Science.gov

Sample records for enzyme ubiquitination state

  1. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis.

    PubMed

    Kimura, Yoko; Yashiroda, Hideki; Kudo, Tai; Koitabashi, Sumiko; Murata, Shigeo; Kakizuka, Akira; Tanaka, Keiji

    2009-05-01

    The dynamic and reversible process of ubiquitin modification controls various cellular activities. Ubiquitin exists as monomers, unanchored chains, or protein-conjugated forms, but the regulation of these interconversions remains largely unknown. Here, we identified a protein designated Rfu1 (regulator of free ubiquitin chains 1), which regulates intracellular concentrations of monomeric ubiquitins and free ubiquitin chains in Saccharomyces cerevisiae. Rfu1 functions as an inhibitor of Doa4, a deubiquitinating enzyme. Rapid loss of free ubiquitin chains upon heat shock, a condition in which more proteins require ubiquitin conjugation, was mediated in part by Doa4 and Rfu1. Thus, regulation of ubiquitin homeostasis is controlled by a balance between a deubiquitinating enzyme and its inhibitor. We propose that free ubiquitin chains function as a ubiquitin reservoir that allows maintenance of monomeric ubiquitins at adequate levels under normal conditions and rapid supply for substrate conjugation under stress conditions. PMID:19410548

  2. Ubiquitin enzymes, ubiquitin and proteasome activity in blood mononuclear cells of MCI, Alzheimer and Parkinson patients.

    PubMed

    Ullrich, C; Mlekusch, R; Kuschnig, A; Marksteiner, J; Humpel, C

    2010-09-01

    Alzheimer's disease (AD) is a severe chronic neurodegenerative disease. During aging and neurodegeneration, misfolded proteins accumulate and activate the ubiquitin-proteasome system. The aim of the present study is to explore whether ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin or proteasome activity are affected in peripheral blood mononuclear cells (PBMC) of AD, mild cognitive impairment (MCI) and Parkinson's disease (PD) patients compared to healthy subjects. PBMCs were isolated from EDTA blood samples and extracts were analyzed by Western Blot. Proteasome activity was measured with fluorogenic substrates. When compared to healthy subjects, the concentration of enzyme E1 was increased in PBMCs of AD patients, whereas the concentration of the enzyme E2 was decreased in these same patients. Ubiquitin levels and proteasome activity were unchanged in AD patients. No changes in enzyme expression or proteasome activity was observed in MCI patients compared to healthy and AD subjects. In PD patients E2 levels and proteasomal activity were significantly reduced, while ubiquitin and E1 levels were unchanged. The present investigation demonstrates the differences in enzyme and proteasome activity patterns of AD and PD patients. These results suggest that different mechanisms are involved in regulating the ubiquitin-proteasomal system in different neurodegenerative diseases.

  3. Auto-ubiquitination of ubiquitin-activating enzymes from chicken breast muscle.

    PubMed Central

    Arnold, J E; Gevers, W

    1990-01-01

    A soluble ubiquitin-depleted fraction from chicken skeletal muscle (fraction II), when incubated at neutral pH for several hours with 125I-ubiquitin and ATP, formed small amounts of a ubiquitin derivative (Mr 115,000) of the ubiquitin-activating enzyme E1 as well as certain similarly modified E2 species (Mr 37,000, 34,000 and 24,000). Treatment of such mixtures with NaOH during the incubations, even at early times, greatly enhanced the appearance of these entities; up to two-thirds of the thiolesters of ubiquitin bound to these proteins before alkali treatment were thus converted. The bonds involved had properties compatible with their being peptidic in nature, suggesting that auto-ubiquitination had occurred in each case. The protease inhibitor and alkylating agent tosyl-lysylchloromethane ('TLCK'), when preincubated at 50 microM with fraction II for 2 h at 37 degrees C before the addition of 125I-ubiquitin and ATP, promoted the subsequent auto-ubiquitination of E1 and inhibited its adenylate-forming and thiolester-transferring activities. The findings have a bearing on the physiological substrate- and site-specificity of ubiquitin-conjugating reactions. Images Fig. 1. Fig. 3. Fig. 5. PMID:2160236

  4. High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins.

    PubMed

    Kitahara, Ryo

    2015-01-01

    High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states--an alternatively folded state N2 and a locally disordered state I--between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5 kbar, where the N2 state is 97% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion. PMID:26174383

  5. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    SciTech Connect

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-04-15

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis.

  6. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6.

    PubMed

    Gavin, James M; Chen, Jesse J; Liao, Hua; Rollins, Neil; Yang, Xiaofeng; Xu, Qing; Ma, Jingya; Loke, Huay-Keng; Lingaraj, Trupti; Brownell, James E; Mallender, William D; Gould, Alexandra E; Amidon, Benjamin S; Dick, Lawrence R

    2012-05-01

    Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PP(i) exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PP(i) exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.

  7. Deubiquitinating Enzyme Specificity for Ubiquitin Chain Topology Profiled by Di-Ubiquitin Activity Probes

    PubMed Central

    McGouran, Joanna F.; Gaertner, Selina R.; Altun, Mikael; Kramer, Holger B.; Kessler, Benedikt M.

    2013-01-01

    Summary Posttranslational modification with ubiquitin (Ub) controls many cellular processes, and aberrant ubiquitination can contribute to cancer, immunopathology, and neurodegeneration. The versatility arises from the ability of Ub to form polymer chains with eight distinct linkages via lysine side chains and the N terminus. In this study, we engineered Di-Ub probes mimicking all eight different poly-Ub linkages and profiled the deubiquitinating enzyme (DUB) selectivity for recognizing Di-Ub moieties in cellular extracts. Mass spectrometric profiling revealed that most DUBs examined have broad selectivity, whereas a subset displays a clear preference for recognizing noncanonical over K48/K63 Ub linkages. Our results expand knowledge of Ub processing enzyme functions in cellular contexts that currently depends largely on using recombinant enzymes and substrates. PMID:24290882

  8. In silico analysis and developmental expression of ubiquitin-conjugating enzymes in Schistosoma mansoni.

    PubMed

    Costa, Marcela P; Oliveira, Victor F; Pereira, Roberta V; de Abreu, Fabiano C P; Jannotti-Passos, Liana K; Borges, William C; Guerra-Sá, Renata

    2015-05-01

    Ubiquitin-conjugating enzymes (Ub-E2) perform the second step of ubiquitination and, consequently, are essential for regulating proteolysis and for modulating protein function, interactions and trafficking. Previously, our group demonstrated the crucial role of ubiquitination and the Ub-proteasome pathway during the Schistosoma mansoni life cycle. In the present investigation, we used a homology-based genome-wide bioinformatics approach to identify and molecularly characterise the Ub-E2 enzymes in S. mansoni. The putative functions were further investigated through molecular phylogenetic and expression profile analyses using cercariae, adult worms, eggs and mechanically transformed schistosomula (MTS) cultured in vitro for 3.5 h or 1 or 3 days. We identified, via in silico analysis, 17 Ub-E2 enzymes with conserved structural characteristics: the beta-sheet and the helix-2 form a central core bordered by helix-1 at one side and helix-3 and helix-4 at the other. The observed quantitative differences in the steady-state transcript levels between the cercariae and adult worms may contribute to the differential protein ubiquitination observed during the parasite's life cycle. This study is the first to identify and characterise the E2 ubiquitin conjugation family in S. mansoni and provides fundamental information regarding their molecular phylogenetics and developmental expression during intra-mammalian stages. PMID:25663106

  9. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  10. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.

    PubMed

    Qiu, Jiazhang; Sheedlo, Michael J; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-05-01

    Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.

  11. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.

    PubMed

    Qiu, Jiazhang; Sheedlo, Michael J; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-05-01

    Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP. PMID:27049943

  12. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    PubMed Central

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S.; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-01-01

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or as enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalyzed by these enzymes is energized by NAD which activates ubiquitin by the formation of ADP-ribosylated ubiquitin (ADPR-Ub). These results establish that ubiquitination can be catalyzed by a single enzyme whose activity does not require ATP. PMID:27049943

  13. RING E3-Catalyzed E2 Self-Ubiquitination Attenuates the Activity of Ube2E Ubiquitin-Conjugating Enzymes.

    PubMed

    Banka, Prerana Agarwal; Behera, Adaitya Prasad; Sarkar, Sayani; Datta, Ajit B

    2015-07-01

    Ubiquitination of a target protein is accomplished through sequential actions of the E1, E2s, and the E3s. E2s dictate the modification topology while E3 ligases confer substrate specificity and recruit the cognate E2. Human genome codes for ~35 different E2 proteins; all of which contain the characteristic ubiquitin-conjugating UBC core domain sufficient for catalysis. Many of these E2 enzymes also have N- or C-terminal extensions; roles of which are not very well understood. We show that the N-terminal extension of Ube2E1 undergoes intramolecular auto-ubiquitination. This self-ubiquitination activity is enhanced in the presence of interacting RING E3 ligases and results in a progressive attenuation of the E2 activity toward substrate/E3 modification. We also find that the N-terminal ubiquitination sites are conserved in all the three Ube2Es and replacing them with arginine renders all three full-length Ube2Es equally active as their core UBC domains. Based on these results, we propose that E3-catalyzed self-ubiquitination acts as a key regulatory mechanism that controls the activity of Ube2E class of ubiquitin E2s.

  14. In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species.

    PubMed

    Arya, Shweta; Sharma, Gaurav; Gupta, Preeti; Tiwari, Swati

    2012-07-01

    Covalent modification of proteins by ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) regulates many cellular functions in eukaryotes. These modifications are likely to be associated with pathogenesis, growth, and development of many protozoan parasites but molecular details about this pathway are unavailable for most protozoa. This study presents an analysis of the Ub pathway in three members of the Entamoeba species. Using bioinformatics tools we have identified all Ub and Ubl genes along with their corresponding activating, conjugating, and ligating enzymes (E1, E2s, and E3s) in three Entamoeba species, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens. Phylogenetic trees were established for the identified E2s and RING finger E3s using maximum-likelihood method to infer the relationship among these proteins. In silico co-domain analysis of RING finger E3s implicates these proteins in a variety of functions. Several known and putative regulatory motifs were identified in the upstream regions of RING finger domain containing E3 genes. All E2 and E3 genes were analyzed in genomic context in E. histolytica and E. dispar. Most E2s and E3s were in syntenic positions in the two genomes. Association of these genes with transposable elements (TEs) was compared between E. histolytica and E. dispar. A closer association was found between RING finger E3s with TEs in E. histolytica. In summary, our analyses suggests that the complexity of the Ub pathway in Entamoeba species is close to that observed in higher eukaryotes. This study provides important data for further understanding the role of Ub pathway in the biology of these organisms.

  15. Ubiquitination Accomplished: E1 and E2 Enzymes Were Not Necessary.

    PubMed

    Nakasone, Mark A; Huang, Danny T

    2016-06-16

    Qiu et al. (2016) show that a mono-ADP-ribosyltransferase, SdeA, from Legionella pneumophila catalyzes ADP-ribosylation of ubiquitin, allowing SdeA to modify substrate with ubiquitin in the absence of E1 and E2 enzymes. PMID:27315555

  16. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis.

  17. Novel inhibitors of Rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization.

    PubMed

    Sanders, Matthew A; Brahemi, Ghali; Nangia-Makker, Pratima; Balan, Vitaly; Morelli, Matteo; Kothayer, Hend; Westwell, Andrew D; Shekhar, Malathy P V

    2013-04-01

    Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2-M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDA-MB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs.

  18. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue.

    PubMed

    Wilkinson, K D; Smith, S E; O'Connor, L; Sternberg, E; Taggart, J J; Berges, D A; Butt, T

    1990-08-14

    A nonhydrolyzable analogue of ubiquitin adenylate has been synthesized for use as a specific inhibitor of the ubiquitination of proteins. Ubiquitin adenylate is a tightly bound intermediate formed by the ubiquitin activating enzyme. The inhibitor adenosyl-phospho-ubiquitinol (APU) is the phosphodiester of adenosine and the C-terminal alcohol derived from ubiquitin. APU is isosteric with the normal reaction intermediate, the mixed anhydride of ubiquitin and AMP, but results from the replacement of the carbonyl oxygen of Gly76 with a methylene group. This stable analogue would be expected to bind to both ubiquitin and adenosine subsites and result in a tightly bound competitive inhibitor of ubiquitin activation. APU inhibits the ATP-PPi exchange reaction catalyzed by the purified ubiquitin activating enzyme in a manner competitive with ATP (Ki = 50 nM) and noncompetitive with ubiquitin (Ki = 35 nM). AMP has no effect on the inhibition, confirming that the inhibitor binds to the free form of the enzyme and not the thiol ester form. This inhibition constant is 10-fold lower than the dissociation constants for each substrate and 30-1000-fold lower than the respective Km values for ubiquitin and ATP. APU also effectively inhibits conjugation of ubiquitin to endogenous proteins catalyzed by reticulocyte fraction II with an apparent Ki of 0.75 microM. This weaker inhibition is consistent with the fact that activation of ubiquitin is not rate limiting in the conjugation reactions catalyzed by fraction II. APU is similarly effective as an inhibitor of the ubiquitin-dependent proteolysis of beta-lactoglobulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An Allosteric Inhibitor of the Human Cdc34 Ubiquitin-Conjugating Enzyme

    SciTech Connect

    Ceccarelli, Derek F.; Tang, Xiaojing; Pelletier, Benoit; Orlicky, Stephen; Xie, Weilin; Plantevin, Veronique; Neculai, Dante; Chou, Yang-Chieh; Ogunjimi, Abiodun; Al-Hakim, Abdallah; Varelas, Xaralabos; Koszela, Joanna; Wasney, Gregory A.; Vedadi, Masoud; Dhe-Paganon, Sirano; Cox, Sarah; Xu, Shuichan; Lopez-Girona, Antonia; Mercurio, Frank; Wrana, Jeff; Durocher, Daniel; Meloche, Sylvain; Webb, David R.; Tyers, Mike; Sicheri, Frank

    2011-09-06

    In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF{sup Skp2} substrate p27{sup Kip1}. CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.

  20. Largazole and Its Derivatives Selectively Inhibit Ubiquitin Activating Enzyme (E1)

    PubMed Central

    Nasveschuk, Christopher G.; Wang, Wei; Quade, Bettina; Zhang, Gan; Kuchta, Robert D.; Phillips, Andrew J.; Liu, Xuedong

    2012-01-01

    Protein ubiquitination plays an important role in the regulation of almost every aspect of eukaryotic cellular function; therefore, its destabilization is often observed in most human diseases and cancers. Consequently, developing inhibitors of the ubiquitination system for the treatment of cancer has been a recent area of interest. Currently, only a few classes of compounds have been discovered to inhibit the ubiquitin-activating enzyme (E1) and only one class is relatively selective in E1 inhibition in cells. We now report that Largazole and its ester and ketone analogs selectively inhibit ubiquitin conjugation to p27Kip1 and TRF1 in vitro. The inhibitory activity of these small molecules on ubiquitin conjugation has been traced to their inhibition of the ubiquitin E1 enzyme. To further dissect the mechanism of E1 inhibition, we analyzed the effects of these inhibitors on each of the two steps of E1 activation. We show that Largazole and its derivatives specifically inhibit the adenylation step of the E1 reaction while having no effect on thioester bond formation between ubiquitin and E1. E1 inhibition appears to be specific to human E1 as Largazole ketone fails to inhibit the activation of Uba1p, a homolog of E1 in Schizosaccharomyces pombe. Moreover, Largazole analogs do not significantly inhibit SUMO E1. Thus, Largazole and select analogs are a novel class of ubiquitin E1 inhibitors and valuable tools for studying ubiquitination in vitro. This class of compounds could be further developed and potentially be a useful tool in cells. PMID:22279528

  1. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment.

    PubMed

    Liu, Hsiu-Yu; Pfleger, Cathie M

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.

  2. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1.

    PubMed

    Wiener, Reuven; DiBello, Anthony T; Lombardi, Patrick M; Guzzo, Catherine M; Zhang, Xiangbin; Matunis, Michael J; Wolberger, Cynthia

    2013-09-01

    OTUB1 is a Lys48-specific deubiquitinating enzyme that forms a complex in vivo with E2 ubiquitin (Ub)-conjugating enzymes including UBC13 and UBCH5. OTUB1 binds E2~Ub thioester intermediates and prevents ubiquitin transfer, thereby noncatalytically inhibiting accumulation of polyubiquitin. We report here that a second role of OTUB1-E2 interactions is to stimulate OTUB1 cleavage of Lys48 polyubiquitin. This stimulation is regulated by the ratio of charged to uncharged E2 and by the concentration of Lys48-linked polyubiquitin and free ubiquitin. Structural and biochemical studies of human and worm OTUB1 and UBCH5B show that the E2 enzyme stimulates binding of the Lys48 polyubiquitin substrate by stabilizing folding of the OTUB1 N-terminal ubiquitin-binding helix. Our results suggest that OTUB1-E2 complexes in the cell are poised to regulate polyubiquitin chain elongation or degradation in response to changing levels of E2 charging and available free ubiquitin.

  3. The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici

    PubMed Central

    Millyard, Linda; Lee, Jack; Zhang, Cunjin; Yates, Gary; Sadanandom, Ari

    2016-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici commonly known as Septoria), the causal agent of Septoria Leaf Blotch (STB), is considered one of the major threats to European wheat production. Previous studies have shown the importance of ubiquitination in plant defence against a multitude of pathogens. However the ubiquitination machinery in wheat is under studied, particularly E2 enzymes that have the ability to control the ubiquitination and thereby the fate of many different target proteins. In this study we identify an E2 enzyme, Triticum aestivum Ubiquitin conjugating enzyme 4 (TaU4) that functions in wheat defence against Septoria. We demonstrate TaU4 to be a bona fide E2 enzyme through an E2 charging assay. TaU4 localises in both the cytoplasm and nucleus, therefore potentially interacting with E3 ligases and substrate proteins in multiple compartments. Virus Induced Gene Silencing of TaU4 in wheat leaves resulted in delayed development of disease symptoms, reduced Septoria growth and reproduction. We conclude that TaU4 is a novel negative regulator of defence against Septoria. PMID:27759089

  4. The ubiquitin conjugating enzyme UbcH10 competes with UbcH3 for binding to the SCF complex, a ubiquitin ligase involved in cell cycle progression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...

  5. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously

    PubMed Central

    Lee, Tom V.; Ding, Tian; Chen, Zhihong; Rajendran, Vani; Scherr, Heather; Lackey, Melinda; Bolduc, Clare; Bergmann, Andreas

    2008-01-01

    Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene. PMID:18045837

  6. Direct Sensing and Discrimination among Ubiquitin and Ubiquitin Chains Using Solid-State Nanopores

    PubMed Central

    Nir, Iftach; Huttner, Diana; Meller, Amit

    2015-01-01

    Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of

  7. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  8. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting.

    PubMed

    Bédard, Nathalie; Jammoul, Samer; Moore, Tamara; Wykes, Linda; Hallauer, Patricia L; Hastings, Kenneth E M; Stretch, Cynthia; Baracos, Vickie; Chevalier, Stéphanie; Plourde, Marie; Coyne, Erin; Wing, Simon S

    2015-09-01

    The ubiquitin system plays a critical role in muscle wasting. Previous work has focused on the roles of ubiquitination. However, a role for deubiquitination in this process has not been established. Because ubiquitin-specific protease (USP)19 deubiquitinating enzyme is induced in skeletal muscle in many catabolic conditions, we generated USP19 knockout (KO) mice. These mice lost less muscle mass than wild-type (WT) animals in response to glucocorticoids, a common systemic cause of muscle atrophy as well as in response to denervation, a model of disuse atrophy. KO mice retained more strength and had less myofiber atrophy with both type I and type IIb fibers being protected. Rates of muscle protein synthesis were similar in WT and KO mice, suggesting that the sparing of atrophy was attributed to suppressed protein degradation. Consistent with this, expression of the ubiquitin ligases MuRF1 and MAFbx/atrogin-1 as well as several autophagy genes was decreased in the muscles of catabolic KO mice. Expression of USP19 correlates with that of MuRF1 and MAFbx/atrogin-1 in skeletal muscles from patients with lung cancer or gastrointestinal cancer, suggesting that USP19 is involved in human muscle wasting. Inhibition of USP19 may be a useful approach to the treatment of many muscle-wasting conditions.

  9. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    PubMed Central

    Citterio, Elisabetta

    2015-01-01

    Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer. PMID:26442100

  10. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes. PMID:26362128

  11. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  12. The Ubiquitination Machinery of the Ubiquitin System

    PubMed Central

    Callis, Judy

    2014-01-01

    The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery “half” of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s. PMID:25320573

  13. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes.

    PubMed

    Mulder, Monique P C; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C O; Schulman, Brenda A; Komander, David; Neefjes, Jacques; El Oualid, Farid; Ovaa, Huib

    2016-07-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like modifiers (Ubls), orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a wide range of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Similarly to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade, UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe 'hops' and 'traps' catalytically active Ub-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activity in living cells, presents novel and versatile tools to interrogate Ub and Ubl cascades. PMID:27182664

  14. Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP Mechanistic Insights into a Minimalistic E1 Enzyme

    SciTech Connect

    Bacik, John-Paul; Walker, John R.; Ali, Mohsin; Schimmer, Aaron D.; Dhe-Paganon, Sirano

    2010-08-30

    E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys{sup 250}) is part of the adenylation domain in an {alpha}-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.

  15. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response

    PubMed Central

    Butler, Laura R; Densham, Ruth M; Jia, Junying; Garvin, Alexander J; Stone, Helen R; Shah, Vandna; Weekes, Daniel; Festy, Frederic; Beesley, James; Morris, Joanna R

    2012-01-01

    The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double-strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly-Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain-dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168-mediated lysine 63-linked poly-Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end-joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1-deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de-ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome. PMID:22909820

  16. Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9.

    PubMed Central

    Yasugi, T; Howley, P M

    1996-01-01

    Ubiquitin conjugating enzymes (UBCs) are a family of proteins directly involved in ubiquitination of proteins. Ubiquitination is known to be involved in control of a variety of cellular processes, including cell proliferation, through the targeting of key regulatory proteins for degradation. The ubc9 gene of the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for cell cycle progression and is involved in the degradation of S phase and M phase cyclins. We have identified a human homolog of Scubc9 (termed hubc9) using the two hybrid screen for proteins that interact with the human papillomavirus type 16 E1 replication protein. The hubc9 encoded protein shares a very high degree of amino acid sequence similarity with ScUBC9 and with the homologous hus5+ gene product of Schizosaccharomyces pombe. Genetic complementation experiments in a S.cerevisiae ubc9ts mutant reveal that hUBC9 can substitute for the function of ScUBC9 required for cell cycle progression. PMID:8668529

  17. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination

    PubMed Central

    Wang, Sheng; Cao, Ling; Wang, Hong

    2016-01-01

    Protein ubiquitination is critical for numerous processes in eukaryotes. The ubiquitin-conjugating enzyme (E2) is required for ubiquitination. The Arabidopsis genome has approximately 37 E2 genes, but in vivo functions for most of them remain unknown. In this study we observed that knockout mutants of Arabidopsis UBC22 had much-reduced silique length and seed number, with nearly 90% of ovules aborted. Analyses revealed that the majority of mutant embryo sacs displayed severe defects and often contained no gamete nuclei. There was no difference between mutant and wild-type Arabidopsis at the megaspore mother cell stage; however, the functional megaspore was either not present or appeared abnormal in a large portion of mutant ovules, suggesting that the defect started with functional megaspore degeneration in the mutants. Degeneration continued during megagametogenesis, such that the percentage of mature embryo sacs without any gamete nuclei was much greater than the percentage of developing ovules without a functional megaspore and, in addition, various abnormalities in megagametogenesis were observed. Additionally, heterozygous plants had only 13.1% of ovules aborted, indicating that the heterozygous sporophytic tissues could affect the development of the mutant female gametophyte. UBC22 is the sole member of an Arabidopsis E2 subfamily, and is more closely related to one type of E2s in animals that catalyzes Lys11-specific ubiquitination. Indeed, our results showed that Arabidopsis UBC22 could catalyze ubiquitin dimer formation in vitro in a Lys11-dependent manner, suggesting that it likely catalyzes Lys11-linked ubiquitination in plants. This study has thus identified one biochemical property of UBC22 and revealed a novel function in female gametophyte development. PMID:27069118

  18. Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network

    PubMed Central

    Markson, Gabriel; Kiel, Christina; Hyde, Russell; Brown, Stephanie; Charalabous, Panagoula; Bremm, Anja; Semple, Jennifer; Woodsmith, Jonathan; Duley, Simon; Salehi-Ashtiani, Kourosh; Vidal, Marc; Komander, David; Serrano, Luis; Lehner, Paul; Sanderson, Christopher M.

    2009-01-01

    In eukaryotic cells the stability and function of many proteins are regulated by the addition of ubiquitin or ubiquitin-like peptides. This process is dependent upon the sequential action of an E1-activating enzyme, an E2-conjugating enzyme, and an E3 ligase. Different combinations of these proteins confer substrate specificity and the form of protein modification. However, combinatorial preferences within ubiquitination networks remain unclear. In this study, yeast two-hybrid (Y2H) screens were combined with true homology modeling methods to generate a high-density map of human E2/E3-RING interactions. These data include 535 experimentally defined novel E2/E3-RING interactions and >1300 E2/E3-RING pairs with more favorable predicted free-energy values than the canonical UBE2L3–CBL complex. The significance of Y2H predictions was assessed by both mutagenesis and functional assays. Significantly, 74/80 (>92%) of Y2H predicted complexes were disrupted by point mutations that inhibit verified E2/E3-RING interactions, and a ∼93% correlation was observed between Y2H data and the functional activity of E2/E3-RING complexes in vitro. Analysis of the high-density human E2/E3-RING network reveals complex combinatorial interactions and a strong potential for functional redundancy, especially within E2 families that have undergone evolutionary expansion. Finally, a one-step extended human E2/E3-RING network, containing 2644 proteins and 5087 edges, was assembled to provide a resource for future functional investigations. PMID:19549727

  19. Role of the Deubiquitylating Enzyme DmUsp5 in Coupling Ubiquitin Equilibrium to Development and Apoptosis in Drosophila melanogaster

    PubMed Central

    Kovács, Levente; Nagy, Olga; Pál, Margit; Udvardy, Andor; Popescu, Octavian; Deák, Péter

    2015-01-01

    Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent. PMID:25806519

  20. Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2

    PubMed Central

    Ju, Tingting; Bocik, William; Majumdar, Ananya; Tolman, Joel R.

    2009-01-01

    Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum-associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48-linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin-tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95-107 and 130-135) flanking the active site cysteine are poorly defined. 15N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester-linked donor ubiquitin, in order to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side-chains of Asp98 or Asp99. PMID:20014027

  1. Investigation of genetic variants in ubiquitin enzyme genes involved in the modulation of neurodevelopmental processes: a role in schizophrenia susceptibility?

    PubMed

    Andrews, Jessica L; Fernandez-Enright, Francesca

    2014-11-24

    Despite extensive research during the last few decades, the etiology of schizophrenia remains unclear. Evidence of both genetic and environmental influences in the developmental profile of schizophrenia has grown, and due to the complexity of this disorder, a polygenic aspect has been associated with this neuropsychiatric pathology. Unfortunately, no diagnostic strategies based on biological measurement or genetic testing is currently available for schizophrenia. Gene-expression profiling and recent protein studies have shown a decrease in the expression of ubiquitin pathway proteins in the prefrontal cortex of schizophrenia patients. We have examined single nucleotide polymorphisms (or SNPs) within three genes from the ubiquitin protein system: the ubiquitin conjugating enzyme E2D1 (UBE2D1) gene, the E3 SUMO-protein ligase protein inhibitor of activated STAT 2 (PIAS2) gene, and the E3 ubiquitin ligase F-box and leucine-rich repeat protein 21 (FBXL21) gene, in a Caucasian case-control population for schizophrenia. After Bonferroni correction for multiple testing was applied, no significant associations were reported for any of the tested SNPs. Additional genetic analyses will be necessary to fully explore the role of these three genes in schizophrenia. Regarding the rising interest in ubiquitin-related proteins as a therapeutic target in other pathologies such as cancer, further research into the role of ubiquitin pathways in schizophrenia seems topical and timely.

  2. The ubiquitin conjugating enzyme UbcH7, controls cell migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Post translational modification by ubiquitination can target proteins for degradation, allow the interaction of proteins to form complexes or direct relocalization of proteins to different subcellular compartments. As such, ubiquitin controls a variety of essential cellular processes. Previously we ...

  3. Linked genes for calmodulin and E2 ubiquitin-conjugating enzyme in Trichomonas vaginalis.

    PubMed

    Keeling, P J; Doherty-Kirby, A L; Teh, E M; Doolittle, W F

    1996-01-01

    In searching the genomes of early-diverging protists to study whether the possession of calmodulin is ancestral to all eukaryotes, the gene for calmodulin was identified in Trichomonas vaginalis. This flagellate is a member of the Parabasalia, one of the earliest lineages of recognized eukaryotes to have diverged. This sequence was used to isolate a homologous 1.250-kb fragment from the T. vaginalis genome by inverse polymerase chain reaction. This fragment was also completely sequenced and shown to contain the 3' end of the single-copy calmodulin gene and the 3' end of a gene encoding a protein with high similarity to E2 ubiquitin-conjugating enzymes, a family which has previously only been identified in animals, plants, and fungi. Phylogenetic analysis of 50 members of the E2 family distinguishes at least nine separate subfamilies one of which includes the T. vaginalis E2-homologue and an uncharacterized gene from yeast chromosome XII.

  4. Developmentally regulated loss of ubiquitin and ubiquitinated proteins during pollen maturation in maize.

    PubMed

    Callis, J; Bedinger, P

    1994-06-21

    Eukaryotic cells typically contain 0.2-1.0% of their total protein as the highly conserved protein ubiquitin, which exists both free and covalently attached to cellular proteins. The attachment of ubiquitin to cellular proteins occurs posttranslationally by a three-enzyme pathway and results in a peptide linkage of the C terminus of ubiquitin either to a lysyl epsilon-amino group of a substrate protein or to a lysyl epsilon-amino group of a previously linked ubiquitin molecule. The multiple conjugation of ubiquitin to substrate proteins via ubiquitin-ubiquitin linkages is thought to be necessary, but not sufficient, for recognition and degradation by a ubiquitin-dependent protease. In higher plant cells the steady-state level of ubiquitinated proteins is generally constant and can be readily detected in all somatic tissues. In contrast, we have found that a developmentally regulated loss of free ubiquitin and ubiquitinated proteins occurs during maize (Zea mays L.) pollen maturation. This dramatic loss of ubiquitin correlates temporally with commitment to the gametophytic developmental program. Northern blot analysis indicates that the loss of ubiquitin is not due to low levels of ubiquitin mRNA, suggesting that a posttranscriptional regulatory mechanism is responsible. PMID:7517039

  5. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    PubMed Central

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-01-01

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation. PMID:26463729

  6. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    SciTech Connect

    Imura, Yoshiyuki Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  7. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  8. Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes.

    PubMed

    Graf, Christian; Stankiewicz, Marta; Nikolay, Rainer; Mayer, Matthias P

    2010-03-16

    The dimeric E3 ubiquitin ligase CHIP binds with its tetratricopeptide repeat (TPR) domain the C-terminus of molecular chaperones Hsp70 and Hsp90 and with its U-box region E2 ubiquitin-conjugating enzymes. By ubiquitinating chaperone-bound polypeptides, CHIP thus links the chaperone machinery to the proteasomal degradation pathway. The molecular mechanism of how CHIP discriminates between folding and destruction of chaperone substrates is not yet understood. Two recently published crystal structures of mouse and zebrafish CHIP truncation constructs differ substantially, showing either an asymmetric assembly or a symmetric assembly with a highly ordered middle domain. To characterize the conformational properties of the intact full-length protein in solution, we performed amide hydrogen exchange mass spectrometry (HX-MS) with human CHIP. In addition, we monitored conformational changes in CHIP upon binding of Hsp70, Hsp90, and their respective C-terminal EEVD peptides, and in complex with the different E2 ubiquitin-conjugating enzymes UbcH5a and Ubc13. Solution HX-MS data suggest a symmetric dimer assembly with highly flexible parts in the middle domain contrasting both the asymmetric and the symmetric crystal structure. CHIP exhibited an extraordinary flexibility with a largely unprotected N-terminal TPR domain. Formation of a complex with intact Hsp70 and Hsp90 or their respective C-terminal octapeptides induced folding of the TPR domain to a defined, highly stabilized structure with protected amide hydrogens. Interaction of CHIP with two different E2 ubiquitin-conjugating enzymes, UbcH5a and Ubc13, had distinct effects on the conformational dynamics of CHIP, suggesting different roles of the CHIP-E2 interaction in the ubiquitination of substrates and interaction with chaperones.

  9. Molecular Basis of Lys-63-linked Polyubiquitination Inhibition by the Interaction between Human Deubiquitinating Enzyme OTUB1 and Ubiquitin-conjugating Enzyme UBC13*

    PubMed Central

    Sato, Yusuke; Yamagata, Atsushi; Goto-Ito, Sakurako; Kubota, Keiko; Miyamoto, Rikako; Nakada, Shinichiro; Fukai, Shuya

    2012-01-01

    UBC13 is the only known E2 ubiquitin (Ub)-conjugating enzyme that produces Lys-63-linked Ub chain with its cofactor E2 variant UEV1a or MMS2. Lys-63-linked ubiquitination is crucial for recruitment of DNA repair and damage response molecules to sites of DNA double-strand breaks (DSBs). A deubiquitinating enzyme OTUB1 suppresses Lys-63-linked ubiquitination of chromatin surrounding DSBs by binding UBC13 to inhibit its E2 activity independently of the isopeptidase activity. OTUB1 strongly suppresses UBC13-dependent Lys-63-linked tri-Ub production, whereas it allows di-Ub production in vitro. The mechanism of this non-canonical OTUB1-mediated inhibition of ubiquitination remains to be elucidated. Furthermore, the atomic level information of the interaction between human OTUB1 and UBC13 has not been reported. Here, we determined the crystal structure of human OTUB1 in complex with human UBC13 and MMS2 at 3.15 Å resolution. The presented atomic-level interactions were confirmed by surface-plasmon resonance spectroscopy with structure-based mutagenesis. The designed OTUB1 mutants cannot inhibit Lys-63-linked Ub chain formation in vitro and histone ubiquitination and 53BP1 assembly around DSB sites in vivo. Finally, we propose a model for how capping of di-Ub by the OTUB1-UBC13-MMS2/UEV1a complex efficiently inhibits Lys-63-linked tri-Ub formation. PMID:22679021

  10. Structure of full-length ubiquitin-conjugating enzyme E2-25K (huntingtin-interacting protein 2)

    SciTech Connect

    Wilson, Randall C.; Hughes, Ronny C.; Flatt, Justin W.; Meehan, Edward J.; Ng, Joseph D.; Twigg, Pamela D.

    2009-08-07

    The ubiquitin-conjugating enzyme E2-25K has been identified as a huntingtin (the key protein in Huntington's disease) interacting protein and has been shown to play a role in mediating the toxicity of A{beta}, the principal protein involved in Alzheimer's disease pathogenesis. E2-25K is a dual-domain protein with an ubiquitin-associated (UBA) domain as well as a conserved ubiquitin-conjugating (UBC) domain which catalyzes the formation of a covalent bond between the C-terminal glycine of an ubiquitin molecule and the {var_epsilon}-amine of a lysine residue on the acceptor protein as part of the ubiquitin-proteasome pathway. The crystal structures of E2-25K M172A mutant protein at pH 6.5 and pH 8.5 were determined to 1.9 and 2.2 {angstrom} resolution, respectively. Examination of the structures revealed domain-domain interactions between the UBC and UBA domains which have not previously been reported

  11. A ubiquitin-conjugating enzyme in fission yeast that is essential for the onset of anaphase in mitosis.

    PubMed Central

    Osaka, F; Seino, H; Seno, T; Yamao, F

    1997-01-01

    A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis. PMID:9154838

  12. Role of the C-terminus of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in substrate and ubiquitin-protein-ligase (E3-R) interactions.

    PubMed

    Raboy, B; Kulka, R G

    1994-04-01

    The product of the RAD6 (UBC2) gene of Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme (Rad6) which is implicated in DNA repair, induced mutagenesis, retrotransposition, sporulation and the degradation of proteins with destabilizing N-terminal amino acid residues. Deletion of the 23-residue acidic C-terminus of Rad6 impairs sporulation and N-end rule protein degradation in vivo but does not affect other functions such as DNA repair and induced mutagenesis. We have investigated the role of the C-terminus of Rad6 in in vitro interactions with various substrates and with a putative ubiquitin-protein ligase, E3-R. The removal of the Rad6 C-terminus had significant different effects on enzyme activity for individual substrates. Although the 23-residue truncated Rad6-149 protein had markedly impaired activity for histone H2B and micrococcal nuclease, the activity for cytochrome c was the same as that of the intact Rad6 protein. Similarly, truncation of Rad6 had no effect on its activity for several poor substrates, namely, beta-casein, beta-lactoglobulin and oxidized RNase. E3-R stimulated the activities of both Rad6 and Rad6-149 for the latter three substrates to similar degrees. E3-R appears to act by enhancing the low intrinsic affinity of Rad6 and Rad6-149 for these substrates. Thus Rad6 can act in three different modes in vitro depending on the substrate, namely unassisted C-terminus-dependent, unassisted C-terminus-independent and E3-R-assisted C-terminus-independent modes. We also examined the results of removing the C-terminal acidic region of Cdc34 (Ubc3), a ubiquitin-conjugating enzyme closely related to Rad6. Truncation of Cdc34 like that of Rad6 had no effect on activity for beta-casein, beta-lactoglobulin or oxidized RNase in the presence or absence of E3-R.

