Science.gov

Sample records for eocene climatic optimum

  1. Widespread formation of cherts during the early Eocene climate optimum

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Kent, D. V.

    2007-12-01

    Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatiotemporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have

  2. Modern Mammals dispersion linked to the Paleocene Eocene thermal maximum (PETM) and early Eocene climatic optimum, new insights from India

    NASA Astrophysics Data System (ADS)

    Khozyem, H. M.; Adatte, T.; Keller, G.; Spangenberg, J.; Bajpai, S.; Samant, B.

    2012-12-01

    The Paleocene Eocene Thermal Maximum (PETM, 55.9Ma)) is globally related with the extinction of deep benthic foraminifera, the diversification of both planktic foraminifera and modern mammals. In India, the tempo and timing of modern mammal dispersion, their association with the PETM or EECO (Early Eocene Climatic Optimum) and the India-Asia collision remain uncertain. Four Indian sections (Giral, Bhavnagar, Vastan and Tadkeshware lignite mines) have been studied using sedimentology, micropaleontology, mineralogy (bulk and clay mineralogy) and geochemistry (stable isotopes, major and trace elements, organic matter). Both PETM and ETM2 (second Eocene Thermal Maximum, 53.7Ma), a short-lived warming episode that followed the PETM, are globally marked by a pronounced δ13Ccarb and δ13Corg negative excursion. Both isotopic excursions have been recognized in the Vastan and Tarkeswhar lignite mines (Cambay basin, Gujarat) associated with the main mammal bearing level. The lower shift is located above the first lignite seam and corresponds to the transition from continental to shallow marine conditions. The upper excursion appears to be linked to the ETM2 and corresponds to a second marine incursion containing bivalves, benthic (Nummulites burdigalensis) and planktic foraminifera located below the second lignite seam. A very pronounced δ13Corg peak has been detected in the Giral lignite mine (Barmer, Rajhastan) around 6m above the vertebrate bearing level and may correspond to the PETM. This correlation is confirmed by palynological data and more particularly by a dinoflagellate acme that globally characterizes the PETM interval. Our micropaleontological data combined with stable carbone isotopes indicate the presence of both PETM and ETM2 events and constrain the age of the early mammals in northwestern India in between these two thermal events in the early Eocene. These new data will significantly improve the ongoing debate on whether mammals originated in or out of

  3. It's getting hot here - The Middle Eocene Climatic Optimum (MECO) in a terrestrial sedimentary record

    NASA Astrophysics Data System (ADS)

    Methner, K.; Wacker, U.; Fiebig, J.; Chamberlain, C.; Mulch, A.

    2013-12-01

    The Middle Eocene Climatic Optimum (MECO) represents an enigmatic global warming event during Cenozoic cooling that has been discovered in ocean drill cores from varying latitudes and oceanic basins. It is marked by a rapid negative shift in oxygen isotope ratios of foraminiferal calcite and thought to reflect the combined effects of freshwater input as well as an increase in sea surface and bottom water temperatures by up to 5 to 6 °C. MECO is therefore a temperature extreme during already warm Eocene climate. This makes the MECO to one of the hottest phases during Earth's climate history, yet it is largely unknown how MECO affected temperatures in the continental interiors as well as their rainfall and vegetation dynamics. Here, we present stable isotope (δ18O, δ13C) and clumped isotope temperature (Δ47) records from a middle Eocene (ca. 42.0 to 40.0 Ma) mammal fossil locality in southwestern Montana, USA. The sampled section (Upper Dell Beds, Sage Creek Basin) comprises about 60 m of stacked paleosols that were correlated to Chron C18r by paleomagnetics and biostratigraphy. δ18O values of pedogenic carbonate range from -12 to -18 per mil (SMOW) and to first-order follows the marine δ18O pattern. Low δ18O values coincide with peak-MECO conditions and show a relatively rapid ca. 5°C increase in soil temperatures reaching peak temperatures of ~27°C at the climax of MECO. Immediately after the MECO event temperatures drop rapidly by about 8°C. To our knowledge this is the first terrestrial MECO paleotemperature record that further provides insight into the precipitation dynamics deep within the North American continent during this early Cenozoic hyperthermal. Paleosol Δ47 temperatures are highly reproducible within and across individual soil sequences and provide a realistic temperature estimate prior, during and after the MECO event. The combined δ18O and Δ47 data therefore provide important insight into the isotopic evolution of precipitation and mean

  4. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum

    PubMed Central

    Archibald, S. Bruce; Morse, Geoffrey E.; Greenwood, David R.; Mathewes, Rolf W.

    2014-01-01

    Eocene climate and associated biotic patterns provide an analog system to understand their modern interactions. The relationship between mean annual temperatures and winter temperatures—temperature seasonality—may be an important factor in this dynamic. Fossils of frost-intolerant palms imply low Eocene temperature seasonality into high latitudes, constraining average winter temperatures there to >8 °C. However, their presence in a paleocommunity may be obscured by taphonomic and identification factors for macrofossils and pollen. We circumvented these problems by establishing the presence of obligate palm-feeding beetles (Chrysomelidae: Pachymerina) at three localities (a fourth, tentatively) in microthermal to lower mesothermal Early Eocene upland communities in Washington and British Columbia. This provides support for warmer winter Eocene climates extending northward into cooler Canadian uplands. PMID:24821798

  5. Dynamic, Large-Magnitude CCD Changes in the Atlantic During the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Kordesch, W.; Bohaty, S. M.; Palike, H.; Wilson, P. A.; Edgar, K. M.; Agnini, C.; Westerhold, T.; Roehl, U.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO; ~40.1 Ma) is a transient global warming event that abruptly reversed the long-term Eocene cooling trend. The primary driving mechanism(s) must be linked to a CO2 increase; however, geochemical modeling experiments show that prevailing hypotheses are incompatible with the paleoclimate record. To further examine changes in deep-sea carbonate burial, we identify the MECO for the first time at ODP Site 929 (Equatorial Atlantic; ~3935 m paleodepth) and present new lithological and geochemical data for this site, including benthic foraminiferal stable isotopes (δ18O and δ13C), XRF scanning data, and an orbitally tuned age model. We combine these records with data from a suite of Atlantic sites to form a depth transect between ~2-4 km (DSDP Site 523, ODP Site 1260 and 1263, IODP Site U1404) representing the first detailed record of carbonate dissolution in the Atlantic spanning the MECO. This compilation reveals dissolution at water depths as shallow as ~2 km (>1 km shallower than previous estimates) with multiple and discrete short-lived (<100 kyr) phases of carbonate compensation depth (CCD) shoaling during and after the event. Careful reevaluation of the Pacific CCD records combined with new results suggests similar short-term variability and magnitude of shoaling globally. These data provide new constraints on carbon release history during the MECO and, potentially, the forcing mechanisms for warming. The transient CCD shoaling events indicate multiple pulses of carbon input and acidification decoupled from deep-sea δ18O and δ13C records, indicating that these events must not have been driven directly by changes in temperature or carbon burial/storage - potentially reconciling some of the data-model discrepancies.

  6. Deep-sea ecosystem response to the Middle Eocene Climate Optimum (MECO) in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bunzel, Dorothea; Schmiedl, Gerhard; Friedrich, Oliver

    2016-04-01

    We investigated the benthic foraminiferal diversity and species composition from North Atlantic IODP Site U1408 in order to document changes in deep-water circulation and organic matter fluxes across the Middle Eocene Climate Optimum (MECO). Site U1408 was drilled at a present water depth of 3022 m southeast of the coast of Newfoundland. The benthic foraminiferal faunas are characterized by generally high species diversity suggesting favorable environmental conditions throughout the studied interval. Among a total of 193 benthic foraminiferal taxa the most dominant genera include Nuttallides, Oridorsalis, Cibicidoides, Pullenia, Anomalinoides, Globocassidulina and Gyroidinoides. Increased abundances of elongate-cylindrical infaunal species suggest approximately 460 ka duration of the MECO (from around 40.19 to 39.73 Ma) and the presence of slightly less ventilated bottom waters and elevated food availability during this time interval. The duration of the MECO also coincides with the presence of the planktonic foraminifer Orbulinoides beckmanni, which therefore is used as an Eocene biostratigraphy marker defining the end of the warm interval with its Last Appearance Datum. Changes in the benthic foraminiferal fauna probably reflect the onset of deep-water formation in the northern North Atlantic Ocean as response to the long-term climatic cooling trend of the middle Eocene. The intensification of deep-water currents and increased influence of cold and well-ventilated deep-water masses is reflected by increased importance of the Nuttallides truempyi-fauna. Superimposed on this long-term faunal trend are changes in the distribution of Globocassidulina subglobosa at a period of approximately 200 ka suggesting an eccentricity forcing of deep-water formation and associated food quality at the sea floor.

  7. Paleobotanical Evidence for Coupling of Temperature and pCO2 during the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Smith, R. Y.; Greenwood, D. R.; Basinger, J. F.

    2009-12-01

    The Early Eocene Climatic Optimum (EECO) was the warmest period of the Cenozoic, indicated by multiple proxy mean annual temperature estimates for sea and land surface. However, estimates of pCO2 from geochemical, modeling, and paleontological proxies show a wide range of values, from near modern day levels to an order of magnitude greater. Resolving the pCO2 record for this time period, and correlating it with trends in temperature, is a key task in understanding the interaction of climate and pCO2 in globally warm periods. Here we present a fine scale study of trends in temperature and pCO2 based on paleobotanical data from an early Eocene site from the Okanagan Highlands of British Columbia, Canada. Plant macrofossils were collected using an unbiased census approach from three informal units, allowing for quantitative comparison of trends within the site. Temperature estimates derived from multiple paleobotanical techniques (physiognomic and floristic approaches) suggest microthermal (MAT <13°C) but equable (CMMT >0°C) conditions for this upland site, and show a trend in declining MAT over time reflected in the three units. At the same time, stomatal frequency of Ginkgo suggests that pCO2 was high (>2x modern values), but also declining over time. These results suggest that temperature and pCO2 were coupled during this globally warm period, and that fine scale trends on the order of 103 - 104 years can be tracked within fossil sites to provide a window on climate/pCO2 interactions.

  8. Episodes of intensified biological productivity in the subtropical Atlantic Ocean during the termination of the Middle Eocene Climatic Optimum (MECO)

    NASA Astrophysics Data System (ADS)

    Moebius, Iris; Friedrich, Oliver; Edgar, Kirsty M.; Sexton, Philip F.

    2015-08-01

    The Middle Eocene Climatic Optimum (MECO) is an ~500 kyr interval of pronounced global warming from which the climate system recovered in <50 kyr. The deep-sea sedimentary record can provide valuable insight on the marine ecosystem response to this protracted global warming event and consequently on the ecological changes during this time. Here we present new benthic foraminiferal assemblage data from Ocean Drilling Program Site 1051 in the subtropical North Atlantic, spanning the MECO and post-MECO interval (41.1 to 39.5 Ma). We find little change in the species composition of benthic foraminiferal assemblages during the studied interval, suggesting that the rate of environmental change was gradual enough that these organisms were able to adapt. However, we identify two transient intervals associated with peak warming (higher-productivity interval (HPI)-1; 40.07-39.96 Ma) and shortly after the MECO (HPI-2; 39.68-39.55 Ma), where benthic foraminiferal accumulation rates increase by an order of magnitude. These HPIs at Site 1051 appear to coincide with intervals of strengthened productivity in the Tethys, Southern Ocean, and South Atlantic, and we suggest that an intensified hydrological cycle during the climatic warmth of the MECO was responsible for eutrophication of marine shelf and slope environments.

  9. Did India-Asia plate velocity increase and Neo-Tethys closure contribute to the Early Eocene Climatic Optimum?

    NASA Astrophysics Data System (ADS)

    Hoareau, G.; Carry, N.; Marquer, D.; Vrielynck, B.; van Hinsbergen, D. J. J.; Behar, F.; Walter-Simonnet, A.-V.

    2012-04-01

    The 60-50 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6° C), which culminated during the Early Eocene Climatic Optimum (EECO, 53-50 Ma), the warmest interval of the Cenozoic [1]. Geochemical proxies and modelling claim high CO2 atmospheric concentrations prevailing at this time [e.g., 2]. Processes explaining sustained high greenhouse gas concentrations may relate either to volcanic degassing (NAIP, [3]) or to CO2/CH4 release during metamorphism in extensional (NW American Cordillera [4]) or compressional tectonic regimes (India-Asia collision, [5]; Gulf of Alaska, [6]). More recently, it has been suggested that Tethyan closure may have strongly controlled Cretaceous and Eocene climates, through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes ("subduction factory") [7,8,9]. In order to detail the impact of the Tethys closure on the EECO, we have built a model to calculate the volume of subducted sediments and the amount of CO2 and CH4 emitted at active arc volcanoes along the northern Tethys margin. The model takes into account the sediment thickness, carbonate and organic matter content, the mean subduction velocities of the Indian, Arabian and African plates and the decarbonation efficiency at arc volcanoes. The effect of the India-Asia collision was also modelled using a simple Indian passive margin geometry. Our first results indicate that the mean subduction rate (controlling the volume of subducted sediments) increased from 4.5 cm/yr on late Maastrichtian to a maximum value of 7 cm/yr during the EECO, mainly owing to a dramatic India-Asia plate convergence increase. If a minimal decarbonation efficiency at arc volcanoes of 20% is considered, pelagic carbonate-rich sediments (CaCO3 = 90 wt%) must reach a minimal thickness of 450 m to allow the release of 1018mol/Ma between 60 and 50 Ma, a minimal value to account for Late Paleocene/Early Eocene warming [10]. A

  10. Clumped Isotopes, trace elements, and δ18O of stromatolites from the Laney Member of the Green River Formation (Eocene): Implications for paleoenvironments during the Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Miller, H. M.; Asangba, A. E.; Johannessen, K. C.; Wang, D. T.; Petryshyn, V. A.; Tripati, A.; Shapiro, R. S.

    2013-12-01

    The Green River Formation, a large lacustrine deposit located across parts of Utah, Colorado, and Wyoming, was deposited during the Eocene Climatic Optimum (~50 Ma), a period of sustained high temperatures and high atmospheric CO2 levels that may provide a geologic analog for future climate scenarios. Large variations in basin hydrology, water chemistry, and paleotemperatures occurring on time scales of tens of thousands of years or longer have been documented in the sedimentary record. Here, we use stromatolites to investigate much finer-scale resolution of paleoenvironmental changes in the Green River Formation and paleo-Lake Gosiute. We studied the lower LaClede Bed, the base of the Laney Member of the Green River Formation, comprised of cyclic layers of oil shale and carbonate. The lower LaClede Bed represents the filling of the lake following an extended period of closure during deposition of the underlying Wilkins Peak Member. To characterize fluctuations in water chemistry and lake level at greater temporal resolution, we conducted micro-stratigraphic and chemostratigraphic analyses on 24 distinct mm-scale laminae in a single 10 cm carbonate stromatolite bed, including δ13C, δ18O, and trace elemental analyses (Mg, Mn, Fe, Si, K, Na, Al, Sr). Sub-cm-scale correlations between petrographic analyses, elemental composition, and carbonate δ13C and δ18O suggest that this stromatolite records both hydrologically-closed and -open periods in the history of Lake Gosiute. During periods of apparent basin closure, we used two models to investigate lake volume change: 1) a Rayleigh distillation model of water evaporation to estimate lake depth variations and 2) a conservative ion model based on Na incorporation into the stromatolites. In both models, lake depth fluctuated by up to 8 m; this represents up to 40km of shoreline change in Lake Gosiute during the deposition of this stromatolite layer. Interestingly, the modern Great Salt Lake experienced similar

  11. Insights into Ocean Acidification During the Middle Eocene Climatic Optimum from Boron Isotopes at Southern Ocean Site 738

    NASA Astrophysics Data System (ADS)

    Moebius, I.; Hoenisch, B.; Friedrich, O.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO) is a ~650-kyr interval of global warming, with a brief ~50 ky long peak warming interval, and an abrupt termination. Deep sea and surface ocean temperature evolution across this interval are fairly well constrained, but thus far we have little understanding of the mechanisms responsible for the gradual warming and rapid recovery. Carbonate mass accumulation rates suggest a shoaling of the carbonate compensation depth, and studies on alkenones indicate increasing atmospheric CO2 levels during the MECO. This suggests an increase in surface ocean CO2, and consequently ocean acidification. However, the severity and timing of the proposed ocean acidification with respect to the onset, peak warming and the termination are currently not well resolved. The boron isotopic composition (δ11B) recorded in planktic foraminifer shells offers an opportunity to infer oceanic pH across this interval. We are working on a boron isotope reconstruction from Southern Ocean IODP site 738 and South Atlantic IODP site 1263, covering 42.0 to 38.5 Ma. These sites are characterized by good carbonate preservation and well-defined age models have been established. Additionally, ecology, nutrient content and bottom-water oxygenation have been shown to change significantly across the event towards a more eutrophic, periodically oxygen-depleted environment supporting different biological communities. We selected the planktic foraminifera species Acarinina spinuloinflata for this study because it is symbiont-bearing, suggesting a near-surface habitat and little vertical migration in the water column, and because of its abundance in the samples. δ11B data will be translated to surface ocean pH and atmospheric pCO2 will be approximated to refine knowledge about the carbon cycle during this time. Parallel analysis of two core sites will help to evaluate the tenacity of the data.

  12. Characterizing the Response of Fluvial Systems to Extreme Global Warming During the Early Eocene Climatic Optimum: An Analysis of the Wasatch and Green River Formations, Uinta Basin, UT

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2013-12-01

    The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued

  13. The onset of the Early Eocene Climatic Optimum, including the K/X event, at Branch Stream, Clarence Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Dickens, G. R.; Hollis, C. J.; Crampton, J. S.; Strong, P.; Dallanave, E.; Philips, A.

    2014-12-01

    The Early Eocene Climatic Optimum (EECO), lasting from ~53-50 Ma, has been characterized as the warmest sustained interval through the Cenozoic. It was comprised of a broad temperature maximum with elevated atmospheric pCO2, noticeable shifts in carbon cycling, and a variety of faunal and floral changes. This included one, and likely additional, brief (<200 kyr) intervals of extreme warming, the K/X event. At least for the most prominent events, the long-term drop in δ13C and short-term Carbon Isotope Excursions (CIEs) have been coupled to massive fluxes of 13C-depleted carbon into the exogenic system and global climate change. However, much about EECO remains unknown because of a lack of detailed and coupled proxy records; we are currently generating useful records to better characterize lithological and geochemical signatures of EECO. Here, we help rectify this problem by presenting a new lithologic and carbon isotopic record for a ~84-m-thick section of early Eocene upper slope calcareous-rich sediments, now lithified and exposed along Branch Stream, New Zealand. Comparison of new carbon isotopic and lithologic records of this greatly expanded section to nearby Mead Stream identifies multiple negative CIEs in short succession and generally more marl during lowermost EECO (~53.3-51.7 Ma), with the most prominent of these equating to the K/X event. The early Eocene lithologic and δ13C records at Branch and Mead Streams are remarkably similar to each other, with the following distinctions: sequences at Branch Stream are thicker and generally have a wider range of δ13C across CIEs. Both expanded sections are marked by terrigenous dilution, best explained by enhanced seasonal precipitation, elevated greenhouse-gas concentrations, and likely global warming. These data indicate lowermost EECO can be described as a time with a general δ13C low superimposed by a series of short-term climate perturbations.

  14. Massive and permanent decline of symbiont bearing morozovellids and δ13C perturbations across the Early Eocene Climatic Optimum at the Possagno section (Southern Alps of northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Luciani, V.; Backman, J.; Fornaciari, E.; Giusberti, L.; Agnini, C.; D'Onofrio, R.

    2015-03-01

    The Early Eocene Climatic Optimum (EECO) records the highest prolonged global temperatures over the past 70 Ma. Understanding the causes and timing of Eocene climate change remains a major challenge in Cenozoic paleoceanography, which includes the biotic response to climate variability and the changes among planktic foraminiferal assemblages across the EECO. The symbiont bearing and shallow dwelling genera Morozovella and Acarinina were important calcifiers in the tropical-subtropical early Paleogene oceans but almost completely disappeared at about 38 Ma, near the Bartonian/Priabonian boundary. We show here that morozovellids record a first critical step across the EECO through a major permanent decline in relative abundance from the Tethyan Possagno section and ODP Site 1051 in the western subtropical North Atlantic. Possible causes may include increased eutrophication, weak water column stratification, changes in ocean chemistry, loss of symbiosis and possible complex interaction with other microfossil groups. Relative abundances of planktic foraminiferal taxa at Possagno parallel negative shifts in both δ13C and δ18O of bulk sediment from Chron C24r to basal Chron C20r. The post-EECO stable isotopic excursions towards lighter values are of modest intensity. Significant though ephemeral modifications in the planktic foraminiferal communities occur during these minor isotopic excursions. These modifications are marked by pronounced increases in relative abundance of acarininids, in a manner similar to their behaviour during pre-EECO hyperthermals in the Tethyan settings, which suggest a pronounced biotic sensitivity to climate change of planktic foraminifera even during the post-EECO interval.

  15. The palaeoclimatic significance of Eurasian Giant Salamanders (Cryptobranchidae: Zaissanurus, Andrias) - indications for elevated humidity in Central Asia during global warm periods (Eocene, late Oligocene warming, Miocene Climate Optimum)

    NASA Astrophysics Data System (ADS)

    Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael

    2010-05-01

    Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the Early Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to Early Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late Early to early Middle Miocene (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late Early to early Middle Miocene (Miocene Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata

  16. The record of Tethyan planktonic foraminifera at the early Paleogene hyperthermal events and Middle Eocene Climatic Optimum in northeastern Italy: are they comparable?

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; Giusberti, Luca; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico

    2010-05-01

    The early Paleogene is one of the more climatically and evolutionary dynamic periods in the Earth history that records a pronounced warming trend peaking in the Early Eocene, and a successive composite transition towards the modern icehouse world. Ever increasingly scientific attention is dedicated to definitely comprehend timing, nature and characters of the complex, non-linear evolution of the Paleogene climate. Several complete and expanded Paleogene successions (Forada, Possagno, Alano, Farra), with a sound magneto-biochronostratigraphic and stable isotope record crop out in the Venetian Southern Alps (Northeast Italy). Recent studies (Giusberti et. al., 2007; Luciani et al., 2007; Agnini et al., 2008) and unpublished data document the presence in these section of the main short-lived warming events (hyperthermals) of the Eocene (Paleocene-Eocene Thermal Maximum, PETM, ca 55 Ma, Eocene Layer of Mysterious Origin (ELMO, ca 53,6 Ma), X-event (ca 52.5 Ma), of the Early Eocene Climatic Optimum (EECO, ca 50-52 Ma) and of the Middle Eocene Climatic Optimum (MECO, ca 40 Ma; Zachos et al., 2001. 2008). All these events are typified by marked negative shifts in δ13C curves that correspond to carbonate decrease related to rise of the carbonate compensation depth in turn induced by large introduction in the ocean-atmosphere system of CO2. Common features to the warming events are pronounced and complex changes in planktonic foraminiferal assemblages, indicating strong environmental perturbations that perfectly parallel the variations of the stable isotope curves in all the examined events. These strict correspondences indicate close cause-effect relationships between changes in environmental conditions and modifications of the assemblages. Our analysis shows that the most striking variations are recorded by the PETM and MECO assemblages that reflect highly perturbed environments. The ELMO, X-event and EECO exhibit planktic foraminiferal responses that are similar to

  17. The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge)

    NASA Astrophysics Data System (ADS)

    Boscolo Galazzo, F.; Thomas, E.; Pagani, M.; Warren, C.; Luciani, V.; Giusberti, L.

    2014-12-01

    The middle Eocene climatic optimum (MECO, ~40 Ma) was a transient period of global warming that interrupted the secular Cenozoic cooling trend. We investigated the paleoceanographic, paleoenvironmental, and paleoecological repercussions of the MECO in the southeast Atlantic subtropical gyre (Ocean Drilling Program Site 1263). TEX86 and δ18O records support an ~4°C increase in surface and deepwater temperatures during the MECO. There is no long-term negative carbon isotope excursion (CIE) associated with the early warming, consistent with other sites, and there is no short-term negative CIE (~50 kyr) during the peak of the MECO, in contrast to what has been observed at some sites. This lack of a CIE during the peak of the MECO at Site 1263 could be due to poor sediment recovery or geographic heterogeneity of the δ13C signal. Benthic and planktic foraminiferal mass accumulation rates markedly declined during MECO, indicating a reduction of planktic foraminiferal production and export productivity. Vertical δ13C gradients do not indicate major changes in water column stratification, and there is no biomarker or micropaleontological evidence that hypoxia developed. We suggest that temperature dependency of metabolic rates could explain the observed decrease in foraminiferal productivity during warming. The kinetics of biochemical reactions increase with temperature, more so for heterotrophs than for autotrophs. Steady warming during MECO may have enhanced heterotroph (i.e., foraminiferal) metabolic rates, so that they required more nutrients. These additional nutrients were not available because of the oligotrophic conditions in the region and the lesser response of primary producers to warming. The combination of warming and heterotroph starvation altered pelagic food webs, increased water column recycling of organic carbon, and decreased the amount of organic carbon available to the benthos.

  18. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum in the central-western Tethys (Alano section, NE Italy)

    NASA Astrophysics Data System (ADS)

    Toffanin, Federica; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico; Giusberti, Luca; Luciani, Valeria; Spofforth, David J. A.; Palike, Heiko

    2010-05-01

    This study is focused on an oxygen and carbon isotope perturbation referred to as Middle Eocene Climatic Optimum. This event occurred at Chron C18r-C18n transition (ca. 40 Ma) lasting some 400-600 kyr and is interpreted as a significant temporary reversal in the middle-late Eocene long-term cooling trend (Bohaty and Zachos, 2003, Bohaty et al., 2009, Jovane et al., 2007, Sexton et al. 2006, Wade and Kroon, 2002). Our main goal is the shaping of the calcareous nannofossil assemblage before, during and after this transient episode of global warming. In fact, there is a general consensus that some nannofossil taxa are characterized by specific paleoecological affinities and thus would be utilized for palenviromental reconstructions. A high resolution sampling for micropaleontological analysis has been performed in Alano on-land section, located in NE Italy (Agnini et al., in press). Semi-quantitative and quantitative analyses on calcareous nannofossil assemblages have been carried out. Preliminary data show that the MECO interval seems to coincide with a significant shift in the relative abundance of calcareous nannofossil taxa, suggesting an intriguing relationship between biotic and abiotic signal (Spofforth et al., in press, Luciani et al, submitted). In particular, eutrophic/cold taxa, as for instance the reticulofenestrids, Cyclicargolithus and Coccolithus, increase in abundance during this warming phase, whereas oligotrophic/warm taxa, Sphenolithus and Zyghrablithus, decrease significantly showing peculiar anticovariant trends with respect to meso-eutrophic taxa. A marked increase in reworked, mainly Cretaceous, specimens is also observed during the MECO. The increase in eutrophic/cold taxa coupled with the decrease of oligotrophic/warm taxa is consistent with a transient enrichment in dissolved nutrients in warmer sea surface waters and suggests that enhanced nutrient availability could drive the make-up of the calcareous nannofossil assemblage. The increase in

  19. Climate directly influences Eocene mammal faunal dynamics in North America

    PubMed Central

    Woodburne, Michael O.; Gunnell, Gregg F.; Stucky, Richard K.

    2009-01-01

    The modern effect of climate on plants and animals is well documented. Some have cautioned against assigning climate a direct role in Cenozoic land mammal faunal changes. We illustrate 3 episodes of significant mammalian reorganization in the Eocene of North America that are considered direct responses to dramatic climatic events. The first episode occurred during the Paleocene–Eocene Thermal Maximum (PETM), beginning the Eocene (55.8 Ma), and earliest Wasatchian North American Land Mammal Age (NALMA). The PETM documents a short (<170 k.y.) global temperature increase of ≈5 °C and a substantial increase in first appearances of mammals traced to climate-induced immigration. A 4-m.y. period of climatic and evolutionary stasis then ensued. The second climate episode, the late early Eocene Climatic Optimum (EECO, 53–50 Ma), is marked by a temperature increase to the highest prolonged Cenozoic ocean temperature and a similarly distinctive continental interior mean annual temperature (MAT) of 23 °C. This MAT increase [and of mean annual precipitation (MAP) to 150 cm/y) promoted a major increase in floral diversity and habitat complexity under temporally unique, moist, paratropical conditions. Subsequent climatic deterioration in a third interval, from 50 to 47 Ma, resulted in major faunal diversity loss at both continental and local scales. In this Bridgerian Crash, relative abundance shifted from very diverse, evenly represented, communities to those dominated by the condylarth Hyopsodus. Rather than being “optimum,” the EECO began the greatest episode of faunal turnover of the first 15 m.y. of the Cenozoic. PMID:19666605

  20. Climate directly influences Eocene mammal faunal dynamics in North America.

    PubMed

    Woodburne, Michael O; Gunnell, Gregg F; Stucky, Richard K

    2009-08-11

    The modern effect of climate on plants and animals is well documented. Some have cautioned against assigning climate a direct role in Cenozoic land mammal faunal changes. We illustrate 3 episodes of significant mammalian reorganization in the Eocene of North America that are considered direct responses to dramatic climatic events. The first episode occurred during the Paleocene-Eocene Thermal Maximum (PETM), beginning the Eocene (55.8 Ma), and earliest Wasatchian North American Land Mammal Age (NALMA). The PETM documents a short (<170 k.y.) global temperature increase of approximately 5 degrees C and a substantial increase in first appearances of mammals traced to climate-induced immigration. A 4-m.y. period of climatic and evolutionary stasis then ensued. The second climate episode, the late early Eocene Climatic Optimum (EECO, 53-50 Ma), is marked by a temperature increase to the highest prolonged Cenozoic ocean temperature and a similarly distinctive continental interior mean annual temperature (MAT) of 23 degrees C. This MAT increase [and of mean annual precipitation (MAP) to 150 cm/y) promoted a major increase in floral diversity and habitat complexity under temporally unique, moist, paratropical conditions. Subsequent climatic deterioration in a third interval, from 50 to 47 Ma, resulted in major faunal diversity loss at both continental and local scales. In this Bridgerian Crash, relative abundance shifted from very diverse, evenly represented, communities to those dominated by the condylarth Hyopsodus. Rather than being "optimum," the EECO began the greatest episode of faunal turnover of the first 15 m.y. of the Cenozoic. PMID:19666605

  1. Possible role of oceanic heat transport in early Eocene climate.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C

    1995-04-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  2. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-02-01

    Earth surface temperatures, including in the deep sea increased by 5-10°C from the late Paleocene ca. 58 Myr ago to the Early Eocene Climatic Optimum (EECO) centered at about 51 Myr ago. A large (˜2.5‰) drop in δ13C of carbonate spans much of this interval. This suggests a long-term increase in the net flux of 13C-depleted carbon to the ocean and atmosphere that is difficult to explain by changes in surficial carbon cycling alone. We reveal a relationship between surface temperature increase and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales. We propose that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window across hundreds of sedimentary basins globally. Modelling the thermal evolution of four sedimentary basins in the southwest Pacific predicted an up to 50% increase in petroleum generation that would have significantly increased leakage of light hydrocarbons and oil degeneration products into the atmosphere. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have caused a climate feedback effect, driving or enhancing early Eocene climate warming.

  3. Eocene precipitation: How wet do greenhouse climates get? (Invited)

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Smith, R. Y.

    2010-12-01

    The Eocene was the warmest part of the Cenozoic due to CO2 being at 2x - 4x Holocene levels, with warm climates extending across North America into the Arctic. Substantive paleobotanical evidence for this greenhouse time shows the existence of extensive broadleaf and coniferous polar forests - a circumpolar rain forest. Similarly, Australia in the Eocene - while 25° south of its present position - was a well-forested and humid continent, in contrast to today where 2/3 of the continent is arid or semi-arid and lacks forest. Both of these regions reflect past climate states - mesothermal moist climates with low thermal seasonality at high latitudes - that have no analog in the modern world; undiscovered earth climates. Paleontological temperature proxies provide a basis for understanding early Paleogene climates; however, there is a lack of corresponding proxy data on precipitation. Paleobotanical proxies offer 2 methods for estimated paleo-precipitation; leaf physiognomy (including leaf area analysis), and quantitative analysis of nearest living relatives (‘NLRs’) of macrofloras. Presented here is an exploration of this former greenhouse world, through analyses of macrofloras from mid-latitude North America and the Canadian Arctic, as well as from Australia. Analysis of the Canadian Arctic floras indicate upper microthermal to lower mesothermal moist climates (MAT ~13-15 °C, CMMT ~4 °C, MAP >100cm/a) in the early and middle Eocene. Leaf-area analysis of Paleocene and Eocene Arctic floras demonstrates precipitation for the Paleogene western and eastern Arctic estimated as >100 cm/yr. Sites from the Okanagan Highlands early Eocene lake macrofloras of British Columbia and northern Washington indicate comparable conditions in the early Eocene to those reconstructed for the Arctic in the middle Eocene, with MAP ~100cm/a for most sites along a 1000km North-South transect from Republic in Washington State to Driftwood Canyon near Smithers in northern British

  4. Stable warm tropical climate through the Eocene Epoch

    NASA Astrophysics Data System (ADS)

    Pearson, Paul N.; van Dongen, Bart E.; Nicholas, Christopher J.; Pancost, Richard D.; Schouten, Stefan; Singano, Joyce M.; Wade, Bridget S.

    2007-03-01

    Earth's climate cooled from a period of extreme warmth in the early Eocene Epoch (ca. 50 Ma) to the early Oligocene (ca. 33 Ma), when a large ice cap first appeared on Antarctica. Evidence from the planktonic foraminifer oxygen isotope record in deep-sea cores has suggested that tropical sea-surface temperatures declined by 5-10 degrees over this interval, eventually becoming much cooler than modern temperatures. Here we present paleotemperature estimates from foraminifer isotopes and the membrane lipids of marine Crenarcheota from new drill cores in Tanzania that indicate a warm and generally stable tropical climate over this period. We reinterpret the previously published isotope records in the light of comparative textural analysis of the deep-sea foraminifer shells, which shows that in contrast to the Tanzanian material, they have been diagenetically recrystallized. We suggest that increasingly severe alteration of the deep-sea plankton shells through the Eocene produced a diagenetic overprint on their oxygen isotope ratios that imparts the false appearance of a tropical sea-surface cooling trend. This implies that the long-term Eocene climatic cooling trend occurred mainly at the poles and had little effect at lower latitudes.

  5. Eocene Arctic Ocean and earth's Early Cenozoic climate

    SciTech Connect

    Clark, D.L.

    1985-01-01

    Seasonal changes of the Arctic Ocean are an approximate microcosm of the present advanced interglacial climate of the Earth. A similar relationship has existed for several million years but was the Early Cenozoic Arctic Ocean an analog of Earth's climate, as well. Absence of polar ice during the Cretaceous is relatively well established. During the Cenozoic a worldwide decrease in mean annual ocean temperature resulted from such factors as altered oceanic circulation and lower atmospheric CO/sub 2/ levels. Limited Arctic Ocean data for the middle or late Eocene indicate the presence of upwelling conditions and accompanying high productivity of diatoms, ebridians, silicoflagellates and archaeomonads. During this interval, some seasonality is suggested from the varve-like nature of a single sediment core. However, the absence of drop stones or any ice-rafted sediment supports the idea of an open water, ice-free central Arctic Ocean during this time. Latest Cretaceous Arctic Ocean sediment is interpreted to represent approximately the same conditions as those suggested for the Eocene and together with that data suggest that the central Arctic Ocean was ice-free during part if not all of the first 20 my of the Cenozoic. Sediment representing the succeeding 30 my has not been recovered but by latest Miocene or earl Pliocene, ice-rafted sediment was accumulating, both pack ice and icebergs covered the Arctic Ocean reflecting cyclic glacial climate.

  6. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    PubMed

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

  7. Early to middle Eocene magneto-biochronology of the southwest Pacific Ocean and climate influence on sedimentation: new data from the Mead Stream section (Marlborough, New Zealand)

    NASA Astrophysics Data System (ADS)

    Dallanave, E.; Agnini, C.; Bachtadse, V.; Muttoni, G.; Crampton, J. S.; Strong, P.; Hines, B. R.; Hollis, C. J.; Slotnick, B. S.

    2014-12-01

    The Mead Stream section (South Island, New Zealand) consists of a 650-m-thick series of continuous and well-exposed strata deposited on a South Pacific continental slope from the Late Cretaceous to the middle Eocene. We examined the uppermost Paleocene-middle Eocene part of the Mead Stream section, which consists of ~360 m of limestone and marl, for detailed magnetic polarity stratigraphy, calcareous nannofossil, and foraminifera biostratigraphy. Magneto-biostratigraphic data indicate that the section straddles magnetic polarity Chrons from C24r to C18n, calcareous nannofossil Zone from NP9a to NP17 (CNP11-CNE15 following a recently revised Paleogene zonation), and from the Waipawan to the Bortonian New Zealand stages (i.e., from the base of the Ypresian to the Bartonian international stages), encompassing 17 Myr (56-39 Ma) of Southwest Pacific Ocean history. The ages of calcareous nannofossil biohorizons are consistent with low to mid-latitude data from the literature, indicating that during the early-middle Eocene the low-mid latitude calcareous nannofossil domain extended at least to ~50-55°S in the South Pacific. Correlation of the magnetic polarity stratigraphy from the Mead Stream section with the geomagnetic polarity time scale allows us to derive the sediment accumulation rates (SAR), which range between 8 and 44 m/Myr. Comparing the SAR with paleotemperature proxy records, we found that two intervals of increased SAR occurred during the early Eocene climatic optimum (EECO; 52-50 Ma) and during the transient climate warming culminating with the middle Eocene climatic optimum (MECO; 40.5 Ma). This correlation indicates that the climate evolution of the early-middle Eocene is recorded in the sedimentation patterns whereby times of warmer climate promote continental weathering, transportation, and accumulation of terrigenous sediments.

  8. Palynological Response to Middle Eocene Climate Variability in the North Atlantic Ocean: IODP Expedition 342, Newfoundland Ridge, Offshore Canada

    NASA Astrophysics Data System (ADS)

    Willard, D. A.

    2013-12-01

    Proxy records from Eocene hyperthermals provide evidence for rates and magnitudes of environmental changes associated with these events, as well as their impacts on terrestrial and marine ecosystems. The Middle Eocene Climatic Optimum (MECO) occurred ~40 Million years ago (Ma) and lasted ~500,000 years, and previous research has documented changes in marine and terrestrial biotas during and after this event. Cores collected in sediment drifts on Newfoundland Ridge off the coast of eastern Canada during IODP Expedition 342 recovered expanded sections of the middle Eocene, with sedimentation rates of 1-2 cm/kyr. We present results from pollen, palynofacies, and dinocyst analyses from Sites 1408 (41.438'N, 49.786'W, 3022 mwd), 1409 (41.296'N, 49.233'W, 3501 mwd), and 1410 (41.328'N, 49.170'W, 3387 mwd), spanning an interval that includes the MECO. Palynological assemblages are well preserved throughout the middle Eocene at Sites 1408 and 1410, whereas carbonate-rich samples from Site 1409 were completely barren of palynomorphs. Substantial variability in dinocyst species composition and diversity, pollen assemblages, and organic palynofacies were observed within the MECO event. Fluctuations in concentrations of opaque organic matter, insect fragments, and pollen and spores from terrestrial vegetation reflect changes in terrigenous influx, intensity of the hydrologic cycle, and source vegetation. Dinocyst assemblage shifts are correlated with changes in productivity, nutrient supply, and salinity. Integration of palynological data with other proxies will provide further insights into correlations between increased terrigenous input and eutrophication, leads and lags between terrestrial and marine responses to climate fluctuations, and environmental stability during the Middle Eocene.

  9. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dehai; Lu, Shicong; Han, Shuang; Sun, Xiaoyan; Quan, Cheng

    2013-01-01

    Hydrological dynamics of sedimentary basins are essential for understanding regional climatic pattern in the geological past. In previous qualitative studies lithologically depending on the occurrence of featured sedimentary rocks, the Eocene climate of China had been subdivided into three latitudinal zones, with one subtropical high-controlled arid zone throughout middle China, and two humid zones respectively in the north and south. However, recent advances on mammalian fauna distribution, plant fossil-based quantitative paleoclimatic reconstruction, and modeling experiment jointly suggest that the relatively humid monsoonal climate might have prevailed over the territory. Here we examine and compare sedimentary sequences of 10 Eocene sections across eastern China, and hence the lake level fluctuations, to discuss the nature of climate type. Our results show that, instead of the categorically zonal pattern, the hydroclimate dynamics is intensified landward. This is demonstrated by the fact that, in contrast to the wide developed coal layers around the periphery, evaporites are growingly occurred endocentrically to the central part of middle China. However, although we have had assumed that all evaporites are indicator of extreme aridity, the highly oscillated climate in the central part of middle China was humid in the majority of the Eocene, distinct from permanent arid as seen in deserts or steppe along modern horse latitude. From the upcountry distribution pattern of the Eocene hydrological dynamics, it appears that the relatively dry climate in central China was caused by the impact of continentality or rain shadow effect under monsoonal, or monsoon-like climate.

  10. Pulses of middle Eocene to earliest Oligocene climatic deterioration in southern California and the Gulf Coast

    USGS Publications Warehouse

    Frederiksen, N.O.

    1991-01-01

    A general deterioration of terrestrial climate took place during middle Eocene to earliest Oligocene time in southern California and in the Gulf Coast. Pollen data, calibrated by calcareous nannofossil ages, indicate four events of rapid floral and/or vegetational change among angiosperms during this time interval. The events can be correlated between the two regions even though these regions lay within different floristic provinces, and each event of angiosperm change is interpreted to indicate a pulse of rapid climatic shift. The most distinct of these events is the Middle Eocene Diversity Decline, which resulted from a peak in last appearances (extinctions, emigrations) centered in the early Bartonian. -from Author

  11. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.

    2014-12-01

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.

  12. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.

    PubMed

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F

    2014-01-01

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event. PMID:25501388

  13. Multi-proxy records of Eocene vegetation and climatic dynamics from North America

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.; Stromberg, C. A.; Hyland, E.; Miller, L. A.

    2010-12-01

    The Eocene is characterized by a “thermal maximum” in the early part, and a shift to “icehouse” conditions by the end of the epoch. Consequently, this is an interesting time to look at vegetation dynamics and understanding plant responses to environmental change, especially as refinement of global climate models is needed if we are to understand future climate change impacts. Paleobotanical evidence, such as phytoliths (plant silica bodies), and paleoenvironmental indicators, such as paleosols, offer an opportunity to study vegetation composition and dynamics in the absence of macrofossils on a variety of spatial and temporal scales. To examine the interaction between paleoclimatic/paleoenvironmental changes and paleovegetation changes, we will compare and contrast two well-dated, high-resolution, multi-proxy records from North America. The margins of the Green River Basin system during the Early Eocene Climatic Optimum (53-50 Ma) are an extremely important location for understanding ecological composition and potential climatic drivers of North American floral diversification, because this area is widely considered the point of origin for many modern grass clades. We examined paleosols preserved in the fluvial, basin-margin Wasatch Formation preserved near South Pass, Wyoming. Field identification of the paleosols indicated a suite that includes Entisols, Inceptisols, and Alfisols. To reconstruct paleovegetation, pedogenic carbonates were analyzed isotopically, and samples were collected and extracted for phytoliths . By combining these paleobotanical proxies with quantitative climatic proxies on whole rock geochemistry, we will present an integrated vegetation-climate history of the EECO at the margins of the Green River Basin. Second, we will present high-resolution record of vegetation patterns based on phytoliths from a section of the Renova Formation, Timberhills region, Montana dated to 39.2 ± 3 Ma. The section is composed of Alfisols, Entisols

  14. Late Eocene obliquity domination and impact of the Eocene/Oligocene climate transition on central Asian climate at the northeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiao; Abels, Hemmo A.; Yao, Zhengquan; Dupont-Nivet, Guillaume; Hilgen, Frederik J.

    2010-05-01

    At the boundary between the Eocene and Oligocene epochs, approximately 34 million years ago (Ma), the Earth experienced a significant change from a greenhouse world to an icehouse world. The present understanding of the triggering mechanisms, processes and environmental effects of this climatic event is mostly based upon ocean sediment records and climatic modeling results. Terrestrial records of the critical interval are rare and, where available, often poorly constrained in time. Here, we present a continuous continental record (Tashan section) from the Xining basin at the northeastern edge of Tibetan Plateau, covering the period between ~35 to 33 Ma. Lithology supplemented with high-resolution magnetic susceptibility (MS), median grain size (MGS) and color reflectance (a*) records show clear Late Eocene basic cyclicity of ~3.5 m in length. Our detailed magnetostratigraphic age model indicates that this cycle was most likely forced by the 41-kyr obliquity cycle driving drier and wetter periods in northern hemisphere Asian interior climates already 1 million year before the Eocene-Oligocene Climate Transition (EOCT). Detailed comparison of the E/O boundary interval in the Tashan section with marine records show that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes making up the EOCT. This first step is reported to precede the major and second step (base of the Oi-1 phase) by around 0.2 to 0.3 Myr and has recently been suggested to be mainly related to atmospheric cooling rather than ice volume growth.

  15. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  16. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene. PMID:24043867

  17. Determining optimum climate drivers for weather risk projections

    NASA Astrophysics Data System (ADS)

    Chavez, Erik; Kilian, Markus; Lucarini, Valerio

    2016-04-01

    In spite of the exponential increase of available data, the uncertainties of projections of weather variability, especially at local scale, have not decreased. This poses important challenges for the design of weather risk management strategies in various vulnerable sectors such as energy or agricultural production. This paper focuses on a two step methodology to enable projection of local weather risk in future climate scenarios. First, we focus on the optimum selection of drivers of regional weather patterns in order to project local weather variability risk estimates in future climate scenarios. This is carried out through the use of stochastic downscaling enabling conditional modelling of pixel-level distributions of weather variables as a function of inter-annual and inter-decadal climate variability drivers. Secondly, a statistical and physically-based climate model selection methodology is developed in order to produce a sub-ensemble of inter-annual and decadal variability drivers dataset that allows accurate and robust projection of weather variability. The case study of South Eastern Africa will be used. Datasets retrieved from CMIP5 repository in three RCP scenarios (historical, 8.5 and 2.5) are used as well as observed historical weather data.

  18. Early Eocene hyperthermals record orbitally controlled changes in high latitude climates

    NASA Astrophysics Data System (ADS)

    Galeotti, S.; DeConto, R. M.; Lanci, L.; Pagani, M.; Rohl, U.; Westerhold, T.; Zachos, J. C.

    2012-04-01

    The Late Paleocene to Early Eocene records a succession of short-term (104 yr) negative carbon isotope excursions (CIEs) in marine carbonates and organic carbon. Available data indicate that at least three of these episodes, including the Paleocene Eocene Thermal Maximum (PETM) at ca. 55.5, the Eocene Thermal Maximum (ETM)2 at ca. 53.5 Ma and the ETM3 at ca. 52 Ma, were associated with rapid warming, and widespread marine carbonate dissolution forced by shoaling of the carbonate lysocline and lowering of the carbonate saturation state. Large temperature raises associated with decreased δ13C values in both terrestrial and oceanic records and concomitant acidification of oceanic waters implies that hyperthermals were caused by the addition of massive amounts of 13C-depleted greenhouse gases (CH4 and/or CO-2) into the atmosphere and subsequent sequestration by oceanic waters. Cyclostratigraphic analyses of marine sequences provided evidence that CIEs and associated carbonate dissolution episodes were linked to orbital changes in insolation. Here we show grounds that Early Eocene hyperthermals are part of a continuum of δ13C anomaly and carbonate dissolution episodes and are triggered by long-term orbitally-controlled changes in local climates at high latitudes.

  19. Late Eocene stable isotope stratigraphy of North Atlantic IODP Site U1411: Orbitally paced climatic heartbeat at the close of the Eocene greenhouse

    NASA Astrophysics Data System (ADS)

    Coxall, Helen; Bohaty, Steve; Wilson, Paul; Liebrand, Diederik; Nyberg, Anna; Holmström, Max

    2016-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 342 drilled sediment drifts on the Newfoundland margin to recover high-resolution records of North Atlantic ocean-climate history and track the evolution of the modern climate system through the Late Cretaceous and Early Cenozoic. An early Paleogene deep-sea benthic stable isotope composite record from multiple Exp. 342 sites is currently in development and will provide a key reference section for investigations of Atlantic and global climate dynamics. This study presents initial results for the late Eocene slice of the composite from Site U1411, located at mid depth (˜2850m Eocene paleodepth) on the Southeast Newfoundland Ridge. Stable oxygen (δ18O) and carbon (δ13C) isotope ratios were measured on 640 samples hosting exceptionally well-preserved epifaunal benthic foraminifera obtained from the microfossil-rich uppermost Eocene clays at 4cm spacing. Sedimentation rates average 2-3 cm/kyr through the late Eocene, such that our sampling resolution is sufficient to capture the dominant Milankovitch frequencies. Late Eocene Site U1411 benthic δ18O values (1.4 to 0.5‰ VPDB) are comparable to the Pacific and elsewhere in the Atlantic at similar depths; however, δ13C is lower by ˜0.5 ‰ with values intermediate between those of the Southern Labrador Sea to the north (-1 to 0) and mid latitude/South Atlantic (0.5 to 1.5) to the south, suggesting poorly ventilated bottom waters in the late Eocene North Atlantic and limited production of North Atlantic deep water. Applying the initial shipboard magneto-biostratigraphic age framework, the Site U1411 benthic δ13C and δ18O records display clear cyclicity on orbital timescales. Spectral analysis of the raw unfiltered datasets identifies eccentricity (400 and 100 kyr), obliquity (40 kyr) and precession (˜20 kyr) signals imprinted on our time series, revealing distinct climatic heart beats in the late Eocene prior to the transition into the 'ice house'.

  20. Global vegetation distribution and terrestrial climate evolution at the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Eocene - Oligocene transition (EOT; ca. 34-33.5 Ma) is widely considered to be the biggest step in Cenozoic climate evolution. Geochemical marine records show both surface and bottom water cooling, associated with the expansion of Antarctic glaciers and a reduction in the atmospheric CO2 concentration. However, the global response of the terrestrial biosphere to the EOT is less well understood and not uniform when comparing different regions. We present new global vegetation and terrestrial climate reconstructions of the Priabonian (late Eocene; 38-33.9 Ma) and Rupelian (early Oligocene; 33.9-28.45 Ma) by synthesising 215 pollen and spore localities. Using presence/absence data of pollen and spores with multivariate statistics has allowed the reconstruction of palaeo-biomes without relying on modern analogues. The reconstructed palaeo-biomes do not show the equator-ward shift at the EOT, which would be expected from a global cooling. Reconstructions of mean annual temperature, cold month mean temperature and warm month mean temperature do not show a global cooling of terrestrial climate across the EOT. Our new reconstructions differ from previous global syntheses by being based on an internally consistent statistically defined classification of palaeo-biomes and our terrestrial based climate reconstructions are in stark contrast to some marine based climate estimates. Our results raise new questions on the nature and extent of terrestrial global climate change at the EOT.

  1. Stability of the vegetation-atmosphere system in the early Eocene climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2015-05-01

    We explore the stability of the atmosphere-vegetation system in the warm, almost ice-free early Eocene climate and in the interglacial, pre-industrial climate by analysing the dependence of the system on the initial vegetation cover. The Earth system model of the Max Planck Institute for Meteorology is initialised with either dense forests or bare deserts on all continents. Starting with desert continents, an extended desert remains in Central Asia in early Eocene climate. Starting with dense forest coverage, this desert is much smaller because the initially dense vegetation cover enhances water recycling in Central Asia relative to the simulation with initial deserts. With a smaller Asian desert, the Asian monsoon is stronger than in the case with a larger desert. The stronger Asian monsoon shifts the global tropical circulation leading to coastal subtropical deserts in North and South America which are significantly larger than with a large Asian desert. This result indicates a global teleconnection of the vegetation cover in several regions. In present-day climate, a bi-stability of the atmosphere-vegetation system is found for Northern Africa only. A global teleconnection of bi-stabilities in several regions is absent highlighting that the stability of the vegetation-atmosphere system depends on climatic and tectonic boundary conditions.

  2. Stable isotope study of fluid inclusions in fluorite from Idaho: implications for continental climates during the Eocene

    USGS Publications Warehouse

    Seal, R.R.; Rye, R.O.

