Science.gov

Sample records for eocene garford paleovalley

  1. Formation conditions of paleovalley uranium deposits hosted in upper Eocene-lower Oligocene rocks of Bulgaria

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Strelkova, E. A.

    2016-03-01

    The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic-epigenetic paleovalley deposits related to the basins filled with upper Eocene-lower Oligocene volcanic-sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation-diagenetic and exogenic-epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

  2. Paleovalleys mapping using remote sensing

    NASA Astrophysics Data System (ADS)

    Baibatsha, A. B.

    2014-06-01

    For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25-90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  3. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  4. Structural control on paleovalley development, muddy sandstone, Powder River basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Wheeler, D.A.; Ryer, T.A.

    1988-07-01

    A subaerial unconformity within the Lower Cretaceous Muddy Sandstone in the Powder River basin developed during a late Albian sea level lowstand and resulted in a markedly rectangular drainage pattern. Numerous right-angle bends and perpendicular confluences of Muddy paleovalleys are believed to reflect syndepositional movement on basement faults and dissolution of salts in the Goose Egg Formation. A detailed subsurface analysis of geophysical logs from closely spaced wells reveals that up to 30 ft of vertical displacement occurred along northwest- and northeast-trending faults prior to and during the development of the subaerial unconformity. An analysis of a high-resolution magnetic survey (NewMag) of the Powder River basin reveals that numerous paleovalleys parallel the boundaries, or basement shear zones, between basement blocks. Small, irregularly shaped, thin intervals of the Permian Goose Egg Formation, which resemble karst topography, also occur along these northwest- and northeast-trending basement faults beneath Muddy paleovalleys. An arcuate Muddy paleovalley located in the northern Powder River basin parallels contours of isopach and trend surface maps of the Goose Egg Formation. These relationships suggest that the location and orientation of Muddy paleovalleys were controlled by a combination of movement along northwest- and northeast-trending faults and syntectonic dissolution of salt within the Goose Egg Formation. Simultaneous dissolution of Goose Egg salts and headward erosion of Muddy paleovalleys along this conjugate fault pattern also indicate that the Powder River basin was influenced by wrench fault tectonics during the late Albian.

  5. A late Quaternary multiple paleovalley system from the Adriatic coastal plain (Biferno River, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bracone, Vito; Campo, Bruno; D'Amico, Carmine; Rossi, Veronica; Rosskopf, Carmen M.

    2016-02-01

    A buried paleovalley system, up to 2 km wide and exceeding 50 m in relief, made up of multiple cross-cutting depressions incised into the Lower Pleistocene bedrock, is reported from the central Adriatic coastal plain at the mouth of Biferno River. Through a multi-proxy approach that included geomorphological, stratigraphic, sedimentological and paleontological (benthic foraminifers, ostracods and molluscs) investigations, the facies architecture of distinct, superposed valley fills is reconstructed and their relative chronology established along a transverse profile with extremely high data density (average borehole spacing 75 m). Regional tectonic uplift appears as the major controlling factor of initial (Middle Pleistocene) river down-cutting and paleovalley formation. In contrast, glacio-eustatic fluctuations drove fluvial-system response over the last 120 ky, when valley incision was primarily induced by the last glacial base-level lowering and climatic forcing. A fragmented record of coastal and shallow-marine deposits is available for the lower paleovalley fill, which is penetrated by a limited borehole dataset. Multiple erosion phases probably related to the post-MIS 5e sea-level fall are reconstructed from the upper paleovalley fill, where a buried fluvial terrace succession is identified a few tens of meters below the ground surface. The flat surfaces of two buried fluvial terraces suggest longer-term, stepped relative sea-level fall, and are correlated with fluvial incisions that took place possibly at the MIS 5/4 transition and at the MIS 3/2 transition, respectively. A laterally extensive gravel body developed on the valley floor during the Last Glacial Maximum. During the ensuing latest Pleistocene-early Holocene sea-level rise the Biferno paleovalley was transformed into an estuary. Upstream from the maximum shoreline ingression, the vertical succession of well-drained floodplain, poorly-drained floodplain, and swamp deposits evidences increasing

  6. Eocene monsoons

    NASA Astrophysics Data System (ADS)

    Huber, Matthew; Goldner, Aaron

    2012-01-01

    A prominent example of climate-tectonic coupling is the Asian monsoon and the uplift of the Tibetan Plateau. Here we review some of what is known about the history of the monsoon, within a global context and present results from fully coupled Eocene simulations in which Tibetan Plateau height is varied. Peak elevations were doubled from 2000 m to 4000 m whereas mean elevations increased from 750 to 1500 m. The fully coupled Eocene simulations show that introducing a higher Tibetan Plateau into Asian topography intensifies rainfall over southwest Asia, but induces drying over and behind the Plateau. This atmospheric response is controlled by increases in heating over the Plateau region which drives increases in moisture convergence inducing shifts in lower level atmospheric moisture flux. With Eocene boundary conditions aspects of the canonical response from prior work remain the same: cooling over the uplifted region, a large stationary wave response emanating from the plateau and extending into North America, and a large increase in precipitation in summer in the regions with strongest relief, with a rain shadow behind it. But some important local responses are different from similar studies with modern boundary conditions, such as a warming behind the uplifted mountains, and southward advection of warm, moist air from Paratethys onto the Plateau. These results demonstrate that simulations with fully interactive ocean-atmosphere coupled models with a realistic history of paleogeographic boundary conditions will increase the realism of the resulting climatic simulations and increase the body of available proxy evidence for comparison. More generally we find that a global monsoon distribution of precipitation exists in the Eocene regardless of Tibetan Plateau height. Changing Plateau height has minor global impacts, which include a slight drying of midlatitude and cooling of the North Pacific. The results are robust to changes in climate model resolution and

  7. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    USGS Publications Warehouse

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  8. Petrographic-geochemical characteristics of granitoids and their epigenetic alteration products in paleovalley fields (Vitim uranium-ore site)

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E. S.; Domarenko, V. A.; Matveenko, I. A.

    2016-09-01

    The study describes the results of the mineral and element composition of granitoids in basement and weathering crust of Khiagdinsk ore field in Vitim uranium ore site. It has been stated that granitoids in basement consist of leucocratic biotite granite of subalkaline group. The major rock-forming, accessory (apatite, zircon, sphene (titanite), magnetite, monazite, xenotime), and uranium-bearing minerals have been determined. Weathering crust is composed of unlithified or weakly lithified sediments, among which sandy and sandy medium gravel deposits have been distinguished in terms of mineralogical and granulometric texture. High radioactivity of granitoids was revealed in thorium-uranium basement and natural uranium. The combination of the specified factors presupposes that granitoids of Vitim uranium ore site may be a source of uranium in the fields of the paleovalley type.

  9. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    USGS Publications Warehouse

    Flores, R.M.; Sykes, R.

    1996-01-01

    The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic

  10. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  11. Early Eocene climate warming increased petroleum production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    From the late Paleocene, about 58 million years ago, to the early Eocene, about 51 million years ago, Earth's surface temperatures warmed by about 5°-10°C. Also in the early Eocene, there was an increase of carbon-13-depleted carbon in the oceans that cannot be accounted for by changes in carbon cycling at the surface. To better understand the source of that carbon, Kroeger and Funnell modeled the thermal evolution of four sedimentary basins in the southwestern Pacific Ocean. The authors show that the rising surface temperatures of the early Eocene eventually led to warming of the sedimentary beds deep beneath the surface. Petroleum can be produced at only a certain range of temperatures; rising temperatures at greater depths would bring more potential source rocks into temperature conditions under which oil and gas can be produced and released.

  12. Geochronology of Early Eocene strata, Baja California

    SciTech Connect

    Flynn, J.J.; Cipolletti, R.M.

    1985-01-01

    Recent discoveries clearly indicate a Wasatchian (Early Eocene) land mammal age for fossil vertebrates from the Punta Prieta area, Baja California North, Mexico. This fauna provides a rare test for discriminating the temporal significance of mammalian faunas over a broad geographic area. The authors sampled intertonguing, fossiliferous terrestrial and marine strata for paleomagnetic and biostratigraphic analyses to provide an independent age determination for the Punta Prieta area mammal fauna. The marine macroinvertebrate assemblage is most likely upper Meganos to lower Capay West Coast Molluscan Stage based on the temporal ranges of all the taxa; also, none of the taxa occur in pre-Meganos stages. Two genera of planktonic forams indicate a probably Eocene age. They sampled seventeen paleomagnetic sites over 50 meters in the terrestrial mammal-bearing section, and thirteen sites over 25 meters in the marine section. The entire terrestrial sequence is reversely magnetized; initial results indicate the marine sequence probably also is reversely magnetized. Based on all the available biochronologic evidence this reversed sequence most likely should be correlated with the long reversed polarity Chron C24R. Clarkforkian to Early Wasatchian faunas in Wyoming also are associated with Chron C24R. All the available biostratigraphic and magnetostratigraphic evidence strongly supports an Early Eocene age for the Punta Prieta mammalian fauna and temporal equivalence of the Punta Prieta Wasatchian fauna with Wasatchian faunas from the Western United States. Land mammal ages are synchronous and applicable across broad geographic areas.

  13. Possible methane-induced polar warming in the early Eocene

    NASA Astrophysics Data System (ADS)

    Sloan, L. C.; Walker, James C. G.; Moore, T. C., Jr.; Rea, David K.; Zachos, James C.

    1992-05-01

    Estimates of Eocene wetland areas are considered and it is suggested that the flux of methane may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming and also might have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick polar stratospheric ice clouds.

  14. Possible role of oceanic heat transport in Early Eocene climate

    NASA Astrophysics Data System (ADS)

    Sloan, L. Cirbus; Walker, James C. G.; Moore, T. C.

    1995-04-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an ˜30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  15. Possible role of oceanic heat transport in early Eocene climate.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C

    1995-04-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  16. Extreme Seasonality During Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2012-12-01

    An outcrop multi-proxy dataset from the Uinta Basin, Utah, US indicates that extreme seasonality occurred repeatedly during the Early Eocene transient global warming events (hyperthermals), during the Palaeocene-Eocene Thermal Maximum (PETM) as well as during the six consequent younger hyperthermals. In this multi-proxy analysis we have investigated the precipitation distribution and peakedness changes during Early Eocene hyperthermals. This dataset is different from previously published terrestrial climate proxy analyses, in that we fully utilize the sedimentary record itself, and especially the hydrodynamic indicators within the river strata. We combine these high-resolution sedimentologic-stratigraphic analyses, with analyses of terrestrial burrowing traces, and the conventional palaeosol and stable carbon isotope analyses. With this approach, we are able to better document hydroclimatologic changes, and identify climate seasonality changes, rather than just long-term mean humidity/aridity and temperature trends. For this study we analyzed over 1000 m of Palaeocene and Early Eocene river and lake strata in the Uinta Basin, Utah, US (Figs. 1 and 2). The sedimentologic-stratigraphic analyses of outcrops included measuring detailed stratigraphic sections, analyzing photopanels, a spatial GPS survey, and lateral walk-out of stratigraphic packages across an area of 300 km2, with additional data across an area of ca 6000 km2 (Fig. 2). Continental burrowing traces and palaeosols were analyzed along the measured sections. For geochemical analysis 196 samples of mudrock facies were collected along the measured sections and analyzed for total organic carbon (Corg), total nitrogen (Ntot), and δ13C values of bulk organic matter. Biostratigraphy (25), radiometric dates, and carbon isotope stratigraphy, using bulk δ13C of organic matter in floodplain siltstones confirm the position of the PETM and the 6-8 post-PETM hyperthermals in the studied strata The seasonality

  17. Tectonic control of Eocene arkosic sediment deposition, Oregon and Washington

    SciTech Connect

    Armentrout, J.M.; Ulrich, A.R.

    1983-03-01

    Chronostratigraphic and geographic studies of Eocene arkosic sandstones suggest deposition during a volcanically quiet interval resulting from the westward jump of the Farallon-Kula plate subduction zone in Oregon and Washington. The Eocene arkosic sandstones were deposited as part of a broad fluvial plain-coastal plain-shelf margin basin complex extending throughout Oregon and Washington between uplands of Mesozoic rocks. Feldspathic-quartzose sediments were transported from the east by river systems draining granitic terrains perhaps as far away as the Idaho Batholith. Chronostratigraphic correlations suggest that the arkosic sandstones were deposited along the margins of the depositional system during the early Eocene, prograded westward during the middle Eocene, and then regressed during the latest Eocene and Oligocene simultaneously with the influx of abundant pyroclastic debris. During the early Eocene, a northwest-southeast seamount chain was extruded on the Farallon and Kula plates west of an eastward-dipping subduction zone. Subduction of the oceanic plates moved the seamount chain obliquely toward the subduction zone. In middle Eocene time-49 to 40 m.y.b.p-the seamount chain reached the subduction zone creating instability in the subduction system and resulting in the westward jump of the underthrust boundary between the Farallon-Kula and North American plates. Coincident with and continuing after the subduction zone jump and seamount accretion, eastwardly derived arkosic sediments prograded across Oregon and Washington spilling into the new fore-arc basin and enveloping the seamounts.

  18. The Arctic Forest of the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope

    2007-05-01

    Lush forests, dominated by deciduous conifers, existed well north of the Arctic Circle during the middle Eocene (45 Ma). The Fossil Forest site, located on Axel Heiberg Island, Canada, has yielded a particularly rich assemblage of plant macro- and microfossils, as well as paleosols -- all exquisitely preserved. Methods ranging from classical paleobotany, to stable-isotope geochemistry, have been applied to materials excavated from the Fossil Forest and have revealed layers of diverse conifer forests with a rich angiosperm understory that successfully endured three months of continuous light and three months of continuous darkness. Paleoenvironmental reconstructions suggest a warm, ice-free environment, with high growing-season-relative humidity, and high rates of soil methanogenesis. Methods to evaluate intraseasonal variability highlight the switchover from stored to actively fixed carbon during the short annual growing season.

  19. Was the Arctic Eocene 'rainforest' monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut

    NASA Astrophysics Data System (ADS)

    West, Christopher K.; Greenwood, David R.; Basinger, James F.

    2015-10-01

    The early Eocene was the warmest interval of the Cenozoic, and included within it were several hyperthermal events, with the Paleocene-Eocene Thermal Maximum (PETM) the most pronounced of these. These globally warm climates extended into the Arctic and substantive paleobotanical evidence for high Arctic precipitation (MAP > 150 cm/yr) is indicative of an Arctic rainforest, which contradicts some climate models that show low Arctic precipitation. Prior studies of Arctic early Eocene wood stable-isotope chemistry, however, have shown a summer peak in precipitation, which suggests modern analogs are best sought on the summer-wet east coast of the Asia (e.g., China, Japan, South Korea), not the winter-wet west coasts of the Pacific Northwest of North America). Furthermore, some prior modeling data suggest that highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer:MAP > 55%) characterized certain mid and lower latitude regions in the early to mid-Eocene. Presented here is a new analysis using leaf physiognomy of 3 leaf megafloras (Split Lake, Stenkul Fiord and Strathcona Fiord) and palynofloral Bioclimatic Analysis from the Margaret Formation from Ellesmere Island, placed stratigraphically as early Eocene, possibly occurring during or following one of the early Eocene hyperthermals. These new data indicate high summer precipitation in the Arctic during the early Eocene, which in part corroborates the results from Eocene wood chemistry. Nevertheless, in contradiction to the wood analysis, monsoonal conditions are not indicated by our analysis, consistent with current modeling studies. High summer (light season) and winter (dark season) precipitation in the Eocene Arctic during hyperthermals would have contributed to regional warmth.

