lactose was found to be high in fermented dairy products such as ice cream, butter, cheese curd, yogurt, etc., can prompt extreme lactose crystallization bringing about items through a coarse, abrasive surface. Lactose hydrolysis in dairy products enhances adaptability also, richness altogether. These products are extra edible. Also for this purpose, the utilization of β-galactosidase enzyme prior to the condensing operation can reduce the lactose content to a point where lactose was no longer a problem industrial application of β-galactosidase. In Industries, due to the positive and constructive effect on intestinal bacterial microflora, different types of applications are possible in β-galactosidase enzyme.
ERIC Educational Resources Information Center
Buj-Corral, Irene; Marco-Almagro, Lluís; Riba, Alex; Vivancos-Calvet, Joan; Tort-Martorell, Xavier
2015-01-01
In the subject Project I in the second year of the Degree in Industrial Technology Engineering taught at the School of Industrial Engineering of Barcelona (ETSEIB), subgroups of 3-4 students within groups of 20 students develop a project along a semester. Results of 2 projects are presented related to manufacturing, measurement of parts and the…
Using Technology to Facilitate and Enhance Project-based Learning in Mathematical Physics
NASA Astrophysics Data System (ADS)
Duda, Gintaras
2011-04-01
Problem-based and project-based learning are two pedagogical techniques that have several clear advantages over traditional instructional methods: 1) both techniques are active and student centered, 2) students confront real-world and/or highly complex problems, and 3) such exercises model the way science and engineering are done professionally. This talk will present an experiment in project/problem-based learning in a mathematical physics course. The group project in the course involved modeling a zombie outbreak of the type seen in AMC's ``The Walking Dead.'' Students researched, devised, and solved their mathematical models for the spread of zombie-like infection. Students used technology in all stages; in fact, since analytical solutions to the models were often impossible, technology was a necessary and critical component of the challenge. This talk will explore the use of technology in general in problem and project-based learning and will detail some specific examples of how technology was used to enhance student learning in this course. A larger issue of how students use the Internet to learn will also be explored.
Park, Junyeong; Jones, Brandon; Koo, Bonwook; Chen, Xiaowen; Tucker, Melvin; Yu, Ju-Hyun; Pschorn, Thomas; Venditti, Richard; Park, Sunkyu
2016-01-01
Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.
Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata
2018-04-16
Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.
Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.
van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon
2018-03-01
Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.
National Educational Technology. Standards for Students.
ERIC Educational Resources Information Center
International Society for Technology in Education, Eugene, OR.
The primary goals of the National Educational Technology Standards (NETS) project is to enable stakeholders in PreK-12 education to develop national standards for the educational uses of technology that will facilitate school improvement in the United States. The NETS Project will develop standards to guide educational leaders in recognizing and…
10 CFR 609.10 - Loan Guarantee Agreement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TECHNOLOGIES § 609.10 Loan Guarantee Agreement. (a) Only a Loan Guarantee Agreement executed by a duly... Commercial Technologies in service in the United States; (2) The project will be constructed and operated in the United States, the employment of the new or significantly improved technology in the project has...
10 CFR 609.10 - Loan Guarantee Agreement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TECHNOLOGIES § 609.10 Loan Guarantee Agreement. (a) Only a Loan Guarantee Agreement executed by a duly... Commercial Technologies in service in the United States; (2) The project will be constructed and operated in the United States, the employment of the new or significantly improved technology in the project has...
10 CFR 609.10 - Loan Guarantee Agreement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TECHNOLOGIES § 609.10 Loan Guarantee Agreement. (a) Only a Loan Guarantee Agreement executed by a duly... Commercial Technologies in service in the United States; (2) The project will be constructed and operated in the United States, the employment of the new or significantly improved technology in the project has...