    1993-01-01

    Isotopic studies of fluid inclusions from meteoric water-dominated epithermal ore deposits offer a unique opportunity to study paleoclimates because the fluids can provide direct samples of ancient waters. Fluorite-hosted fluid inclusions from the Eocene (51-50 Ma) epithermal deposits of the Bayhorse mining district, have low salinities and low to moderate homogenization temperatures indicating meteoric origins for the fluids. Oxygen and hydrogen isotope data on inclusion fluids are almost identical to those of modern meteoric waters in the area. The equivalence of the isotope composition of the Eocene inclusion fluids and modern meteoric waters indicates that the Eocene climatic conditions were similar to those today. -from Authors

  3. Fossils and Fossil Climate: The Case for Equable Continental Interiors in the Eocene

    NASA Astrophysics Data System (ADS)

    Wing, Scott L.; Greenwood, David R.

    1993-08-01

    There are many methods for inferring terrestrial palaeoclimates from palaeontological data, including the size and species diversity of ectothermic vertebrates, the locomotor and dental adaptations of mammals, characteristics of leaf shape, size, and epidermis, wood anatomy, and the climatic preferences of nearest living relatives of fossil taxa. Estimates of palaeotemperature have also been based on stable oxygen isotope ratios in shells and bones. Interpretation of any of these data relies in some way on uniformitarian assumptions, although at different levels depending on the method. Most of these methods can be applied to a palaeoclimatic reconstruction for the interior of North America during the early Eocene, which is thought to be the warmest interval of global climate in the Cenozoic. Most of the data indicate warm equable climates with little frost. Rainfall was variable, but strong aridity was local or absent. The inferred palaeoclimate is very different from the present climate of the region and from model simulations for the Eocene. This suggests that models fail to incorporate forcing factors that were present at that time, that they treat the heat regime of continents unrealistically, and/or that model inputs such as sea surface temperature gradients or palaeotopography are incorrect.

  4. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  5. Eocene climates, depositional environments, and geography, greater Green River basin, Wyoming, Utah, and Colorado

    SciTech Connect

    Roehler, H.W.

    1993-12-31

    The climates, depositional environments, and geography of Eocene rocks in the greater Green River basin are investigated to determine the origin, mode of deposition, and areal distribution of the Wasatch, Green River, Bridger, and Washakie Formations. The data indicate that Eocene climates ranged from cool temperature to tropical and were affected by both terrestrial and astronomical factors. The terrestrial factors were mainly latitude, altitude, regional geography, tectonism, and volcanism. The astronomical factors are interpreted from reptitious rock sequences in the Wilkins Peak Member of the Green River Formation that record seasonal changes, 21,000 year precession of the equinox cycles, 100,000 year eccentricity cycles, and an undetermined cycle of 727,000 years. Eight depositional environments are identified, discussed, and illustrated by diagrams, columnar sections, and photographs. They are: (1) fluvial, (2) paludal, (3) freshwater lacustrine, (4) saltwater lacustrine, (5) pond and playa lake, (6) evaporite (salt pan), (7) mudflat, and (8) volcanic and fluviovolcanic. The areal distribution of the eight depositional environments in the Wasatch, Green River, Bridger, and Washakie Formations is illustrated by photographs and 13 paleogeographic maps. 76 refs., 90 figs.

  6. Biotic Response in Aquatic Reptiles (Testudines) during Earliest Eocene Climatic Warming

    NASA Astrophysics Data System (ADS)

    Holroyd, P. A.; Hutchison, J. H.

    2010-12-01

    The earliest Eocene is marked by significant events of global warming: the Paleocene-Eocene Thermal Maximum (PETM) at ~55.8 Ma and two short-lived events (ETM2 or Elmo and H2) approximately 2 Ma later. These environmental changes induced strong responses in the continental biota. Noteworthy changes in North American mid-latitude faunas and floras that are temporally correlated with earliest Eocene warming events include: increased diversity; turnover; and significant range changes, comprising both northward shifts in ranges of North American taxa as well as intercontinental dispersal across Holarctica. Evidence for these biotic changes comes directly from the fossil record and indirectly from phylogeographic analyses of molecular phylogenies of extant biota. To date, the stratigraphic record of biotic change has only been examined for the flora and terrestrial mammals. Data on reptiles and for continental aquatic systems are particularly lacking. In order to assess the impact of climate-mediated faunal change in aquatic systems during early Paleogene warming, we have focused on developing a detailed record of fossil turtles (Testudines) from the Bighorn Basin of Wyoming, where these records can be directly compared to similarly studied mammalian and floral data and to isotopic studies that provide independent proxies of climate change. Using genus-level occurrence data from more than 450 stratigraphically-constrained localities spanning ~2.5 Ma, we calculated first and last appearances, taxonomic richness, and relative abundance as measured by presence-absence (site occupancy). Among turtles, taxonomic richness increased episodically through the earliest Eocene with two new taxa appearing at the PETM, two immediately following it, and two at Biohorizon B, an interval associated with the younger hyperthermals. These new, immigrant taxa eventually comprised 40% of known generic richness. Phylogenetically, the inferred biogeographic source regions are southern North

  7. Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Bachtadse, Valerian; Crouch, Erica M.; Tauxe, Lisa; Shepherd, Claire L.; Morgans, Hugh E. G.; Hollis, Christopher J.; Hines, Benjamin R.; Sugisaki, Saiko

    2016-01-01

    Studies of early Paleogene climate suffer from the scarcity of well-dated sedimentary records from the southern Pacific Ocean, the largest ocean basin during this time. We present a new magnetostratigraphic record from marine sediments that outcrop along the mid-Waipara River, South Island, New Zealand. Fully oriented samples for paleomagnetic analyses were collected along 45 m of stratigraphic section, which encompasses magnetic polarity Chrons from C23n to C21n (˜ 51.5- 47 Ma). These results are integrated with foraminiferal, calcareous nannofossil, and dinoflagellate cyst (dinocyst) biostratigraphy from samples collected in three different expeditions along a total of ˜80 m of section. Biostratigraphic data indicates relatively continuous sedimentation from the lower Waipawan to the upper Heretaungan New Zealand stages (i.e., lower Ypresian to lower Lutetian, 55.5 to 46 Ma). We provide the first magnetostratigraphically-calibrated age of 48.88 Ma for the base of the Heretaungan New Zealand stage (latest early Eocene). To improve the correlation of the climate record in this section with other Southern Ocean records, we reviewed the magnetostratigraphy of Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau) and Integrated Ocean Drilling Program (IODP) Site U1356 (Wilkes Land Margin, Antarctica). A paleomagnetic study of discrete samples could not confirm any reliable magnetic polarity reversals in the early Eocene at Site 1172. We use the robust magneto-biochronology of a succession of dinocyst bioevents that are common to mid-Waipara, Site 1172, and Site U1356 to assist correlation between the three records. A new integrated chronology offers new insights into the nature and completeness of the southern high-latitude climate histories derived from these sites.

  8. Resolving tectonic, climatic, and geomorphologic signatures in the Eocene Green River Formation, Western U.S

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Carroll, A. R.

    2011-12-01

    Tectonic lake basins are windows into the co-evolution of terrestrial climate and topography, but the stratigraphic responses to these drivers are complex and incompletely understood. Coring Quaternary lake basins has provided excellent temporal resolution, but is limited to one-dimensional archives of relatively short duration. Conversely, outcrop-based studies of older deposits can elucidate complex lateral facies relationships and longer time periods, but temporal resolution is often poor due to the lack of marine fossils. However, recent advances in radioisotopic dating have produced highly-resolved records of older lacustrine strata, provided volcanic ash beds are present. The Eocene Green River Formation in Wyoming, Colorado, and Utah is such a record, containing numerous 40Ar/39Ar-dated ash horizons with c.a. ±200 ky 2σ uncertainties. At the scale of individual Members of the Green River Formation (100-400 m), lithofacies and faunas differentiate five distinct lake-type intervals: Luman-Scheggs (fluviolacustrine), Rife (saline), Wilkins Peak (hypersaline-alluvial), Lower LaClede (saline), and Upper LaClede (fluviolacustrine). Although published explanations implicate tectonic and/or climatic control of these changes, both lack significant correlation to bulk lithofacies. While stratal geometries imply that the Uinta Mountains were the principle Eocene driver of flexural subsidence for the Greater Green River Basin (GGRB), conglomerate compositions reveal progressive Paleocene through Eocene unroofing rather than a discreet Early Eocene pulse of Laramide tectonism. Similarly, paleofloral evidence for climatic changes is equivocal. Instead, regional provenance and paleoflow patterns suggest that lake-type changes resulted from progressive hydrologic isolation of the GGRB from orogenic highlands to the west, hydrologic closure, then subsequent integration. From ~53 to ~51.5 Ma, Lake Gosiute expanded from a restricted freshwater to expansive saline lake

  9. Climatic and floral change during the Paleocene-Eocene Thermal Maximum in the Bighorn Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) is an interval of global warming lasting ~150 ka that occurred at the start of the Eocene, ~55.8 Ma. Globally, temperature rose 4-8 °C in association with carbon cycle changes attributed to the release of >5,000 Pg of C into the ocean-atmosphere system. Fossil plants from the PETM in the Bighorn Basin, northwestern Wyoming, show that latest Paleocene forests contained palms, deciduous taxodiaceous conifers, and a variety of deciduous and evergreen angiosperms, many belonging to lineages with north temperate distributions. Mean annual temperature (MAT) for the latest Paleocene inferred from leaf margin analysis is ~18 °C. Early and mid-PETM floras have a completely different composition. They lack conifers and broad-leaved deciduous taxa with north temperate distributions, and are dominated by palms, legumes, and other angiosperm taxa with living relatives in the dry tropical forests of Central and South America. Leaf margin analysis gives an MAT of ~23 °C. Floras of this type are known from a stratigraphic interval ~30 m thick that also produces geochemical and mammalian faunal indicators of the PETM. Floras from late PETM or earliest post-PETM time are composed largely of species that had been present in the latest Paleocene, with a few new species that are common in the early Eocene. The inferred MAT is ~18 °C. Leaf size data suggest that the PETM was drier than the immediately preceding and following times. Floral data from the Bighorn Basin indicate that the magnitude of temperature change in this mid-latitude continental interior was similar to that inferred for the surface ocean. Evidence for dryness or seasonal dryness during the PETM has been observed in sections in northern Spain as well as in Wyoming, raising the possibility of widespread water stress in the middle northern latitudes. Change in floral composition during the PETM is consistent with regional extinction in mid-latitude populations of plants

  10. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    NASA Astrophysics Data System (ADS)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  11. Climatic and stratigraphic implications of clay mineral changes in Paleocene/Eocene boundary strata -- Eastern United States

    SciTech Connect

    Gibson, T.G.; Bybell, L.M.; Owens, J.P.; Mason, D.B.; McCartan, L.; Snow, J.N. )

    1994-03-01

    A major change in the clay mineral suite from predominantly illite/smectite and illite to predominantly kaolinite is present in uppermost Paleocene neritic deposits in the Salisbury embayment of the northeastern US. The clay mineral change occurred during a time of relatively high sea level and is associated with biotic, climatic, and oceanographic changes. This kaolinite increase in middle-latitude areas of the western North Atlantic Ocean, and similar increases in coeval deep-marine sediments off Antarctica and in the eastern North Atlantic Ocean, suggests that intensified weathering due to increased temperature and precipitation was widespread in the latest Paleocene. In the Salisbury embayment, kaolinite proportions rapidly increase from less than 5% in upper Paleocene strata to maximum values of 50 to 60% near the top of the Paleocene (top of calcareous nannofossil Zone NP 9). High kaolinite proportions continue into the lowest Eocene strata (lowermost zone NP 10), but the kaolinite proportion rapidly decreases to 5% or less within the lower part of Zone NP 10. The pattern of kaolinite increasing to maximum values in the latest Paleocene, followed by decreasing values in the earliest Eocene can be used for correlation within the upper Paleocene and lower Eocene units in the Salisbury embayment. On this basis, it is suggested that during the early Eocene, large parts of the uppermost Paleocene and lowermost Eocene clay were eroded from landward parts of the basin.

  12. Evolution of the Climate Continuum from the Mid-Miocene Climatic Optimum to the Present

    NASA Astrophysics Data System (ADS)

    Aswasereelert, W.; Meyers, S. R.; Hinnov, L. A.; Kelly, D.

    2011-12-01

    The recognition of orbital rhythms in paleoclimate data has led to a rich understanding of climate evolution during the Neogene and Quaternary. In contrast, changes in stochastic variability associated with the transition from unipolar to bipolar glaciation have received less attention, although the stochastic component likely preserves key insights about climate. In this study, we seek to evaluate the dominance and character of stochastic climate energy since the Middle Miocene Climatic Optimum (~17 Ma). These analyses extend a previous study that suggested diagnostic stochastic responses associated with Northern Hemisphere ice sheet development during the Plio-Pleistocene (Meyers and Hinnov, 2010). A critical and challenging step necessary to conduct the work is the conversion of depth data to time data. We investigate climate proxy datasets using multiple time scale hypotheses, including depth-derived time scales, sedimentologic/geochemical "tuning", minimal orbital tuning, and comprehensive orbital tuning. To extract the stochastic component of climate, and also explore potential relationships between the orbital parameters and paleoclimate response, a number of approaches rooted in Thomson's (1982) multi-taper spectral method (MTM) are applied. Importantly, the MTM technique is capable of separating the spectral "continuum" - a measure of stochastic variability - from the deterministic periodic orbital signals (spectral "lines") preserved in proxy data. Time series analysis of the proxy records using different chronologic approaches allows us to evaluate the sensitivity of our conclusion about stochastic and deterministic orbital processes during the Middle Miocene to present. Moreover, comparison of individual records permits examination of the spatial dependence of the identified climate responses. Meyers, S.R., and Hinnov, L.A. (2010), Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise: Paleoceanography, 25, PA3207, doi:10

  13. Statistical Analysis of Climate and Biotic Variability During the Paleocene Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bralower, T. J.; Keller, K.; Urban, N.

    2008-12-01

    The Paleocene Eocene Thermal Maximum (PETM, 55Ma) was characterized by abrupt warming, wholesale turnover of plankton assemblages, mass extinction on the sea floor, and dramatic changes in the global carbon cycle. The interval has been studied at increasing levels of resolution requiring centimeter-scale sampling in low sedimentation rate marine sections. In addition, dissolution results in highly condensed section or possible unconformities at the base of deep-sea PETM intervals. As a result, many PETM records are characterized by sizeable variation in sample spacing in terms of depth and age. The large variations in sample spacing introduce nontrivial methodological challenges if one wants to characterize how the variability of climate and plankton communities changes over the PETM interval. Here we develop a Bayesian inversion technique that accounts for the effects of variable sample spacing, autocorrelated residuals, and the uncertainties about age-estimates and the onset and termination of the PETM interval. We apply this technique to PETM stable isotope and microfossil assemblage data (e.g., the intensively studied Ocean Drilling Program Site 690, Maud Rise, Southern Ocean). This technique allows us to determine, for example, the full nonparametric posterior probability density function of short term climate variability over the PETM interval. We use this technique to place probabilistic limits on the rate of warming and cooling at various stages of the PETM and to compare them between sites and with other intervals of abrupt climate change.

  14. Seymour Island/Marambio Drilling Project: Drilling 40Ma (Campanian to Eocene) of high latitude Southern Hemisphere climate history.

    NASA Astrophysics Data System (ADS)

    Viereck-Gotte, Lothar; Francis, Jane E.; Vaughan, Alan P. M.; Mohr, Barbara A. R.; Marenssi, Sergio A.; Pekar, Stephen F.

    2010-05-01

    The aim of this project is to core a key geological section in the Antarctic Peninsula region. The James Ross Basin, east of the Antarctic Peninsula, contains the best high-latitude section in the world that spans more than 40 million years of geological history from the mid-Cretaceous to the mid-Cenozoic (~80-34Ma). More than 6500m of marine and estuarine sediments were deposited during the filling of the James Ross back-arc basin. The sedimentary succession is extremely fossiliferous, yielding diverse invertebrate, vertebrate and plant fossil assemblages, allowing detailed reconstructions and integration of both terrestrial and marine systems. The sequence also contains a key global reference section for the Cretaceous-Palaeocene extinction event at high latitudes. The sequence contains key intervals that provide details about past polar climates: Mid-Late Cretaceous Thermal Maximum (~80Ma) when tropical floras grew at ~65°S and greenhouse temperatures reached their peak across the globe; a possible phase of high-latitude glaciation within greenhouse times during the latest Cretaceous; the Cretaceous-Palaeocene extinction event at 65Ma; the Palaeocene-Eocene Thermal Maximum episode of rapid global warming at 55Ma (possibly an unconformity in Seymour Island but this can be better established in a drill core); early Eocene hothouse climates; a cooling phase during the Eocene, and the first signs of global cooling in the latest Eocene. Although the sedimentary sequence is reasonably well known from surface outcrop and a stratigraphy has been established, the unconsolidated and weathered nature of the outcrop prohibits high resolution studies. Drill cores will provide more consolidated sediments that can be logged and sampled at high resolution and provide an extremely detailed picture of environmental and climate evolution through this transition from greenhouse to icehouse climates. Three drill cores are planned in this time interval using a land-based rig with

  15. Early Eocene biotic and climatic change in interior western North America

    SciTech Connect

    Wing, S.L. ); Bown, T.M.; Obradovich, J.D. )

    1991-12-01

    Imprecise correlation of the marine and terrestrial fossil records has been a major obstacle to understanding migration and extinction of continental biotas and early Cenozoic climate change. New {sup 40}Ar/{sup 39}Ar data from the Willwood Formation in the Bighorn Basin of Wyoming establish an age of 52.8 {plus minus} 0.3 Ma for earliest Lostcabinian (late Wasatchian) faunas and coeval early Eocene floras. Strata just beneath earliest Wasatchian faunas can be correlated with the NP9/NP10 boundary in marine sedimentary units, which has an interpolated age of {approximately}55.7 Ma. This new information allows the authors to estimate the durations of the Wasatchian ({approximately}5 m.y.) and the Lostcabinian ({approximately}2 m.y.) and shows that the continental biotas are coeval with the acme of Cenozoic warmth inferred from {delta}{sup 18}O measurements of foraminifera. From 58 to 50 Ma, paleoclimate in the continental interior at about 45{degree}N was warm and equable, but patterns of temperature change inferred from continental floras do not track precisely the marine {delta}{sup 18}O record.

  16. Missing organic carbon in Eocene marine sediments: Is metabolism the biological feedback that maintains end-member climates?

    NASA Astrophysics Data System (ADS)

    Olivarez Lyle, Annette; Lyle, Mitchell W.

    2006-06-01

    Ocean chemistry is affected by pCO2 in the atmosphere by increasing the dissolution of solid calcium carbonate and elevating the dissolved inorganic carbon concentrations in seawater. Positive feedbacks between the ocean and atmosphere can maintain high atmospheric pCO2 and affect global climate. We report evidence for changes in the oceanic carbon cycle from the first high-quality organic carbon (Corg) data set of Eocene sediments beneath the equatorial Pacific upwelling region (Leg 199 of the Ocean Drilling Program). Eocene Corg mass accumulation rates (MARs) are 10 times lower than Holocene rates, even though expected Corg MARs estimated from biogenic-barium MARs (an indicator of biological production) equal or exceed modern fluxes. What happened to the missing Corg? Recent advances in ecology and biochemical kinetics show that the metabolism of nearly all animals, marine and terrestrial, is positively correlated by first principles to environmental temperatures. The approximately 10°C abyssal temperature difference from Eocene to Holocene should have radically reduced pelagic Corg burial, as we observe. We propose that higher basal metabolism and nutrient utilization/recycling rates in the Eocene water column and surface sediments precluded Corg sediment burial in the pelagic ocean. Increased rates of metabolism, nutrient utilization, and lowered Corg sedimentation caused by increased temperature may have acted as a biological feedback to maintain high atmospheric pCO2 and hothouse climates. Conversely, these same parameters would reverse sign to maintain low pCO2 when temperatures decrease, thereby maintaining "icehouse" conditions during cold climate regimes.

  17. Ocean Response to Possible Southern Meltwater Pulses During Eocene-Oligocene Cooling Climate Trend: A Sensitivity Ocean Modeling Study

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2003-12-01

    Understanding ocean circulation and sea level change in the past (and foreseeable future) is one of the focal points of paleoceanography. Sea level may change due to several primary causes, including the meltdown of the major ice sheets, sea ice melting, and changes in the thermohaline structure of the oceans. The sensitivity of the past ocean circulation to meltwater impacts may have been different from the present-day. We still have only a vague understanding of how ocean basin geography may influence the freshwater impacts in different oceans; the role of geography is important for reconstructing variability of past climates with substantially different land-sea distributions. As freshwater impacts in past geologic eras having different basins configurations may have been different from the present-day pattern, the sensitivity of the ocean circulation to sea surface density impacts and climate change could have been different as well. We use the Eocene-Oligocene geometry and climate to address the past ocean and sea level long-term internal variability because this time slice provides a substantially different geometry and for a strong sea ice impact that can be seen in the geologic record. The Eocene epoch is crucial as a transition from the warm Cretaceous ocean to cooler oceans that may have been subject to bi-polar millennial-scale oscillations of the deep ocean circulation caused by freshwater pulses of the developing southern cryosphere. In a series of numerical experiments, sea ice melting and sea water freezing around Antarctica were simulated by superimposing freshwater layers over zonally-averaged sea surface salinity. Eocene sea surface temperature and sea surface salinity are specified based on the paleoclimatic record and modeling. In our simulations, the Eocene ocean circulation is indeed sensitive to freshwater impacts in the Southern Hemisphere. There are noticeable sea level changes caused by the restructuring of the deep ocean thermal and

  18. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ???47??S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  19. Noachian-Hesperian Transition and a Possible Climatic Optimum: Evidence from Landforms

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    A climatic optimum? The often strong contrast between the pristine and degraded Noachian channels and craters might be due to a gradual climatic change superimposed upon an episode of mantling associated with early Hesperian volcanism. On the other hand, one or more episodes of volcanism or large impacts could have induced global warming and produced a relatively short-lived optimum for precipitation and runoff. The rapid cutoff of fluvial activity following the development of the later pristine fluvial features is consistent with this scenario. We discuss the changing style of erosion in the highlands during the Noachian and early Hesperian in a companion abstract to this workshop. Here we review the some of the morphologic evidence for a possible Noachian-Hesperian (N-H) climate optimum.

  20. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition

    NASA Astrophysics Data System (ADS)

    Pusz, A. E.; Thunell, R. C.; Miller, K. G.

    2011-06-01

    Paired benthic foraminiferal stable isotope and Mg/Ca data are used to estimate bottom water temperature (BWT) and ice volume changes associated with the Eocene-Oligocene Transition (EOT), the largest global climate event of the past 50 Myr. We utilized ODP Sites 1090 and 1265 in the South Atlantic to assess seawater δ18O (δw), Antarctic ice volume, and sea level changes across the EOT (˜33.8-33.54 Ma). We also use benthic δ13C data to reconstruct the sources of the deep water masses in this region during the EOT. Our data, together with previously published records, indicate that a pulse of Northern Component Water influenced the South Atlantic immediately prior to and following the EOT. Benthic δ18O records show a 0.5‰ increase at ˜33.8 Ma (EOT-1) that represents a ˜2°C cooling and a small (˜10 m) eustatic fall that is followed by a 1.0‰ increase associated with Oi-1. The expected cooling of deep waters at Oi-1 (˜33.54 Ma) is not apparent in our Mg/Ca records. We suggest the cooling is masked by coeval changes in the carbonate saturation state (Δ[CO32-]) which affect the Mg/Ca data. To account for this, the BWT, ice volume, and δw estimates are corrected for a change in the Δ[CO32-] of deep waters on the basis of recently published work. Corrected BWT at Sites 1090 and 1265 show a ˜1.5°C cooling coincident with Oi-1 and an average δw increase of ˜0.75‰. The increase in ice volume during Oi-1 resulted in a ˜70 m drop in global sea level and the development of an Antarctic ice sheet that was near modern size or slightly larger.

  1. Impact of Paratethys sea on Eocene Central Asian seasonality: from climatic model to bivalves high-resolution geochemistry

    NASA Astrophysics Data System (ADS)

    Bougeois, L.; Tindall, J. C.; de Rafelis, M.; Reichart, G. J.; de Nooijer, L. J.; Dupont Nivet, G.

    2014-12-01

    The modern Asian climate is mainly characterized by a monsoonal duality between humid summers in southern and eastern Asia and arid climate in Central Asia resulting in a strong seasonality in terms of precipitation and temperature in these respective regions. Asian Monsoons are also characterised by the aridification in Central Asia due to the foehn effect north of the Tibetan Plateau and the inherent perturbation of the atmospheric circulation generated by the monsoons. According to climate models, Asian Monsoons have been mainly governed by Tibetan plateau uplift, the retreat of a vast epicontinental sea (the Proto-Paratethys sea) and global climate changes. Evidence for monsoons a old as Eocene are starting to be established by proxy and model data. This corresponds to the timing of the Proto-Paratethys retreat, however, the role of this sea on climate and the monsoonal expression in that period remain to be established. Here we show, using infra-annual geochemical proxies from oyster shells of the Proto-Paratethys sea and climate simulations, that the Central Asian region was generally arid with high seasonality from hot and arid summers to wetter winters. This high seasonality in Central Asia therefore supports an intense monsoonal circulation was already established although the climate pattern was significantly different than today. During winter months, a strong influence of the Proto-Paratethys moisture is indicated by enhanced precipitations as well as modelled stable isotopic composition of precipitation significantly higher than today. This supports a strong influence on local climate of the Proto-Paratethys sea, which subsequently retreated and was replaced by the Pamir mountains. During Eocene summers, the local climate was more arid despite the presence of the Proto-Paratethys. This may be explained by a strong anticyclonic Hadley cell descending at these latitudes (25 to 45 N) over Central Asia during Eocene times. Furthermore, the Tibetan plateau

  2. Refining our estimate of atmospheric CO2 across the Eocene-Oligocene climatic transition

    NASA Astrophysics Data System (ADS)

    Heureux, Ana M. C.; Rickaby, Rosalind E. M.

    2015-01-01

    The Eocene-Oligocene transition (EOT) followed by Oligocene isotope event 1 (Oi-1) is a dramatic global switch in climate characterized by deep-sea cooling and the first formation of permanent Antarctic ice. Models and proxy evidence suggest that declining partial pressure of atmospheric carbon dioxide (CO2atm) below a threshold may explain the onset of global cooling and associated ice formation at Oi-1. However, significant uncertainty remains in the estimated values and salient features of reconstructed CO2atm across this interval. In this study, we present novel carbon isotope records from size separated diatom associated organic matter (δ13Cdiatom) preserved in silica frustules. Physical preservation of this material allows concurrent investigation of isotopic and cell size information, providing two input parameters for biogeochemical models and the reconstruction of CO2atm. We estimate CO2atm in two ways; first we use size and reaction-diffusion kinetics of a cell to calculate a CO2atm threshold. Second we use the calibrated relationship between ɛp(diatom) and carbon dioxide from culture and field studies to create a record of CO2atm prior to and across the transition. Our study, from site 1090 in the Atlantic sector of the Southern Ocean, shows CO2atm values fluctuating between 900 and 1700 ± 100 p.p.m.v. across the EOT followed by a drop to values in the order of 700 to 800 ± 100 p.p.m.v. just prior to the onset of Oi-1. Our values and magnitude of CO2atm change differ from previous estimates, but confirm the overall trends inferred from boron isotopes and alkenones, including a marked rebound following Oi-1. Due to the intricate nature of the climate system and complexities in constraining paleo-proxies, this work emphasizes the importance of a multi-proxy approach to estimating of CO2atm in order to elucidate its role in the emplacement of Antarctic ice-sheets at the EOT.

  3. South Greenland Ice-Sheet Response to the Mid-Pliocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Carlson, A. E.; Mathias, A.; Hatfield, R. G.; Winsor, K.; Stoner, J. S.

    2014-12-01

    The last time atmospheric carbon dioxide concentration approached present day levels was likely during the mid-Pliocene climate optimum 3.3-3.0 Ma. Estimates of sea level from the mid-Pliocene optimum vary widely and contain a significant component of glacial isostasy and dynamic topography, precluding a firm estimate of global ice volume. Here we present new data constraining the southern Greenland ice sheet (GIS) across the mid-Pliocene optimum from IODP Site U1307 located on the Eirik Ridge south of Greenland. Magnetic susceptibility dramatically decreases at ~3.3 Ma, recovering at ~3.05 Ma. Magnetic parameters on silt-size grains (Mrs/Ms) show this decrease likely reflects the loss of silt sourced from the Precambrian terranes of south Greenland, which would suggest the loss of the south GIS. The sand fraction reflects the degree of iceberg rafting with increases at an ~40 ka period. Planktic oxygen isotopes decrease during iceberg rafting events to values lower than the Holocene. An extended interval of low sand occurs from ~3.3 Ma to ~3.2 Ma, which suggests cessation of iceberg rafting. Planktic oxygen isotopes increase during this interval. Assuming a relatively warm climate, this increase could reflect the incursion of high 18-O subtropical waters into the Labrador Sea. The return of iceberg rafted sediments after ~3.2 Ma suggests the regrowth of the GIS with marine-terminating margins. Our new preliminary record points to a GIS collapse during the mid-Pliocene climatic optimum, but that ice-free conditions only lasted for ~100 ka before the return of a volatile ice sheet for the remainder of the mid-Pliocene climatic optimum.

  4. Climatic and diagenetic signals in the stable isotope geochemistry of dolomitic paleosols spanning the Paleocene-Eocene boundary

    NASA Astrophysics Data System (ADS)

    VanDeVelde, Justin H.; Bowen, Gabriel J.; Passey, Benjamin H.; Bowen, Brenda B.

    2013-05-01

    The precipitation of primary dolomite in soil is rare and controversial, and its occurrence indicates highly unusual geochemical and climatic conditions. We utilize isotopic and petrographic techniques, including clumped isotope thermometry, to evaluate diagenetic alteration and preservation of primary climatic signal in dolomitic paleosol nodules from a section spanning the Paleocene-Eocene boundary in central Utah. Isotopic measurements differentiate samples into groups that may be interpreted in terms of alteration; however moderate burial depths and extreme warmth during the interval of soil formation make it difficult to reach definitive conclusions from isotope values alone. With the addition of petrographic analysis, including cathodoluminescence and scanning electron microscopy, we are able to identify textural differences between samples suggesting differing amounts of recrystallization. We conclude that while some nodules have experienced significant diagenetic alteration the original nodule mineralogy is dolomite, and the majority of sampled nodules retain a primary paleoclimate signal. Early Paleogene temperatures recorded at this site are considerably warmer than those suggested for the continental interior from alternate proxies, a result that may be partially the result of the clumped isotope temperatures recording warm season soil temperatures, rather than mean annual air temperature. Soil water isotopic composition is suggestive of heightened aridity, particularly through the Paleocene-Eocene Thermal Maximum (PETM).

  5. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such

  6. Penguin response to the Eocene climate and ecosystem change in the northern Antarctic Peninsula region

    NASA Astrophysics Data System (ADS)

    Jadwiszczak, Piotr

    2010-08-01

    Eocene Antarctic penguins are known solely from the La Meseta Formation (Seymour Island, James Ross Basin). They are most numerous and taxonomically diverse (at least ten species present) within strata formed at the end of this epoch, which is concomitant with a significant cooling trend and biotic turnover prior to the onset of glaciation. Moreover, all newly appeared taxa were small-bodied, and most probably evolved in situ. Interestingly, some chemical proxies suggest enhanced nutrient upwelling events that coincided with obvious changes in the record of La Meseta penguins.

  7. Benthic foraminifera at the Paleocene/Eocene thermal maximum in the western Tethys (Forada section): variability in climate and productivity

    NASA Astrophysics Data System (ADS)

    Giusberti, L.; Boscolo Galazzo, F.; Thomas, E.

    2015-09-01

    The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene/Eocene thermal maximum (PETM) in the central-western Tethys. We combine a new, high resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring ~ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next ~ 9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinant recolonizers. These observations suggest that synergistic stressors including deep water CaCO3-corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood-events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3%, hematite%, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, as well as calcareous nannofossil and planktonic foraminiferal taxa typical of high productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an

  8. Variability in climate and productivity during the Paleocene-Eocene Thermal Maximum in the western Tethys (Forada section)

    NASA Astrophysics Data System (ADS)

    Giusberti, L.; Boscolo Galazzo, F.; Thomas, E.

    2016-02-01

    The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene-Eocene Thermal Maximum (PETM) in the central-western Tethys. We combine a new, high-resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring ˜ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM, several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next ˜9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinated recolonizers. These observations suggest that synergistic stressors, including deepwater CaCO3 corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3 %, hematite %, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, and calcareous nannofossil and planktonic foraminiferal taxa typical of high-productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an overall

  9. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    latter negative shift can be linked to the globally recognized Early Eocene Climatic Optimum (Zachos et al., 2001). In terms of carbon isotopic composition, shark teeth enameloid yielded often positive δ13C values, while dentine are always negative and sometimes following clear trend along the series. Coprolites have similar values to dentine, however they display greater variation reflecting the burial milieu and the special environment of phosphatization with the intensive organic matter recycling. Bone-beds show even more variations that could be caused by reworked specimens and also possible enhanced oxidation of organic matter at these levels. Nevertheless, the Sidi Chennane section shows a negative δ13C trend in the early Ypresian, which is compatible with global observations at the time. Moreover, the lowest δ13C values are from the transitional layer between the Ypresian and Thanetian beds which might relate to the Paleocene-Eocene boundary event, though it must be further confirmed. All the fossils display very similar rare earth element (REE) distribution that resembles typical seawater pattern with negative Ce-anomaly and heavy REE enrichment. However the large amount of analyses revealed a general drift in the magnitude of the Ce-anomaly from the older to younger beds that can be used in paleoenvironmental reconstruction.

  10. Eocene cooling linked to early flow across the Tasmanian Gateway

    PubMed Central

    Bijl, Peter K.; Bendle, James A. P.; Bohaty, Steven M.; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E.; McKay, Robert M.; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Williams, Trevor; Carr, Stephanie A.; Dunbar, Robert B.; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Passchier, Sandra; Pekar, Stephen F.; Riesselman, Christina; Sakai, Toyosaburo; Shrivastava, Prakash K.; Sugisaki, Saiko; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-01-01

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. PMID:23720311

  11. Eocene cooling linked to early flow across the Tasmanian Gateway.

    PubMed

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  12. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Kochhann, Karlos G. D.; Holbourn, Ann; Kuhnt, Wolfgang; Channell, James E. T.; Lyle, Mitch; Shackford, Julia K.; Wilkens, Roy H.; Andersen, Nils

    2016-09-01

    The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (δ18O) and carbon (δ13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic Ice Sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity, and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337, and U1338 on a consistent, astronomically tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on δ13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our intersite comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleodepths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (δ18O minima) and δ13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to δ13C maxima and δ18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

  13. Millennial-scale vegetation dynamics in an estuary at the onset of the Miocene Climate Optimum

    PubMed Central

    Kern, Andrea; Harzhauser, Mathias; Mandic, Oleg; Roetzel, Reinhard; Ćorić, Stjepan; Bruch, Angela A.; Zuschin, Martin

    2010-01-01

    Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression–regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change. Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204–236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9–24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6–13.3 °C during the cold season and 24.7–27.9 °C during the warmest month. In contrast, today’s climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: −1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm). Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again. Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method

  14. Paratethys-Southern Ocean teleconnection in the mid-Burdigalian: European climate on the verge to the Miocene Climate Optimum

    NASA Astrophysics Data System (ADS)

    Grunert, P.; Tzanova, A.; Harzhauser, M.; Piller, W. E.

    2013-12-01

    The Early Ottnangian Cooling (EOC), a distinct cold-spell in European climate at ~18 Ma preceding the Miocene Climate Optimum, is frequently reported in Paratethys records; however, the duration, magnitude, and underlying causes are poorly understood. A new paleoclimatic data-set provides unexpected insights into this event. UK'37-based sea surface temperatures > 25°C between 18.6 and 17.7 Myrs substantially exceed existing estimates, and indicate a significantly warmer European climate than previously assumed for this usually poorly recovered time interval. The EOC is expressed as an average drop of 2-3°C in Paratethyan water temperatures between ~18.1 and 17.8 Myrs punctuated by two distinct cold snaps at ~17.86 Ma and ~17.81 Ma. The short duration of the EOC excludes Tethyan Seaway closure as its underlying cause. Instead, the revealed paleoclimatic pattern shows a strong correlation with isotope event Mi1b in deep-sea δ18O records (ODP Site 1090), and we propose a tight paleoclimatic coupling between the Southern Ocean and the Paratethys/Mediterranean realm as an alternative hypothesis. Eccentricity forcing most likely acted as pacemaker of this teleconnection, a mechanism recently emphasized in Early Miocene studies.

  15. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  16. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    USGS Publications Warehouse

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  17. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2015-12-01

    The Mid-Miocene Climatic Optimum (MMCO) (ca. 17 to 14 Ma) is generally considered as the warmest episode of the Neogene based on deep marine oxygen isotope records and terrestrial plant fossils. To date, however, reasonable resolution high-quality sea surface temperature (SST) proxy records spanning its onset are scarce at best. For the remainder of the MMCO, reliable SST records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the MMCO was truly associated with global warming and if this warming was associated with biotic change. We use organic biomarker paleothermometry (Uk'37 and TEX86) to reconstruct SST across the MMCO at four locations along a pole-to-pole transect in the Atlantic and Pacific Ocean. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. This study includes the first tropical biomarker-based SST records of the MMCO. Together with new and existing SST records from higher latitudes and the corresponding palynological records, they provide new insights in the temporal and spatial development of the MMCO. Our results indicate that Mid-Miocene warming was most prominent in the Norwegian Sea, showed a more complex, perhaps upwelling-related pattern in a tropical location, and was small in the Southern Hemisphere.

  18. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    PubMed Central

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  19. Rapid Middle Eocene temperature change in western North America

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page

    2016-09-01

    Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.

  20. Miocene climate seasonality in southern India - first direct evidence for a weak Indian monsoon during the Middle Miocene Climate Optimum

    NASA Astrophysics Data System (ADS)

    Piller, W. E.; Reuter, M.; Kern, A. K.; Harzhauser, M.

    2012-04-01

    The Asian monsoon is an integral component of the global climate system. This large-scale atmospheric circulation comprises the East Asian summer and winter monsoon and the Indian monsoon subsystems, all characterized by seasonal reversing winds and precipitation changes associated with asymmetric heating of land and sea. The Neogene monsoon history is mainly reconstructed from chemical and physical weathering rates recorded in widely continuous marine sequences of the Indus Fan, Bengal Fan and South China Sea, which, depending on the source, physiography and sediment, indicate drier or wetter climates. These indirect climate proxies display an unusually dry period during the Middle Miocene Climate Optimum (MMCO, 16.5-15 Ma). As part of the FWF-projects P18189, P21414 and P23492, we present an Early/Middle Miocene coastal palynoflora record from the siliciclastic Ambalapuzha Formation at the coastal cliff of Varkala (Kerala Basin, SW India). Pollen assemblages and facies document a coastal wetland with mangrove vegetation. The Coexistence Approach was applied for palaeoclimatic reconstructions. This method uses climatic tolerances of all nearest living relatives known for a fossil flora by assuming that the tolerances of a fossil taxon are not significantly different from its modern counterpart. The maximum overlap of the environmental tolerances of all nearest living relatives (coexistence interval) is then regarded as being indicative of the most likely palaeoenvironment. By enquiring the Palaeoflora Database (http://www.palaeoflora.de/), the palaeoclimatic parameters of the pollen flora were calculated. The reconstructed climatic parameters for the MMCO show a seasonal precipitation pattern with a dry and a wet period and moderate rainfalls during the warmest period, which is comparable to the present day annual precipitation cycle in coastal Kerala, and affirms the presence of a monsoon-like atmospheric circulation over South India during the MMCO. However, the

  1. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition.

    PubMed

    Galeotti, Simone; DeConto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M; Zachos, James C

    2016-04-01

    About 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing. A more stable, continental-scale ice sheet calving at the coastline did not form until ~32.8 million years ago, coincident with the earliest time that atmospheric CO2 levels fell below ~600 ppm. Our results provide insight into the potential of the AIS for threshold behavior and have implications for its sensitivity to atmospheric CO2 concentrations above present-day levels. PMID:27034370

  2. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition.

    PubMed

    Galeotti, Simone; DeConto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M; Zachos, James C

    2016-04-01

    About 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing. A more stable, continental-scale ice sheet calving at the coastline did not form until ~32.8 million years ago, coincident with the earliest time that atmospheric CO2 levels fell below ~600 ppm. Our results provide insight into the potential of the AIS for threshold behavior and have implications for its sensitivity to atmospheric CO2 concentrations above present-day levels.

  3. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition

    NASA Astrophysics Data System (ADS)

    Galeotti, Simone; DeConto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M.; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M.; Zachos, James C.

    2016-04-01

    About 34 million years ago, Earth’s climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drillcore in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing. A more stable, continental-scale ice sheet calving at the coastline did not form until ~32.8 million years ago, coincident with the earliest time that atmospheric CO2 levels fell below ~600 ppm. Our results provide insight into the potential of the AIS for threshold behavior and have implications for its sensitivity to atmospheric CO2 concentrations above present-day levels.

  4. Eocene precipitation: a global monsoon?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Huber, M.

    2011-12-01

    The Eocene was the warmest part of the Cenozoic, with warm climates extending across all continents including Antarctica, and extending into the Arctic. Substantive paleobotanical evidence (leaf floras and palynofloras) has demonstrated the existence of broadleaf and coniferous polar forests - a circumpolar rain forest - at both poles. North and South America, Australia, and China in the Eocene were well-forested and humid continents, in contrast to today where 2/3 of these continental areas are arid or semi-arid and lack forests. Each of these regions reflect past climate states - mesothermal moist climates with low thermal seasonality at high latitudes - that have no analog in the modern world. Recent modelling and paleontological proxy data, however, is revealing a high degree of seasonality to precipitation for these continental areas, indicating a monsoon-type precipitation regime may have characterized Eocene 'greenhouse climates'. Paleobotanical proxies offer 2 methods for estimated paleo-precipitation; leaf physiognomy (including both CLAMP and leaf area analysis), and quantitative analysis of nearest living relatives ('NLRs') of macrofloras. Presented here are 1) an updated leaf area analysis calibration with smaller errors of the estimate than previously provided, and 2) analyses of fossil floras from North America, Canada, the Arctic, and Australia. Analysis of the Canadian floras indicate moist climates (MAP >100cm/a) in the early and middle Eocene at middle and high paleolatitudes. Precipitation for western North America at mid-latitudes is also estimated as high, but a seasonally dry interior and south-east is indicated. For Australia, precipitation in the south-east is estimated >120 cm/a, but the macrofloras indicate a drier interior (MAP ~60 cm/a) and seasonal drought, contradicting estimates of ~120 cm/a based on NLR analysis of pollen floras. Recently published data show that north-eastern China in the Eocene had a monsoonal-type seasonality for

  5. Tectonically driven late Paleocene (57.9-54.7 Ma) transgression and climatically forced latest middle Eocene (41.3-38.0 Ma) regression on the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Singh, Y. Raghumani; Andotra, D. S.; Patra, A.; Srivastava, V. K.; Guruaribam, Venus; Sijagurumayum, Umarani; Singh, G. P.

    2016-01-01

    Cenozoic era was the turning point in the geological history of the Indian subcontinent when India experienced maximum isolation before it collided with Asia and there occurred a great mountain building activity shaping the Himalaya. In the Cenozoic era, the sedimentation commenced in the late Paleocene (∼57.9 Ma) in the pericratonic basins of the western India as well as the foreland basins of the Himalaya that marks the beginning of a major transgression on the Indian subcontinent. Till now, it is not sure whether this transgression was forced by tectonics or climate. We have interpreted that the primary driver for this transgression was the tectonics that marks the beginning of the India-Asia convergence. A major regression of similar magnitude occurred during latest middle Eocene (41.3-38.0 Ma) that corresponds to global sea-level fall. This regression is global and can be identified even in the Cenozoic basins developed within the African plate. It is interpreted that this regression was driven by the global cooling during latest middle Eocene/late Eocene possibly associated with the nucleation of the Antarctica ice-sheets coupled with the uplift of the Himalaya.

  6. Vegetation and climate development on the Atlantic Coastal Plain during the late Mid-Miocene Climatic Optimum (IODP Expedition 313)

    NASA Astrophysics Data System (ADS)

    Prader, Sabine; Kotthoff, Ulrich; McCarthy, Francine; Greenwood, David

    2015-04-01

    The major aims of IODP Expedition 313 are estimating amplitudes, rates and mechanisms of sea-level change and the evaluation of sequence stratigraphic facies models that predict depositional environments, sediment compositions, and stratal geometries in response to sea-level change. Cores from three Sites (313-M0027, M0028, and M0029) from the New Jersey shallow shelf (water depth approximately 35 m) were retrieved during May to July 2009, using an ECORD "mission-specific" jack-up platform. We have investigated the palynology of sediment cores from Site M0027, 45 km off the present-day coast of New Jersey. For this study, we have focused on pollen studies for the second half of the Mid-Miocene Climatic Optimum (MMCO) and the subsequent transition to cooler conditions (ca. 15 to 13 million years before present). Transport-caused bias of the pollen assemblages was identified via the analysis of the terrestrial/marine palynomorph ratio and these results were considered when interpreting palaeo-vegetation from the pollen data. Pollen preservation in the interval analyzed herein was generally very good. Pollen grains were analyzed via both light and scanning electron microscopy. For most samples, the pollen assemblages were not highly diverse. The most abundant taxa through all samples were Quercus (oak) and Carya (hickory). Typical wetland elements like Cyperaceae, Taxodium (cypress), Nyssa (tupelo tree) and taxa today growing in the tropics and subtropics like Sapotaceae, Symplocaceae, Arecaceae (palm trees) and Alangium, which indicate particularly warm climate conditions, were only sporadically found, but indicate warmer phases during the second half of the MMCO. Herbal pollen was generally rare, but members of the Asteraceae, Apiaceae, and Ericaceae families, together with infrequent occurences of Poaceae pollen indicate the presence of areas with open vegetation. The Mid-Miocene pollen assemblages reflect a vegetation in the hinterland of the New Jersey shelf

  7. From Greenhouse to Icehouse: Evidence of Climatic Changes Across the Marine Eocene-Oligocene Transition From the Massignano GSSP Section (Central Italy)

    NASA Astrophysics Data System (ADS)

    Coccioni, R.; Marsili, A.; Montanari, A.

    2004-12-01

    The transition from global "greenhouse" conditions of the early and middle Eocene to global "icehouse" conditions of the early Oligocene marks a turning point in Cenozoic Earth history which was marked by reorganization of global ocean circulation patterns and significant turnovers in the marine and terrestrial biota (Prothero et al., 2003) and led to the development of the first East Antarctic ice-sheet, close to the Eocene/Oligocene boundary (33.7 Ma). The Massignano GSSP for the Eocene/Oligocene boundary (Premoli Silva & Jenkins, 1993), exposed in an abandoned quarry in the Monte Conero area, on the Adriatic coast of central Italy, was investigated at high-resolution in order to provide evidence for climatic changes across the marine Eocene-Oligocene transition. The Massignano section is 23-m thick and consists of alternating reddish/greenish-grey marls and calcareous marls with several biotite-rich levels of volcanic origin which were deposited in a lower bathyal depositional setting, at a paleodepth of 1000-2000 m (Coccioni & Galeotti, 2003). A complete geological record of 3 myr (from 36.2 to 33.2 Ma according to the time scale of Berggren et al., 1995) is preserved which spans the interval from the latest Eocene to the early Oligocene, from Chron C16n to C13n (Bice & Montanari, 1988; Lowrie & Lanci, 1994), and is provided by an accurate calibration of bio- and geochemical events. Cosmic signatures are also recorded in the Massignano section (Montanari et al., 1993) where three impactoclastic, iridium-rich layers occurs in the middle-lower part of the succession (Montanari et al., 1988, 1993; Bodeselitsch et al., 2004). They are possibly linked to the Popigai and Chesapeake Bay impacts and related to a comet shower over a duration of 2.2 myr (Farley et al., 1998). Calcareous nannofossil and foraminiferal assemblages (Coccioni et al., 2000; Spezzaferri et al., 2002), dinoflagellate cyst palynology (Brinkhuis & Biffi, 1993), ostracod faunas (Dall'Antonia et al

  8. Holocene Climatic Optimum centennial-scale paleoceanography in the NE Aegean (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Maria V.; Gogou, Alexandra; Dimiza, Margarita D.; Kostopoulou, Sofia; Parinos, Constantine; Roussakis, Grigoris; Geraga, Maria; Bouloubassi, Ioanna; Fleitmann, Dominik; Zervakis, Vassilis; Velaoras, Dimitris; Diamantopoulou, Antonia; Sampatakaki, Angeliki; Lykousis, Vassilis

    2016-02-01

    Combined micropaleontological and geochemical analyses of the high-sedimentation gravity core M-4G provided new centennial-scale paleoceanographic data for sapropel S1 deposition in the NE Aegean Sea during the Holocene Climatic Optimum. Sapropel layer S1a (10.2-8.0 ka) was deposited in dysoxic to oxic bottom waters characterized by a high abundance of benthic foraminiferal species tolerating surface sediment and/or pore water oxygen depletion (e.g., Chilostomella mediterranensis, Globobulimina affinis), and the presence of Uvigerina mediterranea, which thrives in oxic mesotrophic-eutrophic environments. Preservation of organic matter (OM) is inferred based on high organic carbon as well as loliolide and isololiolide contents, while the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. High inputs of terrigenous OM are attributed to north Aegean borderland riverine inputs. Both alkenone-based sea surface temperatures (SSTs) and δO18 G. bulloides records indicate cooling at 8.2 ka (S1a) and ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7-6.4 ka) is characterized by rather oxic conditions; abundances of foraminiferal species tolerant to oxygen depletion are very low compared with the U. mediterranea rise. Strongly fluctuating SSTs demonstrate repeated cooling and associated dense water formation, with a major event at 7.4 ka followed by cold spells at 7.0, 6.8, and 6.5 ka. The prominent rise of the carbon preference index within the S1b layer indicates the delivery of less degraded terrestrial OM. The increase of algal biomarkers, labile OM-feeding foraminifera and eutrophic planktonic species pinpoints an enhanced in situ marine productivity, promoted by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine OM along with fresher terrestrial OM inputs after ~7.7 ka imply sources alternative/additional to the north Aegean riverine borderland sources for

  9. Southern high-latitude terrestrial climate change during the Palaeocene-Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.

    2014-07-01

    Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the

  10. Southern high-latitude terrestrial climate change during the Paleocene-Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.

    2014-01-01

    Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP

  11. Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Pälike, H.; Wilkens, R.; Wilson, P. A.; Acton, G.

    2014-05-01

    Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, a robust astronomically calibrated age model was constructed for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the middle Eocene climate optimum and the Eocene-Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new timescale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and 320-U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently orbital tuning of the records to the La2011 orbital solution was conducted. The resulting new timescale revises and refines the existing orbitally tuned age model and the geomagnetic polarity timescale from 31 to 43 Ma. The newly defined absolute age for the Eocene-Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano, Italy, global stratotype section and point. The compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during 2.4 myr eccentricity cycle minima around 35.5, 38.3, and 40.1 Ma.

  12. Orbitally tuned time scale and astronomical forcing in the middle Eocene to early Oligocene

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Pälike, H.; Wilkens, R.; Wilson, P. A.; Acton, G.

    2013-12-01

    Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5, 38.3 and 40.1 Ma.

  13. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin

    USGS Publications Warehouse

    Gibson, T.G.; Bybell, L.M.; Mason, D.B.

    2000-01-01

    Kaolinite usually is present in relatively small amounts in most upper Paleocene and lower Eocene neritic deposits of the northern US Atlantic Coastal Plain. However, there is a short period (less than 200,000 k.y.) in the latest Paleocene (upper part of calcareous nannoplankton Zone NP 9) when kaolinite-dominated clay mineral suites replaced the usual illite/smectite-dominated suites. During this time of global biotic and lithologic changes, kaolinite increased from less than 5% of the clay mineral suite to peak proportions of 50-60% of the suite and then returned to less than 5% in uppermost Paleocene/lowermost Eocene strata. This kaolinite pulse is present at numerous localities from southern Virginia to New Jersey. These sites represent both inner and middle neritic depositional environments and reflect input from several river drainage systems. Thus, it is inferred that kaolinite-rich source areas were widespread in the northeastern US during the latest Paleocene. Erosion of these source areas contributed the kaolinite that was transported and widely dispersed into shelf environments of the Salisbury embayment. The kaolinite increase, which occurred during a time of relatively high sea level, probably is the result of intensified weathering due to increased temperature and precipitation. The southern extent of the kaolinite pulse is uncertain in that uppermost Paleocene beds have not been identified in the southern Atlantic Coastal Plain. The late Paleocene kaolinite pulse that consists of an increase to peak kaolinite levels followed by a decrease can be used for detailed correlation between more upbasin and more downbasin sections in the Salisbury embayment. Correlations show that more upbasin Paleocene/Eocene boundary sections are erosionally truncated. They have varying portions of the kaolinite increase and, if present at all, discontinuous portions of the subsequent kaolinite decrease. As these truncated sections are disconformably overlain by lower

  14. Marine and terrestrial biotic response to climate variability across the Paleocene-Eocene boundary in the Mid-Atlantic region, USA

    NASA Astrophysics Data System (ADS)

    Willard, D. A.; Aleman, W.; Edwards, L. E.; Farmer, J. R.; Self-Trail, J.