  13. Immunoelectron microscopic localization of the ubiquitin-activating enzyme E1 in HepG2 cells.

    PubMed Central

    Schwartz, A L; Trausch, J S; Ciechanover, A; Slot, J W; Geuze, H

    1992-01-01

    As the first enzyme in the ubiquitin system the ubiquitin-activating enzyme E1 plays a pivotal role in all pathways of protein ubiquitination. In an effort to learn more about the cell biology of this pathway, we have purified the 110-kDa enzyme to homogeneity and generated a panel of distinct monoclonal antibodies to it. Using quantitative electron microscopic immunolocalization with these anti-E1 monoclonal antibodies, we find that E1 is abundant both within the cytoplasm and nucleus. Within the cytoplasm, E1 was found throughout the cytoplasmic volume as well as enriched along the cytoplasmic face of the rough endoplasmic reticulum and associated with the dense material along the desmosomal junctions. E1 was also found associated with the cytoplasmic surface of endosomal/lysosomal vacuoles. Interestingly, E1 was also found within the mitochondria. The lumen of rough endoplasmic reticulum, Golgi complex, endosomes, and lysosomes were negative. The specific localization of E1 to distinct subcellular organelles suggests that E1 may play multiple physiological roles within the cell. Images PMID:1376922

  14. Ubiquitin is a Novel Substrate for Human Insulin-Degrading Enzyme

    PubMed Central

    Ralat, Luis A.; Kalas, Vasilios; Zheng, Zhongzhou; Goldman, Robert D.; Sosnick, Tobin R.; Tang, Wei-Jen

    2011-01-01

    Insulin-degrading enzyme (IDE) can degrade insulin and amyloid-β (Aβ), peptides involved in diabetes and Alzheimer's disease, respectively. IDE selects its substrates based on size, charge, and flexibility. From these criteria, we predict that IDE can cleave and inactivate ubiquitin (Ub). Here, we show that IDE cleaves Ub in a biphasic manner, first, by rapidly removing the two C-terminal glycines (kcat = 2 sec-1) followed by a slow cleavage between residues 72-73 (kcat = 0.07 sec-1), thereby producing the inactive Ub1-74 and Ub1-72. IDE is a ubiquitously expressed cytosolic protein, where monomeric Ub is also present. Thus, Ub degradation by IDE should be regulated. IDE is known to bind the cytoplasmic intermediate filament protein nestin with high affinity. We found that nestin potently inhibits the cleavage of Ub by IDE. In addition, Ub1-72 has a markedly increased affinity for IDE (∼90 fold). Thus, the association of IDE with cellular regulators and product inhibition by Ub1-72 can prevent inadvertent proteolysis of cellular Ub by IDE. Ub is a highly stable protein. However, IDE instead prefers to degrade peptides with high intrinsic flexibility. Indeed, we demonstrate that IDE is exquisitely sensitive to Ub stability. Mutations that only mildly destabilize Ub (ΔΔG ‹ 0.6 kcal/mol) render IDE hypersensitive to Ub with rate enhancements greater than 12-fold. The Ub-bound IDE structure and IDE mutants reveal that interaction of the exosite with the N-terminus of Ub guides the unfolding of Ub, allowing its sequential cleavages. Together, our studies link the control of Ub clearance with IDE. PMID:21185309

  15. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses

    PubMed Central

    Reiley, William W.; Jin, Wei; Lee, Andrew Joon; Wright, Ato; Wu, Xuefeng; Tewalt, Eric F.; Leonard, Timothy O.; Norbury, Christopher C.; Fitzpatrick, Leo; Zhang, Minying; Sun, Shao-Cong

    2007-01-01

    The deubiquitinating enzyme CYLD has recently been implicated in the regulation of signal transduction, but its physiological function and mechanism of action are still elusive. In this study, we show that CYLD plays a pivotal role in regulating T cell activation and homeostasis. T cells derived from Cyld knockout mice display a hyperresponsive phenotype and mediate the spontaneous development of intestinal inflammation. Interestingly, CYLD targets a ubiquitin-dependent kinase, transforming growth factor–β-activated kinase 1 (Tak1), and inhibits its ubiquitination and autoactivation. Cyld-deficient T cells exhibit constitutively active Tak1 and its downstream kinases c-Jun N-terminal kinase and IκB kinase β. These results emphasize a critical role for CYLD in preventing spontaneous activation of the Tak1 axis of T cell signaling and, thereby, maintaining normal T cell function. PMID:17548520

  16. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  17. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes.

    PubMed Central

    Stancovski, I; Gonen, H; Orian, A; Schwartz, A L; Ciechanover, A

    1995-01-01

    The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity. We examined the involvement of the ubiquitin pathway in c-Fos breakdown. Using a mutant cell line, ts20, that harbors a thermolabile ubiquitin-activating enzyme, E1, we demonstrate that impaired function of the ubiquitin system stabilizes c-Fos in vivo. In vitro, we reconstituted a cell-free system and demonstrated that the protein is multiply ubiquitinated. The adducts serve as essential intermediates for degradation by the 26S proteasome. We show that both conjugation and degradation are significantly stimulated by c-Jun, with which c-Fos forms the active heterodimeric transcriptional activator AP-1. Analysis of the enzymatic cascade involved in the conjugation process reveals that the ubiquitin-carrier protein E2-F1 and its human homolog UbcH5, which target the tumor suppressor p53 for degradation, are also involved in c-Fos recognition. The E2 enzyme acts along with a novel species of ubiquitin-protein ligase, E3. This enzyme is distinct from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. We have purified the novel enzyme approximately 350-fold and demonstrated that it is a homodimer with an apparent molecular mass of approximately 280 kDa. It contains a sulfhydryl group that is essential for its activity, presumably for anchoring activated ubiquitin as an intermediate thioester prior to its transfer to the substrate. Taken together, our in vivo and in vitro studies strongly suggest that c-Fos is degraded in the cell by the ubiquitin-proteasome proteolytic pathway in a process that requires a novel recognition enzyme. PMID:8524278

  18. Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation.

    PubMed

    Stephen, A G; Trausch-Azar, J S; Handley-Gearhart, P M; Ciechanover, A; Schwartz, A L

    1997-04-18

    The ubiquitin-activating enzyme exists as two isoforms: E1a, localized predominantly in the nucleus, and E1b, localized in the cytoplasm. Previously we generated hemagglutinin (HA) epitope-tagged cDNA constructs, HA1-E1 (epitope tag placed after the first methionine) and HA2-E1 (epitope tag placed after the second methionine) (Handley-Gearhart, P. M., Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A., and Schwartz, A. L. (1994) J. Biol. Chem. 269, 33171-33178), which represent the native isoforms. HA1-E1 is exclusively nuclear, whereas HA2-E1 is found predominantly in the cytoplasm. Using high resolution isoelectric focusing and SDS-polyacrylamide gel electrophoresis, we confirm that these epitope-tagged constructs HA1-E1 and HA2-E1 represent the two isoforms E1a and E1b. HA1-E1/E1a exists as one non-phosphorylated and four phosphorylated forms, and HA2-E1/E1b exists as one predominant non-phosphorylated form and two minor phosphorylated forms. We demonstrate that the first 11 amino acids are essential for phosphorylation and exclusive nuclear localization of HA1-E1. Within this region are four serine residues and a putative nuclear localization sequence (NLS; 5PLSKKRR). Removal of these four serine residues reduced phosphorylation levels by 60% but had no effect on nuclear localization of HA1-E1. Each serine residue was independently mutated to an alanine and analyzed by two-dimensional electrophoresis; only serine 4 was phosphorylated. Disruption of the basic amino acids within the NLS resulted in loss of exclusive nuclear localization and a 90-95% decrease in the phosphorylation of HA1-E1. This putative NLS was able to confer nuclear import on a non-nuclear protein in digitonin-permeabilized cells in a temperature- and ATP-dependent manner. Thus the predominant requirement for efficient phosphorylation of HA1-E1/E1a is a functional NLS, suggesting that E1a may be phosphorylated within the nucleus. PMID:9099746

  19. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization

    PubMed Central

    Cipressa, Francesca; Cenci, Giovanni

    2013-01-01

    The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation. PMID:24088712

  20. Tag Team Ubiquitin Ligases.

    PubMed

    Kleiger, Gary; Deshaies, Raymond

    2016-08-25

    Cullin-RING (CRL) and RING1-IBR-RING2 (RBR) are two distinct types of ubiquitin ligases. In this issue, Scott et al. show that CRLs activate the RBR enzyme ARIH1 to initiate ubiquitin chains on CRL substrates, thereby marking an unexpected and important advance in our understanding of both enzymes. PMID:27565338

  1. Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition.

    PubMed

    Liu, Zhu; Gong, Zhou; Jiang, Wen-Xue; Yang, Ju; Zhu, Wen-Kai; Guo, Da-Chuan; Zhang, Wei-Ping; Liu, Mai-Li; Tang, Chun

    2015-01-01

    A polyubiquitin comprises multiple covalently linked ubiquitins and recognizes myriad targets. Free or bound to ligands, polyubiquitins are found in different arrangements of ubiquitin subunits. To understand the structural basis for polyubiquitin quaternary plasticity and to explore the target recognition mechanism, we characterize the conformational space of Lys63-linked diubiquitin (K63-Ub2). Refining against inter-subunit paramagnetic NMR data, we show that free K63-Ub2 exists as a dynamic ensemble comprising multiple closed and open quaternary states. The quaternary dynamics enables K63-Ub2 to be specifically recognized in a variety of signaling pathways. When binding to a target protein, one of the preexisting quaternary states is selected and stabilized. A point mutation that shifts the equilibrium between the different states modulates the binding affinities towards K63-Ub2 ligands. This conformational selection mechanism at the quaternary level may be used by polyubiquitins of different lengths and linkages for target recognition. PMID:26090905

  2. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells.

    PubMed

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-08-21

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.

  3. The E2 Ubiquitin-conjugating Enzyme UBE2J1 Is Required for Spermiogenesis in Mice*

    PubMed Central

    Koenig, Paul-Albert; Nicholls, Peter K.; Schmidt, Florian I.; Hagiwara, Masatoshi; Maruyama, Takeshi; Frydman, Galit H.; Watson, Nicki; Page, David C.; Ploegh, Hidde L.

    2014-01-01

    ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1−/− mice have reduced viability and fail to thrive early after birth. Male Ube2j1−/− mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1−/− elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control. PMID:25320092

  4. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice.

    PubMed

    Koenig, Paul-Albert; Nicholls, Peter K; Schmidt, Florian I; Hagiwara, Masatoshi; Maruyama, Takeshi; Frydman, Galit H; Watson, Nicki; Page, David C; Ploegh, Hidde L

    2014-12-12

    ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control. PMID:25320092

  5. Ubiquitin is conjugated by membrane ubiquitin ligase to three sites, including the N terminus, in transmembrane region of mammalian 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for sterol-regulated enzyme degradation.

    PubMed

    Doolman, Ram; Leichner, Gil S; Avner, Rachel; Roitelman, Joseph

    2004-09-10

    The stability of the endoplasmic reticulum (ER) glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in cholesterol biosynthesis, is negatively regulated by sterols. HMGR is anchored in the ER via its N-terminal region, which spans the membrane eight times and contains a sterol-sensing domain. We have previously established that degradation of mammalian HMGR is mediated by the ubiquitin-proteasome system (Ravid, T., Doolman, R., Avner, R., Harats, D., and Roitelman, J. (2000) J. Biol. Chem. 275, 35840-35847). Here we expressed in HEK-293 cells an HA-tagged-truncated version of HMGR that encompasses all eight transmembrane spans (350 N-terminal residues). Similar to endogenous HMGR, degradation of this HMG(350)-3HA protein was accelerated by sterols, validating it as a model to study HMGR turnover. The degradation of HMG(240)-3HA, which lacks the last two transmembrane spans yet retains an intact sterol-sensing domain, was no longer accelerated by sterols. Using HMG(350)-3HA, we demonstrate that transmembrane region of HMGR is ubiquitinated in a sterol-regulated fashion. Through site-directed Lys --> Arg mutagenesis, we pinpoint Lys(248) and Lys(89) as the internal lysines for ubiquitin attachment, with Lys(248) serving as the major acceptor site for polyubiquitination. Moreover, the data indicate that the N terminus is also ubiquitinated. The degradation rates of the Lys --> Arg mutants correlates with their level of ubiquitination. Notably, lysine-less HMG(350)-3HA is degraded faster than wild-type protein, suggesting that lysines other than Lys(89) and Lys(248) attenuate ubiquitination at the latter residues. The ATP-dependent ubiquitination of HMGR in isolated microsomes requires E1 as the sole cytosolic protein, indicating that ER-bound E2 and E3 enzymes catalyze this modification. Polyubiquitination of HMGR is correlated with its extraction from the ER membrane, a process likely to be assisted by cytosolic p97/VCP/Cdc48p-Ufd1-Npl

  6. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4.

    PubMed

    Martinez-Noel, G; Niedenthal, R; Tamura, T; Harbers, K

    1999-07-01

    The ubiquitin-conjugating enzyme UbcM4 was previously shown to be necessary for normal mouse development. As a first step in identifying target proteins or proteins involved in the specificity of UbcM4-mediated ubiquitylation, we have isolated seven cDNAs encoding proteins that specifically interact with UbcM4 but with none of the other Ubcs tested. This interaction was observed in yeast as well as in mammalian cells. With one exception, all UbcM4-interacting proteins (UIPs) belong to a family of proteins that contain a RING finger motif. As they are structurally related to RING finger proteins that have recently been shown to play an essential role in protein ubiquitylation and degradation, the possibility is discussed that UIPs are involved in the specific recognition of substrate proteins of UbcM4.

  7. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27{sup Kip1} protein levels

    SciTech Connect

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco . E-mail: francesco.hofmann@pharma.novartis.com

    2005-02-15

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27{sup Kip1} was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF{sup Skp2} ubiquitin ligase has been reported to mediate p27{sup Kip1} degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27{sup Kip1}, and prevent cellular proliferation. Elevation of p27{sup Kip1} protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27{sup Kip1} with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF{sup Skp2} ubiquitin ligase substrate p27{sup Kip1}, but has no concomitant effect on the level of IkB{alpha} and {beta}-catenin, which are known substrates of a closely related SCF ligase.

  8. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase.

    PubMed

    Weber, Annika; Cohen, Itamar; Popp, Oliver; Dittmar, Gunnar; Reiss, Yuval; Sommer, Thomas; Ravid, Tommer; Jarosch, Ernst

    2016-09-01

    The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system.

  9. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase.

    PubMed

    Weber, Annika; Cohen, Itamar; Popp, Oliver; Dittmar, Gunnar; Reiss, Yuval; Sommer, Thomas; Ravid, Tommer; Jarosch, Ernst

    2016-09-01

    The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system. PMID:27570077

  10. Identification of a Gene Product Induced by Hard-Surface Contact of Colletotrichum gloeosporioides Conidia as a Ubiquitin-Conjugating Enzyme by Yeast Complementation

    PubMed Central

    Liu, Zhi-Mei; Kolattukudy, Pappachan E.

    1998-01-01

    The germinating conidia of many phytopathogenic fungi on hosts must differentiate into an infection structure called the appressorium in order to penetrate their hosts. Chemical signals, such as the host’s surface wax or fruit ripening hormone, ethylene, trigger germination and appressorium formation of the avocado pathogen Colletotrichum gloeosporioides only after the conidia are in contact with a hard surface. What role this contact plays is unknown. Here, we describe isolation of genes expressed during the early stage of hard-surface treatment by a differential-display method and report characterization of one of these cloned genes, chip1 (Colletotrichum hard-surface induced protein 1 gene), which encodes a ubiquitin-conjugating enzyme. RNA blots clearly showed that it is induced by hard-surface contact and that ethylene treatment enhanced this induction. The predicted open reading frame (ubc1Cg) would encode a 16.2-kDa ubiquitin-conjugating enzyme, which shows 82% identity to the Saccharomyces cerevisiae UBC4-UBC5 E2 enzyme, comprising a major part of total ubiquitin-conjugating activity in stressed yeast cells. UBC1Cg can complement the proteolysis deficiency of the S. cerevisiae ubc4 ubc5 mutant, indicating that ubiquitin-dependent protein degradation is involved in conidial germination and appressorial differentiation. PMID:9658002

  11. A Human Ubiquitin Conjugating Enzyme (E2)-HECT E3 Ligase Structure-function Screen*

    PubMed Central

    Sheng, Yi; Hong, Jenny H.; Doherty, Ryan; Srikumar, Tharan; Shloush, Jonathan; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Neculai, Dante; Wan, Janet W.; Kim, Sung K.; Arrowsmith, Cheryl H.; Raught, Brian; Dhe-Paganon, Sirano

    2012-01-01

    Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an “acidic trough” located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation. PMID:22496338

  12. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    SciTech Connect

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  13. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. PMID:22971731

  14. Effete, a Drosophila Chromatin-Associated Ubiquitin-Conjugating Enzyme That Affects Telomeric and Heterochromatic Position Effect Variegation

    PubMed Central

    Cipressa, Francesca; Romano, Sabrina; Centonze, Silvia; zur Lage, Petra I.; Vernì, Fiammetta; Dimitri, Patrizio; Gatti, Maurizio; Cenci, Giovanni

    2013-01-01

    Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression. PMID:23821599

  15. Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice*

    PubMed Central

    Wang, Ya; Xu, Meng-yun; Liu, Jian-ping; Wang, Mu-gui; Yin, Hai-qing; Tu, Ju-min

    2014-01-01

    The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with a Ubc variant. However, its functions remain largely unknown in plant species, especially in monocotyledons. In this study, we cloned a Ub-conjugating enzyme, OsUbc13, that shares the conserved domain of Ubc with AtUBC13B in Oryza sativa L., which encodes a protein of 153 amino acids; the deduced sequence shares high similarities with other homologs. Real-time quantitative polymerase chain reaction (PCR) indicated that OsUbc13 transcripts could be detected in all tissues examined, and the expression level was higher in palea, pistil, stamen, and leaf, and lower in root, stem, and lemma; the expression of OsUbc13 was induced by low temperature, methylmethane sulfate (MMS), and H2O2, but repressed by mannitol, abscisic acid (ABA), and NaCl. OsUbc13 was probably localized in the plasma and nuclear membranes. About 20 proteins, which are responsible for the positive yeast two-hybrid interaction of OsUbc13, were identified. These include the confirmed OsVDAC (correlated with apoptosis), OsMADS1 (important for development of floral organs), OsB22EL8 (related to reactive oxygen species (ROS) scavenging and DNA protection), and OsCROC-1 (required for formation of Lys63 polyubiquitylation and error-free DNA damage tolerance). The molecular characterization provides a foundation for the functional study of OsUbc13. PMID:25001222

  16. Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice.

    PubMed

    Wang, Ya; Xu, Meng-yun; Liu, Jian-ping; Wang, Mu-gui; Yin, Hai-qing; Tu, Ju-min

    2014-07-01

    The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with a Ubc variant. However, its functions remain largely unknown in plant species, especially in monocotyledons. In this study, we cloned a Ub-conjugating enzyme, OsUbc13, that shares the conserved domain of Ubc with AtUBC13B in Oryza sativa L., which encodes a protein of 153 amino acids; the deduced sequence shares high similarities with other homologs. Real-time quantitative polymerase chain reaction (PCR) indicated that OsUbc13 transcripts could be detected in all tissues examined, and the expression level was higher in palea, pistil, stamen, and leaf, and lower in root, stem, and lemma; the expression of OsUbc13 was induced by low temperature, methylmethane sulfate (MMS), and H(2)O(2), but repressed by mannitol, abscisic acid (ABA), and NaCl. OsUbc13 was probably localized in the plasma and nuclear membranes. About 20 proteins, which are responsible for the positive yeast two-hybrid interaction of OsUbc13, were identified. These include the confirmed OsVDAC (correlated with apoptosis), OsMADS1 (important for development of floral organs), OsB22EL8 (related to reactive oxygen species (ROS) scavenging and DNA protection), and OsCROC-1 (required for formation of Lys63 polyubiquitylation and error-free DNA damage tolerance). The molecular characterization provides a foundation for the functional study of OsUbc13. PMID:25001222

  17. A sesquiterpene lactone from a medicinal herb inhibits proinflammatory activity of TNF-α by inhibiting ubiquitin-conjugating enzyme UbcH5.

    PubMed

    Liu, Li; Hua, Yaping; Wang, Dan; Shan, Lei; Zhang, Yuan; Zhu, Junsheng; Jin, Huizi; Li, Honglin; Hu, Zhenlin; Zhang, Weidong

    2014-10-23

    UbcH5 is the key ubiquitin-conjugating enzyme catalyzing ubiquitination during TNF-α-triggered NF-κB activation. Here, we identified an herb-derived sesquiterpene lactone compound IJ-5 as a preferential inhibitor of UbcH5 and explored its therapeutic value in inflammatory and autoimmune disease models. IJ-5 suppresses TNF-α-induced NF-κB activation and inflammatory gene transcription by inhibiting the ubiquitination of receptor-interacting protein 1 and NF-κB essential modifier, which is essential to IκB kinase activation. Mechanistic investigations revealed that IJ-5 preferentially binds to and inactivates UbcH5 by forming a covalent adduct with its active site cysteine and thereby preventing ubiquitin conjugation to UbcH5. In preclinical models, pretreatment of IJ-5 exhibited potent anti-inflammatory activity against TNF-α- and D-galactosamine-induced hepatitis and collagen-induced arthritis. These findings highlight the potential of UbcH5 as a therapeutic target for anti-TNF-α interventions and provide an interesting lead compound for the development of new anti-inflammation agents. PMID:25200604

  18. Practical steady-state enzyme kinetics.

    PubMed

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described.

  19. A specific endpoint assay for ubiquitin.

    PubMed Central

    Rose, I A; Warms, J V

    1987-01-01

    Simple endpoint assays for free ubiquitin (Ub) and for the Ub-activating enzyme are described. The method for measuring Ub makes use of the reaction of iodoacetamide-treated Ub-activating enzyme (E): [3H]ATP + Ub + E----E X [3H]AMP-Ub + PPi and PPi----2Pi (in the presence of pyrophosphatase). The Ub is then measured by determining the acid-insoluble radioactivity. The reaction is accompanied by a slow enzyme-catalyzed hydrolysis of the complex to AMP plus Ub. The presence of ubiquitin-activating enzyme in excess of Ub by approximately equal to 0.1 microM assures that the steady state will be close to the endpoint for total Ub. A preparation of the activating enzyme from human erythrocytes that does not depend on affinity chromatography is described. Several applications of the assay are presented. PMID:3031643

  20. Immunoregulatory Effect of Bifidobacteria Strains in Porcine Intestinal Epithelial Cells through Modulation of Ubiquitin-Editing Enzyme A20 Expression

    PubMed Central

    Murata, Kozue; Chiba, Eriko; Shimazu, Tomoyuki; Aso, Hisashi; Iwabuchi, Noriyuki; Xiao, Jin-zhong; Saito, Tadao; Kitazawa, Haruki

    2013-01-01

    Background We previously showed that evaluation of anti-inflammatory activities of lactic acid bacteria in porcine intestinal epithelial (PIE) cells is useful for selecting potentially immunobiotic strains. Objective The aims of the present study were: i) to select potentially immunomodulatory bifidobacteria that beneficially modulate the Toll-like receptor (TLR)-4-triggered inflammatory response in PIE cells and; ii) to gain insight into the molecular mechanisms involved in the anti-inflammatory effect of immunobiotics by evaluating the role of TLR2 and TLR negative regulators in the modulation of proinflammatory cytokine production and activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways in PIE cells. Results Bifidobacteria longum BB536 and B. breve M-16V strains significantly downregulated levels of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1 and IL-6 in PIE cells challenged with heat-killed enterotoxigenic Escherichia coli. Moreover, BB536 and M-16V strains attenuated the proinflammatory response by modulating the NF-κB and MAPK pathways. In addition, our findings provide evidence for a key role for the ubiquitin-editing enzyme A20 in the anti-inflammatory effect of immunobiotic bifidobacteria in PIE cells. Conclusions We show new data regarding the mechanism involved in the anti-inflammatory effect of immunobiotics. Several strains with immunoregulatory capabilities used a common mechanism to induce tolerance in PIE cells. Immunoregulatory strains interacted with TLR2, upregulated the expression of A20 in PIE cells, and beneficially modulated the subsequent TLR4 activation by reducing the activation of MAPK and NF-κB pathways and the production of proinflammatory cytokines. We also show that the combination of TLR2 activation and A20 induction can be used as biomarkers to screen and select potential immunoregulatory bifidobacteria strains. PMID:23555642

  1. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7)

    SciTech Connect

    Arai, Ryoichi; Yoshikawa, Seiko; Murayama, Kazutaka; Imai, Yuzuru; Takahashi, Ryosuke; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-04-01

    The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way as UbcH7. The human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) is involved in protein degradation, including a process known as endoplasmic reticulum-associated degradation (ERAD). The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The UBE2G2 structure comprises a single domain consisting of an antiparallel β-sheet with four strands, five α-helices and two 3{sub 10}-helices. Structural comparison of human UBE2G2 with yeast Ubc7 indicated that the overall structures are similar except for the long loop region and the C-terminal helix. Superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way to UbcH7. In addition, the extra loop region of UBE2G2 may interact with the RING domain or its neighbouring region and may be involved in the binding specificity and stability.

  2. The de-ubiquitinating enzyme ataxin-3 does not modulate disease progression in a knock-in mouse model of Huntington disease.

    PubMed

    Zeng, Li; Tallaksen-Greene, Sara J; Wang, Bo; Albin, Roger L; Paulson, Henry L

    2013-01-01

    Ataxin-3 is a deubiquitinating enzyme (DUB) that participates in ubiquitin-dependent protein quality control pathways and, based on studies in model systems, may be neuroprotective against toxic polyglutamine proteins such as the Huntington's disease (HD) protein, huntingtin (htt). HD is one of at least nine polyglutamine neurodegenerative diseases in which disease-causing proteins accumulate in ubiquitin-positive inclusions within neurons. In studies crossing mice null for ataxin-3 to an established HD knock-in mouse model (HdhQ200), we tested whether loss of ataxin-3 alters disease progression, perhaps by impairing the clearance of mutant htt or the ubiquitination of inclusions. While loss of ataxin-3 mildly exacerbated age-dependent motor deficits, it did not alter inclusion formation, ubiquitination of inclusions or levels of mutant or normal htt. Ataxin-3, itself a polyglutamine-containing protein with multiple ubiquitin binding domains, was not observed to localize to htt inclusions. Changes in neurotransmitter receptor binding known to occur in HD knock-in mice also were not altered by the loss of ataxin-3, although we unexpectedly observed increased GABAA receptor binding in the striatum of HdhQ200 mice, which has not previously been noted. Finally, we confirmed that CNS levels of hsp70 are decreased in HD mice as has been reported in other HD mouse models, regardless of the presence or absence of ataxin-3. We conclude that while ataxin-3 may participate in protein quality control pathways, it does not critically regulate the handling of mutant htt or contribute to major features of disease pathogenesis in HD.

  3. Direct observation of an ensemble of stable collapsed states in the mechanical folding of ubiquitin

    PubMed Central

    Garcia-Manyes, Sergi; Dougan, Lorna; Badilla, Carmen L.; Brujić, Jasna; Fernández, Julio M.

    2009-01-01

    Statistical theories of protein folding have long predicted plausible mechanisms for reducing the vast conformational space through distinct ensembles of structures. However, these predictions have remained untested by bulk techniques, because the conformational diversity of folding molecules has been experimentally unapproachable. Owing to recent advances in single molecule force-clamp spectroscopy, we are now able to probe the structure and dynamics of the small protein ubiquitin by measuring its length and mechanical stability during each stage of folding. Here, we discover that upon hydrophobic collapse, the protein rapidly selects a subset of minimum energy structures that are mechanically weak and essential precursors of the native fold. From this much reduced ensemble, the native state is acquired through a barrier-limited transition. Our results support the validity of statistical mechanics models in describing the folding of a small protein on biological timescales. PMID:19541635

  4. Ubiquitination of plant immune receptors.

    PubMed

    Zhou, Jinggeng; He, Ping; Shan, Libo

    2014-01-01

    Ubiquitin is a highly conserved regulatory protein consisting of 76 amino acids and ubiquitously expressed in all eukaryotic cells. The reversible ubiquitin conjugation to a wide variety of target proteins, a process known as ubiquitination or ubiquitylation, serves as one of the most important and prevalent posttranslational modifications to regulate the myriad actions of protein cellular functions, including protein degradation, vesicle trafficking, and subcellular localization. Protein ubiquitination is an ATP-dependent stepwise covalent attachment of one or more ubiquitin molecules to target proteins mediated by a hierarchical enzymatic cascade consisting of an E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase. The plant plasma membrane resident receptor-like kinase Flagellin Sensing 2 (FLS2) recognizes bacterial flagellin and initiates innate immune signaling to defend against pathogen attacks. We have recently shown that two plant U-box E3 ubiquitin ligases PUB12 and PUB13 directly ubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, which in turn attenuates FLS2 signaling to prevent excessive or prolonged activation of immune responses. Here, we use FLS2 as an example to describe a protocol for detection of protein ubiquitination in plant cells in vivo and in test tubes in vitro. In addition, we elaborate the approach to identify different types of ubiquitin linkages by using various lysine mutants of ubiquitin. The various in vivo and in vitro ubiquitination assays will provide researchers with the tools to address how ubiquitination regulates diverse cellular functions of target proteins. PMID:25117287

  5. Ubiquitin-Like Protein SAMP1 and JAMM/MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea

    PubMed Central

    Cao, Shiyun; Hepowit, Nathaniel; Maupin-Furlow, Julie A.

    2015-01-01

    Ubiquitin/ubiquitin-like (Ub/Ubl) proteins are involved in diverse cellular processes by their covalent linkage to protein substrates. Here, we provide evidence for a post-translational modification system that regulates enzyme activity which is composed of an archaeal Ubl protein (SAMP1) and a JAMM/MPN+ metalloprotease (HvJAMM1). Molybdopterin (MPT) synthase activity was found to be inhibited by covalent linkage of SAMP1 to the large subunit (MoaE) of MPT synthase. HvJAMM1 was shown to cleave the covalently linked inactive form of SAMP1-MoaE to the free functional individual SAMP1 and MoaE subunits of MPT synthase, suggesting reactivation of MPT synthase by this metalloprotease. Overall, this study provides new insight into the broad idea that Ub/Ubl modification is a post-translational process that can directly and reversibly regulate the activity of metabolic enzymes. In particular, we show that Ub/Ubl linkages on the active site residues of an enzyme (MPT synthase) can inhibit its catalytic activity and that the enzyme can be reactivated through cleavage by a JAMM/MPN+ metalloprotease. PMID:26010867

  6. Transition States and transition state analogue interactions with enzymes.

    PubMed

    Schramm, Vern L

    2015-04-21

    Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but

  7. E2 Ubiquitin-conjugating Enzyme, UBE2C Gene, Is Reciprocally Regulated by Wild-type and Gain-of-Function Mutant p53.

    PubMed

    Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta

    2016-07-01

    Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint.

  8. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade.

    PubMed

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto; Vanoni, Marco; Coccetti, Paola; De Gioia, Luca

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7), which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.

  9. Transition state theory for enzyme kinetics.

    PubMed

    Truhlar, Donald G

    2015-09-15

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling.

  10. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.

    PubMed

    Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K; Ware, Carl F; Mace, Peter D; Riedl, Stefan J

    2016-01-28

    Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  11. Protein Ubiquitination in Lymphoid Malignancies

    PubMed Central

    Yang, Yibin; Staudt, Louis M.

    2014-01-01

    Summary Human lymphoid malignancies inherit gene expression networks from their normal B-cell counterpart and co-opt them for their own oncogenic purpose, which is usually governed by transcriptional factors and signaling pathways. These transcriptional factors and signaling pathways are precisely regulated at multiple steps, including ubiquitin modification. With a function involved in almost all cellular events, protein ubiquitination plays a role in many human diseases. In the past few years, multiple studies have expanded the role of ubiquitination in the genesis of diverse lymphoid malignancies. Here we discuss our current understanding of both proteolytic and nonproteolytic functions of the protein ubiquitination system and describe how it is involved in the pathogenesis of human lymphoid cancers. Lymphoid-restricted ubiquitination mechanisms, including ubiquitin E3 ligases and deubiquitinating enzymes, provide great opportunities for the development of targeted therapies for lymphoid cancers. PMID:25510281

  12. DUB-resistant ubiquitin to survey ubiquitination switches in mammalian cells

    PubMed Central

    Békés, Miklós; Okamoto, Keiji; Crist, Sarah B.; Jones, Mathew J.; Chapman, Jessica R.; Brasher, Bradley; Melandri, Francesco; Ueberheide, Beatrix; Denchi, Eros Lazzerini; Huang, Tony T.

    2013-01-01

    Summary The ubiquitin-modification status of proteins in cells is highly dynamic and maintained by specific ligation machineries (E3 ligases) that tag proteins with ubiquitin or by deubiquitinating enzymes (DUBs) that remove the ubiquitin tag. The development of tools that offset this balance is critical in characterizing signaling pathways that utilize such ubiquitination switches. Herein, we generated a DUB-resistant ubiquitin mutant that is recalcitrant to cleavage by various families of DUBs both in vitro and in mammalian cells. As a proof of principle experiment, ectopic expression of the uncleavable ubiquitin stabilized mono-ubiquitinated PCNA in the absence of DNA damage, and also revealed a defect in the clearance of the DNA damage response at unprotected telomeres. Importantly, a proteomic survey using the uncleavable ubiquitin identified previously unknown ubiquitinated substrates, validating the DUB-resistant ubiquitin expression system as a valuable tool to interrogate cell signaling pathways. PMID:24210823

  13. A novel rat homolog of the Saccharomyces cerevisiae ubiquitin-conjugating enzymes UBC4 and UBC5 with distinct biochemical features is induced during spermatogenesis.

    PubMed Central

    Wing, S S; Bédard, N; Morales, C; Hingamp, P; Trasler, J

    1996-01-01

    The Saccharomyces cerevisiae ubiquitin-conjugating enzymes (E2s) UBC4 and UBC5 are essential for degradation of short-lived and abnormal proteins. We previously identified rat cDNAs encoding two E2s with strong sequence similarity to UBC4 and UBC5. These E2 isoforms are widely expressed in rat tissues, consistent with a fundamental cellular function for these E2s. We now report a new isoform, 8A, which despite having >91% amino acid identity with the other isoforms, shows several novel features. Expression of the 8A isoform appears restricted to the testis, is absent in early life, but is induced during puberty. Hypophysectomy reduced expression of the 8A isoform. In situ hybridization studies indicated that 8A mRNA is expressed mainly in round spermatids. Immunoblot analyses showed that 8A protein is found not only in subfractions of germ cells enriched in round spermatids but also in subfractions containing residual bodies extruded from more mature elongated spermatids, indicating that the protein possesses a longer half-life than the mRNA. Unlike all previously identified mammalian and plant homologs of S. cerevisiae UBC4, which possess a basic pI, the 8A isoform is unique in possessing an acidic pI. The small differences in sequence between the 8A isoform and other rat isoforms conferred differences in biochemical function. The 8A isoform was less effective than an isoform with a basic pI or ineffective in conjugating ubiquitin to certain fractions of testis proteins. Thus, although multiple isoforms of a specific E2 may exist to ensure performance of a critical cellular function, our data demonstrate, for the first time, that multiple genes also permit highly specialized regulation of expression of specific isoforms and that subtle differences in E2 primary structure can dictate conjugation of ubiquitin to different subsets of cellular proteins. PMID:8754804

  14. Molecular Basis for the Association of Human E4B U Box Ubiquitin Ligase with E2-Conjugating Enzymes UbcH5c and Ubc4

    SciTech Connect

    Benirschke, Robert C.; Thompson, James R.; Nominé, Yves; Wasielewski, Emeric; Juranić, Nenad; Macura, Slobodan; Hatakeyama, Shigetsugu; Nakayama, Keiichi I.; Botuyan, Maria Victoria; Mer, Georges

    2010-09-07

    Human E4B, also called UFD2a, is a U box-containing protein that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor. E4B is thought to participate in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. The U box domain is an anchor site for E2 ubiquitin-conjugating enzymes, but little is known of the binding mechanism. Using X-ray crystallography and NMR spectroscopy, we determined the structures of E4B U box free and bound to UbcH5c and Ubc4 E2s. Whereas previously characterized U box domains are homodimeric, we show that E4B U box is a monomer stabilized by a network of hydrogen bonds identified from scalar coupling measurements. These structural studies, complemented by calorimetry- and NMR-based binding assays, suggest an allosteric regulation of UbcH5c and Ubc4 by E4B U box and provide a molecular basis to understand how the ubiquitylation machinery involving E4B assembles.

  15. Substrate-Assisted Inhibition of Ubiquitin-like Protein-Activating Enzymes: The NEDD8 E1 Inhibitor MLN4924 Forms a NEDD8-AMP Mimetic In Situ

    SciTech Connect

    Brownell, James E.; Sintchak, Michael D.; Gavin, James M.; Liao, Hua; Bruzzese, Frank J.; Bump, Nancy J.; Soucy, Teresa A.; Milhollen, Michael A.; Yang, Xiaofeng; Burkhardt, Anne L.; Ma, Jingya; Loke, Huay-Keng; Lingaraj, Trupti; Wu, Dongyun; Hamman, Kristin B.; Spelman, James J.; Cullis, Courtney A.; Langston, Steven P.; Vyskocil, Stepan; Sells, Todd B.; Mallender, William D.; Visiers, Irache; Li, Ping; Claiborne, Christopher F.; Rolfe, Mark; Bolen, Joseph B.; Dick, Lawrence R.

    2010-11-15

    The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.

  16. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  17. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    PubMed

    Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kang, Jee-Sook; Chung, Young Soo; Lee, Jai-Heon

    2013-01-01

    The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  18. Insulin-like growth factor I stimulates degradation of an mRNA transcript encoding the 14 kDa ubiquitin-conjugating enzyme.