  20. The Terrestrial Eocene-Oligocene Transition in North America

    NASA Astrophysics Data System (ADS)

    Prothero, Donald R.; Emry, Robert J.

    1996-06-01

    The transition from the Eocene to the Oligocene epoch, occurring approximately 47 to 30 million years ago, was the most dramatic episode of climatic and biotic change since the demise of the dinosaurs. The mild tropical climates of the Paleocene and early Eocene were replaced by modern climatic conditions and extremes, including glacial ice in Antarctica. The first part of this book summarizes the latest information in the dating and correlation of the strata of late middle Eocene through early Oligocene age in North America. The second part reviews almost all the important terrestrial reptiles and mammals found near the Eocene-Oligocene boundary, in the White River Chronofauna--from the turtles, snakes and lizards to the common rodents, carnivores, oreodonts and deer of the Badlands. This is the first comprehensive treatment of these topics in over sixty years, and will be invaluable to vertebrate paleontologists, geologists, mammalogists and evolutionary biologists.

  1. Eocene lizard from Germany reveals amphisbaenian origins.

    PubMed

    Müller, Johannes; Hipsley, Christy A; Head, Jason J; Kardjilov, Nikolay; Hilger, André; Wuttke, Michael; Reisz, Robert R

    2011-05-19

    Amphisbaenia is a speciose clade of fossorial lizards characterized by a snake-like body and a strongly reinforced skull adapted for head-first burrowing. The evolutionary origins of amphisbaenians are controversial, with molecular data uniting them with lacertids, a clade of Old World terrestrial lizards, whereas morphology supports a grouping with snakes and other limbless squamates. Reports of fossil stem amphisbaenians have been falsified, and no fossils have previously tested these competing phylogenetic hypotheses or shed light on ancestral amphisbaenian ecology. Here we report the discovery of a new lacertid-like lizard from the Eocene Messel locality of Germany that provides the first morphological evidence for lacertid-amphisbaenian monophyly on the basis of a reinforced, akinetic skull roof and braincase, supporting the view that body elongation and limblessness in amphisbaenians and snakes evolved independently. Morphometric analysis of body shape and ecology in squamates indicates that the postcranial anatomy of the new taxon is most consistent with opportunistically burrowing habits, which in combination with cranial reinforcement indicates that head-first burrowing evolved before body elongation and may have been a crucial first step in the evolution of amphisbaenian fossoriality.

  2. Widespread Antarctic glaciation during the Late Eocene

    NASA Astrophysics Data System (ADS)

    Carter, Andrew; Riley, Teal R.; Hillenbrand, Claus-Dieter; Rittner, Martin

    2017-01-01

    Marine sedimentary rocks drilled on the southeastern margin of the South Orkney microcontinent in Antarctica (Ocean Drilling Program Leg 113 Site 696) were deposited between ∼36.5 Ma to 33.6 Ma, across the Eocene-Oligocene climate transition. The recovered rocks contain abundant grains exhibiting mechanical features diagnostic of iceberg-rafted debris. Sand provenance based on a multi-proxy approach that included petrographic analysis of over 275,000 grains, detrital zircon geochronology and apatite thermochronometry rule out local sources (Antarctic Peninsula or the South Orkney Islands) for the material. Instead the ice-transported grains show a clear provenance from the southern Weddell Sea region, extending from the Ellsworth-Whitmore Mountains of West Antarctica to the coastal region of Dronning Maud Land in East Antarctica. This study provides the first evidence for a continuity of widespread glacier calving along the coastline of the southern Weddell Sea embayment at least 2.5 million yrs before the prominent oxygen isotope event at 34-33.5 Ma that is considered to mark the onset of widespread glaciation of the Antarctic continent.

  3. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  4. Sediment budget of a terrestrial source-to-sink system: An example from the Eocene Escanilla Formation, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Michael, N.; Allen, P. A.; Carter, A.; Mange, M.

    2010-12-01

    This study examines the source-to-sink system of the Escanilla Formation in the South-Central Pyrenees(1). The Escanilla Formation is the fluvial segment of a sediment routing system that was deposited by ancient rivers in the Tremp-Graus and Ainsa wedge-top basins during the late Eocene, at the time of tectonic activity in the Pyrenean orogen(2-3). The study uses thermochronological and isotopic data (AFT and U-Pb geochronology) and heavy minerals as provenance tools, allowing correlation between the subunits and timelines within the Escanilla routing system(4-5) and pinpointing source areas. Volumetric analysis of the Escanilla routing system from the proximal depocenters of the Sis and Gurp Paleovalleys(2) to the distal fluvial depozones of the Tremp and Ainsa sub basins has been carried out. Additionally, granulometric data have been gathered throughout the sediment routing system. Using the combined sediment volume and grain size data, we estimate a probability density function for the sediment supply to the fluvial segment of the system within each chosen time interval. In addition, we calculate deposited sediment volumes per time interval that enable sediment discharges and catchment-averaged erosion rates to be estimated. Estimated erosion rates can be compared with estimates derived from thermochronological data. This study provides critical information on the pdf of the grain size distribution of the sediment supply, the sediment discharge from source area catchments, and the spatial distribution of subsidence in the basin within each of the time subdivisions of the Escanilla Formation. These factors comprise the main controls on down-system sedimentary architecture(6-8). References 1. Bentham, P.A. and Burbank, D.W. 1996 Chronology of Eocene foreland basin evolution along the western oblique margin of the South-Central Pyrenees. Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, p400. 2. Vincent, S

  5. Constructing an Eocene Marine Ecosystem Sensitivity Scale

    NASA Astrophysics Data System (ADS)

    D'haenens, S.; Bornemann, A.; Speijer, R. P.; Hull, P. M.

    2014-12-01

    A key question in the face of current global environmental change is how marine ecosystems will respond and evolve in the future. To answer this, we first need to understand the relationship between environmental and ecosystem change - i.e., the ecosystem sensitivity. Addressing this question requires understanding of how biota respond to (a succession of) sudden environmental perturbations of varying sizes and durations in varying background conditions (i.e., climatic, oceanographic, biotic). Here, we compare new and published data from the Early to Middle Eocene greenhouse world to understand the sensitivity of marine ecosystems to background environmental change and hyperthermal events. This work focuses on the early Paleogene, because it is considered to be a good analog for a future high CO2 world. Newly generated high-resolution multiproxy datasets based on northern Atlantic DSDP Leg 48 and IODP Leg 342 material will allow us to compare the marine ecosystem responses (including bentho-pelagic systems) to abiotic drivers across climatic disruptions of differing magnitude. Initial results of a benthic foraminiferal community comparison including the PETM and ETM2 hyperthermals in the northeastern Atlantic DSDP sites 401 and 5501 suggest that benthic ecosystem sensitivity may actually be non-linearly linked to background climate states as reflected by a range of geochemical proxies (XRF, TOC, CaCO3, grain sizes, XRD clay mineralogy and foraminiferal δ18O, δ13C, Mg/Ca)2,3, in contrast to planktic communities4. Testing the type of scaling across different taxa, communities, initial background conditions and time scales may be the first big step to disentangle the often synergistic effects of environmental change on ecosystems5. References: 1D'haenens et al., 2012, in prep. 2Bornemann et al., 2014, EPSL 3D'haenens et al., 2014, PA 4Gibbs et al., 2012, Biogeosc. 5 Norris et al., 2013, Science

  6. Elevated Eocene atmospheric CO2 and its subsequent decline.

    PubMed

    Lowenstein, Tim K; Demicco, Robert V

    2006-09-29

    Quantification of the atmospheric concentration of CO2 ([CO2]atm) during warm periods of Earth's history is important because burning of fossil fuels may produce future [CO2]atm approaching 1000 parts per million by volume (ppm). The early Eocene (~56 to 49 million years ago) had the highest prolonged global temperatures of the past 65 million years. High Eocene [CO2]atm is established from sodium carbonate minerals formed in saline lakes and preserved in the Green River Formation, western United States. Coprecipitation of nahcolite (NaHCO3) and halite (NaCl) from surface waters in contact with the atmosphere indicates [CO2]atm > 1125 ppm (four times preindustrial concentrations), which confirms that high [CO2]atm coincided with Eocene warmth.

  7. Radiolarian biostratigraphy of siliceous Eocene deposits in central California

    USGS Publications Warehouse

    Blueford, J.

    1988-01-01

    Abundant Eocene siliceous deposits in California are located in the San Joaquin and Sacramento valleys. The white shales to buff mudstones are characterized by radiolarians, diatoms, and silicoflagellates. Taxonomic descriptions and abundance data of key radiolarian species in existing monographs have limited biostratigraphic and paleoenvironmental interpretation. The California fauna is similar to faunas from the Norwegian Sea, Russian Platform, and southern oceans of Antarctica. Eocene faunas from the equatorial Pacific Ocean and Caribbean Sea differ considerably in diversity. In this study, the taxonomy and biostratigraphic information of species comprising more than 2% of the population are evaluated. Two radiolarian zones are erected for the middle Eocene of California, the Podocyrtis fasciata and Calocyclas semipolita Zones. Paleoenvironmental information suggests that some differences in the fauna may be environmentally controlled due to deposition in submarine canyons. -Authors

  8. Asian monsoons in a late Eocene greenhouse world

    NASA Astrophysics Data System (ADS)

    Licht, A.; van Cappelle, M.; Abels, H. A.; Ladant, J.-B.; Trabucho-Alexandre, J.; France-Lanord, C.; Donnadieu, Y.; Vandenberghe, J.; Rigaudier, T.; Lécuyer, C.; Terry, D., Jr.; Adriaens, R.; Boura, A.; Guo, Z.; Soe, Aung Naing; Quade, J.; Dupont-Nivet, G.; Jaeger, J.-J.

    2014-09-01

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  9. Climate Sensitivity to Vegetation Distribution in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Clifthorne, S. J.; Shellito, C. J.; Sloan, L. C.

    2004-12-01

    There are large uncertainties associated with the reconstructions of global vegetation distributions for past time periods in Earth history. In order to investigate the influence of the global distribution of vegetation on modeled early Eocene climate, we carried out two experiments with the National Center for Atmospheric Research Community Atmosphere Model (v.2.0.2.). Both experiments used an atmospheric CO2 level of 560 ppm and sea surface temperatures generated in a previous Eocene modeling study (Huber and Sloan, 2001). The experiments differed only in their prescribed vegetation distributions. The first experiment used output from an Eocene study with a dynamic global vegetation model (DGVM) (Shellito and Sloan, in preparation), while the second case used a vegetation scheme based on fossil flora (Sewall et al., 2000). In creating the Sewall et al. (2000) vegetation scheme, no specific atmospheric CO2 level was specified, whereas the DGVM in the study by Shellito and Sloan (in preparation) allowed the initial vegetation to reach equilibrium with a pCO2 level of 560 ppm. Two additional experiments were run with higher atmospheric CO2 concentrations of 1120 ppm; one used output from an Eocene DGVM study with a pCO2 of 1120 ppm (Shellito and Sloan, in preparation), while the second case used the Sewall et al. (2000) vegetation. Comparison of early Eocene climates resulting from each pair of pCO2 experiments allows us to assess the influence of prescribed vegetation upon climate. By evaluating these results at two different levels of atmospheric CO2, we can investigate the combined effects of pCO2 and vegetation upon the resulting early Eocene climate.

  10. High plant diversity in Eocene South America: evidence from Patagonia.

    PubMed

    Wilf, Peter; Cúneo, N Rubén; Johnson, Kirk R; Hicks, Jason F; Wing, Scott L; Obradovich, John D

    2003-04-04

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude approximately 47 degrees S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  11. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ~47oS, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  12. Large Variations in Ice Volume During the Middle Eocene "Doubthouse"

    NASA Astrophysics Data System (ADS)

    Dawber, C. F.; Tripati, A. K.

    2008-12-01

    The onset of glacial conditions in the Cenozoic is widely held to have begun ~34 million years ago, coincident with the Eocene-Oligocene boundary1. Warm and high pCO2 'greenhouse' intervals such as the Eocene are generally thought to be ice-free2. Yet the sequence stratigraphic record supports the occurrence of high-frequency sea-level change of tens of meters in the Middle and Late Eocene3, and large calcite and seawater δ18O excursions (~0.5-1.0 permil) have been reported in foraminifera from open ocean sediments4. As a result, the Middle Eocene is often considered the intermediary "doubthouse". The extent of continental ice during the 'doubthouse' is controversial, with estimates of glacioeustatic sea level fall ranging from 30 to 125m2,3,5. We present a new δ18Osw reconstruction for Ocean Drilling Project (ODP) Site 1209 in the tropical Pacific Ocean. It is the first continuous high-resolution record for an open-ocean site that is not directly influenced by changes in the carbonate compensation depth, which enables us to circumvent many of the limitations of existing records. Our record shows increases of 0.8 ± 0.2 (1 s.e) permil and 1.1 ± 0.2 permil at ~44-45 and ~42-41 Ma respectively, which suggests glacioeustatic sea level variations of ~90 m during the Middle Eocene. Modelling studies have shown that fully glaciating Antarctica during the Eocene should drive a change in seawater (δ18Osw) of 0.45 permil, and lower sea level by ~55 m6. Our results therefore support significant ice storage in both the Northern and Southern Hemisphere during the Middle Eocene 'doubthouse'. 1.Miller, Kenneth G. et al., 1990, Eocene-Oligocene sea-level changes in the New Jersey coastal plain linked to the deep-sea record. Geological Society of America Bulletin 102, 331-339 2.Pagani, M. et al., 2005, Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309 (5734), 600-603. 3.Browning, J., Miller, K., and Pak, D., 1996, Global implications

  13. Eocene Paleoclimate: Incredible or Uncredible? Model data syntheses raise questions.

    NASA Astrophysics Data System (ADS)

    Huber, M.

    2012-04-01

    Reconstructions of Eocene paleoclimate have pushed on the boundaries of climate dynamics theory for generations. While significant improvements in theory and models have brought them closer to the proxy data, the data themselves have shifted considerably. Tropical temperatures and greenhouse gas concentrations are now reconstructed to be higher than once thought--in agreement with models--but, many polar temperature reconstructions are even warmer than the eye popping numbers from only a decade ago. These interpretations of subtropical-to-tropical polar conditions once again challenge models and theory. But, the devil, is as always in the details and it is worthwhile to consider the range of potential uncertainties and biases in the paleoclimate record interpretations to evaluate the proposition that models and data may not materially disagree. It is necessary to ask whether current Eocene paleoclimate reconstructions are accurate enough to compellingly argue for a complete failure of climate models and theory. Careful consideration of Eocene model output and proxy data reveals that over most of the Earth the model agrees with the upper range of plausible tropical proxy data and the lower range of plausible high latitude proxy reconstructions. Implications for the sensitivity of global climate to greenhouse gas forcing are drawn for a range of potential Eocene climate scenarios ranging from a literal interpretation of one particular model to a literal interpretation of proxy data. Hope for a middle ground is found.