    2009-12-01

    Late Paleocene to early Eocene continental margin sediments provide an opportunity to examine rates and patterns of change in terrestrial and marine ecoystems during an interval of rapid global warming and increasing atmospheric carbon concentrations. We present Paleocene-Eocene thermal maximum (PETM) multiproxy data from a core obtained in 2007 from South Dover Bridge, Talbot County, Maryland. In it, we identified an apparently conformable Paleocene-Eocene contact at the Aquia Formation/Marlboro Clay boundary based on nannofossil, dinocyst, and pollen assemblages. A CaCO3 dissolution zone persists through the lower 91 cm of the Marlboro Clay. Terrestrial palynomorph concentration increases sharply at the base (<10 cm) of the dissolution zone, which is characterized by dominance (40-50%) of fern spores and distinctive palynofacies. Specimens of the dinocyst marker species Apectodinium augustum are present but not abundant. Planktic and benthic foraminifers and nannofossils are absent in the dissolution zone, except for distinct and reduced assemblages at 54 cm above the basal Marlboro contact. Marlboro Clay sediment above the dissolution zone contains a unique nannofossil assemblage that is restricted to this unit and is indicative of the PETM both regionally and globally. The re-occurrence of calcareous nannofossil species in the upper Marlboro that disappeared at the base of the dissolution zone suggests a return to normal oceanic conditions. Comparison of multi-proxy data from this high-sedimentation site with other PETM records is important to improve our understanding of the pattern and timing of vegetation, phytoplankton, and marine responses to climate variability associated with the PETM, both regionally and globally.

  15. The age and composition of the deep crust exposed in the Mariana forearc south of Guam, implications for the scale of Middle Eocene volcanism and climate change

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; McClelland, W.; Ohara, Y.; Girard, G.; Goff, K.; Peate, D. W.; Stern, R. J.

    2012-12-01

    The sequence of lithologies exposed in the Mariana forearc southeast of Guam is similar to that of many ophiolites and includes widespread basaltic pillow lavas (termed forearc basalts or FAB; Reagan et al., 2010, G-cubed) that are thought to result from decompression melting associated with subduction initiation (SI). Ishizuka et al. (2011, EPSL) showed that the forearc lithologies east of the Bonin Islands were essentially identical to those of the Mariana forearc, and that the basaltic to gabbroic sections had ages of 51-52 Ma. Here, we report geochemistry and geochronology for deep crust lithologies collected during one Shinkai 6500 dive (6K-1229) in the Mariana forearc south of Guam. Gabbros at this location have compositions relating them to FAB and Zircon U-Pb ages of 51.5+/-0.7 Ma, exactly synchronous with similar rocks from the Bonin forearc 1,600 km to the north. Further south in the western Pacific, the Tonga-Kermadec forearc has an ophiolite-like assemblage with compositions and ages similar to those of the equivalent rocks in the IBM system (Bloomer and Fisher, 1987, J. Geol.; Acland, 1996, PhD Thesis, Durham; Todd et al., 2012, EPSL; Michibayashi et al. this meeting). To the north, the record of arc magmatism stretches back to at least 46 Ma in the western Aleutians (Jicha et al., 2006, Geology). Thus, SI could have occurred nearly simultaneously along much of the western margin of the Pacific plate. If so, then the resulting volume of basalt erupted near western Pacific trenches between 52 and 49 Ma would have been globally significant, perhaps exceeding the volumes of the largest igneous provinces. Another global event at about 51 Ma was the Early Eocene Climatic Optimum (EECO). This age marked the time when atmospheric CO2 values and thus global atmospheric temperatures were likely at or near their Cenozoic maxima (Zachos et al., 2008, Nature). The rise in δ18O for seawater toward the EECO began at about 58 Ma and the decline after ~51 Ma

  16. Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events

    NASA Astrophysics Data System (ADS)

    Arreguín-Rodríguez, Gabriela J.; Alegret, Laia; Thomas, Ellen

    2016-03-01

    We investigated the response of late Paleocene-middle Eocene (~60-37.5 Ma) benthic foraminiferal assemblages to long-term climate change and hyperthermal events including the Paleocene-Eocene Thermal Maximum (PETM) at Ocean Drilling Program (ODP) Site 865 on Allison Guyot, a seamount in the Mid-Pacific Mountains. Seamounts are isolated deep-sea environments where enhanced current systems interrupt bentho-pelagic coupling, and fossil assemblages from such settings have been little evaluated. Assemblages at Site 865 are diverse and dominated by cylindrical calcareous taxa with complex apertures, an extinct group which probably lived infaunally. Dominance of an infaunal morphogroup is unexpected in a highly oligotrophic setting, but these forms may have been shallow infaunal suspension feeders, which were ecologically successful on the current-swept seamount. The magnitude of the PETM extinction at Site 865 was similar to other sites globally, but lower diversity postextinction faunas at this location were affected by ocean acidification as well as changes in current regime, which might have led to increased nutrient supply through trophic focusing. A minor hyperthermal saw less severe effects of changes in current regime, with no evidence for carbonate dissolution. Although the relative abundance of infaunal benthic foraminifera has been used as a proxy for surface productivity through bentho-pelagic coupling, we argue that this proxy can be used only in the absence of changes in carbonate saturation and current-driven biophysical linking.

  17. Climate Monitoring and Recommendations on the Optimum Sowing Period for the Main Crops in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, T.; Moraru, P. I.; Sopterean, M. L.; Pop, A. I.; Cacovean, H.

    2012-04-01

    The Transylvanian Plain (TP) is a geographical region located in north-central Romania and is bordered by large rivers to the north and south, the Somes and the Mures, respectively. TP with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate floor with oceanic influences, 6-10 0C average annual temperatures and 500-700 mm/year average annual precipitations. The presence of the Carpathian mountains ring and the arrangement, almost concentric, of the relief from Transylvanian Depression, determines the development of a zonal sequence of soil types, a horizontal zonality as a direct influence of lithology and indirect of the relief, by changing climate and vegetation. Diversity of the pedogenetical factors - highly fragmented relief, forest and herbaceous vegetation grafted on a lithological background predominantly acid in the north - west and predominantly basic in south - est, parent rock composition and especially their combination in the contact zones, have conditioned in this hilly area of TP a tessellated soil cover. During soil pedogenesis, soil properties and features developed in response to differential lithology and macro/microrelief. Evaluated soils were found to largely be a complex mix of Cernisols, Luvisols and Antrisols. Zoning cultures and establishing the optimum sowing periods was made after the observations arising from practice and after the results obtained in the agricultural experimental research stations. Climate changes in recent years and climate monitoring from TP offers the possibility to check the calendar for the optimum sowing period. Monitorization of the thermal and water regime from TP was performed with twenty HOBO microstations which determine the temperature (to a height of 1 m) and rainfalls, same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Recorded

  18. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity.

    PubMed

    Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Cúneo, N Rubén

    2005-06-21

    South America has some of the most diverse floras and insect faunas that are known, but its Cenozoic fossil record of insects and insect herbivory is sparse. We quantified insect feeding on 3,599 leaves from the speciose Laguna del Hunco flora (Chubut, Argentina), which dates to the early Eocene climatic optimum (52 million years ago) and compared the results with three well preserved, rich, and identically analyzed early- and middle-Eocene floras from the following sites in North America: Republic, WA; Green River, UT; and Sourdough, WY. We found significantly more damage diversity at Laguna del Hunco than in the North American floras, whether measured on bulk collections or on individual plant species, for both damage morphotypes and feeding groups. An ancient history of rich, specialized plant-insect associations on diverse plant lineages in warm climates may be a major factor contributing to the current biodiversity of South America.

  19. Comment on "Changes in climatic water balance drive downhill shifts in plant species' optimum elevations"

    USGS Publications Warehouse

    Stephenson, Nathan L.; Das, Adrian J.

    2011-01-01

    Crimmins et al. (Reports, 21 January 2011, p. 324) attributed an apparent downward elevational shift of California plant species to a precipitation-induced decline in climatic water deficit. We show that the authors miscalculated deficit, that the apparent decline in species' elevations is likely a consequence of geographic biases, and that unlike temperature changes, precipitation changes should not be expected to cause coordinated directional shifts in species' elevations.

  20. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)

    NASA Astrophysics Data System (ADS)

    Kotthoff, U.; Greenwood, D. R.; McCarthy, F. M. G.; Müller-Navarra, K.; Prader, S.; Hesselbo, S. P.

    2014-08-01

    We investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak-hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∼11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∼4 °C, from ∼16 °C to ∼12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∼20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∼15 million years before present, with only a minor increase in deciduous-evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∼14 °C during the mid-Miocene climatic optimum, ∼2

  1. Observational Evidence for a Decade-long climate optimum near the Hesperian/Amazonian Transition

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Moore, J. M.; Howard, A. D.

    2012-12-01

    Hesperian to Amazonian-aged valleys (HAVs) are predominantly found in the southern equatorial and mid-latitudes of Mars and form parallel to dendritic networks. These features record a significant warming of the regional/global climate which may have been associated with outflow channel formation and/or a period of alluvial fan deposition in Margaritifer Terra [1]. HAVs are distinct from older valley networks in both their age and morphology and they provide a window into the past climate conditions and potential water sources which formed them. Using quantitative geomorphic analysis we calculate the expected range of timescales, water volumes, precipitation rates and atmospheric conditions which contributed to HAV formation. In Newton crater (40oS, -159oE) we measured valley widths, depths, slopes and alluvial fan volumes. These observations, when combined with a set of terrestrial sediment transport prediction functions [2,3,4,5], allow us to calculate an expected duration of fluvial activity ranging from 0.1 to 10 years for water-filled channel depths ranging between 20 and 130 cm, and median sediment grain size ranging from 1 mm to 10 cm. The water volume required to form a single HAV in Newton crater ranges between 1.8 and 5.7~km3 based on the Darcy-Weisbach equation [6] in combination with the aforementioned range in channel depths, grain sizes and formation timescales. These results imply water runoff rates of between 1 to 10~cm/day over a typical, 300~km2, drainage area. Such a high runoff rate and short formation time suggest a brief, dramatic regional to global climate excursion. The source of water which formed these features remains unclear, but it must have been released at the aforementioned rates, and was widely distributed within each drainage catchment, and regionally over Newton crater and the southern highlands. HAV formation was likely a two-step process involving, first, the deposition of a 10s of meters thick regional snowpack along

  2. The Holocene climatic optimum and pollen records of sapropel 1 in the eastern Mediterranean, 9000-6000 BP

    NASA Astrophysics Data System (ADS)

    Rossignol-Strick, Martine

    1999-04-01

    The most recent sapropel in the deep eastern Mediterranean Sea has been deposited between 9 and 6 ka BP. Climate conditions, as revealed by the pollen records of this sapropel in marine cores, were most favorable for temperate deciduous trees, which is in agreement with the inferences from records of peripheral land pollen sites. The abundance of deciduous oak pollen is much higher than that of Artemisia (sage-brush), indicating that annual precipitation in the mid-elevation borderlands was at least 550 mm without summer drought, but more probably in the range 800-1300 mm. The pollen of Pistacia, which formed a savanna at low elevations, is also at its highest abundance and signals the absence of frost in winter, while being capable of withstanding summer drought. The early Holocene therefore appears as the post-glacial climatic optimum with the highest moisture and mildest winters. In southwest Asia, this is also the time of the Neolithic population explosion with incipient domestication of cereals, possibly following natural selection of the 'tough rachis' mutation in wheat and barley by the extreme aridity of the preceding Younger Dryas.

  3. Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Pascher, K. M.; Hollis, C. J.; Bohaty, S. M.; Cortese, G.; McKay, R. M.

    2015-07-01

    The Eocene was characterised by "greenhouse" climate conditions that were gradually terminated by a long-term cooling trend through the middle and late Eocene. This long-term trend was determined by several large-scale climate perturbations that culminated in a shift to "ice-house" climates at the Eocene-Oligocene Transition. Geochemical and micropaleontological proxies suggest that tropical-to-subtropical sea-surface temperatures persisted into the late Eocene in the high-latitude Southwest Pacific Ocean. Here, we present radiolarian microfossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) Sites 277, 280, 281 and 283 from the middle Eocene to early Oligocene (~ 40-33 Ma) to identify oceanographic changes in the Southwest Pacific across this major transition in Earth's climate history. The Middle Eocene Climatic Optimum at ~ 40 Ma is characterised by a negative shift in foraminiferal oxygen isotope values and a radiolarian assemblage consisting of about 5 % of low latitude taxa Amphicraspedum prolixum group and Amphymenium murrayanum. In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift can be correlated to the Priabonian Oxygen Isotope Maximum (PrOM) event - a short-lived cooling event recognized throughout the Southern Ocean. Radiolarian abundance, diversity, and preservation increase during the middle of this event at Site 277 at the same time as diatoms. The PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. These high-latitude taxa also increase in abundance during the late Eocene and early Oligocene at DSDP Sites 280, 281 and 283 and are associated with very high diatom abundance. We therefore infer a~northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau towards the end of the late Eocene. In the early Oligocene (~ 33 Ma) there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms

  4. Changes in the strength of Atlantic Ocean overturning circulation across repeated Eocene warming events

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, S.; Sexton, P. F.; Norris, R. D.; Wilson, P. A.; Charles, C. D.; Ridgwell, A.

    2015-12-01

    The Paleogene Period (~65 to 34 Ma) was a time of acute climatic warmth, with deep ocean temperatures exceeding 12°C at the height of the Early Eocene Climatic Optimum (~53 to 50 Ma). Multiple rapid warming events, associated with transient deep sea temperature increases of 2 to 4°C (termed 'hyperthermals'), potentially related to orbital forcing of the carbon cycle and climate, occurred from the late Paleocene through at least the early middle Eocene and onset of long-term Cenozoic cooling (~47 Ma). While deep ocean circulation patterns associated with the great glaciations of the Plio-Pleistocene have been studied extensively, the behavior of the ocean's overturning circulation on orbital-timescales in the extreme warmth of the early Cenozoic is largely unknown. Here we present new evidence for changing patterns of ocean overturning in the southern hemisphere associated with four orbitally paced hyperthermal events in the early-middle Eocene (~50 to 48 Ma) based on a combination of multi-site bulk carbonate and benthic foraminiferal stable isotope measurements and Earth system modeling. Our results suggest that southern-sourced overturning weakens and shoals in response to modest atmospheric carbon injections and consequent warming, and is replaced by invasion of nutrient-rich North Atlantic-sourced deep water, leading to predictable spatial patterns in deep-sea carbon isotope records. The changes in abyssal carbon isotope 'aging' gradients associated with these hyperthermals are, in fact, two to three times larger than the change in aging gradient associated with the switch in Atlantic overturning between the Last Glacial Maximum and today. Our results suggest that the Atlantic overturning circulation was sensitive to orbital-scale climate variability during Eocene extreme warmth, not just to interglacial-glacial climatic variability of the Plio-Pleistocene.

  5. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography

    PubMed Central

    Antoine, Pierre-Olivier; Marivaux, Laurent; Croft, Darin A.; Billet, Guillaume; Ganerød, Morgan; Jaramillo, Carlos; Martin, Thomas; Orliac, Maëva J.; Tejada, Julia; Altamirano, Ali J.; Duranthon, Francis; Fanjat, Grégory; Rousse, Sonia; Gismondi, Rodolfo Salas

    2012-01-01

    The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America. PMID:21993503

  6. Mid-Burdigalian Paratethyan alkenone record reveals link between orbital forcing, Antarctic ice-sheet dynamics and European climate at the verge to Miocene Climate Optimum

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Tzanova, Alexandrina; Harzhauser, Mathias; Piller, Werner E.

    2014-12-01

    The Early Ottnangian Cooling (EOC), a distinct cold-spell in European climate at ~ 18 Ma preceding the Miocene Climate Optimum, is frequently reported in Paratethys records; however, the duration, magnitude, and underlying causes are poorly understood. A new palaeoclimatic data-set provides unexpected insights into this event. UK'37-based sea-surface temperatures > 24 °C between ~ 18.1 and 17.7 Myrs substantially exceed existing estimates, and indicate a significantly warmer European climate than previously assumed for this usually poorly recovered time interval. The EOC is expressed as an average drop of 2-3 °C in Paratethyan water temperatures between ~ 18.1 and 17.8 Myrs with two distinct cold snaps at ~ 17.86 Ma and ~ 17.81 Ma. The short duration of the EOC excludes Tethyan Seaway closure as its underlying cause, although the enhanced palaeoclimatic sensitivity of the Paratethys due to this palaeogeographic configuration potentially contributed to the magnitude of SST deterioration during the EOC. The revealed palaeoclimatic pattern shows a strong correlation with isotope event Mi-1b in deep-sea δ18O records, and we propose a tight palaeoclimatic link between the Southern Ocean and the Paratethys/Mediterranean realm as an alternative hypothesis. The interplay of modulations in the long-term (~ 400 kyrs) and short-term (~ 100 kyrs) eccentricity cycles most likely acted as pacemaker of this palaeoclimatic interaction.

  7. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  8. Mid-Burdigalian Paratethyan alkenone record reveals link between orbital forcing, Antarctic ice-sheet dynamics and European climate at the verge to Miocene Climate Optimum

    PubMed Central

    Grunert, Patrick; Tzanova, Alexandrina; Harzhauser, Mathias; Piller, Werner E.

    2014-01-01

    The Early Ottnangian Cooling (EOC), a distinct cold-spell in European climate at ~ 18 Ma preceding the Miocene Climate Optimum, is frequently reported in Paratethys records; however, the duration, magnitude, and underlying causes are poorly understood. A new palaeoclimatic data-set provides unexpected insights into this event. UK'37-based sea-surface temperatures > 24 °C between ~ 18.1 and 17.7 Myrs substantially exceed existing estimates, and indicate a significantly warmer European climate than previously assumed for this usually poorly recovered time interval. The EOC is expressed as an average drop of 2–3 °C in Paratethyan water temperatures between ~ 18.1 and 17.8 Myrs with two distinct cold snaps at ~ 17.86 Ma and ~ 17.81 Ma. The short duration of the EOC excludes Tethyan Seaway closure as its underlying cause, although the enhanced palaeoclimatic sensitivity of the Paratethys due to this palaeogeographic configuration potentially contributed to the magnitude of SST deterioration during the EOC. The revealed palaeoclimatic pattern shows a strong correlation with isotope event Mi-1b in deep-sea δ18O records, and we propose a tight palaeoclimatic link between the Southern Ocean and the Paratethys/Mediterranean realm as an alternative hypothesis. The interplay of modulations in the long-term (~ 400 kyrs) and short-term (~ 100 kyrs) eccentricity cycles most likely acted as pacemaker of this palaeoclimatic interaction. PMID:25844022

  9. Integrated stratigraphy and astronomical tuning of Smirra cores, lower Eocene, Umbria-Marche basin, Italy.

    NASA Astrophysics Data System (ADS)

    Lauretano, Vittoria; Turtù, Antonio; Hilgen, Frits; Galeotti, Simone; Catanzariti, Rita; Reichart, Gert Jan; Lourens, Lucas J.

    2016-04-01

    The early Eocene represents an ideal case study to analyse the impact of increase global warming on the ocean-atmosphere system. During this time interval, the Earth's surface experienced a long-term warming trend that culminated in a period of sustained high temperatures called the Early Eocene Climatic Optimum (EECO). These perturbations of the ocean-atmosphere system involved the global carbon cycle and global temperatures and have been linked to orbital forcing. Unravelling this complex climatic system strictly depends on the availability of high-quality suitable geological records and accurate age models. However, discrepancies between the astrochronological and radioisotopic dating techniques complicate the development of a robust time scale for the early Eocene (49-54 Ma). Here we present the first magneto-, bio-, chemo- and cyclostratigraphic results of the drilling of the land-based Smirra section, in the Umbria Marche Basin. The sediments recovered at Smirra provide a remarkably well-preserved and undisturbed succession of the early Palaeogene pelagic stratigraphy. Bulk stable carbon isotope and X-Ray Fluorescence (XRF) scanning records are employed in the construction of an astronomically tuned age model for the time interval between ~49 and ~54 Ma based on the tuning to long-eccentricity. These results are then compared to the astronomical tuning of the benthic carbon isotope record of ODP Site 1263 to evaluate the different age model options and improve the time scale of the early Eocene by assessing the precise number of eccentricity-related cycles comprised in this critical interval.

  10. Multiple Early Eocene Thermal Maximums

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Zachos, J. C.; Thomas, E.; Kelly, D. C.; Donner, B.; Westerhold, T.

    2004-12-01

    Periodic dissolution horizons signifying abrupt shoaling of the lysocline and CCD are characteristic features of deep-sea sections and often attributed to Milankovitch forcing via their diagnostic frequencies. Prominent dissolution horizons also correspond to abrupt climate events, such as the Paleocene-Eocene thermal maximum (PETM), as a result of input of significant CH4 - CO2 into the ocean-atmosphere system. The question arises whether other significant dissolution horizons identified in sediments of late Paleocene and early Eocene age similar to the recently identified ELMO (Lourens et al., 2004) were formed as a result of greenhouse gas input, or whether they were related to cumulative effects of periodic changes in ocean chemistry and circulation. Here we report the discovery of a 3rd thermal maximum in early Eocene (about 52 Ma) sediments recovered from the South Atlantic during ODP Leg 208. The prominent clay layer was named the "X" event and was identified within planktonic foraminifer zone P7 and calcareous nannofossil zone CP10 at four Walvis Ridge Transect sites with a water depth range of 2000 m (Sites 1262 to 1267). Benthics assemblages are composed of small individuals, have low diversity and high dominance. Dominant taxa are Nuttallides truempyi and various abyssaminids, resembling the post PETM extinction assemblages. High-resolution bulk carbonate \\delta13C measurements of one of the more shallow Sites 1265 reveal a rapid about 0.6 per mill drop in \\delta13C and \\delta18O followed by an exponential recovery to pre-excursion \\delta13C values well known for the PETM and also observed for the ELMO. The planktonic foraminiferal \\delta13C records of Morozovella subbotina and Acaranina soldadoensis in the deepest Site 1262 show a 0.8 to 0.9 per mill drop, whereas the \\delta13C drop of benthic foraminifera Nuttallides truempyi is slightly larger (about 1 per mill). We are evaluating mechanisms for the widespread change in deep-water chemistry, its

  11. A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the southern Rocky Mountains, USA

    SciTech Connect

    Petersen, K.L.

    1992-05-01

    In the next century, increases in atmospheric trace gas concentration could warm the global average temperature beyond what it has ranged during the past century. Examination of larger-than-historic climatic changes that have occurred in the past in specific regions provides realistic context for evaluating such potential future changes. This paper has contrasted the climatic manifestation of the Little Climatic Optimum or Medieval Warm Period (AD 900--1300) with that of the Little Ice Age (AD 1300--1850) in the northern Colorado Plateau region of the southwestern USA. The zenith of the Anasazi occupation coincides with the former and their demise coincides with the latter, when conditions became too cold and especially dry (in the summer) to support upland dry farming. During the height of the Little Climatic Optimum the region was characterized by a relatively long growing season and greater winter and summer precipitation than that of today. This resulted in a relatively rapid development of a potential dry-farming belt that was twice as wide as the present and areas that cannot be dry farmed today were routinely farmed by the Anasazi. Such conditions would be beneficial to dry farmers in the Four Corners region if those conditions were repeated in the near future.

  12. Measuring the Climate Pulse of the Late Early Eocene and Middle Eocene Hothouse World (51-42 Ma): New Results From ODP Leg 189 Hole 1171D, South Tasman Rise

    NASA Astrophysics Data System (ADS)

    Ferrantelli-McDonald, N. L.; Pekar, S. F.

    2012-12-01

    A high-resolution grain size record coupled with spectral analysis of down hole data developed for the interval between 690 and 410 mbsf (51 - 42 Ma) from Ocean Drilling Program (ODP) Site 1171 show that pervasive cyclicity occurs at both the million-year timescale, which correlates well with sequence boundaries, and at the 104 to 105 year timescale, for sedimentary cycles that occur within the sequences. Site 1171 contains an exceptional archive of Early to Middle Eocene strata that include excellent recovery (91.4%) and a high-resolution chronostratigraphic framework using bio- and magneto-stratigraphy. Site 1171 was drilled on the southern side of the South Tasman Rise (STR) at 48° 30‧ S latitude. However, during the Early to Middle Eocene, the STR was located near the coast of Antarctica, with Site 1171 located at 70° to 66° S paleo-latitude, making it the most southerly site with excellent core recovery and good preservation of foraminifers for this time. Previous work developed a sequence stratigraphic framework based on an integrated approach using lithofacies and biofacies to reconstruct the paleoenvironment and water depths. Sequence boundaries were interpreted to represent water-depth decreases, which were correlated to other stratigraphic records and to deep-sea δ18O records. Excellent agreement between sequence boundary ages from different sites as well as to δ18O increases indicate that these sea-level lowerings were global in nature and were interpreted to represent growth of small ephemeral ice sheets on the Antarctic continent. Grain size analysis shows that muds dominated the lithology, typically representing over 90% of the sediments. This suggests that water depths were typically near or below storm wave base. This is consistent with an inner to outer neritic environment based on the foraminiferal biofacies. Taken together, these two data sets suggest a shallow wave base at Site 1171 during the Eocene. Sequence boundaries dated at 49.3, 47

  13. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India

    PubMed Central

    Rust, Jes; Singh, Hukam; Rana, Rajendra S.; McCann, Tom; Singh, Lacham; Anderson, Ken; Sarkar, Nivedita; Nascimbene, Paul C.; Stebner, Frauke; Thomas, Jennifer C.; Solórzano Kraemer, Monica; Williams, Christopher J.; Engel, Michael S.; Sahni, Ashok; Grimaldi, David

    2010-01-01

    For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50–52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today. PMID:20974929

  14. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India.

    PubMed

    Rust, Jes; Singh, Hukam; Rana, Rajendra S; McCann, Tom; Singh, Lacham; Anderson, Ken; Sarkar, Nivedita; Nascimbene, Paul C; Stebner, Frauke; Thomas, Jennifer C; Solórzano Kraemer, Monica; Williams, Christopher J; Engel, Michael S; Sahni, Ashok; Grimaldi, David

    2010-10-26

    For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50-52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today. PMID:20974929

  15. The Terrestrial Eocene-Oligocene Transition in North America

    NASA Astrophysics Data System (ADS)

    Prothero, Donald R.; Emry, Robert J.

    1996-06-01

    The transition from the Eocene to the Oligocene epoch, occurring approximately 47 to 30 million years ago, was the most dramatic episode of climatic and biotic change since the demise of the dinosaurs. The mild tropical climates of the Paleocene and early Eocene were replaced by modern climatic conditions and extremes, including glacial ice in Antarctica. The first part of this book summarizes the latest information in the dating and correlation of the strata of late middle Eocene through early Oligocene age in North America. The second part reviews almost all the important terrestrial reptiles and mammals found near the Eocene-Oligocene boundary, in the White River Chronofauna--from the turtles, snakes and lizards to the common rodents, carnivores, oreodonts and deer of the Badlands. This is the first comprehensive treatment of these topics in over sixty years, and will be invaluable to vertebrate paleontologists, geologists, mammalogists and evolutionary biologists.

  16. Reconstructing Changes in Deep Ocean Temperature and Global Carbon Cycle during the Early Eocene Warming Trend: High-Resolution Benthic Stable Isotope Records from the SE Atlantic.

    NASA Astrophysics Data System (ADS)

    Lauretano, V.; Zachos, J. C.; Lourens, L. J.

    2014-12-01

    From the late Paleocene to the early Eocene, Earth's surface temperatures generally rose, resulting in an increase of at least 5°C in the deep ocean and culminating in the Early Eocene Climatic Optimum (EECO). This long-term warming was punctuated by a series of short-lived global warming events known as "hyperthermals", of which the Paleocene-Eocene Thermal Maximum (PETM) represents the most extreme example. At least two other short-term episodes have been identified as hyperthermals: the ETM2 (or Elmo event) at about 53.7 Myr and the ETM3 (or X-event) at about 52.5 Myr. These transient events are marked by prominent carbon isotope excursions (CIEs), recorded in marine and continental sedimentary sequences and driven by fast and massive injections of 13C-depleted carbon into the ocean-atmosphere system. Recently, evidence has indicated the presence of a regular series of hyperthermal events following the peak in temperatures of the EECO. However, continuous records are needed to investigate short- and long- term changes in the climate system throughout the Early Eocene warming trend. Here, we present new high-resolution benthic stable isotope records of the Early Eocene from ODP Site 1263, (Walvis Ridge, SE Atlantic). The carbon and oxygen records document changes in deep-sea temperature and global carbon cycle encompassing the Early Eocene hyperthermal events and the EECO interval. The transition phase to the post-EECO events is distinct by the decoupling of carbon and oxygen isotopes on the long-term scale. Spectral and wavelet analyses suggest the influence of orbital forcing, specifically long and short eccentricity cycles.

  17. Responses to Rapid Climate Change: Osmium Isotopic Evidence for Changing Weathering Fluxes in Response to the Paleocene-Eocene Hyperthermal Event

    NASA Astrophysics Data System (ADS)

    Wieczorek, R.; Fantle, M. S.; Kump, L. R.; Ravizza, G. E.

    2009-12-01

    Physical and chemical weathering responses to changes in temperature at the Earth’s surface are strongly debated, yet are critical to understanding the long-term effects of global climate change. One manner of studying such relationships is to use geochemical proxies of weathering (such as osmium isotopes) to examine periods of climate change in the past. Here we report a new high-resolution marine osmium isotope record from Svalbard core BH 9/05 in the North Atlantic over the Paleocene-Eocene Thermal Maximum (PETM). The PETM (55 Ma) is a ~170 ka period of warming characterized by negative excursions in oxygen (about 1-1.5‰) and carbon isotopes (2-2.5‰ in marine foraminifera and 4-6 ‰ in terrestrial records). The measured PETM section of BH 9/05 (> 70 m) consists of carbonate-poor gray shale with total organic carbon contents of 2-3%, deposited in a foreland basin/pro-delta environment. The gray shale record shows a clear increase in bulk 187Os/188Os and Os concentrations (ppt: pg Os/g rock) during the PETM, with increases of > 40 ppt in total Os and at least 0.2 in 187Os/188Os. Re concentrations (0.7 -10.5 ng/g) display a local maximum close to the Os concentration maximum. Age corrections to the measured 187Os/188Os for in situ decay of 187Re are modest (5-30%) with the largest corrections coinciding with the most negative carbon isotope values. The change in 187Os/188Os may be as high as 0.47 at our study site, suggesting a peak seawater 187Os/188Os value around 0.8. This peak value, nearly twice the pre-event value, is substantially more radiogenic than previous estimates for seawater 187Os/188Os during the PETM, though still well below the 187Os/188Os of modern seawater. Previous studies, which also document a 187Os/188Os increase during the PETM, saw changes that were nearly five times smaller than the shift we report here. Preliminary bulk rock 187Os/188Os (age-corrected) show a pre-event 187Os/188Os ratio between 0.36 and 0.45, similar to the steady

  18. Orbital control on carbon cycle alterations and hyperthermal events in a cooling world: the late Early to Mid Eocene record at Possagno (southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Galeotti, Simone; Sprovieri, Mario; Moretti, Matteo; Rio, Domenico; Fornaciari, Eliana; Giusberti, Luca; Agnini, Claudia; Backman, Jan; Lanci, Luca; Luciani, Valeria

    2013-04-01

    The late Early Eocene to Middle Eocene ~50-45 Million years ago (Ma) time interval in the middle bathyal, pelagic/hemipelagic succession of the Western Tethys Possagno section (southern Alps, Veneto), contains several episodes of negative carbon isotope excursions (CIEs) and concomitant dissolution of carbonates. These episodes are superimposed on a long term global climate cooling that started at about 51 Ma following the Early Eocene Climatic Optimum (EECO). Spectral analysis indicates that CIEs and dissolution events are paced by orbital forcing, confirming the global significance of previous finding on the same interval from Western and Southern Atlantic and Equatorial Pacific sites. The frequency and magnitude of CIEs through time is controlled by long-term modulations of orbital parameters, including long eccentricity (400 kyr) and a 1.2 million year modulation. Highest frequency of events - at the orbital scale - is observed across the EECO, which provides an observational basis to validate theoretical models predicting a threshold effect resulting from orbital forcing superimposed on gradually changing mean global boundary conditions. The observation of the 1.2 million year beat (long-term modulation of obliquity) together with previously published observation of enhanced obliquity (41 kyr) forcing across major CIEs and dissolution intervals indicates that high latitude feedbacks to orbital forcing played a fundamental role in the emplacement of the hyperthermals. The observed orbital forcing signature closely match that of early Eocene hyperthermals, suggesting similar driving processes.

  19. Integrating South Pacific carbon cycling and climate history from Late Paleocene to Middle Eocene: an upper slope transect from eastern New Zealand

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Dickens, G. R.; Hollis, C. J.; Crampton, J. S.; Strong, C.; Zachos, J. C.; Hines, B. R.; Philips, A.

    2013-12-01

    The Late Paleocene to Middle Eocene was characterized by prominent variations in global carbon cycling, which operated on both long (>10e6) and short (<10e5) time scales. The interval from about 58 to 52 Ma is now fairly well documented, and can be described in a general sense as a time when δ13C dropped significantly, and the CCD deepened by several hundred meters. Superimposed on these trends were a series of hyperthermal events, each associated with a rapid drop in δ13C and a shoaling of the CCD. A current issue is whether such hyperthermals, which were likely paced/triggered by orbital variations, occurred during the Late Paleocene (before the PETM) and during the middle Eocene (after the start of EECO). The problem arises in part because the CCD is relatively shallow prior to 58 Ma and after 52 Ma, such that well-resolved, single-site deep-sea records spanning the entire interval are rare. To better understand and constrain Late Paleocene to Middle Eocene carbon cycle changes, we extend well-resolved carbon isotope and carbonate content records from the Mead Stream section, which accumulated on the middle-upper slope of proto-New Zealand. In addition, we generated a new carbon isotope and carbonate content record from Branch Stream, a section up-slope from Mead Stream, for comparison between different settings along the same margin. The new data compliments previous work at these localities, such that detailed records now extend from 58 to 38 Ma. The long-term drop in δ13C from 58-52 Ma was followed by a long-term rise in δ13C. Numerous geologically-brief (<0.2 Myr) but relatively small carbon isotope excursions (CIEs) occur through this interval, although it is not clear if they are hyperthermals. In addition, strata from the late Early Eocene has lower carbonate contents than were measured in beds that span the numerous yet distinct clay-rich Early Eocene hyperthermals, an indication that the flux of carbonate to the seafloor decreased, either because of

  20. No extreme bipolar glaciation during the main Eocene calcite compensation shift.

    PubMed

    Edgar, Kirsty M; Wilson, Paul A; Sexton, Philip F; Suganuma, Yusuke

    2007-08-23

    Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere. PMID:17713530

  1. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene-Early Eocene climate and carbon cycling

    NASA Astrophysics Data System (ADS)

    Littler, Kate; Röhl, Ursula; Westerhold, Thomas; Zachos, James C.

    2014-09-01

    The Late Paleocene and Early Eocene were characterized by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as “hyperthermals”, thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (∼52.5-60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (∼2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (δ18O) and carbon-isotope (δ13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (δ13C, CIEs) and coeval negative oxygen-isotope (δ18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and δ18O events coincide with maxima in eccentricity, with changes in δ18O leading changes in δ13C by ∼6 (±5) kyr in the 405-kyr band and by ∼3 (±1) kyr in the higher frequency 100-kyr band on average. However, these

  2. Modifications in calcareous nannofossil assemblages during the Early Eocene: a tethyan perspective.

    NASA Astrophysics Data System (ADS)

    Agnini, Claudia; Rio, Domenico; Dallanave, Edoardo; Spofforth, David J. A.; Muttoni, Giovanni; Pälike, Heiko

    2010-05-01

    The available oxygen isotope records indicate a long-term warming trend from the late Paleocene through the early Eocene (ca. 59-52 Ma) that peaked at the Early Eocene Climatic Optimum (EECO) (Zachos et al., 2001). This trend was interrupted by at least two or more prominent carbon cycle perturbations, the PETM at ca. 55.5 Ma and the Eocene thermal maximum 2 (ETM2; also referred to as Elmo, H-1) at ca. 53,6 Ma (Kennett and Stott, 1991; Lourens et al., 2005). Here we present calcareous nannofossil data from the hemipelagic Cicogna section located in the Piave River Valley in north eastern Italy (Dallanave et al., 2009). This continuous sedimentary record was studied to reconstruct the main features in the calcareous nannoplankton communities during this critical interval. As is clearly shown by the results, some of the observed prominent modifications are related to short-lived phases of climate perturbation, as for instance the transient and abrupt appearance of odd species during the PETM or the prominent variations in the relative abundance within the assemblages during these events. These short-term changes are usually transitory and calcareous nannoplankton seem to be able to return back to pre-event state. Nonetheless, the overall shape of calcareous nannofossil assemblages showed long lasting or gradual changes, for example the extinction of genera Fasciculithus and Prinsius, the explosion of Zyghrablithus bijugatus and the gradual decrease of heterococcoliths/nannoliths ratio. Either transient or permanent modifications in calcareous nannofossils are associated to dramatic perturbation of paleoenviromental conditions or long trend climate evolution, respectively. References: Dallanave et al., 2009. Earth and Planetary Science Letters, 285, 39-51. Kennett and Stott, 1991. Nature, 353, 225-229. Lourens et al., 2005. Nature, 235, 1083-1087. Zachos et al., 2001. Science, 292, 686-693.

  3. Was the Arctic Eocene 'rainforest' monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut

    NASA Astrophysics Data System (ADS)

    West, Christopher K.; Greenwood, David R.; Basinger, James F.

    2015-10-01

    The early Eocene was the warmest interval of the Cenozoic, and included within it were several hyperthermal events, with the Paleocene-Eocene Thermal Maximum (PETM) the most pronounced of these. These globally warm climates extended into the Arctic and substantive paleobotanical evidence for high Arctic precipitation (MAP > 150 cm/yr) is indicative of an Arctic rainforest, which contradicts some climate models that show low Arctic precipitation. Prior studies of Arctic early Eocene wood stable-isotope chemistry, however, have shown a summer peak in precipitation, which suggests modern analogs are best sought on the summer-wet east coast of the Asia (e.g., China, Japan, South Korea), not the winter-wet west coasts of the Pacific Northwest of North America). Furthermore, some prior modeling data suggest that highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer:MAP > 55%) characterized certain mid and lower latitude regions in the early to mid-Eocene. Presented here is a new analysis using leaf physiognomy of 3 leaf megafloras (Split Lake, Stenkul Fiord and Strathcona Fiord) and palynofloral Bioclimatic Analysis from the Margaret Formation from Ellesmere Island, placed stratigraphically as early Eocene, possibly occurring during or following one of the early Eocene hyperthermals. These new data indicate high summer precipitation in the Arctic during the early Eocene, which in part corroborates the results from Eocene wood chemistry. Nevertheless, in contradiction to the wood analysis, monsoonal conditions are not indicated by our analysis, consistent with current modeling studies. High summer (light season) and winter (dark season) precipitation in the Eocene Arctic during hyperthermals would have contributed to regional warmth.

  4. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.

    2016-08-01

    The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.

  5. Ecosystem reconstructions for the hinterland of the Atlantic Coastal Plain during the late Mid-Miocene Climatic Optimum (IODP Expedition 313)

    NASA Astrophysics Data System (ADS)

    Prader, Sabine; Kotthoff, Ulrich; McCarthy, Francine; Greenwood, David

    2016-04-01

    During IODP Expedition 313, cores from three Sites (313-M0027, M0028, and M0029) from the New Jersey shallow shelf (water depth approximately 35 m) were retrieved in 2009. We have investigated the palynology of sediment cores from Site M0027, 45 km off the present-day coast of New Jersey in order to reconstruct environmental and climate change in the region during the second half of the Mid-Miocene Climatic Optimum (MMCO) and the subsequent transition to cooler conditions (ca. 15 to 13 million years before present). Transport-caused bias of the pollen assemblages was identified via the analysis of the terrestrial/marine palynomorph ratio and these results were considered when interpreting palaeo-vegetation from the pollen data. Pollen preservation in the interval analyzed herein was generally very good. Pollen grains were analyzed via both light and scanning electron microscopy. In the analyzed samples, angiosperm tree pollen grains were most abundant and probably formed the main vegetation zone in the lowland during the MMCO. The pollen-based results point to the presence of a deciduous-evergreen mixed forest that was characterised by e.g. Quercus, Carya, Liquidambar, Juglans, Pterocarya, Tilia, Engelhardia. Frequent conifer pollen grains indicate that highland forests with e.g. Pinus, Cathaya, and Picea were present the hinterland of the New Jersey shelf. Typical wetland elements like Nyssa and Taxodium as well as herbal taxa like Polygonum and Polygala were generally rare. The pollen-based climate reconstructions for the hinterland oft the New Jersey shallow shelf document a warm temperate climate without winterfrost and relatively high precipitation through the year during this time. Our results imply that the vegetation and regional climate in the hinterland of the New Jersey shelf did not react as sensitively to the cooling phase following the MMCO as other regions in North America or Europe.

  6. Reconstruction of Middle Eocene - Late Oligocene Southern Ocean paleoclimate through calcareous nannofossils and stable isotopes

    NASA Astrophysics Data System (ADS)

    Villa, Giuliana; Fioroni, Chiara; Persico, Davide; Pea, Laura; Bohaty, Steve

    2010-05-01

    The transition from the ice free early Paleogene world to the glaciated conditions of the early Oligocene has been matter of discussion in the last years. This transition has not been monotonic but punctuated by numerous transient cooling and warming events. Here we present a summary of recent studies based on Nannofossil response to climatic changes during the Eocene and Oligocene. Collected data issue from high latitudes ODP Sites 748, 738, 744, 689 and 690. Based on a detailed revision of the biostratigraphy carried out through quantitative analysis, we conducted paleoecological studies on calcareous nannofossils through the late middle Eocene to the - late Oligocene interval to identify abundance variations of selected taxa in response to changes in sea surface temperature (SST) and trophic conditions. The nannofossil-based interpretation has been compared with detailed oxygen and carbon stable isotope stratigraphy confirming the climate variability in the Southern Ocean for this time interval. We identify the Middle Eocene Climatic optimum (MECO) event, related with the regional exclusion of Paleogenic warm-water taxa from the Southern Ocean, followed by the progressive cooling trend particularly emphasized during the cooling events at about 39 Ma, 37 Ma and 35.5 Ma. In the earliest Oligocene, marked changes in calcareous nannofossil assemblages are strikingly associated with the Oi-1 event recorded in perfect accordance with the oxygen isotope records. For most of the Oligocene we recorded a cold phase, while a warming trend is detected in the late Oligocene. In addiction, a marked increase of taxa thriving in eutrophic conditions coupled with a decrease in oligotrophic taxa, suggests the presence of a time interval (from about 36 Ma to about 26 Ma) with prevailing eutrophic conditions that correspond to an increase of the carbon stable isotope curve. This interval well corresponds with the clay mineral concentration that shows at Site 738 a higher

  7. Palaeotectonic implications of increased late Eocene-early Oligocene volcanism from South Pacific DSDP sites

    USGS Publications Warehouse

    Kennett, J.P.; Von Der Borch, C.; Baker, P.A.; Barton, C.E.; Boersma, A.; Cauler, J.P.; Dudley, W.C.; Gardner, J.V.; Jenkins, D.G.; Lohman, W.H.; Martini, E.; Merrill, R.B.; Morin, R.; Nelson, Campbell S.; Robert, C.; Srinivasan, M.S.; Stein, R.; Takeuchi, A.; Murphy, M.G.

    1985-01-01

    Late Eocene-early Oligocene (42-35 Myr) sediments cored at two DSDP sites in the south-west Pacific contain evidence of a pronounced increase in local volcanic activity, particularly in close association with the Eocene-Oligocene boundary. This pulse of volcanism is coeval with that in New Zealand and resulted from the development of an Indo- Australian / Pacific Plate boundary through the region during the late Eocene. The late Eocene / earliest Oligocene was marked by widespread volcanism and tectonism throughout the Pacific and elsewhere, and by one of the most important episodes of Cenozoic climatic cooling. ?? 1985 Nature Publishing Group.

  8. Response of Deep Ocean Carbon Cycling to Astronomical Forcing in the Non-Glaciated Eocene 'Greenhouse' World

    NASA Astrophysics Data System (ADS)

    Sexton, P. F.; Wilson, P. A.; Pälike, H.

    2007-12-01

    Atmospheric carbon dioxide concentrations predicted for 2100 may not have existed on Earth since the early part of the Eocene epoch when global conditions were much warmer and less glaciated than today. Yet our understanding of carbon cycling and climate stability within the Eocene is extremely rudimentary. Here we present the first high-resolution paleoceanographic records across the early to middle Eocene boundary. Our records reveal multiple prominent perturbations to Eocene climate and the carbon cycle. We also observe breakdown in the post-Eocene/Oligocene boundary spatial pattern of astronomical pacing of deep ocean sediment calcium carbonate content. We attribute this divergent response to astronomical forcing to the deglaciated early Eocene climate state.

  9. Asian monsoons in a late Eocene greenhouse world

    NASA Astrophysics Data System (ADS)

    Licht, A.; van Cappelle, M.; Abels, H. A.; Ladant, J.-B.; Trabucho-Alexandre, J.; France-Lanord, C.; Donnadieu, Y.; Vandenberghe, J.; Rigaudier, T.; Lécuyer, C.; Terry, D., Jr.; Adriaens, R.; Boura, A.; Guo, Z.; Soe, Aung Naing; Quade, J.; Dupont-Nivet, G.; Jaeger, J.-J.

    2014-09-01

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  10. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System

    PubMed Central

    Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.

    2011-01-01

    eccentricity minimum. Eccentricity maxima are interpreted to trigger lake-level high-stands. These are accompanied by eutrophication events caused by enhanced denudation of the surrounding basement and increased detrital input into the basin. The presented age model proves that Lake Gacko arose during the Middle Miocene Climatic Optimum and that the optimum climatic conditions triggered the formation of this long-lived lake. PMID:21317979

  11. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  12. Ice Age Sea Level Change: Lessons From Studies of the Mid-Pliocene Climate Optimum, the Last Glacial Maximum and the 20th Century.

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Raymo, M. E.; Morrow, E.; Hay, C.

    2011-12-01

    Renewed interest in geophysical models of ice age sea-level change has been motivated by three factors. First, the theory underlying these models has been progressively improved to take into account more complex viscoelastic Earth models and processes such as shoreline migration, changes in the extent of grounded marine-based ice sectors, and the impact on sea level of contemporaneous perturbations in the Earth's rotation. Second, results generated from these state-of-the-art models have highlighted the important information inherent to the geographic variability of sea-level change - information that is lost in analyses that are based on global (i.e., eustatic) averages. Third, there has been growing appreciation, through the application of the geophysical models, that accurate analyses of ancient sea level data sets can help to inform our understanding of future ice sheet stability in a warming world. In this talk we begin by summarizing a series of recent improvements in post-glacial sea-level theory and describe several applications that highlight important pitfalls in any effort to map sea-level measurements into estimates of past ice volumes. These applications include, in particular, studies of sea-level records from the mid-Pliocene climate optimum and the Last Glacial Maximum. We end by discussing an ongoing effort to use the geographic variability of rates obtained from tide gauge data and satellite altimetry records to estimate the dominant contributors to modern sea-level change.

  13. Fragments of Late Eocene Earth-Impacting Asteroids Linked to Disturbance of Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Boschi, S.; Cronholm, A.; Heck, P. R.; Monechi, S.; Montanari, A.; Terfelt, F.

    2015-07-01

    The impactors that created the large Popigai and Chesapeake Bay craters represent two different meteorite types. A Late Eocene multi-type asteroid shower may reflect solar-system instability and indicate an astronomical trigger of ice-house climate.

  14. Mammal Dispersion linked to The Paleocene Eocene Thermal Maximum (PETM): New Insights from India.

    NASA Astrophysics Data System (ADS)

    Khozyem, H.; Adatte, T.; Keller, G.; Spangenberg, J. E.; Bajpai, S.; Samant, B.; Mathur, S.

    2012-04-01

    The Paleocene Eocene Thermal Maximum (PETM, 55.5Ma) is globally related with the extinction of deep benthic foraminifera, the diversification of both plancktic foraminifera and mammals. In India, the tempo and timing of mammals dispersion, their association with the PETM or EECO (Early Eocene Climatic Optimum) and the India- Asia collision remain uncertain (Smith et al., 2006 Clementz, 2010). Three sections located in north and northwest India have been studied using sedimentology, micropaleontology, mineralogy (bulk and clay mineralogy) and geochemistry (stable isotopes, major and trace elements, organic matter). Both PETM and ETM2 (second Eocene Thermal Maximum, 53.7Ma), a short-lived warming episode that followed the PETM, are globally marked by a pronounced δ13Ccarb and org negative peak. Both isotopic excursions have been recognized in the Vastan and Tarkeswhar lignite mines (Cambay basin, Gujarat), above the main mammals bearing level. The lower shift is located above the first lignite seam (=lignite 2 of Sahni et al, 2004, 2009) and corresponds to the transition from continental to shallow marine conditions marked by benthic foraminifera and bivalves. The upper excursion appears to be linked to the ETM2 and corresponds to a second marine incursion containing bivalves, benthic (Nummulites burdigalensis) and planktic foraminifera located below the second lignite seam (lignite 1 of Sahni et al, 2004, 2009). A single but very pronounced δ13Corg peak has been detected in the Giral Lignite mine (Barmer, Rajhastan), around 6m above the vertebrates bearing level and may correspond to the PETM. This correlation is confirmed by palynological data (Tripathi et al., 2009, Sahni et al., 2004, 2009) and more particularly by an acme in the dinoflagellate Apectodinium that globally characterizes the PETM interval (Sluijs et al. 2007). Our micropaleontological data combined with stable carbone isotopes indicate the presence of both PETM and ETM2 events and constrain the

  15. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-04-25

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  16. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  17. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  18. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming

    NASA Astrophysics Data System (ADS)

    Smith, M. Elliot; Carroll, Alan R.; Scott, Jennifer J.; Singer, Brad S.

    2014-10-01

    from the Early Eocene Climatic Optimum at ca. ±250 kyr resolution, and reveals prominent 100 kyr- and 405 kyr-scale oscillations within both records. Wilkins Peak Member δ13C minima, which occurred during low eccentricity alluvial modes, likely coincided with global δ13C minima (Scenario 1), but may alternatively reflect productivity-driven local effects within Lake Gosiute (Scenario 2). If Scenario 1 proves accurate, Early Eocene negative δ13C “hyperthermal” excursions occurred during eccentricity minima rather than maxima as formerly believed.

  19. Paleoenvironmental reconstruction of the Early Eocene Wind River Formation in the Wind River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Hyland, E.; Fan, M.; Sheldon, N. D.

    2011-12-01

    Terrestrial basin systems provide important information on paleoclimatic, paleoecological, and paleoenvironmental factors and how they control and respond to global changes and spatio-temporal heterogeneity. Examining these dynamics is crucial for times of major global change like the broad-scale climatic trends (warm/wet/high-CO2 conditions) of the Early Eocene Climatic Optimum (EECO). As most climatic records of such events are derived from global marine datasets, regional terrestrial studies such as these provide a better model for understanding ecological responses and the localized effects of events like the EECO. The formation of the Wind River Basin (northwestern Wyoming) has been studied for decades, but its regional climatic, environmental, and ecological dynamics have been largely overlooked. Recent work in other contemporaneous sites in the Green River Basin has suggested that the dynamics and rapidity of climate change in terrestrial interiors during the EECO may have been significantly different than what is indicated by the marine record, so to address these issues on a more regional scale we examined paleosols preserved in the fluvial, basin-margin Wind River Formation preserved near Dubois, Wyoming. Field identification of the paleosols indicated a suite that includes primarily Inceptisols and Alfisols; most exhibited significant redoximorphic features and Bg horizons that indicate a ponded floodplain paleoenvironment, while others contained deep Bk horizons (>100 cm) consistent with more well-drained, but still sub-humid to humid conditions. Based on the identification of these well-developed soil features, along with distinct horizonation and root development, paleosols were robustly correlated and sampled throughout the Formation, and environmental descriptors were assigned. To further examine the question of regional terrestrial climate/environmental change, whole rock geochemistry (XRF) samples from paleosol depth profiles were analyzed for use

  20. Seasonal variability in Arctic temperatures during the early Eocene

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  1. Differing Eocene floral histories in southeastern North America and Western Europe: influence of paleogeography

    USGS Publications Warehouse

    Frederiksen, N.O.