    PubMed Central

    Wing, S S; Bedard, N

    1996-01-01

    Upon fasting, the ubiquitin-dependent proteolytic system is activated in skeletal muscle in parallel with the increases in rates of proteolysis. Levels of mRNA encoding the 14 kDa ubiquitin-conjugating enzyme (E2(14K)), which can catalyse the first irreversible reaction in this pathway, rise and fall in parallel with the rates of proteolysis [Wing and Banville (1994) Am.J. Physiol. 267, E39-E48], indicating that the conjugation of ubiquitin to proteins is a regulated step. To characterize the mechanisms of this regulation, we have examined the effects of insulin, insulin-like growth factor I (IGF-I) and des(1-3) insulin-like growth factor I (DES-IGF-I), which does not bind IGF-binding proteins, on E2(14K) mRNA levels in L6 myotubes. Insulin suppressed levels of E2(14K) mRNA with an IC50 of 4 x 10(-9) M, but had no effects on mRNAs encoding polyubiquitin and proteasome subunits C2 and C8, which, like E2(14K), also increase in skeletal muscle upon fasting. Reduction of E2(14K) mRNA levels was more sensitive to IGF-I with an IC50 of approx. 5 x 10(-10) M. During the incubation of these cells for 12 h there was significant secretion of IGF-I-binding proteins into the medium. DES-IGF-I, which has markedly reduced affinity for these binding proteins, was found to potently reduce E2(14K) mRNA levels with an IC50 of 3 x 10(-11) M. DES-IGF-I did not alter rates of transcription of the E2(14K) gene, but enhanced the rate of degradation of the 1.2 kb mRNA transcript. The half-life of the 1.2 kb transcript was approximately one-third that of the 1.8 kb transcript and can explain the more marked regulation of this transcript observed previously. This indicates that the additional 3' non-coding sequence in the 1.8 kb transcript confers stability. These observations suggest that IGF-I is an important regulator of E2(14K) expression and demonstrate, for the first time, stimulation of degradation of a specific mRNA transcript by this hormone, while overall RNA accumulates. PMID

  19. Downregulation of Ubiquitin-conjugating Enzyme UBE2D3 Promotes Telomere Maintenance and Radioresistance of Eca-109 Human Esophageal Carcinoma Cells

    PubMed Central

    Yang, Hui; Wu, Lin; Ke, Shaobo; Wang, Wenbo; Yang, Lei; Gao, Xiaojia; Fang, Hongyan; Yu, Haijun; Zhong, Yahua; Xie, Conghua; Zhou, Fuxiang; Zhou, Yunfeng

    2016-01-01

    Ubiquitin-conjugating enzyme UBE2D3 is an important member of the ubiquitin-proteasome pathways. Our previous study showed that the expression of UBE2D3 was negatively related to human telomerase reverse transcriptase (hTERT) and radioresistance in human breast cancer cells. However, in esophageal carcinoma, the exact effects and mechanisms of UBE2D3 in radioresistance remain unclear. This study shows that UBE2D3 knockdown was associated with significant increases in radioresistance to X-rays, telomerase activity, telomere length, and telomere shelterins. UBE2D3 knockdown-mediated radioresistance was related to a decrease in the spontaneous and ionizing radiation-induced apoptosis, resulting from a decrease in the Bax/Bcl-2 ratio. Furthermore, UBE2D3 downregulation was associated with increased G1-S phase transition and prolonged IR-induced G2/M arrest through over expression of cyclin D1, decrease of CDC25A expression and promotion of the ATM/ATR-Chk1-CDC25C pathway. Moreover, UBE2D3 downregulation reduced spontaneous DNA double-strand breaks and accelerated the repair of DNA damage induced by IR. The current data thus demonstrate that UBE2D3 downregulation enhances radioresistance by increased telomere homeostasis and prolonged IR-induced G2/M arrest, but decreases the IR-induced apoptosis and the number of DNA damage foci. These results suggest that UBE2D3 might be a potential molecular target to improve radiotherapy effects in esophageal carcinoma. PMID:27326259

  20. Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family1

    PubMed Central

    Criqui, Marie Claire; de Almeida Engler, Janice; Camasses, Alain; Capron, Arnaud; Parmentier, Yves; Inzé, Dirk; Genschik, Pascal

    2002-01-01

    The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells. PMID:12427990

  1. Assessing the Native State Conformational Distribution of Ubiquitin by Peptide Acidity

    PubMed Central

    Hernández, Griselda; Anderson, Janet S.; LeMaster, David M.

    2011-01-01

    At equilibrium, every energetically feasible conformation of a protein occurs with a non-zero probability. Quantitative analysis of protein flexibility is thus synonymous with determining the proper Boltzmann-weighting of this conformational distribution. The exchange reactivity of solvent-exposed amide hydrogens greatly varies with conformation, while the short-lived peptide anion intermediate implies an insensitivity to the dynamics of conformational motion. Amides that are well-exposed in model conformational ensembles of ubiquitin vary a million-fold in exchange rates which continuum dielectric methods can predict with an rmsd of 3. However, the exchange rates for many of the more rarely exposed amides are markedly overestimated in the PDB-deposited 2K39 and 2KN5 ubiquitin ensembles, while the 2NR2 ensemble predictions are largely consistent with those of the Boltzmann-weighted conformational distribution sampled at the level of 1%. The correlation between the fraction of solvent-accessible conformations for a given amide hydrogen and the exchange rate constant for that residue provides a useful monitor of the degree of completeness with which a given ensemble has sampled the energetically accessible conformational space. These exchange predictions correlate with the degree to which each ensemble deviates from a set of 46 ubiquitin X-ray structures. Kolmogorov-Smirnov analysis for the distribution of intra- and inter-ensemble pairwise structural rmsd values assisted the identification of a subensemble of 2K39 that eliminates the overestimations of hydrogen exchange rates observed for the full ensemble. The relative merits of incorporating experimental restraints into the conformational sampling process is compared to using these restraints as filters to select subpopulations consistent with the experimental data. PMID:21055867

  2. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit.

    PubMed

    Liu, Ju-Hua; Zhang, Jing; Jia, Cai-Hong; Zhang, Jian-Bin; Wang, Jia-Shui; Yang, Zi-Xian; Xu, Bi-Yu; Jin, Zhi-Qiang

    2013-01-01

    KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening. PMID:23007689

  3. The Ubiquitin Conjugating Enzyme, UbcM2, Engages in Novel Interactions with Components of Cullin-3 Based E3 Ligases†

    PubMed Central

    Plafker, Kendra S.; Singer, Jeffrey D.; Plafker, Scott M.

    2009-01-01

    The class III ubiquitin conjugating enzymes (E2s) are distinguished from other E2s by the presence of unique N-terminal domains, and the utilization of importin-11 for transport into the nucleus in an activation dependent fashion. To begin determining the physiological roles of these enzymes, we carried out a yeast two-hybrid screen with the class III E2, UbcM2. This screen retrieved RCBTB1, a putative substrate adaptor for a cullin3 (CUL3) E3 ligase. We initially established through biochemical studies that RCBTB1 has the properties of a CUL3 substrate adaptor. Further analysis of the UbcM2-RCBTB1 complex led to the discovery and characterization of the following novel interactions: (i) UbcM2 binds an N-terminal domain of CUL3 requiring the first 57 amino acids, the same domain that binds to RCBTB1 and other substrate adaptors; (ii) UbcM2 does not bind mutants of CUL3 that are deficient in substrate adaptor recruitment; (iii) UbcM2 interacts with CUL3 independent of a bridging RING-finger protein; and (iv) can engage the neddylated (i.e., activated) form of CUL3. We also present evidence that UbcM2 can bind to the N-terminal halves of multiple cullins, implying that this E2 is a general cofactor for this class of ligases. Together, these studies represent the first evidence that UbcM2, in concert with substrate adaptors, engages activated CUL3 ligases, thus suggesting that class III E2s are novel regulators of cullin ligases. PMID:19256485

  4. Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs.

    PubMed

    Handley-Gearhart, P M; Stephen, A G; Trausch-Azar, J S; Ciechanover, A; Schwartz, A L

    1994-12-30

    The ubiquitin-activating enzyme E1 catalyzes the first step in the ubiquitin conjugation pathway. Previously, we have cloned and sequenced the cDNA for human E1. Expression of the E1 cDNA in the ts20 cell line, which harbors a thermolabile E1, abrogated the phenotypic defects associated with this line. However, little is known of the cell biology of the E1 protein or the nature of the E1 doublet. Thus, we constructed epitope-tagged E1 cDNAs in which the HA monoclonal antibody epitope tag sequence (from influenza hemagglutinin and recognized by the 12CA5 monoclonal antibody) was fused to the amino terminus of E1. Because the amino-terminal amino acid sequence of E1 is unknown, three constructs were made in which the HA tag was placed at each of the first three ATGs in the open reading frame (HA-1E1, HA-2E1, and HA-3E1). Western analysis of HeLa cells transfected with the constructs revealed that HA-1E1 closely comigrated with the upper band of the E1 doublet, and HA-2E1 comigrated with the lower band of the E1 doublet; HA-3E1 appeared smaller than either of the E1 bands. Metabolic labeling with 32P and immunoprecipitation with anti-HA antibody revealed that only the HA-1E1 protein product is phosphorylated; polyclonal anti-E1 antibody showed that only the upper band of the endogenous E1 doublet is phosphorylated. Each of the constructs was able to rescue the mutant phenotype of the ts20 cell line. Immunofluorescence studies showed that HA-2E1 and HA-3E1 were distributed in the cytoplasm with both negative and positive nuclei. This pattern of distribution has also been observed when immunostaining with a monoclonal antibody to E1 (1C5). However, the staining pattern associated with a polyclonal anti-E1 antibody (JJJ) is characterized by positive staining cytoplasm and nuclei in all cells. The HA-1E1 construct exhibited apparently exclusive nuclear distribution in HeLa cells. The difference between the staining patterns of the polyclonal and monoclonal anti-E1

  5. Observing single enzyme molecules interconvert between activity states upon heating.

    PubMed

    Rojek, Marcin J; Walt, David R

    2014-01-01

    In this paper, we demonstrate that single enzyme molecules of β-galactosidase interconvert between different activity states upon exposure to short pulses of heat. We show that these changes in activity are the result of different enzyme conformations. Hundreds of single β-galactosidase molecules are trapped in femtoliter reaction chambers and the individual enzymes are subjected to short heating pulses. When heating pulses are introduced into the system, the enzyme molecules switch between different activity states. Furthermore, we observe that the changes in activity are random and do not correlate with the enzyme's original activity. This study demonstrates that different stable conformations play an important role in the static heterogeneity reported previously, resulting in distinct long-lived activity states of enzyme molecules in a population.

  6. In Vitro Ubiquitination: Self-Ubiquitination, Chain Formation, and Substrate Ubiquitination Assays.

    PubMed

    Maspero, Elena; Polo, Simona

    2016-01-01

    Ubiquitination of proteins in vitro has evolved as an indispensable tool for the functional analysis of this posttranslational modification. In vitro ubiquitination is particularly helpful to study conjugation mechanisms. The efficiency of the ubiquitination reaction depends in part on the quality of the enzymes utilized. Here we introduce the assay developed in our lab to study HECT E3 ligases. It involves bacterially expressed E1, His-tagged Ube2D3 (also called UbcH5c, the best E2 for Nedd4), untagged Nedd4, and untagged ubiquitin (Ub). As tags may impair specific activity of the enzymes or even interfere with the enzymatic reaction, they should be avoided, removed, or kept to a minimal size whenever possible, unless proven to be without consequence. The protocol described here is suitable for other E3 ligases capable of forming Ub chains as pseudo-product of the enzyme reaction. It is also adapted to include substrates. In this case, substrates should be tagged and purified after the reaction is completed to allow the detection of the ubiquitinated products. PMID:27613033

  7. Mechanisms of ubiquitin transfer by the anaphase-promoting complex

    PubMed Central

    2009-01-01

    The anaphase-promoting complex (APC) is a ubiquitin-protein ligase required for the completion of mitosis in all eukaryotes. Recent mechanistic studies reveal how this remarkable enzyme combines specificity in substrate binding with flexibility in ubiquitin transfer, thereby allowing the modification of multiple lysines on the substrate as well as specific lysines on ubiquitin itself. PMID:19874575

  8. Enhancement of CIITA transcriptional function by ubiquitin.

    PubMed

    Greer, Susanna F; Zika, Eleni; Conti, Brian; Zhu, Xin-Sheng; Ting, Jenny P-Y

    2003-11-01

    Although increasing evidence indicates that there is a direct link between ubiquitination and mono-ubiquitination and transcription in yeast, this link has not been demonstrated in higher eukaryotes. Here we show that the major histocompatibility complex (MHC) class II transactivator (CIITA), which is required for expression of genes encoding MHC class II molecules, is ubiquitinated. This ubiquitination enhanced the association of CIITA with both MHC class II transcription factors and the MHC class II promoter, resulting in an increase in transactivation function and in the expression of MHC class II mRNA. The degree of CIITA ubiquitination was controlled by histone acetylases (HATs) and deacetylases (HDACs), indicating that the crucial cellular processes mediated by these enzymes are linked to regulate transcription. Thus, ubiquitin positively regulates a mammalian coactivator by enhancing its assembly at the promoter.

  9. The role of histone ubiquitination during spermatogenesis.

    PubMed

    Sheng, Kai; Liang, Xiaotong; Huang, Sizhou; Xu, Wenming

    2014-01-01

    Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation. PMID:24963488

  10. Ubiquitin as a degradation signal.

    PubMed Central

    Johnson, E S; Bartel, B; Seufert, W; Varshavsky, A

    1992-01-01

    For many short-lived eukaryotic proteins, conjugation to ubiquitin, yielding a multiubiquitin chain, is an obligatory pre-degradation step. The conjugated ubiquitin moieties function as a 'secondary' signal for degradation, in that their posttranslational coupling to a substrate protein is mediated by amino acid sequences of the substrate that act as a primary degradation signal. We report that the fusion protein ubiquitin--proline--beta-galactosidase (Ub-P-beta gal) is short-lived in the yeast Saccharomyces cerevisiae because its N-terminal ubiquitin moiety functions as an autonomous, primary degradation signal. This signal mediates the formation of a multiubiquitin chain linked to Lys48 of the N-terminal ubiquitin in Ub-P-beta gal. The degradation of Ub-P-beta gal is shown to require Ubc4, one of at least seven ubiquitin-conjugating enzymes in S.cerevisiae. Our findings provide the first direct evidence that a monoubiquitin moiety can function as an autonomous degradation signal. This generally applicable, cis-acting signal can be used to manipulate the in vivo half-lives of specific intracellular proteins. Images PMID:1311250

  11. Conformational Sub-states and Populations in Enzyme Catalysis.

    PubMed

    Agarwal, P K; Doucet, N; Chennubhotla, C; Ramanathan, A; Narayanan, C

    2016-01-01

    Enzyme function involves substrate and cofactor binding, precise positioning of reactants in the active site, chemical turnover, and release of products. In addition to formation of crucial structural interactions between enzyme and substrate(s), coordinated motions within the enzyme-substrate complex allow reaction to proceed at a much faster rate, compared to the reaction in solution and in the absence of enzyme. An increasing number of enzyme systems show the presence of conserved protein motions that are important for function. A wide variety of motions are naturally sampled (over femtosecond to millisecond time-scales) as the enzyme complex moves along the energetic landscape, driven by temperature and dynamical events from the surrounding environment. Areas of low energy along the landscape form conformational sub-states, which show higher conformational populations than surrounding areas. A small number of these protein conformational sub-states contain functionally important structural and dynamical features, which assist the enzyme mechanism along the catalytic cycle. Identification and characterization of these higher-energy (also called excited) sub-states and the associated populations are challenging, as these sub-states are very short-lived and therefore rarely populated. Specialized techniques based on computer simulations, theoretical modeling, and nuclear magnetic resonance have been developed for quantitative characterization of these sub-states and populations. This chapter discusses these techniques and provides examples of their applications to enzyme systems. PMID:27497171

  12. Insights into the "free state" enzyme reaction kinetics in nanoconfinement.

    PubMed

    Wang, Chen; Ye, De-Kai; Wang, Yun-Yi; Lu, Tao; Xia, Xing-Hua

    2013-04-21

    The investigation of enzyme reaction kinetics in nanoconfined spaces mimicking the conditions in living systems is of great significance. Here, a nanofluidics chip integrated with an electrochemical detector has been designed for studying "free state" enzyme reaction kinetics in nanoconfinement. The nanofluidics chip is fabricated using the UV-ablation technique developed in our group. The enzyme and substrate solutions are simultaneously supplied from two single streams into a nanochannel through a Y-shaped junction. The laminar flow forms in the front of the nanochannel, then the two liquids fully mix at their downstream where a homogeneous enzyme reaction occurs. The "free state" enzyme reaction kinetics in nanoconfinement can thus be investigated in this laminar flow based nanofluidics device. For demonstration, glucose oxidase (GOx) is chosen as the model enzyme, which catalyzes the oxidation of beta-d-glucose. The reaction product hydrogen peroxide (H2O2) can be electrochemically detected by a microelectrode aligning to the end of nanochannel. The steady-state electrochemical current responding to various glucose concentrations is used to evaluate the activity of the "free state" GOx under nanoconfinement conditions. The effect of liquid flow rate, enzyme concentration, and nanoconfinement on reaction kinetics has been studied in detail. Results show that the "free state" GOx activity increases significantly compared to the immobilized enzyme and bath system, and the GOx reaction rate in the nanochannel is two-fold faster than that in bulk solution, demonstrating the importance of "free state" and spatial confinement for the enzyme reaction kinetics. The present approach provides an effective method for exploiting the "free state" enzyme activity in nanospatial confinement.

  13. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    SciTech Connect

    Misaghi, S.; Galardy, P.J.; Meester, W.J.; Ovaa, H.; Ploegh, H.L.; Gaudet, R.

    2009-03-24

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.

  14. Conformational Sub-states and Populations in Enzyme Catalysis

    SciTech Connect

    Agarwal, Pratul K; Doucet, Nicholas; Chennubholta, C; Ramanathan, Arvind

    2016-01-01

    reactants in the active site, chemical turnover, and release of products. In addition to formation of crucial structural interactions between enzyme and substrate(s), coordinated motions within the enzyme substrate complex allow reaction to proceed at a much faster rate, compared to the reaction in solution and in the absence of enzyme. An increasing number of enzyme systems show the presence of conserved protein motions that are important for function. A wide variety of motions are naturally sampled (over femtosecond to millisecond time-scales) as the enzyme complex moves along the energetic landscape, driven by temperature and dynamical events from the surrounding environment. Areas of low energy along the landscape form conformational sub-states, which show higher conformational populations than surrounding areas. A small number of these protein conformational sub-states contain functionally important structural and dynamical features, which assist the enzyme mechanism along the catalytic cycle. Identification and characterization of these higher-energy (also called excited) sub-states and the associated populations are challenging, as these sub-states are very short-lived and therefore rarely populated. Specialized techniques based on computer simulations, theoretical modeling, and nuclear magnetic resonance have been developed for quantitative characterization of these sub-states and populations. This chapter discusses these techniques and provides examples of their applications to enzyme systems.

  15. An Operational Definition of the Steady State in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Barnsley, E. A.

    1990-01-01

    The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)

  16. Targeting ubiquitination for cancer therapies

    PubMed Central

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin–proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family. PMID:26630263

  17. UbcH5A, a member of human E2 ubiquitin-conjugating enzymes, is closely related to SFT, a stimulator of iron transport, and is up-regulated in hereditary hemochromatosis.

    PubMed

    Gehrke, Sven G; Riedel, Hans-Dieter; Herrmann, Thomas; Hadaschik, Boris; Bents, Karin; Veltkamp, Claudia; Stremmel, Wolfgang

    2003-04-15

    SFT, a stimulator of iron (Fe) transport, has been described as a transmembrane protein that facilitates the uptake of ferrous and ferric iron in mammalian cells. This study was initiated to investigate the 5' regulatory region of SFT and its role in the etiology of hereditary hemochromatosis. Sequence analyses of the putative 5' regulatory region revealed that the SFT cDNA sequence corresponds to intron 6/exon 7 of UbcH5A, a member of E2 ubiquitin-conjugating enzymes, which is involved in the iron-dependent ubiquitination of the hypoxia-inducible factor (HIF) by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. Further mRNA expression studies using a sequence-specific reverse transcriptase-polymerase chain reaction (RT-PCR) assay showed that UbcH5A is significantly up-regulated in the liver of iron-overloaded patients with hereditary hemochromatosis, as previously published for SFT. However, in vitro studies on HepG2 cells failed to demonstrate any significant UbcH5A regulation in response to iron loading or iron chelation. In conclusion, in vivo mRNA expression data previously obtained for SFT might be attributed to UbcH5A. The role of UbcH5A and the ubiquitination pathway in the etiology of hereditary hemochromatosis remains to be elucidated further.

  18. TGF-β1 re-programs TLR4 signaling in L. donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20.

    PubMed

    Das, Sushmita; Pandey, Krishna; Kumar, Ashish; Sardar, Abul H; Purkait, Bidyut; Kumar, Manish; Kumar, Sudeep; Ravidas, Vidya N; Roy, Syamal; Singh, Dharmendra; Das, Pradeep

    2012-07-01

    Visceral leishmaniasis (VL), caused by Leishmania donovani, is a major health concern in India. It represents T-helper type 2 (Th2) bias of cytokines in active state and Th1 bias at cure. However, the role of the parasite in regulating Toll-like receptor (TLR)-mediated macrophage activation in VL patients remains elusive. In this report, we demonstrated that later stages of L. donovani infection rendered tolerance to macrophages, leading to incapability for the production of inflammatory cytokines like tumor necrosis factor (TNF)-α and interleukin (IL)-1β in response to TLR stimulation. Overexpression of transforming growth factor (TGF)-β(1), but not IL-10, resulted in suppressed lipopolysaccharide (LPS)-induced production of TNF-α and downregulation of TLR4 expression in L. donovani-infected macrophages. Recombinant human (rh)TGF-β(1) markedly enhanced tyrosine phosphatase (Src homology region 2 domain-containing phosphatase-1) activity, but inhibited IL-1 receptor-activated kinase (IRAK)-1 activation. Addition of neutralizing TGF-β(1) antibody reversed these effects, and thus suggesting the pivotal role of TGF-β(1) in promoting refractoriness for LPS in macrophages. Surprisingly, the use of a tyrosine phosphatase inhibitor (sodium orthovanadate, Na(3)VO(4)) promoted IRAK-1 activation, confirming the negative inhibitory role of tyrosine phosphatase in macrophage activation. Furthermore, rhTGF-β(1) induced tolerance in infected macrophages by reducing inhibitory protein (IκBα) degradation in a time-dependent manner. In addition, short interfering RNA studies proved that overexpression of A20 ubiquitin-editing protein complex induced inhibitory activity of TGF-β(1) on LPS-mediated nuclear factor-κB activation. Thus, these findings suggest that TGF-β(1) promotes overexpression of A20 through tyrosine phosphatase activity that ensures transient activation of inflammatory signaling pathways in macrophages in active L. donovani infection.

  19. Regulation of plant immune receptors by ubiquitination.

    PubMed

    Furlan, Giulia; Klinkenberg, Jörn; Trujillo, Marco

    2012-01-01

    From pathogen perception and the activation of signal transduction cascades to the deployment of defense responses, protein ubiquitination plays a key role in the modulation of plant immunity. Ubiquitination is mediated by three enzymes, of which the E3 ubiquitin ligases, the substrate determinants, have been the major focus of attention. Accumulating evidence suggests that ubiquitination modulates signaling mediated by pattern recognition receptors and is important for the accumulation of nucleotide-binding leucine-rich repeat type intracellular immune sensors. Recent studies also indicate that ubiquitination directs vesicle trafficking, a function that has been clearly established for immune signaling in animals. In this mini review, we discuss these and other recent advances and highlight important open questions. PMID:23109936

  20. RSK1 protects P-glycoprotein/ABCB1 against ubiquitin–proteasomal degradation by downregulating the ubiquitin-conjugating enzyme E2 R1

    PubMed Central

    Katayama, Kazuhiro; Fujiwara, Chiaki; Noguchi, Kohji; Sugimoto, Yoshikazu

    2016-01-01

    P-glycoprotein (P-gp) is a critical determinant of multidrug resistance in cancer. We previously reported that MAPK inhibition downregulates P-gp expression and that P-gp undergoes ubiquitin–proteasomal degradation regulated by UBE2R1 and SCFFbx15. Here, we investigated the crosstalk between MAPK inhibition and the ubiquitin–proteasomal degradation of P-gp. Proteasome inhibitors or knockdown of FBXO15 and/or UBE2R1 cancelled MEK inhibitor-induced P-gp downregulation. RSK1 phosphorylated Thr162 on UBE2R1 but did not phosphorylate FBXO15. MEK and RSK inhibitors increased UBE2R1-WT but not UBE2R1-T162D and -T162A expression. UBE2R1-T162D showed higher self-ubiquitination and destabilisation than UBE2R1-WT and -T162A. Unlike UBE2R1-WT and -T162A, UBE2R1-T162D did not induce P-gp ubiquitination. UBE2R1-WT or -T162A downregulated P-gp expression and upregulated rhodamine 123 level and sensitivity to vincristine and doxorubicin. However, UBE2R1-T162D did not confer any change in P-gp expression, rhodamine 123 accumulation and sensitivity to the drugs. These results suggest that RSK1 protects P-gp against ubiquitination by reducing UBE2R1 stability. PMID:27786305

  1. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  2. [Progress in ubiquitin, ubiquitin chain and protein ubiquitination].

    PubMed

    Lan, Qiuyan; Gao, Yuan; Li, Yanchang; Hong, Xuechuan; Xu, Ping

    2016-01-01

    Protein ubiquitination is one of the most important and widely exist protein post-translational modifications in eukaryotic cells, which takes the ubiquitin and ubiquitin chains as signal molecules to covalently modify other protein substrates. It plays an important roles in the control of almost all of the life processes, including gene transcription and translation, signal transduction and cell-cycle progression, besides classical 26S protesome degradation pathway. Varied modification sites in the same substrates as well as different types of ubiquitin linkages in the same modification sites contain different structural information, which conduct different signal or even determine the fate of the protein substrates in the cell. Any abnormalities in ubiquitin chain formation or its modification process may cause severe problem in maintaining the balance of intracellular environment and finally result in serious health problem of human being. In this review, we discussed the discovery, genetic characteristics and the crystal structure of the ubiquitin. We also emphasized the recent progresses of the assembly processes, structure and their biological function of ubiquitin chains. The relationship between the disregulation and related human diseases has also been discussed. These progress will shed light on the complexity of proteome, which may also provide tools in the new drug research and development processes. PMID:27363196

  3. Equilibrium Binding and Steady-State Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Dunford, H. Brian

    1984-01-01

    Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)

  4. Structural insights into interactions between ubiquitin specific protease 5 and its polyubiquitin substrates by mass spectrometry and ion mobility spectrometry

    PubMed Central

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-01-01

    Nanoelectrospray ionization-mass spectrometry and ion mobility-mass spectrometry have been used to study the interactions of the large, multidomain, and conformationally flexible deubiquitinating enzyme ubiquitin specific protease 5 (USP5) with mono- and poly-ubiquitin (Ub) substrates. Employing a C335A active site mutant, mass spectrometry was able to detect the stable and cooperative binding of two mono-Ub molecules at the Zinc-finger ubiquitin binding protein (ZnF-UBP) and catalytic site domains of USP5. Tetra-ubiquitin, in contrast, bound to USP5 with a stoichiometry of 1 : 1, and formed additional interactions with USP5's two ubiquitin associated domains (UBAs). Charge-state distribution and ion mobility analysis revealed that both mono- and tetra-ubiquitin bound to the compact conformation of USP5 only, and that tetra-ubiquitin binding was able to shift the conformational distribution of USP5 from a mixture of extended and compact forms to a completely compact conformation. PMID:25970461

  5. Nucleotide Docking: Prediction of Reactant State Complexes for Ribonuclease Enzymes

    SciTech Connect

    Elsasser, Brigitta M.; Fels, Gregor

    2010-12-01

    Ribonuclease enzymes (RNases) play key roles in the maturation and metabolism of all RNA molecules. Computational simulations of the processes involved can help to elucidate the underlying enzymatic mechanism and is often employed in a synergistic approach together with biochemical experiments. Theoretical calculations require atomistic details regarding the starting geometries of the molecules involved, which, in the absence of crystallographic data, can only be achieved from computational docking studies. Fortunately, docking algorithms have improved tremendously in recent years, so that reliable structures of enzyme-ligand complexes can now be successfully obtained from computation. However, most docking programs are not particularly optimized for nucleotide docking. In order to assist our studies on the cleavage of RNA by the two most important ribonuclease enzymes, RNase A and RNase H, we evaluated four docking tools - MOE2009, Glide 5.5, QXP-Flo+0802, and Autodock 4.0 - for their ability to simulate complexes between these enzymes and RNA oligomers. To validate our results, we analyzed the docking results with respect to the known key interactions between the protein and the nucleotide. In addition, we compared the predicted complexes with X-ray structures of the mutated enzyme as well as with structures obtained from previous calculations. In this manner, we were able to prepare the desired reaction state complex so that it could be used as the starting structure for further DFT/B3LYP QM/MM reaction mechanism studies.

  6. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  7. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  8. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Yount, Jacob S.

    2015-01-01

    Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection. PMID:26263374

  9. Dynamic ubiquitination drives herpesvirus neuroinvasion

    PubMed Central

    Huffmaster, Nicholas J.; Sollars, Patricia J.; Richards, Alexsia L.; Pickard, Gary E.; Smith, Gregory A.

    2015-01-01

    Neuroinvasive herpesviruses display a remarkable propensity to enter the nervous system of healthy individuals in the absence of obvious trauma at the site of inoculation. We document a repurposing of cellular ubiquitin during infection to switch the virus between two invasive states. The states act sequentially to defeat consecutive host barriers of the peripheral nervous system and together promote the potent neuroinvasive phenotype. The first state directs virus access to nerve endings in peripheral tissue, whereas the second delivers virus particles within nerve fibers to the neural ganglia. Mutant viruses locked in either state remain competent to overcome the corresponding barrier but fail to invade the nervous system. The herpesvirus “ubiquitin switch” may explain the unusual ability of these viruses to routinely enter the nervous system and, as a consequence, their prevalence in human and veterinary hosts. PMID:26407585

  10. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation

    PubMed Central

    Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu

    2013-01-01

    In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)–E2 (ubiquitin-conjugating enzyme)–E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl. PMID:23172288

  11. OptZyme: Computational Enzyme Redesign Using Transition State Analogues

    PubMed Central

    Grisewood, Matthew J.; Gifford, Nathanael P.; Pantazes, Robert J.; Li, Ye; Cirino, Patrick C.; Janik, Michael J.; Maranas, Costas D.

    2013-01-01

    OptZyme is a new computational procedure for designing improved enzymatic activity (i.e., kcat or kcat/KM) with a novel substrate. The key concept is to use transition state analogue compounds, which are known for many reactions, as proxies for the typically unknown transition state structures. Mutations that minimize the interaction energy of the enzyme with its transition state analogue, rather than with its substrate, are identified that lower the transition state formation energy barrier. Using Escherichia coli β-glucuronidase as a benchmark system, we confirm that KM correlates (R2 = 0.960) with the computed interaction energy between the enzyme and the para-nitrophenyl- β, D-glucuronide substrate, kcat/KM correlates (R2 = 0.864) with the interaction energy of the transition state analogue, 1,5-glucarolactone, and kcat correlates (R2 = 0.854) with a weighted combination of interaction energies with the substrate and transition state analogue. OptZyme is subsequently used to identify mutants with improved KM, kcat, and kcat/KM for a new substrate, para-nitrophenyl- β, D-galactoside. Differences between the three libraries reveal structural differences that underpin improving KM, kcat, or kcat/KM. Mutants predicted to enhance the activity for para-nitrophenyl- β, D-galactoside directly or indirectly create hydrogen bonds with the altered sugar ring conformation or its substituents, namely H162S, L361G, W549R, and N550S. PMID:24116038

  12. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    NASA Technical Reports Server (NTRS)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  13. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases.

    PubMed

    Pruneda, Jonathan N; Durkin, Charlotte H; Geurink, Paul P; Ovaa, Huib; Santhanam, Balaji; Holden, David W; Komander, David

    2016-07-21

    Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins. PMID:27425412

  14. THE ROLE OF E3 LIGASES IN THE UBIQUITIN-DEPENDENT REGULATION OF SPERMATOGENESIS*

    PubMed Central

    Richburg, John H.; Myers, Jessica L.; Bratton, Shawn B.

    2014-01-01

    The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis. PMID:24632385

  15. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase.

    PubMed

    Faesen, Alex C; Dirac, Annette M G; Shanmugham, Anitha; Ovaa, Huib; Perrakis, Anastassis; Sixma, Titia K

    2011-10-01

    The ubiquitin-specific protease USP7/HAUSP regulates p53 and MDM2 levels, and cellular localization of FOXO4 and PTEN, and hence is critically important for their role in cellular processes. Here we show how the 64 kDa C-terminal region of USP7 can positively regulate deubiquitinating activity. We present the crystal structure of this USP7/HAUSP ubiquitin-like domain (HUBL) comprised of five ubiquitin-like (Ubl) domains organized in 2-1-2 Ubl units. The last di-Ubl unit, HUBL-45, is sufficient to activate USP7, through binding to a "switching" loop in the catalytic domain, which promotes ubiquitin binding and increases activity 100-fold. This activation can be enhanced allosterically by the metabolic enzyme GMPS. It binds to the first three Ubl domains (HUBL-123) and hyperactivates USP7 by stabilization of the HUBL-45-dependent active state. PMID:21981925

  16. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  17. Loss of the Ubiquitin-conjugating Enzyme UBE2W Results in Susceptibility to Early Postnatal Lethality and Defects in Skin, Immune, and Male Reproductive Systems.

    PubMed

    Wang, Bo; Merillat, Sean A; Vincent, Michael; Huber, Amanda K; Basrur, Venkatesha; Mangelberger, Doris; Zeng, Li; Elenitoba-Johnson, Kojo; Miller, Richard A; Irani, David N; Dlugosz, Andrzej A; Schnell, Santiago; Scaglione, Kenneth Matthew; Paulson, Henry L

    2016-02-01

    UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (~50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems. PMID:26601958

  18. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  19. Decoding the ubiquitin-mediated pathway of arthropod disease vectors.

    PubMed

    Choy, Anthony; Severo, Maiara S; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J; Pedra, Joao H F

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  20. ATP-dependent degradation of ubiquitin-protein conjugates.

    PubMed Central

    Hershko, A; Leshinsky, E; Ganoth, D; Heller, H

    1984-01-01

    Previous studies have indicated that the ATP-requiring conjugation of ubiquitin with proteins plays a role in the energy-dependent degradation of intracellular proteins. To examine whether such conjugates are indeed intermediates in protein breakdown, conjugates of 125I-labeled lysozyme with ubiquitin were isolated and incubated with a fraction of reticulocyte extract that lacks the enzymes that carry out ubiquitin-protein conjugation. ATP markedly stimulated degradation of the lysozyme moiety of ubiquitin conjugates to products soluble in trichloroacetic acid. By contrast, free 125I-labeled lysozyme was not degraded under these conditions, unless ubiquitin and the three enzymes required for ubiquitin conjugation were supplemented. Mg2+ was absolutely required for conjugate breakdown. Of various nucleotides, only CTP replaced ATP. Nonhydrolyzable analogs of ATP were not effective. In the absence of ATP, free lysozyme is released from ubiquitin-lysozyme conjugates by isopeptidases present in the extract. Thus, ATP is involved in both the formation and the breakdown of ubiquitin-protein conjugates. Images PMID:6324208

  1. The mechanism of OTUB1-mediated inhibition of ubiquitination

    SciTech Connect

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao; Wolberger, Cynthia

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1

  2. Global approaches to understanding ubiquitination

    PubMed Central

    Kaiser, Peter; Huang, Lan

    2005-01-01

    Ubiquitination - the linkage of one or more molecules of the protein ubiquitin to another protein - regulates a wide range of biological processes in all eukaryotes. We review the proteome-wide strategies that are being used to study aspects of ubiquitin biology, including substrates, components of the proteasome and ubiquitin ligases, and deubiquitination. PMID:16207362

  3. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  4. Pioglitazone Attenuates Drug-Eluting Stent-Induced Proinflammatory State in Patients by Blocking Ubiquitination of PPAR

    PubMed Central

    Wang, Zhongxia; Zhang, Tao; Sun, Lizhe; Li, Ruifeng; Wei, Yuanyuan; Yuan, Zuyi; Liu, Junhui; Chen, Tao

    2016-01-01

    The inflammatory response after polymer-based drug-eluting stent (DES) placement has recently emerged as a major concern. The biologic roles of peroxisome proliferator-activated receptor-γ (PPAR-γ) activators thiazolidinedione (TZD) remain controversial in cardiovascular disease. Herein, we investigated the antiinflammatory effects of pioglitazone (PIO) on circulating peripheral blood mononuclear cells (MNCs) in patients after coronary DES implantation. Methods and Results. Twenty-eight patients with coronary artery disease and who underwent DES implantations were randomly assigned to pioglitazone (30 mg/d; PIO) or placebo (control; Con) treatment in addition to optimal standard therapy. After 12 weeks of treatment, plasma concentrations of high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP-9) were significantly decreased in PIO group compared to the Con group (P = 0.035, 0.011, 0.008, and 0.012, resp.). DES-induced mRNA expressions of IL-6, TNF-α, and MMP-9 in circulating MNC were significantly blocked by PIO (P = 0.031, 0.012, and 0.007, resp.). In addition, PIO markedly inhibited DES-enhanced NF-κB function and DES-blocked PPAR-γ activity. Mechanically, DES induced PPAR-γ ubiquitination and degradation in protein level, which can be totally reversed by PIO. Conclusion. PIO treatment attenuated DES-induced PPAR loss, NF-κB activation, and proinflammation, indicating that PIO may have a novel direct protective role in modulating proinflammation in DES era. PMID:27403152

  5. Characterizing substrate selectivity of ubiquitin C-terminal hydrolase-L3 using engineered α-linked ubiquitin substrates.