  14. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  15. Arctic plant diversity in the Early Eocene greenhouse.

    PubMed

    Harrington, Guy J; Eberle, Jaelyn; Le-Page, Ben A; Dawson, Mary; Hutchison, J Howard

    2012-04-22

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55-52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44-47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants.

  16. A new Late Eocene anthropoid primate from Thailand.

    PubMed

    Chaimanee, Y; Suteethorn, V; Jaeger, J J; Ducrocq, S

    1997-01-30

    The fossil record of anthropoid primates from the Middle Eocene of South Asia is so far restricted to two genera (Pondaungia cotteri Pilgrim, 1937 and Amphipithecus mogaungensis Colbert, 1937 from the Eocene Pondaung deposits of Burma) whose anthropoid status and phylogenetic position have long been under debate because they represent the oldest highly derived fossil primates of anthropoid grade. Moreover, several new African taxa, some of which are even older, have been recently included in the suborder Anthropoidea, suggesting an African origin for this group. Conversely, new fossil primates recently discovered in China (Eosimias) have been related to the most primitive representatives of Anthropoidea, alternatively suggesting an Asian origin and a probable Asian radiation centre. We report here the discovery of a new anthropoid from the Thai Late Eocene locality of Krabi, which displays several additional anthropoid characters with regard to those of the Eocene Burmese genera. This species, which is about the size of the Fayum Aegyptopithecus, can be related to the Burmese forms, and it further provides strong additional evidence for a southeast Asian evolutionary centre for anthropoids.

  17. Possible methane-induced polar warming in the early Eocene.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C; Rea, D K; Zachos, J C

    1992-05-28

    Reconstructions of early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally. Oceanic heat transport has been postulated as a mechanism for heating high latitudes, but it is difficult to explain the dynamics that would achieve this. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds.

  18. Arctic Climate during Eocene Hyperthermals: Wet Summers on Ellesmere Island?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; West, C. K.; Basinger, J. F.

    2012-12-01

    Previous work has shown that during the late Paleocene to middle Eocene, mesothermal conditions (i.e., MAT ~12-15° C) and high precipitation (MAP > 150cm/yr) characterized Arctic climates - an Arctic rain forest. Recent analyses of Arctic Eocene wood stable isotope chemistry are consistent with the annual and seasonal temperature estimates from leaf physiognomy and nearest living relative analogy from fossil plants, including the lack of freezing winters, but is interpreted as showing that there was a summer peak in precipitation - modern analogs are best sought on the summer-wet east coasts (e.g., China, Japan, South Korea) not the winter-wet west coasts of present-day northern temperate continents (e.g., Pacific northwest of North America). Highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer precip./winter precip. > 3.0) seem to characterize Eocene hyperthermal conditions in several regions of the earth, including the Arctic and Antarctic, based on both climate model sensitivity experiments and the paleoclimate proxy evidence. The leaf physiognomy proxy previously applied to estimate Arctic Paleogene precipitation was leaf area analysis (LAA), a correlation between mean leaf size in woody dicot vegetation and annual precipitation. New data from modern monsoonal sites, however demonstrates that for deciduous-dicot dominated vegetation, summer precipitation determines mean leaf size, not annual totals, and therefore that under markedly seasonal precipitation and/or light regimes that summer precipitation is being estimated using LAA. Presented here is a new analysis of a leaf macrofloras from 3 separate florules of the Margaret Formation (Split Lake, Stenkul Fiord and Strathcona Fiord) from Ellesmere Island that are placed stratigraphically as early Eocene, and likely fall within Eocene thermal maximum 1 (ETM1; = the 'PETM') or ETM2. These floras are each characterized by a mix of large-leafed and small-leafed dicot taxa, with overall

  19. Seasonal variability in Arctic temperatures during early Eocene time

    NASA Astrophysics Data System (ADS)

    Eberle, Jaelyn J.; Fricke, Henry C.; Humphrey, John D.; Hackett, Logan; Newbrey, Michael G.; Hutchison, J. Howard

    2010-08-01

    As a deep time analog for today's rapidly warming Arctic region, early Eocene (52-53 Ma) rock on Ellesmere Island in Canada's High Arctic (˜ 79°N.) preserves evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, the quantification of Eocene Arctic climate has been more elusive. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we infer early Eocene Arctic temperatures, including mean annual temperature (MAT) of ˜ 8 °C, mean annual range in temperature of ˜ 16.5-19 °C, warm month mean temperature of 19-20 °C, and cold month mean temperature of 0-3.5 °C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, relatively high estimates of early Eocene Arctic MAT and SST by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and isoprenoid tetraether lipids in marine Crenarchaeota fall close to our warm month temperature, suggesting a bias towards summer values. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although for both of these reptilian groups, past temperature tolerances probably were greater than in living descendants.

  20. Seasonal variability in Arctic temperatures during the early Eocene

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  1. Eocene cooling linked to early flow across the Tasmanian Gateway.

    PubMed

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  2. Eocene cooling linked to early flow across the Tasmanian Gateway

    PubMed Central

    Bijl, Peter K.; Bendle, James A. P.; Bohaty, Steven M.; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E.; McKay, Robert M.; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Williams, Trevor; Carr, Stephanie A.; Dunbar, Robert B.; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Passchier, Sandra; Pekar, Stephen F.; Riesselman, Christina; Sakai, Toyosaburo; Shrivastava, Prakash K.; Sugisaki, Saiko; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-01-01

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. PMID:23720311

  3. Rapid Middle Eocene temperature change in western North America

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page

    2016-09-01

    Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.

  4. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Rich, F.J.; Williams, D.A.; Bland, A.E.; Fiene, F.L.

    1990-01-01

    Lignites occur in the Cretaceous McNairy Formation and the Eocene Claiborne Formation in the Jackson Purchase region of western Kentucky. The lone Cretaceous lignite sample has over 18 percent inertodetrinite and 32 percent humodetrinite which, along with the abundant mineral matter, suggests a possible allochthonous origin for the deposit. The Claiborne Formation lignites have higher humic maceral contents than the Cretaceous lignites. Palynology suggests that there was considerable variation in the plant communities responsible for the Claiborne deposits. Differences in the preservation of the various plants is also seen in the variations between the humic types, particularly in the ulminite and humodetrinite contents. Potter and Dilcher (1980) suggested that the Claiborne lignites in the Jackson Purchase and west Tennessee developed in the abandoned oxbows of Eocene rivers. Significant short-distance changes in the peat thickness, flora, and other depositional elements should be expected in such an environment and could easily account for the observed variations in composition. ?? 1990.

  5. Impact ejecta at the Paleocene-Eocene boundary.

    PubMed

    Schaller, Morgan F; Fung, Megan K; Wright, James D; Katz, Miriam E; Kent, Dennis V

    2016-10-14

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary.

  6. The Middle Eocene flora of Csordakút (N Hungary)

    NASA Astrophysics Data System (ADS)

    Erdei, Boglárka; Rákosi, László

    2009-02-01

    The Middle Eocene fossil plant assemblage from Csordakút (N Hungary) comprises plant remains preserved exclusively as impressions. Algae are represented by abundant remains of Characeae, including both vegetative fragments and gyrogonites. Remains of angiosperms comprise Lauraceae (Daphnogene sp.), Fagaceae (cf. Eotrigonobalanus furcinervis), Ulmaceae (Cedrelospermum div. sp.), Myricaceae (Myrica sp., Comptonia div. sp.), Leguminosae (leaves and fruit), Rhamnaceae (?Zizyphus zizyphoides), Elaeocarpaceae (Sloanea nimrodi, Sloanea sp. fruit), Smilacaceae (Smilax div. sp.). The absence of gymnosperms is indicative of a floristic similarity to the coeval floras of Tatabánya (N Hungary) and Girbou in Romania. Sloanea nimrodi (Ettingshausen) Kvaček & Hably, a new element for the Hungarian fossil record indicates a floristic relation to the Late Eocene flora of Kučlin (Bohemia).

  7. Late Eocene impact microspherules - Stratigraphy, age and geochemistry

    NASA Astrophysics Data System (ADS)

    Keller, G.; D'Hondt, S. L.; Orth, C. J.; Gilmore, J. S.; Oliver, P. Q.; Shoemaker, E. M.; Molina, E.

    1987-03-01

    The stratigraphy, faunal changes, and geochemistry of deep-sea sediments associated with late Eocene microtektite and microspherule layers are reported. Microprobe analyses of major element compositions of microspherules show that, although there is some compositional overlap in all three late Eocene layers as well as with the Pleistocene Australasian and Ivory Coast microtektites, each microspherule population has characteristic compositional features. All three microspherule layers are associated with decreased carbonate, possibly due to a sudden productivity change, increased dissolution as a result of sea-level and climate fluctuations, or impact events. A discovery of microtektites in the Gl. cerroazulensis Zone off the New Jersey coast extends the North American strewn field from the Caribbean to the northwest Atlantic.

  8. Impact ejecta at the Paleocene-Eocene boundary

    NASA Astrophysics Data System (ADS)

    Schaller, Morgan F.; Fung, Megan K.; Wright, James D.; Katz, Miriam E.; Kent, Dennis V.

    2016-10-01

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary.

  9. Early Eocene's climate and ocean circulation from coupled model simulations

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Thomas, Maik

    2014-05-01

    While proxy data provide a snapshot of climate conditions at a specific location, coupled atmosphere-ocean models are able to expand this knowledge over the globe. Therefore, they are indispensable tools for understanding past climate conditions. We model the dynamical state of atmosphere and ocean during the Early Eocene and pre-industrial times, using the coupled atmosphere-ocean model ECHAM5/MPIOM with realistic reconstructions of vegetation and CO2. The resulting simulated climate variables are compared to terrestrial and oceanic proxies. The Early Eocene climate is in the global mean warmer (~13°C) and wetter (~1 mm/d) than in pre-industrial times. Especially temperatures in the Southern Ocean, the Greenland Sea and Arctic Ocean raise by up to 25K, being in accordance with surface temperature estimates from terrestrial and marine proxy data. The oceans are hereby rendered ice-free, leading to a decrease of polar albedo and thereby facilitating polar warming. This leads to a by 5K diminished equator-to-pole temperature gradient. Warmer temperatures as well as changed bathymetry have an effect on ocean dynamics in the Early Eocene. Although deep-water formation can be found in the Greenland Sea, Weddell Sea, and Tethys Sea, it is weaker than in the pre-industrial run and the resulting circulation is shallower. This is not only visible in water transport through sea gates but also in the Atlantic Meridional Overturning Circulation (AMOC), adopting its maximum at 700m depths in the Early Eocene, while maximum transport is reached in the pre-industrial control run at 1200m. Albeit a shallow and weak thermohaline circulation, a global ocean conveyor belt is being triggered, causing a transport from the areas of subduction through the Atlantic and Southern Oceans into the Indian and Pacific Oceans.

  10. A New Eocene Casquehead Lizard (Reptilia, Corytophanidae) from North America.

    PubMed

    Conrad, Jack L

    2015-01-01

    A new fossil showing affinities with extant Laemanctus offers the first clear evidence for a casquehead lizard (Corytophanidae) from the Eocene of North America. Along with Geiseltaliellus from roughly coeval rocks in central Europe, the new find further documents the tropical fauna present during greenhouse conditions in the northern mid-latitudes approximately 50 million years ago (Ma). Modern Corytophanidae is a neotropical clade of iguanian lizards ranging from southern Mexico to northern South America.

  11. Asian Eocene monsoons as revealed by leaf architectural signatures

    NASA Astrophysics Data System (ADS)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  12. A New Eocene Casquehead Lizard (Reptilia, Corytophanidae) from North America

    PubMed Central

    Conrad, Jack L.

    2015-01-01

    A new fossil showing affinities with extant Laemanctus offers the first clear evidence for a casquehead lizard (Corytophanidae) from the Eocene of North America. Along with Geiseltaliellus from roughly coeval rocks in central Europe, the new find further documents the tropical fauna present during greenhouse conditions in the northern mid-latitudes approximately 50 million years ago (Ma). Modern Corytophanidae is a neotropical clade of iguanian lizards ranging from southern Mexico to northern South America. PMID:26131767

  13. Webspinners in Early Eocene amber from western India (Insecta, Embiodea)

    PubMed Central

    Engel, Michael S.; Grimaldi, David A.; Singh, Hukam; Nascimbene, Paul C.

    2011-01-01

    Abstract The family Scelembiidae (Neoembiodea: Embiomorpha: Archembioidea) is recorded from Asia for the first time, based on two individuals preserved in Early Eocene amber from the Cambay Basin, western India. Kumarembia hurleyi Engel & Grimaldi, gen. n. et sp. n., is described, figured, and distinguished from other archembioid genera. The genus shares male genitalic features with scelembiids, otherwise known from South America and Africa. PMID:22287898

  14. Hydrocarbon potential of Middle Eocene carbonates, Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Swei, Giuma H.; Tucker, Maurice E.

    2015-11-01

    Deposition of Middle Eocene carbonates in the Sirt Basin in Libya has been the subject of considerable study in recent years because of the importance of sediments of this age as hydrocarbon reservoirs. The Gialo Formation is an important gas-producing reservoir in the Assumood, Sahl and other nearby fields. The gas which is generated from the gas-prone Sirt Shale source rock of the northern Ajdabiya Trough probably migrated in to the Assumood Ridge from the northeast through late Cretaceous, Paleocene and early Eocene carbonates, before being trapped beneath the Augila Shale (Upper Eocene) which is the principal regional seal in the area. This integrated study has enhanced our understanding of reservoir heterogeneity and hydrocarbon potential of the Gialo carbonates and should lead to improved exploration in the future. Reservoir quality in the Gialo Formation is a function of grain types, pore types, grain size, sorting, cementation and compaction, and predicting areas of high reservoir quality has proved difficult; exploration should be oriented to positioning wells into the main trend of the mid-ramp, nummulite accumulation. Different nummulite facies can be reservoirs depending on their diagenetic history. A diagenetic reduction in porosity must be distinguished from a lack of porosity resulting from an unfavourable depositional environment, so that exploration alternatives can be assessed. This integrated study has demonstrated the presence of suitable reservoir rocks, hydrocarbon traps and the close proximity of potential source rocks. These features should encourage further hydrocarbon exploration in the area.

  15. Eocene tidal deposits, northern San Diego County, California

    SciTech Connect

    Eisenberg, L.I.; Abbott, P.L.