    1995-01-01

    Pollen data show that in southeastern North America, the Eocene angiosperm flora attained its maximum relative diversity some 8 m.y. after the late early Eocene to earliest middle Eocene to earliest middle Eocene climatic maximum. Increasing diversity resulted in part from the flora's position on a large continent which allowed easy migration. In western Europe, the floral diversity began decreasing even before the climatic maximum. Paleogeography played large roles in this diversity decrease. In western Europe, terrestrial floras were on islands and peninsulas in the sea, so that the floras underwent increasing isolation and partial local extermination. Temperate plants generally did not migrate to western Europe, because of a lack of nearby uplands, lack of northern terrestrial source areas for these plants, and presence of the Turgai Straights barrier. -from Authors

  2. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    NASA Astrophysics Data System (ADS)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    and high latitude environmental conditions were suitable for simultaneous widespread proliferation of several Azolla species. This episode coincides with the termination of a period known as the 'Early Eocene Climatic Optimum' (EECO). Both field data and general circulation/climate model experiments invoke high precipitation conditions for the EECO and these might have aided in the onset of massive Azolla proliferation in the Northern Hemisphere.

  3. Asian Eocene monsoons as revealed by leaf architectural signatures

    NASA Astrophysics Data System (ADS)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  4. Early Eocene cyclicity at the Wilkes Land Margin, Antarctica: Orbital forcing and environmental response

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Bijl, P.; Jiménez, F.; Pross, J.; Contreras, L.; Tauxe, L.; Bohaty, S. M.; Bendle, J.; Brinkhuis, H.; IODP Expedition 318 Scientists

    2011-12-01

    The early Eocene Greenhouse interval (~56-49 Ma) was punctuated by multiple transient global warming events, or hyperthermals - the most prominent of which was the Paleocene-Eocene Thermal Maximum (PETM). Additional thermal maxima identified in Eocene records exhibit negative carbon isotope excursions (CIEs), carbonate dissolution horizons, and biotic perturbations, although of reduced magnitude and duration relative to the PETM. Many hyperthermals have been identified or postulated in the early Eocene, but it is unclear which of these events are normal carbon-cycle variations that occurred at orbital frequencies and which are exceptional events outside the normal range of Eocene carbon-cycle variability. Here we present a high-resolution cyclostratigraphy for a new early Eocene drillcore from the Wilkes Land Margin in direct proximity to the Antarctic continent (Site U1356 drilled during IODP Expedition 318). Site U1356 was situated in a mid-shelf setting during the early Eocene and is characterized by a superb magnetostratigraphy and a robust biostratigraphic age control. Our investigation includes XRF core scanning and ICP-MS data as well as bulk organic carbon isotope ratios (delta13Corg) in combination with the concentration of the total organic carbon (TOC). The early Eocene at Site U1356 consists of well developed cyclic claystones including the interval of magnetochron C24 which is ideal to re-evaluate the early Eocene part of the Geomagnetic Polarity Time Scale (GPTS) and to provide new insights into the environmental responses as well as orbital configuration of early Eocene climatic cycles.

  5. Seasonal variability in Arctic temperatures during early Eocene time

    NASA Astrophysics Data System (ADS)

    Eberle, Jaelyn J.; Fricke, Henry C.; Humphrey, John D.; Hackett, Logan; Newbrey, Michael G.; Hutchison, J. Howard

    2010-08-01

    As a deep time analog for today's rapidly warming Arctic region, early Eocene (52-53 Ma) rock on Ellesmere Island in Canada's High Arctic (˜ 79°N.) preserves evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, the quantification of Eocene Arctic climate has been more elusive. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we infer early Eocene Arctic temperatures, including mean annual temperature (MAT) of ˜ 8 °C, mean annual range in temperature of ˜ 16.5-19 °C, warm month mean temperature of 19-20 °C, and cold month mean temperature of 0-3.5 °C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, relatively high estimates of early Eocene Arctic MAT and SST by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and isoprenoid tetraether lipids in marine Crenarchaeota fall close to our warm month temperature, suggesting a bias towards summer values. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although for both of these reptilian groups, past temperature tolerances probably were greater than in living descendants.

  6. Possible methane-induced polar warming in the early Eocene.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C; Rea, D K; Zachos, J C

    1992-05-28

    Reconstructions of early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally. Oceanic heat transport has been postulated as a mechanism for heating high latitudes, but it is difficult to explain the dynamics that would achieve this. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds.

  7. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    PubMed

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-02-12

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  8. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    PubMed Central

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-01-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. PMID:26867798

  9. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    PubMed

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-01-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. PMID:26867798

  10. Equatorial convergence of India and early Cenozoic climate trends.

    PubMed

    Kent, Dennis V; Muttoni, Giovanni

    2008-10-21

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO(2) concentration (pCO(2)) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO(2) delivery to the atmosphere capable to maintain high pCO(2) levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at approximately 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO(2) by efficient silicate weathering further perturbed the delicate equilibrium between CO(2) input to and removal from the atmosphere toward progressively lower pCO(2) levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary.

  11. Equatorial convergence of India and early Cenozoic climate trends

    PubMed Central

    Kent, Dennis V.; Muttoni, Giovanni

    2008-01-01

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO2 concentration (pCO2) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO2 delivery to the atmosphere capable to maintain high pCO2 levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at ≈50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering further perturbed the delicate equilibrium between CO2 input to and removal from the atmosphere toward progressively lower pCO2 levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary. PMID:18809910

  12. Astronomical calibration of the middle Eocene Contessa Highway section (Gubbio, Italy)

    NASA Astrophysics Data System (ADS)

    Coccioni, R.; Florindo, F.; Jovane, L.; Marsili, A.; Sprovieri, M.

    2008-12-01

    The Earth's Eocene to early Oligocene climatic system experienced an important transition with a long-term cooling trend from warm greenhouse to icehouse conditions. Today, it is a priority to understand the causes and consequences that drove this major climatic change. In this context, a multidisciplinary study has been carried out on the middle Eocene sedimentary succession of the Contessa Highway (Gubbio, Italy). Spectral analysis and CWT technique of seven multidisciplinary high-resolution records demonstrate that climatic changes, in the western Neo-Tethys (Umbria-Marche basin) during the middle Eocene, are sensitive to eccentricity, obliquity and precession astronomical variations. In the Contessa Highway section, the lithology shows high-frequency cyclicity, which is strongly modulated by insolation. The lithologic cyclostratigraphy combined with the ~7 My-long astronomically driven climate proxy records, provide a first astronomical calibration of the middle Eocene. Here, we present astronomical age for the bio-magnetostratigraphic events along the middle Eocene Contessa Highway section. These astronomically calibrated ages mark significant improvements for the dating of biostratigraphic events and minimal correction to chronostratigraphy. Based on the available high-resolution bio-, isotope- and magnetostratigraphy and the precise multi-proxy astronomical tuning of the sedimentary record we retain that the Contessa Highway section represents an excellent candidate as GSSP for the Lutetian/Bartonian boundary.

  13. Asian monsoons in a late Eocene greenhouse world.

    PubMed

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J

    2014-09-25

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  14. Asian monsoons in a late Eocene greenhouse world.

    PubMed

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J

    2014-09-25

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago. PMID:25219854

  15. Present-day climatic equivalents of European Cenozoic climates

    NASA Astrophysics Data System (ADS)

    Utescher, Torsten; Mosbrugger, Volker; Ivanov, Dimiter; Dilcher, David L.

    2009-07-01

    Matthews biome classes are reconstructed. The resulting Koeppen types, ranging from A to C, are largely consistent with data previously published. The ground frost record shows almost frost-free conditions for the Mid-Eocene greenhouse and for the Mid-Miocene Climatic Optimum. For the Chattian, up to 7 days with ground frost result. During the Late Miocene Cooling the number of days with ground frost significantly increased. The inferred Matthews biomes reveal changing patterns of evergreen and deciduous forest cover. When Recent climate analogues are found for a fossil flora, present climate can be used to calibrate the original CA data. It is shown that calibration considerably improves the resolution of the continental climate records.

  16. Late Eocene impact microspherules - Stratigraphy, age and geochemistry

    NASA Astrophysics Data System (ADS)

    Keller, G.; D'Hondt, S. L.; Orth, C. J.; Gilmore, J. S.; Oliver, P. Q.; Shoemaker, E. M.; Molina, E.

    1987-03-01

    The stratigraphy, faunal changes, and geochemistry of deep-sea sediments associated with late Eocene microtektite and microspherule layers are reported. Microprobe analyses of major element compositions of microspherules show that, although there is some compositional overlap in all three late Eocene layers as well as with the Pleistocene Australasian and Ivory Coast microtektites, each microspherule population has characteristic compositional features. All three microspherule layers are associated with decreased carbonate, possibly due to a sudden productivity change, increased dissolution as a result of sea-level and climate fluctuations, or impact events. A discovery of microtektites in the Gl. cerroazulensis Zone off the New Jersey coast extends the North American strewn field from the Caribbean to the northwest Atlantic.

  17. Impact ejecta at the Paleocene-Eocene boundary

    NASA Astrophysics Data System (ADS)

    Schaller, Morgan F.; Fung, Megan K.; Wright, James D.; Katz, Miriam E.; Kent, Dennis V.

    2016-10-01

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary.

  18. Optimum propeller wind turbines

    NASA Astrophysics Data System (ADS)

    Sanderson, R. J.; Archer, R. D.

    1983-12-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different 'optimum' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  19. Fossil plants indicate that the most significant decrease in atmospheric CO2 happened prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer

    2016-04-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany was utilized to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the stomatal proxy, which relies on the inverse relationship between pCO2 and leaf stomatal density, we show that a ~40% decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene-Oligocene climate change, and a 'tipping point' was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.

  20. The terminal eocene event and the polish connection

    USGS Publications Warehouse

    Van Couvering, J. A.; Aubry, M.-P.; Berggren, W.A.; Bujak, J.P.; Naeser, C.W.; Wieser, T.

    1981-01-01

    The Eocene/Oligocene boundary in Europe is marked by major discontinuities in all environments: the "Grande Coupure" in continental mammals; the elimination of semitropical elements from high-latitude floras; the virtually complete replacement of the shallow-marine malacofauna; and an extraordinary downslope excursion of carbonate deposition in deep-ocean basins (drop in the CCD). These phenomena collectively represent the "Terminal Eocene Event" (TEE). In the Carpathian Mountains, the TEE is manifested in the thin but regionally persistent Globigerina Marl, a calcareous unit containing abundant cool-water microplankton that occurs within very thick, siliceous, bathyal flysch sequences. In southern Poland, the marl is of very latest Eocene age, within planktonic foraminifera zone P17, calcareous nannoplankton zone NP19/20, and the zone of the dinoflagellate Rhomdodinium perforatum. Zircons from bentonites bracketing the marl are dated by fission-track analysis; at Polany, two underlying bentonites are 41.7 and 39.8 Ma, and at Znamirowice two overlying bentonites are 34.6 and 28.9 Ma, in sequence. This accords with glauconite K/Ar ages in Western Europe by which the Eo/Oligocene boundary age is estimated at 37-38 Ma. Global correlations indicate that the TEE corresponds to a major glacio-eustatic regression with a duration of about 0.5 Ma, in which a large Antarctic ice cap was formed, the ocean circulation was permanently changed to the psychrospheric condition, and world climate shifted irreversibly towards the modern state. ?? 1981.

  1. Constructing an Eocene Marine Ecosystem Sensitivity Scale

    NASA Astrophysics Data System (ADS)

    D'haenens, S.; Bornemann, A.; Speijer, R. P.; Hull, P. M.

    2014-12-01

    A key question in the face of current global environmental change is how marine ecosystems will respond and evolve in the future. To answer this, we first need to understand the relationship between environmental and ecosystem change - i.e., the ecosystem sensitivity. Addressing this question requires understanding of how biota respond to (a succession of) sudden environmental perturbations of varying sizes and durations in varying background conditions (i.e., climatic, oceanographic, biotic). Here, we compare new and published data from the Early to Middle Eocene greenhouse world to understand the sensitivity of marine ecosystems to background environmental change and hyperthermal events. This work focuses on the early Paleogene, because it is considered to be a good analog for a future high CO2 world. Newly generated high-resolution multiproxy datasets based on northern Atlantic DSDP Leg 48 and IODP Leg 342 material will allow us to compare the marine ecosystem responses (including bentho-pelagic systems) to abiotic drivers across climatic disruptions of differing magnitude. Initial results of a benthic foraminiferal community comparison including the PETM and ETM2 hyperthermals in the northeastern Atlantic DSDP sites 401 and 5501 suggest that benthic ecosystem sensitivity may actually be non-linearly linked to background climate states as reflected by a range of geochemical proxies (XRF, TOC, CaCO3, grain sizes, XRD clay mineralogy and foraminiferal δ18O, δ13C, Mg/Ca)2,3, in contrast to planktic communities4. Testing the type of scaling across different taxa, communities, initial background conditions and time scales may be the first big step to disentangle the often synergistic effects of environmental change on ecosystems5. References: 1D'haenens et al., 2012, in prep. 2Bornemann et al., 2014, EPSL 3D'haenens et al., 2014, PA 4Gibbs et al., 2012, Biogeosc. 5 Norris et al., 2013, Science

  2. Effects of Extreme Monsoon Precipitation on River Systems Form And Function, an Early Eocene Perspective

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2013-12-01

    Here we document effects of extreme monsoon precipitation on river systems with mountainous drainage basin. We discuss the effects of individual extreme monsoon seasons, as well as long-term changes in Earth surface system's form and function. The dataset spans across 1000 m of stratigraphy across ca 200 km of Paleocene and Early Eocene river deposits. The excessive 3-dimensional outcrops, combined with our new Carbon isotope, ichnological and paleosols record allow reconstruction of long-term river system's evolution during the Paleocene-Eocene Thermal Maximum (PETM) ca 56 million years ago, the transient global warming events during Early Eocene Climate Optimum (EECO) ca 53 to 51.5 million years ago, as well as the effects of highly peaked precipitation events during single monsoon seasons. On the single season scale, the increase in precipitation peakedness causes high discharge flooding events that remove large quantities of sediment from the drainage basin, due to stream erosion and landslide initiation. The initiation of landslides is especially significant, as the drainage basin is of high gradient, the monsoon intensification is accompanied by significant vegetation decline, as the monsoon cycle changes to multi-year droughts interrupted by extreme monsoon precipitation. These large discharge floods laden with sediment cause rapid deposition from high-velocity currents that resemble megaflood deposits in that they are dominated by high-velocity and high deposition rate sedimentary structures and thick simple depositional packages (unit bars). Such high deposition rates cause locally rapid channel bed aggradation and thus increase frequency of channel avulsions and cause catastrophic high-discharge terrestrial flooding events across the river basin. On long time scales, fluvial megafan systems, similar to those, e.g. in the Himalayan foreland, developed across the ca 200 km wide river basin, causing significant sediment aggradation and a landscape with high

  3. Eocene paleosols of King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Spinola, Diogo; Portes, Raquel; Schaefer, Carlos; Kühn, Peter

    2016-04-01

    Red layers between lava flows on King George Island, Maritime Antarctica, were formed during the Eocene, which was one of the warmest periods on Earth in the Cenozoic. Our hypothesis is that these red layers are paleosols formed in periods of little or no volcanic activity. Therefore, our main objective was to identify the main pedogenic properties and features to distinguish these from diagenetic features formed after the lava emplacement. Additionally, we compared our results with volcanic soils formed under different climates to find the best present analogue. The macromorphological features indicate a pedogenic origin, because of the occurrence of well-defined horizons based on colour and structure. Micromorphological analyses showed that most important pedogenic features are the presence of biological channels, plant residues, anisotropic b-fabric, neoformed and illuvial clay and distinct soil microstructure. Although the paleosols are not strongly weathered, the geochemical data also support the pedogenic origin despite of diagenetic features as the partial induration of the profiles and zeolites filling nearly all voids in the horizons in contact with the overlying lava flow, indicating circulation of hydrothermal fluids. The macromorphological and micromorphological features of these paleosols are similar to the soils formed under seasonal climates. Thus, these paleosol features do not correspond to the other proxies (e.g. sediment, plant fossils), which indicate a wet, non-seasonal climate, as in Valdivian Forest, Chile, during the Eocene in King George Island

  4. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  5. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  6. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  7. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  8. Using Current and Historic Climate Data and Bayesian Belief Networks to Predict Optimum Satellite Image Acquisition Periods for Detecting Cheatgrass on the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Rope, R. C.; Ames, D. P.; Jerry, T. D.; Cherry, S. J.

    2005-12-01

    Invasive plant species, such as Bromus tectorum (cheatgrass), cost the United States over $36 billion per year and have encroached upon over 100 million acres while impacting range site productivity, disturbing wildlife habitat, altering the wildland fire regime and frequencies, and reducing biodiversity. Because of these adverse impacts, federal, tribal, state, and county land managers are faced with the challenge of prevention, early detection, management, and monitoring of invasive plants. Often these managers rely on the analysis of remotely sensed imagery as part of their management plan. However, it's difficult to predict specific phenological events that allow for the spectral discrimination of invasive species using only remotely sensed imagery. To address this issue tools are being developed to model and view optimal periods to collect high spatial and/or spectral resolution remotely sensed data for refined detection and mapping of invasive species and for use as a decision support tool for land managers. These tools involve the integration of historic and current climate data (cumulative growing days and precipitation) satellite imagery (MODIS) and Bayesian Belief Networks, and a web ArcIMS application to distribute the information. The general approach is to issue an initial forecast early in the year based on the previous years' data. As the year progresses, air temperature, precipitation and newly acquired low resolution MODIS satellite imagery will be used to update the prediction. Updating will be accomplished using a Bayesian Belief Network model that indicates the probabilistic relationships between prior years' conditions and those of the current year. These tools have specific application in providing a means for which land managers can efficiently and effectively detect, map, and monitor invasive plant species, specifically cheatgrass, in western rangelands. This information can then be integrated into management studies and plans to help land

  9. Are molecular and isotopic patterns in modern plants representative of ancient floras? Examples from Paleocene and Eocene floras and sediments in the Bighorn Basin (WY, USA)

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.; Currano, E. D.

    2011-12-01

    In modern ecosystems, climate, biome and plant community are important predictors of carbon isotope patterns recorded in leaves, leaf waxes, and leaf terpenoids. However, it is unclear if modern carbon isotope patterns are useful analogs in the past when climate and atmospheric CO2 conditions were drastically different than today. It is also uncertain if molecular carbon isotope approaches are more robust with respect to reconstructing patterns of atmospheric δ13C compared to bulk isotope approaches. To evaluate these questions, we present a study of carbon isotope values of bulk organic matter and biomarkers for terrestrial plants (di- and triterpenoids and n-alkanes) from the late Paleocene (62 MA) to the Early Eocene Climatic Optimum (EECO; 52.6 MA) in the Bighorn Basin (WY, USA). We sampled along eight laterally extensive outcrops from the Fort Union and Willwood Formations. Each unit varies in exposure from tens of meters to eighteen kilometers. Sediment lithology includes carbonaceous mudstones, shales, and lignites with total organic carbon ranging from 0.2% to 55%. Climate during this interval, as determined from fossil leaf metrics, warmed from the cooler Paleocene (~10.5°C) to the hot Eocene (~22.2°C) with mean annual precipitation varying from 110 to 170 cm. We collected multiple samples across a laterally extensive outcrop to capture previously reported spatial variability in flora and depositional environment. Carbon isotopes of bulk organic matter, n-alkanes, and di- and triterpenoids (specific for conifers and angiosperms, respectively) were characterized. To determine if plant biomarker relationships from modern plants are applicable to ancient plants, we reconstructed carbon isotope fractionation during photosynthesis (Δleaf) from biomarker carbon isotope values (n-alkanes and terpenoids) and from δ13C values of atmospheric CO2 estimated from planktonic foraminifera. Reconstructed Δleaf values are consistent with predicted Δleaf values when

  10. Optimum Cassegrain baffle systems.

    PubMed

    Hales, W L

    1992-09-01

    Formulas are developed for the precise calculation of optimum stray-light baffles for Cassegrain optical systems, including systems having extreme optical curvatures such as those in infrared missile guidance systems. Minimum diffraction and maximum optical efficiency are the primary considerations.

  11. Eocene ostracoda from Oshosun formation Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Okosun, E. A.

    A biostratigraphic study of the phosphate-bearing Oshosun Formation in southwestern Nigeria (eastern Dahomey Embayment) gave ostracos which are diagnostic for the Eocene. The ostracod assemblage contains the early to middle Eocene zonal index Costa dahomeyi. The majority of the species are common to the phosphatic sequence in the western Dahomey Embayment. This paleontologic evidence, and the association of clay and shale with the phosphate occurrences in different parts of the basin, suggest that the phosphatic beds were deposited in the Dahomey Embayment under similar paleoenvironmental conditions. Phosphatic sedimentation in southwestern Nigeria is inferred to have occurred during an early to early middle Eocene minor marine transgression.

  12. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada.

    PubMed

    Mulch, Andreas; Graham, Stephan A; Chamberlain, C Page

    2006-07-01

    We determine paleoelevation of the Sierra Nevada, California, by tracking the effect of topography on precipitation, as recorded in hydrogen isotopes of kaolinite exposed in gold-bearing river deposits from the Eocene Yuba River. The data, compared with the modern isotopic composition of precipitation, show that about 40 to 50 million years ago the Sierra Nevada stood tall (>/=2200 meters), a result in conflict with proposed young surface uplift by tectonic and climatic forcing but consistent with the Sierra Nevada representing the edge of a pre-Eocene continental plateau.

  13. An optimum world population.

    PubMed

    Willey, D

    2000-01-01

    The optimum population of the world is the one that is most likely to make the option of a good quality of life available to everyone everywhere, both now and in the future. Establishing a consensus about the size of such a population would be an important step towards achieving it. Estimates of an optimum involve three main steps. First, estimate the maximum (carrying capacity) assuming a specified lifestyle. The main criteria are the maintenance of biodiversity, the availability of freshwater, and the availability of land--for agriculture, forestry and artificial systems but above all for the conversion of energy. (In applying the criteria, there are always two questions to ask: 'What is the maximum amount of consumption that the biosphere can stand?' and 'What is an adequate share of such consumption per person?') Second, convert the maximum (two to three billion) into an optimum by applying a far wider range of criteria, including personal liberty, mobility, recreation and political representation. Third, consider just two criteria (economies of scale and technological innovation) in order to ensure that the optimum (one to two billion) has not fallen below the minimum (half to one billion). The estimates are so low because of the need for a huge increase in median per capita consumption if everyone is to have the option of an adequate material standard of living. Opinion-formers are likely not to take much notice of such estimates, but it is probable that minds will be concentrated by an energy shock some time during the next decade. Achieving an optimum world population will not solve the world's major problems, but it would make them solvable. PMID:10824524

  14. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  15. Latitudinal gradients in greenhouse seawater δ(18) O: evidence from Eocene sirenian tooth enamel.

    PubMed

    Clementz, Mark T; Sewall, Jacob O

    2011-04-22

    The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely wet.

  16. Latitudinal gradients in greenhouse seawater δ(18) O: evidence from Eocene sirenian tooth enamel.

    PubMed

    Clementz, Mark T; Sewall, Jacob O

    2011-04-22

    The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely wet. PMID:21512030

  17. Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes

    NASA Astrophysics Data System (ADS)

    Kobashi, Takuro; Grossman, Ethan L.; Yancey, Thomas E.; Dockery, David T., III

    2001-11-01

    Oxygen isotope data from planktonic foraminifera for the warm Eocene epoch suggest that tropical sea-surface temperatures (SSTs) may have been cooler than at present. Such data have stimulated various explanations involving, e.g., major changes in ocean heat transport. However, the planktonic data disagree with terrestrial climate proxies, which suggest significantly warmer low-latitude temperatures. We examined this discrepancy by analyzing seasonal oxygen isotope variations in shallow-marine mollusks from the Mississippi Embayment. Results indicate that mean annual SSTs decreased from 26 27 °C in the early Eocene to 22 23 °C in the Oligocene, agreeing well with temperatures inferred from terrestrial climate proxies. These cooling trends, with more significant winter cooling (5 °C) than summer cooling (3 °C), are consistent with the predicted consequences of decreasing atmospheric CO2 concentration through the Paleogene, suggesting that atmospheric CO2 change was a major controlling factor for Paleogene climate change. That winter SST estimates from the mollusks agree well with the foraminiferal SST estimates suggests that planktonic foraminiferal growth in low latitudes occurred mainly during the cooler winter months throughout the Eocene. We hypothesize that the unusual hydrography of Eocene oceans shifted foraminiferal productivity primarily to winter, biasing foraminiferal SST estimates of mean annual SSTs.

  18. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  19. Larger benthic foraminiferal turnover across the Eocene-Oligocene transition at Siwa Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Orabi, H.; El Beshtawy, M.; Osman, R.; Gadallah, M.

    2015-05-01

    In the Eocene part of the Siwa Oasis, the larger foraminifera are represented by the genera Nummulites, Arxina, Operculina, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella, Gaziryina and Discocyclina in order of abundance. Operculina continues up to the early Oligocene as modern representatives in tropical regions, while the other genera became extinct. Nevertheless, the most common larger foraminiferal genus Lepidocyclina (Nephrolepidina) appears only in the lowermost Oligocene. In spite of the Eocene-Oligocene (E/O) transition is thought to have been attended by major continental cooling at northern middle and high latitudes, we discover that at the Siwa Oasis, there is a clear warming trend from the late Eocene (extinction level of Nummulites, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella and Discocyclina) to the early Oligocene is observed due to the high abundance of Operculina and occurrence of kaolinite and gypsiferous shale deposits in both Qatrani and El Qara formations (Oligocene) at this transition. The El Qara Formation is a new rock unit proposed herein for the Oligocene (Rupelian age) in the first time. Several episodes of volcanic activity occurred in Egypt during the Cenozoic. Mid Tertiary volcanicity was widespread and a number of successive volcanic pulses are starting in the late Eocene. The release of mantle CO2 from this very active volcanic episode may have in fact directly caused the warm Eocene-Oligocene greenhouse climate effect.

  20. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda S.; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer C.

    2016-02-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results suggest that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oligocene transition and that when a certain threshold of pCO2 change was crossed, the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  1. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, M.; Porter, A. S.; Holohan, A.; Kunzmann, L.; Collinson, M.; McElwain, J. C.

    2015-10-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results show that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene transition. This may be related to the "hysteresis effect" previously proposed - where a certain threshold of pCO2 change was crossed before the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  2. Continental ice in Greenland during the Eocene and Oligocene

    NASA Astrophysics Data System (ADS)

    Eldrett, James S.; Harding, Ian C.; Wilson, Paul A.; Butler, Emily; Roberts, Andrew P.

    2007-03-01

    The Eocene and Oligocene epochs (~55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records supported by climate modelling indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20million years earlier than previously documented, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.

  3. Continental ice in Greenland during the Eocene and Oligocene.

    PubMed

    Eldrett, James S; Harding, Ian C; Wilson, Paul A; Butler, Emily; Roberts, Andrew P

    2007-03-01

    The Eocene and Oligocene epochs (approximately 55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records supported by climate modelling indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.

  4. Effects of Proto-Antarctic Circumpolar Current circulation in the middle to late Eocene

    NASA Astrophysics Data System (ADS)

    Katz, M.; Cramer, B. S.; Toggweiler, J. R.

    2011-12-01

    Progressive development of the Antarctic Circumpolar Current (ACC) and reorganization of global ocean circulation accompanied the critical climate transition from the late middle Eocene to mid-Oligocene (~38-28 Ma), marked by global cooling and development of continental-scale Antarctic ice sheets. The ACC began to develop in the middle Eocene through a shallow Drake Passage, with deepwater flow likely established by 29 Ma (Livermore et al. 2004). Rapid deepening of the Tasman gateway occurred in the late Eocene to early Oligocene). The timing of the earliest impact of the (proto-) ACC on global circulation and climate has been debated for decades. Here, we present new middle to late Eocene (~36-40 Ma) benthic foraminiferal stable isotopic (δ18O, δ13C) records and %CaCO3 data from ODP Site 1090 that extend published late Eocene-early Oligocene records (Pusz et al. 2011). Comparisons with published isotopic records (Cramer et al. 2009) highlight the development of a significant carbon isotopic (δ13C) offset between Site 1090 (values ~ 0.7% lower) and other sites from ~37.5 to 34 Ma, reminiscent of similar low δ13C values in this region during the Plio-Pleistocene (Hodell & Venz-Curtis, 2006). The low δ13C interval coincides with elevated opaline silica deposition at Site 1090 (Diekmann et al. 2004), and with the development of small, but significant, meridional δ18O gradients within the deep Atlantic basin. We interpret these observations as indicative of enhanced primary production at the northern edge of the polar front accompanied by increased thermal differentiation of northern- and sourthern-sourced deepwaters. These records are consistent with model predictions for the effects of proto-ACC development in the late Eocene (Heinze and Crowley, 1997; Toggweiler and Bjornsson, 2000).

  5. Upper Campanian-Paleogene from the Río Turbio coal measures in southern Argentina: micropaleontology and the Paleocene/Eocene boundary

    NASA Astrophysics Data System (ADS)

    Malumián, N.; Caramés, A.

    1997-03-01

    The Río Turbio coal measures area, Austral Basin, is one of the few areas in Argentina that records the Cretaceous/ Paleogene and Paleocene/Eocene boundaries within a thick marine sequence without major tectonic disturbances. More than 700 Upper Cretaceous and Paleogene samples, from outcrops and subsurface, were investigated for microfossils. The shallow environments recorded, unsuitable for planktonic elements, led to recognition of the following mostly low diversity benthic foraminiferal assemblages. In the lower part of the Cerro Cazador Formation, the Hoplitoplacenticeras fauna (Early Campanian) is associated with the Miliammina, the Haplophragmoides sp. cf. walteri and the Reticulophragmium sp. Assemblages, mostly composed of agglutinated foraminifera. In the middle and glauconitic part, containing the Maorites fauna, the Coryphostoma incrassata gigantea Assemblage, composed a high percentage of calcareous and infaunal species, suggests a marked environmental change and it represents a Maestrichtian transgressive episode that flooded all the Patagonian basins. In the overlying Cerro Dorotea Formation the Buliminella isabelleana procera Assemblage is the only one which contains planktonic foraminifera: Parasubbotina pseudobulloides, of Danian age. The unconformable overlying Rfo Turbio Formation (mostly Middle Eocene) bearing coal measures, contains the Karreria pseudoconvexa and Bythocypris sp. Assemblage in the lower Member, and Boltovskoyella argentinensis characterize the upper Member. The formational Cerro Dorotea/Río Turbio contact coincides with the Paleocene/Eocene boundary and with a kaolinite content peak related to the Paleogene climatic optimum. The cause or causes of this unconformable contact are not clear, because no major magmatic activity is known for this boundary, which is associated with a generalized regression in all Patagonia. The Río Turbio Formation is unconformable overlain by thick fluvial conglomerates of the Río Guillermo

  6. Highly-seasonal monsoons controlled by Central Asian Eocene epicontinental sea

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; Tindall, Julia; de Rafélis, Marc; Reichart, Gert-Jan; de Nooijer, Lennart; Dupont-Nivet, Guillaume

    2015-04-01

    Modern Asian climate is mainly controlled by seasonal reverse winds driven by continent-ocean thermal contrast. This yields monsoon pattern characterized by a strong seasonality in terms of precipitation and temperature and a duality between humidity along southern and eastern Asia and aridity in Central Asia. According to climate models, Asian Monsoons and aridification have been governed by Tibetan plateau uplift, global climate changes and the retreat of a vast epicontinental sea (the Proto-Paratethys sea) that used to cover Eurasia in Eocene times (55 to 34 Myr ago). Evidence for Asian aridification and monsoons a old as Eocene, are emerging from proxy and model data, however, the role of the Proto-Paratethys sea remains to be established by proxy data. By applying a novel infra-annual geochemical multi-proxy methodology on Eocene oyster shells of the Proto-Paratethys sea and comparing results to climate simulations, we show that the Central Asian region was generally arid with high seasonality from hot and arid summers to wetter winters. This high seasonality in Central Asia supports a monsoonal circulation was already established although the climate pattern was significantly different than today. During winter months, a strong influence of the Proto-Paratethys moisture is indicated by enhanced precipitations significantly higher than today. Precipitation probably dwindled because of the subsequent sea retreat as well as the uplift of the Tibetan and Pamir mountains shielding the westerlies. During Eocene summers, the local climate was hotter and more arid than today despite the presence of the Proto Paratethys. This may be explained by warmer Eocene global conditions with a strong anticyclonic Hadley cell descending at Central Asian latitudes (25 to 45 N). urthermore, the Tibetan plateau emerging at this time to the south must have already contributed a stronger Foehn effect during summer months bringing warm and dry air into Central Asia. Proto

  7. Optimum hovering wing planform.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2016-10-01

    Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird. PMID:27329340

  8. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Taylor, Kyle W. R.; Inglis, Gordon N.; Kennedy, Elizabeth M.; Handley, Luke; Hollis, Christopher J.; Crouch, Erica M.; Pross, Jörg; Huber, Matthew; Schouten, Stefan; Pearson, Paul N.; Morgans, Hugh E. G.; Raine, J. Ian

    2013-12-01

    We present a long-term record of terrestrial climate change for the Early Paleogene of the Southern Hemisphere that complements previously reported marine temperature records. Using the MBT'-CBT proxy, based on the distribution of soil bacterial glycerol dialkyl glycerol tetraether lipids, we reconstructed mean annual air temperature (MAT) from the Middle Paleocene to Middle Eocene (62-42 Ma) for southern New Zealand. This record is consistent with temperature estimates derived from leaf fossils and palynology, as well as previously published MBT'-CBT records, which provides confidence in absolute temperature estimates. Our record indicates that through this interval, temperatures were typically 5°C warmer than those of today at such latitudes, with more pronounced warming during the Early Eocene Climate Optimum (EECO; ˜50 Ma) when MAT was ˜20°C. Moreover, the EECO MATs are similar to those determined for Antarctica, with a weak high-latitude terrestrial temperature gradient (˜5°C) developing by the Middle Eocene. We also document a short-lived cooling episode in the early Late Paleocene when MAT was comparable to present. This record corroborates the trends documented by sea surface temperature (SST) proxies, although absolute SSTs are up to 6°C warmer than MATs. Although the high-calibration error of the MBT'-CBT proxy dictates caution, the good match between our MAT results and modeled temperatures supports the suggestion that SST records suffer from a warm (summer?) bias, particularly during times of peak warming.

  9. What is Optimum Variability?

    PubMed

    Schuldberg, David

    2015-10-01

    Guastello (2015a) opened the call for articles for this issue with Goldberger (1991) and colleagues' findings of chaotic variability in healthy heart rate, noting, 'the principle of healthy variability has extended to other biomedical and psychological phenomena.' He suggests a dialectical underpinning for optimal variability involving 'a combination of the minimum entropy or free energy principle that pushes in a downward direction, and Ashby's Law of Requisite Variety that pushes in an upward direction.' Each of the papers in this issue addresses optimal variability across a variety of health-related areas. The present article surveys these seven papers in relation to five conceptual questions about optimal variability: (a) Is variability a positive or a negative, and how are positive things related to health? (b) How shall we define and measure variability? (c) What constitutes an optimum, and how do we locate one? (d) What is the relationship between optimum variability and health? Finally, it touches on (e) What are underlying principles and phenomena behind healthy variability, and can they inform our vocabulary for health? The paper concludes by discussing practical approaches to dealing with optimization. PMID:26375940

  10. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary.

    PubMed

    Ivany, L C; Patterson, W P; Lohmann, K C

    2000-10-19

    The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary--from warm Eocene climates to cooler conditions in the Oligocene--has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths--ear stones--collected across the Eocene/Oligocene boundary. Palaeo-temperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4 degrees C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition. PMID:11057663

  11. Large amplitude variations in global carbon cycling and terrestrial weathering from the late Paleocene through the early Eocene: carbon isotope and terrigenous accumulation records at Mead Stream, New Zealand

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Dickens, G. R.; Nicolo, M.; Hollis, C. J.; Crampton, J. S.; Zachos, J. C.

    2010-12-01

    Global temperatures rose ~6°C from the late Paleocene ca. 58 Ma to the Early Eocene Climatic Optimum (EECO) ca. 52 - 50 Ma. Superimposed on this were at least two geologically brief (<200 kyr) intervals of extreme warming, the Paleocene-Eocene thermal maximum (PETM) and Eocene thermal maximum 2 (ETM-2). Both the long-term rise and short-term “hyperthermals” have been linked to massive injections of 13C-depleted carbon into the ocean-atmosphere system and greater continental weathering. However, relationships remain uncertain, principally because detailed and coupled proxy records do not extend across the entire interval of interest. Mead Stream, New Zealand, exposes a ~650-m-thick sequence of limestone originally deposited on an upper continental slope from the late Cretaceous to the middle Eocene. Previous work has provided fairly accurate ages for this expanded section, and has shown that the PETM and ETM-2 (as well as the suspected H-2, I-1 and I-2 hyperthermals) are marked by pronounced negative carbon isotope excursions (CIEs) and clay-rich horizons (marls), the latter caused by excess terrigenous dilution. 283 new samples were collected, mostly between ETM-2 and the EECO; these were analyzed for carbonate content, lithology, and bulk carbonate carbon isotopes. Five marl-rich beds occur in upper Paleocene and lowermost Eocene strata. These mark the known and suspected hyperthermals: PETM, ETM-2, H-2, I-1 and I-2. Above is a greatly expanded (100 m-thick) unit represented by a series of marl beds which correlates to the EECO. Carbonate contents are generally 60-90% throughout the studied interval, with lows being marls. Similar to findings elsewhere, there is an overall long-term drop in δ13C from the late Paleocene to early Eocene. This is punctuated by multiple short-term CIEs of variable magnitude (PETM: 2.5‰; ETM-2: 1.0‰; H-2: 0.2‰; I-1: 0.6%). The EECO is a series of negative CIEs with magnitudes ranging between 0.2 - 0.6‰. Of these, the K

  12. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes.

    PubMed

    Eldrett, James S; Greenwood, David R; Harding, Ian C; Huber, Matthew

    2009-06-18

    A profound global climate shift took place at the Eocene-Oligocene transition ( approximately 33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions. During this interval, changes in the Earth's orbit and a long-term drop in atmospheric carbon dioxide concentrations resulted in both the growth of Antarctic ice sheets to approximately their modern size and the appearance of Northern Hemisphere glacial ice. However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes, others imply cooler temperatures, increased seasonality and/or aridity. Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian-Greenland Sea. Our data indicate a cooling of approximately 5 degrees C in cold-month (winter) mean temperatures to 0-2 degrees C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the delta(18)O isotope shift across the Eocene-Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.

  13. The Eocene/Oligocene boundary event in the deep sea

    USGS Publications Warehouse

    Corliss, B.H.; Aubry, M.-P.; Berggren, W.A.; Fenner, J.M.; Keigwin, L.D.; Keller, G.

    1984-01-01

    Analysis of middle Eocene to early Oligocene calcareous and siliceous microfossils shows gradual biotic changes with no massive extinction event across the Eocene/Oligocene boundary. Biotic changes in the late Paleogene appear to reflect changing paleoclimatic and paleoceanographic conditions and do not support suggestions of a catastrophic biotic event caused by a bolide impact at the Eocene/Oligocene boundary.

  14. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA)

    NASA Astrophysics Data System (ADS)

    Kobashi, Takuro; Grossman, Ethan L.; Dockery, David T.; Ivany, Linda C.

    2004-03-01

    Shallow water mass characteristics such as temperature and density profile play a critical role in the climate system. We have developed a new method by which to reconstruct the ancient shallow water mass stability on the continental shelf using oxygen isotope variation within mollusc shells and fish otoliths and applied the method to an important interval in Earth history, the most recent transition from Greenhouse (Eocene) to Icehouse (Oligocene) climate modes. We define the slope of summer temperature (density) versus the seasonal range in temperature (density) as an indicator of water mass stability. In addition, extrapolation of the regression to zero seasonality is a proxy for temperature at the bottom of the seasonal thermocline (TBST). During the greenhouse world (the early Eocene and middle Eocene) the water mass plot shows an unstable water mass, agreeing with previous planktonic foraminiferal studies showing that temperature gradients at this time were much smaller than at present. During the middle to late Eocene transition, a substantial increase in water mass stability occurred. Significant cooling (˜5°C) of the TBST at this transition indicates that the greater cooling of deeper water relative to surface water caused the increase in water mass stability. The changes in water column structure at this transition were the most likely cause of a major extinction of planktonic foraminifera from warm to cold water taxa. The late Eocene T-ΔT profile is very similar to modern profiles, suggesting that shallow water mass structure became similar to that of the modern Gulf Coastal shelf by the late Eocene. At the Eocene/Oligocene (E/O) boundary, no major change in water mass structure is identified. This agrees with the observation that no major extinction of planktonic foraminifera is found at the E/O boundary.

  15. Eocene Hyperthermal Event Offers Insight Into Greenhouse Warming

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Bralower, Timothy J.; Delaney, Margaret L.; Dickens, Gerald R.; Kelly, Daniel C.; Koch, Paul L.; Kump, Lee R.; Meng, Jin; Sloan, Lisa C.; Thomas, Ellen; Wing, Scott L.; Zachos, James C.

    2006-04-01

    What happens to the Earth's climate, environment, and biota when thousands of gigatons of greenhouse gases are rapidly added to the atmosphere? Modern anthropogenic forcing of atmospheric chemistry promises to provide an experiment in such change that has not been matched since the early Paleogene, more than 50 million years ago (Ma),when catastrophic release of carbon to the atmosphere drove abrupt, transient, hyperthermal events. Research on the Paleocene-Eocene Thermal Maximum (PETM)-the best documented of these events, which occurred about 55 Ma-has advanced significantly since its discovery 15 years ago. During the PETM, carbon addition to the oceans and atmosphere was of a magnitude similar to that which is anticipated through the 21st century. This event initiated global warming, biotic extinction and migration, and fundamental changes in the carbon and hydrological cycles that transformed the early Paleogene world.

  16. Middle Eocene Equatorial Pacific Paleoceanography: Insights From Bulk Sediment Geochemistry, ODP Site 1218

    NASA Astrophysics Data System (ADS)

    Tripati, A. K.; Lyle, M.; Backman, J.

    2002-12-01

    The deep equatorial Pacific was dominated by siliceous sedimentation from ~45 Ma to the Eocene-Oligocene boundary. Inspection of Paleogene sediments recovered during Ocean Drilling Program (ODP) Leg 199 and Deep Sea Drilling Program Leg 16 indicate several episodes of carbonate deposition during the Middle Eocene. The well-preserved and expanded sedimentary sequence recovered at ODP Site 1218 presents an opportunity to document the Middle Eocene paleoceanographic history of the equatorial Pacific, and to determine whether the occurrence of Middle Eocene carbonates in Chron C18 is coincident with a sequence of rapid paleoceanographic and climatic changes. Here we present high-resolution bulk sediment oxygen and carbon isotope records, carbonate, opal, and organic carbon accumulation data, and coarse sand fraction data for chalks and radiolarites spanning Chron C18 from ODP Site 1218. Stable isotope and % carbonate records exhibit large-amplitude oscillations corresponding to obliquity and eccentricity frequencies. In addition, a series of stepwise oxygen isotope excursions of 0.5 to 0.8 per mil at roughly 40.5, 40.4, and 40.3 Ma, occur in coincidence with large-scale drops in % carbonate. These data may record rapid CCD fluctuation associated with transient warming and cooling events and/or ephemeral polar ice sheets.

  17. The first Late Eocene continental faunal assemblage from tropical North America

    NASA Astrophysics Data System (ADS)

    Jiménez-Hidalgo, Eduardo; Smith, Krister T.; Guerrero-Arenas, Rosalia; Alvarado-Ortega, Jesus

    2015-01-01

    To date, the terrestrial faunal record of the North American late Eocene has been recovered from its subtropical and temperate regions. We report the first late Eocene continental faunal assemblage from tropical North America, in southern Mexico. Fossil specimens were collected from mudstones that crop out in the Municipality of Santiago Yolomécatl, in northwestern Oaxaca. Previously published K-Ar ages of 32.9 ± 0.9 and 35.7 ± 1.0 Ma in overlain nearby volcanic rocks and biostratigraphy of these new localities suggests a Chadronian mammal age for this new local fauna. The assemblage is composed by two turtle taxa, Rhineura, two caniform taxa, a sciurid, a jimomyid rodent, a geomyine rodent, Gregorymys, Leptochoerus, Perchoerus probus, Merycoidodon, a protoceratid, Poebrotherium, Nanotragulus, Miohippus assinoboiensis, a chalicotherid, a tapiroid, cf. Amynodontopsis, Trigonias and the hymenopteran ichnofossils Celliforma curvata and Fictovichnus sciuttoi. The records of these taxa in northwestern Oaxaca greatly expand southerly their former geographic distribution in North America. The records of the geomorph rodents and Nanotragulus extend their former known biochronological range to the late Eocene. The hymenopteran ichnofossils in the localities suggest the presence of a bare soil after periodic waterlogging, under a sub-humid to sub-arid climate. This new local fauna represents the first glimpse of Eocene vertebrate and invertebrate terrestrial life from tropical North America.

  18. The role of fire during the Eocene-Oligocene transition in southern South America

    NASA Astrophysics Data System (ADS)

    Strömberg, C. A. E.; Selkin, P. A.; Boyle, J.; Carlini, A. A.; Davies-Vollum, K. S.; Dunn, R. E.; Kohn, M. J.; Madden, R. H.

    2014-12-01

    The geological record of wildfire, particularly across climate transitions, can help elucidate the complex relationships between climate, vegetation, and fire at long temporal scales. Across Eocene-Oligocene Transition (EOT), previous workers have proposed climate changes (drying and changes in seasonality) contemporaneous with the growth of the Antarctic ice sheet that would have changed the likelihood of wildfires in terrestrial ecosystems. We document short-lived changes in fire regime and plant community in Patagonia near the time of the EOT. Specifically, the concentration of magnetic oxide minerals in Eocene-Oligocene loessites from the Sarmiento Formation correlates with the fraction of burnt palm phytoliths as well as with the fraction of non-palm phytoliths. We interpret the magnetic mineral assemblage magnetite + maghemite ± hematite as pyrogenic, forming in reducing conditions at temperatures between 300 and 600°C. The disappearance of fire-related characteristics near the EOT is possible if seasonal drought was suppressed due to a northward shift in the westerlies - a process consistent with changes in modal particle sizes in the Vera Member. Although the transitory nature of the changes in fire regime remains a puzzle, these results imply a more important role for fire in structuring Eocene-Oligocene landscapes than previously thought.

  19. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-12-01

    The biogeophysical effect of forests in a climate with permanent high-latitude ice cover has already been investigated. We extend this analysis to warm, basically ice-free climates, and we choose the early Eocene, some 54 to 52 million years ago, as paradigm for such type of climate. We use the Max Planck Institute for Meteorology Earth System Model to evaluate the radiative forcing of forests and the feedbacks triggered by forests in early Eocene and pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet in the early Eocene climate and in the pre-industrial climate. The warming can be attributed to different feedback processes, though. The lapse-rate - water-vapour feedback is stronger in early Eocene climate than in pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate - water-vapour feedback in the early Eocene climate. Subsequently, global mean warming by forests is weaker in the early Eocene climate than in the pre-industrial climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than in the pre-industrial climate. When the land is covered with dark soils, forests cool the early Eocene climate stronger than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger in the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  20. Mid- Tertiary climate of southeastern United States, the sporomorph evidence.

    USGS Publications Warehouse

    Frederiksen, N.O.

    1980-01-01

    Climatic affinities of modern genera represented by late Eocene sporomorphs suggest that the climate of that time in southeastern United States was winter-dry tropical close to the Gulf of Mexico and marginal humid subtropical on the upper Coastal Plain. Lack of change of the sporomorph assemblages suggests that the climate of southeastern United States did not change appreciably from late in the middle Eocene until nearly the end of the Eocene. Then the climate rapidly became cooler and perhaps drier, a regime that persisted into the early Oligocene. -Author

  1. Palaeoclimatology: A tale of two climates

    NASA Astrophysics Data System (ADS)

    Billups, Katharina

    2008-05-01

    The generally warm and ice-free conditions of the Eocene epoch rapidly declined to the cold and glaciated state of the Oligocene epoch. Geochemical evidence from deep-sea sediments resolves in detail the climatic events surrounding this transition.

  2. Greenland ice sheet initiation and Arctic sea ice coincide with Eocene and Oligocene CO2 changes

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna; Darby, Dennis

    2016-04-01

    Earth's modern ocean-climate system is largely defined by the presence of glacial ice on landmasses in both hemispheres. Northern Hemisphere ice was previously thought to have formed no earlier than the Miocene or Oligocene, about 20-30 million years after the widespread onset of Antarctic glaciation at the Eocene-Oligocene boundary. Controversially, the episodic presence of seasonal Arctic sea ice and glacial ice in the Northern Hemisphere beginning in the early Oligocene to Middle Eocene has been inferred from multiple observations. Here we use precise source determinations based on geochemical measurements of ice-rafted debris (IRD) from an ODP core in the Greenland Sea (75° N) to constrain glacial ice and sea ice-rafting in the Northern Hemisphere during the middle Eocene through early Oligocene. The chemical fingerprint of 2,334 detrital Fe oxide grains indicates most of these grains are from Greenland with >98% certainty. Thus the coarse IRD in the Greenland Sea originates from widespread areas of east Greenland as far south as the Denmark Strait area (~68° N), with additional IRD sources from the circum-Arctic Ocean. This is the first definitive evidence that mid-Eocene IRD in the Greenland Sea is from Greenland. Episodic glaciation of different source regions on Greenland is synchronous with times of ice-rafting in the western Arctic and ephemeral perennial Arctic ice cover. Intervals of bipolar glacial ice storage in the middle Eocene through early Oligocene coincide with evidence for periods of reduced CO2, associated with carbon cycle perturbations.

  3. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L.; Hollis, Christopher J.; Pagani, Mark; Jardine, Phillip E.; Pearson, Paul N.; Markwick, Paul; Galsworthy, Amanda M. J.; Raynham, Lauren; Taylor, Kyle. W. R.; Pancost, Richard D.

    2015-07-01

    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, %GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse.

  4. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Windley, Brian F.; Zhang, Zhiliang; Fu, Bihong; Li, Shihu

    2016-02-01

    In contrast to the present hyper-arid inland basin surrounded by the high mountains of Central Asia, the western Tarim Basin was once connected with the Tajik Basin at least in the late Eocene, when an epicontinental sea extended from the western Tarim Basin to Europe. Western Tarim is a key site for studying the retreat of seawater, which was likely caused by the northward indentation of the Pamir arc and facilitated by the climatic cooling and eustatic sea level change in the Cenozoic. Here we present a new magnetostratigraphic record from the Tarim Basin that provides evidence of diachronous seawater retreat from its southwestern margin. We studied about 1360 m of well-exposed Eocene-Oligocene strata at Keliyang in the folded foreland of the West Kunlun orogen. Until now, the age of the strata has only been minimally constrained by the presence of late mid-Eocene marine fossils. Our biostratigraphic and magnetostratigraphic results demonstrate that the age of the sedimentary sequence ranges from ∼46 Ma to ∼26 Ma (mid-Eocene to late-Oligocene) and the seawater retreat at Keliyang took place at ∼40 Ma. Considering the stepwise northward indentation and uplift of the Pamir orogen, together with the other previous results, we propose that seawater retreat from the southwestern margin of the Tarim Basin was diachronous in the late Eocene ranging from 47 Ma to 40 Ma. The regional indentation, uplift and erosion of the Pamir orogen played the dominant and important role in controlling the seawater retreat from the southwestern margin of the Tarim Basin.

  5. Reconstructing a Hot and High Eocene Sierra Nevada Using Oxygen and Hydrogen Isotopes in Kaolinite

    NASA Astrophysics Data System (ADS)

    Mix, H.; Ibarra, D. E.; Mulch, A.; Graham, S. A.; Chamberlain, C. P.