    PubMed

    Navarro, Mario F; Carmody, Lisa; Romo-Fewell, Octavio; Lokensgard, Melissa E; Love, John J

    2014-12-30

    The ubiquitin-proteasome system (UPS) is highly complex and entails the concerted actions of many enzymes that function to ubiquitinate proteins targeted to the proteasome as well as enzymes that remove and recycle ubiquitin for additional rounds of proteolysis. Ubiquitin C-terminal hydrolase-L3 (UCH-L3) is a human cytosolic deubiquitinase whose precise biological function is not known. It is believed to hydrolyze small peptides or chemical adducts from the C-terminus of ubiquitin that may be remnant from proteasomal processing. In addition, UCH-L3 is a highly effective biotechnological tool that is used to produce small or unstable peptides/proteins recalcitrant to production in Escherichia coli expression systems. Previous research, which explored the substrate selectivity of UCH-L3, demonstrated a substrate size limitation for proteins/peptides expressed as α-linked C-terminal fusions to ubiquitin and also suggested that an additional substrate property may affect UCH-L3 hydrolysis [ Larsen , C. N. et al. (1998) Biochemistry 37 , 3358 - 3368 ]. Using a series of engineered protein substrates, which are similar in size yet differ in secondary structure, we demonstrate that thermal stability is a key factor that significantly affects UCH-L3 hydrolysis. In addition, we show that the thermal stabilities of the engineered substrates are not altered by fusion to ubiquitin and offer a possible mechanism as to how ubiquitin affects the structural and unfolding properties of natural in vivo targets.

  6. The early history of the ubiquitin field

    PubMed Central

    Varshavsky, Alexander

    2006-01-01

    This is a personal account of the early history of ubiquitin research, by one of its protagonists. The field of ubiquitin and regulated protein degradation was created in the 1980s, largely through the complementary discoveries by the laboratory of A. Hershko (Technion, Haifa, Israel) and by my laboratory, then at MIT (Cambridge, MA). I describe the elegant insights by Hershko and his colleagues that yielded the initial understanding of ubiquitin conjugation and ubiquitin-mediated proteolysis in cell extracts, including the identification of E1, E2, and E3 enzymes. These advances were followed by a set of interconnected discoveries in my laboratory that revealed the biology of the ubiquitin system, i.e., its necessity for the protein degradation in vivo, its specific physiological functions (in the cell cycle, DNA repair, protein synthesis, transcriptional regulation, and stress responses), the source of its selectivity (specific degradation signals in short-lived proteins), and its key mechanistic attributes, such as the polyubiquitin chain and the subunit selectivity of protein degradation. The above biological (function-based) insights produced the main discovery of the physiological regulation by intracellular protein degradation. These advances caused the enormous expansion of the ubiquitin field in the 1990s. Together with the initial discovery of ubiquitin-mediated proteolysis by Hershko and coworkers, our biological discoveries in the 1980s led to a radically changed understanding of the logic of intracellular circuits, as it became clear that the control through regulated protein degradation rivals, and often surpasses in significance, the classical regulation through transcription and translation. PMID:16501229

  7. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle.

    PubMed

    Madura, K; Prakash, S; Prakash, L

    1990-02-25

    The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating (E2) enzyme and is required for the repair of damaged DNA, mutagenesis, and sporulation. Here, we report our studies on the regulation of RAD6 gene expression after UV damage, during the mitotic cell cycle, in meiosis, and following heat shock and starvation. RAD6 mRNA levels became elevated in cells exposed to UV light, and at all UV doses the increase in mRNA levels was rapid and occurred within 30 min after exposure to UV. RAD6 mRNA levels also increased in sporulating MATa/MAT alpha cells, and the period of maximal accumulation of RAD6 mRNA during meiosis is coincident with the time during which recombination occurs. However, RAD6 mRNA levels showed no periodic fluctuation in the mitotic cell cycle, were not elevated upon heat shock, and fell in cells in the stationary phase of growth. These observations suggest that RAD6 activity is required throughout the cell cycle rather than being restricted to a specific stage, and that during meiosis, high levels of RAD6 activity may be needed at a stage coincident with genetic recombination. The observation that RAD6 transcription is not induced by heat and starvation, treatments that activate stress responses, suggests that the primary role of RAD6 is in the repair of damaged DNA rather than in adapting cells to stress situations.

  8. The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming

    PubMed Central

    Suresh, Bharathi; Lee, Junwon; Kim, Kye-Seong; Ramakrishna, Suresh

    2016-01-01

    Ubiquitination of core stem cell transcription factors can directly affect stem cell maintenance and differentiation. Ubiquitination and deubiquitination must occur in a timely and well-coordinated manner to regulate the protein turnover of several stemness related proteins, resulting in optimal embryonic stem cell maintenance and differentiation. There are two switches: an E3 ubiquitin ligase enzyme that tags ubiquitin molecules to the target proteins for proteolysis and a second enzyme, the deubiquitinating enzyme (DUBs), that performs the opposite action, thereby preventing proteolysis. In order to maintain stemness and to allow for efficient differentiation, both ubiquitination and deubiquitination molecular switches must operate properly in a balanced manner. In this review, we have summarized the importance of the ubiquitination of core stem cell transcription factors, such as Oct3/4, c-Myc, Sox2, Klf4, Nanog, and LIN28, during cellular reprogramming. Furthermore, we emphasize the role of DUBs in regulating core stem cell transcriptional factors and their function in stem cell maintenance and differentiation. We also discuss the possibility of using DUBs, along with core transcription factors, to efficiently generate induced pluripotent stem cells. Our review provides a relatively new understanding regarding the importance of ubiquitination/deubiquitination of stem cell transcription factors for efficient cellular reprogramming. PMID:26880980

  9. Dengue Virus Genome Uncoating Requires Ubiquitination

    PubMed Central

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  10. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies.

    PubMed

    Nguyen, Lan K

    2016-05-01

    Post-translational modification of cellular proteins by ubiquitin is a pivotal regulatory event that controls not only protein degradation, but also a variety of non-proteolytic functions. Ubiquitination is involved in a broad array of physiological processes, and its dysregulation has been associated with many human diseases, including neuronal disorders and cancers. Ubiquitin-mediated signalling has thus come to the forefront of biomedical research. It is increasingly apparent that ubiquitination is a highly complex and dynamic process, evidenced by a myriad of ways of ubiquitin chain formation, tightly regulatory mechanisms involving E3 ligases and deubiquitinating enzymes and extensive crosstalk with other post-translational modifications. To unravel the complexity of ubiquitination and understand the dynamic properties of ubiquitin-mediated signalling are challenging, but critical topics in ubiquitin research, which will undoubtedly benefit our effort in developing strategies that could target ubiquitin signalling for therapeutics. Computational modelling and model-based approaches are emerging as promising tools that help tackle the complexity and provide useful frameworks for quantitative and dynamical analysis of ubiquitin signalling. In this article, I will discuss recent advances in our understanding of the dynamic behaviour of ubiquitination from both theoretical and experimental studies, and aspects of ubiquitin signalling that may have major dynamical consequences. It is expected the discussed issues will be of relevant interest to both the ubiquitin and systems biology fields.

  11. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  12. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC)

    PubMed Central

    Pinto, Maria J.; Pedro, Joana R.; Costa, Rui O.; Almeida, Ramiro D.

    2016-01-01

    In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic

  13. Crystal Structure of a Ube2S-Ubiquitin Conjugate

    PubMed Central

    Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John

    2016-01-01

    Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794

  14. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  15. Extended ubiquitin species are protein-based DUB inhibitors

    PubMed Central

    Krutauz, Daria; Reis, Noa; Nakasone, Mark A.; Siman, Peter; Zhang, Daoning; Kirkpatrick, Donald S.; Gygi, Steven P.; Brik, Ashraf; Fushman, David; Glickman, Michael H.

    2015-01-01

    A frame-shift mutation in the transcript of the ubiquitin-B gene leads to a C-terminally extended ubiquitin, UBB+1. UBB+1 has been considered to inhibit proteasomes, and as such to be the underlying cause for toxic protein buildup correlated with certain neuropathological conditions. We demonstrated that expression of extended ubiquitin variants led to accumulation of heterogeneously-linked polyubiquitin conjugates indicating a pervasive effect on ubiquitin-dependent turnover. 20S proteasomes selectively proteolysed ubiquitin extensions, yet no evidence for inhibition of 26S holoenzymes was found. However, among susceptible targets for inhibition was Ubp6, the primary enzyme responsible for disassembly of lysine-48 linkages at 26S proteasomes. Processing of lysine-48 and lysine-63 linkages by other deubiquitinating enzymes (DUBs) was also inhibited. Disruption of ubiquitin-dependent degradation by extended ubiquitin variants may therefore be attributed to their inhibitory effect on select DUBs, thus shifting research efforts related to protein accumulation in neurodegenerative processes from proteasomes to DUBs. PMID:24997605

  16. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  17. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    SciTech Connect

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.; Luo, Kunxin

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2, interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.

  18. Downstream activation of NF-κB in the EDA-A1/EDAR signalling in Sjögren's syndrome and its regulation by the ubiquitin-editing enzyme A20.

    PubMed

    Sisto, M; Barca, A; Lofrumento, D D; Lisi, S

    2016-05-01

    Sjögren's syndrome (SS) is an autoimmune disease and the second most common chronic systemic rheumatic disorder. Prevalence of primary SS in the general population has been estimated to be approximately 1-3%, whereas secondary SS has been observed in 10-20% of patients with rheumatoid arthritis, systemic lupus erythematosus (SLE) and scleroderma. Despite this, its exact aetiology and pathogenesis are largely unexplored. Nuclear factor-kappa B (NF-κB) signalling mechanisms provide central controls in SS, but how these pathways intersect the pathological features of this disease is unclear. The ubiquitin-editing enzyme A20 (tumour necrosis factor-α-induced protein 3, TNFAIP3) serves as a critical inhibitor on NF-κB signalling. In humans, polymorphisms in the A20 gene or a deregulated expression of A20 are often associated with several inflammatory disorders, including SS. Because A20 controls the ectodysplasin-A1 (EDA-A1)/ectodysplasin receptor (EDAR) signalling negatively, and the deletion of A20 results in excessive EDA1-induced NF-κB signalling, this work investigates the expression levels of EDA-A1 and EDAR in SS human salivary glands epithelial cells (SGEC) and evaluates the hypothesis that SS SGEC-specific deregulation of A20 results in excessive EDA1-induced NF-κB signalling in SS. Our approach, which combines the use of siRNA-mediated gene silencing and quantitative pathway analysis, was used to elucidate the role of the A20 target gene in intracellular EDA-A1/EDAR/NF-κB pathway in SS SGEC, holding significant promise for compound selection in drug discovery. PMID:26724675

  19. Intrinsic site-selectivity of ubiquitin dimer formation

    PubMed Central

    Andersen, Kristen A; Martin, Langdon J; Prince, Joel M; Raines, Ronald T

    2015-01-01

    The post-translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme-catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme-free system by measuring the rate constants for thiol–disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles. PMID:25401704

  20. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains (GST-qUBAs).

    PubMed

    Meng, Qingshi; Rao, Liqun; Pan, Yinghong

    2014-12-01

    Protein ubiquitination is a common posttranslational modification that often occurs on lysine residues. It controls the half-life, interaction and trafficking of intracellular proteins and is involved in different plant development stages and responses to environment stresses. Four Ubiquitin-Associated (UBA) domains were sequentially fused with Glutathione S-transferase (GST) tag (GST-qUBA) as bait protein in this study. A two-step affinity protocol was successfully developed and the identification of ubiquitinated proteins and their interaction proteins increased almost threefold compared to methods that directly identify ubiquitinated proteins from crude samples. A total of 170 ubiquitin-related proteins were identified in GST-qUBAs enriched samples taken from rice seedlings. There were 134 ubiquitinated proteins, 5 ubiquitin-activating enzymes (E1s), 5 ubiquitin-conjugating enzymes (E2s), 19 ubiquitin ligases (E3s) and 7 deubiquitinating enzymes (DUBs), which all contained various key factors that regulated a wide range of biological processes. Moreover, a series of novel ubiquitinated proteins and E3s were identified that had not been previously reported. This study investigated a high-efficiency method for identifying novel ubiquitinated proteins involved in biological processes and a primary mapping of the ubiquitylome during rice seedling development, which could extend our understanding of how ubiquitin modification regulates plant proteins, pathways and cellular processes.

  1. The ubiquitin system: a critical regulator of innate immunity and pathogen–host interactions

    PubMed Central

    Li, Jie; Chai, Qi-Yao; Liu, Cui Hua

    2016-01-01

    The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host–pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host–pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion. PMID:27524111

  2. Deubiquitinase–based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest)

    PubMed Central

    Komander, David

    2016-01-01

    Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins. PMID:25633630

  3. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  4. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development.

    PubMed

    Bayram-Weston, Zubeyde; Jones, Lesley; Dunnett, Stephen B; Brooks, Simon P

    2016-01-01

    Huntington's disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development. PMID:27196694

  5. Comparison of mHTT Antibodies in Huntington’s Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development

    PubMed Central

    Bayram-Weston, Zubeyde; Jones, Lesley; Dunnett, Stephen B.; Brooks, Simon P.

    2016-01-01

    Huntington’s disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development. PMID:27196694

  6. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  7. Ubiquitination in Signaling to and Activation of IKK

    PubMed Central

    Chen, Zhijian J.

    2013-01-01

    A role of polyubiquitination in the activation of IκB kinase (IKK) through a proteasome-independent mechanism was first reported in 1996, but the physiological significance of this finding was not clear until 2000 when TRAF6 was found to be a ubiquitin E3 ligase that catalyzes lysine-63 (K63) polyubiquitination. Since then, several proteins known to regulate IKK have been linked to the ubiquitin pathway. These include the deubiquitination enzymes CYLD and A20 that inhibit IKK, and the ubiquitin binding proteins NEMO and TAB2 which are the regulatory subunits of IKK and TAK1 kinase complexes, respectively. Now accumulating evidence strongly supports a central role of K63 polyubiquitination in IKK activation by multiple immune and inflammatory pathways. Interestingly, recent research suggests that some alternative ubiquitin chains such as linear or K11 ubiquitin chains may also play a role in certain pathways such as the TNF pathway. Here I present a historical narrative of the discovery of the role of ubiquitin in IKK activation, review recent advances in understanding the role and mechanism of ubiquitin-mediated IKK activation, and raise some questions to be resolved in future research. PMID:22435549

  8. RAD6 gene product of Saccharomyces cerevisiae requires a putative ubiquitin protein ligase (E3) for the ubiquitination of certain proteins.

    PubMed

    Sharon, G; Raboy, B; Parag, H A; Dimitrovsky, D; Kulka, R G

    1991-08-25

    The RAD6 (UBC2) gene of Saccharomyces cerevisiae which is involved in DNA repair, induced mutagenesis, and sporulation, encodes a ubiquitin-conjugating enzyme (E2). Since the RAD6 gene product can transfer ubiquitin directly to histones in vitro without the participation of a ubiquitin protein ligase (E3), it has been suggested that in vivo it also acts by the unassisted conjugation of ubiquitin to histones or to other target proteins. Here we show that the RAD6 protein can ligate ubiquitin in vitro to a hitherto unknown set of exogenous target proteins (alpha-, beta-, and kappa-casein and beta-lactoglobulin) when supplemented by a putative ubiquitin protein ligase (E3-R) from S. cerevisiae. RAD6 supplemented with E3-R ligates 1 or, sometimes, 2 ubiquitin molecules to the target protein molecule. UBC3 (CDC34) protein in the presence of E3-R has barely detectable activity on the non-histone substrates. Other ubiquitin-conjugating enzymes tested (products of the UBC1 and UBC4 genes) do not cooperate with E3-R in conjugating ubiquitin to the same substrates. Thus, E3-R apparently interacts selectively with RAD6 protein. These findings suggest that some of the in vivo activities of the RAD6 gene may involve E3-R.

  9. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella

    PubMed Central

    Huang, Kaiyao; Diener, Dennis R.

    2009-01-01

    The disassembly of cilia and flagella is linked to the cell cycle and environmental cues. We have found that ubiquitination of flagellar proteins is an integral part of flagellar disassembly. Free ubiquitin and the ubiquitin-conjugating enzyme CrUbc13 are detected in flagella, and several proteins are ubiquitinated in isolated flagella when exogenous ubiquitin and adenosine triphosphatase are added, suggesting that the ubiquitin conjugation system operates in flagella. Levels of ubiquitinated flagellar proteins increase during flagellar resorption, especially in intraflagellar transport (IFT) mutants, suggesting that disassembly products are labeled with ubiquitin and transported to the cell body by IFT. Substrates of the ubiquitin conjugation system include α-tubulin (but not β-tubulin), a dynein subunit (IC2), two signaling proteins involved in the mating process, cyclic guanosine monophosphate–dependent kinase, and the cation channel polycystic kidney disease 2. Ubiquitination of flagellar proteins is enhanced early in mating, suggesting that ubiquitination also plays an active role in regulating signaling pathways in flagella. PMID:19704024

  10. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3

    PubMed Central

    Kamadurai, Hari B; Qiu, Yu; Deng, Alan; Harrison, Joseph S; MacDonald, Chris; Actis, Marcelo; Rodrigues, Patrick; Miller, Darcie J; Souphron, Judith; Lewis, Steven M; Kurinov, Igor; Fujii, Naoaki; Hammel, Michal; Piper, Robert; Kuhlman, Brian; Schulman, Brenda A

    2013-01-01

    Ubiquitination by HECT E3 enzymes regulates myriad processes, including tumor suppression, transcription, protein trafficking, and degradation. HECT E3s use a two-step mechanism to ligate ubiquitin to target proteins. The first step is guided by interactions between the catalytic HECT domain and the E2∼ubiquitin intermediate, which promote formation of a transient, thioester-bonded HECT∼ubiquitin intermediate. Here we report that the second step of ligation is mediated by a distinct catalytic architecture established by both the HECT E3 and its covalently linked ubiquitin. The structure of a chemically trapped proxy for an E3∼ubiquitin-substrate intermediate reveals three-way interactions between ubiquitin and the bilobal HECT domain orienting the E3∼ubiquitin thioester bond for ligation, and restricting the location of the substrate-binding domain to prioritize target lysines for ubiquitination. The data allow visualization of an E2-to-E3-to-substrate ubiquitin transfer cascade, and show how HECT-specific ubiquitin interactions driving multiple reactions are repurposed by a major E3 conformational change to promote ligation. DOI: http://dx.doi.org/10.7554/eLife.00828.001 PMID:23936628

  11. Ubiquitination of Rac1 by inhibitors of apoptosis (IAPs).

    PubMed

    Oberoi-Khanuja, Tripat Kaur; Rajalingam, Krishnaraj

    2014-01-01

    Ubiquitination of proteins has emerged as a vital posttranslational modification at the crux of numerous signalling pathways, regulating them in various ways. Most members of the small GTPase family including Ras and Rho proteins are regulated by GEFs, GAPs, and RhoGDIs that modulate their cycling between the active and inactive states. Ubiquitination has added another layer to the regulation of small GTPases. Recently, we have uncovered that inhibitors of apoptosis (IAPs) function as direct E3 ubiquitin ligases for Rho GTPase Rac1 and target it for proteasomal degradation. Here, we describe in vitro and in vivo ubiquitination assays for detecting the conjugation of ubiquitin to Rac1 by XIAP and cIAP1.

  12. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    PubMed Central

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.; Luo, Kunxin

    2001-01-01

    Smad proteins mediate transforming growth factor-β (TGF-β) signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGF-β signaling that functions to maintain the repressed state of TGF-β target genes in the absence of ligand. On TGF-β stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGF-β target genes. We show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase-promoting complex (APC) and the UbcH5 family of ubiquitin-conjugating enzymes. Smad3 and to a lesser extent, Smad2, interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box (D box)-dependent manner. In addition to the D box, efficient ubiquitination and degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGF-β signaling. Our studies elucidate an important mechanism and pathway for the degradation of SnoN and more importantly, reveal a novel role of the APC in the regulation of TGF-β signaling. PMID:11691834

  13. Ubiquitination of the common cytokine receptor {gamma}{sub c} and regulation of expression by an ubiquitination/deubiquitination machinery

    SciTech Connect

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice . E-mail: adautry@pasteur.fr

    2005-08-26

    The common cytokine receptor {gamma}{sub c} is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of {gamma}{sub c} receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that {gamma}{sub c} is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that {gamma}{sub c} is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces {gamma}{sub c} down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on {gamma}{sub c} expression. We show that an increase in DUB-2 expression correlates with an increased {gamma}{sub c} half-life, resulting in the up-regulation of the receptor. Altogether, we show that {gamma}{sub c} is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2.

  14. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    PubMed

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  15. Structure and evolution of ubiquitin and ubiquitin-related domains.

    PubMed

    Burroughs, A Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2012-01-01

    played a major role in the emergence of characteristic eukaryotic cellular substructures and systems pertaining to nucleo-cytoplasmic compartmentalization, vesicular trafficking, lysosomal targeting, protein processing in the endoplasmic reticulum, and chromatin dynamics. Recent results from comparative genomics indicate that precursors of the eukaryotic Ub-system were already present in prokaryotes. The most basic versions are those combining an Ubl and an E1-like enzyme involved in metabolic pathways related to metallopterin, thiamine, cysteine, siderophore and perhaps modified base biosynthesis. Some of these versions also appear to have given rise to simple protein-tagging systems such as Sampylation in archaea and Urmylation in eukaryotes. However, other prokaryotic systems with Ubls of the YukD and other families, including one very close to Ub itself, developed additional elements that more closely resemble the eukaryotic state in possessing an E2, a RING-type E3, or both of these components. Additionally, prokaryotes have evolved conjugation systems that are independent of Ub ligases, such as the Pup system.

  16. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination.

    PubMed

    Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin

    2015-08-11

    Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987

  17. Isolation of the Ubiquitin-Proteome from Tumor Cell Lines and Primary Cells Using TUBEs.

    PubMed

    Xolalpa, Wendy; Mata-Cantero, Lydia; Aillet, Fabienne; Rodriguez, Manuel S

    2016-01-01

    Tandem ubiquitin-binding entities (TUBEs) act as molecular traps to isolate polyubiquitylated proteins facilitating the study of this highly reversible posttranslational modification. We provide here sample preparation and adaptations required for TUBE-based enrichment of the ubiquitin proteome from tumor cell lines or primary cells. Our protocol is suitable to identify ubiquitin substrates, enzymes involved in the ubiquitin proteasome pathway, as well as proteasome subunits by mass spectrometry. This protocol was adapted to prepare affinity columns, reduce background, and improve the protein recovery depending on the sample source and necessities. PMID:27613034

  18. Histone Ubiquitination and Deubiquitination in Transcription, DNA Damage Response, and Cancer

    PubMed Central

    Cao, Jian; Yan, Qin

    2012-01-01

    Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer. PMID:22649782

  19. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

    NASA Astrophysics Data System (ADS)

    Kovermann, Michael; Ådén, Jörgen; Grundström, Christin; Elisabeth Sauer-Eriksson, A.; Sauer, Uwe H.; Wolf-Watz, Magnus

    2015-07-01

    An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or `invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power--a key aspect in rational design of enzymes catalysing novel reactions.

  20. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

    PubMed Central

    Kovermann, Michael; Ådén, Jörgen; Grundström, Christin; Elisabeth Sauer-Eriksson, A.; Sauer, Uwe H.; Wolf-Watz, Magnus

    2015-01-01

    An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or ‘invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power—a key aspect in rational design of enzymes catalysing novel reactions. PMID:26138143

  1. The natural history of ubiquitin and ubiquitin-related domains.

    PubMed

    Burroughs, Alexander Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2012-01-01

    The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.

  2. The natural history of ubiquitin and ubiquitin-related domains.

    PubMed

    Burroughs, Alexander Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2012-01-01

    The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system. PMID:22201813

  3. The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery

    PubMed Central

    Cao, Biyin; Mao, Xinliang

    2011-01-01

    Bortezomib is a specific inhibitor of proteasomes, the most important protease complexes in protein degradation. Bortezomib can induce apoptosis of a variety of cancer cells, including leukemia, lymphoma, multiple myeloma, breast cancers, prostate cancers, lung cancers, and so on. However, extensive studies and overall evaluation suggested that multiple myeloma is the most sensitive and the best responsive disease which was later approved by Food and Drug Administration for bortezomib treatment. Because proteasomes are an essential component in the ubiquitin-proteasomal protein degradation pathway, the discovery of bortezomib implicates that the UPS is critical for myeloma pathophysiology. The UPS also contains ubiquitin, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), ubiquitin ligases (E3) and deubiquitinases (Dubs). In this review, we examined and analyzed the recent advancements of the UPS components in multiple myeloma and its implications in drug discovery for myeloma treatment. PMID:22432065

  4. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  5. Detection of a single enzyme molecule based on a solid-state nanopore sensor

    NASA Astrophysics Data System (ADS)

    Tan, ShengWei; Gu, DeJian; Liu, Hang; Liu, QuanJun

    2016-04-01

    The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si3N4) nanopores with diameters of ∼28 and ∼88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the first time analyzed single HRP molecular translocation events. In addition, a real-time monitored single enzyme molecular biochemical reaction and a translocation of the product of enzyme catalysis substrates were investigated by using a Si3N4 nanopore. Our nanopore system showed a high sensitivity in detecting single enzyme molecules and a real-time monitored single enzyme molecular biochemical reaction. This method could also be significant for studying gene expression or enzyme dynamics at the single-molecule level.

  6. Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity.

    PubMed

    Im, Eunju; Chung, Kwang Chul

    2015-08-01

    Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady-state levels through the ubiquitin-proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co-localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser-131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A-mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin-conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A-mediated phosphorylation inhibited the neuroprotective action of parkin against 6-hydroxydopamine toxicity in dopaminergic SH-SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD-inducing pathological conditions. Mutations of parkin are linked to autosomal recessive forms of familial Parkinson's disease (PD). According to its functional relevance in abnormal protein aggregation and neuronal cell death, a number of post-translational modifications regulate the ubiquitin E3 ligase activity of parkin. Here we propose a novel inhibitory mechanism of parkin E3 ubiquitin ligase through dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A)-mediated phosphorylation as well as its neuroprotective action against 6-hydroxydopamine (6-OHDA)-induced cell death

  7. Analysis of flagellar protein ubiquitination.

    PubMed

    Long, Huan; Huang, Kaiyao

    2013-01-01

    Flagella/cilia are conserved organelles existing in unicellular protists and multicellular animals, where they perform essential motile and sensory functions. Their assembly and disassembly are coordinated with the cell cycle, and recent evidence shows that posttranslational modifications such as phosphorylation, methylation, and ubiquitination are involved in these two processes, perhaps through interacting with intraflagellar transport (IFT), a specialized intracellular transport that is required for the assembly and maintenance of flagella/cilia. In this chapter, we summarize the components of the ubiquitination system published in proteomic databases of flagella/cilia. Furthermore, we describe procedures to analyze the ubiquitin-conjugating system in Chlamydomonas flagella and to analyze flagellar protein ubiquitination during flagellar shortening and the mating process. These results and tools will be valuable for the characterization of substrates of ubiquitination and their roles in flagellar disassembly and in regulating signal transduction pathways in flagella/cilia.

  8. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    PubMed

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen.

  9. A UbcH5/Ubiquitin Noncovalent Complex is Required for Processive BRCA1-Directed Ubiquitination

    SciTech Connect

    Brzovic, Peter S.; Lissounov, Alexei V.; Christensen, Devin; Hoyt, David W.; Klevit, Rachel E.

    2006-03-17

    Protein ubiquitination is a powerful regulatory modification that influences nearly every aspect of eukaryotic cell biology. The general pathway for ubiquitin (Ub) modification requires the sequential activities of a Ub-activating enzyme (E1), a Ub transfer enzyme (E2), and a Ub ligase (E3). The E2 must recognize both the E1 and a cognate E3 in addition to carrying activated Ub. These central functions are performed by a topologically conserved a/b-fold core domain ofw150 residues shared by all E2s. However, as presented herein, the UbcH5 family of E2s can also bind Ub noncovalently on a surface well removed from the E2 active site. We present the solution structure of the UbcH5c/ Ub noncovalent complex and demonstrate that this noncovalent interaction permits self-assembly of activated UbcH5cwUb molecules. Self-assembly has profound consequences for the processive formation of polyubiquitin (poly-Ub) chains in ubiquitination reactions directed by the breast and ovarian cancer tumor susceptibility protein BRCA1

  10. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.

    PubMed

    Matsuda, Noriyuki

    2016-04-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling.

  11. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  12. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.

    PubMed

    Reichard, Eden L; Chirico, Giavanna G; Dewey, William J; Nassif, Nicholas D; Bard, Katelyn E; Millas, Nickolas E; Kraut, Daniel A

    2016-08-26

    In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process. PMID:27405762

  13. Heme enzymes. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase.

    PubMed

    Casadei, Cecilia M; Gumiero, Andrea; Metcalfe, Clive L; Murphy, Emma J; Basran, Jaswir; Concilio, Maria Grazia; Teixeira, Susana C M; Schrader, Tobias E; Fielding, Alistair J; Ostermann, Andreas; Blakeley, Matthew P; Raven, Emma L; Moody, Peter C E

    2014-07-11

    Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct visualization of protonation states. We demonstrate that the ferryl heme is an Fe(IV)=O species and is not protonated. Comparison of the structures shows that the distal histidine becomes protonated on formation of the ferryl intermediate, which has implications for the understanding of O-O bond cleavage in heme enzymes. The structures highlight the advantages of neutron cryo-crystallography in probing reaction mechanisms and visualizing protonation states in enzyme intermediates.

  14. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  15. Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation

    PubMed Central

    Schwartzkopff, Benjamin; Platta, Harald W.; Hasan, Sohel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-01-01

    Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p. PMID:26182377

  16. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.

    PubMed

    Lee, Tzong-Yi; Chen, Shu-An; Hung, Hsin-Yi; Ou, Yu-Yen

    2011-03-09

    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub

  17. Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites

    PubMed Central

    Hung, Hsin-Yi; Ou, Yu-Yen

    2011-01-01

    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are – E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (−20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features

  18. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  19. Ubiquitin in the immune system

    PubMed Central

    Zinngrebe, Julia; Montinaro, Antonella; Peltzer, Nieves; Walczak, Henning

    2014-01-01

    Ubiquitination is a post-translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the latest discoveries in this field and discuss how they impact our understanding of the ubiquitin system in host defence mechanisms as well as self-tolerance. PMID:24375678

  20. Ubiquitin in the immune system.

    PubMed

    Zinngrebe, Julia; Montinaro, Antonella; Peltzer, Nieves; Walczak, Henning

    2014-01-01

    Ubiquitination is a post-translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the latest discoveries in this field and discuss how they impact our understanding of the ubiquitin system in host defence mechanisms as well as self-tolerance.

  1. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.

    PubMed

    Burger, Angelika M; Seth, Arun K

    2004-10-01

    The highly conserved eukaryotic ubiquitin-proteasome system (UP-S) plays a pivotal role in protein homeostasis and is critical in regulating normal and cancer-related cellular processes. The hierarchical nature of the UP-S provides a rich source of molecular targets for specific intervention and has therefore arisen as a promising approach to innovative anticancer therapies. The first in class proteasome inhibitory agent Bortezomib (Velcade) has recently obtained regulatory approval for the treatment of multiple myeloma. Ubiquitin-mediated degradation is a complex process that is comprised of well defined steps involving ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Although a single E1 activates the ubiquitin conjugation machinery, a large number of E2 conjugating enzymes and E3 ligases are now known to exist. Proteins tagged with ubiquitin are subsequently recognised by the proteasome for digestion and fragmentation. The enzymatic nature, multitude of E3s and their specific substrate recognition predestines them as therapeutic targets. This article will review known inhibitors of the proteasome and their molecular mechanisms as well as ongoing developments and promising avenues for targeting substrate-specific E3 ligases that are likely to yield a new class of therapeutics that will serve and complement the armamentarium of anticancer drugs. PMID:15454246

  2. Large-Scale Density Functional Theory Transition State Searching in Enzymes.

    PubMed

    Lever, Greg; Cole, Daniel J; Lonsdale, Richard; Ranaghan, Kara E; Wales, David J; Mulholland, Adrian J; Skylaris, Chris-Kriton; Payne, Mike C

    2014-11-01

    Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.5 kcal mol(-1) in the enzyme, compared with the equivalent reaction in water, which is in good agreement with experiment. Natural bond orbital analysis identifies a number of active site residues that are important for transition state stabilization in chorismate mutase. This benchmark study demonstrates that linear-scaling density functional theory techniques are capable of simulating entire enzymes at the ab initio quantum mechanical level of accuracy.

  3. HIF-1α Upregulation due to Depletion of the Free Ubiquitin Pool.

    PubMed

    Kim, Jiyoung; So, Daeho; Shin, Hyun-Woo; Chun, Yang-Sook; Park, Jong-Wan

    2015-10-01

    Hypoxia-inducible factor 1alpha (HIF-1α), which transactivates a variety of hypoxia-induced genes, is rapidly degraded under nomoxia through the hydroxylation-ubiquitination-proteasome pathway. In this study, we addressed how HIF-1α is stabilized by proteasome inhibitors. The ubiquitin pool was rapidly reduced after proteasome inhibition, followed by the accumulation of non-ubiquitinated HIF-1α. The poly-ubiquitination of HIF-1α was resumed by restoration of free ubiquitin, which suggests that the HIF-1α stabilization under proteasome inhibition is attributed to depletion of the free ubiquitin pool. Ni(2+) and Zn(2+) also stabilized HIF-1α with depletion of the free ubiquitin pool and these effects of metal ions were attenuated by restoration of free ubiquitin. Ni(2+) and Zn(2+) may disturb the recycling of free ubiquitin, as MG132 does. Based on these results, the state of the ubiquitin pool seems to be another critical factor determining the cellular level of HIF-1α.

  4. HIF-1α Upregulation due to Depletion of the Free Ubiquitin Pool.

    PubMed

    Kim, Jiyoung; So, Daeho; Shin, Hyun-Woo; Chun, Yang-Sook; Park, Jong-Wan

    2015-10-01

    Hypoxia-inducible factor 1alpha (HIF-1α), which transactivates a variety of hypoxia-induced genes, is rapidly degraded under nomoxia through the hydroxylation-ubiquitination-proteasome pathway. In this study, we addressed how HIF-1α is stabilized by proteasome inhibitors. The ubiquitin pool was rapidly reduced after proteasome inhibition, followed by the accumulation of non-ubiquitinated HIF-1α. The poly-ubiquitination of HIF-1α was resumed by restoration of free ubiquitin, which suggests that the HIF-1α stabilization under proteasome inhibition is attributed to depletion of the free ubiquitin pool. Ni(2+) and Zn(2+) also stabilized HIF-1α with depletion of the free ubiquitin pool and these effects of metal ions were attenuated by restoration of free ubiquitin. Ni(2+) and Zn(2+) may disturb the recycling of free ubiquitin, as MG132 does. Based on these results, the state of the ubiquitin pool seems to be another critical factor determining the cellular level of HIF-1α. PMID:26425034

  5. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  6. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  7. Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities

    PubMed Central

    Landré, Vivien; Rotblat, Barak; Melino, Sonia; Bernassola, Francesca; Melino, Gerry

    2014-01-01

    The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides. PMID:25237759

  8. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  9. Suramin inhibits cullin-RING E3 ubiquitin ligases

    PubMed Central

    Wu, Kenneth; Chong, Robert A.; Yu, Qing; Bai, Jin; Spratt, Donald E.; Ching, Kevin; Lee, Chan; Miao, Haibin; Tappin, Inger; Hurwitz, Jerard; Zheng, Ning; Shaw, Gary S.; Sun, Yi; Felsenfeld, Dan P.; Sanchez, Roberto; Zheng, Jun-nian; Pan, Zhen-Qiang

    2016-01-01

    Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3′s cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1’s conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2–E3 interface through small-molecule modulators. PMID:27001857

  10. Novel strategies to target the ubiquitin proteasome system in multiple myeloma

    PubMed Central

    Lub, Susanne; Maes, Ken; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin; Van Valckenborgh, Els

    2016-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM. PMID:26695547

  11. Stabilization of Different Types of Transition States in a Single Enzyme Active Site: QM/MM Analysis of Enzymes in the Alkaline Phosphatase Superfamily

    PubMed Central

    Hou, Guanhua; Cui, Qiang

    2013-01-01

    The first step for the hydrolysis of a phosphate monoester (pNPP2−) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bi-metallic site plays a minor role in accommodating multiple types of transition states, and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states. PMID:23786365

  12. Structure And Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p

    SciTech Connect

    Tu, D.; Li, W.; Ye, Y.; Brunger, A.T.

    2009-06-04

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-{beta}-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

  13. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23.

    PubMed

    Cohen, Mickaël; Stutz, Françoise; Belgareh, Naïma; Haguenauer-Tsapis, Rosine; Dargemont, Catherine

    2003-07-01

    Ubiquitination is important for a broad array of cellular functions. Although reversal of this process, de-ubiquitination, most probably represents an important regulatory step contributing to cellular homeostasis, the specificity and properties of de-ubiquitination enzymes remain poorly understood. Here, we show that the Saccharomyces cerevisiae ubiquitin protease Ubp3 requires an additional protein, Bre5, to form an active de-ubiquitination complex that cleaves ubiquitin from specific substrates. In particular, this complex rescues Sec23p, a COPII subunit essential for the transport between the endoplasmic reticulum and the Golgi apparatus, from degradation by the proteasome. This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and viability.

  14. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.

  15. Nedd8 processing enzymes in Schizosaccharomyces pombe

    PubMed Central

    2013-01-01

    Background Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1. Results Here we show that in the fission yeast, Schizosaccharomyces pombe, the Yuh1 orthologue, Uch1, is not the sole Nedd8 processing enzyme. Instead it appears that deubiquitylating enzymes can efficiently process the Nedd8 precursor in vivo. Conclusions Several enzymes contribute to Nedd8 precursor processing including a number of deubiquitylating enzymes. PMID:23496905

  16. A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development*

    PubMed Central

    Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo

    2011-01-01

    Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518

  17. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  18. Characterization and Structural Studies of the Plasmodium falciparum Ubiquitin and Nedd8 Hydrolase UCHL3

    SciTech Connect

    Artavanis-Tsakonas, Katerina; Weihofen, Wilhelm A.; Antos, John M.; Coleman, Bradley I.; Comeaux, Christy A.; Duraisingh, Manoj T.; Gaudet, Rachelle; Ploegh, Hidde L.

    2010-03-29

    Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed the identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.

  19. Intracellular Dynamics of the Ubiquitin-Proteasome-System.

    PubMed

    Chowdhury, Maisha; Enenkel, Cordula

    2015-01-01

    The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum (ER) membranes. In prolonged quiescence, proteasome granules drop off the NE / ER membranes and migrate as stable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells which comprise the majority of our body's cells. PMID:26339477

  20. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    PubMed

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-01

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  1. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  2. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme

    SciTech Connect

    Maiti, Tushar K.; Permaul, Michelle; Boudreaux, David A.; Mahanic, Christina; Mauney, Sarah; Das, Chittaranjan

    2012-10-25

    Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.