    1985-02-01

    A transgressive-regressive sedimentation sequence is recorded in a band of middle Eocene strata a few miles wide. An abundance of primary sedimentary structures, along with interfingering relationships and paleontology, define 12 lithofacies representing depositional environments including nearshore shelf, outer and inner barrier island, tidal flats and channels, lagoon and lagoonal delta. Tide-influenced sedimentary features are well defined and include meandering and abandoned tidal channels, oppositely inclined superimposed cross-strata, interlaminated mud and sand along the basal and lateral accretion surfaces of migrating tidal channels, flaser and wavy bedding, and storm-deposited strata. The first sedimentary half cycle was transgressive and documents the compression of dominantly tidal-flat and lagoonal environments against a steep, hilly coastline by the overall rising sea level of early and medial middle Eocene time. The inboard tidal-flat and lagoonal mudstones (Delmar and Friars Formations) and outboard tidal flat, channel and bar sandstones (Torrey Sandstone and Scripps Formation) interfinger in a landward-climbing, 3-dimensional sedimentary mass that parallels and meets the basement with a pronounced unconformity. The second half cycle was regressive and occurred in the medial and late middle Eocene. It formed due to the influx of coarser, more angular sediment from the adjacent basement into the narrowed paralic zone. This westward (seaward) progradation of lagoonal delta and inner tidal-flat sandy sediments occurred despite the still-rising sea level.

  16. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae).

    PubMed

    García-R, Juan C; Gibb, Gillian C; Trewick, Steve A

    2014-01-01

    Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.

  17. Eocene Diversification of Crown Group Rails (Aves: Gruiformes: Rallidae)

    PubMed Central

    García–R, Juan C.; Gibb, Gillian C.; Trewick, Steve A.

    2014-01-01

    Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves. PMID:25291147

  18. Late Eocene white pines (Pinus subgenus Strobus) from southern China

    PubMed Central

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M.; Naugolnykh, Serge V.; Jin, Jianhua

    2015-01-01

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene. PMID:26548658

  19. Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica

    PubMed Central

    Kriwet, Jürgen; Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo; Pfaff, Cathrin

    2017-01-01

    The Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, is known for its remarkable wealth of fossil remains of chondrichthyans and teleosts. Chondrichthyans seemingly were dominant elements in the Antarctic Paleogene fish fauna, but decreased in abundance from middle to late Eocene, during which time remains of bony fishes increase. This decline of chondrichthyans at the end of the Eocene generally is related to sudden cooling of seawater, reduction in shelf area, and increasing shelf depth due to the onset of the Antarctic thermal isolation. The last chondrichthyan records known so far include a chimeroid tooth plate from TELM 6 (Lutetian) and a single pristiophorid rostral spine from TELM 7 (Priabonian). Here, we present new chondrichthyan records of Squalus, Squatina, Pristiophorus, Striatolamia, Palaeohypotodus, Carcharocles, and Ischyodus from the upper parts of TELM 7 (Priabonian), including the first record of Carcharocles sokolovi from Antarctica. This assemblage suggests that chondrichthyans persisted much longer in Antarctic waters despite rather cool sea surface temperatures of approximately 5°C. The final disappearance of chondrichthyans at the Eocene–Oligocene boundary concurs with abrupt ice sheet formation in Antarctica. Diversity patterns of chondrichthyans throughout the La Meseta Formation appear to be related to climatic conditions rather than plate tectonics. PMID:28298806

  20. Testing the Paleocene-Eocene Thermal Maximum Magnetofossil Spike Hypothesis

    NASA Astrophysics Data System (ADS)

    Tikoo, S. M.; Kopp, R. E.; Smirnov, A. V.; Raub, T. D.; Schumann, D.; Vali, H.; Kirschvink, J. L.

    2007-12-01

    Ferromagnetic resonance (FMR) spectroscopy detected a magnetofossil spike in Paleocene-Eocene Thermal Maximum (PETM) kaolinitic siltstone of New Jersey's Atlantic Coastal Plain, confirmed by two independent TEM studies and consistent with (but not required by) data from conventional rock magnetic analyses [1,2]. Applying first-order reversal curve (FORC) analysis to the same sediments demonstrates for the first time that ancient magnetofossils bear a FORC signature similar to that of both cultured and environmental magnetotactic bacteria. In order to test whether the observed PETM magnetofossil enrichment was a local or global phenomenon, we compare multi-proxy enviromagnetic profiles through the Atlantic Coastal Plain clay and present new FMR and rock-magnetic stratigraphies through other Paleocene-Eocene boundary sections. Our analyses of samples from the Paleocene-Eocene GSSP at Dababiya, Egypt, indicate the presence of a positive anisotropic, medium- to-high coercivity ferromagnetic component with FMR signatures similar to transitional signatures immediately preceding and following the magnetofossil spike in New Jersey. References: [1] R. E. Kopp,T. D. Raub, D. Schumann, H. Vali, A. V. Smirnov, and J. L. Kirschvink, 2007. Paleoceanography (in press). [2] P. C. Lippert and J. C. Zachos, 2007. Paleoceanography (in press).

  1. Continental temperature change during Early Eocene hyperthermal events

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Abels, Hemmo; de Winter, Nils; Gingerich, Philip; Bernasconi, Stefano

    2015-04-01

    Carbonate clumped isotope thermometry has great potential for solving long-standing questions in paleoclimatology as it provides temperature estimates that are independent from assumptions regarding the isotopic or elemental composition of water from which the carbonate precipitated. The clumped isotope group at ETH has worked towards decreasing the sample size requirements and derived new calibrations for the Kiel method based on synthetic and natural calcites. Here we present results of clumped isotope based continental temperatures across the Paleocene-Eocene Thermal Maximum (PETM). The Bighorn Basin of northwestern Wyoming provides hundreds of meters of excellently exposed river floodplain strata of Paleocene and early Eocene age. Records of the the largest greenhouse-warming episode in this interval of time, were recovered soon after their discovery in deep marine sediments. This has allowed intensive study of the major impact this greenhouse warming event had on continental interior climate. Recently, records of four successive, smaller, transient greenhouse warming events in the early Eocene - ETM2/H1/Elmo, H2, I1, and I2 - were located in the fluvial rock record of the basin. We show that the (summer) temperature excursions during hyperthermal events in continental mid-latitudes were amplified compared to marine temperatures and proportional to the size of associated carbon isotope excursions.

  2. Tectonic model for Eocene Formation of the Columbia basin

    SciTech Connect

    Fisk, L.H. ); Fritts, S.G. )

    1990-05-01

    Evidence suggests that a major sedimentary basin underlies the Columbia plateau in Oregon and Washington; however, the Miocene Columbia River Basalts conceal critical structural relationships between adjacent exotic terranes. To date, no interpretations have been published that adequately address the three related questions of the architecture, age, and mechanism of formation of the Columbia basin. The authors interpret residual gravity and aerial photographic data to show, within the basin, a pattern of deep fault architecture consistent with northwest-southeast-oriented rifting. Paleotectonic reconstructions for the Pacific Northwest suggest that rifting may have begun during the Cretaceous, as interpreted previously, but stratigraphic, geophysical and well data point to an early Eocene age for initiation of dramatic rifting and basin subsidence resulting from oblique subduction of the Farallon plate. Their tectonic model for Eocene formation of rift basins underlying the Columbia River Basalt addresses important, previously unanswered questions regarding the tectonics of the Pacific Northwest and rationally relates tectonics and sedimentation over the full extent of the basin from north-central Washington to north-central Oregon. The rifting event(s) they propose explain that the formation of the Columbia basin is consistent in timing and geometry with tectonic events in areas adjacent to the Columbia basin, and thus is but a part of a much larger picture of dramatic extension affecting the entire Pacific Northwest in the Eocene.

  3. Late Eocene impact events recorded in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  4. The terminal eocene event and the polish connection

    USGS Publications Warehouse

    Van Couvering, J. A.; Aubry, M.-P.; Berggren, W.A.; Bujak, J.P.; Naeser, C.W.; Wieser, T.

    1981-01-01

    The Eocene/Oligocene boundary in Europe is marked by major discontinuities in all environments: the "Grande Coupure" in continental mammals; the elimination of semitropical elements from high-latitude floras; the virtually complete replacement of the shallow-marine malacofauna; and an extraordinary downslope excursion of carbonate deposition in deep-ocean basins (drop in the CCD). These phenomena collectively represent the "Terminal Eocene Event" (TEE). In the Carpathian Mountains, the TEE is manifested in the thin but regionally persistent Globigerina Marl, a calcareous unit containing abundant cool-water microplankton that occurs within very thick, siliceous, bathyal flysch sequences. In southern Poland, the marl is of very latest Eocene age, within planktonic foraminifera zone P17, calcareous nannoplankton zone NP19/20, and the zone of the dinoflagellate Rhomdodinium perforatum. Zircons from bentonites bracketing the marl are dated by fission-track analysis; at Polany, two underlying bentonites are 41.7 and 39.8 Ma, and at Znamirowice two overlying bentonites are 34.6 and 28.9 Ma, in sequence. This accords with glauconite K/Ar ages in Western Europe by which the Eo/Oligocene boundary age is estimated at 37-38 Ma. Global correlations indicate that the TEE corresponds to a major glacio-eustatic regression with a duration of about 0.5 Ma, in which a large Antarctic ice cap was formed, the ocean circulation was permanently changed to the psychrospheric condition, and world climate shifted irreversibly towards the modern state. ?? 1981.

  5. Late Eocene white pines (Pinus subgenus Strobus) from southern China.

    PubMed

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M; Naugolnykh, Serge V; Jin, Jianhua

    2015-11-09

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene.

  6. Asian monsoons in a late Eocene greenhouse world.

    PubMed

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J

    2014-09-25

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  7. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  8. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    PubMed

    Garrouste, Romain; Nel, André

    2015-10-09

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera.

  9. Palaeotectonic implications of increased late Eocene-early Oligocene volcanism from South Pacific DSDP sites

    USGS Publications Warehouse

    Kennett, J.P.; Von Der Borch, C.; Baker, P.A.; Barton, C.E.; Boersma, A.; Cauler, J.P.; Dudley, W.C.; Gardner, J.V.; Jenkins, D.G.; Lohman, W.H.; Martini, E.; Merrill, R.B.; Morin, R.; Nelson, Campbell S.; Robert, C.; Srinivasan, M.S.; Stein, R.; Takeuchi, A.; Murphy, M.G.

    1985-01-01

    Late Eocene-early Oligocene (42-35 Myr) sediments cored at two DSDP sites in the south-west Pacific contain evidence of a pronounced increase in local volcanic activity, particularly in close association with the Eocene-Oligocene boundary. This pulse of volcanism is coeval with that in New Zealand and resulted from the development of an Indo- Australian / Pacific Plate boundary through the region during the late Eocene. The late Eocene / earliest Oligocene was marked by widespread volcanism and tectonism throughout the Pacific and elsewhere, and by one of the most important episodes of Cenozoic climatic cooling. ?? 1985 Nature Publishing Group.

  10. Discovery of an embrithopod mammal (Arsinoitherium?) in the late Eocene of Tunisia

    NASA Astrophysics Data System (ADS)

    Vialle, Nicolas; Merzeraud, Gilles; Delmer, Cyrille; Feist, Monique; Jiquel, Suzanne; Marivaux, Laurent; Ramdarshan, Anusha; Vianey-Liaud, Monique; Essid, El Mabrouk; Marzougui, Wissem; Ammar, Hayet Khayati; Tabuce, Rodolphe

    2013-11-01

    Dental and postcranial remains (an atlas, carpus and metacarpus elements, and a part of the pelvic girdle) of an embrithopod mammal are described from Bir Om Ali, Tunisia, a new late Eocene locality. The enamel microstructure of a tooth fragment found in association shows 'arsinoitheriid radial enamel', an enamel condition which is characteristic of Arsinoitherium (Arsinoitheriidae, Embrithopoda). Although the postcranial elements slightly differ in size and morphology from those of Arsinoitherium zitteli (late Eocene to early Oligocene), we tentatively refer this new Eocene Tunisian material to that genus. These fossils represent the first known embrithopod from the Eocene of Tunisia.

  11. Eocene to Miocene biostratigraphy of New Jersey core ACGS #4; implications for regional stratigraphy

    USGS Publications Warehouse

    Poore, Richard Z.; Bybell, Laurel M.

    1988-01-01

    A time versus depth plot controlled primarily by nannofossil zone boundaries shows that sediment accumulation rates during the early and middle Eocene were in the range of 6 to 15 feet per million years. During the late Eocene, accumulation rates were much higher, perhaps exceeding 70 feet per million years. The only clear hiatus detected in the Paleogene part of ACGS #4 on the basis of microfossils is between the early and (?)late Oligocene. However, hiatuses are suspected at the early-middle Eocene boundary and within the late Eocene. Occurrences of calcareous nannofossils and planktic foraminifers are documented, and a number of key taxa are illustrated.

  12. Profundal sideritic mudstone from an Eocene lake in Alaska

    SciTech Connect

    Dickinson, K.A.

    1987-08-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual iron-meromictic Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Upper Cretaceous Darby pluton and on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the valley of the ancestral Tubutulik River in early Eocene time. The lake sediments included a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital grains, mostly quartz and clay minerals. Both lacustrine facies contain turbidites. The lacustrine rocks graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake occupied a small, deep basin in a tectonically active area of high relief. Meromixis was apparently stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixis decreased as the lake became shallower from sediment filling. The source of the dissolved iron in the monoimolimnion was probably the Eocene basalt. Carbon isotope analysis of the siderite suggests that the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (delta/sup 13/C = +16.9) consistent with residual carbonate formed during methanogenic fermentation.

  13. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  14. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    PubMed

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-03-22

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini.

  15. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  16. Comet or asteroid shower in the late Eocene?

    PubMed

    Tagle, Roald; Claeys, Philippe

    2004-07-23

    The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.

  17. Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J.; Reiners, P.

    2014-07-01

    Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.

  18. Episodic fresh surface waters in the Eocene Arctic Ocean.

    PubMed

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E; Sluijs, Appy; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Cronin, Thomas M; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S; Harding, Ian C; Lotter, André F; Sangiorgi, Francesca; van Konijnenburg-van Cittert, Han; de Leeuw, Jan W; Matthiessen, Jens; Backman, Jan; Moran, Kathryn

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (approximately 50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an approximately 800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from approximately 10 degrees C to 13 degrees C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

  19. Eocene paleosols of King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Spinola, Diogo; Portes, Raquel; Schaefer, Carlos; Kühn, Peter

    2016-04-01

    Red layers between lava flows on King George Island, Maritime Antarctica, were formed during the Eocene, which was one of the warmest periods on Earth in the Cenozoic. Our hypothesis is that these red layers are paleosols formed in periods of little or no volcanic activity. Therefore, our main objective was to identify the main pedogenic properties and features to distinguish these from diagenetic features formed after the lava emplacement. Additionally, we compared our results with volcanic soils formed under different climates to find the best present analogue. The macromorphological features indicate a pedogenic origin, because of the occurrence of well-defined horizons based on colour and structure. Micromorphological analyses showed that most important pedogenic features are the presence of biological channels, plant residues, anisotropic b-fabric, neoformed and illuvial clay and distinct soil microstructure. Although the paleosols are not strongly weathered, the geochemical data also support the pedogenic origin despite of diagenetic features as the partial induration of the profiles and zeolites filling nearly all voids in the horizons in contact with the overlying lava flow, indicating circulation of hydrothermal fluids. The macromorphological and micromorphological features of these paleosols are similar to the soils formed under seasonal climates. Thus, these paleosol features do not correspond to the other proxies (e.g. sediment, plant fossils), which indicate a wet, non-seasonal climate, as in Valdivian Forest, Chile, during the Eocene in King George Island

  20. Episodic fresh surface waters in the Eocene Arctic Ocean

    USGS Publications Warehouse

    Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T. M.; Onodera, J.; Takahashi, K.; Bujak, J.P.; Stein, R.; Van Der Burgh, J.; Eldrett, J.S.; Harding, I.C.; Lotter, A.F.; Sangiorgi, F.; Cittert, H.V.K.V.; De Leeuw, J. W.; Matthiessen, J.; Backman, J.; Moran, K.