    2014-12-01

    Despite the broad interest in determining the topographic and climatic histories of mountain ranges, the evolution of California's Sierra Nevada remains actively debated. Prior stable isotope-based studies of Sierra Nevada have relied exclusively on hydrogen isotopes in kaolinite, hydrated volcanic glass and leaf n-alkanes. Additional constraints from the oxygen isotope composition of phyllosilicates increase the robustness of findings from a single isotope system and allow for the reconstruction of paleotemperatures. Here, we reconstruct the temperature and elevation of the Early Eocene Sierra Nevada using the oxygen isotope composition of kaolinitized granite clasts from the ancestral Yuba and American Rivers. We evaluate the possible contributions of hydrogen isotope exchange by direct comparison with more robust oxygen isotope measurements. Next, we utilize differences in the hydrogen and oxygen isotope fractionation in kaolinite to constrain paleotemperature. Oxygen isotope geochemistry of in-situ kaolinites indicates upstream (eastward) depletion of 18O in the northern Sierra Nevada. δ18O values ranging from 11.4 - 14.4 ‰ at the easternmost localities correspond to paleoelevations as high as 2400 m when simulating the orographic precipitation of moisture from a Pacific source using Eocene boundary conditions. This finding is consistent with stable isotope studies of the northern Sierra, but oxygen isotope based paleoelevation estimates are systematically ~500 - 1000 m higher than those from hydrogen-based estimates from the same samples. Kaolinite geothermometry from 16 samples measured in duplicate or triplicate produce an average Early Eocene temperature of 24.2 ± 2.0 °C (1s). This kaolinite temperature reconstruction is in agreement with paleofloral and geochemical constraints and general circulation model simulations from Eocene California. Our results confirm prior hydrogen isotope-based paleoelevations and further substantiate the existence of a

  6. Refinement of Eocene lapse rates, fossil-leaf altimetry, and North American Cordilleran surface elevation estimates

    NASA Astrophysics Data System (ADS)

    Feng, Ran; Poulsen, Christopher J.

    2016-02-01

    Estimates of continental paleoelevation using proxy methods are essential for understanding the geodynamic, climatic, and geomorphoric evolution of ancient orogens. Fossil-leaf paleoaltimetry, one of the few quantitative proxy approaches, uses fossil-leaf traits to quantify differences in temperature or moist enthalpy between coeval coastal and inland sites along latitudes. These environmental differences are converted to elevation differences using their rates of change with elevation (lapse rate). Here, we evaluate the uncertainty associated with this method using the Eocene North American Cordillera as a case study. To do so, we develop a series of paleoclimate simulations for the Early (∼55-49 Ma) and Middle Eocene (49-40 Ma) period using a range of elevation scenarios for the western North American Cordillera. Simulated Eocene lapse rates over western North America are ∼5 °C/km and 9.8 kJ/km, close to moist adiabatic rates but significantly different from modern rates. Further, using linear lapse rates underestimates high-altitude (>3 km) temperature variability and loss of moist enthalpy induced by non-linear circulation changes in response to increasing surface elevation. Ignoring these changes leads to kilometer-scale biases in elevation estimates. In addition to these biases, we demonstrate that previous elevation estimates of the western Cordillera are affected by local climate variability at coastal fossil-leaf sites of up to ∼8 °C in temperature and ∼20 kJ in moist enthalpy, a factor which further contributes to elevation overestimates of ∼1 km for Early Eocene floras located in the Laramide foreland basins and underestimates of ∼1 km for late Middle Eocene floras in the southern Cordillera. We suggest a new approach for estimating past elevations by comparing proxy reconstructions directly with simulated distributions of temperature and moist enthalpy under a range of elevation scenarios. Using this method, we estimate mean elevations for

  7. Late Eocene to early Oligocene quantitative paleotemperature record: evidence from continental halite fluid inclusions.

    PubMed

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene-Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954 and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  8. Late Eocene to early Oligocene quantitative paleotemperature record: evidence from continental halite fluid inclusions.

    PubMed

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene-Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954 and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change.

  9. Late Eocene to early Oligocene quantitative paleotemperature record: Evidence from continental halite fluid inclusions

    PubMed Central

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  10. Early Eocene hyperthermal events ETM2, H2 and I1 as recorded by Tethyan planktic foraminifera in the Terche section (northernastern Italy)

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Roberta; Luciani, Valeria; Giusberti, Luca; Fornaciari, Eliana; Sprovieri, Mario

    2014-05-01

    In the last years, several transient episodes of extreme warming, the so-called hyperthermals, have been recognized in addition to the well-know Paleocene-Eocene Thermal Maximum (PETM; ~55.5 Ma), superimposed on the long-term Paleocene-early Eocene warming trend peaking in the Early Eocene Climatic Optimum (EECO). To the present, perturbations produced by hyperthermals are well documented in terms of isotopic variations whereas their influence on the biota is still largely unexplored. The Terche section, located in the Venetian Pre-Alps (northeastern Italy), is an expanded latest Paleocene-lower Eocene succession deposited in a bathyal setting of a continental margin of the central-western Tethys. This section is particularly suitable to study post-PETM hyperthermals because it contains three well-exposed and expanded marly-clayey units (MUs) corresponding to intervals of negative carbon isotope excursions (CIEs). Calcareous plankton biostratigraphy allow us to refer them to the hyperthermals ETM2 (or H1; ~53.7 Ma), H2 (~53.6 Ma) and I1(~53.3 Ma). Here we present the first detailed quantitative analysis of planktic foraminiferal assemblages across these early Eocene hyperthermals events. Quantitative analysis of planktic foraminiferal genera shows a long-term trend of variation upon which higher frequency variations are superimposed. We interpret such long-term variation as the response to the long-term warming trend since it highlights a slight increase of the warm indicators, such as the acarininids, and decrease of the cold form subbotinids. The high frequency variations, instead, closely related to the CIEs and to the MUs, record a pronounced increase in acarininids (up to 68%) and a parallel marked decline in the abundances of subbotinids and other component of planktic foraminiferal assemblages. The MUs are also associated with an increase of the eutrophic radiolarians. This aspect, together with the dominance of acarininids, can be interpreted as a

  11. Occurrence and distribution of bacterial tetraether lipids in the Eocene Canadian Arctic paleosols: paleoclimate implications (Invited)

    NASA Astrophysics Data System (ADS)

    Mehay, S.; Jahren, A.; Schubert, B.; Eberle, J. J.; Summons, R. E.

    2010-12-01

    The Early to Middle Eocene (~56-45 Ma) was a “greenhouse” interval with average global temperatures warmer than any other time in the Cenozoic. This period was characterized by warm climates at high latitude leading to lush forests and the arrival of new mammal groups north of the Arctic Circle (>73°N). Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids characteristic of certain archaea and bacteria and it has been demonstrated that branched and cyclic GDGTs derived from soil bacteria vary in structure as a function of environmental factors. Proxies based on the relative abundances of methyl branched and cyclopentyl bacterial tetraethers are hypothesized to correlate with mean annual air temperature and soil pH. Here we present the occurrence and distribution of GDGTs in a range of paleosol and sediment samples from Axel Heiberg Island and Ellesmere Island, Nunavut (eastern Canadian Arctic) and Banks Island in the Northwest Territories (western Canadian Arctic). Preliminary results on 11 paleosol samples from the middle Eocene-aged Geodetic Hills Fossil Forest on Axel Heiberg Island indicate a mean annual air temperature of about 9°C. Earlier paleotemperature estimates for Axel Heiberg Island led to values ranging from 9°C to 15°C for the Middle Eocene. Recent temperature prediction for Ellesmere Island (Early Eocene) based upon oxygen isotope ratios of biogenic phosphate from mammal and fish fossils led to ~8°C. In contrast, GDGTs from a marine sedimentary sequence from Lomonosov Ridge in the central Arctic Ocean led to much higher Early Eocene temperature. Thus, the evaluation of the paleotemperature for the Early to Middle Eocene is still a subject of controversy. Ongoing GDGTs analysis of samples from Ellesmere and Banks Islands should give a more comprehensive paleoenvironmental description of the Eocene Arctic. Differences observed between the various paleotemperature estimates will also be discussed. GDGTs distributions are

  12. Fossil Atherospermataceae from lower Eocene sediments of Austria: Laurelia Juss. from the EECO section at Krappfeld in Carinthia

    NASA Astrophysics Data System (ADS)

    Hofmann, Christa-Ch.; Egger, Hans

    2015-04-01

    Laurelia Juss. (Atherospermataceae R. Br.) today is a disjunct genus in the southern hemisphere that inhabit temperate moist forests of South America and New Zealand. Unequivocal Atherospermataceae fossils are still rare and are known since the Upper Cretaceous from the southern hemisphere. Here, we present the first findings of Laurelia pollen in the northern hemisphere, preserved in EECO (Early Eocene Climate Optimum) sediments in southern Austria. The sediments of the Paleogene Holzer Formation rest with an erosional unconformity on Campanian rocks, is 8 m-thick and composed of soft red and green claystone, and coaly lenses rich in terrestrial palynomorphs. The pollen and spores were examined with LM and SEM and assigned to botanical families and genera. Overall, three different palynomorph-rich facies were identified: The first, at the base of the Holzer Formation, is characterized by abundant and diverse fern spores, various Arecaceae, Myricaceae, and Juglandaceae. The second is from the black transgressive shale and characterized by the co-occurrence of marine dinoflagellates and Normapolles, Nypa, palm pollen, and Avicennia. The third facies is dominated by wind pollinated triporate taxa (e.g., Normapolles, Myricaceae, Juglandaceae), monosulcate palm taxa and numerous fern spores. The Atherospermataceae pollen, which resembles most closely the genus Laurelia Juss., were encountered in low numbers in all three facies of the Holzer Formation, but previously misidentified. The reason lies in the aperture type: Atherospermataceae pollen are composed of two hemispherical halves that are separated by a complete ring-like aperture or an incomplete a ring-like aperture that acts as a zone of weakness so that the deposited fossil pollen, tend to fall apart. Most fossil Laurelia pollen in the Krappfeld are preserved as rolled up individual halves and look like boat-shaped sulcate pollen grains of monocots or basal angiosperms; preservation of complete grains is rare

  13. Pre-Eocene rocks of Java, Indonesia

    USGS Publications Warehouse

    Ketner, Keith B.; Kastowo,; Modjo, Subroto; Naeser, C.W.; Obradovich, J.D.; Robinson, Keith; Suptandar, Tatan; Wikarno,

    1976-01-01

    The exposed pre-Eocene rocks of Java can be divided into two compound units for purposes of reconnaissance mapping and structural interpretation: a sedimentary sequence and melange. The sedimentary sequence consists of moderately deformed and little-metamorphosed conglomerate, sandstone, mudstone, claystone, chert, and limestone. The melange consists of a chaotic mechanical mixture of rocks identical to those of the sedimentary sequence and their metamorphic equivalents, such as schist, phyllite, quartzite, and marble. In addition, it contains a large proportion of quartz porphyry and smaller amounts of granite, basalt, gabbro, peridotite, pyroxenite, and serpentinite. The sedimentary sequence is at least partly of Early Cretaceous age and the melange is of Early Cretaceous to very early Paleocene age. They are overlain unconformably by Eocene rocks. The presence in the melange of blocks of quartz porphyry and granite is not easily reconcilable with current plate tectonic concepts in which the sites of formation of melange and plutonic rocks should be hundreds of kilometres apart.

  14. Calcareous phytoplankton perturbations through the Eocene/Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Bown, P. R.; Dunkley Jones, T.; Expedition 320/321 Shipboard Party

    2010-12-01

    The Eocene-Oligocene transition (E/OT) witnessed the most significant climatic change in the Cenozoic with a fundamental reordering of the planet’s oceanic and atmospheric circulation, the cooling of deep and high-latitude waters and the formation of continental scale ice sheets on Antarctica. Records from the equatorial Pacific show rapid and highly correlated increases in deep-ocean oxygen and carbon isotopes and a drop in the Calcium Carbonate Compensation Depth (CCD) of over a kilometre (Coxall et al. 2005). The role of surface ocean productivity changes, especially at low latitudes, within this carbon cycle perturbation remains open to question. Detailed micropalaeontological analyses from shelf-slope sections of Tanzania, which host exceptionally well preserved calcareous microfossils, indicate a significant reorganization of planktonic niches coincident with the E/OT (Pearson et al. 2008). These include major assemblage shifts within the calcareous phytoplankton closely coupled to the isotopic excursions (Dunkley Jones et al. 2008). Here, we integrate the Tanzanian records with patterns of calcareous nannofossil turnover observed in historic DSDP Site 242 (Davie Ridge, Indian Ocean), the US Gulf Coast and preliminary data from new E/OT successions recovered during the recent IODP Expedition 320 in the eastern equatorial Pacific and discuss their implications for nutrient cycling and surface ocean productivity across the E/OT. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 53-57. Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K. & Lear, C. H. 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production, Paleoceanography, 23, PA4204, doi:10.1029/2008PA001640. Pearson, P.N, McMillan, I. K

  15. Geochronology of Early Eocene strata, Baja California

    SciTech Connect

    Flynn, J.J.; Cipolletti, R.M.

    1985-01-01

    Recent discoveries clearly indicate a Wasatchian (Early Eocene) land mammal age for fossil vertebrates from the Punta Prieta area, Baja California North, Mexico. This fauna provides a rare test for discriminating the temporal significance of mammalian faunas over a broad geographic area. The authors sampled intertonguing, fossiliferous terrestrial and marine strata for paleomagnetic and biostratigraphic analyses to provide an independent age determination for the Punta Prieta area mammal fauna. The marine macroinvertebrate assemblage is most likely upper Meganos to lower Capay West Coast Molluscan Stage based on the temporal ranges of all the taxa; also, none of the taxa occur in pre-Meganos stages. Two genera of planktonic forams indicate a probably Eocene age. They sampled seventeen paleomagnetic sites over 50 meters in the terrestrial mammal-bearing section, and thirteen sites over 25 meters in the marine section. The entire terrestrial sequence is reversely magnetized; initial results indicate the marine sequence probably also is reversely magnetized. Based on all the available biochronologic evidence this reversed sequence most likely should be correlated with the long reversed polarity Chron C24R. Clarkforkian to Early Wasatchian faunas in Wyoming also are associated with Chron C24R. All the available biostratigraphic and magnetostratigraphic evidence strongly supports an Early Eocene age for the Punta Prieta mammalian fauna and temporal equivalence of the Punta Prieta Wasatchian fauna with Wasatchian faunas from the Western United States. Land mammal ages are synchronous and applicable across broad geographic areas.

  16. Late Eocene rings around the earth

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1980-01-01

    The suggestion of O'Keefe (1980) that the terminal Eocene event was caused by rings of tektite material encircling the earth is discussed. It is argued that the assumption that the tektites are of lunar volcanic origin is unwarranted and contrary to existing data, including the lack of lunar rocks of suitable composition, the lack of lunar rocks of the correct age, the lack of evidence that the North American tektites fell throughout a sedimentary rock column of a few million years, and the nondetection of a tektite with a measurable cosmic ray exposure age. Alternatively, it is suggested that the terminal Eocene event may be associated with volcanic ash, air-fall tuff and bentonite in the late Eocene. O'Keefe replies that the hypothesis of the terrestrial origin of the tektites conflicts with the laws of physics, for example in the glass structure and shaping of the tektites. Furthermore, evidence is cited for lunar rocks of the proper major-element composition and ages, and it is noted that the proposed solar Poynting-Robertson effect would account for the particle fall distributions and cosmic ray ages.

  17. A model-model and data-model comparison for the early Eocene hydrological cycle

    NASA Astrophysics Data System (ADS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine; Valdes, Paul J.; Winguth, Arne; Winguth, Cornelia; Pancost, Richard D.

    2016-02-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  18. The organic geochemistry of the Eocene-Oligocene black shales from the Lunpola Basin, central Tibet

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wang, Chengshan; Duan, Yi; Li, Yalin; Hu, Bin

    2014-01-01

    This paper reports on the depositional paleoenvironment and the potential hydrocarbons of the Eocene-Oligocene black shales from the Dingqinghu and Niubao Formations in the Lunpola Basin, central Tibet. Nineteen samples from two outcrop profiles were analysed. The contents of the total organic carbon (TOC) and sulphur were measured; other analyses included Rock-Eval pyrolysis, solvent extraction and gas chromatography-mass spectrometer (GC-MS). The results indicated that the shales from the Dingqinghu and Niubao Formations are thermally immature. The pyrolysis data show that the shales contain Type I organic matter and that lacustrine algal are the main organic matter sources. The low pristane to phytane ratios and the high gammacerane indices indicate that the shales were deposited in a reducing, stratified, and hypersaline palaeo-lake, which is consistent with the climate information provided by the development history of palaeo-lakes from the Eocene to the Oligocene epochs.

  19. Equable climates during Earth history

    SciTech Connect

    Barron, E.J.; Cirbus Sloan, L. )

    1990-06-01

    Eocene and Cretaceous climate-model experiments demonstrate that regardless of conditions of warm polar oceans, differences in pole-to-equator surface-temperature gradient, or topography, above-freezing surface temperatures in winter for continental interiors at middle to high latitudes cannot be maintained. Continental interiors will have cold winter temperatures, even during globally warm periods, unless currently unrecognized forcing factors influenced past climates. If model simulations of Eocene and Cretaceous climates are accurate, the term equable, as it applies to paleoclimate, should be reconsidered.

  20. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    PubMed

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  1. ''Optimum productivity'': a geneticist's view

    SciTech Connect

    Libby, W.J.

    1980-01-01

    Both ''optimum'' and ''productivity'' are explored in a social context with a long time dimension. Renewability, flexibility, and diversity are important concepts in long-term planning to achieve optimum productivity. Various possible genetic contributions, including complementary clones, quantitative genetic engineering, resistant trees and plantations, elimination of inbreeding, single-gene genetic engineering, and agri-forestry, are suggested for long-term sustained or increased productivity.

  2. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  3. Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene

    NASA Astrophysics Data System (ADS)

    Luciani, Valeria; Dickens, Gerald R.; Backman, Jan; Fornaciari, Eliana; Giusberti, Luca; Agnini, Claudia; D'Onofrio, Roberta

    2016-04-01

    A marked switch in the abundance of the planktic foraminiferal genera Morozovella and Acarinina occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum. Stable carbon and oxygen isotope data of bulk sediment are presented from across the EECO at two locations: Possagno in northeast Italy and Deep Sea Drilling Project (DSDP) Site 577 in the northwest Pacific. Relative abundances of planktic foraminifera are presented from these two locations, as well as from Ocean Drilling Program (ODP) Site 1051 in the northwest Atlantic. All three sections have good stratigraphic markers, and the δ13C records at each section can be correlated amongst each other and to δ13C records at other locations across the globe. These records show that a series of negative carbon isotope excursions (CIEs) occurred before, during and across the EECO, which is defined here as the interval between the J event and the base of Discoaster sublodoensis. Significant though ephemeral modifications in planktic foraminiferal assemblages coincide with some of the short-term CIEs, which were marked by increases in the relative abundance of Acarinina, similar to what happened across established hyperthermal events in Tethyan settings prior to the EECO. Most crucially, a temporal link exists between the onset of the EECO, carbon cycle changes during this time and the decline in Morozovella. Possible causes are manifold and may include temperature effects on photosymbiont-bearing planktic foraminifera and changes in ocean chemistry.

  4. Late Eocene sea surface cooling of the western North Atlantic (ODP Site 647A)

    NASA Astrophysics Data System (ADS)

    Sliwinska, Kasia K.; Coxall, Helen K.; Schouten, Stefan

    2016-04-01

    The initial shift out of the early Cenozoic greenhouse and into a glacial icehouse climate occurred during the middle to late Eocene and culminated in the abrupt growth of a continental-scale ice cap on Antarctica, during an episode known as the Oligocene Isotope Event 1 (Oi-1) ˜33.7 Ma. Documenting the patterns of global and regional cooling prior to Oi-1 is crucial for understanding the driving force and feedback behind the switch in climate mode. Well-dated high-resolution temperature records, however, remain sparse and the climatic response in some of the most climatically sensitive regions of the Earth, including the high latitude North Atlantic (NA), where today large amounts of ocean heat are exchanged, are poorly known. Here we present a sea surface palaeotemperature record from the late Eocene to the early Oligocene (32.5 Ma to 35 Ma) of ODP Hole 647A based on archaeal tetraether lipids (TEX86H). The site is located in the western North Atlantic (Southern Labrador Sea) and is the most northerly located (53° N) open ocean site with a complete Eocene-Oligocene sequence which yields both calcareous and organic microfossils suitable for detailed proxy reconstructions. Our record agrees with the magnitude of temperature decrease (˜3 ° C sea surface cooling) recorded by alkenones and pollen data from the Greenland Sea, but our higher resolution study reveals that the high latitude NA cooling step occurred about 500 kyrs prior to the Oi-1 Antarctic glaciation, at around ˜34.4 Ma. This cooling can be explained by regional effects related to local NA tectonics including ocean gateways, known to have changed at the time, with potential to effect NA overturning circulation due to adjustments in the thermohaline density balance. Alternatively, the cooling itself may be due to changes in NA circulation, suggesting that global ocean circulation played a role in pre-conditioning the Earth for Antarctic glaciation.

  5. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    PubMed

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales. PMID:26438285

  6. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    PubMed

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales.

  7. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean

    NASA Astrophysics Data System (ADS)

    Ho, Sze Ling; Laepple, Thomas

    2016-08-01

    The early Eocene (49-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2 (refs ,), and a flatter-than-present latitudinal surface temperature gradient. The multi-proxy-derived flat temperature gradient has been a challenge to reproduce in model simulations, especially the subtropical warmth at the high-latitude surface oceans, inferred from the archaeal lipid-based palaeothermometry, . Here we revisit the interpretation by analysing a global collection of multi-proxy temperature estimates from sediment cores spanning millennia to millions of years. Comparing the variability between proxy types, we demonstrate that the present interpretation overestimates the magnitude of past climate changes on all timescales. We attribute this to an inappropriate calibration, which reflects subsurface ocean but is calibrated to the sea surface, where the latitudinal temperature gradient is steeper. Recalibrating the proxy to the temperatures of subsurface ocean, where the signal is probably formed, yields colder -temperatures and latitudinal gradient consistent with standard climate model simulations of the Eocene climate, invalidating the apparent, extremely warm polar sea surface temperatures. We conclude that there is a need to reinterpret -inferred marine temperature records in the literature, especially for reconstructions of past warm climates that rely heavily on this proxy as reflecting subsurface ocean.

  8. Early Eocene uplift of southernmost San Joaquin basin, California

    SciTech Connect

    Reid, S.A.; Cox, B.F.

    1989-04-01

    Stratigraphic studies in the southern San Joaquin basin and in the El Paso Mountains of the southwestern Great Basin corroborate a hypothesized early Eocene regional uplift event. Eocene uplift and erosion of the southernmost San Joaquin basin south of Bakersfield were recently proposed because an early Paleogene fluviodeltaic sequence in the El Paso Mountains (Goler Formation) apparently had no seaward counterpart to the southwest. New microfossil data (coccoliths) indicate that marine deposits near the top of the Goler Formation are uppermost Paleocene (nannofossil zone CP8) rather than lower Eocene, as reported previously. These data (1) confirm that the oldest known Tertiary strata south of Bakersfield (Eocene Tejon Formation) are younger than the uppermost Goler Formation and (2) seem to restrict uplift to the earliest Eocene. The authors propose that the uppermost Cretaceous and Paleocene deposits were eroded and the Mushrush trough was cut and filled mainly in response to earliest Eocene uplift. The uplift was transverse to the northwest-trending forearc basin. Thus, it was distinct from late early Eocene (pre-Comengine Formation) regional tilting and uplift, which produced northwest-trending structures. Early Eocene uplift probably played only a minor role in the southward termination of pre-Maastrichtian parts of the forearc basin, which they instead attribute to massive uplift of the southernmost Sierra Nevada during the early(.) Late Cretaceous.

  9. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  10. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber

    PubMed Central

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C.; Peralta, Denilson F.; Renner, Matt; Schmidt, Alexander R.

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae. PMID:27244582

  11. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    PubMed Central

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  12. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  13. Studies in neotropical paleobotany. XIV. A palynoflora from the middle Eocene Saramaguacan formation of Cuba

    USGS Publications Warehouse

    Graham, A.; Cozadd, D.; Areces-Mallea, A.; Frederiksen, N.O.

    2000-01-01

    An assemblage of 46 fossil pollen and spore types is described from a core drilled through the middle Eocene Saramaguacan Formation, Camaguey Province, eastern Cuba. Many of the specimens represent unidentified or extinct taxa but several can be identified to family (Palmae, Bombacaceae, Gramineae, Moraceae, Myrtaceae) and some to genus (Pteris, Crudia, Lymingtonia?). The paleo-climate was warm-temperate to subtropical which is consistent with other floras in the region of comparable age and with the global paleotemperature curve. Older plate tectonic models show a variety of locations for proto-Cuba during Late Cretaceous and later times, including along the norther coast of South America. More recent models depict western and central Cuba as two separate parts until the Eocene, and eastern Cuba (joined to northern Hispaniola) docking to central Cuba also in the Eocene. All fragments are part of the North American Plate and none were directly connected with northern South America in late Mesozoic or Cenozoic time. The Saramaguacan flora supports this model because the assemblage is distinctly North American in affinities, with only one type (Retimonocolpites type 1) found elsewhere only in South America.

  14. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae. PMID:27244582

  15. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.

    PubMed

    Sexton, Philip F; Norris, Richard D; Wilson, Paul A; Pälike, Heiko; Westerhold, Thomas; Röhl, Ursula; Bolton, Clara T; Gibbs, Samantha

    2011-03-17

    'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (∼65-34 million years (Myr) ago). The most extreme hyperthermal was the ∼170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (∼40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

  16. Extreme (sub)Tropical Eocene oceanic warmth: Clumped isotope temperatures of shallow-dwelling large Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Evans, D.

    2015-12-01

    The response of the tropical surface oceans to greater than modern atmospheric carbon dioxide is poorly constrained. Eocene climate modelling broadly indicates that the tropical surface ocean was 8-10°C warmer compared to pre-industrial simulations, at odds with much of the currently available proxy information which suggests low latitude sea surface temperatures (SST) no more than a few degrees warmer than at present. However, the accuracy of some of this proxy information, particularly the δ18O and Mg/Ca ratio of biogenic marine carbonates, is hampered by uncertainties regarding the secular evolution of seawater chemistry. Here, we present clumped isotope temperatures of modern and Eocene shallow-dwelling benthic foraminifera, a palaeothermometer independent of seawater isotopic composition. These organisms have photosymbionts and therefore inhabit the photic zone, within the depth range of planktic species considered to be surface dwelling. Specimens collected from the modern ocean precipitate calcite in agreement with the clumped isotope-temperature calibration of Zaarur et al. [2013]. Based on 11 tropical to mid-latitude localities from across the globe we demonstrate that the Eocene ocean was significantly warmer than suggested by much of the previous proxy data. Exceptionally-preserved samples from the mid-Eocene of Java indicate the West Pacific was characterised by mean annual SST of 34-37°C at this time, whilst mid-latitude northern hemisphere SST (from localities in the UK, France and Belgium) were 24-30°C throughout the Eocene. These data bring (sub)tropical SST in a high-CO2 world into much better agreement with climate models, indicating low-mid latitudinal SST gradients similar to modern.

  17. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  18. Paleoecology of Early eocene strata near Buffalo, Wyoming

    SciTech Connect

    Durkin, T.V.; Rich, F.J.

    1986-08-01

    Palynological investigation has helped illustrate the paleoecology of a vertical section of strata from the Wasatch Formation between the Healy and Walters coal burns near Buffalo, Wyoming. Numerous silicified logs and stumps of cypress and sequoia have been preserved at the site and drew initial attention to it. Flood-basin deposits enclose the trees and include sandstones, siltstones, shale, and coal beds that accumulated as channel, levee, crevasse-splay, and swamp/marsh sediments. Detrital sediments were probably derived from the Bighorn Mountains and accumulated as they were carried into the Powder River basin fluvial system. One hundred five polynomorph taxa have been distinguished, as well as 10 types of fungal spores. Platycarya, Tilia, Sparganium, and Platanus pollen indicate an early Eocene age for the strata. Other pollen, as well as the genera of trees and megafossil remains from a clinker bed several miles from the study area, reinforce the interpretation of a warm-temperature or subtropical climate at the time of deposition. The megafossil assemblage includes pinnae of the aquatic fern Marsilea, never before described from the fossil record. Variations in the species composition of the polynomorph assemblages show that several plant communities existed in succession at the site. These varied from pond or marsh types to mature forests.

  19. Late Paleocene-early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Sarkar, A.; Bera, M. K.; Rai, Jyotsana; Rathore, S. S.

    2013-02-01

    Late Paleocene to early Eocene (~56 to 51 Ma) interval is characterized by five distinct transient warming (hyperthermal) events (Paleocene-Eocene thermal maximum (PETM), H1/ETM2/ELMO, H2, I1 and I2) in a super greenhouse globe associated with negative carbon isotope excursions (CIEs). Although well-documented marine records exist at different latitudes, terrestrial PETM sections are rare. In particular, almost no terrestrial records of either the PETM or early Eocene hyperthermals (EEHs) are yet available from the tropics. Further, evolution of modern order of mammals near the PETM has been recorded in many northern continents; however, the response of mammals in the tropics to these warming events is unknown. A tropical terrestrial record of these hyperthermal/CIE events, encompassing the earliest modern order mammal bearing horizon from India, can therefore be vital in understanding climatic and biotic evolution during the earliest Cenozoic time. Here, for the first time, we report high resolution carbon isotope ( δ 13C) stratigraphy, nannofossil, and Sr isotope ratio of marine fossil carbonate from the Cambay Shale Formation of Western India. The record shows complete preservation of all the above CIE events, including the PETM, hitherto unknown from the equatorial terrestrial records. δ 13C chemostratigraphy further suggests that at least the present early Eocene mammal-bearing horizon, recently discovered at Vastan, does not support the `out of India' hypothesis of earliest appearance of modern mammals and subsequent dispersal to the Holarctic continents.

  20. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D.

    2014-11-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic and Artic were warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis, and stable isotopes (δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual to annual scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean temperature estimate of 11.4 °C (1σ = 1.8 °C) based on δ18O. Dual-isotope spectral analysis suggests that multidecadal climate cycles similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30 year timescales.

  1. Ecological Turnover of Shallow Water Carbonate Producers Following the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Martindale, R. C.

    2015-12-01

    Modern coral reef ecosystems are under threat from global climate change (and associated, synergistic stresses) and local environmental degradation. Therefore, it is important for ecologists to understand how ecosystems adapt and recover from climate change. The fossil record provides excellent case studies of similar events, such as the Paleocene-Eocene Thermal Maximum (PETM). Although Paleocene and Eocene shallow water carbonates have not received the same degree of attention as the deep-water record, the PETM provides an opportunity to study the role of alternative stable states in maintaining the health and diversity of shallow water carbonate environments. It is generally accepted that during the PETM there is a transition from reef systems to foraminiferal shoals as the dominant shallow water carbonate producers. In fact, previous work has documented this interval as one of the major metazoan reef collapses of the Phanerozoic. This study fills an important gap in the shallow-water PETM record by quantitatively measuring the changes in carbonate production and ecology of 15 localities as they shift from coral reefs to foraminiferal shoal. The quantitative and semi-quantitative analysis is accomplished by using data from the PaleoReefs database and a simple carbonate production calculation to estimate the productivity of the shallow water system. Ecological data are gathered through a literature review of the localities. The results of this study will enable a better understanding of how modern reefs may react to global climate and environmental change.

  2. Tectonic control of Eocene arkosic sediment deposition, Oregon and Washington

    SciTech Connect

    Armentrout, J.M.; Ulrich, A.R.

    1983-03-01

    Chronostratigraphic and geographic studies of Eocene arkosic sandstones suggest deposition during a volcanically quiet interval resulting from the westward jump of the Farallon-Kula plate subduction zone in Oregon and Washington. The Eocene arkosic sandstones were deposited as part of a broad fluvial plain-coastal plain-shelf margin basin complex extending throughout Oregon and Washington between uplands of Mesozoic rocks. Feldspathic-quartzose sediments were transported from the east by river systems draining granitic terrains perhaps as far away as the Idaho Batholith. Chronostratigraphic correlations suggest that the arkosic sandstones were deposited along the margins of the depositional system during the early Eocene, prograded westward during the middle Eocene, and then regressed during the latest Eocene and Oligocene simultaneously with the influx of abundant pyroclastic debris. During the early Eocene, a northwest-southeast seamount chain was extruded on the Farallon and Kula plates west of an eastward-dipping subduction zone. Subduction of the oceanic plates moved the seamount chain obliquely toward the subduction zone. In middle Eocene time-49 to 40 m.y.b.p-the seamount chain reached the subduction zone creating instability in the subduction system and resulting in the westward jump of the underthrust boundary between the Farallon-Kula and North American plates. Coincident with and continuing after the subduction zone jump and seamount accretion, eastwardly derived arkosic sediments prograded across Oregon and Washington spilling into the new fore-arc basin and enveloping the seamounts.

  3. Optimum windmill-site matching

    SciTech Connect

    Salameh, Z.M.; Safari, I. )

    1992-12-01

    In this paper a methodology for the selection of the optimum windmill for a specific site is developed. The selection windmill for a specific site is developed. The selection is based on finding the capacity factors (CF) of the available windmills. This is done by using long term wind speed data recorded at different hours of the day for many years. This data is then used to generate mean wind speeds for a typical day in a month. Probability density functions for the mean wind speeds for the different hours of the day are generated with the manufacturer's specifications on windmills used to calculate the capacity factors for the windmills. The windmill with the highest average capacity factor for the specific site is the optimum one and to be recommended.

  4. Climatic influences on the Paleogene evolution of alkenones

    NASA Astrophysics Data System (ADS)

    Brassell, Simon C.

    2014-03-01

    Application of the alkenone paleotemperature proxy (UK'37) for marine sediments is typically constrained by three factors: (i) an absence of alkatrienones in sediments deposited where ocean temperatures exceed ~28°C, (ii) loss of alkenones in thermally altered sediments, and (iii) poor preservation of alkenone signals due to oxidative degradation. In addition, there appears to be a temporal limit on the occurrence of alkatrienones, which are conspicuously absent in all alkenone-containing sediments from the early Aptian to the immediate aftermath of the Early Eocene Climatic Optimum (EECO) when they first appeared in Arctic Ocean sediments. Compilation of reported and previously unpublished alkenone distributions for the Paleogene coupled with assessment of co-occurring calcareous nannoplankton genera within the Noelaerhabdaceae provide evidence that evolutionary developments in alkenone occurrences include biosynthetic responses likely triggered by climate change. The timing of emergence of alkatrienones post-EECO and their subsequent appearance at all latitudes during the middle Eocene accompanies expansion of the calcareous nannoplankton genus Reticulofenestra coincident with significant climate-driven changes in oceanic conditions, including (i) modification of trophic structure associated with weakened thermal stratification, (ii) higher productivity facilitated by enhanced nutrient influx, and (iii) changes in seasonality, initially at high latitudes, related to greater latitudinal temperature gradients. Collectively, these changes would serve to favor eurythermal/eurytrophic algae, like Reticulofenestra, with a biomechanism to store energy through production of lipid bodies rich in alkenones during episodes of higher nutrient availability. This ability likely enhanced the viability of this marine haptophyte when nutrients were limiting, ultimately ensuring its evolutionary success.

  5. Humidity estimate for the middle Eocene Arctic rain forest

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Silveira Lobo Sternberg, Leonel

    2003-05-01

    The exquisite preservation of fossilized Metasequoia trees that grew near 80°N latitude during the middle Eocene (ca. 45 Ma) in Nunavut, Canada, allowed for δD and δ18O analyses of cellulose, techniques previously restricted to wood <30,000 yr old. From the isotopic results, we determined that the middle Eocene Arctic atmosphere contained ˜2× the water found in the region's atmosphere today. This water vapor contributed to a middle Eocene greenhouse effect that insulated the polar region during dark polar winters.

  6. The Arctic Forest of the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope

    2007-05-01

    Lush forests, dominated by deciduous conifers, existed well north of the Arctic Circle during the middle Eocene (45 Ma). The Fossil Forest site, located on Axel Heiberg Island, Canada, has yielded a particularly rich assemblage of plant macro- and microfossils, as well as paleosols -- all exquisitely preserved. Methods ranging from classical paleobotany, to stable-isotope geochemistry, have been applied to materials excavated from the Fossil Forest and have revealed layers of diverse conifer forests with a rich angiosperm understory that successfully endured three months of continuous light and three months of continuous darkness. Paleoenvironmental reconstructions suggest a warm, ice-free environment, with high growing-season-relative humidity, and high rates of soil methanogenesis. Methods to evaluate intraseasonal variability highlight the switchover from stored to actively fixed carbon during the short annual growing season.

  7. Local response to warm Antarctic terrestrial temperatures in the Eocene: evidence from terrestrial biomarkers

    NASA Astrophysics Data System (ADS)

    Toney, J. L.; Bendle, J. A.; Inglis, G.; Bijl, P.; Pross, J.; Contreras, L.; van de Flierdt, T.; Huck, C. E.; Jamieson, S.; Huber, M.; Schouten, S.; Roehl, U.; Bohaty, S. M.; Brinkhuis, H.

    2011-12-01

    The early Eocene (~55 to 49 Ma) was characterized by long-term, high global temperatures and elevated atmospheric pCO2 levels (ca. 1000 ppm to more than 2000 ppm). Superimposed on top of this long-term warmth were a series of abrupt high pCO2 (>2000 ppm) and high temperature events. This greenhouse world may be used as an analogue for the future response of the biosphere and global carbon cycle to recent anthropogenic, atmospheric CO2 emissions. A major uncertainty, however, is the response of high polar latitudes to these climate conditions. Here we show evidence of early Eocene warmth measured from terrestrial, bacteria-derived tetraethers at IODP Site U1356, situated along the Wilkes Land margin in East Antarctica. The presence of soil bacteria-derived hopanes and higher plant n-alkanes in drillcores obtained from this site are also used to help understand the terrestrial Antarctic climate evolution in a warmer world. Methyl-branched and cyclised tetraether compounds are derived from terrestrial, soil bacteria. The number of branches and cycles are related directly to the environmental temperature and pH. These compounds indicate that temperatures on Eastern Antarctica likely exceeded 22°C during the Eocene. These temperatures reflect locally sourced terrestrial material input from a variety of elevations along the coastal plain and from the hinterland. A local source region is supported by the palynological and neodymium isotope records and by the presence of hopanes that suggest input from terrigenous soil and/or wetland environments. In particular, the existence of the C31 (17α,21β) homohopane within a relatively immature hopane assemblage is reported at Site U1356 and suggests the presence of methane-producing, wetland environments on Antarctica. Compound-specific carbon isotopes analyzed on the bacterial derived hopanes are used to characterize changes in wetland carbon cycling and methanogenesis. Local adiabatic lapse rate and precipitation amount

  8. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Evans, David; Müller, Wolfgang; Oron, Shai; Renema, Willem

    2013-11-01

    Intra-test variability in Mg/Ca and other (trace) elements within large benthic foraminifera (LBF) of the family Nummulitidae have been investigated using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). These foraminifera have a longevity and size facilitating seasonal proxy retrieval and a depth distribution similar to 'surface-dwelling' planktic foraminifera. Coupled with their abundance in climatically important periods such as the Paleogene, this means that this family of foraminifera are an important but under-utilised source of palaeoclimatic information. We have calibrated the relationship between Mg/Ca and temperature in modern Operculina ammonoides and observe a ˜2% increase in Mg/Ca °C-1. O. ammonoides is the nearest living relative of the abundant Eocene genus Nummulites, enabling us to reconstruct mid-Eocene tropical sea surface temperature seasonality by applying our calibration to fossil Nummulites djokdjokartae from Java. Our results indicate a 5-6 °C annual temperature range, implying greater than modern seasonality in the mid-Eocene (Bartonian). This is consistent with seasonal surface ocean cooling facilitated by enhanced Eocene tropical cyclone-induced upper ocean mixing, as suggested by recent modelling results. Analyses of fossil N. djokdjokartae and Operculina sp. from the same stratigraphic interval demonstrate that environmental controls on proxy distribution coefficients are the same for these two genera, within error. Using previously published test-seawater alkaline earth metal distribution coefficients derived from an LBF of the same family (Raitzsch et al., 2010) and inorganic calcite, with appropriate correction systematics for secular Mg/Casw variation (Evans and Müller, 2012), we use our fossil data to produce a more accurate foraminifera-based Mg/Casw reconstruction and an estimate of seawater Sr/Ca. We demonstrate that mid-Eocene Mg/Casw was ≲2 molmol, which is in contrast to the model most

  9. The marine 187Os/ 188Os record of the Eocene-Oligocene transition: the interplay of weathering and glaciation

    NASA Astrophysics Data System (ADS)

    Ravizza, G.; Peucker-Ehrenbrink, B.

    2003-05-01

    Osmium (Os) isotope analyses of bulk sediments from the South Atlantic, Equatorial Pacific, and the Italian Apennines yield a well-dated and coherent pattern of 187Os/ 188Os variation from the late Eocene to the early Oligocene. The resulting composite record demonstrates the global character of two prominent features of the low-resolution LL44-GPC3 Os isotope record [Pegram and Turekian, Geochim. Cosmochim. Acta 63 (1999) 4053-4058]. These are: (1) a pronounced minimum in 187Os/ 188Os (0.22-0.27) in the late Eocene, between 34 and 34.5 Ma, and (2) a subsequent rapid increase in 187Os/ 188Os, to approximately 0.6 by 32 Ma. An ultramafic weathering event and an increased influx of extraterrestrial particles to the Earth are discussed as alternative explanations for the late Eocene 187Os/ 188Os minimum. Comparison of the 187Os/ 188Os to benthic foraminiferal oxygen isotope records demonstrates that the nearly three-fold increase in 187Os/ 188Os from the late Eocene minimum coincides with the growth and decay of the first large ice sheet of the Oligocene (Oi1 [Miller et al., J. Geophys. Res. 96 (1991) 6829-6848]). The fine structure of the Os isotope record indicates that enhanced release of radiogenic Os, unrelated to the recovery from late Eocene minimum, lagged the initiation of the Oi1 event by roughly 0.5 Myr. This record, in conjunction with weathering studies in modern glacial soils [Blum, in: W.F. Ruddiman (Ed.), Tectonic Uplift and Climate Change, Plenum Press, New York, 1997, pp. 259-288; Peucker-Ehrenbrink and Blum, Geochim. Cosmochim. Acta 62 (1998) 3193-3203], suggests that exposure of freshly eroded material during deglaciation following Oi1 enhanced chemical weathering rates, and may have contributed to ice sheet stabilization by drawing down atmospheric carbon dioxide. The improved temporal resolution and age control of the refined Eocene-Oligocene Os isotope record also makes it possible to illustrate the late Eocene Os isotope excursion as a tool for

  10. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals.

    PubMed

    Lovegrove, B G; Mowoe, M O

    2013-06-01

    Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold-specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.

  11. Molecular composition and paleobotanical origin of Eocene resin from northeast India

    NASA Astrophysics Data System (ADS)

    Rudra, Arka; Dutta, Suryendu; Raju, Srinivasan V.

    2014-06-01

    The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography-mass spectrometry (GC-MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15 bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17-C34 n-alkene- n-alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.

  12. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  13. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).

  14. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.

    PubMed

    Merico, Agostino; Tyrrell, Toby; Wilson, Paul A

    2008-04-24

    One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era. PMID:18432242

  15. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum

    PubMed Central

    Wright, James D.; Schaller, Morgan F.

    2013-01-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  16. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China

    NASA Astrophysics Data System (ADS)

    Meng, Qingtao; Liu, Zhaojun; Bruch, Angela A.; Liu, Rong; Hu, Fei

    2012-02-01

    The Fushun basin is a small, explored, coal and oil shale-bearing, Cenozoic fault basin in the Liaoning Province, northeast China. The basin mainly consists of Eocene swamp to lacustrine deposits of the Guchengzi to Xilutian Formation, and contains the biggest opencast oil shale mine in Asia. This mine has provided an ideal opportunity to undertake palaeoclimate reconstruction in this basin based on a single geological profile and the analyses of 93 samples, using various approaches, namely field geological observation, clay mineralogical and geochemical (Sr/Ba, Sr/Cu, stable C and O isotope) analyses, all of which were compared with palaeobotanical data. The Eocene climate of Fushun basin evolved from warm temperate to north subtropical, and generally changed from warm humid to subhumid-semiarid. Paleoclimatic and geochemical parameters shows that the very warm and humid climate during Jijuntun Formation increased the initial productivity of lake water, and caused a steady stratification of the lake water, then caused oxygen lack in the bottom of water. Productivity of the lake provides the mean origin of organic matters for oil shale formation, and steady anoxic environment is beneficial for the conservation of organic matters.

  17. Polar methane production, hothouse climates, and climate change

    NASA Astrophysics Data System (ADS)

    Fricke, H. C.; Williams, C.; Yavitt, J. B.

    2009-12-01

    Although the role of carbon dioxide in producing and maintaining hothouse climates has been considered extensively, the role of methane is more uncertain. Because methane is a very effective greenhouse gas, investigations of methane production and the potential impact of this gas on Cenozoic climate are critical. Methane produced from polar wetlands of hothouse climates is particularly important to understand, as production was likely much higher when wetlands rather than permafrost covered these areas. In this study we focus on Arctic methane production during the Eocene. Carbon isotope ratios of fossil tooth dentine and of authigenic carbonates associated with wetland sediment range from +5 to +10 per mil, which indicated that significant amount of methane production took place, and that this methane was able to reach the atmosphere. Support for this hypothesis is provided by experiments in which litter of plants related to those found in the Eocene high Arctic (e.g. conifers) were incubated at temperatures similar to those estimated for the region at this time. Methane production was measured for these incubations, and the resulting ‘Eocene’ production rates, when scaled to the landscape level, represent a polar source of methane that may several times that of the present day global methane flux. Therefore polar methane production during the Eocene likely represents a significant and presently unaccounted for input of this gas to the early Cenozoic atmosphere. High rates of polar methane production such as that estimated for the Eocene may have had a major impact on Cenozoic climate. They could have resulted in the production of polar stratospheric clouds that preferentially warmed the poles, thus providing a mechanism for preferentially warming high-latitude regions during hothouse climate states. Equally important incubation experiments indicate that methane production in Eocene wetlands is strongly influenced by temperature. Therefore a wetland

  18. Single-crystal sup 40 Ar/ sup 39 Ar dating of the Eocene-Oligocene transition in North America

    SciTech Connect

    Swisher, C.C. III ); Prothero, D.R. )

    1990-08-17

    Explanations for the causes of climatic changes and associated faunal and floral extinctions at the close of the Eocene Epoch have long been controversial because of, in part, uncertainties in correlation and dating of global events. New single-crystal laser fusion (SCLF) {sup 40}Ar/{sup 39}Ar dates on tephra from key magnetostratigraphic and fossil-bearing sections necessitate significant revision in North American late Paleogene chronology. The Chadronian-Orellan North American Land Mammal Age boundary, as a result, is shifted from 32.4 to 34.0 Ma (million years ago), the Orellan-Whitneyan boundary is shifted from 30.8 to 32.0 Ma, and the Whitneyan-Arikareean boundary is now approximately 29.0 Ma. The new dates shift the correlation of Chron C12R from the Chadronian to within the Orellan-Whitneyan interval, the Chadronian becomes late Eocene in age, and the North American Oligocene is restricted to the Orellan, Whitneyan, and early Arikareean. The Eocene-Oligocene boundary, and its associated climate change and extinction events, as a result, correlates with the Chadronian-Orellan boundary, not the Duchesnean-Chadronian boundary. 30 refs., 1 fig., 1 tab.

  19. Single-Crystal 40Ar/39Ar Dating of the Eocene-Oligocene Transition in North America.

    PubMed

    Swisher, C C; Prothero, D R

    1990-08-17

    Explanations for the causes of climatic changes and associated faunal and floral extinctions at the close of the Eocene Epoch have long been controversial because of, in part, uncertainties in correlation and dating of global events. New single-crystal laser fusion (SCLF) (40)Ar/(39)Ar dates on tephra from key magnetostratigraphic and fossilbearing sections necessitate significant revision in North American late Paleogene chronology. The Chadronian-Orellan North American Land Mammal "Age" boundary, as a result, is shifted from 32.4 to 34.0 Ma (million years ago), the Orellan-Whitneyan boundary is shifted from 30.8 to 32.0 Ma, and the Whitneyan-Arikareean boundary is now approximately 29.0 Ma. The new dates shift the correlation of Chron C12R from the Chadronian to within the Orellan-Whitneyan interval, the Chadronian becomes late Eocene in age, and the North American Oligocene is restricted to the Orellan, Whitneyan, and early Arikareean. The Eocene-Oligocene boundary, and its associated climate change and extinction events, as a result, correlates with the Chadronian-Orellan boundary, not the Duchesnean-Chadronian boundary. PMID:17756788

  20. Single-Crystal 40Ar/39Ar Dating of the Eocene-Oligocene Transition in North America

    NASA Astrophysics Data System (ADS)

    Swisher, Carl C., III; Prothero, D. R.

    1990-08-01

    Explanations for the causes of climatic changes and associated faunal and floral extinctions at the close of the Eocene Epoch have long been controversial because of, in part, uncertainties in correlation and dating of global events. New single-crystal laser fusion (SCLF) 40Ar/39Ar dates on tephra from key magnetostratigraphic and fossil-bearing sections necessitate significant revision in North American late Paleogene chronology. The Chadronian-Orellan North American Land Mammal "Age" boundary, as a result, is shifted from 32.4 to 34.0 Ma (million years ago), the Orellan-Whitneyan boundary is shifted from 30.8 to 32.0 Ma, and the Whitneyan-Arikareean boundary is now approximately 29.0 Ma. The new dates shift the correlation of Chron C12R from the Chadronian to within the Orellan-Whitneyan interval, the Chadronian becomes late Eocene in age, and the North American Oligocene is restricted to the Orellan, Whitneyan, and early Arikareean. The Eocene-Oligocene boundary, and its associated climate change and extinction events, as a result, correlates with the Chadronian-Orellan boundary, not the Duchesnean-Chadronian boundary.

  1. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  2. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1977-01-01

    The research described centered on development of an optimum image restoration filter (IRF) minimizing the radius of gyration of the corrected or composite system point-spread function (P-SF) subject to contraints, and reducing 2-dimensional spatial smearing or blurring of an image. The constraints are imposed on the radius of gyration of the IRF P-SF, the total restored image noise power, and the shape of the composite system frequency spectrum. The image degradation corresponds to mapping many points from the original image into a single resolution element. The P-SF is obtained as solution to a set of simultaneous differential equations obeying nonlinear integral constraints. Truncation errors due to edge effects are controlled by constraining the radius of gyration of the IRF P-SF. An iterative technique suppresses sidelobes of the composite system P-SF.

  3. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  4. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond.

    PubMed

    McKay, R M; Barrett, P J; Levy, R S; Naish, T R; Golledge, N R; Pyne, A

    2016-01-28

    Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome. PMID:26667911

  5. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond.

    PubMed

    McKay, R M; Barrett, P J; Levy, R S; Naish, T R; Golledge, N R; Pyne, A

    2016-01-28

    Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome.

  6. Summer Temperatures of Late Eocene to Early Oligocene Freshwaters: a Multi-proxy Approach

    NASA Astrophysics Data System (ADS)

    David, M. P.; Grimes, S. T.; Hooker, J. J.; Collinson, M.

    2004-12-01

    We report northern hemisphere summer palaeotemperatures derived from multiple palaeoproxies from the Hamphire Basin Eocene-Oligocene succession. Continental freshwater \\delta18O values have been determined at six horizons spanning a 3 ma interval across the Eocene-Oligocene boundary from large sets of analyses of rodent tooth enamel phosphate. Surface water \\delta18O values permit use of associated carbonate and phosphate thermometers (gastropods, charophyte gyrogonites and fish otoliths) to bracket either the mean summer growing season temperature (gastropods), the mean temperature of the warmest months of the growing season (fish otoliths) and the mean temperature of a single month in the latter part of the growing season (charophtyte gyrogonites). We argue that calculated temperatures, which range from 26\\deg C to 37\\deg C are independent of freshwater evaporation effects and of variations in initial seawater \\delta18O that may be modified by distal changes in ice volume. The time averaged mean palaeotemperatures for each fossil horizon are generally indicative of warm mesothermal conditions. However, the large standard deviations on each of the summer season palaeotemperatures suggest climate perturbations during these times and/or that the period of mineralization of the rodent teeth encompasses some seasonal variation. This succession is a key interval where the positive \\delta18O shift in the early Oligocene marine foraminiferal isotope record identifies the onset of the Antarctic Oi-1 glaciation. The data suggest there was no significant summer temperature fall across the Oi-1 glaciation itself. This result is concordant with several other recent studies in suggesting that the majority of the isotopic shift in the marine realm across the Oi-1 glaciation is linked to ice volume, not temperature change. Our new approach has allowed us to put numerical values on summer season temperatures as well as to reconstruct relative temperature change across this

  7. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  8. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2015-10-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic was warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated that mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis and stable isotopes (δ13C and δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual- to annual-scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean annual temperature (MAT) estimate of 11.4 °C (1 σ = 1.8 °C) based on δ18O, which is 16 °C warmer than the current MAT of the area (-4.6 °C). Early Eocene atmospheric δ13C (δ13Catm) estimates were -5.5 (±0.7) ‰. Isotopic discrimination (Δ) and leaf intercellular pCO2 ratio (ci/ca) were similar to modern values (Δ = 18.7 ± 0.8 ‰; ci/ca = 0.63 ± 0.03 %), but intrinsic water use efficiency (Early Eocene iWUE = 211 ± 20 μmol mol-1) was over twice the level found in modern high-latitude trees. Dual-isotope spectral analysis suggests that multidecadal climate cycles somewhat similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30-year timescales, influencing

  9. Influence of Large Lakes on Methane Greenhouse Forcing in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Granberg, D. L.; Kasprak, A. H.; Taylor, K. W.; Pancost, R. D.