  3. Steady-state kinetic behaviour of two- or n-enzyme systems made of free sequential enzymes involved in a metabolic pathway.

    PubMed

    Legent, Guillaume; Thellier, Michel; Norris, Vic; Ripoll, Camille

    2006-12-01

    The overall rate of functioning of a set of free sequential enzymes of the Michaelis-Menten type involved in a metabolic pathway has been computed as a function of the concentration of the initial substrate under steady-state conditions. Curves monotonically increasing up to a saturation plateau have been obtained in all cases. The shape of these curves is sometimes, but not usually, close to that of a hyperbola. Cases exist in which the overall rate of reaction becomes quasi proportional to the concentration of initial substrate almost up to the saturation plateau, which never occurs with individual enzymes. Increasing the number of enzymes sequentially involved in a metabolic pathway does not seem to generate any particularly original behaviour compared with that of two-enzyme systems.

  4. Linear ubiquitination signals in adaptive immune responses

    PubMed Central

    Ikeda, Fumiyo

    2015-01-01

    Summary Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage-type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized Tumor Necrosis Factor (TNF) -induced canonical nuclear factor-kappa B (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. PMID:26085218

  5. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    SciTech Connect

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  6. Concurrent biosurfactant and ligninolytic enzyme production by Pleurotus spp. in solid-state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2014-10-01

    Pleurotus spp. is known as one of the significant producers of ligninolytic enzymes which efficiently degrade lignocellulosic materials. Recent studies on potential of biosurfactant production by Pleurotus spp. have increased. Biosurfactants have several positive features compared to synthetic ones. We investigated simultaneous and economic biosurfactant and ligninolytic enzymes (laccase, manganese peroxidase, and lignin peroxidase) production by Pleurotus djamore, Pleurotus eryngii, and Pleurotus sajor-caju in solid-state fermentation in three different growth media. Sunflower seed shell was used as solid substrate; hence, it was not only an alternative way to reduce environmental pollution but also a potential for production of valuable biotechnological products. During the study, oil spreading efficiency, emulsification index (E), surface tension (ST), and enzyme activities were assessed. Correlations between biosurfactant and enzyme activities were investigated. To results, the most active biosurfactant was produced by P. djamore in medium II (ST = 29.79 ± 0.5 mN m(-1); E 24 = 35.29 ± 2.6 %; diameter of clear zone = 3.5 ± 0.3 cm), and the highest LiP activity was determined as 5,832.26 ± 102 UL(-1). When FTIR was used to confirm the various functional groups, the results may indicate the protein-polysaccharide-lipid complex structure of produced biosurfactant. Degradation of several environmental pollutant compounds is a common usage area of biosurfactant and ligninolytic enzymes. PMID:25106898

  7. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto

    This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.

  8. Compound I in horseradish peroxidase enzyme: Magnetic state assessment by quadratric configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Zazza, Costantino; Sanna, Nico; Tatoli, Simone; Aschi, Massimiliano; Palma, Amedeo

    Quadratic configuration interaction procedure with single and double electronic excitations (QCISD) has been used, for the first time, to calculate the electronic structure of the Compound I (CpdI), which represents a key intermediate in the catalytic cycle of Horseradish Peroxidase (HRP) enzyme. The QCISD method is applied to lowest quasi-isoenergetic doublet and quartet spin multiplicity and results compared with density functional theory (DFT/B3LYP) data. This investigation shows that, at present, QCISD is more accurate than DFT-based approach in discriminating between the two lowest magnetic states of CpdI complex in HRP enzyme. Such a result opens the possibility of theoretically addressing the reaction mechanism leading to CpdI complex in HRP using a correlated wavefunction based approach.

  9. Sperm ubiquitination in epididymal feline semen.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Varesi, Sara; Nonnis, Simona; Maffioli, Elisa; Negri, Armando; Tedeschi, Gabriella; Luvoni, Gaia Cecilia

    2014-09-01

    Ubiquitin is a 8.5-kDa peptide that tags other proteins for proteasomal degradation. It has been proposed that ubiquitination might be responsible for the elimination of defective spermatozoa during transit through the epididymis in humans and cattle, but its exact biological function in seminal plasma has not yet been clarified. In the domestic cat (Felis catus), the percentage of immature, unviable, and abnormal spermatozoa decreases during the epididymal transit, indicating the existence of a mechanism that removes defective spermatozoa. Magnetic cell separation techniques, based on the use of magnetic beads coated with anti-ubiquitin antibodies, may allow the selective capture of ubiquitinated spermatozoa from semen, thus contributing to the identification of a potential correlation between semen quality and ubiquitination process. Moreover, the selective identification of all the ubiquitinated proteins in different epididymal regions could give a better understanding of the ubiquitin role in feline sperm maturation. The aims of this study were as follows: (1) to verify the possibility of separating ubiquitinated spermatozoa with magnetic ubiquitin beads and identify the morphological and acrosomal differences between whole sample and unbound gametes, (2) to characterize all the ubiquitinated proteins in spermatozoa retrieved in the three epididymal regions by a proteomic approach. The data indicated the presence of ubiquitinated proteins in cat epididymal semen. However, a correlation between abnormal and ubiquitinated spermatozoa has not been found, and ubiquitin cannot be considered as a biomarker of quality of epididymal feline spermatozoa. To the author's knowledge, this is the first identification of all the ubiquitinated proteins of cat spermatozoa collected from different epididymal regions. The proteomic pattern allows a further characterization of cat epididymal semen and represents a contribute to a better understanding of the ubiquitin role in

  10. Dynamic survey of mitochondria by ubiquitin.

    PubMed

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-03-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria.

  11. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  12. Biochemical and Proteomic Analysis of Ubiquitination of Hsc70 and Hsp70 by the E3 Ligase CHIP

    PubMed Central

    Soss, Sarah E.; Rose, Kristie L.; Hill, Salisha; Jouan, Sophie; Chazin, Walter J.

    2015-01-01

    The E3 ubiquitin ligase CHIP is involved in protein triage, serving as a co-chaperone for refolding as well as catalyzing ubiquitination of substrates. CHIP functions with both the stress induced Hsp70 and constitutive Hsc70 chaperones, and also plays a role in maintaining their balance in the cell. When the chaperones carry no client proteins, CHIP catalyzes their polyubiquitination and subsequent proteasomal degradation. Although Hsp70 and Hsc70 are highly homologous in sequence and similar in structure, CHIP mediated ubiquitination promotes degradation of Hsp70 with a higher efficiency than for Hsc70. Here we report a detailed and systematic investigation to characterize if there are significant differences in the CHIP in vitro ubiquitination of human Hsp70 and Hsc70. Proteomic analysis by mass spectrometry revealed that only 12 of 39 detectable lysine residues were ubiquitinated by UbcH5a in Hsp70 and only 16 of 45 in Hsc70. The only conserved lysine identified as ubiquitinated in one but not the other heat shock protein was K159 in Hsc70. Ubiquitination assays with K-R ubiquitin mutants showed that multiple Ub chain types are formed and that the distribution is different for Hsp70 versus Hsc70. CHIP ubiquitination with the E2 enzyme Ube2W is predominantly directed to the N-terminal amine of the substrate; however, some internal lysine modifications were also detected. Together, our results provide a detailed view of the differences in CHIP ubiquitination of these two very similar proteins, and show a clear example where substantial differences in ubiquitination can be generated by a single E3 ligase in response to not only different E2 enzymes but subtle differences in the substrate. PMID:26010904

  13. Trypanosoma cruzi ubiquitin as an antigen in the differential diagnosis of Chagas disease and leishmaniasis.

    PubMed

    Telles, Senobia; Abate, Teresa; Slezynger, Thelma; Henriquez, Diana A

    2003-06-10

    In the present report we describe Trypanosoma cruzi ubiquitin as an antigen to be utilized in the differential diagnosis of Chagas disease and leishmaniasis. Initially, recombinant T. cruzi ubiquitin was evaluated against a panel of sera by phage dot immunoassay, showing a good performance against chagasic sera. However, the presence of a carboxy-terminal tail region encoding a ribosomal protein homologous to a related protein present in the genome of Leishmania sp. gave significant cross-reactivity with leishmanial sera. Therefore, ubiquitin was purified by a simple biochemical protocol and its immunoreactivity was studied by enzyme-linked immunosorbent assay. Analysis of 104 sera indicates that the response to ubiquitin is very sensitive towards chronic chagasic sera (98%) and, more important, highly species-specific, presenting better performance compared to the use of the recombinant protein or the total epimastigote extracts when tested against a panel of leishmanial sera, where out of a total of 70 sera tested, only five sera from the mucocutaneous form of the disease reacted with T. cruzi ubiquitin. On the other hand, Leishmania ubiquitin was not recognized by chagasic sera, but was recognized by sera from different forms of leishmaniasis. These results make ubiquitin an excellent candidate to be used in the differential diagnosis of these two parasitic diseases. The molecular basis for this highly species-specific response is discussed.

  14. Mechanism of polyubiquitination by human Anaphase Promoting Complex: RING repurposing for ubiquitin chain assembly

    PubMed Central

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; Jarvis, Marc A.; VanderLinden, Ryan; Grace, Christy R. R.; Frye, Jeremiah J.; Qiao, Renping; Dube, Prakash; Petzold, Georg; Cho, Shein Ei; Alsharif, Omar; Bao, Ju; Davidson, Iain F.; Zheng, Jie; Nourse, Amanda; Kurinov, Igor; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A.

    2014-01-01

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including Anaphase Promoting Complex/Cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2~ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain elongating E2 UBE2S in ways that differ completely from current paradigms. During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal unexpectedly diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation. PMID:25306923

  15. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  16. Large changes of transition-state structure during experimental evolution of an enzyme.

    PubMed Central

    Srinivasan, K; Konstantinidis, A; Sinnott, M L; Hall, B G

    1993-01-01

    The question of whether, during the evolution of an enzyme, the transition state of the catalysed reaction is largely unchanged, or whether transition state and protein change together, was examined using the egb beta-galactosidases of Escherichia coli. Charge development at the first chemical state was assumed [Konstantinidis and Sinnott (1991) Biochem. J. 279, 587-593] to be proportional to delta delta G++, the ratio of second-order rate constants for the hydrolysis of beta-D-galactopyranosyl fluoride and 1-fluoro-D-galactopyranosyl fluoride, expressed as a free-energy difference. delta delta G++ (kJ.mol-1) falls from 10.4 for wild-type enzyme to 6.8 and 7.2 as a consequence of two different single amino-acid changes (which arise from single evolutionary events), to 6.3 as a consequence of the two amino-acid changes together, and then increases slightly to 7.3 as a consequence of a third single evolutionary change involving three further amino-acid changes. PMID:8471034

  17. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling.

    PubMed

    Girnita, L; Takahashi, S-I; Crudden, C; Fukushima, T; Worrall, C; Furuta, H; Yoshihara, H; Hakuno, F; Girnita, A

    2016-01-01

    Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.

  18. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

    PubMed Central

    Petrovska, Ivana; Nüske, Elisabeth; Munder, Matthias C; Kulasegaran, Gayathrie; Malinovska, Liliana; Kroschwald, Sonja; Richter, Doris; Fahmy, Karim; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2014-01-01

    One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell. DOI: http://dx.doi.org/10.7554/eLife.02409.001 PMID:24771766

  19. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva.

    PubMed

    Roger, P; Harn-Arsa, S; Delettre, J; Béal, C

    2011-12-01

    To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential. PMID:21892611

  20. Leaving Group Ability Observably Affects Transition State Structure in a Single Enzyme Active Site.

    PubMed

    Roston, Daniel; Demapan, Darren; Cui, Qiang

    2016-06-15

    A reaction's transition state (TS) structure plays a critical role in determining reactivity and has important implications for the design of catalysts, drugs, and other applications. Here, we explore TS structure in the enzyme alkaline phosphatase using hybrid Quantum Mechanics/Molecular Mechanics simulations. We find that minor perturbations to the substrate have major effects on TS structure and the way the enzyme stabilizes the TS. Substrates with good leaving groups (LGs) have little cleavage of the phosphorus-LG bond at the TS, while substrates with poor LGs have substantial cleavage of that bond. The results predict nonlinear free energy relationships for a single rate-determining step, and substantial differences in kinetic isotope effects for different substrates; both trends were observed in previous experimental studies, although the original interpretations differed from the present model. Moreover, due to different degrees of phosphorus-LG bond cleavage at the TS for different substrates, the LG is stabilized by different interactions at the TS: while a poor LG is directly stabilized by an active site zinc ion, a good LG is mainly stabilized by active site water molecules. Our results demonstrate the considerable plasticity of TS structure and stabilization in enzymes. Furthermore, perturbations to reactivity that probe TS structure experimentally (i.e., substituent effects) may substantially perturb the TS they aim to probe, and thus classical experimental approaches such as free energy relations should be interpreted with care. PMID:27186960

  1. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states.

    PubMed

    Hubin, Ellen; Cioffi, Federica; Rozenski, Jef; van Nuland, Nico A J; Broersen, Kerensa

    2016-06-01

    To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.

  2. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes

    SciTech Connect

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Dani; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-07

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of a 76 amino acid residue polypeptide, ubiquitin, to lysine residues or the N-terminus of proteins. Mono and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions. Affinity enrichment of ubiquitinated proteins has enabled the global analysis of this key modification. In this context, the use of ubiquitin-binding domains (UBDs) is a promising, but poorly explored alternative to more broadly used immune-affinity or tagged affinity enrichment methods. Herein we evaluate the application of eight selected UBDs with differing and contrasting affinities for ubiquitination states. We performed a micro-scale proteomic comparison, leading to the identification of ~200 ubiquitinated protein candidates per UBD to facilitate comparisons. Western blot analysis using anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggests that UBDs from Dsk2 and ubiquilin-1 have the broadest specificity capturing most types of ubiquitination, whereas the one from NBR1 seems to be more selective to polyubiquitination. Our data demonstrate that with optimized purification conditions UBDs can be a useful tool for proteomic applications.

  3. Functional assessment of ubiquitin-depended processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins

  4. A Bacterial Inhibitor of Host Programmed Cell Death Defenses is an E3 Ubiquitin Ligase

    SciTech Connect

    Janjusevic,R.; Abramovitch, R.; Martin, G.; Stebbins, C.

    2005-01-01

    The Pseudomonas syringae protein AvrPtoB is translocated into plant cells, where it inhibits immunity-associated programmed cell death (PCD). The structure of a C-terminal domain of AvrPtoB that is essential for anti-PCD activity reveals an unexpected homology to the U-box and RING-finger components of eukaryotic E3 ubiquitin ligases, and we show that AvrPtoB has ubiquitin ligase activity. Mutation of conserved residues involved in the binding of E2 ubiquitin-conjugating enzymes abolishes this activity in vitro, as well as anti-PCD activity in tomato leaves, which dramatically decreases virulence. These results show that Pseudomonas syringae uses a mimic of host E3 ubiquitin ligases to inactivate plant defenses.

  5. Conservation and developmental expression of ubiquitin isopeptidases in Schistosoma mansoni

    PubMed Central

    Pereira, Roberta Verciano; Vieira, Helaine Graziele Santos; de Oliveira, Victor Fernandes; Gomes, Matheus de Souza; Passos, Liana Konovaloff Jannotti; Borges, William de Castro; Guerra-Sá, Renata

    2013-01-01

    Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite’s genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite. PMID:24271000

  6. Conservation and developmental expression of ubiquitin isopeptidases in Schistosoma mansoni.

    PubMed

    Pereira, Roberta Verciano; Vieira, Helaine Graziele Santos; Oliveira, Victor Fernandes de; Gomes, Matheus de Souza; Passos, Liana Konovaloff Jannotti; Borges, William de Castro; Guerra-Sá, Renata

    2014-02-01

    Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite's genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite. PMID:24271000

  7. Isotopic mapping of transition-state structural features associated with enzymic catalysis of methyl transfer

    SciTech Connect

    Rodgers, J.; Femec, D.A.; Schowen, R.L.

    1982-06-16

    For comparison of the molecular structures of nonenzymic and enzymic sulfur-to-oxygen transmethylation transition states by the use of kinetic isotope effects, a series of isotopic maps is produced. In these, contours of constant isotope effect are displayed vs. the Pauling bond orders B/sub CS/ and B/sub CO/, for the carbon-sulfur and carbon-oxygen bonds, respectively, taken as independent variables to describe the transition states. Maps are calculated by the BEBOVIB approach for k(CH/sub 3/)/k(CD/sub 3/), k(/sup 12/CH/sub 3/)/k(/sup 13/CH/sub 3/), k(/sup 16/O)/k(/sup 18/O), and k(/sup 32/S)/k(/sup 34/S), with two models for the reaction coordinate, two force-field assumptions, and four temperatures. Nonenzymic isotope effects and isotope effects for catechol-O-methyltransferase action are then used to construct figures on the CH/sub 3//CD/sub 3/ and /sup 12/CH/sub 3///sup 13/CH/sub 3/ maps which correspond to allowed spaces of transition-states structures. Superposition of the figures yields the spaces of transition-state structures simultaneously consistent with both hydrogen and carbon isotope effects. It is concluded that the enzyme compresses the S/sub N/2 transition state and that the compression of the C-O and C-S bonds may well be of the order of 0.15 A per bond and could conceivably be more than twice as large.

  8. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery

    PubMed Central

    Love, Kerry Routenberg; Pandya, Renuka K.; Spooner, Eric; Ploegh, Hidde L.

    2009-01-01

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubls and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling (ABPP) uses chemical probes that are active-site directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein. PMID:19256548

  9. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis

    PubMed Central

    Wauer, Tobias; Swatek, Kirby N; Wagstaff, Jane L; Gladkova, Christina; Pruneda, Jonathan N; Michel, Martin A; Gersch, Malte; Johnson, Christopher M; Freund, Stefan MV; Komander, David

    2015-01-01

    The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system. PMID:25527291

  10. Cell fate determination by ubiquitin-dependent regulation of translation

    PubMed Central

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  11. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.

    PubMed

    Patsoukis, Nikolaos; Georgiou, D Christos

    2008-05-01

    Thiol redox state (TRS) reduced and oxidized components form profiles characteristic of each of the four main types of differentiation in the sclerotiogenic phytopathogenic fungi: loose, terminal, lateral-chained, and lateral-simple, represented by Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii, and Sclerotinia minor, respectively. A common feature of these fungi is that as their undifferentiated mycelium enters the differentiated state, it is accompanied by a decrease in the low oxidative stress-associated total reduced thiols and/or by an increase of the high oxidative stress-associated total oxidized thiols either in the sclerotial mycelial substrate or in its corresponding sclerotium, indicating a relationship between TRS-related oxidative stress and sclerotial differentiation. Moreover, the four studied sclerotium types exhibit high activities of TRS-related antioxidant enzymes, indicating the existence of antioxidant protection of the hyphae of the sclerotium medulla until conditions become appropriate for sclerotium germination. PMID:18400483

  12. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  13. Non-degradative Ubiquitination of Protein Kinases.

    PubMed

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  14. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; Bartel, Bonnie; Varshavsky, Alexander

    1989-03-01

    Three of the four yeast ubiquitin genes encode hybrid proteins which are cleaved to yield ubiquitin and previously unidentified ribosomal proteins. The transient association between ubiquitin and these proteins promotes their incorporation into nascent ribosomes and is required for efficient ribosome biogenesis. These results suggest a novel 'chaperone' function for ubiquitin, in which its covalent association with other proteins promotes the formation of specific cellular structures.

  15. Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease.

    PubMed

    Soncini, C; Berdo, I; Draetta, G

    2001-06-28

    Degradation of cellular proteins through ubiquitination is a fundamental strategy for regulating biological pathways. De-ubiquitination, i.e. the removal of ubiquitin from proteins and peptides to which ubiquitin is attached, is catalyzed by processing proteases known as de-ubiquitinating enzymes. We are studying the biology of a family of de-ubiquitinating enzymes, the mammalian ubiquitin-specific proteases (USPs), some of which appear to play a role in growth control. Given the fact that the modes of regulation of USPs and of their substrate specificity are poorly understood, we decided to attempt the identification of USP interacting proteins. Using the yeast two-hybrid system (2HS), we have isolated a cDNA clone whose product specifically interacts with USP10 but not with other USP baits tested. The isolated clone encodes a protein known to interact with the Ras-GTPase activating protein (G3BP). This interaction was further confirmed by performing a 2HS with G3BP, which led to the isolation of USP10 encoding cDNAs. We validated the interaction between the two proteins by performing in vitro binding assays and immunoprecipitations in human cells. G3BP does not appear to be a substrate of USP10; it rather inhibits the ability of USP10 to disassemble ubiquitin chains. The USP10/G3BP complex appears to co-immunoprecipitate with ubiquitinated species that could be substrates of USP10.

  16. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses.

    PubMed

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-08-26

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides. PMID:27453360

  17. A Structurally Unique E2-Binding Domain Activates Ubiquitination by the ERAD E2, Ubc7p, Through Multiple Mechanisms

    PubMed Central

    Metzger, Meredith B.; Liang, Yu-He; Das, Ranabir; Mariano, Jennifer; Li, Shengjian; Li, Jess; Kostova, Zlatka; Byrd, R. Andrew; Ji, Xinhua; Weissman, Allan M.

    2013-01-01

    SUMMARY Cue1p is an integral component of yeast endoplasmic reticulum (ER)-associated degradation (ERAD) ubiquitin ligase (E3) complexes. It tethers the ERAD ubiquitin-conjugating enzyme (E2), Ubc7p, to the ER and prevents its degradation, and also activates Ubc7p via unknown mechanisms. We have now determined the crystal structure of the Ubc7p-binding region (U7BR) of Cue1p with Ubc7p. The U7BR is a unique E2-binding domain that includes three α-helices that interact extensively with the ‘backside’ of Ubc7p. Residues essential for E2 binding are also required for activation of Ubc7p and for ERAD. We establish that the U7BR stimulates both RING-independent and dependent ubiquitin transfer from Ubc7p. Moreover, the U7BR enhances ubiquitin-activating enzyme (E1)-mediated charging of Ubc7p with ubiquitin. This is the first example where an essential component of E3 complexes both binds to E2 and enhances E2 loading with ubiquitin. These findings provide new insights into mechanisms of stimulating ubiquitination. PMID:23665230

  18. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation

    PubMed Central

    Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo

    2016-01-01

    A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (Ea), quotient energy (Q10), Km, and Vmax were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505

  19. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    PubMed

    Andrews, Logan D; Fenn, Tim D; Herschlag, Daniel

    2013-07-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i) was determined from pH dependencies of the binding of Pi and tungstate, a P(i) analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i). The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i) binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in

  20. Identification and expression of the protein ubiquitination system in Giardia intestinalis.

    PubMed

    Gallego, Eva; Alvarado, Magda; Wasserman, Moises

    2007-06-01

    Giardia intestinalis is a single-cell eukaryotic microorganism, regarded as one of the earliest divergent eukaryotes and thus an attractive model to study the evolution of regulatory systems. Giardia has two different forms throughout its life cycle, cyst and trophozoite, and changes from one to the other in response to environmental signals. The two differentiation processes involve a differential gene expression as well as a quick and specific protein turnover that may be mediated by the ubiquitin/proteasome system. The aim of this work was to search for unreported components of the ubiquitination system and to experimentally demonstrate their expression in the parasite and during the two differentiation processes. We found activity of protein ubiquitination in G. intestinalis trophozoites and analyzed the transcription of the ubiquitin gene, as well as that of the activating (E1), conjugating (E2), and ligase (E3) ubiquitin enzymes during encystation and excystation. A constant ubiquitin expression persisted during the parasite's differentiation processes, whereas variation in transcription was observed in the other genes under study.

  1. Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein

    SciTech Connect

    T Messick; N Russel; A Iwata; K Sarachan; R Shiekhattar; I Shanks; F Reyes-Turcu; K Wilkinson; R Marmorstein

    2011-12-31

    Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of {approx}130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys{sup 48} linkages, having little or no activity on Lys{sup 63}- and Lys{sup 29}-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

  2. Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling.

    PubMed

    Torres, M

    2016-01-01

    Ubiquitin-mediated regulation of G proteins has been known for over 20 years as a result of discoveries made independently in yeast and vertebrate model systems for pheromone and photoreception, respectively. Since that time, several details underlying the cause and effect of G protein ubiquitination have been determined-including the initiating signals, responsible enzymes, trafficking pathways, and their effects on protein structure, function, interactions, and cell signaling. The collective body of evidence suggests that Gα subunits are the primary targets of ubiquitination. However, longstanding and recent results suggest that Gβ and Gγ subunits are also ubiquitinated, in some cases impacting cell polarization-a process essential for chemotaxis and polarized cell growth. More recently, evidence from mass spectrometry (MS)-based proteomics coupled with advances in PTM bioinformatics have revealed that protein families representing G protein subunits contain several structural hotspots for ubiquitination-most of which have not been investigated for a functional role in signal transduction. Taken together, our knowledge and understanding of heterotrimeric G protein ubiquitination as a regulator of G protein signaling-despite 20 years of research-is still emerging. PMID:27378755

  3. Redox-mediated modification of PLZF by SUMO-1 and ubiquitin

    SciTech Connect

    Kang, Soo Im; Choi, Hae Woong; Kim, Ick Young

    2008-05-16

    Earlier, we reported that the transcriptional repressor promyelocytic leukemia zinc-finger protein (PLZF) is sumoylated at position K242, and the sumoylation regulated its biological function. Here, we show that the sumoylation site can be modified by ubiquitin. The stability and nuclear localization of PLZF were regulated by the antagonistic relationship between sumoylation and ubiquitination. We observed the antagonistic effects of ubiquitin and SUMO-1 on PLZF under oxidative stress induced by serum deprivation. Thus, the choice between modification of PLZF by SUMO or ubiquitin was determined by the intracellular level of ROS, which was generated by serum deprivation that inactivated the SUMO-conjugating enzymes Uba2 and Ubc9, and resulted in decrease of sumoylation. The ubiquitination was increased under these conditions. The expression of BID, a known transcriptional target protein of PLZF, was decreased, and the consequent apoptosis was induced by the ROS generated during serum starvation. On the basis of these results, we propose that PLZF post-translational modification is controlled by intracellular ROS, and the biological function of PLZF is regulated by sumoylation and ubiquitination.

  4. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin

    PubMed Central

    Durcan, Thomas M; Tang, Matthew Y; Pérusse, Joëlle R; Dashti, Eman A; Aguileta, Miguel A; McLelland, Gian-Luca; Gros, Priti; Shaler, Thomas A; Faubert, Denis; Coulombe, Benoit; Fon, Edward A

    2014-01-01

    Mutations in the Park2 gene, encoding the E3 ubiquitin-ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin-mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin-mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin-mediated mitophagy. USP8 preferentially removes non-canonical K6-linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8-mediated deubiquitination of K6-linked ubiquitin conjugates from parkin in mitochondrial quality control. PMID:25216678

  5. Replication of the rotavirus genome requires an active ubiquitin-proteasome system.

    PubMed

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F

    2011-11-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.

  6. The Ubiquitin-Conjugating System: Multiple Roles in Viral Replication and Infection

    PubMed Central

    Calistri, Arianna; Munegato, Denis; Carli, Ilaria; Parolin, Cristina; Palù, Giorgio

    2014-01-01

    Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells. PMID:24805990

  7. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  8. Structural Basis of Ubiquitin Recognition by the Ubiquitin-associated (UBA) Domain of the Ubiquitin Ligase EDD

    SciTech Connect

    Kozlov, G.; Nguyen, L; Lin, T; De Crescenzo, G; Park, M; Gehring, K

    2007-01-01

    EDD (or HYD) is an E3 ubiquitin ligase in the family of HECT (homologous to E6-AP C terminus) ligases. EDD contains an N-terminal ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Here, we use isothermal titration calorimetry (ITC), NMR titrations, and pull-down assays to show that the EDD UBA domain binds ubiquitin. The 1.85{angstrom} crystal structure of the complex with ubiquitin reveals the structural basis of ubiquitin recognition by UBA helices {alpha}1 and {alpha}3. The structure shows a larger number of intermolecular hydrogen bonds than observed in previous UBA/ubiquitin complexes. Two of these involve ordered water molecules. The functional importance of residues at the UBA/ubiquitin interface was confirmed using site-directed mutagenesis. Surface plasmon resonance (SPR) measurements show that the EDD UBA domain does not have a strong preference for polyubiquitin chains over monoubiquitin. This suggests that EDD binds to monoubiquitinated proteins, which is consistent with its involvement in DNA damage repair pathways.

  9. Cold denaturation of encapsulated ubiquitin.

    PubMed

    Pometun, Maxim S; Peterson, Ronald W; Babu, Charles R; Wand, A Joshua

    2006-08-23

    Theoretical considerations suggest that protein cold denaturation can potentially provide a means to explore the cooperative substructure of proteins. Protein cold denaturation is generally predicted to occur well below the freezing point of water. Here NMR spectroscopy of ubiquitin encapsulated in reverse micelles dissolved in low viscosity alkanes is used to follow cold-induced unfolding to temperatures below -25 degrees C. Comparison of cold-induced structural transitions in a variety of reverse micelle-buffer systems indicate that protein-surfactant interactions are negligible and allow the direct observation of the multistate cold-induced unfolding of the protein.

  10. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin.

    PubMed

    Mandal, Manoj; Mukhopadhyay, Chaitali

    2014-10-21

    An all atom molecular dynamics simulation was used to explore the atomic detail mechanism of guanidinium induced unfolding of the protein ubiquitin. Ubiquitin unfolds through pre-unfolded (intermediate) states, i.e. guanidinium induced unfolding of ubiquitin appears to be a multi-step process, and loss of hydrophobic contacts of C-terminal residues is crucial for ubiquitin unfolding. Free-energy landscapes show that barrier separation between folded and unfolded basins is ∼5.0 kcal mol(-1), and both the basins are of comparable energy. It was observed that guanidinium ions interact directly with ubiquitin. Favorable electrostatic interaction is the main driving force for such accumulation of guanidinium ions near protein, but van der Waals energy also contributes. RDF plots show that accumulation of guanidinium ions near specific residues is the main cause for destabilization of intra-residue interactions crucial to maintain the three-dimensional fold of the protein. One salt-bridge interaction between Lys11 and Glu34 appears to be important to maintain the crystal structure of ubiquitin and this salt-bridge can map the unfolding process of ubiquitin. PMID:25197836

  11. Acetylation stimulates the epithelial sodium channel by reducing its ubiquitination and degradation.

    PubMed

    Butler, Phillip L; Staruschenko, Alexander; Snyder, Peter M

    2015-05-15

    The epithelial Na(+) channel (ENaC) functions as a pathway for Na(+) absorption in the kidney and lung, where it is crucial for Na(+) homeostasis and blood pressure regulation. ENaC is regulated in part through signaling pathways that control the ubiquitination state of ENaC lysines. A defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. Here we determined that α-, β-, and γENaC are also substrates for lysine acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, enhanced ENaC acetylation and increased ENaC abundance in the total cell lysate and at the cell surface. Moreover, TSA increased ENaC current in Fischer rat thyroid and kidney collecting duct epithelia. We found that HDAC7 is expressed in the kidney collecting duct, supporting a potential role for this histone deacetylase in ENaC regulation. HDAC7 overexpression reduced ENaC abundance and ENaC current, whereas ENaC abundance and current were increased by silencing of HDAC7. ENaC and HDAC7 form a complex, as detected by coimmunoprecipitation. We observed a reciprocal relationship between acetylation and ubiquitination; TSA reduced ENaC ubiquitination, whereas HDAC7 increased ubiquitination. By reducing ENaC ubiquitination, TSA decreased the rate of ENaC degradation. Thus, acetylation increases epithelial Na(+) absorption by antagonizing ENaC ubiquitination. This stabilizes ENaC, and hence, increases its abundance at the cell surface. PMID:25787079

  12. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  13. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  14. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  15. Ubiquitination - a bacterial effector's ticket to ride.

    PubMed

    Thomas, Mair; Holden, David W

    2009-04-23

    Ubiquitination has many important cellular functions, including regulation of plasma membrane endocytosis. In their recent article in Cell, Patel et al. (2009) show that the activity of the multifunctional Salmonella virulence protein SopB is controlled by ubiquitin-dependent delivery from the plasma membrane to the Salmonella-containing vacuole. PMID:19380107

  16. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function

    PubMed Central

    Lee, Shirley Y.; Pullen, Lester; Virgil, Daniel J.; Castañeda, Carlos A.; Abeykoon, Dulith; Bolon, Daniel N. A.; Fushman, David

    2014-01-01

    Mutations at solvent inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. The two null mutants (I30A and L43A) were both less stable to temperature-induced unfolding in vitro than wild-type, but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to wild-type. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high molecular weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high molecular weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  17. Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation.

    PubMed

    Nakatsukasa, Kunio; Kamura, Takumi

    2016-01-01

    During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates.

  18. New tricks for ubiquitin and friends.

    PubMed

    Wilkinson, Caroline R M

    2002-12-01

    The foothills of the Rocky Mountains provided a spectacular setting for the American Society for Cell Biology (ASCB) meeting entitled 'Non-traditional functions of ubiquitin and ubiquitin-like proteins', Colorado College, Colorado Springs, CO, USA, on 11-14 August, 2002. Organizers Linda Hicke and Cecile Pickart put together an excellent programme of talks covering functions of ubiquitin other than its well known role in proteasomal targeting. The increasingly diverse biological processes in which the ubiquitin-like proteins (UBLs) are involved, also featured. One of the aims of the meeting was to bring together researchers working directly with ubiquitin and UBLs, and also those who have found that their favourite molecule or process is somehow influenced by these small versatile tags. As a result, delegates were treated to a diverse and highly stimulating meeting. PMID:12495835

  19. Ubiquitin and stromal cell-derived factor-1α in bronchoalveolar lavage fluid after burn and inhalation injury.

    PubMed

    Baker, Todd A; Davis, Christopher S; Bach, Harold H; Romero, Jacqueline; Burnham, Ellen L; Kovacs, Elizabeth J; Gamelli, Richard L; Majetschak, Matthias

    2012-01-01

    The objective of the study was to determine whether the CXC chemokine receptor (CXCR) 4 ligands ubiquitin and stromal cell-derived factor (SDF)-1α are detectable in bronchoalveolar lavage fluid (BALF) after burn and inhalation injury and whether their concentrations in BALF are associated with injury severity, physiological variables, or clinical outcomes. BALF was obtained on hospital admission from 51 patients (48 ± 18 years) with burn (TBSA: 23 ± 24%) and inhalation injury (controls: 10 healthy volunteers, 42 ± 8 years). BALF was analyzed for total protein and for ubiquitin and SDF-1α by enzyme-linked immunosorbent assay. Ubiquitin/SDF-1α levels were normalized to total BALF protein content. The extent of inhalation injury was determined during bronchoscopy using a standardized scoring system. Percent TBSA, Baux scores, revised Baux scores, and clinical variables were documented. Ubiquitin and SDF-1α were detectable in 40% of normal BALF specimens. After injury, ubiquitin was detectable in 90% (P < .01 vs control) and SDF-1α in 10% of the specimens (P < .05 vs control). While SDF-1α levels were reduced in patients (P < .01), ubiquitin levels were increased (P < .01). Ubiquitin concentrations correlated inversely with grade of inhalation injury, revised Baux scores, and resuscitation fluid requirements (Spearman correlation coefficients [r]: -.3, -.33, and -.45, respectively). Ubiquitin levels correlated positively with arterial oxygenation at the time of bronchoscopy (r: .35). BALF levels of CXCR4 agonists are differentially regulated after burn and inhalation injury. Increases in BALF ubiquitin after inhalation injury may maintain CXCR4-mediated lung protection and repair processes. The finding that BALF ubiquitin decreased with higher grades of inhalation injury may provide a biological correlate for an insufficient local inflammatory response after severe inhalation injury.

  20. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme.

    PubMed

    McCord, Lauren A; Liang, Wenguang G; Dowdell, Evan; Kalas, Vasilios; Hoey, Robert J; Koide, Akiko; Koide, Shohei; Tang, Wei-Jen

    2013-08-20

    Insulin-degrading enzyme (IDE) selectively degrades the monomer of amyloidogenic peptides and contributes to clearance of amyloid β (Aβ). Thus, IDE retards the progression of Alzheimer's disease. IDE possesses an enclosed catalytic chamber that engulfs and degrades its peptide substrates; however, the molecular mechanism of IDE function, including substrate access to the chamber and recognition, remains elusive. Here, we captured a unique IDE conformation by using a synthetic antibody fragment as a crystallization chaperone. An unexpected displacement of a door subdomain creates an ~18-Å opening to the chamber. This swinging-door mechanism permits the entry of short peptides into the catalytic chamber and disrupts the catalytic site within IDE door subdomain. Given the propensity of amyloidogenic peptides to convert into β-strands for their polymerization into amyloid fibrils, they also use such β-strands to stabilize the disrupted catalytic site resided at IDE door subdomain for their degradation by IDE. Thus, action of the swinging door allows IDE to recognize amyloidogenicity by substrate-induced stabilization of the IDE catalytic cleft. Small angle X-ray scattering (SAXS) analysis revealed that IDE exists as a mixture of closed and open states. These open states, which are distinct from the swinging door state, permit entry of larger substrates (e.g., Aβ, insulin) to the chamber and are preferred in solution. Mutational studies confirmed the critical roles of the door subdomain and hinge loop joining the N- and C-terminal halves of IDE for catalysis. Together, our data provide insights into the conformational changes of IDE that govern the selective destruction of amyloidogenic peptides.

  1. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.

    PubMed

    Tai, Hulin; Xu, Liyang; Inoue, Seiya; Nishikawa, Koji; Higuchi, Yoshiki; Hirota, Shun

    2016-08-10

    The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.

  2. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  3. RBR E3 ubiquitin ligases: new structures, new insights, new questions.

    PubMed

    Spratt, Donald E; Walden, Helen; Shaw, Gary S

    2014-03-15

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

  4. The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors

    PubMed Central

    Grou, Cláudia P.; Pinto, Manuel P.; Mendes, Andreia V.; Domingues, Pedro; Azevedo, Jorge E.