    2006-01-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (???50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ???800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ???10??C to 13??C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. ?? 2006 Nature Publishing Group.

  1. Sequence stratigraphy of the Misoa Formation (Eocene) Lake Maracaibo, Venezuela

    SciTech Connect

    Marais-Gilchrist, G.; Higgs, R. )

    1993-02-01

    A preliminary sequence analysis of the Misoa Formation has been done in the Maraven concession area, Lake Maracaibo, using well logs supported by palynological and seismic data. The Misoa Formation is interpreted to comprise a lower transgressive unit containing at least four third-order cycles (lithostratigraphic units C7 to C3, approximately), and an upper dominantly regressive unit consisting of six third-order cycles (approximately C2 to B1). A major flooding surface (gamma-ray log maximum) provides a marker near the top of the lower unit, almost coincident with the important N-M local pollen zone. A tentative correlation can be achieved with the Haq-Vail coastal onlap curves for the Tejas A 2.3 to 3.3 third-order cycles, 55 to 44 ma. The maximum flooding surface would correlate with the maximum Eocene onlap at 52.5 ma. These ages broadly agree with the local pollen zonation. Incised valley fill units interpreted on the basis of blocky log character in some wells could have accumulated during global Eocene sea level falls, particularly those between 55 and 54 ma. The sequences gradually onlap onto the Paleocene unconformity and converge in a southwestward (landward) direction. Although north-south-oriented high-angle sinusoidal events are evident on some seismic lines, these are thought to indicate rotated listric fault-bounded blocks formed during an extensional episode, possibly syn-Misoa. The study should aid exploration for stratigraphic traps in the lake area.

  2. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications

    PubMed Central

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene. PMID:26579179

  3. Eocene Arctic Ocean and earth's Early Cenozoic climate

    SciTech Connect

    Clark, D.L.

    1985-01-01

    Seasonal changes of the Arctic Ocean are an approximate microcosm of the present advanced interglacial climate of the Earth. A similar relationship has existed for several million years but was the Early Cenozoic Arctic Ocean an analog of Earth's climate, as well. Absence of polar ice during the Cretaceous is relatively well established. During the Cenozoic a worldwide decrease in mean annual ocean temperature resulted from such factors as altered oceanic circulation and lower atmospheric CO/sub 2/ levels. Limited Arctic Ocean data for the middle or late Eocene indicate the presence of upwelling conditions and accompanying high productivity of diatoms, ebridians, silicoflagellates and archaeomonads. During this interval, some seasonality is suggested from the varve-like nature of a single sediment core. However, the absence of drop stones or any ice-rafted sediment supports the idea of an open water, ice-free central Arctic Ocean during this time. Latest Cretaceous Arctic Ocean sediment is interpreted to represent approximately the same conditions as those suggested for the Eocene and together with that data suggest that the central Arctic Ocean was ice-free during part if not all of the first 20 my of the Cenozoic. Sediment representing the succeeding 30 my has not been recovered but by latest Miocene or earl Pliocene, ice-rafted sediment was accumulating, both pack ice and icebergs covered the Arctic Ocean reflecting cyclic glacial climate.

  4. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  5. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  6. Continental ice in Greenland during the Eocene and Oligocene.

    PubMed

    Eldrett, James S; Harding, Ian C; Wilson, Paul A; Butler, Emily; Roberts, Andrew P

    2007-03-08

    The Eocene and Oligocene epochs (approximately 55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records supported by climate modelling indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.

  7. Using fossil leaves as paleoprecipitation indicators: An Eocene example

    NASA Astrophysics Data System (ADS)

    Wilf, Peter; Wing, Scott L.; Greenwood, David R.; Greenwood, Cathy L.

    1998-03-01

    Estimates of past precipitation are of broad interest for many areas of inquiry, including reconstructions of past environments and topography, climate modeling, and ocean circulation studies. The shapes and sizes of living leaves are highly sensitive to moisture conditions, and assemblages of fossil leaves of flowering plants have great potential as paleoprecipitation indicators. Most quantitative estimates of paleoprecipitation have been based on a multivariate data set of morphological leaf characters measured from samples of living vegetation tied to climate stations. However, when tested on extant forests, this method has consistently overestimated precipitation. We present a simpler approach that uses only the mean leaf area of a vegetation sample as a predictor variable but incorporates a broad range of annual precipitation and geographic coverage into the predictor set. The significant relationship that results, in addition to having value for paleoclimatic reconstruction, refines understanding of the long-observed positive relationship between leaf area and precipitation. Seven precipitation estimates for the Eocene of the Western United States are revised as lower than previously published but remain far wetter than the same areas today. Abundant moisture may have been an important factor in maintaining warm, frost-free conditions in the Eocene because of the major role of water vapor in retaining and transporting atmospheric heat.

  8. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications.

    PubMed

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene.

  9. A Phororhacoid bird from the Eocene of Africa

    NASA Astrophysics Data System (ADS)

    Mourer-Chauviré, Cécile; Tabuce, Rodolphe; Mahboubi, M'hammed; Adaci, Mohammed; Bensalah, Mustapha

    2011-10-01

    The bird fossil record is globally scarce in Africa. The early Tertiary evolution of terrestrial birds is virtually unknown in that continent. Here, we report on a femur of a large terrestrial new genus discovered from the early or early middle Eocene (between ˜52 and 46 Ma) of south-western Algeria. This femur shows all the morphological features of the Phororhacoidea, the so-called Terror Birds. Most of the phororhacoids were indeed large, or even gigantic, flightless predators or scavengers with no close modern analogs. It is likely that this extinct group originated in South America, where they are known from the late Paleocene to the late Pleistocene (˜59 to 0.01 Ma). The presence of a phororhacoid bird in Africa cannot be explained by a vicariant mechanism because these birds first appeared in South America well after the onset of the mid-Cretaceous Gondwana break up (˜100 million years old). Here, we propose two hypotheses to account for this occurrence, either an early dispersal of small members of this group, which were still able of a limited flight, or a transoceanic migration of flightless birds from South America to Africa during the Paleocene or earliest Eocene. Paleogeographic reconstructions of the South Atlantic Ocean suggest the existence of several islands of considerable size between South America and Africa during the early Tertiary, which could have helped a transatlantic dispersal of phororhacoids.

  10. Petrology of Eocene volcanic rocks of Moalleman Damghan area

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Seddigheh; Kohansal, Reza; Hashem Emami, Mohammad

    2010-05-01

    The Moalleman area is situated to the south of Damghan City, in the central of Torud sheet (scale 1:250000). The area is part of central Iran structural zone. The oldest and the youngest rocks units of the area include schists and limestone ascribed to Silurian and Devonian periods, and the fluvial terraces of Quaternary periods. Most of the volcanic rocks of the area are respectively related to Lutetion stage till upper Eocene, and are exposed between the Torud Angilu faults. Following to the eruption of these rocks, during upper Eocene to Oligocene, subvolcanic cryptodomes, hypoabyssal plutons and several dikes have intruded into this volcanic sequence. Igneous rocks of the study area may be classified into three main groups: Lavas, Pyroclastics and subvolcanic. Lavas include basalts, andesite, dacitic andesites and quartztrachyandesite, Trachyandesites form the major volume of these volcanic rocks with in the study. Pyroclastic rocks mainly consist of cryptallic tuff (with an andesitic to trachyandesitic composition) and crystal tuff. (With an andesitic to dacitic composition). The Major volume of volcanic rocks of study area have suffered alterations which gave rise to the formation of secondary minerals such as calcite, chlorite, sericite, epidote, serpentine, and iddingsite. It appears that the faults and fractures with in these rocks have facilitated the transition of hydrothermal solutions and the subsequent alteration. Microscopic evidences of magmatic contamination in lavas include phenomena such as resorption, formations of sieve texture, and osciliatory zoning in plagioclases, corrosion of pyroxenes and plagioclases, and two types of altered and unaltered plagioclases concurrence. According to the geochemical diagrams, the rocks of the study area of the alkaline and calc-alkaline types and have a tendency to potassium enrichment (probably related to contamination of their magma). Geochemical evidences such as great scatter in the diagrams and showing no

  11. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    PubMed Central

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  12. Radiative forcing by forest and subsequent feedbacks in the early Eocene climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-03-01

    Using the Max Planck Institute for Meteorology Earth System Model, we investigate the forcing of forests and the feedback triggered by forests in the pre-industrial climate and in the early Eocene climate (about 54 to 52 million years ago). Other than the interglacial, pre-industrial climate, the early Eocene climate was characterised by high temperatures which led to almost ice-free poles. We compare simulations in which all continents are covered either by dense forest or by bare soil. To isolate the effect of soil albedo, we choose either bright soils or dark soils, respectively. Considering bright soil, forests warm in both, the early Eocene climate and the current climate, but the warming differs due to differences in climate feedbacks. The lapse-rate and water-vapour feedback is stronger in early Eocene climate than in current climate, but strong and negative cloud feedbacks and cloud masking in the early Eocene climate outweigh the stronger positive lapse-rate and water-vapour feedback. In the sum, global mean warming is weaker in the early Eocene climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene leading to a weak polar amplification. Considering dark soil, our results change. Forests cools stronger in the early Eocene climate than in the current climate because the lapse-rate and water-vapour feedback is stronger in the early Eocene climate while cloud feedbacks and cloud masking are equally strong in both climates. The different temperature change by forest in both climates highlights the state-dependency of vegetation's impact on climate.

  13. Biochronology and paleoclimatic implications of Middle Eocene to Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Planktic foraminiferal assemblages have been analyzed quantitatively in six DSDP sites in the Atlantic (Site 363), Pacific (Sites 292, 77B, 277), and Indian Ocean (Sites 219, 253) in order to determine the nature of the faunal turnover during Middle Eocene to Oligocene time. Biostratigraphic ranges of taxa and abundance distributions of dominant species are presented and illustrate striking similarities in faunal assemblages of low latitude regions in the Atlantic, Pacific and Indian oceans. A high resolution biochronology, based on dominant faunal characteristics and 55 datum events, permits correlation between all three oceans with a high degree of precision. Population studies provide a view of the global impact of the paleoclimatic and paleoceanographic changes occurring during Middle Eocene to Oligocene time. Planktic foraminiferal assemblage changes indicate a general cooling trend between Middle Eocene to Oligocene time, consistent with previously published oxygen isotope data. Major faunal changes, indicating cooling episodes, occur, however, at discrete intervals: in the Middle Eocene 44-43 Ma (P13), the Middle/Late Eocene boundary 41-40 Ma ( P14 P15), the Late Eocene 39-38 Ma ( P15 P16), the Eocene/Oligocene boundary 37-36 Ma (P18), and the Late Oligocene 31-29 Ma ( P20 P21). With the exception of the E 0 boundary, faunal changes occur abruptly during short stratigraphic intervals, and are characterized by major species extinctions and first appearances. The Eocene/Oligocene boundary cooling is marked primarily by increasing abundances of cool water species. This suggests that the E 0 boundary cooling, which marks a major event in the oxygen isotope record affected planktic faunas less than during other cooling episodes. Planktic foraminiferal faunas indicate that the E 0 boundary event is part of a continued cooling trend which began during the Middle Eocene. Two hiatus intervals are recognized in low and high latitude sections at the Middle/Late Eocene

  14. Eocene oceanic responses to orbital forcing on precessional time scales

    NASA Astrophysics Data System (ADS)

    Sloan, L. Cirbus; Huber, Matthew

    2001-02-01

    The goal of our study was to gain an estimate of the variability of ocean-related climate processes driven by insolation forcing over a realistic precessional cycle in an Eocene greenhouse world. Between endmembers of a precessional cycle mean annual sea surface temperatures (SSTs) vary by up to 5°C at high northern latitudes, with minimal tropical SST response. Extratropical regions of the Pacific, Atlantic, and Tethys Oceans show up to a two-fold variation in upwelling strength, while oceanic regions adjacent to northwestern Africa, India, and South America exhibit little oceanic upweliing variability. The response of ocean surface moisture balance to the forcing is greatest in the tropics, varying by as much as 60%. Continental runoff varies by up to a factor of two in some regions. These results may be useful in identifying locations with maximum likelihood of future recovery of orbital cyclicity in deep-sea sediments.

  15. Identification of Late Eocene Impact Deposits at ODP Site 1090

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2001-01-01

    Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene- bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177- 1090B-30X-5,105-106 cm (954 pg/g) and the net Ir fluence (14 ng/cm2) at this site are higher that at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.

  16. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ∼56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (∼20‰) relative to “pre-event” values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (∼-15‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures. If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H

  17. Geochemical evidence for a comet shower in the late Eocene.

    PubMed

    Farley, K A; Montanari, A; Shoemaker, E M; Shoemaker, C S

    1998-05-22

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began approximately 1 My before and ended approximately 1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters approximately 36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  18. Geochemical evidence for a comet shower in the late Eocene

    USGS Publications Warehouse

    Farley, K.A.; Montanari, A.; Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began ~1 My before and ended ~1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters ~36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  19. Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia.

    PubMed

    Smith, Selena Y; Currah, Randolph S; Stockey, Ruth A

    2004-01-01

    Two fossil poroid hymenophore fragments, one from the Cretaceous Period and the other from the Eocene Epoch, are described. The permineralized specimens were obtained from marine calcareous concretions on Vancouver Island, British Columbia, Canada, and were studied using the cellulose acetate peel technique. Size and distribution of pores in the hymenophores, as well as the hyphal anatomy of the dissepiments and some hymenial elements, were examined. In the Cretaceous specimen, Quatsinoporites cranhamii sp. nov., pores are round to elliptical, three per mm, and 130-540 μm diam. Dissepiments consist of narrow, simple septate, hyphae. Neither basidia nor basidiospores are present, but acuminate hymenial cystidia, up to 54 μm in length, are common. The Eocene specimen, Appianoporites vancouverensis sp. nov., has a pore density of six per mm and pores are 130-163 μm in diam. Dissepiments consist of narrow, simple septate, thin-walled hyphae. Neither basidia nor basidiospores are present, but acuminate, thick-walled hymenial cystidia, up to 32 μm in length, are common. The poroid hymenophore is a characteristic of a number of extant basidiomycete taxa, including the Boletales, Polyporales and Hymenochaetales. It is unlikely that the fleshy, ephemeral, terrestrial basidiomata of the Boletales would be preserved in a marine environment, and thus the specimens are interpreted as belonging to basidiomycete lineages, with persistent, leathery or corky basidiomata. The simple septate hyphae, the minute pores and presence of cystidia most closely resemble taxa of the Hymenochaetales. These fossils unequivocally push back the minimum age of homobasidiomycetes and extend their paleogeographical range.