    2011-12-01

    Long-duration elevated global temperatures and increased atmospheric pCO2 levels (~1000-2000 ppm) characterized the earliest portion of the Eocene (Ypressian; ~55 to 49 Ma). This extended period of global warmth was also punctuated by a series of short (sub-precessional) hyperthermal events in which atmospheric CO2 (>2000 ppm) and global temperatures rose with unprecedented and (as of yet) unexplained rapidity. This interval is perhaps the best temporal analog for assessing contemporary response of the biosphere and global carbon cycle to increased CO2 emissions. Although these hyperthermals appear paced by 100 Ka and 1 Ma scale orbital (eccentricity) cycles in the marine realm, high frequency forcing processes have not yet been examined, and long continental records have yet to be explored for their expression. To identify sub-eccentricity (<100,000 year) scale variability in Early Eocene carbon cycling, we examined lacustrine records of organic carbon isotopes and carbon content from a ~5 Ma record in the Green River Formation (GRF) in the Uinta Basin of Utah, U.S.A. and a ~1 Ma record from the Messel Shale, (Darmstadt, Germany.) We demonstrate that in addition to the expected 100 Ka eccentricity cycle, the 40 Ka cycle of obliquity is also an important component of climate variability as reflected in the lacustrine carbon cycle and hence a potential driver of global carbon cycling. We further investigated carbon cycle dynamics by examining biomarker evidence for changes in the terrestrial methane cycle during this time interval. Due to their increased volumes (>60,000 km2), highly stratified and cyclically anoxic lakes of the Eocene could have provided enough methane to alter global radiative forcing. This is consistent with our data, which demonstrate that the GRF and Messel Shale both exhibit strongly reducing conditions as well as abundant methanogen and methanotroph biomarkers. Further, the GRF lacustrine environment was highly stratified with, at times

  10. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period.

    PubMed

    Nunes, Flavia; Norris, Richard D

    2006-01-01

    An exceptional analogue for the study of the causes and consequences of global warming occurs at the Palaeocene/Eocene Thermal Maximum, 55 million years ago. A rapid rise of global temperatures during this event accompanied turnovers in both marine and terrestrial biota, as well as significant changes in ocean chemistry and circulation. Here we present evidence for an abrupt shift in deep-ocean circulation using carbon isotope records from fourteen sites. These records indicate that deep-ocean circulation patterns changed from Southern Hemisphere overturning to Northern Hemisphere overturning at the start of the Palaeocene/Eocene Thermal Maximum. This shift in the location of deep-water formation persisted for at least 40,000 years, but eventually recovered to original circulation patterns. These results corroborate climate model inferences that a shift in deep-ocean circulation would deliver relatively warmer waters to the deep sea, thus producing further warming. Greenhouse conditions can thus initiate abrupt deep-ocean circulation changes in less than a few thousand years, but may have lasting effects; in this case taking 100,000 years to revert to background conditions.

  11. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  12. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  13. High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Maxbauer, D. P.; Royer, D. L.; LePage, B. A.

    2013-12-01

    Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.

  14. The Jianchuan Basin, Yunnan: Implications on the Evolution of SE Tibet During the Eocene

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Mahéo, G.; Leloup, P. H.; Jean-Louis, P.; Sorrel, P.; Eymard, I.; Antoine, P. O.; Sterb, M.; Wang, G.; Cao, K.; Chevalier, M. L.; Lu, H.

    2015-12-01

    The Jianchuan basin, Yunnan Province, China, is the widest continental Cenozoic sedimentary basin in the southeastern Tibetan plateau. It is located ~10 km east of the Red River fault zone. Climatic simulations and palaeoenvironment studies suggest that SE Asia has experienced a variable intensity monsoon system for 40 Ma. Because sediments can record deformation, climate and environment changes, the Jianchuan basin provides the opportunity to assess the relative role of climate and tectonics on the Tibetan plateau formation. Sediments consist of floodplain siltites, massive fluvial sandstone, few carbonate levels, coal and volcanosedimentary deposits. U/Pb dating of zircons from dykes, volcanodetrital deposits and lava flows respectively cutting and interbedded within the sediments was performed by in-situ LA-ICPMS. All ages range from 38 to 35 Ma. Such absolute dating is confirmed by palaeontological evidence. Dental remains of Zaisanamynodonwere found in coal deposits. This giant Rhino lived in Asia during the Ergilian (late Eocene). Our data allow us to propose a revised stratigraphy for the Jianchuan basin: contrary to what was suggested by previous studies, i.e. a continuous sedimentation from the Paleocene to the Miocene, nearly no sedimentation occurred after 34 Ma. Combined with a sedimentological analysis, the data indicate that during the late Eocene, the Jianchuan area was covered by a large (>15 km) braided river system that coexisted with local transient lakes, in a moderate-slope and semi-arid environment. This major sedimentation event was followed by a period of more humid conditions that may be related to an intensification of the monsoon. The end of the sedimentation seems to be contemporaneous with the Ailao Shan-Red River fault activation. The new stratigraphy has also implications for regional studies that need robust age constraints, for example for reconstructing palaeoelevation or provenance of sediments.

  15. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  16. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea

    NASA Astrophysics Data System (ADS)

    Nicolo, Micah J.; Dickens, Gerald R.; Hollis, Christopher J.; Zachos, James C.

    2007-08-01

    The Paleocene-Eocene thermal maximum (PETM) ca. 55.5 Ma was a geologically brief interval characterized by massive influx of isotopically light carbon, extreme changes in global climate, and profound variations in Earth system processes. An outstanding issue is whether it was an isolated event, or the most prominent example of a recurring phenomenon. Recent studies of condensed deep-sea sections support the latter, but this finding remains uncertain. Here we present and discuss lithologic and carbon isotope records across two lower Eocene outcrops on South Island, New Zealand. The PETM manifests as a marl-rich horizon with a significant negative carbon isotope excursion (CIE). Above, in sediment deposited between 54 and 53 Ma, are four horizons with similar though less pronounced expressions. Marl beds of all five horizons represent increased terrigenous sedimentation, presumably linked to an accelerated hydrological cycle. Five corresponding clay-rich horizons and CIEs are found in deep-sea records, although the lithologic variations represent carbonate dissolution rather than siliciclastic dilution. The presence of five intervals with similar systemic responses in different environments suggests a mechanism that repeatedly injected large masses of 13 C-depleted carbon during the early Eocene.

  17. Microfossil evidence for trophic changes during the Eocene-Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)

    NASA Astrophysics Data System (ADS)

    Bordiga, M.; Henderiks, J.; Tori, F.; Monechi, S.; Fenero, R.; Legarda-Lisarri, A.; Thomas, E.

    2015-09-01

    The biotic response of calcareous nannoplankton to environmental and climatic changes during the Eocene-Oligocene transition was investigated at a high resolution at Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, southeast Atlantic Ocean) and compared with a lower-resolution benthic foraminiferal record. During this time interval, global climate, which had been warm under high levels of atmospheric CO2 (pCO2) during the Eocene, transitioned into the cooler climate of the Oligocene, at overall lower pCO2. At Site 1263, the absolute nannofossil abundance (coccoliths per gram of sediment; N g-1) and the mean coccolith size decreased distinctly after the E-O boundary (EOB; 33.89 Ma), mainly due to a sharp decline in abundance of large-sized Reticulofenestra and Dictyococcites, occurring within a time span of ~ 47 kyr. Carbonate dissolution did not vary much across the EOB; thus, the decrease in abundance and size of nannofossils may reflect an overall decrease in their export production, which could have led to variations in the food availability for benthic foraminifers. The benthic foraminiferal assemblage data are consistent with a global decline in abundance of rectilinear species with complex apertures in the latest Eocene (~ 34.5 Ma), potentially reflecting changes in the food source, i.e., phytoplankton. This was followed by a transient increased abundance of species indicative of seasonal delivery of food to the sea floor (Epistominella spp.; ~ 33.9-33.4 Ma), with a short peak in overall food delivery at the EOB (buliminid taxa; ~ 33.8 Ma). Increased abundance of Nuttallides umbonifera (at ~ 33.3 Ma) indicates the presence of more corrosive bottom waters and possibly the combined arrival of less food at the sea floor after the second step of cooling (Step 2). The most important changes in the calcareous nannofossil and benthic communities occurred ~ 120 kyr after the EOB. There was no major change in nannofossil abundance or assemblage composition at

  18. Groundwater pollution risk mapping for the Eocene aquifer of the Oum Er-Rabia basin, Morocco

    NASA Astrophysics Data System (ADS)

    Ettazarini, Said

    2006-11-01

    Sustainable development requires the management and preservation of water resources indispensable for all human activities. When groundwater constitutes the main water resource, vulnerability maps therefore are an important tool for identifying zones of high pollution risk and taking preventive measures in potential pollution sites. The vulnerability assessment for the Eocene aquifer in the Moroccan basin of Oum Er-Rabia is based on the DRASTIC method that uses seven parameters summarizing climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by using GIS techniques and applying the “generic” and “agricultural” models according to the DRASTIC charter. Resulting maps revealed that the aquifer is highly vulnerable in the western part of the basin and areas being under high contamination risk are more extensive when the “agricultural” model was applied.

  19. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, northwest Wyoming, USA)

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The reviewed Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain apects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. -from Authors

  20. A new find of the fossil Cyclosorus from the Eocene of South China and its paleoclimatic implication.

    PubMed

    Naugolnykh, Serge V; Wang, Li; Han, Meng; Jin, Jian-Hua

    2016-01-01

    The thelypteroid ferns are widely distributed across tropical regions around the world, but information about their fossil representatives is scarce. A new species, Cyclosorus scutum Naugolnykh, Wang, Han et Jin was discovered from the Eocene Changchang Formation of Hainan Island, South China, and is described on the basis of sterile and fertile leaves, sori, sporangia and spores preserved in situ. Discovery of this new species clearly shows that climatic conditions of that time in this area were humid, i.e. warm and wet.

  1. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  2. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  3. A new Late Eocene anthropoid primate from Thailand.

    PubMed

    Chaimanee, Y; Suteethorn, V; Jaeger, J J; Ducrocq, S

    1997-01-30

    The fossil record of anthropoid primates from the Middle Eocene of South Asia is so far restricted to two genera (Pondaungia cotteri Pilgrim, 1937 and Amphipithecus mogaungensis Colbert, 1937 from the Eocene Pondaung deposits of Burma) whose anthropoid status and phylogenetic position have long been under debate because they represent the oldest highly derived fossil primates of anthropoid grade. Moreover, several new African taxa, some of which are even older, have been recently included in the suborder Anthropoidea, suggesting an African origin for this group. Conversely, new fossil primates recently discovered in China (Eosimias) have been related to the most primitive representatives of Anthropoidea, alternatively suggesting an Asian origin and a probable Asian radiation centre. We report here the discovery of a new anthropoid from the Thai Late Eocene locality of Krabi, which displays several additional anthropoid characters with regard to those of the Eocene Burmese genera. This species, which is about the size of the Fayum Aegyptopithecus, can be related to the Burmese forms, and it further provides strong additional evidence for a southeast Asian evolutionary centre for anthropoids.

  4. High bat (Chiroptera) diversity in the Early Eocene of India

    NASA Astrophysics Data System (ADS)

    Smith, Thierry; Rana, Rajendra S.; Missiaen, Pieter; Rose, Kenneth D.; Sahni, Ashok; Singh, Hukam; Singh, Lachham

    2007-12-01

    The geographic origin of bats is still unknown, and fossils of earliest bats are rare and poorly diversified, with, maybe, the exception of Europe. The earliest bats are recorded from the Early Eocene of North America, Europe, North Africa and Australia where they seem to appear suddenly and simultaneously. Until now, the oldest record in Asia was from the Middle Eocene. In this paper, we report the discovery of the oldest bat fauna of Asia dating from the Early Eocene of the Cambay Formation at Vastan Lignite Mine in Western India. The fossil taxa are described on the basis of well-preserved fragments of dentaries and lower teeth. The fauna is highly diversified and is represented by seven species belonging to seven genera and at least four families. Two genera and five species are new. Three species exhibit very primitive dental characters, whereas four others indicate more advanced states. Unexpectedly, this fauna presents strong affinities with the European faunas from the French Paris Basin and the German Messel locality. This could result from the limited fossil record of bats in Asia, but could also suggest new palaeobiogeographic scenarios involving the relative position of India during the Early Eocene.

  5. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  6. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  7. Lower Eocene carbonate facies of Egypt: paleogeographic and tectonic implications

    SciTech Connect

    Garrison, R.E.

    1983-03-01

    The northern Arabo-Nubian craton witnessed a major Late Cretaceous-early Tertiary marine transgression that culminated in the deposition of widespread shelf-sea carbonates during Early Eocene (Ypresian) time. Outer shelf facies characterize exposures in central Egypt (Assiut, Luxor, Kharga), and are composed primarily of rhythmically interbedded chalk and micritic limestone with minor intercalated marine hardgrounds. To the south (Kurkur-Dungul), these fine-grained lithologies give way to inner shelf foraminiferal wackestones and grainstones, typical Tethyan Nummulitic facies. Missing in southern Egypt is the restricted dolomitic evaporitic facies predicted by the Irwin model and observed in the lower Eocene of the Sirte basin to the west and the Arabian Platform to the east. Comparing the areal distribution of these lower Eocene carbonates to coeval facies developed across the remained of northern Africa and Arabia reveals the presence of a broad marine embayment which extended through central and eastern Egypt into northern Sudan during Ypresian time. The widespread subsidence that resulted in the development of this features may have been an effect of regional crustal attenuation preceding the rifting of the Red Sea. Concomitant with this regional subsidence were localized uplift and extensional block faulting in the vicinity of the incipient Red Sea rift (the Safaga-Quseir coastal plain). Here, lower Eocene carbonate facies are indicative of shallow water platforms developed on horst blocks, and deeper water, turbidite-fed basins in intervening grabens.

  8. New taxa of Tanyderidae (Diptera) from Eocene Baltic amber.

    PubMed

    Krzeminski, Wiesław; Krzeminska, Ewa; Kania, Iwona; Ross, Andrew J

    2013-01-01

    Macrochile hornei sp. nov. from Baltic amber (Upper Eocene) is described and illustrated. Podemacrochile gen. nov. is described with Podemacrochile baltica (Podenas, 1997) as type species. A key to the genera and species of Tanyderidae known from Baltic amber is presented. PMID:24583815

  9. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  10. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs.

    PubMed

    Pearson, P N; Ditchfield, P W; Singano, J; Harcourt-Brown, K G; Nicholas, C J; Olsson, R K; Shackleton, N J; Hall, M A

    2001-10-01

    Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and Eocene epochs there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15-23 degrees C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28-32 degrees C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.

  11. Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Yang, Shiling; Zhang, Chunxia; Wang, Xu

    2016-06-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜55.5 million years ago (Ma) was associated with a massive release of carbon to the ocean-atmosphere system, as evidenced by a prominent negative carbon isotope excursion (CIE) and widespread dissolution of marine carbonates. The paleohydrologic response to the PETM warming has been studied worldwide; however, relevant records of environmental perturbation in Asia are lacking so far. Here we extend the record of this event in central China, a subtropical paleosetting, through geochemical and mineralogical analyses of lacustrine sediments. Geochemical indicators of authigenic carbonates—including molar Mg/Ca and Sr/Ca ratios—suggest an overall increased precipitation across the PETM, compatible with the disappearance of authigenic dolomite and the appearance of kaolinite in the strata. The relatively humid conditions persisted long after the carbon-cycle perturbation had stopped, implying that the transient hyper-greenhouse warming might have forced the regional climate system into a new climate state that was not easily reversed. Additionally, a gradual increase in chemical index of alteration (CIA) and the appearance of kaolinite are associated with the PETM, indicating an intensified silicate weathering and pedogenesis in the watershed in response to warmer and more humid climate. Our results corroborate the theory that an accelerated continental chemical weathering served as a negative feedback to sequester carbon and lower the atmospheric greenhouse-gas levels during the PETM.

  12. Palaeocommunities, diversity and sea-level change from middle Eocene shell beds of the Paris Basin

    NASA Astrophysics Data System (ADS)

    Dominici, Stefano; Zuschin, Martin

    2016-04-01

    The middle Eocene, a time of global transition from greenhouse to icehouse climate, was approached through high-resolution stratigraphy at a few classic localities of the Paris Basin. Quantitative data on the distribution of molluscan species abundance, collected at 12 different shell beds representative of the middle Lutetian and the lower Bartonian, formed the basis for a palaeoecological study. The succession can be subdivided into a hierarchy of depositional sequences, interpreted as the product of relative sea-level change. Abundance distributions are better correlated with 5th-order depositional sequences than geographic locality, suggesting that sea-level played an important role in the distribution of palaeocommunities. Rarefied diversities were measured and compared with analogous data from modern tropical and warm-temperate intertidal and subtidal communities. The palaeoecological analysis shows that sea-level variation is responsible for a major change in the upper part of the middle Lutetian, leading from high-diversity subtidal to low-diversity intertidal and shallow subtidal palaeocommunities. The study did not confirm that the stage-level drop in species richness documented in this basin is related to the global climatic deterioration. Instead, the global climatic signal might be obscured in the Paris Basin by facies control.

  13. The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future shallow-marine carbonate systems?

    NASA Astrophysics Data System (ADS)

    Payros, Aitor; Pujalte, Victoriano; Tosquella, Josep; Orue-Etxebarria, Xabier

    2010-07-01

    If the ongoing phenomenon of global warming prevails, three main consequences are expected in tropical seas: a higher sea level, a reduction in coral reefs and more intense cyclones. What will shallow-marine carbonate systems be like? Insights can be gained from the Pyrenean Urbasa-Andia Formation, a transgressive heterozoan-like foralgal (larger foraminiferal and red algal) ramp that formed in Middle Eocene times, a greenhouse interval characterized by high atmospheric CO 2 content. Firstly, the evolution of future tropical shallow-marine systems subject to a sea-level rise is very likely to be similar to that seen in the backstepping architecture of the Urbasa-Andia Formation. Secondly, Eocene larger foraminifers rose when the Paleocene-Eocene hyperthermal event caused a decline in corals in tropical seas. Coral reefs are again among the ecosystems that are likely to be particularly affected by current global warming. It is therefore probable that future shallow-marine tropical ecosystems will be devoid of platform margin coral reefs, heterozoan ramps being far more common. Thirdly, strong storm influence was common on the Urbasa-Andia carbonate ramp, the most distinctive feature being a distal dune field that was formed below storm wave base by high-energy return currents. Similar features also characterize other Eocene carbonate ramps. Furthermore, numerical simulations highlighted the effect of strong tropical cyclones during the equable climate of the Eocene. Together this information supports the hypothesis that tropical cyclone activity may increase under future greenhouse conditions. Taking everything into account, the transgressive storm-dominated foralgal ramp represented by the Urbasa-Andia Formation can be used as a virtual analogue of future shallow-marine carbonate sedimentary environments developed under greenhouse conditions.

  14. Insect herbivory, plant defense, and early Cenozoic climate change.

    PubMed

    Wilf, P; Labandeira, C C; Johnson, K R; Coley, P D; Cutter, A D

    2001-05-22

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.

  15. Insect herbivory, plant defense, and early Cenozoic climate change

    PubMed Central

    Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Coley, Phyllis D.; Cutter, Asher D.

    2001-01-01

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  16. Insect herbivory, plant defense, and early Cenozoic climate change.

    PubMed

    Wilf, P; Labandeira, C C; Johnson, K R; Coley, P D; Cutter, A D

    2001-05-22

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  17. Fish like it Hot? The response of ichthyolith accumulation to changing climates of the Paleogene

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.; Zill, M. E.; Bryant, R. M.; Graves, L. G.; Norris, R. D.

    2014-12-01

    It has been hypothesized that the production of fish in the water column is related to the amount of primary production in the surface waters. Most future Earth scenarios suggest that as the climate warms, increased surface ocean stratification will decrease nutrient availability and therefore net primary productivity and fish production. Here we calculate accumulation rates of ichthyoliths (microfossil fish teeth and shark dermal scales) throughout the Paleogene and find that ichthyolith accumulation is inversely related to hypothesized changes in primary productivity, but is positively related to ocean temperature. At DSDP Site 596 in the South Pacific, and ODP Site 1258 from the equatorial Atlantic, accumulation of fish fossils increase 6-10 fold from the relatively cool Paleocene into the warm Early Eocene Climate Optimum. In contrast, cooling and increased biosilica deposition at the Eocene/Oligocene (E/O) Boundary suggests that the marine ecosystem switched to a highly productive diatom-dominated ocean, which should favor short, efficient food chains and increased fish production. However, we find that at both Pacific DSDP Site 596 and Atlantic DSDP Site 522, fish accumulation drops by about 50% across the E/O. Indeed, this relation between ichthyolith accumulation and δ18O-estimated paleotemperature is also seen in the Oligocene, at North Pacific ODP Site 886, where warming in the middle Oligocene is mirrored by an increase in ichthyolith accumulation. It appears that ichthyolith accumulation rate may not be purely an effect of total primary production in the water column but rather, may reflect a fundamental response in fish physiology or ecosystem efficiency to warmer water. It has been documented that respiration is faster and more efficient in warm waters, and this may help generate more efficient food web links that compensate for any decrease in primary productivity caused by global warming. Indeed, it appears that fish seem to thrive as the

  18. Eocene sea retreat out of Asia: paleogeography, controlling mechanisms and environmental impacts

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, Guillaume; Bosboom, Roderic; Proust, Jean-Noël; Mandic, Oleg; Villa, Giuliana; Grothe, Arjan; Stoica, Marius; Guo, Zhaojie; Krijgsman, Wout; Yang, Wei; Bougeois, Laurie; Aminov, Jovid; Ormukov, Cholponbec; Huang, Wentao

    2014-05-01

    western side in the Afghan-Tajik Basin. The stepwise sea retreat and disconformity are concurrent with the documented aridification steps in the Notheastern Tibetan Plateau (Xining Basin) at ~41 Ma (C19n-C18r), ~37.1 Ma (top C17.1n) and the EOT at ~33.9 Ma (top C13r), suggesting that the sea retreat and aridification in Asia were indirectly paced by global climate deterioration in the Eocene through eustatic level changes affecting the Proto-Paratethys sea. In line with climate modelling results, the sea retreat may have amplified the aridification of the Asian interior. Hence, future studies of Asian paleoenvironmental change during Eocene times also have to be interpreted in terms of fluctuations in moisture supply by the changing paleogeography of the proto-Paratethys Sea in Central Asia.

  19. Late Eocene diatomite from the Peruvian coastal desert, coastal upwelling in the eastern Pacific, and Pacific circulation before the terminal Eocene event

    SciTech Connect

    Marty, R.; Dunbar, R.; Martin, J.B.; Baker, P.

    1988-09-01

    Previously undocumented late Eocene diatomaceous sediments are present near Fundo Desbarrancado (FD) in southern Peru. These sediments are similar to Miocene diatomite from the same area but, unlike the Miocene diatomite, the FD sediments contain cherty layers, are enriched in CaCO/sub 3/, have a diverse and abundant radiolarian fauna, and possess varved-massive and millimeter- and meter-scale biogenic-terrigenous alternations. The FD sediments are part of an Eocene sequence that includes the clastic sediments of the Paracas Formation, and they are correlative to the Chira Formation of northern Peru. The Paleogene biogenic sediments of western South America show that coastal upwelling developed in the eastern Pacific before the latest Eocene, argue for the existence of a proto-Humboldt current at this time, and suggest that the terminal Eocene event was the culmination of gradual changes and not a catastrophic event at the Eocene/Oligocene boundary.

  20. Environment and evolution through the Paleocene-Eocene thermal maximum.

    PubMed

    Gingerich, Philip D

    2006-05-01

    The modern orders of mammals, Artiodactyla, Perissodactyla and Primates (APP taxa), first appear in the fossil record at the Paleocene-Eocene boundary, c. 55 million years ago. Their appearance on all three northern continents has been linked to diversification and dispersal in response to rapid environmental change at the beginning of a worldwide 100 000-200 000-year Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion. As I discuss here, global environmental events such as the PETM have had profound effects on evolution in the geological past and must be considered when modeling the history of life. The PETM is also relevant when considering the causes and consequences of global greenhouse warming.

  1. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Rich, F.J.; Williams, D.A.; Bland, A.E.; Fiene, F.L.

    1990-01-01

    Lignites occur in the Cretaceous McNairy Formation and the Eocene Claiborne Formation in the Jackson Purchase region of western Kentucky. The lone Cretaceous lignite sample has over 18 percent inertodetrinite and 32 percent humodetrinite which, along with the abundant mineral matter, suggests a possible allochthonous origin for the deposit. The Claiborne Formation lignites have higher humic maceral contents than the Cretaceous lignites. Palynology suggests that there was considerable variation in the plant communities responsible for the Claiborne deposits. Differences in the preservation of the various plants is also seen in the variations between the humic types, particularly in the ulminite and humodetrinite contents. Potter and Dilcher (1980) suggested that the Claiborne lignites in the Jackson Purchase and west Tennessee developed in the abandoned oxbows of Eocene rivers. Significant short-distance changes in the peat thickness, flora, and other depositional elements should be expected in such an environment and could easily account for the observed variations in composition. ?? 1990.

  2. The Middle Eocene flora of Csordakút (N Hungary)

    NASA Astrophysics Data System (ADS)

    Erdei, Boglárka; Rákosi, László

    2009-02-01

    The Middle Eocene fossil plant assemblage from Csordakút (N Hungary) comprises plant remains preserved exclusively as impressions. Algae are represented by abundant remains of Characeae, including both vegetative fragments and gyrogonites. Remains of angiosperms comprise Lauraceae (Daphnogene sp.), Fagaceae (cf. Eotrigonobalanus furcinervis), Ulmaceae (Cedrelospermum div. sp.), Myricaceae (Myrica sp., Comptonia div. sp.), Leguminosae (leaves and fruit), Rhamnaceae (?Zizyphus zizyphoides), Elaeocarpaceae (Sloanea nimrodi, Sloanea sp. fruit), Smilacaceae (Smilax div. sp.). The absence of gymnosperms is indicative of a floristic similarity to the coeval floras of Tatabánya (N Hungary) and Girbou in Romania. Sloanea nimrodi (Ettingshausen) Kvaček & Hably, a new element for the Hungarian fossil record indicates a floristic relation to the Late Eocene flora of Kučlin (Bohemia).

  3. A New Eocene Casquehead Lizard (Reptilia, Corytophanidae) from North America.

    PubMed

    Conrad, Jack L

    2015-01-01

    A new fossil showing affinities with extant Laemanctus offers the first clear evidence for a casquehead lizard (Corytophanidae) from the Eocene of North America. Along with Geiseltaliellus from roughly coeval rocks in central Europe, the new find further documents the tropical fauna present during greenhouse conditions in the northern mid-latitudes approximately 50 million years ago (Ma). Modern Corytophanidae is a neotropical clade of iguanian lizards ranging from southern Mexico to northern South America.

  4. A New Eocene Casquehead Lizard (Reptilia, Corytophanidae) from North America

    PubMed Central

    Conrad, Jack L.

    2015-01-01

    A new fossil showing affinities with extant Laemanctus offers the first clear evidence for a casquehead lizard (Corytophanidae) from the Eocene of North America. Along with Geiseltaliellus from roughly coeval rocks in central Europe, the new find further documents the tropical fauna present during greenhouse conditions in the northern mid-latitudes approximately 50 million years ago (Ma). Modern Corytophanidae is a neotropical clade of iguanian lizards ranging from southern Mexico to northern South America. PMID:26131767

  5. Temperate Pollen Genera in the Eocene (Claiborne) Flora, Alabama.

    PubMed

    Gray, J

    1960-09-23

    Pollen, spores, hystrichospherids, dinoflagellates, and the fresh-water alga Pediastrum occur in marine clays at the classic Claiborne Bluffs locality, Alabama. The presence of Ephedra pollen provides the first documented Tertiary record of this genus from the southeastern states. The occurrence of several characteristically temperate genera lends support to the idea that a deciduous hardwood forest was present in the Appalachian uplands during the Eocene.

  6. Environmental perturbations at the early Eocene ETM2, H2, and I1 events as inferred by Tethyan calcareous plankton (Terche section, northeastern Italy)

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Roberta; Luciani, Valeria; Fornaciari, Eliana; Giusberti, Luca; Boscolo Galazzo, Flavia; Dallanave, Edoardo; Westerhold, Thomas; Sprovieri, Mario; Telch, Sonia

    2016-09-01

    Several early Eocene hyperthermals have been recently investigated and characterized in terms of temperature anomalies and oceanographic changes. The effects of these climatic perturbations on biotic communities are much less constrained. Here we present new records from the Terche section (northeastern Italy) that, for the first time, integrates data on planktic foraminifera and calcareous nannofossils across three post-Paleocene-Eocene Thermal Maximum negative carbon isotope excursions (CIEs). The biomagnetostratigraphic framework generated at Terche allows us to confidently relate such CIEs to the Eocene Thermal Maximum 2 (ETM2), H2, and I1 events. Each of these events coincides with lithological anomalies characterized by significantly lower calcium carbonate content (marly units, MUs). We interpret these MUs as mainly linked to an effect of increased terrigenous dilution, as dissolution proxies do not display significant variations. Calcareous plankton assemblages change significantly across these events and radiolarians increase. Observed changes suggest that transient warming and environmental perturbations, though more intense during ETM2, occurred during each of the three investigated perturbations. Variations among calcareous plankton suggest increase in surface-water eutrophication with respect to the pre-event conditions, coupled with a weakening of the upper water-column thermal stratification. Higher nutrient discharge was related to intensification of the hydrological cycle as a consequence of the warmer climate. These conditions persisted during the early CIE recovery, implying slower recovery rates for the environment and biota than for the carbon cycle.

  7. Eocene-Oligocene boundary problems, west coast, North America

    SciTech Connect

    Armentrout, J.M.

    1983-03-01

    Correlation of the international Eocene-Oligocene boundary with the provincial biostratigraphic framework of the northeast Pacific margin has been and continues to be controversial. The controversy centers about historical nomenclature and correlations, and current correlations based on planktonic fossil group. The Geological Society of America's C.E. Weaver Committee published the first interdisciplinary correlation chart for the Cenozoic rocks of the western United States in 1944. The committee placed the Eocene-Oligocene boundary at the base of the Keasey Molluscan Stage and Refugian Benthic Foraminiferal Stage. The most useful provincial boundaries of Late Eocene to Oligocene age are the Narizian-Refugian and Refugian-Zemorrian Benthic Foraminiferal Stage boundaries. Reevaluation of the Refugian Stage has recently been completed. The stage boundaries have been correlated to the international geologic time scale using planktonic microfossils. Planktonic assemblages are rare in samples from above and below the Refugian-Zemorrian Benthic Foraminiferal Stage boundary. In California this boundary is commonly at an unconformity or without superposition of diagnostic faunas. In southwestern Washington the Refugian-Zemorrian boundary occurs in continuously deposited and foraminiferally rich sections. Radiometric calibration of the provincial boundaries is not yet possible. Whole rock potassium-argon and fission track dates are available but both have very large error bars or lack adequate biostratigraphic control to be useful. Fossiliferous stratigraphic sections have rocks with sufficient remanent magnetism for magnetostratigraphic studies but to date only reconnaissance data are available.

  8. Late Eocene white pines (Pinus subgenus Strobus) from southern China

    PubMed Central

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M.; Naugolnykh, Serge V.; Jin, Jianhua

    2015-01-01

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene. PMID:26548658

  9. Late Eocene white pines (Pinus subgenus Strobus) from southern China.

    PubMed

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M; Naugolnykh, Serge V; Jin, Jianhua

    2015-11-09

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene.

  10. Eocene Diversification of Crown Group Rails (Aves: Gruiformes: Rallidae)

    PubMed Central

    García–R, Juan C.; Gibb, Gillian C.; Trewick, Steve A.

    2014-01-01

    Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves. PMID:25291147

  11. Hydrocarbon potential of Middle Eocene carbonates, Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Swei, Giuma H.; Tucker, Maurice E.

    2015-11-01

    Deposition of Middle Eocene carbonates in the Sirt Basin in Libya has been the subject of considerable study in recent years because of the importance of sediments of this age as hydrocarbon reservoirs. The Gialo Formation is an important gas-producing reservoir in the Assumood, Sahl and other nearby fields. The gas which is generated from the gas-prone Sirt Shale source rock of the northern Ajdabiya Trough probably migrated in to the Assumood Ridge from the northeast through late Cretaceous, Paleocene and early Eocene carbonates, before being trapped beneath the Augila Shale (Upper Eocene) which is the principal regional seal in the area. This integrated study has enhanced our understanding of reservoir heterogeneity and hydrocarbon potential of the Gialo carbonates and should lead to improved exploration in the future. Reservoir quality in the Gialo Formation is a function of grain types, pore types, grain size, sorting, cementation and compaction, and predicting areas of high reservoir quality has proved difficult; exploration should be oriented to positioning wells into the main trend of the mid-ramp, nummulite accumulation. Different nummulite facies can be reservoirs depending on their diagenetic history. A diagenetic reduction in porosity must be distinguished from a lack of porosity resulting from an unfavourable depositional environment, so that exploration alternatives can be assessed. This integrated study has demonstrated the presence of suitable reservoir rocks, hydrocarbon traps and the close proximity of potential source rocks. These features should encourage further hydrocarbon exploration in the area.

  12. Late Eocene impact events recorded in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  13. Decreased Temperate but not Polar Fish Productivity Across the Eocene-Oligocene Transition: Insights from Ichthyoliths

    NASA Astrophysics Data System (ADS)

    Zill, M.; Sibert, E. C.; Norris, R. D.

    2015-12-01

    The Eocene-Oligocene Transition (EOT, 38-28 Ma) was a period of global cooling and increased nutrient delivery to the ocean. It is associated with the onset of permanent ice sheet on Antarctica, and the beginning of a highly productive polar ecosystem, dominated by diatoms and favoring short, efficient food chains. In a highly efficient, large phytoplankton-dominated ecosystem, we would expect to see higher abundances of consumers, as fewer trophic steps means more carbon available to upper trophic level groups. Here we use the accumulation rate of ichthyoliths (fish teeth and dermal scales) to measure the relative export production of fish through this time period of changing climate. Records from the South Atlantic gyre (DSDP Site 522) the South Pacific Gyre (DSDP Site 596) and the Southern Ocean (DSDP Site 689) show a 50% reduction in ichthyolith accumulation rate in the vicinity the Eocene Oligocene boundary. However, this drop in fish production occurs just after the E/O in the Atlantic, 4 million years before the E/O in the Pacific and 6 million years prior to the E/O in the Southern Ocean. Since the EOT is generally associated with an increase in productivity and diatom blooms in the Southern Ocean and tropical Pacific, we would expect that the abundance of fish would increase across the transition. Our results are surprisingly the inverse of this expectation, and suggest that the transition from greenhouse to icehouse did not produce increase in forage fish or even a response of any kind during the climatological transition into the icehouse world. Indeed, it seems that ichthyolith accumulation rate and primary productivity are not perfectly linked, and it may be that ichthyolith accumulation is responding more to another factor, such as ocean temperature or prey availability that is not linked to the increased diatom production during the EOT.

  14. Living on the edge: The oxygen isotope record of Eocene Basins at the margin of the Cenozoic North American plateau

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Chamberlain, Page

    2013-04-01

    Topography has a strong impact on atmospheric circulation and precipitation patterns and is a key element in reconstructing the dynamics of mountain building processes. The topographic evolution of the world's major orogens remains one of the most important questions when discussing the interactions among tectonics, climate, and Earth surface processes. Here, we focus on the spatial and temporal development of topography and relief in the western North American Cordillera and how changes in the topography may have affected precipitation patterns and vice versa. In this context, we sampled more than 20 sections in Eocene to Oligocene terrestrial (intermontane?) basins (Chumstick, Swauk, and Chuckanut) in western and central Washington (USA) to the W and E of the modern Cascades. Oxygen isotope analysis of pedogenic carbonate in these sections allows us to reconstruct the isotopic composition of ancient soilwater or groundwater, and ultimately precipitation. Oxygen isotope measurements of pedogenic concretions and calcic horizons interestingly yield uniformly low δ18O values of 10 to 13‰ SMOW despite the proximity of all sections to the Pacific moisture source. These extremely low oxygen isotope values can result from (1) highly 18O-depleted meteoric waters (soil- or groundwater), (2) burial diagenesis at moderate temperatures and interaction with 18O-depleted (ground)water, and (3) high burial temperatures and and exchange with basins brines. Vitrinite reflectance data and preservation of primary soil structures such as rootlets, root casts, burrows, or even preserved wood fragments clearly show that some of the low-d18O sections were not affected by high degrees of burial diagenesis. Thus, we believe that the primary isotopic signal of ancient soil- or groundwater is preserved at least in parts (if not in all) of these basins. Low δ18O values of pedogenic carbonate require highly 18O-depleted meteoric water, which in turn, would require high elevation either at

  15. Changes in Sediment Provenance to the Southeast Newfoundland Ridge from the late Eocene to the Early Oligocene; Northern Hemisphere Glaciation or Deep Water Circulation?

    NASA Astrophysics Data System (ADS)

    Scher, H. D.; Romans, B.; Moffett, Z. J.; Buckley, W. P.; Gibson, K.

    2013-12-01

    continents. There is not a long term trend nor prominent inflections in the fossil fish tooth ɛNd record that are associated with terrigenous ɛNd values so it does not appear likely that changes in sediment provenance were accompanied by a reorganization of deep water masses. Thus the preliminary results are cautiously interpreted as reflecting a sedimentological response to an overall increase in weathering/erosion of ancient continental crust, possibly on Greenland, over the investigated interval. In this context these results may reflect the emplacement of northern hemisphere ice sheets in the latest Eocene, preceded by prominent short-lived glacial events in the Eocene. The first short-lived event falls within polarity chron C17n.1n, which corresponds with the timing of a known Eocene glaciation on Antarctica and suggests that the greenhouse climate in the late Eocene supported a bipolar glacial event. We are currently generating a record of relative paleo-bottom current intensity from U1411 using the sortable silt proxy to further evaluate the role of bottom currents in terrigenous sediment provenance on the SENR.

  16. Cocos sahnii Kaul: a Cocos nucifera L.-like fruit from the Early Eocene rainforest of Rajasthan, western India.

    PubMed

    Shukla, Anumeha; Mehrotra, Rakesh C; Guleria, Jaswant S

    2012-09-01

    Cocos sahnii Kaul, a fossil palm fruit, is validated and described from the Fuller's earth deposits of Kapurdi village of Rajasthan considered as Early Eocene in age. The fossil best resembles the genus Cocos, particularly Cocos nucifera L., which is now a common coastal element thriving in highly moist conditions. The recovery of this coconut-like fruit, along with earlier described evergreen taxa from the same formation, suggests the existence of typical tropical, warm and humid coastal conditions during the depositional period. The present arid to semi-arid climatic conditions occurring in Rajasthan indicate drastic climate change in the region during the Cenozoic. The possible time for the onset of aridity in the region which caused the total eradication of semi-evergreen to evergreen forests is discussed, as well as the palaeobiogeography of coconuts. PMID:22922201

  17. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  18. Optimum blending gives best pool octane

    SciTech Connect

    Morris, W.E.

    1986-01-20

    Optimum blending of gasoline components can increase the pool octane by 0.1 to 0.5 numbers. To achieve the optimum octane blending scheme, accurate octane blending values must be obtained. These blending values can be developed from an interaction blending study or from generalized predicted interaction coefficients. Many refiners are blending in a non-optimum fashion so that there are some cheap octanes available for the taking by simply changing to an optimum blending scheme. A study of 1984 gasoline compositions indicated that many refiners were blending in a non-optimum fashion and that ''pool octane'' could have been increased almost 0.5 octane. The term pool octane usually refers to the weighted average octane of all of the gasoline components. It can be calculated by multiplying the octane of each component by its fraction of the pool and adding the results. If the components are blended into two or more grades, a second pool octane could be calculated by multiplying the octane of each grade, before any lead antiknock addition, by its fraction of the total pool. The second pool octane will differ from the first because the components do not blend linearly. The octane of a 50:50 blend of two components may be higher or lower than the average of the octanes of the two components.

  19. Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.

    2016-01-01

    The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.

  20. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    PubMed

    Garrouste, Romain; Nel, André

    2015-01-01

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera. PMID:26624314

  1. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    PubMed

    Garrouste, Romain; Nel, André

    2015-10-09

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera.

  2. Eocene to Miocene biostratigraphy of New Jersey core ACGS #4; implications for regional stratigraphy

    USGS Publications Warehouse

    Poore, Richard Z.; Bybell, Laurel M.

    1988-01-01

    A time versus depth plot controlled primarily by nannofossil zone boundaries shows that sediment accumulation rates during the early and middle Eocene were in the range of 6 to 15 feet per million years. During the late Eocene, accumulation rates were much higher, perhaps exceeding 70 feet per million years. The only clear hiatus detected in the Paleogene part of ACGS #4 on the basis of microfossils is between the early and (?)late Oligocene. However, hiatuses are suspected at the early-middle Eocene boundary and within the late Eocene. Occurrences of calcareous nannofossils and planktic foraminifers are documented, and a number of key taxa are illustrated.

  3. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  4. Evolution and extinction of Afro-Arabian primates near the Eocene-Oligocene boundary.

    PubMed

    Seiffert, Erik R

    2007-01-01

    Revised age estimates for the primate-bearing localities of the Jebel Qatrani Formation (Fayum area, northern Egypt) have provided a new perspective on primate response to early Oligocene climate change in North Africa. Environmental changes associated with early Oligocene cooling might have driven the local extinction of at least 4 strepsirrhine primate clades (adapids, djebelemurines, plesiopithecids and galagids). Contrary to previous suggestions, oligopithecid (and possibly proteopithecid) anthropoids persisted beyond the Eocene-Oligocene boundary (EOB) in the Fayum area, and the former group evidently continued to diversify through the early Oligocene at lower latitudes. Propliopithecids and parapithecine parapithecids first appear in the Jebel Qatrani Formation millions of years after the EOB, so their derived dental and gnathic features can no longer be interpreted as sudden adaptive morphological responses to earliest Oligocene climatic events. Evidence for latitudinal contraction of Afro-Arabian primate distribution through the early Oligocene suggests that the profound late Oligocene restructuring of Afro-Arabian primate communities is most likely to have occurred in equatorial and low-latitude tropical Africa.

  5. Calcareous nannofossil assemblage changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting

    USGS Publications Warehouse

    Self-Trail, Jean M.; Powars, David S.; Watkins, David K.; Wandless, Gregory A.

    2012-01-01

    Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM.

  6. The terminal Eocene event - Formation of a ring system around the earth

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1980-01-01

    It is suggested that the formation of a ring system about the earth by particles and debris related to the North American strewn tektite field is responsible for the terminal Eocene event of 34 million years ago, in which severe climatic changes accompanied by widespread biological extinctions occurred. Botanical data is cited which implies a 20-C decrease in winter temperature with no change in summer temperature, and evidence of the correlation of the North American tektite fall, which is estimated to have a total mass of 10 to the 9th to 10 to the 10th tons, with the disappearance of five of the most abundant species of radiolaria is presented. The possible connection between the tektites and climatic change is argued to result from the screening of sunlight by an equatorial ring of trapped particles of extraterrestrial origin in geocentric orbit which would cut off sunlight only in the winter months. Such a ring, located at a distance of between 1.5 and 2.5 earth radii (the Roche limit) is estimated to have a lifetime of a few million years.

  7. A seasonality trigger for carbon injection at the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Eldrett, J. S.; Greenwood, D. R.; Polling, M.; Brinkhuis, H.; Sluijs, A.

    2013-10-01

    The Paleocene-Eocene thermal maximum (PETM) represents a ~170 kyr episode of anomalous global warmth ~56 Ma ago. The PETM is associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system reflected as a prominent negative carbon isotope excursion (CIE) in sedimentary components. Earth's surface and deep ocean waters warmed by ~5 °C, of which part may have occurred prior to the CIE. However, few records document continental climatic trends and changes in seasonality have not been documented. Here we present the first high-resolution vegetation reconstructions for the PETM, based on bioclimatic analysis of terrestrially-derived spore and pollen assemblages preserved in an expanded section from the Central North Sea. Our data indicate reductions in boreal conifers and an increase in mesothermal to megathermal taxa, reflecting a shift towards wetter and warmer climate. We also record an increase in summer temperatures, greater in magnitude than the rise in mean annual temperature changes. Within the CIE, vegetation varies significantly with initial increases in epiphytic and climbing ferns, and development of extensive wetlands, followed by abundance of Carya spp. indicative of broadleaf forest colonization. Critically, the change in vegetation we report occurs prior to the CIE, and is concomitant with anomalous marine ecological change, as represented by the occurrence of Apectodinium augustum. This suggests that amplifications of seasonal extremes triggered carbon injection.

  8. A seasonality trigger for carbon injection at the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Eldrett, J. S.; Greenwood, D. R.; Polling, M.; Brinkhuis, H.; Sluijs, A.

    2014-04-01

    The Paleocene-Eocene Thermal Maximum (PETM) represents a ~170 kyr episode of anomalous global warmth ~56 Ma ago. The PETM is associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system reflected as a prominent negative carbon isotope excursion (CIE) in sedimentary components. Earth's surface and deep ocean waters warmed by ~5 °C, of which part may have occurred prior to the CIE. However, few records document continental climatic trends and changes in seasonality have not been documented. Here we present the first high-resolution vegetation and paleoclimate reconstructions for the PETM, based on nearest living relative analysis of terrestrially derived spore and pollen assemblages preserved in an expanded section from the central North Sea. Our data indicate reductions in boreal conifers and an increase in mesothermal to megathermal taxa, reflecting a shift towards wetter and warmer climate. We also record an increase in summer temperatures, greater in magnitude than the rise in mean annual temperature changes, and a shift to a summer-wet seasonality. Within the CIE, vegetation varies significantly with initial increases in epiphytic and climbing ferns, and development of extensive wetlands, followed by abundance of Carya spp. indicative of broadleaf forest colonization. Critically, the change in vegetation we report occurs prior to the CIE, and is concomitant with anomalous marine ecological change, as represented by the occurrence of Apectodinium augustum. This suggests that amplifications of seasonal extremes triggered carbon injection.

  9. Sedimentology, sequential analysis and clay mineralogy of the lower Eocene sequence at Farafra Oasis area, Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Ayyat, Abdalla M.

    2013-02-01

    Integrated sedimentological studies, sequential analysis and clay mineralogy on the lower Eocene rocks in the Western Desert provided important information on the reconstruction of the depositional basin, cyclicity, and paleoclimatic conditions. Two formations are recognized; the Esna and Farafra formations, with a gradational contact in-between. The studied sequence exhibits lateral facies changes as revealed from field and microfacies investigations. Eight facies were recognized and summarized in a carbonate ramp model. It represents also a general regressive trend, which records a transition from an outer ramp into a peritidal zone. The facies stacking patterns constitute several kinds of meter-scale, shallowing-upward cycles. Two different types of depositional cycles are here defined. The stratigraphic sections show a hierarchical organization of many cycles defined by five depositional sequences. It is suggested that composite eustatic sea level oscillations caused by cyclic perturbations of the Earth's orbit played a fundamental role in determining the formation of the observed hierarchical cyclic organization. Summing up, it is believed that the paleotopography had resulted from the impact of the Syrian Arc Folding System. A confusing additional complication is introduced by syndepositional sedimentary structures, especially during the late Cretaceous/Eocene times, coupled by several tensional forces. Clay mineralogy has revealed the presence of smectite, kaolinite and illite. Their origin may be attributed to the gradual increase in the amount of erosion of the newly elevated crystalline source rocks to the south of Egypt, in areas of moderate rainfall and rapid weathering and/or to reworking processes of soils which presumably developed on basement rocks. Changes in source rocks or climatic influence during the early Eocene may account for the observed differences in clay mineral abundances.

  10. Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters

    SciTech Connect

    Graham, A. )

    1994-03-01

    The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presently averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.

  11. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  12. Optimum Detection of Frequency-Hopped Signals

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Levitt, Barry; Polydoros, Andreas; Simon, Marvin K.

    1992-01-01

    This paper derives and analyzes optimum and near-optimum structures for detecting frequency-hopped (FH) signals with arbitrary modulation in additive white Gaussian noise. The principalmodulation formats considered are M-ary frequency-shift-keying (MFSK) with fast frequency hopping(FFH) wherein a single tone is transmitted per hop, and slow frequency hopping (SFH) with multipleMFSK tones (data symbols) per hop. The SFH detection category has not previously been addressedin the open literature and its analysis is generally more complex than FFH.

  13. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  14. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    PubMed

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.

  15. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  16. Evidence for a warm ice-free environment on the high latitude Antarctic coast (78°S) during the Middle to Late Eocene

    NASA Astrophysics Data System (ADS)

    Levy, R. H.; Bohaty, S. M.; Harwood, D. M.; Sangiorgi, F.; Willmott, V.; Talarico, F.; MacLeod, K. G.

    2013-12-01

    Much of Antarctica's Cenozoic geological record is hidden beneath the thick ice sheets and fringing ice shelves that cover the continent. Glacial erratics of sedimentary rocks present in coastal moraines at Minna Bluff and Mount Discovery, McMurdo Sound, western Ross Sea, Antarctica contain middle and late Eocene plant and marine fossils that were deposited in a range of marine settings along the Antarctic coastline. This suite of sedimentary rocks were likely deposited at the margin of a narrow (c. 100 km wide), relatively deep (up to 1000 m) marine seaway that was bound by the proto-Transantarctic Mountains to the west and a topographic high to the east. Although these Eocene ';';McMurdo Erratics'' lack stratigraphic integrity, they are significant as they offer a rare glimpse into Antarctica's climate during global greenhouse conditions at high latitudes (c. 78°S). Fossils recovered from the rocks are diverse and include marine and terrestrial palynomorphs, diatoms, molluscs, wood, leaves and other macrofauna and flora. Geochemical temperature proxies derived from the sedimentary rocks include organic biomarkers (TEX86) and fish tooth δ18O that indicate coastal sea surface temperatures were at least 15°C in the late Middle Eocene. While rare lonestones occur in several sandstone erratics, we find no conclusive evidence for glaciation at the coast. The fossil-bearing coastal moraines also contain a suite of igneous and metamorphic erratics that are comparable to lithological units exposed in the Transantarctic Mountains between the Skelton and Mulock glaciers. This suggests that the Eocene erratics were eroded from the north-eastern portion of a large sub-glacial basin behind Minna Bluff and/or from grabens in a basement high immediately south-east of Minna Bluff. Importantly, the northeastward extension of this basement high is a target for stratigraphic drilling during the proposed ANDRILL Coulman High Project. Drilling on the Coulman High has an excellent

  17. Fast optimum decoding for nonadditive readable watermarking

    NASA Astrophysics Data System (ADS)

    Baitello, Riccardo; Barni, Mauro; Bartolini, Franco; Caldelli, Roberto; De Rosa, Alessia

    2001-08-01

    Watermarking algorithms for copyright protection are usually classified as belonging to one of two classes: detectable and readable. The aim of this paper is to present a possible approach for transforming an optimum, detectable technique previously proposed by the authors into a readable one. Similarly to what has been done previously by other authors we embed multiple copies of the watermark into the image, letting their relative positions in the frequency domain to be related to the informative message. The main drawback of this approach is that all copies of the watermark have to be detected without knowing their positions, i.e. all possible positions (many tenth thousands in our case) have to be tested, which is a prohibitive task from the point of view of the computational cost. Correlation based watermark detectors can overcome this problem by exploiting the Fast Fourier Transform (FFT) algorithm, but they are not optimum in the case of non additive watermarks. In this paper we demonstrate how the formula of the optimum watermark detector can be re-conducted to a correlation structure, thus allowing us to use the FFT for testing the watermark presence at all possible positions: in this way a fast optimum decoding system is obtained.

  18. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  19. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene

  20. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition.

    PubMed

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A

    2016-08-10

    Approximately 34 million years ago across the Eocene-Oligocene transition (EOT), Earth's climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era.

  1. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition.