    2015-01-01

    Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA52 and UBA80, are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co- and post-translational processing. Using an unbiased biochemical approach we found that UCHL3, USP9X, USP7, USP5 and Otulin/Gumby/FAM105b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway. PMID:26235645

  5. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

    PubMed Central

    Sudakin, V; Ganoth, D; Dahan, A; Heller, H; Hershko, J; Luca, F C; Ruderman, J V; Hershko, A

    1995-01-01

    The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles. Images PMID:7787245

  6. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    PubMed

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing.

  7. RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites

    PubMed Central

    Sobhian, Bijan; Shao, Genze; Lilli, Dana R.; Culhane, Aedín C.; Moreau, Lisa A.; Xia, Bing; Livingston, David M.; Greenberg, Roger A.

    2009-01-01

    Mutations affecting the BRCT domains of the breast cancer–associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-γH2AX–dependent lysine6- and lysine63-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs. PMID:17525341

  8. The Unique Morgue Ubiquitination Protein Is Conserved in a Diverse but Restricted Set of Invertebrates

    PubMed Central

    Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory

    2009-01-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways. PMID:19602541

  9. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex.

    PubMed

    Oweis, Walaa; Padala, Prasanth; Hassouna, Fouad; Cohen-Kfir, Einav; Gibbs, Dalton R; Todd, Emily A; Berndsen, Christopher E; Wiener, Reuven

    2016-09-20

    Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s). Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation. PMID:27653677

  10. Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission

    PubMed Central

    Lussier, Marc P.; Herring, Bruce E.; Nasu-Nishimura, Yukiko; Neutzner, Albert; Karbowski, Mariusz; Youle, Richard J.; Nicoll, Roger A.; Roche, Katherine W.

    2012-01-01

    AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons. Using a RING mutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses. PMID:23129617

  11. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

    PubMed Central

    Bregman, D B; Halaban, R; van Gool, A J; Henning, K A; Friedberg, E C; Warren, S L

    1996-01-01

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876179

  12. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

    PubMed

    Bregman, D B; Halaban, R; van Gool, A J; Henning, K A; Friedberg, E C; Warren, S L

    1996-10-15

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription. PMID:8876179

  13. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer.

    PubMed

    Satija, Yatendra Kumar; Bhardwaj, Abhishek; Das, Sanjeev

    2013-12-15

    E3 ubiquitin ligases and deubiquitylating enzymes (DUBs) are the key components of ubiquitin proteasome system which plays a critical role in cellular protein homeostasis. Any shortcoming in their biological roles can lead to various diseases including cancer. The dynamic interplay between ubiquitylation and deubiquitylation determines the level and activity of several proteins including p53, which is crucial for cellular stress response and tumor suppression pathways. In this review, we describe the different types of E3 ubiquitin ligases including those targeting tumor suppressor p53, SCF ligases and RING type ligases and accentuate on biological functions of few important E3 ligases in the cellular regulatory networks. Tumor suppressor p53 level is tightly regulated by multiple E3 ligases including Mdm2, COP1, Pirh2, etc. SCF ubiquitin ligase complexes are key regulators of cell cycle and signal transduction. BRCA1 and VHL RING type ligases function as tumor suppressors and play an important role in DNA repair and hypoxia response respectively. Further, we discuss the biological consequences of deregulation of the E3 ligases and the implications for cancer development. We also describe deubiquitylases which reverse the process of ubiquitylation and regulate diverse cellular pathways including metabolism, cell cycle control and chromatin remodelling. As the E3 ubiquitin ligases and DUBs work in a substrate specific manner, an improved understanding of them can lead to better therapeutics for cancer.

  14. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator

    PubMed Central

    Zhuang, Min; Guan, Shenheng; Wang, Haopeng; Burlingame, Alma L.; Wells, James A.

    2012-01-01

    SUMMARY Inhibitors of Apoptosis Proteins (IAPs) are guardian ubiquitin ligases that keep classic pro-apoptotic proteins in check. Systematic identification of additional IAP substrates is challenged by the heterogeneity and sheer number of ubiquitinated proteins (>5000). Here we report a powerful catalytic tagging tool, the NEDDylator, which fuses a NEDD8 E2 conjugating enzyme, Ubc12, to the ubiquitin ligase, XIAP or cIAP1. This permits transfer of the rare ubiquitin homolog NEDD8 to the ubiquitin E3 substrates allowing them to be efficiently purified for LC/MS/MS identification. We have identified >50 potential IAP substrates of both cytosolic and mitochondrial origin that bear hallmark N-terminal IAP binding motifs. These substrates include the recently discovered protein phosphatase, PGAM5, which we show is proteolytically processed, accumulates in cytosol during apoptosis, and sensitizes cells to death. These studies reveal mechanisms and antagonistic partners for specific IAPs, and provide a powerful technology for labeling binding partners in transient protein-protein complexes. PMID:23201124

  15. Properties of thermostable hemicellulolytic enzymes from Thermomonospora strain 29 grown in solid state fermentation on coffee processing solid waste.

    PubMed

    Srivastava, K C

    1993-01-01

    During decaffeination of Coffee Processing Plant Solid Wastes (CPSW) by actinomycetes, Thermomonospora, Strain 29 exhibited high titers of cellulase and xylanase. This organism, originally isolated on soybean seed coat was grown in solid state fermentation on CPSW supplemented with mineral salts. Enzymes recovered were arabinosidase, xylanase, and beta-D-xylosidase. Higher activity of the former two enzymes was in the extracellular broth, whereas the beta-D-xylosidase activity was highest in the cell fraction. The enzymes were characterized after precipitation with (NH(4))(2)SO(4), dialysis, and gel filtration. Production of all three enzymes was inhibited by monomeric sugars and sugar alcohols but not by arabinoxylan, xylans, or xylan containing water insoluble carbohydrates. The optimum pH for the activity was 6.5, 7.0, and 7.5 for beta-xylosidase, xylanase and arabinosidase (alpha-L-arabinofuranosidase, alpha-arabinosidase, alpha-L-arabinosidase) respectively. These enzymes were stable in the pH range of 6.5 to 8.0. All three enzymes were thermostable up to 80 degrees C. At 55 degrees C, arabinosidase had the longest half life of 120 h. However, at 40 degrees C, xylanase had the longest half life (504 h). At either temperature, beta-D-xylosidase had the shortest half life. The molecular weights (kDa), and Kms (mM) were estimated to be 95, 0.27; 45, 12.4; and 106, 0.67 for arbinosidase, xylanase, and beta-xylosidase respectively. Step wise addition of the three enzymes showed higher saccharification of lignocellulosics.

  16. Properties of thermostable hemicellulolytic enzymes from Thermomonospora strain 29 grown in solid state fermentation on coffee processing solid waste.

    PubMed

    Srivastava, K C

    1993-01-01

    During decaffeination of Coffee Processing Plant Solid Wastes (CPSW) by actinomycetes, Thermomonospora, Strain 29 exhibited high titers of cellulase and xylanase. This organism, originally isolated on soybean seed coat was grown in solid state fermentation on CPSW supplemented with mineral salts. Enzymes recovered were arabinosidase, xylanase, and beta-D-xylosidase. Higher activity of the former two enzymes was in the extracellular broth, whereas the beta-D-xylosidase activity was highest in the cell fraction. The enzymes were characterized after precipitation with (NH(4))(2)SO(4), dialysis, and gel filtration. Production of all three enzymes was inhibited by monomeric sugars and sugar alcohols but not by arabinoxylan, xylans, or xylan containing water insoluble carbohydrates. The optimum pH for the activity was 6.5, 7.0, and 7.5 for beta-xylosidase, xylanase and arabinosidase (alpha-L-arabinofuranosidase, alpha-arabinosidase, alpha-L-arabinosidase) respectively. These enzymes were stable in the pH range of 6.5 to 8.0. All three enzymes were thermostable up to 80 degrees C. At 55 degrees C, arabinosidase had the longest half life of 120 h. However, at 40 degrees C, xylanase had the longest half life (504 h). At either temperature, beta-D-xylosidase had the shortest half life. The molecular weights (kDa), and Kms (mM) were estimated to be 95, 0.27; 45, 12.4; and 106, 0.67 for arbinosidase, xylanase, and beta-xylosidase respectively. Step wise addition of the three enzymes showed higher saccharification of lignocellulosics. PMID:14545668

  17. Strategies for discovery and improvement of enzyme function: state of the art and opportunities.

    PubMed

    Kaul, Praveen; Asano, Yasuhisa

    2012-01-01

    Developments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non-conventional media, using new substrates for old enzymes, active-site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.

  18. Solid-state fermentation of new substrates for production of cellulase and other biopolymer-hydrolyzing enzymes

    SciTech Connect

    Sharma, D.K.; Tiwari, M.; Behera, B.K.

    1995-12-31

    With the realization that the use of leaded gasoline results in environmental pollution and can effect human health, interest in the use of ethanol either directly or as a gasohol is increasing. Production of ethanol from lignocellulosic biomass was commercially practiced during the world wars by acidic hydrolysis technique. However, these processes were found to be uneconomical after the war emergencies were over. An alternate route is the enzymatic hydrolysis of lignocellulosic biomass. However, the economics of the enzymatic hydrolysis process relies substantially on the cost associated with the production of cellulose enzyme. The liquid-state fermentation technique of cellulose enzyme production involves problems related to maintenance of cellulose concentration, inorganic nutrients, and pH. However, the authors feel that the solid-state fermentation (SF) technique may be more suitable for the large-scale production of cellulose enzyme. The cost of substrate and its potential for the induction and production of cellulose, along with other equally important enzymes, such as xylanase, {beta}-1,3-glucanase, chitinase, and cellobiase enzymes, should be studied by selecting different cheap substrates in the SF process. There are several latex- and resin-bearing plants that contain hydrocarbons and related compounds. These plants are called petrocrops, since these hydrocarbons and related compounds can be extracted from these plants by simple heptane extraction. In the present work, the spent residue (SR) obtained after heptane or hexane extraction was used as a substrate for the production of cellulose and related enzymes by the wheat litter decomposing fungi. The results are reported.

  19. NEMO oligomerization and its ubiquitin-binding properties

    PubMed Central

    Ivins, Frank J.; Montgomery, Mark G.; Smith, Susan J. M.; Morris-Davies, Aylin C.; Taylor, Ian A.; Rittinger, Katrin

    2009-01-01

    The IKK [IκB (inhibitory κB) kinase] complex is a key regulatory component of NF-κB (nuclear factor κB) activation and is responsible for mediating the degradation of IκB, thereby allowing nuclear translocation of NF-κB and transcription of target genes. NEMO (NF-κB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKα and IKKβ, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKβ disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKα and IKKβ and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO–di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-κB signalling. PMID:19422324

  20. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    PubMed

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources. PMID:25374139

  1. The recognition of ubiquitinated proteins by the proteasome.

    PubMed

    Grice, Guinevere L; Nathan, James A

    2016-09-01

    The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome. PMID:27137187

  2. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.

    PubMed

    Tai, Hulin; Xu, Liyang; Inoue, Seiya; Nishikawa, Koji; Higuchi, Yoshiki; Hirota, Shun

    2016-08-10

    The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme. PMID:27456760

  3. Ubiquitin, Proteasomes and Proteolytic Mechanisms Activated by Kidney Disease

    PubMed Central

    Rajan, Vik; Mitch, William E.

    2008-01-01

    Summary The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14kD fragment of actin in muscle. The 14 kD actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function. PMID:18723090

  4. Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin

    PubMed Central

    Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter

    2014-01-01

    Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through

  5. Ubiquitination of specific mitochondrial matrix proteins.

    PubMed

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. PMID:27157140

  6. Atomic-level description of ubiquitin folding

    PubMed Central

    Piana, Stefano; Lindorff-Larsen, Kresten; Shaw, David E.

    2013-01-01

    Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins. PMID:23503848

  7. Ubiquitination of specific mitochondrial matrix proteins.

    PubMed

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins.

  8. Structural Insights into the Conformation and Oligomerization of E2~Ubiquitin Conjugates

    PubMed Central

    Page, Richard C.; Pruneda, Jonathan N.; Amick, Joseph; Klevit, Rachel E.; Misra, Saurav

    2012-01-01

    Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes including protein quality control, DNA repair, endocytosis and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the Ub C-terminus and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly-linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent “backside” interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers and the mechanisms of ubiquitination. We present a new 2.35 Å crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the “infinite spiral” helical arrangement of the sole previously reported structure of an oligomeric conjugate. Our structure also differs in intra-conjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intra-conjugate relative E2/Ub orientations. We delineate a common intra-conjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 ligase CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3 ligases, which have important consequences for the ubiquitination process. PMID:22551455

  9. Activation of the E3 ubiquitin ligase Parkin.

    PubMed

    Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter

    2015-04-01

    The PINK1 (phosphatase and tensin homologue-induced putative kinase 1)/Parkin-dependent mitochondrial quality control pathway mediates the clearance of damaged organelles, but appears to be disrupted in Parkinson's disease (PD) [Springer and Kahle (2011) Autophagy 7, 266-278]. Upon mitochondrial stress, PINK1 activates the E3 ubiquitin (Ub) ligase Parkin through phosphorylation of the Ub-like (UBL) domain of Parkin and of the small modifier Ub itself at a conserved residue [Sauvé and Gehring (2014) Cell Res. 24, 1025-1026]. Recently resolved partial crystal structures of Parkin showed a 'closed', auto-inhibited conformation, consistent with its notoriously weak enzymatic activity at steady state [Wauer and Komander (2013) EMBO J. 32, 2099-2112; Riley et al. (2013) Nat. Commun. 4, 1982; Trempe et al. (2013) Science 340, 1451-1455; Spratt et al. (2013) Nat. Commun. 4, 1983]. It has thus become clear that Parkin must undergo major structural rearrangements in order to unleash its catalytic functions. Recent published findings derived from X-ray structures and molecular modelling present a complete structural model of human Parkin at an all-atom resolution [Caulfield et al. (2014) PLoS Comput. Biol. 10, e1003935]. The results of the combined in silico simulations-based and experimental assay-based study indicates that PINK1-dependent Ser65 phosphorylation of Parkin is required for its activation and triggering of 'opening' conformations. Indeed, the obtained structures showed a sequential release of Parkin's intertwined domains and allowed docking of an Ub-charged E2 coenzyme, which could enable its enzymatic activity. In addition, using cell-based screening, select E2 enzymes that redundantly, cooperatively or antagonistically regulate Parkin's activation and/or enzymatic functions at different stages of the mitochondrial autophagy (mitophagy) process were identified [Fiesel et al. (2014) J. Cell Sci. 127, 3488-3504]. Other work that aims to pin-point the particular

  10. Small Molecule Control of Intracellular Protein Levels Through Modulation of the Ubiquitin Proteasome System

    PubMed Central

    Buckley, Dennis L.

    2015-01-01

    Traditionally, biological probes and drugs have targeted the activities of proteins (such as enzymes and receptors) that can be easily controlled by small molecules. The remaining majority of the proteome has been deemed “undruggable”. By using small molecule modulators of the ubiquitin proteasome, protein levels, rather than protein activities can be targeted instead, increasing the number of druggable targets. While targeting the proteasome itself can lead to a global increase in protein levels, targeting other components of the UPS (e.g., the hundreds of E3 ubiquitin ligases) can lead to an increase in protein levels in a more targeted fashion. Alternatively, multiple strategies for inducing protein degradation with small molecule probes are emerging. With the ability to induce and inhibit the degradation of targeted proteins, small molecule modulators of the UPS have the potential to significantly expand the druggable portion of the proteome beyond traditional targets such as enzymes and receptors. PMID:24459094

  11. OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis

    PubMed Central

    Mevissen, Tycho E.T.; Hospenthal, Manuela K.; Geurink, Paul P.; Elliott, Paul R.; Akutsu, Masato; Arnaudo, Nadia; Ekkebus, Reggy; Kulathu, Yogesh; Wauer, Tobias; El Oualid, Farid; Freund, Stefan M.V.; Ovaa, Huib; Komander, David

    2013-01-01

    Summary Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1’ and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates. PMID:23827681

  12. Mimicking Heme Enzymes in the Solid State: Metal-Organic Materials with Selectively Encapsulated Heme

    SciTech Connect

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-06-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal–organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a “ship-in-a-bottle” fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  13. Control of ubiquitin conjugation by cdc48 and its cofactors.

    PubMed

    Buchberger, Alexander

    2010-01-01

    Cdc48 (alias p97, VCP) is an important motor and regulator for the turnover of ubiquitylated proteins, both in proteasomal degradation and in nonproteolytic pathways. The diverse cellular tasks of Cdc48 are controlled by a large number of cofactors. Substrate-recruiting cofactors mediate the specific recognition of ubiquitylated target proteins, whereas substrate-processing cofactors often exhibit ubiquitin ligase or deubiquitylating activities that enable them to modulate the ubiquitylation state of substrates. This chapter introduces the major groups of Cdc48 cofactors and discusses the versatile options of substrate-processing cofactors to control the fate of Cdc48 substrates.

  14. The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases.

    PubMed

    Salvat, Catherine; Wang, Guangli; Dastur, Anahita; Lyon, Nancy; Huibregtse, Jon M

    2004-04-30

    The reaction cycle of HECT domain ubiquitin ligases consists of three steps: 1) binding of an E2 protein, 2) transfer of ubiquitin from E2 to the HECT domain, and 3) transfer of ubiquitin to the substrate. We report the identification of a determinant that is specifically required for the last step of this cycle, a phenylalanine residue located four amino acids from the C terminus of most HECT domains, referred to here as the -4F. Alteration of this residue in human E6AP and Saccharomyces cerevisae Rsp5p did not affect ubiquitin-thioester formation, but effectively blocked substrate ubiquitination. Alteration of the -4F to alanine with concomitant substitution of a nearby residue to phenylalanine only partially restored Rsp5p activity, indicating that precise spatial placement of this residue is important. C-terminally extended E6AP and Rsp5p proteins were also defective for substrate ubiquitination, providing a likely biochemical understanding of a previously isolated Angelman syndrome-associated mutation of E6AP that alters the stop codon of an otherwise wild-type gene. We propose that the -4F may play a role in orienting ubiquitin when it is tethered to the HECT active site cysteine. This may be necessary to allow for approach of the incoming lysine epsilon-amino group of the substrate.

  15. Met1-linked ubiquitination in immune signalling

    PubMed Central

    Fiil, Berthe K; Gyrd-Hansen, Mads

    2014-01-01

    N-terminal methionine-linked ubiquitin (Met1-Ub), or linear ubiquitin, has emerged as a central post-translational modification in innate immune signalling. The molecular machinery that assembles, senses and, more recently, disassembles Met1-Ub has been identified, and technical advances have enabled the identification of physiological substrates for Met1-Ub in response to activation of innate immune receptors. These discoveries have significantly advanced our understanding of how nondegradative ubiquitin modifications control proinflammatory responses mediated by nuclear factor-κB and mitogen-activated protein kinases. In this review, we discuss the current data on Met1-Ub function and regulation, and point to some of the questions that still remain unanswered. PMID:25060092

  16. Dynamic regulation of endosymbiotic organelles by ubiquitination.

    PubMed

    Ling, Qihua; Jarvis, Paul

    2013-08-01

    Recent work has revealed that mitochondria and chloroplasts are subject to direct control by the ubiquitin-proteasome system (UPS). Ubiquitin E3 ligases are present at the outer membrane of both organelles where they mediate ubiquitination and turnover of other organellar proteins. Both organelles exhibit remarkable structural dynamism and UPS control is particularly concerned with these properties. In mitochondria, the UPS targets factors involved in organellar fission and fusion, with significant impacts upon organellar morphology, mitophagy, and apoptosis. In chloroplasts (and other plastids), the UPS targets components of the protein import machinery, facilitating reorganization of the organellar proteome to determine organellar development and functions. Acquisition of such regulatory control during evolution is perhaps linked to the dynamic characteristics of the two organelles, which are not paralleled in their prokaryotic relatives. Here we discuss our current understanding of the role of the UPS in the regulation of endosymbiotic organelles.

  17. Ubiquitination in the Antiviral Immune Response

    PubMed Central

    Davis, Meredith E.; Gack, Michaela U.

    2016-01-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, ‘atypical’ nondegradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. PMID:25753787

  18. Homocysteine thiolactone affects protein ubiquitination in yeast.

    PubMed

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  19. LRRK2 dephosphorylation increases its ubiquitination.

    PubMed

    Zhao, Jing; Molitor, Tyler P; Langston, J William; Nichols, R Jeremy

    2015-07-01

    Activating mutations in the leucine rich repeat protein kinase 2 (LRRK2) gene are the most common cause of inherited Parkinson's disease (PD). LRRK2 is phosphorylated on a cluster of phosphosites including Ser(910), Ser(935), Ser(955) and Ser(973), which are dephosphorylated in several PD-related LRRK2 mutants (N1437H, R1441C/G, Y1699C and I2020T) linking the regulation of these sites to PD. These serine residues are also dephosphorylated after kinase inhibition and lose 14-3-3 binding, which serves as a pharmacodynamic marker for inhibited LRRK2. Loss of 14-3-3 binding is well established, but the consequences of dephosphorylation are only now being uncovered. In the present study, we found that potent and selective inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(935) then ubiquitination and degradation of a significant fraction of LRRK2. GNE1023 treatment decreased the phosphorylation and stability of LRRK2 in expression systems and endogenous LRRK2 in A549 cells and in mouse dosing studies. We next established that LRRK2 is ubiquitinated through at least Lys(48) and Lys(63) ubiquitin linkages in response to inhibition. To investigate the link between dephosphorylation induced by inhibitor treatment and LRRK2 ubiquitination, we studied LRRK2 in conditions where it is dephosphorylated such as expression of PD mutants [R1441G, Y1699C and I2020T] or by blocking 14-3-3 binding to LRRK2 via difopein expression, and found LRRK2 is hyper-ubiquitinated. Calyculin A treatment prevents inhibitor and PD mutant induced dephosphorylation and reverts LRRK2 to a lesser ubiquitinated species, thus directly implicating phosphatase activity in LRRK2 ubiquitination. This dynamic dephosphorylation-ubiquitination cycle could explain detrimental loss-of-function phenotypes found in peripheral tissues of LRRK2 kinase inactive mutants, LRRK2 KO (knockout) animals and following LRRK2 inhibitor administration.

  20. Proper ubiquitination effect on the fertilisation outcome post-ICSI.

    PubMed

    Eskandari-Shahraki, M; Tavalaee, M; Deemeh, M R; Jelodar, Gh A; Nasr-Esfahani, M H

    2013-06-01

    Ubiquitin is an 8.5-kDa protein that tags outlived proteins for degradation by the proteasome. It also marks defective spermatozoa during epididymal passage and has been proposed as a biomarker of sperm quality. This study evaluates the relationship between sperm ubiquitination, protamine deficiency, semen parameters and fertilisation rate in infertile individuals undergoing the intracytoplasmic sperm insemination (ICSI) procedure. Semen samples from 73 ICSI candidates were collected and analysed according to World Health Organization criteria. A portion of each sample was evaluated for sperm ubiquitination using the sperm ubiquitin tag immunoassay (SUTI) with flow cytometry, and protamine deficiency by chromomycin A3 (CMA3) staining. In addition, the relationship between the fertilisation rate and sperm ubiquitination was calculated in ICSI candidates. The intensity of ubiquitination showed a significant negative correlation with sperm concentration (r = -0.255, P = 0.032) and a positive correlation with fertilisation rate (r = 0.384, P = 0.013) post-ICSI. No correlation was observed between protamine deficiency and the percentage of ubiquitination or ubiquitination intensity. The results of this study suggest that sperm ubiquitination prior to capacitation may be considered as a marker of defective spermatozoon. Spermatozoa that undergo proper ubiquitination may have a higher chance for fertilisation, because they are made redundant by the ubiquitin-proteasome pathway in the epididymis compared to hypo-ubiquitinated spermatozoa.

  1. Ubiquitination as an efficient molecular strategy employed in salmonella infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin func...

  2. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  3. Effects of Fe(II)/H2O2 Oxidation on Ubiquitin Conformers Measured by Ion Mobility-Mass Spectrometry

    PubMed Central

    Shi, Huilin; Gu, Liqing; Clemmer, David E.; Robinson, Renã A. S.

    2013-01-01

    Oxidative modifications can have significant effects on protein structure in solution. Here, the structures and stabilities of oxidized ubiquitin ions electrosprayed from an aqueous solution (pH 2) are studied by ion mobility spectrometry-mass spectrometry (IMS-MS). IMS-MS has proven to be a valuable technique to assess gas-phase and in many cases, solution structures. Herein, in vitro oxidation is performed by Fenton chemistry with Fe(II)/hydrogen peroxide. Most molecules in solution remain unmodified whereas ~20% of the population belongs to an M+16 Da oxidized species. Ions of low charge states (+7 and +8) show substantial variance in collision cross section distributions between unmodified and oxidized species. Novel and previously reported Gaussian conformers are used to model cross section distributions for +7 and +8 oxidized ubiquitin ions, respectively, in order to correlate variances in observed gas-phase distributions to changes in populations of solution states. Based on Gaussian modeling, oxidized ions of charge state +7 have an A-state conformation which is more populated for oxidized relative to unmodified ions. Oxidized ubiquitin ions of charge state +8 have a distribution of conformers arising from native-state ubiquitin and higher intensities of A- and U-state conformers relative to unmodified ions. This work provides evidence that incorporation of a single oxygen atom to ubiquitin leads to destabilization of the native state in an acidic solution (pH ~2) and to unfolding of gas-phase compact structures. PMID:23211023

  4. The Catalytic Scaffold fo the Haloalkanoic Acid Dehalogenase Enzyme Superfamily Acts as a Mold for the Trigonal Bipyramidal Transition State

    SciTech Connect

    Lu,Z.; Dunaway-Mariano, D.; Allen, K.

    2008-01-01

    The evolution of new catalytic activities and specificities within an enzyme superfamily requires the exploration of sequence space for adaptation to a new substrate with retention of those elements required to stabilize key intermediates/transition states. Here, we propose that core residues in the large enzyme family, the haloalkanoic acid dehalogenase enzyme superfamily (HADSF) form a 'mold' in which the trigonal bipyramidal transition states formed during phosphoryl transfer are stabilized by electrostatic forces. The vanadate complex of the hexose phosphate phosphatase BT4131 from Bacteroides thetaiotaomicron VPI-5482 (HPP) determined at 1.00 Angstroms resolution via X-ray crystallography assumes a trigonal bipyramidal coordination geometry with the nucleophilic Asp-8 and one oxygen ligand at the apical position. Remarkably, the tungstate in the complex determined to 1.03 Angstroms resolution assumes the same coordination geometry. The contribution of the general acid/base residue Asp-10 in the stabilization of the trigonal bipyramidal species via hydrogen-bond formation with the apical oxygen atom is evidenced by the 1.52 Angstroms structure of the D10A mutant bound to vanadate. This structure shows a collapse of the trigonal bipyramidal geometry with displacement of the water molecule formerly occupying the apical position. Furthermore, the 1.07 Angstroms resolution structure of the D10A mutant complexed with tungstate shows the tungstate to be in a typical 'phosphate-like' tetrahedral configuration. The analysis of 12 liganded HADSF structures deposited in the protein data bank (PDB) identified stringently conserved elements that stabilize the trigonal bipyramidal transition states by engaging in favorable electrostatic interactions with the axial and equatorial atoms of the transferring phosphoryl group.

  5. Single Enzyme Experiments Reveal a Long-Lifetime Proton Leak State in a Heme-Copper Oxidase

    PubMed Central

    2015-01-01

    Heme-copper oxidases (HCOs) are key enzymes in prokaryotes and eukaryotes for energy production during aerobic respiration. They catalyze the reduction of the terminal electron acceptor, oxygen, and utilize the Gibbs free energy to transport protons across a membrane to generate a proton (ΔpH) and electrochemical gradient termed proton motive force (PMF), which provides the driving force for the adenosine triphosphate (ATP) synthesis. Excessive PMF is known to limit the turnover of HCOs, but the molecular mechanism of this regulatory feedback remains relatively unexplored. Here we present a single-enzyme study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous to Complex IV in human mitochondria, can enter a rare, long-lifetime leak state during which proton flow is reversed. The probability of entering the leak state is increased at higher ΔpH. By rapidly dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable ΔpH under extreme redox conditions. PMID:26618221

  6. Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA Repair Enzyme

    PubMed Central

    Fu, Qiong; Chow, Julia; Bernstein, Kara A.; Makharashvili, Nodar; Arora, Sucheta; Lee, Chia-Fang; Person, Maria D.; Rothstein, Rodney

    2014-01-01

    In the DNA damage response, many repair and signaling molecules mobilize rapidly at the sites of DNA double-strand breaks. This network of immediate responses is regulated at the level of posttranslational modifications that control the activation of DNA processing enzymes, protein kinases, and scaffold proteins to coordinate DNA repair and checkpoint signaling. Here we investigated the DNA damage-induced oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DNA double-strand break repair. Sae2 is a target of multiple phosphorylation events, which we identified and characterized in vivo in the budding yeast Saccharomyces cerevisiae. Both cell cycle-dependent and DNA damage-dependent phosphorylation sites in Sae2 are important for the survival of DNA damage, and the cell cycle-regulated modifications are required to prime the damage-dependent events. We found that Sae2 exists in the form of inactive oligomers that are transiently released into smaller active units by this series of phosphorylations. DNA damage also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring that active Sae2 is present only transiently in cells. Overall, this analysis provides evidence for a novel type of protein regulation where the activity of an enzyme is controlled dynamically by posttranslational modifications that regulate its solubility and oligomeric state. PMID:24344201

  7. Enhanced production of industrial enzymes in Mucoromycotina fungi during solid-state fermentation of agricultural wastes/by-products.

    PubMed

    Takó, Miklós; Kotogán, Alexandra; Krisch, Judit; Vágvölgyi, Csaba; Mondal, Keshab C; Papp, Tamás

    2015-09-01

    Cellulolytic, lipolytic and proteolytic enzyme production of zygomycetes Mucor corticolus, Rhizomucor miehei, Gilbertella persicaria and Rhizopus niveus were investigated using agro-industrial wastes as substrates. Solid-state cultures were carried out on untreated corn residues (stalk and leaf) as single substrate (SSF1) or corn residues and wheat bran in mixed fermentation (SSF2). Rapid production of endoglucanase (CMCase) was observed with maximal activity reaching after about 48-h fermentation, while cellobiohydrolase (CBH) and β-glucosidase enzymes generally had their peak after 72-h incubation. Highest filter paper degrading (FPase), CMCase, CBH and β-glucosidase activities obtained were (U g⁻¹ dss) 17.3, 74.1, 12.2 and 158.3, for R. miehei, G. persicaria, M. corticolus and Rh. niveus, respectively. M. corticolus proved to be the best lipolytic enzyme producer in SSF1 presenting 447.6 U g⁻¹ dss yield, while R. miehei showed 517.7 U g⁻¹ dss activity in SSF2. Rh. niveus exhibited significantly greater protease production than the other strains. Suc-AAPF-pNA hydrolyzing activities of this strain were 1.1 and 1.96 U g⁻¹ dss in SSF1 and SSF2, respectively. We conclude that the used corn stalk and leaf residues could potentially be applicable as strong inducers for cellulase and lipase production by Mucoromycotina fungi. PMID:26344030

  8. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation.

    PubMed

    Panagiotou, Gianni; Granouillet, Pierre; Olsson, Lisbeth

    2006-10-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum production of feruloyl esterase, xylanase, and alpha-L: -arabinofuranosidase. Under the optimum growth conditions (80% moisture, pH 6, 26.5 degrees C, and 5 g/l nitrogen source), the maximum level of feruloyl esterase (1,542 mU/g BSG) was found after 196 h, whereas xylanase (709 U/g BSG) and ArabF activity (3,567 mU/g BSG) were maximal after 108 h and 96 h, respectively. Based on substrate utilization data, the feruloyl esterases produced by P. brasilianum was anticipated to subclass B. A crude enzyme (CE) preparation from P. brasilianum culture grown on BSG was tested for the release of hydroxycinnamic acids and pentoses from BSG. The P. brasilianum CE produced in this work contains a balance of cell wall-modifying enzymes capable of degrading arabinoxylan of BSG by more than 40%.

  9. Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination.

    PubMed

    Pierce, Wendy K; Grace, Christy R; Lee, Jihun; Nourse, Amanda; Marzahn, Melissa R; Watson, Edmond R; High, Anthony A; Peng, Junmin; Schulman, Brenda A; Mittag, Tanja

    2016-03-27

    Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification. PMID:26475525

  10. Homeostatic regulation of trace mineral transport by ubiquitination of membrane transporters.

    PubMed

    Hennigar, Stephen R; McClung, James P

    2016-01-01

    Post-translational modification is a critical mechanism by which trace mineral transporters rapidly adapt to their environment to homeostatically regulate ion transport. Recently, a novel pathway was described whereby iron stimulates the ubiquitination and proteasomal degradation of the trace mineral transporter ZIP14. Discovery of this pathway suggests the proteasome as a potential therapeutic target for regulation of iron storage. Moreover, these findings contribute to a theoretical framework that can be applied to other ubiquitinated trace mineral transporters. This review will detail the current state of knowledge regarding the ubiquitination of trace mineral transporters, focusing on iron and zinc transporters, and the potential utility of post-translational modification of trace mineral transporters in the treatment of disease.

  11. Ubiquitin, Hormones and Biotic Stress in Plants

    PubMed Central

    Dreher, Kate; Callis, Judy

    2007-01-01

    Background The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. Scope This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. Conclusions The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses. PMID:17220175

  12. Dysregulation of ubiquitin ligases in cancer

    PubMed Central

    Ronai, Ze’ev A.

    2015-01-01

    Ubiquitin ligases are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome, or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions. PMID:26690337

  13. Endosome-lysosomes, ubiquitin and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  14. Cytochrome P450 3A Conjugation to Ubiquitin in a Process Distinct from Classical Ubiquitination Pathway

    SciTech Connect

    Zangar, Richard C. ); Kimzey, Amy L.; Okita, Janice R.; Wunschel, David S. ); Edwards, Robert J.; Kim, Hyesook; Okita, Richard T.

    2001-12-01

    We characterize a novel microsome system that forms high-molecular-mass (HMM) CYP3A, CYP2E1, and ubiquitin conjugates, but does not alter CYP4A or most other microsomal proteins. The formation of the HMM bands was observed in hepatic microsomes isolated from rats treated 1 week or more with high doses (50 mg/kg/day) of nicardipine, clotrimazole, or pregnenolone 16alpha-carbonitrile, but not microsomes from control, dexamethasone-, nifedipine-, or diltiazem-treated rats. Extensive washing of the microsomes to remove loosely attached proteins or cytosolic contaminants did not prevent the conjugation reaction. In contrast to prototypical ubiquitination pathways, this reaction did not require addition of ubiquitin, ATP, Mg(2+), or cytosol. Addition of cytosol did result in the degradation of the HMM CYP3A bands in a process that was not blocked by proteasome inhibitors. Immunoprecipitated CYP3A contained HMM ubiquitin. Even so, mass spectrometric analysis of tryptic peptides indicated that the HMM CYP3A was in molar excess to ubiquitin, suggesting that the formation of the HMM CYP3A may have resulted from conjugation to itself or a diffuse pool of ubiquitinated proteins already present in the microsomes. Addition of CYP3A substrates inhibited the formation of the HMM CYP3A and the cytosol-dependent degradation of HMM CYP3A. These results suggest that after extended periods of elevated CYP3A expression, microsomal factors are induced that catalyze the formation of HMM CYP3A conjugates that contain ubiquitin. This conjugation reaction, however, seems to be distinct from the classical ubiquitination pathway but may be related to the substrate-dependent stabilization of CYP3A observed in vivo.

  15. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes.

    PubMed Central

    Hershko, A; Rose, I A

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. We now examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown. release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent. Direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown. Images PMID:3031653

  16. Regulation of ubiquitin ligase dynamics by the nucleolus

    PubMed Central

    Mekhail, Karim; Khacho, Mireille; Carrigan, Amanda; Hache, Robert R.J.; Gunaratnam, Lakshman; Lee, Stephen

    2005-01-01

    Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state. PMID:16129783

  17. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination

    PubMed Central

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; Mastra, Federica La; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-01-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance. PMID:26065575

  18. Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria.

    PubMed

    Ducati, Rodrigo G; Namanja-Magliano, Hilda A; Schramm, Vern L

    2013-07-01

    Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.

  19. Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria

    PubMed Central

    Ducati, Rodrigo G.; Namanja-Magliano, Hilda A.; Schramm, Vern L.

    2013-01-01

    Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria. PMID:23859211

  20. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed Central

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-01-01

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  1. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung.

    PubMed

    Martín, J; Pérez-Gil, J; Acebal, C; Arche, R

    1990-02-15

    A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied. PMID:2310381

  2. The role of deubiquitinating enzymes in synaptic function and nervous system diseases.

    PubMed

    Kowalski, Jennifer R; Juo, Peter

    2012-01-01

    Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.

  3. E2 enzymes: more than just middle men

    PubMed Central

    Stewart, Mikaela D; Ritterhoff, Tobias; Klevit, Rachel E; Brzovic, Peter S

    2016-01-01

    Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s. PMID:27002219

  4. An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters.

    PubMed

    Aretz, Ina; Hardt, Christopher; Wittig, Ilka; Meierhofer, David

    2016-05-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, ρ(0) cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post-translational modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets and selected enzyme activities in the osteosarcoma cell line 143B.TK(-) A shotgun based SILAC LC-MS proteomics and a targeted metabolomics approach was applied to elucidate the consequences of the ρ(0) state. Pathway and protein-protein interaction (PPI) network analyses revealed a nonuniform down-regulation of the respiratory electron chain, the tricarboxylic acid (TCA) cycle, and the pyruvate metabolism in ρ(0) cells. Metabolites of the TCA cycle were dysregulated, such as a reduction of citric acid and cis-aconitic acid (six and 2.5-fold), and an increase of lactic acid, oxalacetic acid (both twofold), and succinic acid (fivefold) in ρ(0) cells. Signaling pathways such as GPCR, EGFR, G12/13 alpha, and Rho GTPases were up-regulated in ρ(0) cells, which could be indicative for the mitochondrial retrograde response, a pathway of communication from mitochondria to the nucleus. This was supported by our phosphoproteome data, which revealed two main processes, GTPase-related signal transduction and cytoskeleton organization. Furthermore, a general de-ubiquitination in ρ(0) cells was observed, for example, 80S ribosomal proteins were in average threefold and SLC amino acid transporters fivefold de-ubiquitinated. The latter might cause the observed significant increase of amino acid levels in ρ(0) cells. We conclude that an elimination of the respiratory electron chain, e.g. mtDNA depletion, not only leads to an uneven down-regulation of mitochondrial energy pathways, but also

  5. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    PubMed

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  6. The Predominant Molecular State of Bound Enzyme Determines the Strength and Type of Product Inhibition in the Hydrolysis of Recalcitrant Polysaccharides by Processive Enzymes*

    PubMed Central

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. PMID:25767120

  7. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    PubMed

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.