  20. Differing Eocene floral histories in southeastern North America and Western Europe: influence of paleogeography

    USGS Publications Warehouse

    Frederiksen, N.O.

    1995-01-01

    Pollen data show that in southeastern North America, the Eocene angiosperm flora attained its maximum relative diversity some 8 m.y. after the late early Eocene to earliest middle Eocene to earliest middle Eocene climatic maximum. Increasing diversity resulted in part from the flora's position on a large continent which allowed easy migration. In western Europe, the floral diversity began decreasing even before the climatic maximum. Paleogeography played large roles in this diversity decrease. In western Europe, terrestrial floras were on islands and peninsulas in the sea, so that the floras underwent increasing isolation and partial local extermination. Temperate plants generally did not migrate to western Europe, because of a lack of nearby uplands, lack of northern terrestrial source areas for these plants, and presence of the Turgai Straights barrier. -from Authors

  1. Microfloral diversity patterns of the late Paleocene Eocene interval in Colombia, northern South America

    NASA Astrophysics Data System (ADS)

    Jaramillo, Carlos A.; Dilcher, David L.

    2000-09-01

    The late Paleocene early Eocene interval was characterized by a long period of global warming that culminated with the highest temperatures of the Tertiary. This interval was also associated with plant extinctions and a subsequent increase in plant diversity in temperate latitudes. However, tropical regions remain largely unknown. We compare the microfloral diversity of the late Paleocene with the late early to middle Eocene in flood plain, coastal plain, and estuarine facies of a section in the Colombian eastern Andes. Several techniques such as range-through method, rarefaction, bootstrap, detrended correspondence analysis, and Simpson index were used to assess the significance of the diversity pattern observed throughout the section. The microfloral record indicates a distinct, diverse Paleocene flora declining toward the end of the Paleocene, being replaced by a different and much more diverse Eocene flora. It is uncertain, however, how these floral changes correlate with the latest Paleocene thermal maximum and Eocene thermal maximum events.

  2. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    PubMed Central

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-01-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. PMID:26867798

  3. Planktic foraminiferal biostratigraphy, paleoecology and chronostratigraphy across the Eocene/Oligocene boundary in northern Tunisia

    NASA Astrophysics Data System (ADS)

    Karoui-Yaakoub, Narjess; Grira, Chaima; Mtimet, Moncef Saïd; Negra, Mohamed Hédi; Molina, Eustoquio

    2017-01-01

    The biostratigraphic analysis of the Eocene-Oligocene transition of the Menzel Bou Zelfa and Jhaff sections in northeastern Tunisia (Cap Bon peninsula) allows us to identify a continuous planktic foraminiferal biozonation. The following biozones were recognized: Globigerinatheka semiinvoluta Zone (E14), Globigerinatheka index Zone (E15), (Hantkenina alabamensis Zone (E16) of the upper Eocene and Pseudohastigerina naguewichiensis Zone (O1) of the lower Oligocene. A rapid mass extinction event in planktic foraminifera occurred at the Eocene-Oligocene transition, including the extinction of the turborotalids (Turborotalia cerroazulensis, Turborotalia cocoaensis and Turborotalia cunialensis) followed by a significant size reduction of the genus Pseudohastigerina and the extinction of the hantkeninids (Hantkenina alabamensis, Hantkenina brevispina, Hantkenina nanggulanensis and Cribrohantkenina lazzarii), which mark the Eocene/Oligocene boundary. These species were tropical and subtropical surface and intermediate dwellers, with distinctive morphologies (carinate turborotalids and spinose hantkeninids), which were well adapted species of k-strategy. The surviving planktic foraminifera species were quite similar in morphology with globular chambers (globigerinids) and small planispiral (pseudohastigerinids), which were opportunistic species of r-strategy. The recognition of a 4 m thick interval, between the extinction of turborotalids and hantkeninids, indicates that the section is continuous and one of the most expanded throughout the Eocene-Oligocene transition. This section could serve as an auxiliary section (hypostratotype) for the complete definition of the Global Stratotype Section and Point for the Eocene/Oligocene boundary, which mark the base of the Rupelian Stage.

  4. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Stidham, Thomas A.; Eberle, Jaelyn J.

    2016-02-01

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  5. The crazy hollow formation (Eocene) of central Utah

    USGS Publications Warehouse

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  6. Paleohydrology of the eocene ballena gravels, San Diego County, California

    NASA Astrophysics Data System (ADS)

    Steer, Bradley L.; Abbott, Patrick L.

    1984-03-01

    The Ballena Gravels are remnants of a river system that flowed westward across the ancestral Peninsular Ranges during medial and late Eocene time. The Gravels (actually conglomerate) are channelized fluvial deposits that built westward as alluvial fan (Poway Group), submarine canyon (Scripps Formation) and submarine fan (Jolla Vieja Formation) depositional systems. Because the integrated sedimentary system contains distinctive Poway rhyolite clasts of limited geographic and temporal extent the now separated component formations are recognizable on the San Diego coastal plain and on the Channel Islands. Paleogeographic reconstructions suggest a transport distance of about 315 km. Multiple techniques analysis suggests the channel gradient in the San Diego area was 12-18 m km -1. Stream velocity, based on a competent particle size of 52 cm, ranges from 2.5 to 4 m s -1. Eight equations based on slope and velocity generated estimates of channel depth at food stage that vary from 2.5 to 4.5 m. Paleodischarge can be estimated from regime-type engineering equations that are based on gradient, depth, and grain size. Paleodischarge also is calculated using a technique based on stream length and drainage area. Values generated by multiple techniques suggest 2.33-yr flood discharges of about 275 m 3 s -1. Extrapolation based on a logarithmic curve indicates 100-yr flood discharges around 27,500 m 3 s -1. Channel-width estimates for 1 to 2.33 yr floods range from 25 to 75 m. Calculations of seasonally dominant rainfall, based on runoff and temperature, vary between 50-75 cm annually. Runoff is estimated from discharge values and paleotemperatures are based on caliche type, salt-fractured clasts, and the immature clay mineral suite. The Nueces River of Texas shares some of the same characteristics of the Eocene Ballena river. The Nueces has a highly varied discharge due to seasonally intense rainfall similar to that interpreted for the Ballena river. Several rivers flowing to

  7. Was the Eocene Arctic a Source Area for Exotic Plants and Mammals? (Invited)

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Harrington, G. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, J. H.

    2010-12-01

    Today’s High Arctic is undergoing rapid warming, but the impact on its animal and plant communities is not clear. As a deep time analog to better understand and predict the impacts of global warming on the Arctic biota, early Eocene (52-53 Ma) rocks on Ellesmere Island, Nunavut in Canada’s High Arctic (~79°N latitude) preserve evidence of diverse terrestrial ecosystems that supported dense forests inhabited by turtles, alligators, snakes, primates, tapirs, brontotheres, and hippo-like Coryphodon. The fossil localities were just a few degrees further south and still well above the Arctic Circle during the early Eocene; consequently, the biota experienced months of continuous sunlight as well as darkness, the Arctic summer and winter, respectively. The flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, and recently published analyses of biogenic phosphate from fossil fish, turtle, and mammal estimate warm summers (19 - 20 C) and mild, above-freezing winters. In general, temperature estimates for the early Eocene Arctic can be compared to those found today in temperate rainforests in the Pacific Northwest of the United States. The early Eocene Arctic mammalian fauna shares most genera with coeval mid-latitude faunas thousands of kilometers to the south in the US Western Interior, and several genera also are shared with Europe and Asia. Recent analyses suggest that the large herbivores such as hippo-like Coryphodon were year-round inhabitants in the Eocene Arctic forests. Although several of the Eocene Arctic mammalian taxa are hypothesized to have originated in either mid-latitude North America or Asia, the earlier occurrence of certain clades (e.g., tapirs) in the Arctic raises the possibility of a northern high-latitude origin. Analysis of the early Eocene Arctic palynoflora indicates comparable richness to early Eocene plant communities in the US Western Interior, but nearly 50% of its species (mostly angiosperms) are

  8. Mesozoic and Eocene ductile deformation of western Central Iran: from Cimmerian collisional orogeny to Eocene extension and exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann

    2010-05-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represent part of a deformation zone between the Arabia and Eurasia plates, and can be interpreted as a product of the Central Iran intracontinental deformation as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveals that the metamorphic and igneous rocks in the study area suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. The shear zone is subhorizontal low-angle normal fault and the shear direction of the hangingwall unit is towards NE, based on the attitude of foliation and lineation of ductility deformed rocks and shear sense indicators. Comparison of deformation features in the described mylonites and other structural features within the footwall unit lead to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching in the extension tectonics during Middle to Late Eocene. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex is deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture. The Posht-e-Badam complex is overprinted by two stages of metamorphism. White mica ages at 203 and 181 Ma are related to cooling after medium-grade metamorphism respectively ductile shearing. These ages are variably overprinted by low-grade metamorphism also affecting Jurassic metasediments in the Polo area. Consequently, these are

  9. Eocene bipolar glaciation associated with global carbon cycle changes.

    PubMed

    Tripati, Aradhna; Backman, Jan; Elderfield, Henry; Ferretti, Patrizia

    2005-07-21

    The transition from the extreme global warmth of the early Eocene 'greenhouse' climate approximately 55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica approximately 34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from approximately 42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to approximately 1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

  10. Paleoecology of Early eocene strata near Buffalo, Wyoming

    SciTech Connect

    Durkin, T.V.; Rich, F.J.

    1986-08-01

    Palynological investigation has helped illustrate the paleoecology of a vertical section of strata from the Wasatch Formation between the Healy and Walters coal burns near Buffalo, Wyoming. Numerous silicified logs and stumps of cypress and sequoia have been preserved at the site and drew initial attention to it. Flood-basin deposits enclose the trees and include sandstones, siltstones, shale, and coal beds that accumulated as channel, levee, crevasse-splay, and swamp/marsh sediments. Detrital sediments were probably derived from the Bighorn Mountains and accumulated as they were carried into the Powder River basin fluvial system. One hundred five polynomorph taxa have been distinguished, as well as 10 types of fungal spores. Platycarya, Tilia, Sparganium, and Platanus pollen indicate an early Eocene age for the strata. Other pollen, as well as the genera of trees and megafossil remains from a clinker bed several miles from the study area, reinforce the interpretation of a warm-temperature or subtropical climate at the time of deposition. The megafossil assemblage includes pinnae of the aquatic fern Marsilea, never before described from the fossil record. Variations in the species composition of the polynomorph assemblages show that several plant communities existed in succession at the site. These varied from pond or marsh types to mature forests.

  11. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  12. Seawater calcium isotopic ratios across the Eocene-Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Paytan, A.

    2009-12-01

    We reconstructed the evolution of the seawater calcium (Ca) isotopic ratio from marine (pelagic) barite and bulk calcium carbonate over the Eocene-Oligocene Transition (EOT), a period of extreme and rapid change in the global calcite compensation depth (CCD) (Lyle et al., 2008). The CCD is controlled by the balance between calcium carbonate deposition and dissolution in deep sea sediments. Large fluctuations in the CCD may cause changes in the concentration of dissolved Ca in seawater and its isotopic composition if accompanied by imbalances in marine Ca sources and sinks (De La Rocha and DePaolo, 2000). Our results show that the permanent deepening of the CCD during the EOT, which coincided with the major Cenozoic glaciation around 34 million years ago (Zachos et al., 2001), was not accompanied by a significant long-term change in the isotopic ratio of Ca in seawater or its sink (calcium carbonate). A simple isotopic mass balance model is constructed to compare predicted and observed isotopic fluctuations. References: Lyle, M. et al. Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys. 46, 1-47 (2008). De La Rocha, C. L. & DePaolo, D. J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289, 1176-1178 (2000). Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292, 686-693 (2001).

  13. Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)

    NASA Astrophysics Data System (ADS)

    Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco

    2016-04-01

    Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.

  14. Is the Eocene's climate affected by ocean tides?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Thomas, Maik

    2014-05-01

    Global ocean models can generally be divided into Ocean General Circulation and tidal models. Paleoclimate simulations consider dynamics due to the ocean's general, i.e., thermohaline, wind and pressure driven circulation, while tidal dynamics most commonly are neglected due to their strict periodicity and high frequencies. Nevertheless, it could be demonstrated that transport ellipses and energy fluxes are being deformed over shelf areas due to tidal induced friction thus altering ocean circulation and energy fluxes on longer timescales. This makes tides not only an interesting subject of investigation of present-day dynamics, but also of paleo time slices, when both different celestial constellations and geometric shapes of ocean basins affected tidal waves. Using the coupled atmosphere-ocean general circulation model ECHAM5/MPIOM with an integrated tidal module based on luni-solar ephemerides, we simultaneously simulate circulation and tidal dynamics for the Early Eocene (50Ma) and a pre-industrial control run. Major changes in ocean circulation cannot only be observed in shelf areas, but also in the open ocean, for example the Indian and North Atlantic Oceans. Especially the opening of the Tethys Sea alters ocean basin geometry and hereby the dissipation of tidal waves. The southern position of Australia allows resonance between the Indian and Pacific Ocean and leads to high amplitudes in the M2 tide that dominate the Western Pacific and Eastern Indian Oceans. Including tidal dynamics in the ocean model also affects climate by decreasing global mean temperature.

  15. Primate postcrania from the late middle Eocene of Myanmar

    PubMed Central

    Ciochon, Russell L.; Gingerich, Philip D.; Gunnell, Gregg F.; Simons, Elwyn L.

    2001-01-01

    Fossil primates have been known from the late middle to late Eocene Pondaung Formation of Myanmar since the description of Pondaungia cotteri in 1927. Three additional primate taxa, Amphipithecus mogaungensis, Bahinia pondaungensis and Myanmarpithecus yarshensis, were subsequently described. These primates are represented mostly by fragmentary dental and cranial remains. Here we describe the first primate postcrania from Myanmar, including a complete left humerus, a fragmentary right humerus, parts of left and right ulnae, and the distal half of a left calcaneum, all representing one individual. We assign this specimen to a large species of Pondaungia based on body size and the known geographic distribution and diversity of Myanmar primates. Body weight estimates of Pondaungia range from 4,000 to 9,000 g, based on humeral length, humeral midshaft diameter, and tooth area by using extant primate regressions. The humerus and ulna indicate that Pondaungia was capable of a wide variety of forelimb movements, with great mobility at the shoulder joint. Morphology of the distal calcaneus indicates that the hind feet were mobile at the transverse tarsal joint. Postcrania of Pondaungia present a mosaic of features, some shared in common with notharctine and adapine adapiforms, some shared with extant lorises and cebids, some shared with fossil anthropoids, and some unique. Overall, Pondaungia humeral and calcaneal morphology is most consistent with that of other known adapiforms. It does not support the inclusion of Pondaungia in Anthropoidea. PMID:11438722

  16. Anthropoid humeri from the late Eocene of Egypt

    PubMed Central

    Seiffert, Erik R.; Simons, Elwyn L.; Fleagle, John G.