    PubMed

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A

    2016-01-01

    Approximately 34 million years ago across the Eocene-Oligocene transition (EOT), Earth's climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era. PMID:27507793

  2. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  3. Comet or asteroid shower in the late Eocene?

    PubMed

    Tagle, Roald; Claeys, Philippe

    2004-07-23

    The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt. PMID:15273387

  4. Comet or asteroid shower in the late Eocene?

    PubMed

    Tagle, Roald; Claeys, Philippe

    2004-07-23

    The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.

  5. Glaciation and erosion of Eastern Greenland at the Eocene-Oligocene transition: Insights from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Bernard, Thomas; Steer, Philippe; Gallagher, Kerry; Szulc, Adam; Whittam, Andrew

    2016-04-01

    Climate cooling through the Late Cenozoic was important in the evolution of glaciated mountain ranges. While the onset of accelerated Cenozoic exhumation is generally associated with the Quaternary at mid-latitudes, coincident with the local onset of glaciation, some high-latitude passive margins may have experienced earlier glaciation starting at 30-38 Ma or even 45 Ma. To address this issue, we use a set of new AFT data from 16 sub-vertical profiles sampled along the fjords of the central Eastern Greenland margin between 68° and 76° N, combined with new apatite (U-Th-Sm)/He (AHe) data from selected profiles. To infer thermal histories and exhumation from these profiles, we use the software QTQt. The modeling results show a major phase of exhumation in the East Greenland margin between 68° and 76° N starting at 30±5 Ma. The spatial distribution of the exhumation shows that normal faulting on East Greenland margin had no resolvable influence on exhumation related to the cooling phase. However, the timing is coincident with the dramatic worldwide fall of surface temperature at the Eocene-Oligocene transition. We therefore suggest that a transition from an Eocene fluvial to an Oligocene glacial-dominated landscape triggered a period of enhanced erosion. We infer from the thermal histories that around 2.7±1.9 km of erosion occurred close to the coast since the Eocene-Oligocene transition. This amount of erosion is consistent with the incision of the fjords and with the effective removal of 2.3±1.5 km of basalt thickness, deduced by the thermal modeling of a heating phase at 55±5 Ma. This phase of erosion is most strongly evidenced near the coast, suggesting either that continental ice extent was limited to the coastal areas or that erosion was less efficient outside these areas, leading to no obvious signal in thermochronometric data further north. Overall, this study provides the first onshore evidence of the onset of continental ice in East Greenland margin

  6. A Case for the Rapid Release of Carbon during the Paleocene-Eocene Thermal Maximum Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Schaller, M. F.

    2013-12-01

    The Paleocene/Eocene Thermal Maximum (PETM) and associated Carbon Isotope Excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic cause. We have counted over 650 couplets at two different sites precluding orbital- and millennial-scale forcing for their origin. %CaCO3 decreases from ~6 to <1% across one couplet. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. Seasonal forcing of the sedimentary couplets best explains: 1) δ18O cycles and amplitudes; 2) the difference in response times between surface water carbonate chemistry (instantaneous) and carbon isotopic exchange (decadal); and 3) total layer counts. We conclude that the 'Marlboro Clay' sediments and its δ13C excursion record the initial release of carbon into the atmosphere, invasion into the surface waters, and only the initial mixing into the deep ocean. Therefore, the recovery observed in the Marlboro Clay is not equivalent to the 'recovery' observed in the open ocean records in either its timing or root cause.

  7. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  8. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  9. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    PubMed

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-01-01

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini. PMID:27394507

  10. Dynamics of Carbon Burial in the Coastal Oceans through the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Schneider-Mor, A.; Bowen, G. J.

    2008-12-01

    Climatic recovery from the Paleocene-Eocene boundary thermal maximum (PETM) involved the rapid burial of thousands of petagrams of carbon, a significant fraction of which may have been sequestered in marginal marine sediments. This burial flux may have been modulated by changes in climate, biology, sea level, and sediment flux, but the primary pathways and controls on excess carbon burial have remained speculative to this point. Using the global PETM carbon isotope excursion and C/N ratios as tracer of organic carbon source, we investigated preservation of organic carbon through the PETM as particulate organic carbon (POC) and mineral-bound carbon (MBC) at three coastal ocean sites (Tawanui, New Zealand; IODP leg 302, Arctic Ocean; and Wilson Lake, NJ, USA). We show that an increase in total organic carbon burial during the PETM is dominated by burial of young (<10,000 year old), land-derived POC, but that elevated POC burial was limited to sites with high sedimentation rates through the event (ca. 5 cm/kyr). In contrast, MBC sources were more variable, both among sites and through the PETM, and although there was no conclusive evidence for reburial of kerogen-derived MBC at the study sites the carbon isotope data suggest that a fraction of the MBC at each site may have had a long (>10,000 years) residence time prior to burial. MBC dominated the organic burial flux only at the low sedimentation-rate site (Tawanui), but also contributed significantly to changes in total burial at the Arctic site where bottom water anoxia or suboxia has been inferred during the PETM. Our results demonstrate that changes in total carbon burial rates in marginal marine sediments were determined by decoupled responses of the POC and MBC burial pathways that varied substantially among locations, and that the strongest feedbacks on PETM climate involved changes in the transfer of sediment and particulate organic carbon from the continents to the coastal oceans.

  11. Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J.; Reiners, P.

    2014-07-01

    Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.

  12. Fragments of Late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt

    NASA Astrophysics Data System (ADS)

    Schmitz, Birger; Boschi, Samuele; Cronholm, Anders; Heck, Philipp R.; Monechi, Simonetta; Montanari, Alessandro; Terfelt, Fredrik

    2015-09-01

    The onset of Earth's present icehouse climate in the Late Eocene coincides with astronomical events of enigmatic causation. At ∼36 Ma ago the 90-100 km large Popigai and Chesapeake Bay impact structures formed within ∼ 10- 20 ka. Enrichments of 3He in coeval sediments also indicate high fluxes of interplanetary dust to Earth for ∼ 2 Ma. Additionally, several medium-sized impact structures are known from the Late Eocene. Here we report from sediments in Italy the presence of abundant ordinary chondritic chromite grains (63-250 μm) associated with the ejecta from the Popigai impactor. The grains occur in the ∼ 40 cm interval immediately above the ejecta layer. Element analyses show that grains in the lower half of this interval have an apparent H-chondritic composition, whereas grains in the upper half are of L-chondritic origin. The grains most likely originate from the regoliths of the Popigai and the Chesapeake Bay impactors, respectively. These asteroids may have approached Earth at comparatively low speeds, and regolith was shed off from their surfaces after they passed the Roche limit. The regolith grains then settled on Earth some 100 to 1000 yrs after the respective impacts. Further neon and oxygen isotopic analyses of the grains can be used to test this hypothesis. If the Popigai and Chesapeake Bay impactors represent two different types of asteroids one can rule out previous explanations of the Late Eocene extraterrestrial signatures invoking an asteroid shower from a single parent-body breakup. Instead a multi-type asteroid shower may have been triggered by changes of planetary orbital elements. This could have happened due to chaos-related transitions in motions of the inner planets or through the interplay of chaos between the outer and inner planets. Asteroids in a region of the asteroid belt where many ordinary chondritic bodies reside, were rapidly perturbed into orbital resonances. This led to an increase in small to medium-sized collisional

  13. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  14. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  15. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications.

    PubMed

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene. PMID:26579179

  16. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications

    PubMed Central

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene. PMID:26579179

  17. Episodic fresh surface waters in the Eocene Arctic Ocean

    USGS Publications Warehouse

    Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T. M.; Onodera, J.; Takahashi, K.; Bujak, J.P.; Stein, R.; Van Der Burgh, J.; Eldrett, J.S.; Harding, I.C.; Lotter, A.F.; Sangiorgi, F.; Cittert, H.V.K.V.; De Leeuw, J. W.; Matthiessen, J.; Backman, J.; Moran, K.

    2006-01-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (???50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ???800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ???10??C to 13??C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. ?? 2006 Nature Publishing Group.

  18. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  19. How many upper Eocene microspherule layers: More than we thought

    NASA Technical Reports Server (NTRS)

    Hazel, Joseph E.

    1988-01-01

    The scientific controversy over the origin of upper Eocene tektites, microtektites and other microspherules cannot be logically resolved until it is determined just how many events are involved. The microspherule-bearing beds in marine sediments have been dated using standard biozonal techniques. Although a powerful stratigraphic tool, zonal biostratigraph has its limitations. One is that if an event, such as a microspherule occurrence, is observed to occur in a zone at one locality and then a similar event observed in the same zone at another locality, it still may be unwarranted to conclude that these events exactly correlate. To be in a zone a sample only need be between the fossil events that define the zone boundaries. It is often very difficult to accurately determine where within a zone one might be. Further, the zone defining events do not everywhere occur at the same points in time. That is, the ranges of the defining taxa are not always filled. Thus, the length of time represented by a zone (but not, of course, its chronozone) can vary from place to place. These problems can be offset by use of chronostratigraphic modelling techniques such as Graphic Correlation. This technique was used to build a Cretaceous and Cenozoic model containing fossil, magnetopolarity, and other events. The scale of the model can be demonstrated to be linear with time. This model was used to determine the chronostratigraphic position of upper Eocene microspherule layers.

  20. A Phororhacoid bird from the Eocene of Africa

    NASA Astrophysics Data System (ADS)

    Mourer-Chauviré, Cécile; Tabuce, Rodolphe; Mahboubi, M'hammed; Adaci, Mohammed; Bensalah, Mustapha

    2011-10-01

    The bird fossil record is globally scarce in Africa. The early Tertiary evolution of terrestrial birds is virtually unknown in that continent. Here, we report on a femur of a large terrestrial new genus discovered from the early or early middle Eocene (between ˜52 and 46 Ma) of south-western Algeria. This femur shows all the morphological features of the Phororhacoidea, the so-called Terror Birds. Most of the phororhacoids were indeed large, or even gigantic, flightless predators or scavengers with no close modern analogs. It is likely that this extinct group originated in South America, where they are known from the late Paleocene to the late Pleistocene (˜59 to 0.01 Ma). The presence of a phororhacoid bird in Africa cannot be explained by a vicariant mechanism because these birds first appeared in South America well after the onset of the mid-Cretaceous Gondwana break up (˜100 million years old). Here, we propose two hypotheses to account for this occurrence, either an early dispersal of small members of this group, which were still able of a limited flight, or a transoceanic migration of flightless birds from South America to Africa during the Paleocene or earliest Eocene. Paleogeographic reconstructions of the South Atlantic Ocean suggest the existence of several islands of considerable size between South America and Africa during the early Tertiary, which could have helped a transatlantic dispersal of phororhacoids.

  1. Composition of Eocene Ice-Rafted Debris, Central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ramstad, C.; St. John, K.

    2007-12-01

    IODP Expedition 302 drilled a 400-m sediment record which contains physical evidence of ice-rafting in the Eocene and Neogene in the Arctic (Backman et al., 2006; Moran et al., 2006, St. John, in press). An increase in the terrigenous sand abundance occurs above 246 mcd (~46 Ma), with a flux similar to that in the Neogene. Higher resolution sampling in an interval of good recovery from 246-236 mcd shows evidence of cyclic input of IRD and biogenic components that fits with Milankovitch forcing at the obliquity period (Sangiorgi et al., in press). The question remains - what areas of the Arctic were ice-covered at this early stage in the Cenozoic? To address this provenance issue the composition of the terrigenous sands (250 micron fraction) in cores 55-56X is being quantified. Grains in 75 samples are being point-counted and their compositions categorized. Quartz grains are the dominant component (greater than 10,000 grains per gram), with some being hematite-stained, and there are lesser amounts of mafic minerals. No carbonate grains are identified so far in this study. Possible sources areas for Eocene IRD are the Eastern European and Russian Arctic margins. Tracking compositional variations of the IRD over the interval of cyclic deposition, should indicate whether the cyclic IRD deposition was consistently derived from one source region or multiple regions during this time.

  2. Diversity of Scydmaeninae (Coleoptera: Staphylinidae) in Upper Eocene Rovno amber.

    PubMed

    Jałoszyński, Paweł; Perkovsky, Evgeny

    2016-01-01

    Among nearly 1270 inclusions of Coleoptera found in Upper Eocene Rovno amber, 69 were identified as ant-like stone beetles (Scydmaeninae); 34 were possible to unambiguously determine to the tribal level and were studied in detail. Rovnoleptochromus ableptonoides gen. & sp. n. (Mastigitae: Clidicini), Vertheia quadrisetosa gen. & sp. n. (Cephenniitae: Eutheiini), Cephennomicrus giganteus sp. n. (Cephenniitae: Cephenniini), Glaesoconnus unicus gen. & sp. n. (Scydmaenitae: Glandulariini), Rovnoscydmus frontalis gen. & sp. n. (Scydmaenitae: Glandulariini; type species of Rovnoscydmus), Rovnoscydmus microscopicus sp. n., Euconnus (incertae sedis, near Cladoconnus) palaeogenus sp. n. (Scydmaenitae: Glandulariini), and Stenichnus (s. str.) proavus sp. n. (Scydmaenitae: Glandulariini) are described. Additionally, specimens representing one undescribed species of Vertheia, one of Cephennodes, five of Cephennomicrus, one of Euconnus, one of Microscydmus are recorded, and nine specimens representing an unknown number of species of Rovnoscydmus (and two putative Rovnoscydmus), one Euconnus (and one putative Euconnus), two putative Microscydmus and one putative Scydmoraphes were found in the studied material. The composition of Scydmaeninae fauna in Rovno amber is discussed in the context of ecological preferences and distribution of extant taxa. It is concluded that subtropical and tropical taxa were present in the region where Rovno amber has formed, most notably the second genus and species of the extant tribe Clidicini known from the Eocene of Europe, and six species of the extant genus Cephennomicrus, for the first time found in the fossil record. An annotated catalog of nominal species of Scydmaeninae known in the fossil record is given. PMID:27615867

  3. Active magnetic bearings for optimum turbomachinery design

    NASA Technical Reports Server (NTRS)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  4. Late Paleocene early Eocene Tethyan carbonate platform evolution — A response to long- and short-term paleoclimatic change

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Speijer, R. P.

    2008-11-01

    The early Paleogene experienced the most pronounced long-term warming trend of the Cenozoic, superimposed by transient warming events such as the Paleocene-Eocene Thermal Maximum (PETM). The consequences of climatic perturbations and associated changes on the evolution of carbonate platforms are relatively unexplored. Today, modern carbonate platforms, especially coral reefs are highly sensitive to environmental and climatic change, which raises the question how (sub)tropical reef systems of the early Paleogene reacted to gradual and sudden global warming, eutrophication of shelf areas, enhanced CO 2 levels in an ocean with low Mg/Ca ratios. The answer to this question may help to investigate the fate of modern coral reef systems in times of global warming and rising CO 2 levels. Here we present a synthesis of Tethyan carbonate platform evolution in the early Paleogene (~ 59-55 Ma) concentrating on coral reefs and larger foraminifera, two important organism groups during this time interval. We discuss and evaluate the importance of the intrinsic and extrinsic factors leading to the dissimilar evolution of both groups during the early Paleogene. Detailed analyses of two carbonate platform areas at low (Egypt) and middle (Spain) paleolatitudes and comparison with faunal patterns of coeval platforms retrieved from the literature led to the distinction of three evolutionary stages in the late Paleocene to early Eocene Tethys: Stage I, late Paleocene coralgal-dominated platforms at low to middle paleolatitudes; stage II, a transitional latest Paleocene platform stage with coralgal reefs dominating at middle paleolatitudes and larger foraminifera-dominated ( Miscellanea, Ranikothalia, Assilina) platforms at low paleolatitudes; and stage III, early Eocene larger foraminifera-dominated ( Alveolina, Orbitolites, Nummulites) platforms at low to middle paleolatitudes. The onset of the latter prominent larger foraminifera-dominated platform correlates with the Paleocene/Eocene

  5. Paleoclimatological analysis of Late Eocene core, Manning Formation, Brazos County, Texas

    SciTech Connect

    Yancey, T.; Elsik, W.

    1994-09-01

    A core of the basal part of the Manning Formation was drilled to provide a baseline for paleoclimate analysis of the expanded section of siliciclastic sediments of late Eocene age in the outcrop belt. The interdeltaic Jackson Stage deposits of this area include 20+ cyclic units containing both lignite and shallow marine sediments. Depositional environments can be determined with precision and the repetitive nature of cycles allows comparisons of the same environment throughout, effectively removing depositional environment as a variable in interpretation of climate signal. Underlying Yegua strata contain similar cycles, providing 35+ equivalent environmental transacts within a 6 m.y. time interval of Jackson and Yegua section, when additional cores are taken. The core is from a cycle deposited during maximum flooding of the Jackson Stage, with deposits ranging from shoreface (carbonaceous) to midshelf, beyond the range of storm sand deposition. Sediments are leached of carbonate, but contain foram test linings, agglutinated forams, fish debris, and rich assemblages of terrestrial and marine palynomorphs. All samples examined contain marine dinoflagellates, which are most abundant in transgressive and maximum flood zones, along with agglutinated forams and fish debris. This same interval contains two separate pulses of reworked palynomorphs. The transgressive interval contains Glaphyrocysta intricata, normally present in Yegua sediments. Pollen indicates fluctuating subtropical to tropical paleoclimates, with three short cycles of cooler temperatures, indicated by abundance peaks of alder pollen (Alnus) in transgressive, maximum flood, and highstand deposits.

  6. Model simulations of early westward flow across the Tasman Gateway during the early Eocene

    NASA Astrophysics Data System (ADS)

    Sijp, Willem P.; von der Heydt, Anna S.; Bijl, Peter K.

    2016-04-01

    The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Recent micropalaeontological studies suggest the onset of westward throughflow of surface waters from the SW Pacific into the Australo-Antarctic Gulf through a southern shallow opening of the Tasman Gateway from 49-50 Ma onwards, a direction that is counter to the present-day eastward-flowing Antarctic Circumpolar Current. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, southerly shallow opening of the Tasman Gateway indeed causes a westward flow across the Tasman Gateway. As a result, modelled estimates of dinoflagellate biogeography are in agreement with the recent findings. Crucially, in this situation where Australia is still situated far south and almost attached to Antarctica, the Drake Passage must be sufficiently restricted to allow the prevailing easterly wind pattern to set up this southerly restricted westward flow. In contrast, an open Drake Passage, up to 517 m deep, leads to an eastward flow, even when the Tasman Gateway and the Australo-Antarctic gulf are entirely contained within the latitudes of easterly wind.

  7. Sedimentology and paleoecology of an Eocene Oligocene alluvial lacustrine arid system, Southern Mexico

    NASA Astrophysics Data System (ADS)

    Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro

    2006-10-01

    A depositional model of the Eocene-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.

  8. Value of information analysis for groundwater quality monitoring network design Case study: Eocene Aquifer, Palestine

    NASA Astrophysics Data System (ADS)

    Khader, A.; McKee, M.

    2010-12-01

    Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the Eocene Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.

  9. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  10. The Eocene-Oligocene transition at ODP Site 1263, Atlantic Ocean: decreases in nannoplankton size and abundance and correlation with benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Bordiga, M.; Henderiks, J.; Tori, F.; Monechi, S.; Fenero, R.; Thomas, E.

    2015-05-01

    The biotic response of calcareous nannoplankton to environmental and climatic changes during the Eocene-Oligocene transition (~34.8-32.7 Ma) was investigated at high resolution at Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, South East Atlantic Ocean), and compared with a lower resolution benthic foraminiferal record. During this time interval, the global climate which had been warm during the Eocene, under high levels of atmospheric CO2 (pCO2), transitioned into the cooler climate of the Oligocene, with overall lower pCO2. At Site 1263, the absolute nannofossil abundance (coccoliths per gram of sediment; N g-1) and the mean coccolith size decreased distinctly across the E-O boundary (EOB; 33.89 Ma), mainly due to a sharp decline in abundance of large-sized Reticulofenestra and Dictyococcites, within ~53 kyr. Since carbonate dissolution did not vary much across the EOB, the decrease in abundance and size of nannofossils may highlight an overall decrease in their export production, which could have led to an increased ratio of organic to inorganic carbon (calcite) burial, as well as variations in the food availability for benthic foraminifers. The benthic foraminiferal assemblage data show the global decline in abundance of rectilinear species with complex apertures in the latest Eocene (~34.5 Ma), potentially reflecting changes in the food source, thus phytoplankton, followed by transient increased abundance of species indicative of seasonal delivery of food to the sea floor (Epistominella spp.; ~34.04-33.54 Ma), with a short peak in overall food delivery at the EOB (buliminid taxa; ~33.9 Ma). After Oi-1 (starting at ~33.4 Ma), a high abundance of Nuttallides umbonifera indicates the presence of more corrosive bottom waters, possibly combined with less food arriving at the sea floor. The most important signals in the planktonic and benthic communities, i.e. the marked decrease of large reticulofenestrids, extinctions of planktonic foraminifer species and

  11. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, lower Eocene, northwest Wyoming, USA)

    SciTech Connect

    Brown, T.M. ); Kraus, M.J. )

    1993-02-01

    Relative paleosol maturities are inversely proportional to the accumulation rates of the sediment upon which they formed, and are therefore excellent relative indicators of how much geologic time elapsed between any two horizons. An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The revised Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain aspects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. The first faunal turnover occurs at the base of the Willwood Formation. It coincides with a major increase in pedogenic maturity, reflecting a major decrease in sediment accumulation rate, and accompanying general climatic warming at about the time of the Paleocene-Eocene boundary. Throughout the remainder of Willwood time, there was a gradual, yet continual, decrease in paleosol maturity and degree of hydromorphy, probably related to the progressive structural elevation of the Owl Creek antiform bounding the south and southeast margins of the Bighorn Basin. This gradual decrease was punctuated by two intervals of more significant decline in paleosol maturity and in the incidence of hydromorphic soils. Both intervals are also marked by faunal turnovers. These sedimentologic and biologic events may reflect tectonic, periods when the rate of basin subsidence increased more rapidly. 58 refs., 7 figs., 2 tabs.

  12. Sudden intrusion of corrosive bottom water into the South Atlantic during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Meissner, K. J.; Alexander, K.; Bralower, T. J.

    2015-12-01

    The Paleocene-Eocene Thermal Maximum, ˜55 million years before present, was a period of rapid warming marked by a negative carbon isotope excursion and widespread dissolution of seafloor carbonate. These changes have been attributed to a massive release of carbon into the exogenic carbon cycle, and thus, the event provides an analog for future climate and environmental changes given the current anthropogenic CO2 emissions. Previous attempts to constrain the amount of carbon released have produced widely diverging results, between 2000 and 10,000 gigatons carbon (GtC). Sediment records indicate that acidification of deep waters was generally more extensive and severe in the Atlantic and Caribbean regions, with more modest changes in the Southern and Pacific Oceans. Here we compare simulations integrated with the UVic Earth System Climate Model with reconstructions of temperature and dissolution to present a mechanism that might explain the observed spatial differences and to constrain the total mass of carbon released. Due to the late Paleocene topography, highly corrosive waters accumulate in the deep North Atlantic before the PETM in our simulations. Several thousand years into the event, deep ocean warming destabilizes the North Atlantic water column and triggers deep water formation. This causes the corrosive bottom water to spill over an equatorial sill into the South Atlantic and through the Southern and Pacific Oceans, progressively gaining alkalinity. The simulated pattern of sediment dissolution along the path taken by this corrosive water is consistent with most dissolution estimates made from CaCO3 measurements in the Paleocene-Eocene sediment record. We find two scenarios that agree best with proxy data: a carbon release of 7000 GtC in combination with pre-event atmospheric carbon dioxide concentrations of 840 ppm and a carbon release of 7000-10,000 GtC with pre-event CO2 concentrations of 1680 ppm.

  13. Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca

    2016-05-01

    Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity

  14. Diachronous ranges of benthonic Foraminifera in the Eocene of Alabama and South Carolina

    SciTech Connect

    Willard, G.D.; Fallaw, W.C. . Dept. of Geology); Price, V. ); Snipes, D.S. . Dept. of Earth Sciences)

    1994-03-01

    Seventeen species of benthonic Foraminifera reported by Bandy (1949) from the Eocene of Little Stave Creek in Clarke County, Alabama were identified from the middle eocene Santee Limestone and the upper Eocene Dry Branch Formation in Aiken and Barnwell counties, South Carolina. Of the 17 species, seven occurred in South Carolina stratigraphically above or below the ranges listed by Bandy. Bandy made a detailed study of Foraminifera from the Claibornian and Jacksonian Tallahatta, Lisbon, Gosport, Moodys Branch, and Yazoo formations exposed on Little Stave Creek and plotted the stratigraphic ranges within the section of numerous species. The authors' samples came from well cores at the Savannah River Site in South Carolina. Of 13 species from the middle Eocene Santee and also reported by Bandy, four are stratigraphically below the lowest occurrence listed by Bandy, and one is stratigraphically above the highest occurrence. Of four species from the upper Eocene Dry Branch Formation and also listed by Bandy, two are stratigraphically above his highest occurrence. Dockery and Nystrom (1992) and Campbell (1993) have described diachroneity among mollusks in the Eocene of South Carolina. Caution should be used in relying on a small number of species in correlating Eocene deposits in the Atlantic and Gulf coastal plains.

  15. Orbitally-forced Azolla blooms and middle Eocene Arctic hydrology; clues from palynology

    NASA Astrophysics Data System (ADS)

    Barke, Judith; Abels, Hemmo A.; Sangiorgi, Francesca; Greenwood, David R.; Sweet, Arthur R.; Donders, Timme; Lotter, Andre F.; Reichart, Gert-Jan; Brinkhuis, Henk

    2010-05-01

    The presence of high abundances of the freshwater fern Azolla in the early Middle Eocene central Arctic Ocean sediments recovered from the Lomonosov Ridge during IODP Expedition 302, have been related to the presence of a substantial freshwater cap. Azolla massulae, belonging to the newly described Eocene species Azolla arctica Collinson et al., have been found over at least a ~4 m-thick interval. There are strong indications that Azolla has bloomed and reproduced in situ in the Arctic Ocean for several hundreds of thousands of years. Possible causes for the sudden demise of Azolla at ~48.1 Ma include salinity changes due to evolving oceanic connections or sea-level change. Distinct cyclic fluctuation in the Azolla massulae abundances have previously been related to orbitally forced climate changes. In this study, we evaluate the possible underlying forcing mechanisms for these freshwater cycles and for the eventual demise of Azolla in an integrated palynological and cyclostratigraphical approach. Our results show two clear periodicities of ~1.3 and ~0.7 m in all major aquatic and terrestrial palynomorph associations, which we can relate to obliquity (41 ka) and precession (~21 ka), respectively. Cycles in the abundances of Azolla, freshwater-tolerant dinoflagellate cysts, and swamp vegetation pollen show co-variability in the obliquity domain. Their strong correlation suggests periods of enhanced rainfall and runoff during Azolla blooms, possibly associated with increased summer season length and insolation during obliquity maxima. Cycles in the angiosperm pollen record are in anti-phase with the Azolla cycles. We interpret this pattern as edaphically drier conditions on land and reduced associated runoff during Azolla lows, possibly corresponding to obliquity minima. The precession signal is distinctly weaker than that for obliquity, and is mainly detectable in the cold-temperate Larix and bisaccate conifer pollen abundances, which is interpreted as a response to

  16. Type Region of the Ione Formation (Eocene), Central California: Stratigraphy, Paleogeography, and Relation to Auriferous Gravels

    USGS Publications Warehouse

    Creely, Scott; Force, Eric R.

    2007-01-01

    The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high

  17. Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)

    NASA Astrophysics Data System (ADS)

    Agnini, Claudia; Spofforth, David J. A.; Dickens, Gerald R.; Rio, Domenico; Pälike, Heiko; Backman, Jan; Muttoni, Giovanni; Dallanave, Edoardo

    2016-04-01

    We present records of stable carbon and oxygen isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages across an 81 m thick section of upper Paleocene-lower Eocene marine sedimentary rocks now exposed along the Cicogna Stream in northeast Italy. The studied stratigraphic section represents sediment accumulation in a bathyal hemipelagic setting from approximately 57.5 to 52.2 Ma, a multi-million-year time interval characterized by perturbations in the global carbon cycle and changes in calcareous nannofossil assemblages. The bulk carbonate δ13C profile for the Cicogna section, once placed on a common timescale, resembles that at several other locations across the world, and includes both a long-term drop in δ13C and multiple short-term carbon isotope excursions (CIEs). This precise correlation of widely separated δ13C records in marine sequences results from temporal changes in the carbon composition of the exogenic carbon cycle. However, diagenesis has likely modified the δ13C record at Cicogna, an interpretation supported by variations in bulk carbonate δ18O, which do not conform to expectations for a primary signal. The record of CaCO3 content reflects a combination of carbonate dilution and dissolution, as also inferred at other sites. Our detailed documentation and statistical analysis of calcareous nannofossil assemblages show major differences before, during and after the Paleocene-Eocene Thermal Maximum. Other CIEs in our lower Paleogene section do not exhibit such a distinctive change; instead, these events are sometimes characterized by variations restricted to a limited number of taxa and transient shifts in the relative abundance of primary assemblage components. Both long-lasting and short-lived modifications to calcareous nannofossil assemblages preferentially affected nannoliths or holococcoliths such as Discoaster, Fasciculithus, Rhomboaster/Tribrachiatus, Sphenolithus and Zygrhablithus, which underwent distinct variations in

  18. Paleocene and Lower Eocene sections in the southern part of the Crimean Peninsula

    NASA Astrophysics Data System (ADS)

    Bugrova, I. Yu.; Bugrova, E. M.

    2015-11-01

    This work summarizes updated data on Paleocene and Lower Eocene deposits of the Crimean Peninsula concerning the systematics of assemblages of small foraminifers (and partly data on other microfossils) and results of biostratigraphic subdivision of sections. It is shown that Lower Paleocene and Lower-Middle Eocene deposits accumulated during two cycles of carbonate sedimentation in a warm-water shallow basin. These deposits are separated by Upper Paleocene deep-water deposits. The systematic composition of foraminifers testifies that there were different facies conditions in different parts of the Crimean basin and its connection to Western European and Tethyan basins during the Paleocene-early Eocene.

  19. Biochronology and paleoclimatic implications of Middle Eocene to Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Planktic foraminiferal assemblages have been analyzed quantitatively in six DSDP sites in the Atlantic (Site 363), Pacific (Sites 292, 77B, 277), and Indian Ocean (Sites 219, 253) in order to determine the nature of the faunal turnover during Middle Eocene to Oligocene time. Biostratigraphic ranges of taxa and abundance distributions of dominant species are presented and illustrate striking similarities in faunal assemblages of low latitude regions in the Atlantic, Pacific and Indian oceans. A high resolution biochronology, based on dominant faunal characteristics and 55 datum events, permits correlation between all three oceans with a high degree of precision. Population studies provide a view of the global impact of the paleoclimatic and paleoceanographic changes occurring during Middle Eocene to Oligocene time. Planktic foraminiferal assemblage changes indicate a general cooling trend between Middle Eocene to Oligocene time, consistent with previously published oxygen isotope data. Major faunal changes, indicating cooling episodes, occur, however, at discrete intervals: in the Middle Eocene 44-43 Ma (P13), the Middle/Late Eocene boundary 41-40 Ma ( P14 P15), the Late Eocene 39-38 Ma ( P15 P16), the Eocene/Oligocene boundary 37-36 Ma (P18), and the Late Oligocene 31-29 Ma ( P20 P21). With the exception of the E 0 boundary, faunal changes occur abruptly during short stratigraphic intervals, and are characterized by major species extinctions and first appearances. The Eocene/Oligocene boundary cooling is marked primarily by increasing abundances of cool water species. This suggests that the E 0 boundary cooling, which marks a major event in the oxygen isotope record affected planktic faunas less than during other cooling episodes. Planktic foraminiferal faunas indicate that the E 0 boundary event is part of a continued cooling trend which began during the Middle Eocene. Two hiatus intervals are recognized in low and high latitude sections at the Middle/Late Eocene

  20. Testing orbital forcing in the Eocene deltaic sequences of the South-Pyrenean Foreland Basins.

    NASA Astrophysics Data System (ADS)

    Garcés, Miguel; López-Blanco, Miguel; Valero, Luis; Beamud, Elisabet; Pueyo-Morer, Emilio; Rodríguez-Pinto, Adriana

    2014-05-01

    Paleoclimate proxy records from marine pelagic sediments show that a link exists between long-period orbital cyclicity and the pattern of high latitude glaciations. Thus, a sound possibility exist that transgressive-regressive third-order sequences from shallow marine environments reflect long-period orbital (glacioeustatic) forcing, as suggested from a variety of shallow marine settings of different ages, from Mesozoic to Paleogene. In this study we aim at testing the role of the 400 kyr eccentricity cycle in the sequential organization of the Late Eocene deltaic sequences of the Belsue-Atares Formation, in the Jaca-Pamplona Basin. The overall record spans from latest Lutetian to early Priabonian and consists of nearly 1000 meters of siliciclastic deltaic to mixed platform sequences of various scales. Very notorious lateral changes in both stratigraphic thickness and sedimentary facies witness the synkinematic character of these sediments, deposited simultaneously to intrabasinal fold growth. A magnetostratigraphy based chronostratigraphic framework is used, first, to determine the age and duration of the sequences and, second, to establish a robust correlation with other deltaic sequences within the south-pyrenean foreland. The long-distance correlation exercise is used to discriminate between local (tectonic) and global (climatic) forcing factors, under the assumption that climate signature is synchronous, while tectonic forcing is prone to yield diachronic units at basin scale. Astronomical tuning with the 400-kyr cycle of the eccentricity solution of the Earth orbit is attempted on the basis of derived magnetostratigraphic age constrains. Our results suggest that transgressive (regressive) trends correlate with maxima (minima) of eccentricity cycle, a phase-relationship which is compatible with a base-level (accommodation) driven forcing.

  1. Do Magnetic Minerals Record Paleoprecipitation? Insights from Paleocene-Eocene Paleosols in the Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Clyde, W.

    2015-12-01

    The magnetic mineralogy of soils and paleosols is a rich archive of paleoclimatic information. However, efforts to quantify parameters such as mean annual precipitation (MAP) or temperature using environmental magnetism are still in their infancy. Inherent in any magnetic paleoclimate proxy is a fundamental understanding of how the concentration, grain size distribution, and composition of iron oxides and oxyhydroxides formed during pedogenesis reflect the climatic conditions that prevailed during soil formation. The influence of diagenetic processes on magnetic minerals, particularly for paleosols in pre-Quaternary systems, may compromise our ability to recover a climatic signal due to mineral alterations or incomplete preservation. Here, we evaluate the rock magnetic properties of non-loessic paleosols across the Paleocene-Eocene Thermal Maximum (PETM, ~55.5 Ma) in the Bighorn Basin, WY. Our study compares data from nine paleosol layers sampled from outcrop, exposed to surficial weathering, as well as the equivalent paleosol layers sampled from drill core, all of which are preserved below a pervasive oxidative weathering front and presumably unweathered. Despite variation in magnetic properties within paleosol layers, there is no clear change in magnetic mineralogy that we can attribute to surficial weathering. Further, common measures of magnetic enhancement in susceptibility and remanence show similar trends across the PETM, in both core and outcrop, when compared to estimates of MAP from geochemical weathering indices. Taken together, our record suggests that the magnetic minerals preserved in ancient paleosols retain at least qualitative information about paleoprecipitation and could be an important source of information for paleoclimatic studies. Further work to improve our understanding of the relative preservation of various pedogenic components in paleosols will ultimately determine their viability as quantitative indicators of paleoclimate.

  2. Geochemical evidence for a comet shower in the late Eocene.

    PubMed

    Farley, K A; Montanari, A; Shoemaker, E M; Shoemaker, C S

    1998-05-22

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began approximately 1 My before and ended approximately 1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters approximately 36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud. PMID:9596575

  3. Identification of Late Eocene Impact Deposits at ODP Site 1090

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2001-01-01

    Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene- bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177- 1090B-30X-5,105-106 cm (954 pg/g) and the net Ir fluence (14 ng/cm2) at this site are higher that at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.

  4. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ∼56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (∼20‰) relative to “pre-event” values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (∼-15‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures. If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H

  5. Geochemical evidence for a comet shower in the late Eocene.

    PubMed

    Farley, K A; Montanari, A; Shoemaker, E M; Shoemaker, C S

    1998-05-22

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began approximately 1 My before and ended approximately 1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters approximately 36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  6. Geochemical evidence for a comet shower in the late Eocene

    USGS Publications Warehouse

    Farley, K.A.; Montanari, A.; Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began ~1 My before and ended ~1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters ~36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  7. Isotopic interrogation of a suspected late Eocene glaciation

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Bohaty, Steven M.; Smith, Brian W.; Munn, Gabrielle H.

    2014-06-01

    Ephemeral polar glaciations during the middle-to-late Eocene (48-34 Ma) have been proposed based on far-field ice volume proxy records and near-field glacigenic sediments, although the scale, timing, and duration of these events are poorly constrained. Here we confirm the existence of a transient cool event within a new high-resolution benthic foraminiferal δ18O record at Ocean Drilling Program (ODP) Site 738 (Kerguelen Plateau; Southern Ocean). This event, named the Priabonian oxygen isotope maximum (PrOM) Event, lasted ~140 kyr and is tentatively placed within magnetochron C17n.1n (~37.3 Ma) based on the correlation to ODP Site 689 (Maud Rise, Southern Ocean). A contemporaneous change in the provenance of sediments delivered to the Kerguelen Plateau occurs at the study site, determined from the <63 µm fraction of decarbonated and reductively leached sediment samples. Changes in the mixture of bottom waters, based on fossil fish tooth ɛNd, were less pronounced and slower relative to the benthic δ18O and terrigenous ɛNd changes. Terrigenous sediment ɛNd values rapidly shifted to less radiogenic signatures at the onset of the PrOM Event, indicating an abrupt change in provenance favoring ancient sources such as the Paleoproterozoic East Antarctic craton. Bottom water ɛNd reached a minimum value during the PrOM Event, although the shift begins much earlier than the terrigenous ɛNd excursion. The origin of the abrupt change in terrigenous sediment provenance is compatible with a change in Antarctic terrigenous sediment flux and/or source as opposed to a reorganization of ocean currents. A change in terrigenous flux and/or source of Antarctic sediments during the oxygen isotope maximum suggests a combination of cooling and ice growth in East Antarctica during the early late Eocene.

  8. Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia.

    PubMed

    Smith, Selena Y; Currah, Randolph S; Stockey, Ruth A

    2004-01-01

    Two fossil poroid hymenophore fragments, one from the Cretaceous Period and the other from the Eocene Epoch, are described. The permineralized specimens were obtained from marine calcareous concretions on Vancouver Island, British Columbia, Canada, and were studied using the cellulose acetate peel technique. Size and distribution of pores in the hymenophores, as well as the hyphal anatomy of the dissepiments and some hymenial elements, were examined. In the Cretaceous specimen, Quatsinoporites cranhamii sp. nov., pores are round to elliptical, three per mm, and 130-540 μm diam. Dissepiments consist of narrow, simple septate, hyphae. Neither basidia nor basidiospores are present, but acuminate hymenial cystidia, up to 54 μm in length, are common. The Eocene specimen, Appianoporites vancouverensis sp. nov., has a pore density of six per mm and pores are 130-163 μm in diam. Dissepiments consist of narrow, simple septate, thin-walled hyphae. Neither basidia nor basidiospores are present, but acuminate, thick-walled hymenial cystidia, up to 32 μm in length, are common. The poroid hymenophore is a characteristic of a number of extant basidiomycete taxa, including the Boletales, Polyporales and Hymenochaetales. It is unlikely that the fleshy, ephemeral, terrestrial basidiomata of the Boletales would be preserved in a marine environment, and thus the specimens are interpreted as belonging to basidiomycete lineages, with persistent, leathery or corky basidiomata. The simple septate hyphae, the minute pores and presence of cystidia most closely resemble taxa of the Hymenochaetales. These fossils unequivocally push back the minimum age of homobasidiomycetes and extend their paleogeographical range.

  9. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  10. The optimum finger spacing in human swimming.

    PubMed

    Minetti, Alberto E; Machtsiras, Georgios; Masters, Jonathan C

    2009-09-18

    Competitive swimmers spread fingers during the propulsive stroke. Due to the inherent inefficiency of human swimming, the question is: does this strategy enhance performance or is it just a more comfortable hand posture? Here we show, through computational fluid dynamics (CFD) of a 3D model of the hand, that an optimal finger spacing (12 degrees , roughly corresponding to the resting hand posture) increases the drag coefficient (+8.8%), which is 'functionally equivalent' to a greater hand palm area, thus a lower stroke frequency can produce the same thrust, with benefits to muscle, hydraulic and propulsive efficiencies. CFD, through flow visualization, provides an explanation for the increased drag associated with the optimum finger spacing. PMID:19651409

  11. Optimum frequency assignment for satellite SCPC systems

    NASA Astrophysics Data System (ADS)

    Okinaka, H.; Yasuda, Y.; Hirata, Y.

    A technique for deriving a quasi-optimum solution for IM-minimum channel allocation for single-level SCPC systems is presented. Two types of IM products are considered as the dominant components in an RF band. The third order IM product is proportional to the product of the power of concerned carriers, allowing a weighting function to be defined for calculating the IM noise. An IM minimum channel allocation technique can then be used to reduce the IM noise occurring in the carrier slots through frequency assignment. The worst carrier is automatically deleted with an initial channel allocation and the process is iterated until the maximum noise reduction is obtained. The first two or three carriers are assigned to unused frequency slots with low noise. The method is also viable when dealing with a larger number of carriers.

  12. Late Eocene- Oligocene magnetostratigraphy and biostratigraphy at South Atlantic DSDP site 522.

    USGS Publications Warehouse

    Poore, R.Z.; Tauxe, L.; Percival, S.F., Jr.; Labrecque, J.L.

    1982-01-01

    Upper Eocene to lowest Miocene sediments recovered at DSDP Site 522 in the S Atlantic Ocean allow direct calibration of magnetostratigraphy and calcareous plankton biostratigraphy. The results from Site 522 show that the Eocene/Oligocene boundary occurs in the reversed interval of magnetic Chron C13 (= C13R) and that the Oligocene/Miocene boundary probably occurs in the upper part of Chron C6C.-Authors

  13. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  14. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  15. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  16. Oligocene sivaladapid primate from the Bugti Hills (Balochistan, Pakistan) bridges the gap between Eocene and Miocene adapiform communities in Southern Asia.

    PubMed

    Marivaux, Laurent; Welcomme, Jean-Loup; Ducrocq, Stéphane; Jaeger, Jean-Jacques

    2002-04-01

    A new species of Guangxilemur (Sivaladapidae, Adapiformes) is described from the early Oligocene Chitarwata Formation (Bugti Member) of the Bugti Hills, Sulaiman geological Province, Balochistan, Pakistan. Guangxilemur singsilai n. sp. provides further diagnostic morphological characters from its newly described upper and lower dentitions, confirming its intermediate phylogenetic position between Eocene and Miocene Asian sivaladapid adapiforms. G. singsilai possesses moderately developed shearing and puncturing molar features and maintains lingual cusps on upper molars as in Eocene hoanghoniines; in contrast, it possesses a typical molariform P(4) as in Miocene sivaladapines. The important paleogeographic changes that have affected South Asia during the Tertiary (related to the collision between the Indian and Eurasian Plates) have played a critical role in reforming circulation and climatic differentiation. The presence in Pakistan of an unique and well-diversified Oligocene primate fauna, clearly demonstrates that South Asia maintained favourable environmental conditions during the middle Caenozoic global climatic deterioration that coincides with drastic changes in faunal structure on the whole Holarctic Province, including the extinction of adapiform primates.

  17. A redescription of Lithornis vulturinus (Aves, Palaeognathae) from the Early Eocene Fur Formation of Denmark.

    PubMed

    Bourdon, Estelle; Lindow, Bent

    2015-10-20

    The extinct Lithornithidae include several genera and species of flying palaeognathous birds of controversial affinities known from the Early Paleogene of North America and Europe. An almost complete, articulated skeleton from the Early Eocene marine deposits of the Fur Formation (Denmark) was recently assigned to Lithornis vulturinus Owen, 1840. This study provides a detailed redescription and comparison of this three-dimensionally preserved specimen (MGUH 26770), which is one of the best preserved representatives of the Lithornithidae yet known. We suggest that some new features might be diagnostic of Lithornis vulturinus, including a pterygoid fossa shallower than in other species of Lithornis and the presence of a small caudal process on the os palatinum. We propose that Lithornis nasi (Harrison, 1984) is a junior synonym of Lithornis vulturinus and we interpret minor differences in size and shape among the specimens as intraspecific variation. To date, Lithornis vulturinus is known with certainty from the latest Paleocene-earliest Eocene to Early Eocene of the North Sea Basin (Ølst, Fur and London Clay Formations). Among the four species of the genus Lithornis, the possibility that Lithornis plebius Houde, 1988 (Early Eocene of Wyoming) is conspecific with either Lithornis vulturinus or Lithornis promiscuus Houde, 1988 (Early Eocene of Wyoming) is discussed. The presence of closely related species of Lithornis on either side of the North Atlantic in the Early Eocene reflects the existence of a high-latitude land connection between Europe and North America at that time.

  18. Cross section through the Toa Baja drillsite: Evidence for northward change in Late Eocene deformation intensity

    SciTech Connect

    Larue, D.K. ); Berrong, B. )

    1991-03-01

    A 55 km geologic cross section through the Toa Baja Drillsite, generated by integrating geologic mapping data from the foothills of the Central Mountains of Puerto Rico with onshore and offshore multichannel seismic reflection data, provides an opportunity to examine in profile from the arc interior northward to within 40 km of the current trench slope break. Three structural divisions are recognized. In the foothills of Puerto Rico, Cretaceous and Eocene rocks are separated by transpressional strike-slip faults. In the vicinity of the Toa Baja drillsite where both seismic reflection and borehole data are available, Eocene rocks, deformed by thrust faults, .ie above a lower unit, interpreted to be of Cretaceous age. Offshore, north of the drilling site, seismic reflections suggest Eocene rocks onlap structural basement, thought to be Cretaceous rocks, and both units appear only slightly deformed. All Eocene and Eocene ( ) rocks are overlain by little deformed Oligocene to Recent rocks. From south to north, or from the arc massif interior toward the present-day trench, there is an apparent decrease in amount of Late Eocene to Middle Oligocene strike-slip and shortening deformation. Deformation events occurred mostly in the arc-interior and were not directly associated with the plate boundary which was probably near the Puerto Rico Trench.

  19. A redescription of Lithornis vulturinus (Aves, Palaeognathae) from the Early Eocene Fur Formation of Denmark.

    PubMed

    Bourdon, Estelle; Lindow, Bent

    2015-01-01

    The extinct Lithornithidae include several genera and species of flying palaeognathous birds of controversial affinities known from the Early Paleogene of North America and Europe. An almost complete, articulated skeleton from the Early Eocene marine deposits of the Fur Formation (Denmark) was recently assigned to Lithornis vulturinus Owen, 1840. This study provides a detailed redescription and comparison of this three-dimensionally preserved specimen (MGUH 26770), which is one of the best preserved representatives of the Lithornithidae yet known. We suggest that some new features might be diagnostic of Lithornis vulturinus, including a pterygoid fossa shallower than in other species of Lithornis and the presence of a small caudal process on the os palatinum. We propose that Lithornis nasi (Harrison, 1984) is a junior synonym of Lithornis vulturinus and we interpret minor differences in size and shape among the specimens as intraspecific variation. To date, Lithornis vulturinus is known with certainty from the latest Paleocene-earliest Eocene to Early Eocene of the North Sea Basin (Ølst, Fur and London Clay Formations). Among the four species of the genus Lithornis, the possibility that Lithornis plebius Houde, 1988 (Early Eocene of Wyoming) is conspecific with either Lithornis vulturinus or Lithornis promiscuus Houde, 1988 (Early Eocene of Wyoming) is discussed. The presence of closely related species of Lithornis on either side of the North Atlantic in the Early Eocene reflects the existence of a high-latitude land connection between Europe and North America at that time. PMID:26624382

  20. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    USGS Publications Warehouse

    Flores, R.M.; Sykes, R.

    1996-01-01

    The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic

  1. The crazy hollow formation (Eocene) of central Utah

    USGS Publications Warehouse

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  2. An Ocean Acidification Pulse in the Pre-onset Carbon Isotope Excursion Preceding the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Robinson, M. M.; Self-Trail, J. M.; Willard, D. A.; Stassen, P.; Spivey, W.

    2015-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; ~55.5 Ma) is recognized globally in marine sediments by a carbonate dissolution zone, the extinction or turnover of benthic taxa, and a radiation of planktic excursion taxa, all accompanied by a rapid-onset, negative carbon isotope excursion (CIE). The cause and nature of the massive carbon release leading to this extreme climate event remains under debate. Regardless of cause, the environmental and ecosystem changes centered on the PETM are the subject of much study because they provide an analog to modern deteriorating conditions associated with the ongoing rise in atmospheric carbon dioxide. We present evidence from sediments of the South Dover Bridge core, deposited on the U.S. mid-Atlantic shelf, for an ocean acidification event in the latest Paleocene that coincides with a relatively small (-2‰) negative carbon isotope excursion (CIE) that precedes the larger (-4‰) Paleocene-Eocene CIE onset. Planktic foraminifers during this pre-onset event (POE) show post-deposition dissolution in which the coarsely cancellate and muricate wall textures characteristic of many Late Paleocene species have been dissolved away, leaving smooth, thin-walled specimens often with collapsed chambers. In addition, we document biotic responses in benthic, planktic, and terrestrial communities to the POE, including shifts in foraminifer and pollen assemblages and adaptations in calcareous nannofossil species in response to environmental perturbations. A complete recovery is evident between the POE and CIE in both the carbon isotopic signal and in the biotic response, providing additional evidence not only for a pulsed carbon release, but also for a more rapid rate of carbon release than is suggested by a single pulse over a longer period of time. The timing, nature and magnitude of ecological changes during the less extreme POE shallow water acidification event may help to define the ecological tipping point of shallow marine ecosystems.

  3. Was the Eocene Arctic a Source Area for Exotic Plants and Mammals? (Invited)

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Harrington, G. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, J. H.

    2010-12-01

    Today’s High Arctic is undergoing rapid warming, but the impact on its animal and plant communities is not clear. As a deep time analog to better understand and predict the impacts of global warming on the Arctic biota, early Eocene (52-53 Ma) rocks on Ellesmere Island, Nunavut in Canada’s High Arctic (~79°N latitude) preserve evidence of diverse terrestrial ecosystems that supported dense forests inhabited by turtles, alligators, snakes, primates, tapirs, brontotheres, and hippo-like Coryphodon. The fossil localities were just a few degrees further south and still well above the Arctic Circle during the early Eocene; consequently, the biota experienced months of continuous sunlight as well as darkness, the Arctic summer and winter, respectively. The flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, and recently published analyses of biogenic phosphate from fossil fish, turtle, and mammal estimate warm summers (19 - 20 C) and mild, above-freezing winters. In general, temperature estimates for the early Eocene Arctic can be compared to those found today in temperate rainforests in the Pacific Northwest of the United States. The early Eocene Arctic mammalian fauna shares most genera with coeval mid-latitude faunas thousands of kilometers to the south in the US Western Interior, and several genera also are shared with Europe and Asia. Recent analyses suggest that the large herbivores such as hippo-like Coryphodon were year-round inhabitants in the Eocene Arctic forests. Although several of the Eocene Arctic mammalian taxa are hypothesized to have originated in either mid-latitude North America or Asia, the earlier occurrence of certain clades (e.g., tapirs) in the Arctic raises the possibility of a northern high-latitude origin. Analysis of the early Eocene Arctic palynoflora indicates comparable richness to early Eocene plant communities in the US Western Interior, but nearly 50% of its species (mostly angiosperms) are

  4. Optimum harvest maturity for Leymus chinensis seed.

    PubMed

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui; Mu, Chunsheng

    2016-01-01

    Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  5. Optimum coding techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Sulzer, M. P.; Woodman, R. F.

    1986-01-01

    The optimum coding technique for MST (mesosphere stratosphere troposphere) radars is that which gives the lowest possible sidelobes in practice and can be implemented without too much computing power. Coding techniques are described in Farley (1985). A technique mentioned briefly there but not fully developed and not in general use is discussed here. This is decoding by means of a filter which is not matched to the transmitted waveform, in order to reduce sidelobes below the level obtained with a matched filter. This is the first part of the technique discussed here; the second part consists of measuring the transmitted waveform and using it as the basis for the decoding filter, thus reducing errors due to imperfections in the transmitter. There are two limitations to this technique. The first is a small loss in signal to noise ratio (SNR), which usually is not significant. The second problem is related to incomplete information received at the lowest ranges. An appendix shows a technique for handling this problem. Finally, it is shown that the use of complementary codes on transmission and nonmatched decoding gives the lowest possible sidelobe level and the minimum loss in SNR due to mismatch.