  8. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  9. Dss1 Is a 26S Proteasome Ubiquitin Receptor

    PubMed Central

    Paraskevopoulos, Konstantinos; Kriegenburg, Franziska; Tatham, Michael H.; Rösner, Heike I.; Medina, Bethan; Larsen, Ida B.; Brandstrup, Rikke; Hardwick, Kevin G.; Hay, Ronald T.; Kragelund, Birthe B.; Hartmann-Petersen, Rasmus; Gordon, Colin

    2014-01-01

    Summary The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins. PMID:25306921

  10. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses

    PubMed Central

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies. PMID:27642236

  11. Ubiquitin in Influenza Virus Entry and Innate Immunity

    PubMed Central

    Rudnicka, Alina; Yamauchi, Yohei

    2016-01-01

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. PMID:27783058

  12. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  13. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses

    PubMed Central

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies.

  14. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses.

    PubMed

    Sujashvili, Rusudan

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies. PMID:27642236

  15. The application of transient-state kinetic isotope effects to the resolution of mechanisms of enzyme-catalyzed reactions.

    PubMed

    Fisher, Harvey F

    2013-01-01

    Much of our understanding of the mechanisms of enzyme-catalyzed reactions is based on steady-state kinetic studies. Experimentally, this approach depends solely on the measurement of rates of free product appearance (d[P]/dt), a mechanistically and mathematically complex entity. Despite the ambiguity of this observed parameter, the method's success is due in part to the elaborate rigorously derived algebraic theory on which it is based. Transient-state kinetics, on the other hand, despite its ability to observe the formation of intermediate steps in real time, has contributed relatively little to the subject due in, some measure, to the lack of such a solid mathematical basis. Here we discuss the current state of existing transient-state theory and the difficulties in its realistic application to experimental data. We describe a basic analytic theory of transient-state kinetic isotope effects in the form of three novel fundamental rules. These rules are adequate to define an extended mechanism, locating the isotope-sensitive step and identifying missing steps from experimental data. We demonstrate the application of these rules to resolved component time courses of the phenylalanine dehydrogenase reaction, extending the previously known reaction by one new prehydride transfer step and two new post hydride transfer steps. We conclude with an assessment of future directions in this area. PMID:23857126

  16. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    PubMed

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step. PMID:23768199

  17. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?

    PubMed

    Caldeira, Margarida V; Salazar, Ivan L; Curcio, Michele; Canzoniero, Lorella M T; Duarte, Carlos B

    2014-01-01

    The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review. PMID:24157661

  18. Comparative enzymology-new insights from studies of an "old" enzyme, lactate dehydrogenase.

    PubMed

    Storey, Kenneth B

    2016-09-01

    Comparative enzymology explores the molecular mechanisms that alter the properties of enzymes to best fit and adapt them to the biotic demands and abiotic stresses that affect the cellular environment in which these protein catalysts function. For many years, comparative enzymology was primarily concerned with analyzing enzyme functional properties (e.g. substrate affinities, allosteric effectors, responses to temperature or pH, stabilizers, denaturants, etc.) in order to determine how enzyme properties were optimized to function under changing conditions. More recently it became apparent that posttranslational modifications of enzymes play a huge role in metabolic regulation. At first, such modifications appeared to target just crucial regulatory enzymes but recent work is showing that many dehydrogenases are also targets of posttranslational modification leading to substantial changes in enzyme properties. The present article focuses in particular on lactate dehydrogenase (LDH) showing that stress-induced changes in enzyme properties can be linked with reversible posttranslational modifications; e.g. changes in the phosphorylation state of LDH occur in response to dehydration stress in frogs and anoxia exposure of turtles and snails. Furthermore, these studies show that LDH is also a target of other posttranslational modifications including acetylation, methylation and ubiquitination that change in response to anoxia or dehydration stress. Selected new methods for exploring posttranslational modifications of dehydrogenases are discussed and new challenges for the future of comparative enzymology are presented that will help to achieve a deeper understanding of biochemical adaptation through enzyme regulation. PMID:26688543

  19. Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation

    PubMed Central

    Craney, Allison; Kelly, Aileen; Jia, Luying; Fedrigo, Indro; Yu, Hongtao; Rape, Michael

    2016-01-01

    Most metazoan E3 ligases contain a signature RING domain that promotes the transfer of ubiquitin from the active site of E2 conjugating enzymes to lysine residues in substrates. Although these RING-E3s depend on E2 enzymes for catalysis, how they turn on their E2s at the right time and place remains poorly understood. Here we report a phosphorylation-dependent mechanism that ensures timely activation of the E2 Ube2S by its RING-E3, the anaphase-promoting complex (APC/C); while phosphorylation of a specific serine residue in the APC/C coactivator Cdc20 prevents delivery of Ube2S to the APC/C, removal of this mark by PP2AB56 allows Ube2S to bind the APC/C and catalyze ubiquitin chain elongation. PP2AB56 also stabilizes kinetochore–microtubule attachments to shut off the spindle checkpoint, suggesting that cells regulate the E2–E3 interplay to coordinate ubiquitination with critical events during cell division. PMID:26811472

  20. Identification of Ubiquitin-specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate*

    PubMed Central

    Grou, Cláudia P.; Francisco, Tânia; Rodrigues, Tony A.; Freitas, Marta O.; Pinto, Manuel P.; Carvalho, Andreia F.; Domingues, Pedro; Wood, Stephen A.; Rodríguez-Borges, José E.; Sá-Miranda, Clara; Fransen, Marc; Azevedo, Jorge E.

    2012-01-01

    Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates. PMID:22371489

  1. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast.

    PubMed

    Tryon, E; Kuby, S A

    1984-01-01

    From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.

  2. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation.

  3. Suppressors of the Ndc10-2 Mutation: A Role for the Ubiquitin System in Saccharomyces Cerevisiae Kinetochore Function

    PubMed Central

    Kopski, K. M.; Huffaker, T. C.

    1997-01-01

    We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37°, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function. PMID:9335582

  4. PROTEOMIC ANALYSIS OF UBIQUITINATED PROTEINS FROM DELTAMETHRIN-RESISTANT AND SUSCEPTIBLE STRAINS OF THE DIAMONDBACK MOTH, Plutella Xylostella L.

    PubMed

    Cheng, Luogen; Du, Yaqiong; Hu, Junli; Jiao, Dongxu; Li, Jin; Zhou, Zhou; Xu, Qin; Li, Fengliang

    2015-10-01

    Ubiquitin, a small protein consisting of 76 amino acids, acts in protein degradation, DNA repair, signal transduction, transcriptional regulation, and receptor control through endocytosis. Using proteomics, we compared the differentially ubiquitinated proteins between a deltamethrin-resistant (DR) strain and a deltamethrin-sensitive (DS) strain in third-instar larvae of the diamondback moth. We used polyubiquitin affinity beads to enrich ubiquitinated proteins and then performed one-dimensional SDS-PAGE separation and mass spectrometric identification. In the DR strain, We found 17 proteins that were upregulated (relative to the DS strain), including carbonic anhydrase family members, ADP ribosylation factor 102F CG11027-PA, protein kinase 61C, phospholipase A2 , dihydrolipoamide dehydrogenase, tyrosine hydroxylase, and heat shock proteins, and five proteins that were downregulated in the DS strain, including carboxylesterase and DNA cytosine-5 methyltransferase. These results were also verified by qPCR. The differentially ubiquitinated proteins/enzymes were mainly responsible for protein binding, catalytic activity, and molecular transducer activity. These results improve our understanding of the relationship between protein ubiquitination and the deltamethrin stress response.

  5. The MLLE Domain of the Ubiquitin Ligase UBR5 Binds to Its Catalytic Domain to Regulate Substrate Binding*

    PubMed Central

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-01-01

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity. PMID:26224628

  6. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages

    PubMed Central

    Min, Mingwei; Mevissen, Tycho E. T.; De Luca, Maria; Komander, David; Lindon, Catherine

    2015-01-01

    The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)–directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome—for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner. PMID:26446837

  7. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF

    PubMed Central

    Mahul-Mellier, A-L; Pazarentzos, E; Datler, C; Iwasawa, R; AbuAli, G; Lin, B; Grimm, S

    2012-01-01

    Components of the TNFR1 complex are subject to dynamic ubiquitination that impacts on their effects as signalling factors. We have found that the ubiquitin-specific protease USP2a has a pivotal role in the decision for cell death or survival by the TNFR1 complex. This enzyme is a novel component of the TNFR1 complex that is recruited upon ligand binding and controls the signalling activity of the TNFR1-interacting protein RIP1 by removing its K63-linked ubiquitin chains. USP2a similarly de-ubiquitinates TRAF2, a ubiquitin-ligase recruited to the TNFR1 complex. During the TNF response the activity of USP2a on RIP1 and TRAF2 is required for the efficient reappearance of IκBα, which is essential to inactivate the anti-apoptotic transcription factor NF-κB. The effects of USP2a culminate in the conversion of the anti-apoptotic TNFR1 complex I into the pro-apoptotic TNFR1 complex II. Consequently, downregulation of USP2a promotes NF-κB activation and protects cells against TNF-induced cell death. PMID:22179575

  8. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    PubMed

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.

  9. Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins.

    PubMed

    Wang, Wenjuan; Li, Siying; Wang, Hui; Li, Bin; Shao, Lei; Lai, Yimu; Horvath, Gary; Wang, Qian; Yamamoto, Masayuki; Janicki, Joseph S; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-07-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a master transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes. While knockout of Nrf2 exaggerates cardiac pathological remodeling and dysfunction in diverse pathological settings, pharmacological activation of Nrf2 protects against cardiomyocyte injury and cardiac dysfunction. In contrast, there is also a concern that the chronic activation of Nrf2 secondary to oxidative stress is a contributing mechanism for the reductive stress-mediated heart failure. However, a direct link between cardiac specific activation of Nrf2 and cardiac protection or dysfunction in vivo remains to be established. Therefore, we investigated the effect of cardiomyocyte-specific transgenic activation of Nrf2 (Nrf2(ctg)) on cardiac pathological remodeling and dysfunction. We found that the cardiomyocyte-specific activation of Nrf2 suppressed myocardial oxidative stress as well as cardiac apoptosis, fibrosis, hypertrophy, and dysfunction in a setting of sustained pressure overload induced by transverse aortic arch constriction (TAC) in mice. Notably, the constitutive activation of Nrf2 increased the steady level of autophagosomes while decreasing the ubiquitinated protein aggregates in the heart after TAC. Nrf2 gene gain- and loss-of-function approaches revealed that Nrf2 enhances autophagosome formation and autophagic flux in cardiomyocytes. Unexpectedly, while Nrf2 minimally regulated apoptosis, it suppressed significantly the proteotoxic necrosis in cardiomyocytes. In addition, Nrf2 attenuated the proteocytotoxicity presumably via enhancing autophagy-mediated clearance of ubiquitinated protein aggregates in cardiomyocytes. Taken together, we demonstrated for the first time that cardiac specific activation of Nrf2 suppresses cardiac maladaptive remodeling and dysfunction most likely by enhancing autophagic clearance of toxic protein

  10. Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins

    PubMed Central

    Wang, Wenjuan; Li, Siying; Wang, Hui; Li, Bin; Shao, Lei; Lai, Yimu; Horvath, Gary; Wang, Qian; Yamamoto, Masayuki; Janicki, Joseph S.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2015-01-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a master transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes. While knockout of Nrf2 exaggerates cardiac pathological remodeling and dysfunction in diverse pathological settings, pharmacological activation of Nrf2 protects against cardiomyocyte injury and cardiac dysfunction. In contrast, there is also a concern that the chronic activation of Nrf2 secondary to oxidative stress is a contributing mechanism for the reductive stress-mediated heart failure. However, a direct link between cardiac specific activation of Nrf2 and cardiac protection or dysfunction in vivo remains to be established. Therefore, we investigated the effect of cardiomyocyte-specific transgenic activation of Nrf2 (Nrf2ctg) on cardiac pathological remodeling and dysfunction. We found that the cardiomyocyte-specific activation of Nrf2 suppressed myocardial oxidative stress as well as cardiac apoptosis, fibrosis, hypertrophy, and dysfunction in a setting of sustained pressure overload induced by transverse aortic arch constriction (TAC) in mice. Notably, the constitutive activation of Nrf2 increased the steady level of autophagosomes while decreasing the ubiquitinated protein aggregates in the heart after TAC. Nrf2 gene gain- and loss-of-function approaches revealed that Nrf2 enhances autophagosome formation and autophagic flux in cardiomyocytes. Unexpectedly, while Nrf2 minimally regulated apoptosis, it suppressed significantly the proteotoxic necrosis in cardiomyocytes. In addition, Nrf2 attenuated the proteocytotoxicity presumably via enhancing autophagy-mediated clearance of ubiquitinated protein aggregates in cardiomyocytes. Taken together, we demonstrated for the first time that cardiac specific activation of Nrf2 suppresses cardiac maladaptive remodeling and dysfunction most likely by enhancing autophagic clearance of toxic protein

  11. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.

  12. Composition, Roles, and Regulation of Cullin-Based Ubiquitin E3 Ligases

    PubMed Central

    Choi, Christina M.; Gray, William M.; Mooney, Sutton; Hellmann, Hanjo

    2014-01-01

    Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities. PMID:25505853

  13. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance. PMID:27378758

  14. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance.

  15. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    PubMed Central

    Nielsen, Sofie V.; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  16. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory.

    PubMed

    Shcherbik, Natalia; Pestov, Dimitri G

    2010-07-01

    Synthesis of new ribosomes is an essential process upregulated during cell growth and proliferation. Here, we review our current understanding of the role that ubiquitin and ubiquitin-like proteins (UBLs) play in ribosome biogenesis, with a focus on mammalian cells. One important function of the nuclear ubiquitin-proteasome system is to control the supply of ribosomal proteins for the assembly of new ribosomal subunits in the nucleolus. Mutations in ribosomal proteins or ribosome assembly factors, stress, and many anticancer drugs have been shown to disrupt normal ribosome biogenesis, triggering a p53-dependent response. We discuss how p53 can be activated by the aberrant ribosome formation, centering on the current models of the interaction between ribosomal proteins released from the nucleolus and the ubiquitin ligase Mdm2. Recent studies also revealed multiple ubiquitin- and UBL-conjugated forms of nucleolar proteins with largely unknown functions, indicating that many new details about the role of these modifications in the nucleolus await to be discovered.

  17. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function.

    PubMed

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R; Xu, Guoqiang

    2015-12-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.

  18. The increasing complexity of the ubiquitin code.

    PubMed

    Yau, Richard; Rape, Michael

    2016-05-27

    Ubiquitylation is essential for signal transduction as well as cell division and differentiation in all eukaryotes. Substrate modifications range from a single ubiquitin molecule to complex polymeric chains, with different types of ubiquitylation often eliciting distinct outcomes. The recent identification of novel chain topologies has improved our understanding of how ubiquitylation establishes precise communication within cells. Here, we discuss how the increasing complexity of ubiquitylation is employed to ensure robust and faithful signal transduction in eukaryotic cells. PMID:27230526

  19. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State.

    PubMed

    Ramanathan, Malinidevi; Muthuramalingam, Rasi; Lakshmanan, Rajendran

    2015-12-01

    In this paper, mathematical model pertaining to the decomposition of enzyme-substrate complex in an artificial membrane is discussed. Here the transport through liquid membrane phases is considered. The model involves the system of non-linear reaction diffusion equations. The non-linear terms in this model are related to Michaelis-Menten reaction scheme. Approximate analytical expressions for the concentrations of substrate and product have been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method for all values of Michaelis-Menten constant, diffusion coefficient, and rate constant. Approximate flux expression for substrate and product for non-steady-state conditions are also reported. A comparison of the analytical approximation and numerical simulation is also presented. The results obtained in this work are valid for the entire solution domain.

  20. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State.

    PubMed

    Ramanathan, Malinidevi; Muthuramalingam, Rasi; Lakshmanan, Rajendran

    2015-12-01

    In this paper, mathematical model pertaining to the decomposition of enzyme-substrate complex in an artificial membrane is discussed. Here the transport through liquid membrane phases is considered. The model involves the system of non-linear reaction diffusion equations. The non-linear terms in this model are related to Michaelis-Menten reaction scheme. Approximate analytical expressions for the concentrations of substrate and product have been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method for all values of Michaelis-Menten constant, diffusion coefficient, and rate constant. Approximate flux expression for substrate and product for non-steady-state conditions are also reported. A comparison of the analytical approximation and numerical simulation is also presented. The results obtained in this work are valid for the entire solution domain. PMID:26265446

  1. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states.

    PubMed

    Shaik, Sason; Hirao, Hajime; Kumar, Devesh

    2007-07-01

    The Account discusses the phenomenon of two-state reactivity (TSR) or multistate reactivity (MSR) in high-valent metal-oxo reagents, projecting its wide-ranging applicability starting from the bare species, through the reagents made by Que, Nam, and collaborators, to the Mn(V)-oxo substituted polyoxometalate, all the way to Compound I species of heme enzymes. The Account shows how the behaviors of all these variegated species derive from a simple set of electronic structure principles. Experimental trends that demonstrate TSR and MSR are discussed. Diagnostic mechanistic probes are proposed for the TSR/MSR scenario, based on kinetic isotope effect, stereochemical studies, and magnetic- and electric-field effects. PMID:17488054

  2. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy.

    PubMed

    He, Ben; Zhao, Yi-Chao; Gao, Ling-Chen; Ying, Xiao-Ying; Xu, Long-Wei; Su, Yuan-Yuan; Ji, Qing-Qi; Lin, Nan; Pu, Jun

    2016-06-01

    Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β-activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.

  3. Viral Takeover of the Host Ubiquitin System

    PubMed Central

    Gustin, Jean K.; Moses, Ashlee V.; Früh, Klaus; Douglas, Janet L.

    2011-01-01

    Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage. PMID:21847386

  4. Ubiquitination in the control of photoperiodic flowering.

    PubMed

    Piñeiro, Manuel; Jarillo, José A

    2013-01-01

    Triggering flowering at the appropriate time is a key factor for the successful reproduction of plants. Daylength perception allows plants to synchronize flowering with seasonal changes, a process systematically analyzed in the model species Arabidopsis thaliana. Characterization of molecular components that participate in the photoperiodic control of floral induction has revealed that photoreceptors and the circadian oscillator interact in a complex manner to modulate the floral transition in response to daylength and in fact, photoperiodic flowering can be regarded as an output pathway of the circadian oscillator. Recent observations indicate that besides transcriptional regulation, the promotion of flowering in response to photoperiod appears to be also regulated by modulation of protein stability and degradation. Therefore, the ubiquitin/26S proteasome system for targeted protein degradation has emerged as a key element in photoperiodic flowering regulation. Different E3 ubiquitin ligases are involved in the proteolysis of a variety of photoperiod-regulated pathway components including photoreceptors, clock elements and flowering time proteins, all of which participate in the control of this developmental process. Given the large variety of plant ubiquitin ligase complexes, it is likely that new factors involved in mechanisms of protein-targeted degradation will soon be ascribed to various aspects of flowering time control.

  5. Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells.

    PubMed

    Blaszczak, Ewa; Prigent, Claude; Rabut, Gwenaël

    2016-01-01

    Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism. PMID:27613039

  6. Waiting cycle times and generalized Haldane equality in the steady-state cycle kinetics of single enzymes.

    PubMed

    Ge, Hao

    2008-01-10

    Enzyme kinetics are cyclic. A more realistic reversible three-step mechanism of the Michaelis-Menten kinetics is investigated in detail, and three kinds of waiting cycle times T, T+, T- are defined. It is shown that the mean waiting cycle times T, T+, and T- are the reciprocal of the steady-state cycle flux Jss, the forward steady-state cycle flux Jss+ and the backward steady-state cycle flux Jss, respectively. We also show that the distribution of T+ conditioned on T+

  7. Dimeric Ube2g2 simultaneously engages donor and acceptor ubiquitins to form Lys48-linked ubiquitin chains

    PubMed Central

    Liu, Weixiao; Shang, Yongliang; Zeng, Yan; Liu, Chao; Li, Yanchang; Zhai, Linhui; Wang, Pan; Lou, Jizhong; Xu, Ping; Ye, Yihong; Li, Wei

    2014-01-01

    Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48-linked polyubiquitination by ER-associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER-associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48-linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER-associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self-association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48-linked ubiquitin chains. PMID:24366945

  8. Ubiquitin-Mediated Degradation of Aurora Kinases

    PubMed Central

    Lindon, Catherine; Grant, Rhys; Min, Mingwei

    2016-01-01

    The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting

  9. PH-dependence of the steady-state rate of a two-step enzymic reaction.

    PubMed

    Brocklehurst, K; Dixon, H B

    1976-04-01

    1. The pH-dependence is considered of a reaction between E and S that proceeds through an intermediate ES under "Briggs-Haldane' conditions, i.e. there is a steady state in ES and [S]o greater than [E]T, where [S]o is the initial concentration of S and [E]T is the total concentration of all forms of E. Reactants and intermediates are assumed to interconvert in three protonic states (E equilibrium ES; EH equilibrium EHS; EH2 equilibrium EH2S), but only EHS provides products by an irreversible reaction whose rate constant is kcat. Protonations are assumed to be so fast that they are all at equilibrium. 2. The rate equation for this model is shown to be v = d[P]/dt = (kcat.[E]T[S]o/A)/[(KmBC/DA) + [S]o], where Km is the usual assembly of rate constants around EHS and A-D are functions of the form (1 + [H]/K1 + K2/[H]), in which K1 and K2 are: in A, the molecular ionization constants of ES; in B, the analogous constants of E; in C and D, apparent ionization constants composed of molecular ionization constants (of E or ES) and assemblies of rate constants. 3. As in earlier treatments of this type of reaction which involve either the assumption that the reactants and intermediate are in equilibrium or the assumption of Peller & Alberty [(1959) J. Am. Chem. Soc. 81, 5907-5914] that only EH and EHS interconvert directly, the pH-dependence of kcat. is determined only by A. 4. The pH-dependence of Km is determined in general by B-C/A-D, but when reactants and intermediate are in equilibrium, C identical to D and this expression simplifies to B/A. 5. The pH-dependence of kcat./Km, i.e. of the rate when [S]o less than Km, is not necessarily a simple bell-shaped curve characterized only by the ionization constants of B, but is a complex curve characterized by D/B-C. 6. Various situations are discussed in which the pH-dependence of kcat./Km is determined by assemblies simpler than D/B-C. The special situation in which a kcat./Km-pH profile provides the molecular pKa values of

  10. The Role of Ubiquitination and Sumoylation in Diabetic Nephropathy

    PubMed Central

    Huang, Wei; Kanasaki, Keizo

    2014-01-01

    Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve renal injury by regulating several signaling pathways, such as NF-κB, TGF-β, Nrf2-oxidative stress, and MAPK. In this review, we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment strategy of DN. PMID:24991536

  11. Drugging the undruggables: exploring the ubiquitin system for drug development

    PubMed Central

    Huang, Xiaodong; Dixit, Vishva M

    2016-01-01

    Dynamic modulation of protein levels is tightly controlled in response to physiological cues. In mammalian cells, much of the protein degradation is carried out by the ubiquitin-proteasome system (UPS). Similar to kinases, components of the ubiquitin system are often dysregulated, leading to a variety of diseases, including cancer and neurodegeneration, making them attractive drug targets. However, so far there are only a handful of drugs targeting the ubiquitin system that have been approved by the FDA. Here, we review possible therapeutic intervention nodes in the ubiquitin system, analyze the challenges, and highlight the most promising strategies to target the UPS. PMID:27002218

  12. The oligomeric state and stability of the mannitol transporter, EnzymeIImtl, from Escherichia coli: A fluorescence correlation spectroscopy study

    PubMed Central

    Veldhuis, Gertjan; Hink, Mark; Krasnikov, Victor; van den Bogaart, Geert; Hoeboer, Jeroen; Visser, Antonie J.W.G.; Broos, Jaap; Poolman, Bert

    2006-01-01

    Numerous membrane proteins function as oligomers both at the structural and functional levels. The mannitol transporter from Escherichia coli, EnzymeIImtl, is a member of the phosphoenolpyruvate-dependent phosphotransferase system. During the transport cycle, mannitol is phosphorylated and released into the cytoplasm as mannitol-1-phosphate. Several studies have shown that EIImtl functions as an oligomeric species. However, the oligomerization number and stability of the oligomeric complex during different steps of the catalytic cycle, e.g., substrate binding and/or phosphorylation of the carrier, is still under discussion. In this paper, we have addressed the oligomeric state and stability of EIImtl using fluorescence correlation spectroscopy. A functional double-cysteine mutant was site-specifically labeled with either Alexa Fluor 488 or Alexa Fluor 633. The subunit exchange of these two batches of proteins was followed in time during different steps of the catalytic cycle. The most important conclusions are that (1) in a detergent-solubilized state, EIImtl is functional as a very stable dimer; (2) the stability of the complex can be manipulated by changing the intermicellar attractive forces between PEG-based detergent micelles; (3) substrate binding destabilizes the complex whereas phosphorylation increases the stability; and (4) substrate binding to the phosphorylated species partly antagonizes the stabilizing effect. PMID:16823033

  13. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition.

    PubMed

    Elisashvili, Vladimir; Penninckx, Michel; Kachlishvili, Eva; Tsiklauri, Nino; Metreveli, Eka; Kharziani, Tamar; Kvesitadze, Giorgi

    2008-02-01

    Lentinus edodes and Pleurotus species from various origins were compared for the first time for their ability to produce lignocellulolytic enzyme in solid-state (SSF) and submerged (SF) fermentation of various plant raw material. Fungi cultivation in identical culture conditions revealed wide differences among both species and strains of the same species. The yields of CMCase (62.3Uml(-1)), xylanase (84.1 U ml(-1)), FPA (5.9 U ml(-1)), and laccase (4103 Ul(-1)) are the best so far obtained with the strains of oyster mushrooms. The study pointed out that the nature of lignocellulosic material and the method of fungi cultivation are factors determining the expression of lignocellulolytic potential of fungi as well as the ratio of individual enzymes in enzyme complex. SSF of tree leaves is favorable for laccase and MnP secretion by the majority L. edodes and Pleurotus strains, whereas SF provides better production of hydrolytic enzymes. PMID:17350827

  14. Structural Basis for Ubiquitin-Mediated Dimerization and Activation of the Ubiquitin Protein Ligase Cbl-b

    SciTech Connect

    Peschard,P.; Kozlov, G.; Lin, T.; Mirza, I.; Berghuis, A.; Lipkowitz, S.; Park, M.; Gehring, K.

    2007-01-01

    Cbl proteins are E3 ubiquitin ligases that are negative regulators of many receptor tyrosine kinases. Cbl-b and c-Cbl contain a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Despite high sequence identity, Cbl UBA domains display remarkably different ubiquitin-binding properties. Here, we report the crystal structure of the UBA domain of Cbl-b in complex with ubiquitin at 1.9 {angstrom} resolution. The structure reveals an atypical mechanism of ubiquitin recognition by the first helix of the UBA. Helices 2 and 3 of the UBA domain form a second binding surface, which mediates UBA dimerization in the crystal and in solution. Site-directed mutagenesis demonstrates that Cbl-b dimerization is regulated by ubiquitin binding and required for tyrosine phosphorylation of Cbl-b and ubiquitination of Cbl-b substrates. These studies demonstrate a role for ubiquitin in regulating biological activity by promoting protein dimerization.

  15. Ubiquitination of CXCR7 Controls Receptor Trafficking

    PubMed Central

    de Munnik, Sabrina; Han, Mitchell K. L.; Smit, Martine J.; Leurs, Rob

    2012-01-01

    The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gαi-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process. PMID:22457824

  16. Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases

    PubMed Central

    Edelmann, Mariola J.; Nicholson, Benjamin; Kessler, Benedikt M.

    2011-01-01

    Recent advances in the development and discovery of pharmacological interventions within the ubiquitin–proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection. PMID:22088887

  17. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity.

    PubMed

    Duplan, Vincent; Rivas, Susana

    2014-01-01

    Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease. PMID:24592270

  18. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  19. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling.

    PubMed

    Yi, Jae-Sung; Park, Jun Sub; Ham, Young-Mi; Nguyen, Nga; Lee, Na-Rae; Hong, Jin; Kim, Bong-Woo; Lee, Hyun; Lee, Chang-Seok; Jeong, Byung-Cheon; Song, Hyun Kyu; Cho, Hana; Kim, Yoon Ki; Lee, Jae-Seon; Park, Kyong Soo; Shin, Haksub; Choi, Inho; Lee, Seung Hee; Park, Woo Jin; Park, Shi-Young; Choi, Cheol Soo; Lin, Peihui; Karunasiri, Malith; Tan, Tao; Duann, Pu; Zhu, Hua; Ma, Jianjie; Ko, Young-Gyu

    2013-01-01

    Mitsugumin 53 (MG53) negatively regulates skeletal myogenesis by targeting insulin receptor substrate 1 (IRS-1). Here, we show that MG53 is an ubiquitin E3 ligase that induces IRS-1 ubiquitination with the help of an E2-conjugating enzyme, UBE2H. Molecular manipulations that disrupt the E3-ligase function of MG53 abolish IRS-1 ubiquitination and enhance skeletal myogenesis. Skeletal muscles derived from the MG53-/- mice show an elevated IRS-1 level with enhanced insulin signalling, which protects the MG53-/- mice from developing insulin resistance when challenged with a high-fat/high-sucrose diet. Muscle samples derived from human diabetic patients and mice with insulin resistance show normal expression of MG53, indicating that altered MG53 expression does not serve as a causative factor for the development of metabolic disorders. Thus, therapeutic interventions that target the interaction between MG53 and IRS-1 may be a novel approach for the treatment of metabolic diseases that are associated with insulin resistance. PMID:23965929

  20. USP32 is an active, membrane-bound ubiquitin protease overexpressed in breast cancers.

    PubMed

    Akhavantabasi, Shiva; Akman, Hesna B; Sapmaz, Aysegul; Keller, Jennifer; Petty, Elizabeth M; Erson, Ayse E

    2010-08-01

    USP32, on chromosomal band 17q23.1-17q23.2, is a highly conserved but uncharacterized gene that gave rise during evolution to a well-known hominoid-specific proto-oncogene, USP6. We investigated the expression profile of USP32 in human tissues and examined its functions to gain insight into this novel member of the well-conserved ubiquitination system. We detected ubiquitous USP32 expression across tissues and confirmed the predicted deubiquitination function owing to the presence of conserved peptidase signature aspargine, cysteine, histidine, and aspartic acid domains of ubiquitin-specific proteases. A Golgi localization of GFP-fused USP32 was detected by fluorescent protection assay and BODIPY-TR staining. In addition, stable silencing of USP32 caused a significant decrease in the proliferation and migration rate of cells. Based on these and the fact that USP32 maps to 17q23, which is commonly amplified in breast cancers, we analyzed USP32 expression in breast cancer cells. We detected high expression of USP32 in 50% (9 of 18) of breast cancer cell lines and 22% (9 of 41) of primary breast tumors compared to mammary epithelial cells. In summary, we report the preliminary characterization of this novel deubiquitinating enzyme on 17q23 and demonstrate its functional role in the ubiquitin system and its potential involvement in tumorigenesis.

  1. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    PubMed Central

    Poulsen, Sara L.; Hansen, Rebecca K.; Wagner, Sebastian A.; van Cuijk, Loes; van Belle, Gijsbert J.; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B.; Marteijn, Jurgen A.; Bekker-Jensen, Simon

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response. PMID:23751493

  2. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells.

    PubMed

    Kanlaya, Rattiyaporn; Pattanakitsakul, Sa-nga; Sinchaikul, Supachok; Chen, Shui-Tein; Thongboonkerd, Visith

    2010-10-01

    Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are the most severe forms of dengue virus infection with hemorrhage and plasma leakage. However, pathogenic mechanisms of DHF and DSS remain poorly understood. We therefore investigated host responses as determined by changes in the cellular proteome of primary human endothelial cells upon infection with dengue virus serotype 2 (DEN-2) at a multiplicity of infection (MOI) of 10 for 24 h. Two-dimensional PAGE and quantitative intensity analysis revealed 38 significantly altered protein spots (16 upregulated and 22 downregulated) in DEN-2-infected cells compared to mock controls. These altered proteins were successfully identified by mass spectrometry, including those involved in oxidative stress response, transcription and translation, cytoskeleton assembly, protein degradation, cell growth regulation, apoptosis, cellular metabolism, and antiviral response. The proteomic data were validated by Western blot analyses [upregulated ubiquitin-activating enzyme E1 (UBE1) and downregulated annexin A2] and an immunofluorescence study (upregulated MxA). Interestingly, we found that MxA was colocalized with DEN-2 viral capsid protein, strengthening its role as an antiviral protein. Moreover, we also identified upregulation of a proteasome subunit. Our functional study revealed the significant role of ubiquitination in dengue infection and UBE1 inhibition by its specific inhibitor (UBEI-41) caused a significant reduction in the level of viral protein synthesis and its infectivity. Our findings suggest that various biological processes were triggered in response to dengue infection, particularly antiviral IFN and ubiquitin-proteasome pathways.

  3. Ubiquitin proteasome system research in gastrointestinal cancer.

    PubMed

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  4. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  5. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for

  6. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.

    PubMed

    Childers, Delma S; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A R; Lenardon, Megan D; Ballou, Elizabeth R; MacCallum, Donna M; Brown, Alistair J P

    2016-04-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in

  7. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain

    SciTech Connect

    Murphy, James M.; Korzhnev, Dmitry M.; Ceccarelli, Derek F.; Briant, Douglas J.; Zarrine-Afsar, Arash; Sicheri, Frank; Kay, Lewis E.; Pawson, Tony

    2012-10-23

    The Par-1/MARK protein kinases play a pivotal role in establishing cellular polarity. This family of kinases contains a unique domain architecture, in which a ubiquitin-associated (UBA) domain is located C-terminal to the kinase domain. We have used a combination of x-ray crystallography and NMR dynamics experiments to understand the interaction of the human (h) MARK3 UBA domain with the adjacent kinase domain as compared with ubiquitin. The x-ray crystal structure of the linked hMARK3 kinase and UBA domains establishes that the UBA domain forms a stable intramolecular interaction with the N-terminal lobe of the kinase domain. However, solution-state NMR studies of the isolated UBA domain indicate that it is highly dynamic, undergoing conformational transitions that can be explained by a folding-unfolding equilibrium. NMR titration experiments indicated that the hMARK3 UBA domain has a detectable but extremely weak affinity for mono ubiquitin, which suggests that conformational instability of the isolated hMARK3 UBA domain attenuates binding to ubiquitin despite the presence of residues typically involved in ubiquitin recognition. Our data identify a molecular mechanism through which the hMARK3 UBA domain has evolved to bind the kinase domain, in a fashion that stabilizes an open conformation of the N- and C-terminal lobes, at the expense of its capacity to engage ubiquitin. These results may be relevant more generally to the 30% of UBA domains that lack significant ubiquitin-binding activity, and they suggest a unique mechanism by which interaction domains may evolve new binding properties.

  8. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.

  9. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution. PMID:25553956

  10. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin

    NASA Astrophysics Data System (ADS)

    Zanzoni, Serena; Ceccon, Alberto; Assfalg, Michael; Singh, Rajesh K.; Fushman, David; D'Onofrio, Mariapina

    2015-04-01

    The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways.The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which

  11. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    PubMed

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  12. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.

    PubMed

    Chen, Haoyuan; Piccirilli, Joseph A; Harris, Michael E; York, Darrin M

    2015-11-01

    Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remain controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2'O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2'O-ransphosphorylation reactions catalyzed by metal ions and enzymes. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  13. The multiple levels of regulation by p53 ubiquitination

    PubMed Central

    Lee, JT; Gu, W

    2013-01-01

    p53 is a central integrator of a plethora of signals and outputs these signals in the form of tumor suppression. It is well accepted that ubiquitination plays a major part in p53 regulation. Nonetheless, the molecular mechanisms by which p53 activity is controlled by ubiquitination are complex. Mdm2, a RING oncoprotein, was once thought to be the sole E3 ubiquitin ligase for p53, however recent studies have shown that p53 is stabilized but still degraded in the cells of Mdm2-null mice. Although the essential role of Mdm2 in p53 regulation is well established, there are an increasing number of other E3 ligases implicated in Mdm2-independent regulation of p53 by ubiquitination. The different types of ubiquitination on p53 by various E3 ligases have been linked to its differential effects on p53-mediated stress responses. In addition to proteasome-mediated degradation, ubiquitination of p53 acts as signals for degradation-independent functions, such as nuclear export. The function of ubiquitinated p53 varies in the nucleus and cytosol underlying the many potential contributions ubiquitinated p53 may have in promoting cell proliferation or death. Thus, p53 requires multiple layers of regulatory control to ensure correct temporal and spatial functions. PMID:19543236

  14. Ubiquitin versus misfolding: The minimal requirements for inclusion body formation

    PubMed Central

    Salomons, Florian A.

    2016-01-01

    Ubiquitin-containing inclusion bodies are characteristic features of numerous neurodegenerative diseases, but whether ubiquitin plays a functional role in the formation of these protein deposits is unclear. In this issue, Bersuker et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201511024) report that protein misfolding without ubiquitylation is sufficient for translocation into inclusion bodies. PMID:27114497

  15. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-05-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. PMID:3038523

  16. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    PubMed

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  17. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  18. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  19. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    PubMed

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination. PMID:11473321

  20. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  1. Enzyme Kinetics

    PubMed Central

    Lam, C. F.; Priest, D. G.