    2000-01-01

    A number of recent studies have, by necessity, placed a great deal of emphasis on the dental evidence for Paleogene anthropoid interrelationships, but cladistic analyses of these data have led to the erection of phylogenetic hypotheses that appear to be at odds with biogeographic and stratigraphic considerations. Additional morphological data from the cranium and postcranium of certain poorly understood Paleogene primates are clearly needed to help test whether such hypotheses are tenable. Here we describe humeri attributable to Proteopithecus sylviae and Catopithecus browni, two anthropoids from late Eocene sediments of the Fayum Depression in Egypt. Qualitative and morphometric analyses of these elements indicate that humeri of the oligopithecine Catopithecus are more similar to early Oligocene propliopithecines than they are to any other Paleogene anthropoid taxon, and that Proteopithecus exhibits humeral similarities to parapithecids that may be symplesiomorphies of extant (or “crown”) Anthropoidea. The humeral morphology of Catopithecus is consistent with certain narrowly distributed dental apomorphies—such as the loss of the upper and lower second premolar and the development of a honing blade for the upper canine on the lower third premolar—which suggest that oligopithecines constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines and are not most closely related to Proteopithecus as has recently been proposed. PMID:10963669

  17. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  18. Late Eocene stable isotope stratigraphy of North Atlantic IODP Site U1411: Orbitally paced climatic heartbeat at the close of the Eocene greenhouse

    NASA Astrophysics Data System (ADS)

    Coxall, Helen; Bohaty, Steve; Wilson, Paul; Liebrand, Diederik; Nyberg, Anna; Holmström, Max

    2016-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 342 drilled sediment drifts on the Newfoundland margin to recover high-resolution records of North Atlantic ocean-climate history and track the evolution of the modern climate system through the Late Cretaceous and Early Cenozoic. An early Paleogene deep-sea benthic stable isotope composite record from multiple Exp. 342 sites is currently in development and will provide a key reference section for investigations of Atlantic and global climate dynamics. This study presents initial results for the late Eocene slice of the composite from Site U1411, located at mid depth (˜2850m Eocene paleodepth) on the Southeast Newfoundland Ridge. Stable oxygen (δ18O) and carbon (δ13C) isotope ratios were measured on 640 samples hosting exceptionally well-preserved epifaunal benthic foraminifera obtained from the microfossil-rich uppermost Eocene clays at 4cm spacing. Sedimentation rates average 2-3 cm/kyr through the late Eocene, such that our sampling resolution is sufficient to capture the dominant Milankovitch frequencies. Late Eocene Site U1411 benthic δ18O values (1.4 to 0.5‰ VPDB) are comparable to the Pacific and elsewhere in the Atlantic at similar depths; however, δ13C is lower by ˜0.5 ‰ with values intermediate between those of the Southern Labrador Sea to the north (-1 to 0) and mid latitude/South Atlantic (0.5 to 1.5) to the south, suggesting poorly ventilated bottom waters in the late Eocene North Atlantic and limited production of North Atlantic deep water. Applying the initial shipboard magneto-biostratigraphic age framework, the Site U1411 benthic δ13C and δ18O records display clear cyclicity on orbital timescales. Spectral analysis of the raw unfiltered datasets identifies eccentricity (400 and 100 kyr), obliquity (40 kyr) and precession (˜20 kyr) signals imprinted on our time series, revealing distinct climatic heart beats in the late Eocene prior to the transition into the 'ice house'.

  19. Geochronology of upper Paleocene and lower Eocene strata, eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, E.A.; Tew, B.H. Geological Survey of Alabama, Tuscaloosa, AL )

    1994-03-01

    Four samples of glauconitic sand from upper Paleocene and lower Eocene strata of the eastern Gulf Coastal Plain were analyzed for conventional potassium-argon (K-Ar) age determination. Results from these analyses are as follows: Coal Bluff Marl Member of the Naheola Formation of the Midway Group (58.2 [+-] 1.5 MA), Ostrea thirsae beds of the Nanafalia Formation of the Wilcox Group (56.3 [+-] 1.5 MA), upper Tuscahoma Sand of the Wilcox Group (54.5 [+-] 1.4 MA), and Bashi Marl Member of the Hatchetigbee Formation of the Wilcox Group (53.4 [+-] 1.4 MA). The Nanafalia Formation (Wilcox Group) disconformably overlies the Naheola Formation (Midway Group), and based on the data presented here, the age of this unconformity is bracketed between 59.7 and 54.8 MA. The Paleocene-Eocene Epoch boundary occurs in the Wilcox Group and coincides with the lithostratigraphic contact of the upper Paleocene Tuscahoma Sand with the lower eocene Hatchetigbee Formation. The age of this boundary, which is also an unconformity, can be placed between 55.9 and 52.0 MA. The K-Ar age dates for this boundary in the Gulf Coastal Plain compare favorably with the numerical limits placed on the Paleocene-Eocene boundary in the published literature. Generally, the Paleocene-Eocene Epoch boundary is reported as approximately 54 to 55 MA.

  20. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda S.; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer C.

    2016-02-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results suggest that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oligocene transition and that when a certain threshold of pCO2 change was crossed, the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  1. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, M.; Porter, A. S.; Holohan, A.; Kunzmann, L.; Collinson, M.; McElwain, J. C.

    2015-10-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results show that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene transition. This may be related to the "hysteresis effect" previously proposed - where a certain threshold of pCO2 change was crossed before the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  2. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, S.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  3. Larger benthic foraminiferal turnover across the Eocene-Oligocene transition at Siwa Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Orabi, H.; El Beshtawy, M.; Osman, R.; Gadallah, M.

    2015-05-01

    In the Eocene part of the Siwa Oasis, the larger foraminifera are represented by the genera Nummulites, Arxina, Operculina, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella, Gaziryina and Discocyclina in order of abundance. Operculina continues up to the early Oligocene as modern representatives in tropical regions, while the other genera became extinct. Nevertheless, the most common larger foraminiferal genus Lepidocyclina (Nephrolepidina) appears only in the lowermost Oligocene. In spite of the Eocene-Oligocene (E/O) transition is thought to have been attended by major continental cooling at northern middle and high latitudes, we discover that at the Siwa Oasis, there is a clear warming trend from the late Eocene (extinction level of Nummulites, Sphaerogypsina, Asterocyclina, Grzybowskia, Silvestriella and Discocyclina) to the early Oligocene is observed due to the high abundance of Operculina and occurrence of kaolinite and gypsiferous shale deposits in both Qatrani and El Qara formations (Oligocene) at this transition. The El Qara Formation is a new rock unit proposed herein for the Oligocene (Rupelian age) in the first time. Several episodes of volcanic activity occurred in Egypt during the Cenozoic. Mid Tertiary volcanicity was widespread and a number of successive volcanic pulses are starting in the late Eocene. The release of mantle CO2 from this very active volcanic episode may have in fact directly caused the warm Eocene-Oligocene greenhouse climate effect.

  4. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-08

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  5. The oldest African bat from the early Eocene of El Kohol (Algeria)

    NASA Astrophysics Data System (ADS)

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  6. Invading Europe: did climate or geography trigger early Eocene primate dispersals?

    PubMed

    Soligo, Christophe

    2007-01-01

    The Palaeocene-Eocene transition is characterized by a significant turnover of mammalian taxa in the fossil record of the northern continents, and primates are among the groups that make their first appearance at this time. One of the many questions that remain to be answered with regard to the earliest evolution of primates is the reason for their sudden and virtually simultaneous appearance in the fossil records of Asia, Europe and North America. The most obvious environmental correlate of the Palaeocene-Eocene transition is a sharp but relatively short-lived warming event leading up to the Palaeocene-Eocene thermal maximum (PETM) and evidenced in the stratigraphic record by a negative delta(13)C excursion. It remains unclear, however, whether or how this warming event may have influenced Palaeocene-Eocene faunal turnovers. This paper explores the hypothesis that environmental changes associated with the PETM facilitated an invasion of Western Europe by primates by comparing the ecological structure of local mammalian fauna immediately before and following the Palaeocene-Eocene transition. The results suggest that changes to the ecological profile of local mammalian fauna were relatively small and did not favour an invasion by primates, although a major uncertainty remains with respect to the availability of arboreal niches. At present it seems more likely that the invasion of western Europe by primates was due to the breakdown of one or more dispersal barriers close to the end of the Palaeocene.

  7. Sonora, Mexico, source for the Eocene Poway Conglomerate of southern California

    NASA Astrophysics Data System (ADS)

    Abbott, Patrick L.; Smith, T. E.

    1989-04-01

    Alluvial-fan conglomerates of the Eocene Poway Group are composed largely of exotic rhyolite and dacite clasts derived from far to the east of their Eocene depositional site. Remnants of the Upper Jurassic bedrock source of the Poway rhyolite clasts may yet be exposed in hills in Sonora, Mexico. For this study, pieces of bedrock were taken from hills 13 km west of El Plomo in Sonora. Clasts texturally and mineralogically similar to the Sonoran bedrock were collected from the apex of the Eocene alluvial fan in San Diego County, California Nine couplets of bedrock and conglomerate clast samples (textural twins) were analyzed for 16 trace elements selected for their wide range of behaviors during magmatic and alteration processes. Statistical comparisons of the trace-element data, by using the standard error-of-the-difference method, show that there are no significant differences between the two populations. These data strongly suggest that the rhyolitic bedrock hills west of El Plomo were part of the source terrane for the Eocene conglomerate in San Diego. The latitudinal separation between bedrock source and the site of deposition is only the 2° created by the opening of the Gulf of California This implies that any boundary separating a paleomagnetically efined, Baja-Borderland terrane from the craton since Eocene time was at least 100 km east of the Gulf of California in northernmost Sonora.

  8. Characteristics of Foraminifera from Eocene Hyperthermal Events in Western India

    NASA Astrophysics Data System (ADS)

    Khanolkar, S.; Saraswati, P.

    2013-12-01

    The carbon isotope excursions (CIE) attributed to Early Eocene warming events were recently reported from low latitude, inner shelf to marginal marine sequences of Kutch and Vastan in western India. In this study we examine the response of foraminifera to the hyperthermal events demarcated in the two sections. The sections are biostratigraphically constrained by shallow benthic zones(SBZ). The PETM is demarcated in the SBZ 5/6 by a negative CIE of 2.1 ‰. The assemblage is characterized by low diversity and moderate abundance of dwarfed foraminifera. The planktic foraminifera consist of Chiloguembelina trinitatensis and Jenkinsina columbiana. Presence of benthic foraminifera like Nummulites, Rotalia, Rosalina, Cibicides, Pararotalia and Nonionella indicate deposition in brackish water, marginal marine to inner shelf conditions. Rectilinear benthic foraminifera (RBF), including the species of Bulimina and Praebulimina having large test pore size(~5μm), vary between 20-30% in the assemblage indicating low oxygen depositional conditions. The α-diversity varies from 2-3 during the event and reduces further to < 1 just after PETM but increases (α = 3-4) again prior to the next warming event. The ETM2 is marked by 1‰ negative shift in δ13C in SBZ 8. Planktic foraminifera J.columbiana, Acarinina esnanensis, C.crinita are found. The benthic foraminifera are dominated by Nummulites, Asterigerina, Cibicides, Pararotalia, Rotalia. RBF (Bulimina, Buliminella and Brizalina) varies between 30-40% indicating low oxygen depositional conditions. The abundance of triserial foraminifera Jenkinsina at certain levels indicates high run off and eutrophic conditions. The ETM3 is marked by a negative shift of 1‰ δ13C in undifferentiated SBZ 9-10. The SBZ 10 is marked by an increase in alpha diversity of foraminifera (α = 4-5) in Vastan. The dwarfed benthic foraminifera are dominated by RBF (Bulimina, Buliminella, Praebulimina) and brackish water, marginal marine foraminiferal

  9. Upper Eocene Spherules at ODP Site 1090B

    NASA Technical Reports Server (NTRS)

    Liu, S.; Kyte, F. T.; Glass, B. P.; Gersonde, R.

    2000-01-01

    Our two labs independently discovered upper Eocene microtektites and microkrystites at ODP Site 1090, a new South Atlantic locality near the Agulhus Ridge. This is a significant new data point for the strewn fields of these spherules, which were recently extended into the Atlantic sector of the Southern Ocean when they were reported at ODP Site 689 on the Maude Rise. The microtektites have been regarded as related to North American tektites and the microkrystites as belonging to the clinopyroxene-bearing (cpx) spherule strewn field. Initial reports indicate that Site 1090 contains a complete sequence of upper Eocene sediments composed of diatom and nannofossil oozes. The magneto- and bio-stratigraphy indicate that impact-age sediments should occur in core 30X of Hole 1090B. One of us (FTK) took 2 cc samples at 10 cm intervals over 600 cm of core for Ir analyses and the senior author (SL) took 3 cc samples at 20 cm intervals to search for spherules. Both studies proved successful and additional samples were obtained to confirm initial results and better define the Ir anomaly and spherule abundances. Peak Ir concentrations of 0.97 ng/g were found at 1090B-30X-5, 105-106cm and 0.78 ng/g at 115-116 cm. Anomalous Ir concentrations (greater than 0.1 ng/g) extend over about 100 cm of core. Preliminary results indicate that the excess Ir at this site is about 25 ng per sq cm. About 380 microtektites (>63 pm) and 2492 microkrystites (>63 pm) were recovered over a 1.8 m interval with a peak abundance of microtektites (106/gram) and microkrystites (562/gram) at 1090B-30X- 5, 114-115 cm. The largest microtektite is approximately 960 x 1140 micron in size. About 55 % are spherical, and the rest are disc, cylinder, dumbbell, teardrop, or fragments. Most of the microtektites are transparent colorless, but a few are transparent pale brown or green. Preliminary data indicate that the microtektites at Site 1090 have similar major oxide compositions to those at Site 689. About 50% of

  10. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition.

    PubMed

    Pearson, Paul N; Foster, Gavin L; Wade, Bridget S

    2009-10-22

    Geological and geochemical evidence indicates that the Antarctic ice sheet formed during the Eocene-Oligocene transition, 33.5-34.0 million years ago. Modelling studies suggest that such ice-sheet formation might have been triggered when atmospheric carbon dioxide levels (pCO2atm) fell below a critical threshold of approximately 750 p.p.m.v., but the timing and magnitude of pCO2atm relative to the evolution of the ice sheet has remained unclear. Here we use the boron isotope pH proxy on exceptionally well-preserved carbonate microfossils from a recently discovered geological section in Tanzania to estimate pCO2atm before, during and after the climate transition. Our data suggest that are reduction in pCO2atm occurred before the main phase of ice growth,followed by a sharp recovery to pre-transition values and then a more gradual decline. During maximum ice-sheet growth, pCO2atm was between approximately 450 and approximately 1,500 p.p.m.v., with a central estimate of approximately 760 p.p.m.v. The ice cap survived the period of pCO2atm recovery,although possibly with some reduction in its volume, implying (as models predict) a nonlinear response to climate forcing during melting. Overall, our results confirm the central role of declining pCO2atm in the development of the Antarctic ice sheet (in broad agreement with carbon cycle modelling) and help to constrain mechanisms and feedbacks associated with the Earth's biggest climate switch of the past 65 Myr.