  6. Optimum folding pathways for growing protein chains.

    PubMed

    Senturk, Serife; Baday, Sefer; Arkun, Yaman; Erman, Burak

    2007-11-26

    The folding of a protein is studied as it grows residue by residue from the N-terminus and enters an environment that stabilizes the folded state. This mode of folding of a growing chain is different from refolding where the full chain folds from a disordered initial configuration to the native state. We propose a sequential dynamic optimization method that computes the evolution of optimum folding pathways as amino acid residues are added to the peptide chain one by one. The dynamic optimization formulation is deterministic and uses Newton's equations of motion and a Go-type potential that establishes the native contacts and excluded volume effects. The method predicts the optimal energy-minimizing path among all the alternative feasible pathways. As two examples, the folding of the chicken villin headpiece, a 36-residue protein, and chymotrypsin inhibitor 2 (CI2), a 64-residue protein, are studied. Results on the villin headpiece show significant differences from the refolding of the same chain studied previously. Results on CI2 mostly agree with the results of refolding experiments and computational work.

  7. Improve filtration for optimum equipment reliability

    SciTech Connect

    Cervera, S.M.

    1996-01-01

    The introduction 20 years ago of the American Petroleum Institute Standard API-614 as a purchase specification for lubrication, shaft sealing and control oil systems, had a considerable impact and did much to improve system reliability at that time. Today, however, these recommendations regarding filter rating and flushing cleanliness are outdated. Much research in the tribology field correlates clearance size particulate contamination with accelerated component wear, fatigue and performance degradation. Some of these studies demonstrate that by decreasing the population of clearance size particulate in lubrication oils, component life increases exponentially. Knowing the dynamic clearances of a piece of machinery makes it possible, using the ISO 4406 Cleanliness Code, to determine what cleanliness level will minimize contamination-related component wear/fatigue and thus help optimize machinery performance and reliability. Data obtained by the author through random sampling of rotating equipment lube and seal oil systems indicate that the API-614 standard, as it pertains to filtration and flushing, is insufficient to ensure that particulate contamination is maintained to within the levels necessary to achieve optimum equipment reliability and safety, without increasing operating cost. Adopting and practicing the guidelines presented should result in the following benefits: (1) the frequency of bearing, oil pump, mechanical seal, fluid coupling, gearbox and hydraulic control valve failures would be minimized; (2) the mean time between planned maintenance (MTBPM) would be increased. The result will be a substantial increase in safety and cost savings to the operator.

  8. Optimum harvest maturity for Leymus chinensis seed

    PubMed Central

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  9. Optimum color filters for CCD digital cameras.

    PubMed

    Engelhardt, K; Seitz, P

    1993-06-01

    A procedure for the definition of optimum spectral transmission curves for any solid-state (especially silicon-based CCD) color camera is presented. The design of the target curves is based on computer simulation of the camera system and on the use of test colors with known spectral reflectances. Color errors are measured in a uniform color space (CIELUV) and by application of the Commission Internationale de l'Eclairage color difference formula. Dielectric filter stacks were designed by simulated thermal annealing, and a stripe filter pattern was fabricated with transmission properties close to the specifications. Optimization of the color transformation minimizes the residual average color error and an average color error of ~1 just noticeable difference should be feasible. This means that color differences on a side-to-side comparison of original and reproduced color are practically imperceptible. In addition, electrical cross talk within the solid-state imager can be compensated by adapting the color matrixing coefficients. The theoretical findings of this work were employed for the design and fabrication of a high-resolution digital CCD color camera with high calorimetric accuracy. PMID:20829908

  10. Global sedimentation and distribution of deep-sea hiatuses: late Eocene - Oligocene

    SciTech Connect

    Keller, G., Chi, W.R.; D'Hondt, S.; Dorsey, R.; Herbert, T.; Johnsson, M.

    1985-01-01

    Global distribution of deep-sea hiatuses is determined based on multiple microfossil stratigraphies and sediment accumulation rates are calculated to determined synchroneity of oceanographic events and changes in biologic productivity. Five largely synchronous hiatus intervals are observed at the following ages and planktonic foraminiferal zones: PHa (PH=Paleogene hiatus) at 24.5-26.0 O Ma (N4/P22), PHb at 30-32 Ma (P21/P20), PHc at 34-36.5 Ma (P18/P17), PHd at 37.5-38.5 Ma (P17/P16), and PHe at 39.0-41.0 Ma (P14/P15). These relatively short hiatuses are mainly found in high productivity regions. In contrast, large erosional unconformities spanning 5-50 m.y. appear restricted to low productivity regions and where deposition occurred below the CCD. There is general agreement between the five synchronous hiatuses and the sea level on lap curve of Vail and Hardenbol (1979). Global cooling events coincide with these hiatuses suggesting that climatic cooling and the resultant current intensification are the main driving force of deep-sea hiatus formation. Sedimentation rates of pelagic sequences averaged over 2 m.y. indicate major productivity changes. Late Eocene sedimentation rates are about 8-10m/m.y. in the Pacific and Atlantic, but are only 4-5m/m.y. in the Indian Ocean. A 2 to 3 fold increase in the sedimentation rate is apparent during the early Oligocene in the Atlantic and Pacific, but not in the Indian Ocean. Productivity decreases again during the late Oligocene. The maximum sedimentation rates in the early Oligocene appear to reflect increased upwelling during global cooling.

  11. Synchronizing terrestrial and marine records of environmental change across the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Sahy, Diana; Condon, Daniel J.; Terry, Dennis O.; Fischer, Anne U.; Kuiper, Klaudia F.

    2015-10-01

    Records of terrestrial environmental change indicate that continental cooling and/or aridification may have predated the greenhouse-icehouse climate shift at the Eocene-Oligocene transition (EOT) by ca. 600 kyr. In North America, marine-terrestrial environmental change asynchronicity is inferred from a direct comparison between the astronomically tuned marine EOT record and published 40Ar/39Ar geochronology of volcanic tuffs from the White River Group (WRG) sampled at Flagstaff Rim (Wyoming) and Toadstool Geologic Park (Nebraska), which are type sections for the Chadronian and Orellan North American Land Mammal Ages. We present a new age-model for the WRG, underpinned by high-precision 206Pb/238U zircon dates from 15 volcanic tuffs, including six tuffs previously dated using the 40Ar/39Ar technique. Weighted mean zircon 206Pb/238U dates from this study are up to 1.0 Myr younger than published anorthoclase and biotite 40Ar/39Ar data (calibrated relative to Fish Canyon sanidine at 28.201 Ma). Giving consideration to the complexities, strengths, and limitations associated with both the 40Ar/39Ar and 206Pb/238U datasets, our interpretation is that the recalculated 40Ar/39Ar dates are anomalously old, and the 206Pb/238U (zircon) dates more accurately constrain deposition. 206Pb/238U calibrated age-depth models were developed in order to facilitate a robust intercomparison between marine and terrestrial archives of environmental change, and indicate that: (i) early Orellan (terrestrial) cooling recorded at Toadstool Geologic Park was synchronous with the onset of early Oligocene Antarctic glaciation and (ii) the last appearance datums of key Chadronian mammal taxa are diachronous by ca. 0.7 Myr between central Wyoming and NW Nebraska.

  12. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin

    NASA Astrophysics Data System (ADS)

    Ding, Lin; Xu, Qiang; Yue, Yahui; Wang, Houqi; Cai, Fulong; Li, Shun

    2014-04-01

    Paleoelevation reconstruction using oxygen isotopes is making a significant contribution to understanding the Cenozoic uplift of the Himalayas and the Tibetan Plateau. This paper presents new oxygen and carbon isotopic compositions from well dated Tertiary paleosols, lacustrine calcareous carbonates, and marls from the Nianbo (60-54 Ma) and upper Pana Formations (51-48 Ma) of the Linzizong Group in the Linzhou (Penbo) Basin. The sediments of the Nianbo Formation, which are >180 m-thick, were deposited in alluvial fans, braided rivers, fan deltas, and on nearshore to offshore lacustrine settings, whereas those of the upper Pana Formation are >100 m-thick and are comprised predominantly of proximal alluvial fan and braided river deposits. Correlations between the lithofacies and stable isotopic compositions suggest that the basin was mainly a hydrologically open environment. It is confirmed that the δ18Oc and δ13Cc values from Nianbo and Pana Formations have not yet been reset by late-stage diagenesis based on petrographic examination, oxygen isotope of the fossil ostracodes, and tectonic deformation of strata. The paleoelevations are reconstructed using the corrected most negative paleosurface water δ18Opsw values. These imply that the Linzhou area had attained an elevation of 4500±400 m during the period of the Indo-Asian collision, i.e., achieved a near-present elevation, and may form an Andean-type mountain range stretching the Gangdese arc before collision. The Gangdese Mountains probably maintained high elevations since at least the Paleocene and could play a crucial role in the climate change in the interior of the Tibetan Plateau during the Early Cenozoic. The paleogeomorphic scenario of the Eocene Tibet is proposed to exist at two high mountains in excess of 4500 m that sandwiched a low elevation basin.

  13. Anthropoid humeri from the late Eocene of Egypt

    PubMed Central

    Seiffert, Erik R.; Simons, Elwyn L.; Fleagle, John G.

    2000-01-01

    A number of recent studies have, by necessity, placed a great deal of emphasis on the dental evidence for Paleogene anthropoid interrelationships, but cladistic analyses of these data have led to the erection of phylogenetic hypotheses that appear to be at odds with biogeographic and stratigraphic considerations. Additional morphological data from the cranium and postcranium of certain poorly understood Paleogene primates are clearly needed to help test whether such hypotheses are tenable. Here we describe humeri attributable to Proteopithecus sylviae and Catopithecus browni, two anthropoids from late Eocene sediments of the Fayum Depression in Egypt. Qualitative and morphometric analyses of these elements indicate that humeri of the oligopithecine Catopithecus are more similar to early Oligocene propliopithecines than they are to any other Paleogene anthropoid taxon, and that Proteopithecus exhibits humeral similarities to parapithecids that may be symplesiomorphies of extant (or “crown”) Anthropoidea. The humeral morphology of Catopithecus is consistent with certain narrowly distributed dental apomorphies—such as the loss of the upper and lower second premolar and the development of a honing blade for the upper canine on the lower third premolar—which suggest that oligopithecines constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines and are not most closely related to Proteopithecus as has recently been proposed. PMID:10963669

  14. Primate postcrania from the late middle Eocene of Myanmar

    PubMed Central

    Ciochon, Russell L.; Gingerich, Philip D.; Gunnell, Gregg F.; Simons, Elwyn L.

    2001-01-01

    Fossil primates have been known from the late middle to late Eocene Pondaung Formation of Myanmar since the description of Pondaungia cotteri in 1927. Three additional primate taxa, Amphipithecus mogaungensis, Bahinia pondaungensis and Myanmarpithecus yarshensis, were subsequently described. These primates are represented mostly by fragmentary dental and cranial remains. Here we describe the first primate postcrania from Myanmar, including a complete left humerus, a fragmentary right humerus, parts of left and right ulnae, and the distal half of a left calcaneum, all representing one individual. We assign this specimen to a large species of Pondaungia based on body size and the known geographic distribution and diversity of Myanmar primates. Body weight estimates of Pondaungia range from 4,000 to 9,000 g, based on humeral length, humeral midshaft diameter, and tooth area by using extant primate regressions. The humerus and ulna indicate that Pondaungia was capable of a wide variety of forelimb movements, with great mobility at the shoulder joint. Morphology of the distal calcaneus indicates that the hind feet were mobile at the transverse tarsal joint. Postcrania of Pondaungia present a mosaic of features, some shared in common with notharctine and adapine adapiforms, some shared with extant lorises and cebids, some shared with fossil anthropoids, and some unique. Overall, Pondaungia humeral and calcaneal morphology is most consistent with that of other known adapiforms. It does not support the inclusion of Pondaungia in Anthropoidea. PMID:11438722

  15. Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)

    NASA Astrophysics Data System (ADS)

    Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco

    2016-04-01

    Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.

  16. Verification of the optimum tropospheric parameters setting for the kinematic PPP analysis

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Ohta, Y.

    2015-12-01

    Kinematic GNSS analysis is useful for extraction of the crustal deformation phenomena between seconds to one day such as coseismic and postseismic deformation after a large earthquake. The kinematic GNSS analysis, however, have fundamental difficulties for the separation between unknown parameters such as the site coordinate and tropospheric parameters, caused by a strong correlation between each other. Thus, we focused on the improvement of the separation precision between coordinate time series of kinematic PPP and wet zenith tropospheric delay (WZTD) based on the comprehensive search of the parameter space. We used GIPSY-OASIS II Ver. 6.3 software for kinematic PPP processing of whole GEONET sites in 10 March 2011. We applied the every 6 hours nominal WZTD value as a priori information based on the ECMWF global numerical climate model. For the coordinate time series and tropospheric parameters, we assumed white noise and random walk stochastic process, respectively. These unknown parameters are very sensitive to assumed process noise for each stochastic process. Thus, we searched for the optimum two variable parameters; wet zenith tropospheric parameter (named as TROP) and its gradient (named as GRAD). We defined the optimum parameters, which minimized the standard deviation of coordinate time series.We firstly checked the spatial distribution of optimum pair of TROP and GRAD. Even though the optimum parameters showed the certain range (TROP: 2×10-8 ~ 6×10-7 (horizontal), 5.5×10-9 ~ 2×10-8 (vertical); GRAD: 2×10-10 ~ 6×10-9 (horizontal), 2×10-10 ~ 1×10-8 (vertical) (unit: km·s-½)), we found they showed the large diversity. It suggests there are strong heterogeneity of atmospheric state. We also estimated temporal variations of optimum TROP and GRAD in specific site. We analyzed the data through 2010 at GEONET 940098 station located in the most southern part of Kyusyu, Japan. Obtained time series of optimum GRAD showed clear annual variation, and the

  17. Optimum design of uncooled staring infrared camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Pan, Debin; Liu, Aidong; Geng, Anbing; Li, Yong; He, Jun

    2006-02-01

    Several models of target acquisition range prediction of the uncooled staring camera and their advantages are proposed in the paper. NVTherm is used to evaluate the modulation transfer function, minimum resolvable temperature difference and target acquisition range. The analysis result shows that the performance of the detector is the key factor to limit the performance of the uncooled staring camera. The target acquisition range of the uncooled infrared camera can be improved by increasing effective focus length (EFL) of optical component, decreasing its F/# or reducing the pixel pitch of the detector. The detection range of 1.09 km can be achieved under the condition of 75 mm EFL and F/0.8. When the EFL changes from 75mm to 150 mm under the condition of F/0.8 and 45μm pixel pitch, the detection range of 2.36 km, recognition range of 0.47 km and identification range of 0.24 km have been gotten. When the pixel pitch is reduced to 35μm, the detection range is 2.59 km. Furthermore, when 2 x 2 microscan is adopted in the camera design, then the pixel pitch will change from 35μm to 17.5μm. Although the infrared camera becomes an optical performance limited system, its performance improves a lot to get the detection range of 2.94 km. The field test shows that the detection range to a 1.7 m x 0.45 m target is 2.2 km under the condition of F/0.8, 150mm EFL and 45 μm pixel pitch, achieving good matches with the evaluation value of 2.36 km through NVTherm. An optimum uncooled infrared design is achieved using the NVTherm software which shortens the design cycle.

  18. Transitivity of the climate-vegetation system in a warm climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2015-11-01

    To date, the transitivity of the global system has been analysed for late Quaternary (glacial, interglacial, and present-day) climate. Here, we extend this analysis to a warm, almost ice-free climate with a different configuration of continents. We use the Earth system model of the Max Planck Institute for Meteorology to analyse the stability of the climate system under early Eocene and pre-industrial conditions. We initialize the simulations by prescribing either dense forests or bare deserts on all continents. Starting with desert continents, an extended desert remains in central Asia in the early Eocene climate. Starting with dense forest coverage, the Asian desert is much smaller, while coastal deserts develop in the Americas which appear to be larger than in the simulations with initially bare continents. These differences can be attributed to differences in the large-scale tropical circulation. With initially forested continents, a stronger dipole in the 200 hPa velocity potential develops than in the simulation with initially bare continents. This difference prevails when vegetation is allowed to adjust to and interact with climate. Further simulations with initial surface conditions that differ in the region of the Asian desert only indicate that local feedback processes are less important in the development of multiple states. In the interglacial, pre-industrial climate, multiple states develop only in the Sahel region. There, local climate-vegetation interaction seems to dominate.

  19. Late paleogene (eocene to oligocene) paleoceanography of the northern North Atlantic. Doctoral thesis

    SciTech Connect

    Miller, K.G.

    1982-11-01

    Seismic stratigraphic evidence indicates that a major change in abyssal circulation occurred in the latest Eocene-earliest Oligocene of the North Atlantic. Reflector R4 reflects a change from weakly (Eocene) to vigorously circulating bottom water (early Oligocene). Sediment distribution studies indicate a northern source for this bottom water, probably from the Arctic via the Norwegian-Greenland Sea/Faeroe-Shetland Channel. Current-controlled sedimentation and erosion continued through the Oligocene; however, above reflector R3 (upper Oligocene), the general intensity of abyssal currents decreased. Above reflector R2 (lower Miocene) a further reduction in abyssal currents resulted in more coherent current-controlled sedimentation and a major phase of sediment drift development. Major deep-sea benthic foraminiferal changes occurred between the middle Eocene and earliest Oligocene: an agglutinated assemblage was replaced by a calcareous assemblage (abyssal Labrador Sea), and an indigenous Eocene calcareious fauna became extinct (abyssal Bay of Biscay). In shallower Atlantic sites (< 3km paleodepth), a Nuttallides truempyi assemblage was replaced by an assemblage of long- and wide-ranging taxa in the early late Eocene.

  20. The oldest African bat from the early Eocene of El Kohol (Algeria)

    NASA Astrophysics Data System (ADS)

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  1. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, S.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  2. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  3. The oldest African bat from the early Eocene of El Kohol (Algeria).

    PubMed

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene. PMID:21442243

  4. Sonora, Mexico, source for the Eocene Poway Conglomerate of southern California

    NASA Astrophysics Data System (ADS)

    Abbott, Patrick L.; Smith, T. E.

    1989-04-01

    Alluvial-fan conglomerates of the Eocene Poway Group are composed largely of exotic rhyolite and dacite clasts derived from far to the east of their Eocene depositional site. Remnants of the Upper Jurassic bedrock source of the Poway rhyolite clasts may yet be exposed in hills in Sonora, Mexico. For this study, pieces of bedrock were taken from hills 13 km west of El Plomo in Sonora. Clasts texturally and mineralogically similar to the Sonoran bedrock were collected from the apex of the Eocene alluvial fan in San Diego County, California Nine couplets of bedrock and conglomerate clast samples (textural twins) were analyzed for 16 trace elements selected for their wide range of behaviors during magmatic and alteration processes. Statistical comparisons of the trace-element data, by using the standard error-of-the-difference method, show that there are no significant differences between the two populations. These data strongly suggest that the rhyolitic bedrock hills west of El Plomo were part of the source terrane for the Eocene conglomerate in San Diego. The latitudinal separation between bedrock source and the site of deposition is only the 2° created by the opening of the Gulf of California This implies that any boundary separating a paleomagnetically efined, Baja-Borderland terrane from the craton since Eocene time was at least 100 km east of the Gulf of California in northernmost Sonora.

  5. Geochronology of upper Paleocene and lower Eocene strata, eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, E.A.; Tew, B.H. Geological Survey of Alabama, Tuscaloosa, AL )

    1994-03-01

    Four samples of glauconitic sand from upper Paleocene and lower Eocene strata of the eastern Gulf Coastal Plain were analyzed for conventional potassium-argon (K-Ar) age determination. Results from these analyses are as follows: Coal Bluff Marl Member of the Naheola Formation of the Midway Group (58.2 [+-] 1.5 MA), Ostrea thirsae beds of the Nanafalia Formation of the Wilcox Group (56.3 [+-] 1.5 MA), upper Tuscahoma Sand of the Wilcox Group (54.5 [+-] 1.4 MA), and Bashi Marl Member of the Hatchetigbee Formation of the Wilcox Group (53.4 [+-] 1.4 MA). The Nanafalia Formation (Wilcox Group) disconformably overlies the Naheola Formation (Midway Group), and based on the data presented here, the age of this unconformity is bracketed between 59.7 and 54.8 MA. The Paleocene-Eocene Epoch boundary occurs in the Wilcox Group and coincides with the lithostratigraphic contact of the upper Paleocene Tuscahoma Sand with the lower eocene Hatchetigbee Formation. The age of this boundary, which is also an unconformity, can be placed between 55.9 and 52.0 MA. The K-Ar age dates for this boundary in the Gulf Coastal Plain compare favorably with the numerical limits placed on the Paleocene-Eocene boundary in the published literature. Generally, the Paleocene-Eocene Epoch boundary is reported as approximately 54 to 55 MA.

  6. The Massignano Eocene-Oligocene golden spike section revisited

    NASA Astrophysics Data System (ADS)

    van Mourik, C. A.; Brinkhuis, H.

    2004-12-01

    In common practice, the Eocene/Oligocene (E/O) boundary is linked to the Oi-1 δ 18 O benthic isotope event, reflecting the oldest phase of major Antarctic glaciation, calibrated against magnetosubchron C13n. Yet, the IUGS-ratified, current E/O GSSP at the pelagic Massignano Quarry section, central Italy, occurs within the older magnetosubchron C13r, at metre 19 of the 23 m section. To promote further high-resolution stratigraphic and paleoecological studies at Massignano, and to extend the lower Oligocene record, the so-called Massicore was drilled about 110 m south of the stratotype section. By means of high-resolution organic-walled dinoflagellate cyst (dinocyst) analysis, in combination with biotite-rich horizons an almost perfect linear correlation between the core and the quarry was obtained, resulting in the establishment of the Massignano GSSP composite section, spanning from magnetosubchron16-2n to 12r (van Mourik and Brinkhuis, in press). The revised paleomagnetic ages of this interval (Pḋ {a}like et al., in prep) were used for a preliminary age model of the composite section. The paleoecological dinocysts proxies were plotted along this agemodel. A straightforward correlation of the (relative) Sea Surface Temperature (SST) curve to the 400 ky eccentricity curve of Laskar et al.'s (2004) was possible. In two intervals (5.60 to 10.50 m and 17 to 35 m) the correlation could be made to the 100 ky eccentricity curve (Laskar et al., 2004). The first astronomical timescale for the Massignano GSSP composite section could be composed, placing the GSSP (19 m) at age of 33.96 ± 0.05 Ma. The age of the onset of the Oi-1 event appears around 33.55 ± 0.01 Ma, and towards the top of the section the cold peaks in the SST get more and more pronounced. The cooler conditions are substantiated by the occurrence of restricted high latitude dinocyst species (G. inflata and Sv. cooksoniae) from 33.30 ± 0.01 Ma until the top of the section (van Mourik et al., in prep

  7. Upper Eocene Spherules at ODP Site 1090B

    NASA Technical Reports Server (NTRS)

    Liu, S.; Kyte, F. T.; Glass, B. P.; Gersonde, R.

    2000-01-01

    Our two labs independently discovered upper Eocene microtektites and microkrystites at ODP Site 1090, a new South Atlantic locality near the Agulhus Ridge. This is a significant new data point for the strewn fields of these spherules, which were recently extended into the Atlantic sector of the Southern Ocean when they were reported at ODP Site 689 on the Maude Rise. The microtektites have been regarded as related to North American tektites and the microkrystites as belonging to the clinopyroxene-bearing (cpx) spherule strewn field. Initial reports indicate that Site 1090 contains a complete sequence of upper Eocene sediments composed of diatom and nannofossil oozes. The magneto- and bio-stratigraphy indicate that impact-age sediments should occur in core 30X of Hole 1090B. One of us (FTK) took 2 cc samples at 10 cm intervals over 600 cm of core for Ir analyses and the senior author (SL) took 3 cc samples at 20 cm intervals to search for spherules. Both studies proved successful and additional samples were obtained to confirm initial results and better define the Ir anomaly and spherule abundances. Peak Ir concentrations of 0.97 ng/g were found at 1090B-30X-5, 105-106cm and 0.78 ng/g at 115-116 cm. Anomalous Ir concentrations (greater than 0.1 ng/g) extend over about 100 cm of core. Preliminary results indicate that the excess Ir at this site is about 25 ng per sq cm. About 380 microtektites (>63 pm) and 2492 microkrystites (>63 pm) were recovered over a 1.8 m interval with a peak abundance of microtektites (106/gram) and microkrystites (562/gram) at 1090B-30X- 5, 114-115 cm. The largest microtektite is approximately 960 x 1140 micron in size. About 55 % are spherical, and the rest are disc, cylinder, dumbbell, teardrop, or fragments. Most of the microtektites are transparent colorless, but a few are transparent pale brown or green. Preliminary data indicate that the microtektites at Site 1090 have similar major oxide compositions to those at Site 689. About 50% of

  8. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  9. Barium Cycling During the Paleocene-Eocene Thermal Maximum: Evidence From Ba/Ca in Foraminifera

    NASA Astrophysics Data System (ADS)

    Hall, J. M.; Zachos, J. C.; Turekian, K. K.

    2004-12-01

    The Paleocene-Eocene thermal maximum (PETM) around 55 Ma reflects short-term, rapid climate change during a period of intense greenhouse climate. This interval is characterized by a negative carbon isotopic shift, interpreted as a release of methane from seafloor gas hydrate reservoirs. This perturbation of the carbon cycle is accompanied by significantly greater rates of euhedral barite accumulation in deep sea sediment commonly believed to be a reflection of elevated primary productivity in surface waters. An interpretation of higher productivity during the PETM, however, is contrary to microfossil assemblage data which indicates a decrease in primary productivity. It has also been suggested that the increase in barite accumulation during the PETM may have been the result of an increase in dissolved barium concentrations in the deep ocean coeval with methane release. This supposition has support from the fact that modern gas hydrate reservoirs are surrounded by pore waters with dissolved barium concentrations considerably higher than that of seawater. This investigation utilizes the barium content of foraminifera as a proxy to reconstruct changes in the barium concentration of the ocean. At 55 Ma, Ba/Ca decreases between 25 to 28% in the planktic foraminifer \\textit{Morozovella velascoensis}, indicating a decrease in the barium concentration of the surface ocean. These results bolster the theory that there was increased biogenic barite precipitation during the PETM. Changes in surface water temperature and pH may have altered species assemblages such that celestite (SrSO4) precipitating organisms enriched in barium as BaSO4 (possibly acantharia) were dominant, modifying the barite precipitation pathways, which affected water column barite cycling. Ba/Ca and Cd/Ca measurements on benthic foraminifera show a positive correlation with Mn/Ca, indicating contamination of manganese oxide coatings. This contamination is in part due to the greater surface to volume

  10. Increased carbonate ion saturation in shallow deep waters at the Eocene-Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Bohaty, S. M.; Lear, C. H.; Paelike, H.

    2013-12-01

    Global cooling and growth of large ice sheets across the Eocene-Oligocene Transition (EOT) were associated with a two-stage deepening of the calcite compensation depth (CCD) in the equatorial Pacific Ocean. It is uncertain, however, if changes in carbonate chemistry in the deep Pacific were mirrored in other ocean basins and in higher levels of the water column. In conjunction with CCD histories, geochemical records from benthic foraminifera can provide information on the timing and nature of changes in deep-water carbonate chemistry and may pinpoint mechanisms of EOT climate change and related shifts in global carbon cycling. We use benthic foraminiferal boron/calcium (B/Ca) ratios to reconstruct changes in carbonate ion saturation (Δ[CO32-]) at multiple drillsites in the Atlantic and Indian Ocean basins occupying a range of paleodepths (~1000 to 3500 m). In shallow deep waters of the Indian Ocean (ODP Site 763; ~1000 m), a pronounced increase in Δ[CO32-] is evident at the onset of the EOT that corresponds to the first step of the positive global shift in benthic δ18O values (EOT-1). More subdued increases in Δ[CO32-] occurred synchronously at deeper sites in both the Atlantic and Indian basins (ODP Sites 522 and 711). These results, in conjunction with observed multi-site patterns of CCD change, indicate that the initial phase of climate change during the EOT was associated with major fluctuations in deep-ocean carbonate chemistry that were sustained for ~150 kyr immediately prior to and during EOT-1. Earth system and carbon-cycle box models are currently being employed to help interpret these results. Combined information from both proxy data and models suggest that destabilization of deep-ocean carbonate chemistry at the onset of the EOT resulted from a perturbation in the long-term carbon cycle involving changes in continental weathering rates and/or shifting patterns of marine carbonate burial. We further hypothesize that the shift to more alkaline deep

  11. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  12. Global Carbon Cycle Perturbations and Implications for Arctic Hydrology during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L.; Diefendorf, A. F.; Freeman, K. H.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; ca. 55.9 Ma) was an interval of geologically abrupt global warming lasting ~200 ka. It has been proposed as an ancient analogue for future climate response to CO2 emission from fossil fuel burning. The onset of this event is fueled by a large release of 13C-depleted carbon into the ocean-atmosphere system. However, there is a large discrepancy in the magnitude of the carbon isotope excursion (CIE) between marine and terrestrial records. Here we present new organic geochemical data and stable carbon isotope records from n-alkanes and pristane extracted from core materials representing the most expanded PETM section yet recovered from a nearshore marine early Cenozoic succession from Spitsbergen. The low hydrogen index and oxygen index indicate that organic matter has been thermally altered, consistent with n-alkanes that do not show a clear odd-over-even predominance as reflected by the low and constant carbon preference index. The δ13C records of long chain n-alkanes from core BH9-05 track the δ13C recorded in total organic carbon, but are ~3% more negative prior to the CIE, ~4.5% more negative during the CIE, and ~4% more negative after the CIE. An orbital age model derived from the same core suggests the CIE from n-alkanes appears more abruptly onset than the bulk organic carbon, indicating possibly climate-induced modification to the observed feature in n-alkanes. In addition, the carbon isotope values of individual long-chain (n-C27 to n-C31) n-alkanes tend to become less negative with increasing chain length resulting in the smallest magnitude CIEs in longer chain lengths (i.e. n-C31) and the largest magnitude CIEs in shorter chain lengths (i.e. n-C27). We are currently considering the effect of plant community and paleoclimate on the observed pattern of CIE in n-alkanes to evaluate carbon cycle perturbations and Arctic hydrology changes during the PETM. One interpretation of these patterns is that there was an

  13. The Eocene turbidities of the Trujillo Formation, Venezuelan Andes

    SciTech Connect

    Ghosh, S.K.; Zambrano, E.

    1996-08-01

    The Trujillo Formation, overlying the Paleocene Cerro Verde and Valle Hondo formations, reveals a turbiditic origin in a lowstand shelf-edge and bathyal setting in two excellent road sections on the Valera-Carache road and many creek sections. The basal outcrop shows well developed fining upward (FU) sequences of proximal channel turbidite and overbank origin (abandonment phase) and minor coarsening upward (CU) sequences representing progradational pulse in overbank areas. The FU (and thinning-upward) sequence, overlying a shale, consists of: (a) basal stacked conglomeratic arenites (probably inner fan channels) with graded beds, imbricate casts and transported shells; (b) a sand/shale alternating unit (channel margin/interchannel) with flame structure, lenticular bedding, infrequent Tb-d Sequence, rippled flats, and rare Planolites; and (c) a dark shale (overbank-interchannel lows) with scarce Chondrites and Scaladtuba traces. The CU sequence consists of thickening-upward heterolithic facies overlain by lenticular stacked pebbly arenites. The upper unit exposed near Puente Gomez is a typical progradational lobe starting with a basal shale, with intraformational diastems and slumped beds, and Tb-d and Tb-e sequences in thin intercalated sandstones; a heterolithic facies with flute/groove casts, Planolites, Thalassinoides and Neonereites occurs between the shale and a thick cross-stratified sandstone at the top. This CU lobe sequence is discordantly(?) overlain by a thin wedge of massive bedded pebbly sandstones of Middle Eocene(?) Misoa Formation. Unlike the southwesterly sourced subsurface turbidites, those in this area were probably sourced from both the south and north, though locally the southern source might have been more important.

  14. Sporomorphs from the Jackson Group (upper Eocene) and adjacent strata of Mississippi and western Alabama

    USGS Publications Warehouse

    Frederiksen, Norman O.

    1980-01-01

    little within the interval from the upper part of the Claiborne to near the top of the Jackson. Near the top of the Jackson Group, there is a rapid rise to dominance or near dominance of the sporomorph assemblages by Quercoidites inamoenus (Takahashi) n. comb. (Fagaceae, Dryophyllum or Quercus). This remains the dominant sporomorph species through the lower part of the Vicksburg Group. On the basis of these range and relative-frequency data for spores and pollen grains, the Jackson Group is divided into two zones. Zone I includes the upper part of the Claiborne Group and all but the uppermost part of the Jackson Group; zone II includes the uppermost part of the Yazoo Clay and extends into the overlying Vicksburg Group. The two zones and the boundary between them can be traced from western Mississippi to western Alabama. Sporomorph data support evidence from physical stratigraphy and from other fossils that only a minor disconformity is present between the Claiborne and Jackson Groups in this region. In western Mississippi, the zone I-zone II boundary is below the minor disconformity separating the open marine Yazoo Clay from the uppermost lagoonal part of that formation. Sporomorph data agree with faunal evidence that no unconformity is between the Jack son and Vicksburg Groups in eastern Mississippi. No sporomorph-bearing samples were available from the uppermost part of the Yazoo Clay at Little Stave Creek in western Alabama; however, samples from above and below the uppermost part of the Yazoo show that the zone I-zone II boundary either coincides with, or is slightly below, the unconformity separating the Jackson and Vicksburg Groups there. The information on sporomorph ranges and relative frequencies suggests that the flora and the vegetation of southeastern North America changed little from late middle Eocene time until almost the end of the late Eocene. Then, perhaps because of a change in climate, some species disappeared from the regional f

  15. Outpacing the Anthropocene: New Constraints for the Rate of Carbon Release at the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Schaller, M. F.

    2012-12-01

    The Paleocene/Eocene Thermal Maximum (PETM) Carbon Isotope Excursion (CIE) is linked to benthic foraminiferal extinction and excursion taxa in planktonic foraminifera and calcareous nannofossils. Previous studies have used integrated bio-magneto-stratigraphies, cycle counting, and extraterrestrial 3He accumulation rates to produce a range of estimates for the duration of the initial onset of the PETM CIE between 750 years to 30 kyr. Durations for the total release time (onset to initiation of recovery) range from 45 to 95 kyr. Uncertainty in the timing of the onset of the PETM CIE prevents the identification of a causal mechanism, and hence understanding the biological responses. Recent work on the Paleocene/Eocene Marlboro Clay has unveiled the presence of regular couplets (~2 cm) expressed in multiple cores and exposures throughout the Atlantic Coastal Plain. Specifically, the Millville and newly recovered Wilson Lake B cores contain 750 and 660 layers through the CIE, respectively. These couplets have corresponding oxygen stable isotope cycles, arguing for a climatic origin. Orbital and millennial periodicities are far too long to explain the ~750 layers identified in the Millville core. Seasonal insolation is the only regular climate cycle that can plausibly account for the observed δ18O amplitudes (~1‰, with some cycles up to 2‰) and layer counts. Seasonal freshwater input can also augment the cyclic oscillations in δ18O, but the majority of the variability is most plausibly ascribed to temperature. Wilson Lake B and Millville have total δ13C excursions of -5 and -4.5‰ respectively, as well as highly expanded sections of the PETM CIE. In the Millville core, high-resolution, bulk stable isotope records show a 3.5‰ δ13C decrease over 12 layers across the PETM CIE onset. Concomitant with this δ13C decrease is a sharp drop in CaCO3. Decreases in both proxies require a large, sudden release of isotopically light carbon. The couplet chronology indicates

  16. Tropical northeast Africa in the middle late Eocene: Paleomagnetism of the marine-mammals sites and basalts in the Fayum province, Egypt

    NASA Astrophysics Data System (ADS)

    Lotfy, Hamza; Van der Voo, Rob

    2007-03-01

    The mid-late Eocene "Valley of Whales" in the Fayum province of Egypt contains hundreds of marine-mammals' skeletons. Given its paleontological importance, we carried out a paleomagnetic study of the fossil-bearing formations. A sequence of basalts directly overlying the upper Eocene rocks in three distant clusters within a 25 km-long NW-SE graben in the southwestern part of the area was also studied. Thermal demagnetization of three-axis IRM was used to identify and eliminate sites dominated by hematite and/or goethite as potential remanence carriers. Progressive thermal demagnetization of the NRM isolated a characteristic NNE-SSW dual-polarity direction with a shallow inclination that passes both tilt and reversal tests. The mean tilt-corrected direction of the sedimentary formations is D/ I = 16°/30° ( k = 50, α95 = 3°) yielding a paleomagnetic pole at 70°N/159°E. The anisotropy of magnetic susceptibility (AMS) indicated that the observed inclinations were free from inclination shallowing, as did the nearly identical characteristic remanence of the overlying basalt flows (with a tilt-corrected reversed-polarity direction of D/ I = 198°/-28° ( k = 38, α95 = 7°) and a pole at 68°N/158°E). The new paleopoles place the Fayum province at a lower paleolatitude (15-17°N) than today (29.5°N), and point to the possible prevalence of tropical climate in northeast Africa during mid-late Eocene times. This tropical position is nearly identical to the paleolatitudes extrapolated from the mean of 36 coeval poles rotated from the other major cratons and from Africa itself. The declinations show a minor easterly deviation from those predicted by extrapolation from other continents. This is interpreted as due to a small clockwise rotation internal to NE Africa, possibly related to Red Sea/Gulf of Suez rifting after the late Eocene. The alternative explanation that the geomagnetic field had a non-zonal non-dipole field contribution is not favored.

  17. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production

    NASA Astrophysics Data System (ADS)

    Dunkley Jones, Tom; Bown, Paul R.; Pearson, Paul N.; Wade, Bridget S.; Coxall, Helen K.; Lear, Caroline H.

    2008-12-01

    A high-resolution record of exceptionally well preserved calcareous nannofossil assemblages from Tanzania is marked by two key transitions closely related to the climatic events of the Eocene-Oligocene transition (EOT). The first transition, at ˜34.0 Ma, precedes the first positive shift in δ18O and coincides with a distinct interval of very low nannofossil abundance and a cooling in sea surface temperatures (SST). The second, at ˜33.63 Ma, is immediately above the Eocene-Oligocene boundary (EOB) and is associated with a significant drop in nannofossil diversity. Both transitions involve significant reductions in the abundance of holococcoliths and other oligotrophic taxa. These changes in calcareous phytoplankton assemblages indicate (1) a widespread and significant perturbation to the low-latitude surface ocean closely tied to the EOB, (2) a potential role for reduced carbonate primary production at the onset of global cooling, and (3) a significant increase in nutrient availability in the low-latitude surface ocean through the EOT.

  18. Evidence for seagrass meadows and their response to paleoenvironmental changes in the early Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman)

    NASA Astrophysics Data System (ADS)

    Tomás, Sara; Frijia, Gianluca; Bömelburg, Esther; Zamagni, Jessica; Perrin, Christine; Mutti, Maria

    2016-07-01

    The recognition and understanding of vegetated habitats in the fossil record are of crucial importance in order to investigate paleoecological responses and indirectly infer climate and sea-level changes. However, the low preservation potential of plants and macroalgae hampers a direct identification of these environments in the geological past. Here we present sedimentological and paleontological evidences as tool to identify the presence of different seagrass-vegetated environments in the shallow marine settings of the lower Eocene Jafnayn platform of Oman and their responses to paleoenvironmental changes. The studied lower Eocene deposits consist of well bedded, nodular packstones dominated by encrusting acervulinid and alveolinid foraminifera passing upward to an alternance of packstones with echinoids and quartz grains and grainstones rich in Orbitolites, smaller miliolid foraminifera and quartz grains. The presence of seagrass is inferred by the occurrence of encrusting acervulinids and soritid Orbitolites, as well as by their test morphologies together with further sedimentological criteria. The clear shift observed in the faunal assemblages and sedimentary features may be related to a major reorganization of the carbonate system passing from a carbonate platform to a ramp-like platform with increased terrigenous sedimentation. Heterotroph tubular acervulinids and oligotroph alveolinids of the carbonate platform were replaced upward by more heterotroph organisms such as large, discoidal Orbitolites and smaller miliolids, most likely due to enhanced nutrient levels which would have led to a change of phytal substrate, from cylindrical-leaf dominated grasses into flat-leafed ones.

  19. Age of Eocene/Oligocene boundary based on extrapolation from North American microtektite layer

    SciTech Connect

    Glass, B.P.; Crosbie, J.R.

    1982-04-01

    Microtektites believed to belong to the North American tektite strewn field have been found in upper Eocene sediments in cores from nine Deep Sea Drilling Project sites in the Caribbean Sea, Gulf of Mexico, equatorial Pacific, and eastern equatorial Indian Ocean. The microtektite layer has an age of 34.2 +- 0.6 m.y. based on fission-track dating of the microtektites and K-Ar and fission-track dating of the North American tektites. Extrapolation from the microtektite layer to the overlying Eocene/Oligocene boundary indicates an age of 32.3 +- 0.9 m.y. for the Eocene/Oligocene boundary as defined at each site in the Initial Reports of the Deep Sea Drilling Project. This age is approximately 5 m.y. younger than the age of 37.5 m.y. that is generally assigned to the boundary based on recently published Cenozoic time scales. 3 figures, 5 tables.

  20. Post-Eocene movement on the Coast Range thrust, northern Sacramento Valley, California

    SciTech Connect

    Ramirez, V. )

    1990-05-01

    Subsurface structure mapping with more than 600 wells and 200 miles of seismic data in a portion of the northern Sacramento basin and surface geologic mapping in the Rumsey Hills area to the west indicates that Upper Cretaceous strata along the western edge of the basin are doubled in thickness along thrust faults. These east-dipping detachments are part of the Coast Range thrust fault system. Eocene strata crop out in the fault zone and indicate that considerable post-Eocene movement occurred. Cretaceous movement on these faults can be surmised but not proven from reconstructions. Similarly, analysis from five subsurface structure maps to the east shows that deformation there also is post-Eocene; only minor Upper Cretaceous deformation can be discerned. Underthrusting of Franciscan accretionary rocks best accounts for the development of these faults and a western high along the basin margin.

  1. Eocene Underplating Along the Kodiak Shelf, Alaska: Implications and Regional Correlations

    NASA Astrophysics Data System (ADS)

    Byrne, Tim

    1986-06-01

    Structural geology and geophysical data from the Kodiak Shelf suggest that the Mesozoic rocks exposed on the shelf are structurally underlain (at about 12 km depth) by several kms of Eocene age strata. Kinematic data from the Late Cretaceous to Paleocene Ghost Rocks Formation indicate that this formation and probably all of the Kodiak Islands, were uplifted vertically to nearly their present elevations. Landward tilting and imbrication are not indicated. The age of uplift is indicated by a regional, angular unconformity of Early Eocene to Early Oligocene age that separates deep-sea rocks from shallow water to non-marine rocks. The uplift of the accretionary prism is believed to have been caused by underplating of an Eocene sedimentary sequence because (1) a band of seismic reflections that occur 12 to 20 km beneath the shelf is interpreted as the top of the underplated material and (2) an obductively offscraped sequence of Eocene deep-sea rocks crops out on the seaward side of the Kodiak Shelf, suggesting that a thick trench-fill sequence may have been present prior to uplift of the prism. The underplated material is interpreted to be part of either a previously unrecognized turbidite fan of Early Eocene age or a proximal equivalent of the Zodiac fan of Late Eocene to Early Oligocene age. Other possible on-land remnants of the underplated material may be present in Prince William Sound (the Montague belt), the Gulf of Alaska (lower sections of the Yakutat block) and in the Coast Ranges of Oregon and Washington. The large volume of underplated material beneath the Kodiak shelf suggests that underplating may be the dominant process in the growth of convergent margins.

  2. Gateways, Supergyre, and proto-Antarctic Circumpolar Current in the middle to late Eocene

    NASA Astrophysics Data System (ADS)

    Katz, M. E.; Cramer, B. S.; Toggweiler, J.

    2013-12-01

    The (proto-)Antarctic Circumpolar Current (ACC) began to develop in the middle Eocene through a shallow Drake Passage and Tasman Gateway. Progressive deepening of these gateways and northward migration of Australia through the Eocene impacted global ocean circulation. We present middle to late Eocene (~36-40 Ma) benthic foraminiferal stable isotope (δ18O, δ13C) records from ODP Site 1090 that extend published late Eocene-early Oligocene records (Pusz et al. 2011). Comparisons with published isotope records highlight that the deep (~3000m) eastern and western South Atlantic (Sites 699 (Mead et al. 1993) and 1090) was warmer than the shallower (~1500-2500m) Southern Ocean Sites 689 (Diester-Haass and Zahn, 1996; Bohaty et al., 2012). The divergence in the δ18O records began in the late middle Eocene and continued through the late Eocene, as the Drake and Tasman gateways progressively deepened, and Australia moved northward. We speculate that these paleogeographic changes resulted in the development of circulation analogous to the modern Supergyre, which transported warm Indian and Pacific water westward into the South Atlantic and cooler South Atlantic water eastward into the Pacific Ocean via the Tasman Seaway, and acted as a barrier that prevented subtropical water from flowing to high southern latitudes. At the same time, a significant carbon isotopic (δ13C) offset developed between Site 1090 (values ~ 0.7‰ lower) and other sites from ~37.5 to 34 Ma, coinciding with onset of elevated opaline silica (Diekmann et al. 2004), barite, carbonate, and phosphorous (Anderson and Delaney 2005) deposition at Site 1090; these changes are consistent with enhanced primary productivity at the northern edge of the developing polar front, consistent with model predictions for the effects of proto-ACC development (Heinze and Crowley, 1997; Toggweiler and Bjornsson, 2000).

  3. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  4. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  5. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  6. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  7. The 40Ar/39Ar ages and tectonic setting of the Middle Eocene northeast Nevada volcanic field

    USGS Publications Warehouse

    Brooks, W.E.; Thorman, C.H.; Snee, L.W.

    1995-01-01

    Widespread middle to late Eocene calc-alkalic volcanism, which formed the Northeast Nevada Volcanic Field, marks the earliest Tertiary volcanism in the northern Basin and Range. The central part of this major field in northest Nevada and adjacent Utah is herein defined by 23 40Ar/39Ar ages that arange from 42.6 to 39.0 Ma, rock chemistry from 12 localities, stratigraphic position of the volcanic rocks above a regional middle Eocene unconformity, volcanic setting, and lithology. The type area is at Nanny Creek, in the northern Pequop Mountains, Nevada. In the western and southeastern parts of the field these middle Eocene volcanic rocks rest with depositional angular discordance on lower Eocene lacustrine strata of the Elko and White Sage Formations, respectively. This angular discordance documents a middle Eocene deformational event previously unrecognized in the region. -from Authors

  8. Igneous geology of the Carlin trend, Nevada: The importance of Eocene magmatism in gold mineralization

    NASA Astrophysics Data System (ADS)

    Ressel, Michael Walter, Jr.

    Igneous rocks of five ages are present in the Carlin trend, Nevada, and include: (1) Paleozoic basalt of the Roberts Mountains allochthon, (2) the Jurassic (˜158 Ma) Goldstrike intrusive complex, which includes the Goldstrike diorite laccolith and abundant dikes and sills, (3) a Cretaceous (112 Ma) granite stock, (4) lavas and intrusions of the Emigrant Pass volcanic field and widespread epizonal plugs and dikes of Eocene (˜40-36 Ma) age that range from rhyolite through basalt, and (5) Miocene (15 Ma) rhyolite lava and tuff. Jurassic and Eocene igneous rocks are by far the most important volumetrically and are spatially associated with nearly all ore deposits of the Carlin trend. This study focuses on the field relations, isotopic dating, and geochemistry of Eocene dikes that intrude sedimentary rocks in many deposits of the Carlin trend, because they are the youngest pre-mineral rocks and have simpler alteration histories than other host rocks. In the Beast, Genesis, Deep Star, Betze-Post, Rodeo-Goldbug, Meikle-Griffin, and Dee-Storm deposits, Eocene dikes are altered, commonly mineralized, and locally constitute ore. Gold-bearing dikes and sedimentary rocks have similar ore mineralogy, including arsenian pyrite, marcasite, and arsenopyrite, with late barite and stibnite. At Beast, as much as half the ore is hosted in a 37.3 Ma rhyolite dike. Post-gold alunite is ˜18.6 Ma. At Meikle and Griffin, porphyritic dacite dikes yield concordant U/Pb zircon and 40Ar/39Ar biotite emplacement ages of ˜39.2 Ma, and illite from the same QSP-altered dacite, with as much 9 ppm Au, yields similar, although imprecise 40Ar/39Ar ages. Thus, gold mineralization at these deposits closely followed emplacement of Eocene dikes. Carlin-type gold deposits in northeastern Nevada have been variously interpreted as partly syngenetic with Paleozoic carbonate rocks, products of Mesozoic contraction and metamorphism with or without significant magmatism, and of Tertiary age and related or

  9. A new primate from the Middle Eocene of Myanmar and the Asian early origin of anthropoids.

    PubMed

    Jaeger, J; Thein, T; Benammi, M; Chaimanee, Y; Soe, A N; Lwin, T; Tun, T; Wai, S; Ducrocq, S

    1999-10-15

    A new genus and species of anthropoid primate, Bahinia pondaungensis gen. et sp. nov., is described from the Yashe Kyitchaung locality in the Late Middle Eocene Pondaung Formation (Myanmar). It is related to Eosimias, but it is represented by more complete remains, including upper dentition with associated lower jaw fragment. It is interpreted as a new representative of the family Eosimiidae, which corresponds to the sister group of the Amphipithecidae and of all other anthropoids. Eosimiidae are now recorded from three distinct Middle Eocene localities in Asia, giving support to the hypothesis of an Asian origin of anthropoids.

  10. An eocene hystricognathous rodent from Texas: its significance in interpretations of continental drift.

    PubMed

    Wood, A E

    1972-03-17

    The earliest known representative of the fundamentally South American and African hystricognathous rodents has recently been found in the middle or late Eocene of southwestern Texas; this discovery supports the postulate of a northern and independent origin for the two southern groups and increases the evidence against mid-Tertiary trans-Atlantic migration of these rodents at a time when the South Atlantic was narrower than it is at present. The fossil seems to be related to the North American Eocene family Sciuravidae.

  11. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity.

    PubMed

    Engel, M S

    2001-02-13

    Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

  12. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block

    NASA Astrophysics Data System (ADS)

    Yu, Xiangjiang; Fu, Suotang; Guan, Shuwei; Huang, Baochun; Cheng, Feng; Cheng, Xiang; Zhang, Tuo; Guo, Zhaojie

    2014-06-01

    Qaidam basin is the largest topographic depression inside the Tibetan Plateau and it is a key factor to understanding the Cenozoic evolution of the northern Tibetan Plateau. Paleomagnetic data was obtained from the middle to late Eocene Xiaganchaigou Formation and the early to middle Miocene Xiayoushashan Formation from seven localities. The paleomagnetic results indicate that the Qaidam basin has not undergone obvious basin-scale vertical axis rotation with respect to the Eurasia Plate since the Eocene. Local clockwise rotation took place only at a few special locations along the northern margin of the Qaidam basin. The uniform paleomagnetic results at different localities support that the Qaidam basin is a relatively rigid block. Regional paleomagnetic and geodetic observations also suggest that crust south of the Kunlun fault moves eastward faster than crust north of the Kunlun fault.

  13. Fossils harbor climate clues and fuel debate over glacier stability

    SciTech Connect

    Not Available

    1993-06-01

    At the edge of the Ross Ice Shelf near McMurdo Station in Antarctica, scientists have discovered fossils of well preserved wood and a mixture of microscopic marine organisms, dating from the Eocene epoch. This discovery promises significant clues to the onset of glaciation in Antarctica. Geologists believe that this discovery may shed light on Antarctica's link to world climate and help predict future climatic change. Debate centers around when glaciation first became extensive, 15 or 20 million years ago, and whether or not the ice sheet was dynamic and responsive to small fluctuations in climate or stable and able to lock up massive amounts of the world's water. 7 refs.

  14. Atlas based kinematic optimum design of the Stewart parallel manipulator

    NASA Astrophysics Data System (ADS)

    Shao, Zhufeng; Tang, Xiaoqiang; Wang, Liping; Sun, Dengfeng

    2015-01-01

    Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator, involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.

  15. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition

    PubMed Central

    Hyeong, Kiseong; Kuroda, Junichiro; Seo, Inah; Wilson, Paul A.

    2016-01-01

    Approximately 34 million years ago across the Eocene–Oligocene transition (EOT), Earth’s climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synch