    1972-01-01

    One of the most generally applicable algorithms for the derivation of steady-state rate equations for complex enzyme reaction mechanisms is that of King and Altman. Several modifications of this algorithm have been suggested; however, each requires the generation of numerous valid and invalid patterns and the subsequent elimination of those that are invalid. A method is presented, employing topological theory of linear graphs, for the systematic generation of only those patterns which are valid. This method is readily adaptable to use on a digital computer. An independent method for the calculation of the number of valid patterns is also presented. This calculation can be used to substantiate the accuracy of the patterns obtained. This calculation is also adaptable to computerization. Examples are included to demonstrate both the generation of patterns and the calculation of their number for specific enzyme mechanisms. PMID:5016111

  2. KF-1 Ubiquitin Ligase: An Anxiety Suppressor

    PubMed Central

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-01-01

    Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds. PMID:19753093

  3. Activity Based Profiling of Deubiquitylating Enzymes and Inhibitors in Animal Tissues.

    PubMed

    McLellan, Lauren; Forder, Cassie; Cranston, Aaron; Harrigan, Jeanine; Jacq, Xavier

    2016-01-01

    The attachment of ubiquitin or ubiquitin-like modifiers to proteins is an important signal for the regulation of a variety of biological processes including the targeting of substrates for degradation, receptor internalization, regulation of gene expression, and DNA repair. Posttranslational modification of proteins by ubiquitin controls many cellular processes, and aberrant ubiquitylation can contribute to cancer, immunopathologies, and neurodegeneration. Thus, deubiquitylating enzymes (DUBs) that remove ubiquitin from proteins have become attractive therapeutic targets. Monitoring the activity of DUBs in cells or in tissues is critical for understanding the biological function of DUBs in particular pathways and is essential for determining the physiological specificity and potency of small-molecule DUB inhibitors. Here, we describe a method for the homogenization of animal tissues and incubation of tissue lysates with ubiquitin-based activity probes to monitor DUB activity in mouse tissues and target engagement following treatment of animals with small-molecule DUB inhibitors. PMID:27613053

  4. Interactions of Bacterial Proteins with Host Eukaryotic Ubiquitin Pathways

    PubMed Central

    Perrett, Charlotte Averil; Lin, David Yin-Wei; Zhou, Daoguo

    2011-01-01

    Ubiquitination is a post-translational modification in which one or more 76 amino acid polypeptide ubiquitin molecules are covalently linked to the lysine residues of target proteins. Ubiquitination is the main pathway for protein degradation that governs a variety of eukaryotic cellular processes, including the cell-cycle, vesicle trafficking, antigen presentation, and signal transduction. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of many diseases including inflammatory and neurodegenerative disorders. Recent studies have revealed that viruses and bacterial pathogens exploit the host ubiquitination pathways to gain entry and to aid their survival/replication inside host cells. This review will summarize recent developments in understanding the biochemical and structural mechanisms utilized by bacterial pathogens to interact with the host ubiquitination pathways. PMID:21772834

  5. Choreographing the Double Strand Break Response: Ubiquitin and SUMO Control of Nuclear Architecture

    PubMed Central

    Harding, Shane M.; Greenberg, Roger A.

    2016-01-01

    The cellular response to DNA double strand breaks (DSBs) is a multifaceted signaling program that centers on post-translational modifications including phosphorylation, ubiquitylation and SUMOylation. In this review we discuss how ubiquitin and SUMO orchestrate the recognition of DSBs and explore how this influences chromatin organization. We discuss functional outcomes of this response including transcriptional silencing and how pre-existing chromatin states may control the DSB response and the maintenance of genomic stability. PMID:27375678

  6. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination

    PubMed Central

    Barrera, Susana P.; Castrejon-Tellez, Vicente; Trinidad, Margarita; Robles-Escajeda, Elisa; Vargas-Medrano, Javier; Varela-Ramirez, Armando; Miranda, Manuel

    2015-01-01

    Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications. PMID:26418248

  7. DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin

    PubMed Central

    Nowicka, Urszula; Zhang, Daoning; Walker, Olivier; Krutauz, Daria; Castañeda, Carlos A.; Chaturvedi, Apurva; Chen, Tony Y.; Reis, Noa; Glickman, Michael H.; Fushman, David

    2015-01-01

    SUMMARY Ddi1 belongs to a family of shuttle proteins targeting polyubiquitinated substrates for proteasomal degradation. Unlike the other proteasomal shuttles, Rad23 and Dsk2, Ddi1 remains an enigma: its function is not fully understood and structural properties are poorly characterized. We determined the structure and binding properties of the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains of Ddi1 from Saccharomyces cerevisiae. We found that, while Ddi1UBA forms a characteristic UBA:ubiquitin complex, Ddi1UBL has entirely uncharacteristic binding preferences. Despite having a ubiquitin-like fold, Ddi1UBL does not interact with typical UBL-receptors but, unexpectedly, binds ubiquitin, forming a unique interface mediated by hydrophobic contacts and by salt-bridges between oppositely-charged residues of Ddi1UBL and ubiquitin. In stark contrast with ubiquitin and other UBLs, the β-sheet surface of Ddi1UBL is negatively charged and, therefore, is recognized in a completely different way. The dual functionality of Ddi1UBL, capable of binding both ubiquitin and proteasome, suggests a novel mechanism for Ddi1 as a proteasomal shuttle. PMID:25703377

  8. The Cytosolic Domain of Pex22p Stimulates the Pex4p-Dependent Ubiquitination of the PTS1-Receptor

    PubMed Central

    El Magraoui, Fouzi; Schrötter, Andreas; Brinkmeier, Rebecca; Kunst, Lena; Mastalski, Thomas; Müller, Thorsten; Marcus, Katrin; Meyer, Helmut E.; Girzalsky, Wolfgang; Erdmann, Ralf; Platta, Harald W.

    2014-01-01

    Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential. PMID:25162638

  9. Nuclear Protein Quality Is Regulated by the Ubiquitin-Proteasome System through the Activity of Ubc4 and San1 in Fission Yeast*

    PubMed Central

    Matsuo, Yuzy; Kishimoto, Hayafumi; Tanae, Katsuhiro; Kitamura, Kenji; Katayama, Satoshi; Kawamukai, Makoto

    2011-01-01

    Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast. PMID:21324894

  10. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  11. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration.

    PubMed

    Bilguvar, Kaya; Tyagi, Navneet K; Ozkara, Cigdem; Tuysuz, Beyhan; Bakircioglu, Mehmet; Choi, Murim; Delil, Sakir; Caglayan, Ahmet O; Baranoski, Jacob F; Erturk, Ozdem; Yalcinkaya, Cengiz; Karacorlu, Murat; Dincer, Alp; Johnson, Michele H; Mane, Shrikant; Chandra, Sreeganga S; Louvi, Angeliki; Boggon, Titus J; Lifton, Richard P; Horwich, Arthur L; Gunel, Murat

    2013-02-26

    Ubiquitin C-terminal hydrolase-L1 (UCHL1), a neuron-specific de-ubiquitinating enzyme, is one of the most abundant proteins in the brain. We describe three siblings from a consanguineous union with a previously unreported early-onset progressive neurodegenerative syndrome featuring childhood onset blindness, cerebellar ataxia, nystagmus, dorsal column dysfuction, and spasticity with upper motor neuron dysfunction. Through homozygosity mapping of the affected individuals followed by whole-exome sequencing of the index case, we identified a previously undescribed homozygous missense mutation within the ubiquitin binding domain of UCHL1 (UCHL1(GLU7ALA)), shared by all affected subjects. As demonstrated by isothermal titration calorimetry, purified UCHL1(GLU7ALA), compared with WT, exhibited at least sevenfold reduced affinity for ubiquitin. In vitro, the mutation led to a near complete loss of UCHL1 hydrolase activity. The GLU7ALA variant is predicted to interfere with the substrate binding by restricting the proper positioning of the substrate for tunneling underneath the cross-over loop spanning the catalytic cleft of UCHL1. This interference with substrate binding, combined with near complete loss of hydrolase activity, resulted in a >100-fold reduction in the efficiency of UCHL1(GLU7ALA) relative to WT. These findings demonstrate a broad requirement of UCHL1 in the maintenance of the nervous system.

  12. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks

    PubMed Central

    Dantuma, Nico P.; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  13. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  14. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage

    PubMed Central

    Maure, Jean-François; Moser, Sandra C.; Jaffray, Ellis G.; F. Alpi, Arno; Hay, Ronald T.

    2016-01-01

    SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways. PMID:27185577

  15. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  16. Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6–Bre1

    PubMed Central

    Gallego, Laura D.; Ghodgaonkar Steger, Medini; Polyansky, Anton A.; Schubert, Tobias; Zagrovic, Bojan; Zheng, Ning; Clausen, Tim; Herzog, Franz; Köhler, Alwin

    2016-01-01

    Cotranscriptional ubiquitination of histone H2B is key to gene regulation. The yeast E3 ubiquitin ligase Bre1 (human RNF20/40) pairs with the E2 ubiquitin conjugating enzyme Rad6 to monoubiquitinate H2B at Lys123. How this single lysine residue on the nucleosome core particle (NCP) is targeted by the Rad6–Bre1 machinery is unknown. Using chemical cross-linking and mass spectrometry, we identified the functional interfaces of Rad6, Bre1, and NCPs in a defined in vitro system. The Bre1 RING domain cross-links exclusively with distinct regions of histone H2B and H2A, indicating a spatial alignment of Bre1 with the NCP acidic patch. By docking onto the NCP surface in this distinct orientation, Bre1 positions the Rad6 active site directly over H2B Lys123. The Spt–Ada–Gcn5 acetyltransferase (SAGA) H2B deubiquitinase module competes with Bre1 for binding to the NCP acidic patch, indicating regulatory control. Our study reveals a mechanism that ensures site-specific NCP ubiquitination and fine-tuning of opposing enzymatic activities. PMID:27601672

  17. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  18. Role of Deubiquitinating Enzymes in DNA Repair

    PubMed Central

    2015-01-01

    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. PMID:26644404

  19. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system.

    PubMed

    Burroughs, A Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2011-07-01

    Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present

  20. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system.

    PubMed

    Burroughs, A Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2011-07-01

    Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present

  1. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains

    PubMed Central

    Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L

    2006-01-01

    Background Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results We systematically analyzed prokaryotic Ub-related β-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to

  2. Simplifications of the derivations and forms of steady-state equations for non-equilibrium random substrate-modifier and allosteric enzyme mechanisms.

    PubMed Central

    Whitehead, E P

    1976-01-01

    The steady-state equations for "random" enzymic mechanisms (ones with alternative routes for substrate and enzyme to form enzyme-substrate complexes) are non-Michaelian and very complicated when a quasi-equilibrium approximation cannot be used. General methods for simplifying their forms and derivations are given and applied to several single-substrate mechanisms of general or topical interest. The special simplifications resulting from partial ordering of reaction mechanism, from gross inequalities of rate constants, and from special relationships between catalytic and dissociation rate constants, are considered with reference to allosteric mechanisms. Some equations mentioned, but not given here, and more detailed working out of some of those given, have been deposited as Supplementary Publication SUP 50069 (18 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1976) 153, 5. PMID:1008809

  3. State of the antioxidative enzymes of rat bone marrow cells after irradiation, fractures, and a combination of both

    SciTech Connect

    Bogdanova, I.A.; Ovchinnikov, K.G.; Torbenko, V.P.; Gerasimov, A.M.

    1987-11-01

    The authors study bone marrow levels of antioxidative (antiradical) defensive systems (ADS) enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and glutathione: dehydroascorbate oxidoreductase (GDAR), rats and changes in their activity in the bone marrow at various times after irradiation, mechanical trauma, and a combination of both. Development of acute radiation sickness as a result of a single irradiation was accompanied by marked changes in the enzymic antioxidative system of rat bone marrow cells.

  4. A cotranslational ubiquitination pathway for quality control of misfolded proteins.

    PubMed

    Wang, Feng; Durfee, Larissa A; Huibregtse, Jon M

    2013-05-01

    Previous studies have indicated that 6%-30% of newly synthesized proteins are rapidly degraded by the ubiquitin-proteasome system; however, the relationship of ubiquitination to translation for these proteins has been unclear. We report that cotranslational ubiquitination (CTU) is a robust process, with 12%-15% of nascent polypeptides being ubiquitinated in human cells. CTU products contained primarily K48-linked polyubiquitin chains, consistent with a proteasomal targeting function. While nascent chains have been shown previously to be ubiquitinated within stalled complexes (CTU(S)), the majority of nascent chain ubiquitination occurred within active translation complexes (CTU(A)). CTU(A) was increased in response to agents that induce protein misfolding, while CTU(S) was increased in response to agents that lead to translational errors or stalling. These results indicate that ubiquitination of nascent polypeptides occurs in two contexts and define CTU(A) as a component of a quality control system that marks proteins for destruction while they are being synthesized. PMID:23583076

  5. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination

    PubMed Central

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2015-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases. PMID:25484083

  6. Structural Basis of Dimerization-dependent Ubiquitination by the SCFFbx4 Ubiquitin Ligase

    SciTech Connect

    Li, Y.; Hao, B

    2010-01-01

    The F-box proteins are the substrate recognition subunits of the SCF (Skp1-Cul1-Rbx1-F-box protein) ubiquitin ligase complexes that control the stability of numerous regulators in eukaryotic cells. Here we show that dimerization of the F-box protein Fbx4 is essential for SCF{sup Fbx4} (the superscript denotes the F-box protein) ubiquitination activity toward the telomere regulator Pin2 (also known as TRF1). The crystal structure of Fbx4 in complex with an adaptor protein Skp1 reveals an antiparallel dimer configuration in which the linker domain of Fbx4 interacts with the C-terminal substrate-binding domain of the other protomer, whereas the C-terminal domain of the protein adopts a compact {alpha}/{beta} fold distinct from those of known F-box proteins. Biochemical studies indicate that both the N-terminal domain and a loop connecting the linker and C-terminal domain of Fbx4 are critical for the dimerization and activation of the protein. Our findings provide a framework for understanding the role of F-box dimerization in the SCF-mediated ubiquitination reaction.

  7. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination.

    PubMed

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2014-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.

  8. Thyrotropin regulates the levels of free ubiquitin and ubiquitin-protein conjugates in the male mouse thyroid.

    PubMed

    Keegan, B P; Sheflin, L G; Spaulding, S W

    1997-12-01

    The conjugation of ubiquitin to proteins can be a signal for their degradation, but can also be involved in regulatory processes not directly involved in protein degradation. Because thyrotropin (TSH) is the major physiological regulator of the thyroid, we have investigated whether changes in the circulating level of TSH influence the level of immunoreactive ubiquitin in the thyroid, as assessed by dot-blot assays. Putting male Balb/c mice on a low iodine diet with methimazole (MMI) in their drinking water for 14 days raised the level of ubiquitin by 425 % (p < 0.001) per microgram nonthyroglobulin protein (the mean thyroglobulin level dropped by 35% (p < 0.05)). Western blots similarly indicated that immunoreactivity migrating in the region of monoubiquitin, ubiquitin oligomers, and ubiquitinated thyroid proteins increased on the low iodine/MMI diet. Injecting 1 microg triiodothyronine (T3) 6 hours prior to sacrifice appeared to reduce the ubiquitin levels by 31% when compared with mice only on the low iodine/MMI (p < 0.07), but injection of T3 had no effect on ubiquitin levels in mice on the control diet. Injecting male ICR mice with a large dose of TSH (200 mU) increased immunoreactive ubiquitin levels by 50% (p < 0.05) 2 hours later. After a second dose of TSH was injected 12 hours later, the level of immunoreactive thyroglobulin fell by 17% (p < 0.05). With further 12 hourly injections, thyroglobulin levels then began to reaccumulate, and they had returned to the level of saline-injected controls after 50 hours (five TSH injections), while ubiquitin levels fell, but remained significantly elevated above the saline-injected controls (36%, p < 0.01). When ICR mice were given perchlorate in their drinking water to block the iodide pump, thus preserving thyroidal responsiveness to repeated TSH injections, the responses to the initial two TSH injections were similar to mice who received ordinary tap water. However, with further TSH injections, the reaccumulation of

  9. The influence of glycation on a high pressure denaturation of ubiquitin

    PubMed Central

    Kijewska, Monika; Radziszewska, Karolina; Cal, Marta; Waliczek, Mateusz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2016-01-01

    The combination of deuterium–hydrogen exchange (DHX) and mass spectrometry (MS) can be used for studying a high pressure denaturation (HPD) of proteins. Herein we present the results of investigations of the influence of glycation on the HPD of ubiquitin. Application of various values of pressure causes different degrees of protein unfolding, resulting in molecules with a different number of protons available for exchange with deuterons. The dependence of this number on pressure gives information on the denaturation state of a protein. On the basis of the obtained results we can conclude that increasing number of fructosamine moieties in ubiquitin decreases the pressure required for its denaturation. It suggests that glycation moderately decreases the protein stability. The present study is the first example of application of hydrogen–deuterium exchange as a method of investigating the influence of posttranslational modification of protein on the HPD. PMID:27612498

  10. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  11. Regulation of pluripotency and differentiation by deubiquitinating enzymes.

    PubMed

    Suresh, B; Lee, J; Kim, H; Ramakrishna, S

    2016-08-01

    Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.

  12. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia.

    PubMed

    Rickman, Kimberly A; Lach, Francis P; Abhyankar, Avinash; Donovan, Frank X; Sanborn, Erica M; Kennedy, Jennifer A; Sougnez, Carrie; Gabriel, Stacey B; Elemento, Olivier; Chandrasekharappa, Settara C; Schindler, Detlev; Auerbach, Arleen D; Smogorzewska, Agata

    2015-07-01

    Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT. PMID:26119737

  13. Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction.

    PubMed

    Karthein, R; Dietz, R; Nastainczyk, W; Ruf, H H

    1988-01-15

    Purified prostaglandin H synthase (EC 1.14.99.1), reconstituted with hemin, was reacted with substrates of the cyclooxygenase and peroxidase reaction. The resulting EPR spectra were measured below 90 K. Arachidonic acid, added under anaerobic conditions, did not change the EPR spectrum of the native enzyme due to high-spin ferric heme. Arachidonic acid with O2, as well as prostaglandin G2 or H2O2, decreased the spectrum of the native enzyme and concomitantly a doublet signal at g = 2.005 was formed with maximal intensity of 0.35 spins/enzyme and a half-life of less than 20 s at -12 degrees C. From the conditions for the formation and the effect of inhibitors, this doublet signal was assigned to an enzyme intermediate of the peroxidase reaction, namely a higher oxidation state. The doublet signal with characteristic hyperfine structure was nearly identical to the signal of the tyrosyl radical in ribonucleotide reductase (EC 1.17.4.1). Hence the signal of prostaglandin H synthase was assigned to a tyrosyl radical. Electronic spectra as well as decreased power saturation of the tyrosyl radical signal indicated heme in its ferryl state which coupled to the tyrosyl radical weakly. [FeIVO(protoporphyrin IX)]...Tyr+. was suggested as the structure of this two-electron oxidized state of the enzyme. A hypothetical role for the tyrosyl radical could be the abstraction of a hydrogen at C-13 of arachidonic acid which is assumed to be the initial step of the cyclooxygenase reaction.

  14. Final Report. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response

    SciTech Connect

    Callis, Judy

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathway in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify

  15. Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver releases histone 2A and ubiquitin from conjugated protein A24.

    PubMed

    Andersen, M W; Ballal, N R; Goldknopf, I L; Busch, H

    1981-03-01

    Isolated liver nucleoli from rats treated for 3 days with thioacetamide contained an enzyme activity which specifically degraded conjugate protein A24. Two-dimensional polyacrylamide gel electrophoresis indicated that the amount of protein A24 in chromatin decreased during incubation at 37 degrees C for 60 min with these nucleoli. Concomitantly, a marked increase was found in the content of free ubiquitin, the nonhistone component of protein A24. Incubation of 3H-labeled protein A24 with the thioacetamide-treated liver nucleoli resulted in the linear release of 3H-labeled histone 2A and 3H-free ubiquitin in the presence of phenylmethanesulfonyl fluoride (PMSF) for 2 h. Pretreatment of the nucleoli with trypsin or by heating at 80 degrees C for 10 min inhibited their ability to cleave protein A24. Protein A24 lyase catalyzes the reaction: protein A24 leads to histone 2A plus ubiquitin.

  16. Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3.

    PubMed

    Chew, Boon Shang; Siew, Wee Leng; Xiao, Benjamin; Lehming, Norbert

    2010-11-01

    Tbp1, the TATA-binding protein, is essential for transcriptional activation, and Gal4 and Gcn4 are unable to fully activate transcription in a Saccharomyces cerevisiae TBP1E86D mutant strain. In the present study we have shown that the Tbp1E186D mutant protein is proteolytically instable, and we have isolated intragenic and extragenic suppressors of the transcription defects of the TBP1E186D mutant strain. The TBP1R6S mutation stabilizes the Tbp1E186D mutant protein and suppresses the defects of the TBP1E186D mutant strain. Furthermore, we found that the overexpression of the de-ubiquitinating enzyme Ubp3 (ubiquitin-specific protease 3) also stabilizes the Tbp1E186D mutant protein and suppresses of the defects of the TBP1E186D mutant strain. Importantly, the deletion of UBP3 and its cofactor BRE5 lead to increased degradation of wild-type Tbp1 protein and to defects in transcriptional activation by Gal4 and Gcn4. Purified GST (glutathione transferase)-Ubp3 reversed Tbp1 ubiquitination, and the deletion of UBP3 lead to the accumulation of poly-ubiquitinated species of Tbp1 in a proteaseome-deficient genetic background, demonstrating that Ubp3 reverses ubiquitination of Tbp1 in vitro and in vivo. Chromatin immunoprecipitation showed that Ubp3 was recruited to the GAL1 and HIS3 promoters upon the induction of the respective gene, indicating that protection of promoter-bound Tbp1 by Ubp3 is required for transcriptional activation.

  17. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.

    PubMed Central

    Ishikawa, H; Maeda, T; Hikita, H; Miyatake, K

    1988-01-01

    A computer program is developed for the derivation of the rate equation for enzyme reactions on the basis of the pseudo-steady-state assumption and the combination of the pseudo-steady-state and the rapid-equilibrium assumptions. The program not only has an easy input method, but also can obtain a complete rate equation in itself on only one run. The usefulness of the program is demonstrated by deriving the rate equations for some typical enzyme reactions. Details of the program have been deposited as Supplementary Publication SUP 50141 (42 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988), 249, 5. PMID:3390151

  18. The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair.

    PubMed

    Domingues, Mariane Noronha; De Souza, Tiago Antonio; Cernadas, Raúl Andrés; de Oliveira, Maria Luiza Peixoto; Docena, Cássia; Farah, Chuck Shaker; Benedetti, Celso Eduardo

    2010-09-01

    Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Deltaubc13 and Deltamms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

  19. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients.

    PubMed Central

    Mansoor, O; Beaufrere, B; Boirie, Y; Ralliere, C; Taillandier, D; Aurousseau, E; Schoeffler, P; Arnal, M; Attaix, D

    1996-01-01

    The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies. Images Fig. 1 Fig. 1 Fig. 3 Fig. 4 PMID:8610106

  20. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Chen, Yuling; Li, Andrew S.; Reid, Michael B.

    2003-01-01

    Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.

  1. Glutathione reductase: Comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes

    SciTech Connect

    Vanoni, M.A.; Wong, K.K.; Ballou, D.P.; Blanchard, J.S. )

    1990-06-19

    Kinetic parameters for NADPH and NADH have been determined at pH 8.1 for spinach, yeast, and E. coli glutathione reductases. NADPH exhibited low Km values for all enzymes (3-6 microM), while the Km values for NADH were 100 times higher (approximately 400 microM). Under our experimental conditions, the percentage of maximal velocities with NADH versus those measured with NADPH were 18.4, 3.7, and 0.13% for the spinach, yeast, and E. coli enzymes, respectively. Primary deuterium kinetic isotope effects were independent of GSSG concentration between Km and 15Km levels, supporting a ping-pong kinetic mechanism. For each of the three enzymes, NADPH yielded primary deuterium kinetic isotope effects on Vmax only, while NADH exhibited primary deuterium kinetic isotope effects on both V and V/K. The magnitude of DV/KNADH at pH 8.1 is 4.3 for the spinach enzyme, 2.7 for the yeast enzyme, and 1.6 for the E. coli glutathione reductase. The experimentally determined values of TV/KNADH of 7.4, 4.2, and 2.2 for the spinach, yeast, and E. coli glutathione reductases agree well with those calculated from the corresponding DV/KNADH using the Swain-Schaad expression. This suggests that the intrinsic primary kinetic isotope effect on NADH oxidation is fully expressed. In order to confirm this conclusion, single-turnover experiments have been performed. The measured primary deuterium kinetic isotope effects on the enzyme reduction half-reaction using NADH match those measured in the steady state for each of the three glutathione reductases.

  2. The various roles of ubiquitin in Wnt pathway regulation

    PubMed Central

    Tauriello, Daniele VF

    2010-01-01

    Wnt signaling mediates key developmental and homeostatic processes including stem cell maintenance, growth and cell fate specification, cell polarity and migration. Inappropriate activation of Wnt signaling is linked to a range of human disorders, most notably cancer and neurodegenerative diseases. In the Wnt/β-catenin cascade, signaling events converge on the regulation of ubiquitin-mediated degradation of the crucial transcriptional regulator β-catenin. The emerging mechanisms by which ubiquitin modification of proteins controls cellular pathways comprise both proteolytic and nonproteolytic functions. In nonproteolytic functions, ubiquitin acts as a signaling device in the control of protein activity, subcellular localization and complex formation. Here, we review and discuss recent developments that implicate ubiquitin-mediated mechanisms at multiple steps of Wnt pathway activation. PMID:20930545

  3. Ubiquitination and its influence in boar sperm physiology and cryopreservation.

    PubMed

    Purdy, P H

    2008-09-15

    Recent reports document the potential use of the ubiquitin protein as an indicator of mammalian sperm quality or fertility, based on poor morphology, sperm count, and other cellular qualities. However, its influence on cellular physiologic mechanisms and boar sperm cryopreservation are unknown. The objective of this research was to determine the influence of boar sperm ubiquitination (n=12 boars) on motility (using CASA), and flow cytometry and fluorescent probes (in parentheses) to evaluate mitochondrial activity (JC-1), plasma and acrosomal membrane integrity (PI and FITC-PNA), membrane fluidity (M540), and chromatin stability (TUNEL) for fresh and frozen-thawed samples. The effects of ubiquitination (determined flow cytometrically) on the ability of frozen-thawed boar sperm to capacitate (FLUO-3AM) and acrosome react (FITC-PNA) were also investigated using flow cytometry. Cryopreservation induced a decrease in the percentage of sperm that were ubiquitinated from 29 to 20% (P<0.0001), but no significant effects of ubiquitin on sperm quality (motility, membrane integrities and organization) were detected. The ability of sperm to capacitate and acrosome react was influenced by ubiquitination. Samples with more ubiquitinated boar sperm were able to maintain plasma membrane integrity (PMI) better and have fewer live acrosome-reacted cells over 120 min of induced capacitation (P<0.05). In conclusion, frozen-thawed ubiquitinated boar sperm were better able to survive the physical stresses of induced capacitation, yet were still capable of capacitating and acrosome reacting, which may enable use of this assay for in the vitro evaluation of the quality of boar sperm. PMID:18579194

  4. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    PubMed

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  5. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity

    PubMed Central

    Klein, Theo; Viner, Rosa I.

    2016-01-01

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644975

  6. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    PubMed

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644975

  7. Mechanism for the selective conjugation of ubiquitin to phytochrome

    SciTech Connect

    Vierstra, R.D.

    1989-01-01

    The long term goal of this project is to understand at the molecular level how intracellular proteins are degraded. The purpose of this research is to characterize the form-dependent degradation of phytochrome as a model system for the study of selective protein breakdown. Phytochrome exists in two photo-interconveretible forms, a red-absorbing Pr form and a far-red absorbing Pfr form. Recent evidence indicates that selective breakdown of phytochrome in etiolated oat seedlings occurs by a ubiquitin-dependent proteolytic pathway. Ubiquitin is a 76 amino acid eukaryotic protein that is covalently ligated to proteins destined for catabolism and serves as recognition signal for proteases specific for ubiquitin-protein conjugates. In an attempt to understand why Pfr and not Pr is recognized by the ubiquitin pathway, we have characterized ubiquitin-phytochrome conjugates (Ub-P) with respect to their kinetics of accumulation, localization within the cell, and sites of ubiquitin attachment. We also examined Pfr degradation in etiolated seedlings from a variety of other plant species (corn, rye, pea and zucchini squash) for their ability to form Ub-P during Pfr degradation. 4 refs.

  8. Neutral sphingomyelinase-2 is a redox sensitive enzyme: role of catalytic cysteine residues in regulation of enzymatic activity through changes in oligomeric state.

    PubMed

    Dotson, P Patrick; Karakashian, Alexander A; Nikolova-Karakashian, Mariana N

    2015-02-01

    Neutral sphingomyelinase-2 (nSMase-2) is the major sphingomyelinase activated in response to pro-inflammatory cytokines and during oxidative stress. It is a membrane-bound 655 amino acid protein containing 22 cysteine residues. In this study, we expressed recombinant mouse nSMase-2 protein in Escherichia coli, and investigated whether nSMase-2 is a redox sensitive enzyme. Our results demonstrate that nSMase-2 exists as both monomers and multimers that are associated with high and low enzymatic activity respectively. Mutational analysis of nSMase-2 identified within its C-terminal catalytic domain several oxidant-sensitive cysteine residues that were shown to be involved in enzyme oligomerization. Changing Cys(617) to Ser for example is a gain-of-function mutation associated with a decreased propensity for oligomerization. Alternatively, nSMase-2 expression in a bacterial strain that lacks endogenous thioredoxin, Rosetta-gami2, results in increased oligomer formation and lower enzyme activity. Phenotypic rescue was accomplished by treating nSMase-2 lysates with recombinant human thioredoxin. This indicates that nSMase-2 may be a novel substrate for thioredoxin. FRET analysis confirmed the presence of nSMase-2 multimers in mammalian HEK cells and their localization to the plasma membrane. In conclusion, our results identify nSMase-2 as a redox-sensitive enzyme, whose basal activity is influenced by thioredoxin-mediated changes in its oligomeric state. PMID:25287744

  9. The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers

    PubMed Central

    Cipolla, Lina; Maffia, Antonio; Bertoletti, Federica; Sabbioneda, Simone

    2016-01-01

    DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in the presence of an unrepaired template. One of such mechanisms is called post-replication repair (PRR) and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error-free and in an error-prone manner. In light of these two possible outcomes, PRR needs to be tightly controlled in order to prevent the accumulation of mutations leading ultimately to genome instability. Post-translational modifications of PRR proteins provide the framework for this regulation with ubiquitylation and SUMOylation playing a pivotal role in choosing which pathway to activate, thus controlling the different outcomes of damage bypass. The proliferating cell nuclear antigen (PCNA), the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by ubiquitin, and SUMO controls both the error-free and error-prone branches of PRR. Furthermore, a significant number of polymerases are involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how ubiquitin and ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they control the recruitment of different proteins to the replication fork. PMID:27379156

  10. The discovery of ubiquitin-dependent proteolysis

    PubMed Central

    Wilkinson, Keith D.

    2005-01-01

    In early 1980, Irwin A. Rose, Avram Hershko, and Aaron Ciechanover published two papers in PNAS that reported the astounding observation that energy-dependent intracellular proteolysis was far more complicated than the previously accepted models of lysosomal proteolysis or the action of ATP-dependent proteases such as bacterial lon. In fact, it has turned out to be even more complicated than they could have suspected. The general model of covalently attaching a small protein as a targeting signal has proved to be every bit as important to eukaryotic cells as the better understood modifications such as phosphorylation or acetylation. The key player in this modification, a small protein called ubiquitin (APF-1 in these papers), is the founding member of a large family of proteins containing the β-grasp fold and is used as a posttranslational targeting signal to modify the structure, function, and/or localization of other proteins. The story of this discovery is a textbook example of the confluence of intellectual curiosity, unselfish collaboration, chance, luck, and preparation. PMID:16230621

  11. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    PubMed

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  12. Emergence of the A20/ABIN-mediated inhibition of NF-κB signaling via modifying the ubiquitinated proteins in a basal chordate.

    PubMed

    Yuan, Shaochun; Dong, Xiangru; Tao, Xin; Xu, Liqun; Ruan, Jie; Peng, Jian; Xu, Anlong

    2014-05-01

    In the past decade, ubiquitination has been well documented to have multifaceted roles in regulating NF-κB activation in mammals. However, its function, especially how deubiquitinating enzymes balance the NF-κB activation, remains largely elusive in invertebrates. Investigating bbtA20 and its binding proteins, bbt A20-binding inhibitor of NF-κB (bbtABIN1) and bbtABIN2, in Chinese amphioxus Branchiostoma belcheri tsingtauense, we found that bbtABIN2 can colocalize and compete with bbt TNF receptor-associated factor 6 to connect the K63-linked polyubiquitin chains, whereas bbtABIN1 physically links bbtA20 to bbt NF-κB essential modulator (bbtNEMO) to facilitate the K48-linked ubiquitination of bbtNEMO. Similar to human A20, bbtA20 is a dual enzyme that removes the K63-linked polyubiquitin chains and builds the K48-linked polyubiquitin chains on bbt receptor-interacting serine/threonine protein kinase 1b, leading to the inhibition of NF-κB signaling. Our study not only suggests that ubiquitination is an ancient strategy in regulating NF-κB activation but also provides the first evidence, to our knowledge, for ABINs/A20-mediated inhibition of NF-κB via modifying the ubiquitinated proteins in a basal chordate, adding information on the stepwise development of vertebrate innate immune signaling.

  13. Emergence of the A20/ABIN-mediated inhibition of NF-κB signaling via modifying the ubiquitinated proteins in a basal chordate.

    PubMed

    Yuan, Shaochun; Dong, Xiangru; Tao, Xin; Xu, Liqun; Ruan, Jie; Peng, Jian; Xu, Anlong

    2014-05-01

    In the past decade, ubiquitination has been well documented to have multifaceted roles in regulating NF-κB activation in mammals. However, its function, especially how deubiquitinating enzymes balance the NF-κB activation, remains largely elusive in invertebrates. Investigating bbtA20 and its binding proteins, bbt A20-binding inhibitor of NF-κB (bbtABIN1) and bbtABIN2, in Chinese amphioxus Branchiostoma belcheri tsingtauense, we found that bbtABIN2 can colocalize and compete with bbt TNF receptor-associated factor 6 to connect the K63-linked polyubiquitin chains, whereas bbtABIN1 physically links bbtA20 to bbt NF-κB essential modulator (bbtNEMO) to facilitate the K48-linked ubiquitination of bbtNEMO. Similar to human A20, bbtA20 is a dual enzyme that removes the K63-linked polyubiquitin chains and builds the K48-linked polyubiquitin chains on bbt receptor-interacting serine/threonine protein kinase 1b, leading to the inhibition of NF-κB signaling. Our study not only suggests that ubiquitination is an ancient strategy in regulating NF-κB activation but also provides the first evidence, to our knowledge, for ABINs/A20-mediated inhibition of NF-κB via modifying the ubiquitinated proteins in a basal chordate, adding information on the stepwise development of vertebrate innate immune signaling. PMID:24753567

  14. Ubiquitin-dependent and Ubiquitin-independent Control of Subunit Stoichiometry in the SWI/SNF Complex*

    PubMed Central

    Keppler, Brian R.; Archer, Trevor K.

    2010-01-01

    The mammalian SWI/SNF chromatin remodeling complex is a key player in multiple chromatin transactions. Core subunits of this complex, including the ATPase, Brg-1, and various Brg-1-associated factors (BAFs), work in concert to maintain a functional remodeling complex. This intra-complex regulation is supervised by protein-protein interactions, as stoichiometric levels of BAF proteins are maintained by proteasomal degradation. We show that the mechanism of BAF155-mediated stabilization of BAF57 involves blocking its ubiquitination by preventing interaction with TRIP12, an E3 ubiquitin ligase. Consequently, as opposed to complexed BAF57, whose principal lysines are unavailable for ubiquitination, uncomplexed BAF57 can be freely ubiquitinated and degraded by the proteasome. Additionally, a BAF57 mutant, which contains no lysine residues, was found to retain its ability to be stabilized by interaction with BAF155, suggesting that in addition to the ubiquitin-dependent mechanism of BAF57 degradation, there exists a ubiquitin-independent mechanism that may involve the direct interaction of BAF57 with the proteasome. We propose that this regulatory mechanism exists to ensure functional fidelity of the complex and prevent the accumulation of uncomplexed proteins, which may disrupt the normal activity of the complex. PMID:20829358

  15. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation

    PubMed Central

    Capoccia, Benjamin J.; Jin, Ramon U.; Kong, Young-Yun; Peek, Richard M.; Fassan, Matteo; Rugge, Massimo; Mills, Jason C.

    2013-01-01

    After cell fate specification, differentiating cells must amplify the specific subcellular features required for their specialized function. How cells regulate such subcellular scaling is a fundamental unanswered question. Here, we show that the E3 ubiquitin ligase Mindbomb 1 (MIB1) is required for the apical secretory apparatus established by gastric zymogenic cells as they differentiate from their progenitors. When Mib1 was deleted, death-associated protein kinase–1 (DAPK1) was rerouted to the cell base, microtubule-associated protein 1B (MAP1B) was dephosphorylated, and the apical vesicles that normally support mature secretory granules were dispersed. Consequently, secretory granules did not mature. The transcription factor MIST1 bound the first intron of Mib1 and regulated its expression. We further showed that loss of MIB1 and dismantling of the apical secretory apparatus was the earliest quantifiable aberration in zymogenic cells undergoing transition to a precancerous metaplastic state in mouse and human stomach. Our results reveal a mechanistic pathway by which cells can scale up a specific, specialized subcellular compartment to alter function during differentiation and scale it down during disease. PMID:23478405

  16. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    PubMed

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  17. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans

    <