  11. Latitudinal gradients in greenhouse seawater δ(18) O: evidence from Eocene sirenian tooth enamel.

    PubMed

    Clementz, Mark T; Sewall, Jacob O

    2011-04-22

    The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely wet.

  12. Post-Eocene movement on the Coast Range thrust, northern Sacramento Valley, California

    SciTech Connect

    Ramirez, V. )

    1990-05-01

    Subsurface structure mapping with more than 600 wells and 200 miles of seismic data in a portion of the northern Sacramento basin and surface geologic mapping in the Rumsey Hills area to the west indicates that Upper Cretaceous strata along the western edge of the basin are doubled in thickness along thrust faults. These east-dipping detachments are part of the Coast Range thrust fault system. Eocene strata crop out in the fault zone and indicate that considerable post-Eocene movement occurred. Cretaceous movement on these faults can be surmised but not proven from reconstructions. Similarly, analysis from five subsurface structure maps to the east shows that deformation there also is post-Eocene; only minor Upper Cretaceous deformation can be discerned. Underthrusting of Franciscan accretionary rocks best accounts for the development of these faults and a western high along the basin margin.

  13. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  14. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  15. Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Pälike, H.; Wilkens, R.; Wilson, P. A.; Acton, G.

    2014-05-01

    Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, a robust astronomically calibrated age model was constructed for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the middle Eocene climate optimum and the Eocene-Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new timescale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and 320-U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently orbital tuning of the records to the La2011 orbital solution was conducted. The resulting new timescale revises and refines the existing orbitally tuned age model and the geomagnetic polarity timescale from 31 to 43 Ma. The newly defined absolute age for the Eocene-Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano, Italy, global stratotype section and point. The compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during 2.4 myr eccentricity cycle minima around 35.5, 38.3, and 40.1 Ma.

  16. Orbitally tuned time scale and astronomical forcing in the middle Eocene to early Oligocene

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Pälike, H.; Wilkens, R.; Wilson, P. A.; Acton, G.

    2013-12-01

    Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5, 38.3 and 40.1 Ma.

  17. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity.

    PubMed

    Engel, M S

    2001-02-13

    Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

  18. Igneous geology of the Carlin trend, Nevada: The importance of Eocene magmatism in gold mineralization

    NASA Astrophysics Data System (ADS)

    Ressel, Michael Walter, Jr.

    Igneous rocks of five ages are present in the Carlin trend, Nevada, and include: (1) Paleozoic basalt of the Roberts Mountains allochthon, (2) the Jurassic (˜158 Ma) Goldstrike intrusive complex, which includes the Goldstrike diorite laccolith and abundant dikes and sills, (3) a Cretaceous (112 Ma) granite stock, (4) lavas and intrusions of the Emigrant Pass volcanic field and widespread epizonal plugs and dikes of Eocene (˜40-36 Ma) age that range from rhyolite through basalt, and (5) Miocene (15 Ma) rhyolite lava and tuff. Jurassic and Eocene igneous rocks are by far the most important volumetrically and are spatially associated with nearly all ore deposits of the Carlin trend. This study focuses on the field relations, isotopic dating, and geochemistry of Eocene dikes that intrude sedimentary rocks in many deposits of the Carlin trend, because they are the youngest pre-mineral rocks and have simpler alteration histories than other host rocks. In the Beast, Genesis, Deep Star, Betze-Post, Rodeo-Goldbug, Meikle-Griffin, and Dee-Storm deposits, Eocene dikes are altered, commonly mineralized, and locally constitute ore. Gold-bearing dikes and sedimentary rocks have similar ore mineralogy, including arsenian pyrite, marcasite, and arsenopyrite, with late barite and stibnite. At Beast, as much as half the ore is hosted in a 37.3 Ma rhyolite dike. Post-gold alunite is ˜18.6 Ma. At Meikle and Griffin, porphyritic dacite dikes yield concordant U/Pb zircon and 40Ar/39Ar biotite emplacement ages of ˜39.2 Ma, and illite from the same QSP-altered dacite, with as much 9 ppm Au, yields similar, although imprecise 40Ar/39Ar ages. Thus, gold mineralization at these deposits closely followed emplacement of Eocene dikes. Carlin-type gold deposits in northeastern Nevada have been variously interpreted as partly syngenetic with Paleozoic carbonate rocks, products of Mesozoic contraction and metamorphism with or without significant magmatism, and of Tertiary age and related or

  19. Pulses of middle Eocene to earliest Oligocene climatic deterioration in southern California and the Gulf Coast

    USGS Publications Warehouse

    Frederiksen, N.O.

    1991-01-01

    A general deterioration of terrestrial climate took place during middle Eocene to earliest Oligocene time in southern California and in the Gulf Coast. Pollen data, calibrated by calcareous nannofossil ages, indicate four events of rapid floral and/or vegetational change among angiosperms during this time interval. The events can be correlated between the two regions even though these regions lay within different floristic provinces, and each event of angiosperm change is interpreted to indicate a pulse of rapid climatic shift. The most distinct of these events is the Middle Eocene Diversity Decline, which resulted from a peak in last appearances (extinctions, emigrations) centered in the early Bartonian. -from Author

  20. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada.

    PubMed

    Mulch, Andreas; Graham, Stephan A; Chamberlain, C Page

    2006-07-07

    We determine paleoelevation of the Sierra Nevada, California, by tracking the effect of topography on precipitation, as recorded in hydrogen isotopes of kaolinite exposed in gold-bearing river deposits from the Eocene Yuba River. The data, compared with the modern isotopic composition of precipitation, show that about 40 to 50 million years ago the Sierra Nevada stood tall (>/=2200 meters), a result in conflict with proposed young surface uplift by tectonic and climatic forcing but consistent with the Sierra Nevada representing the edge of a pre-Eocene continental plateau.

  1. An eocene hystricognathous rodent from Texas: its significance in interpretations of continental drift.

    PubMed

    Wood, A E

    1972-03-17

    The earliest known representative of the fundamentally South American and African hystricognathous rodents has recently been found in the middle or late Eocene of southwestern Texas; this discovery supports the postulate of a northern and independent origin for the two southern groups and increases the evidence against mid-Tertiary trans-Atlantic migration of these rodents at a time when the South Atlantic was narrower than it is at present. The fossil seems to be related to the North American Eocene family Sciuravidae.

  2. Towards closing the Eocene Astronomical Time Scale Gap: Cyclostratigraphic Implications from IODP Expedition 342

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, M.; De Vleeschouwer, D.; Palike, H.; Boulila, S.; Yamamoto, Y.; Laskar, J.

    2015-12-01

    Astronomical tuning using the 405-kyr eccentricity component as a prime target has been established as a standard technique for the Cenozoic timescale. There is an astronomically-tuned time scale across most of the Cenozoic. However, no definite astronomical tuning exists in the so-called "Eocene gap". The main reason for the existence of this Eocene gap is the very shallow carbonate compensation depth (CCD) during this time (Pälike et al., 2012), preventing the deposition of cyclic carbonate-rich sediments. IODP Expedition 342 however drilled Eocene cyclic carbonate-rich sequences, which were deposited in sediment drifts offshore Newfoundland at a palaeodepth above the CCD while large parts of the ocean were starved of carbonate. As the variations in the studied sites are predominantly obliquity induced, we assess and use the 173-kyr obliquity amplitude modulation cycle as a tuning target. These 173-kyr cycles result from the resonance or "beat" between the (present-day) 41 and 53 kyr obliquity cycles, determined by the precession constant and the frequency of the ascending node precession of the Earth and Saturn (p+s3)-(p+s6). We use physical property measurements, as well as the ratio between the elemental intensities of calcium and iron (Ca/Fe) of the sediments from sites U1408, U1409 and U1410 to construct an astronomically-tuned chronology between (and including) magnetochrons C19r and C22n (~41 - 50 Ma), spanning the "Eocene gap".

  3. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dehai; Lu, Shicong; Han, Shuang; Sun, Xiaoyan; Quan, Cheng

    2013-01-01

    Hydrological dynamics of sedimentary basins are essential for understanding regional climatic pattern in the geological past. In previous qualitative studies lithologically depending on the occurrence of featured sedimentary rocks, the Eocene climate of China had been subdivided into three latitudinal zones, with one subtropical high-controlled arid zone throughout middle China, and two humid zones respectively in the north and south. However, recent advances on mammalian fauna distribution, plant fossil-based quantitative paleoclimatic reconstruction, and modeling experiment jointly suggest that the relatively humid monsoonal climate might have prevailed over the territory. Here we examine and compare sedimentary sequences of 10 Eocene sections across eastern China, and hence the lake level fluctuations, to discuss the nature of climate type. Our results show that, instead of the categorically zonal pattern, the hydroclimate dynamics is intensified landward. This is demonstrated by the fact that, in contrast to the wide developed coal layers around the periphery, evaporites are growingly occurred endocentrically to the central part of middle China. However, although we have had assumed that all evaporites are indicator of extreme aridity, the highly oscillated climate in the central part of middle China was humid in the majority of the Eocene, distinct from permanent arid as seen in deserts or steppe along modern horse latitude. From the upcountry distribution pattern of the Eocene hydrological dynamics, it appears that the relatively dry climate in central China was caused by the impact of continentality or rain shadow effect under monsoonal, or monsoon-like climate.

  4. Relative sea level variations in the Chukchi region - Arctic Ocean - since the late Eocene

    NASA Astrophysics Data System (ADS)

    Hegewald, Anne; Jokat, Wilfried

    2013-03-01

    Relative sea level (RSL) variations are a result of tectonic activity, changing of the water volume in ocean basins (e.g. due to increasing/decreasing of ice volume, evaporation) and variations in regional to global climate, which influence erosional processes and material transport. We present multi-channel seismic data combined with dated sediment horizons from the Chukchi Shelf, Arctic Ocean. Based on a series of prograding sequences in the upper 4 km of sediments and the method of seismic sequence stratigraphy, we introduce the first RSL curve for the Chukchi region, beginning in the late Eocene (40 Ma). The comparison of the Chukchi RSL curve with the global RSL curve shows that RSL lowering events in the Chukchi region do not correlate with global events for the Eocene/Oligocene - early Miocene. Between the Eocene/Oligocene and the late Oligocene, the Chukchi RSL variations were small (< 100 m). Since the late Oligocene the Chukchi RSL increased until the opening of the Fram Strait in the early Miocene. We show that the Chukchi RSL variations are representative for the Arctic Ocean, and conclude that the Arctic Ocean was an isolated basin for the Eocene/Oligocene - early Miocene.

  5. A new dermochelyid turtle from the Late Paleocene-Early Eocene of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tong, Haiyan; Buffetaut, Eric; Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick

    1999-12-01

    A new dermochelyid sea turtle, Arabemys crassiscutata n. gen, n. sp., is described on the basis of epithecal shell mosaic ossicles from the Late Paleocene—Early Eocene of Saudi Arabia. This is the oldest and the most primitive known representative of the dermochelyids having an epithecal shell mosaic.

  6. New occurrence of Lower Eocene (Capay Stage) strata, lower Piru Creek, Topatopa Mountains, southern California

    SciTech Connect

    Squires, R.L.; Yamashiro, D.A.

    1986-04-01

    A 900-m thick siltstone unit between Canton Canyon and Piru Creek, 16 km north of the town of Piru, California, previously was unnamed and considered as undifferentiated Eocene or middle Eocene in age. The Siltstone unconformably overlies the Whitaker Peak granodiorite basement complex. At the base of the siltstone is a veneer of gruss (weathered granodiorite). The gruss is usually overlain by about a few meters of shoreface carbonaceous sandstone that grades vertically upward into transition-zone siltstone (500 m) with storm-deposit accumulations of macrofossils. Collections made at 53 localities from these lower 500 m of strata yielded numerous shallow marine gastropods and bivalves, as well as specimens of discocyclinid foraminifers, colonial corals, calcareous worm tubes, and spataganoid echinoids. This fauna is indicative of the West Coast provincial molluscan Capay Stage (lower Eocene). Common age-diagnostic species are Turritella uvasana infera, T. Andersoni, and Ostrea haleyi. Overlying and gradational with the transition-zone siltstone is 400 m of muddy siltstone with rare storm-deposit accumulations of macrofossils. This muddy siltstone thickens westward and passes into deep-sea slope and inner-fan turbidite deposits. Collections made at three localities in the muddy siltstone yielded many shallow marine gastropods and bivalves indicative of the Domengine stage (upper lower through lower middle Eocene). Common age-diagnostic species are Turritella uvasana applinae and Pitar (Lamelliconcha) joaquinensis.

  7. Emplacement and geochemical evolution of eocene plutonic rocks in the Colville batholith

    SciTech Connect

    Holder, R.W.

    1986-01-01

    Eocene plutonic rocks in the Colville batholith are divided on the basis of field evidence and chemical composition into, in order of decreasing age, (1) several calc-alkalic biotite-hornblende monzodiorite to granodiorite intrusions referred to as the Devils Elbow suite, and (2) compositionally variable calc-alkalic to alkali-calcic intrusions referred to as the Herron Creek suite. These Eocene suites are distinct from older, more voluminous, leucocratic granite and granodiorite intrusions, designated the Keller Butte suite, which are calcic and characteristically lack hornblende. Results of qualitative and computer modeling of major element variation and quantitative models of trace element variation in the chemically coherent Bridge Creek intrusions, a member of the Herron Creek suite, are compatible with fractionation of plagioclase feldspar + hornblende + biotite + magnetite + apatite from a parent magma of andesitic composition to account for the observed variation. Strongly curved variation trends preclude mixing as the primary mechanism for the observed variation. It is suggested that parallel variation trends in the other Eocene intrusions are also the result of crystal fractionation. Lateral chemical variations including a decrease in silica saturation suggest the chemical characteristics of these rocks reflect those of parental magmas derived from the mantle, with an unknown amount of crustal contribution. Rotated and angular xenoliths, discordant contacts, and temporal and spatial proximity to graben structures indicate that the Eocene plutons were passively implaced into the upper crust along graben-bounding faults during graben formation, the earlier stages of which appear to have been contemporaneous with regional mylonitic deformation.

  8. Tectonic implications of Paleocene-Eocene Foreland Basin, Lake Maracaibo, Venezuela

    SciTech Connect

    Lugo, J. ); Mann, P. )

    1993-02-01

    A compilation of industry geological and geophysical data indicates that Paleocene-Eocene clastic sedimentation in the Maracaibo basin records the first manifestation of Cenozoic foreland basin tectonics in northern South America. Isopach maps based on industry seismic data and well logs suggest that the Maracaibo foreland basin formed a 100 to 200 km wide elongate trough along the northeastern edge of the present-day Lake Maracaibo. The basin is asymmetric with a deep (7 km) northeastern margin adjacent to an exposed southwest-verging thrust belt mapped by previous workers. Isopach mapping of seven seismic units within the Eocene suggest a nor-northwest to southeast migration of the depocenter from Paleocene to Middle Eocene time at a rate of 0.6 cm/year. A similar style of foreland basin has been previously identified over a distance of 1000 Km from western central Venezuela to Trinidad. Eocene to Pliocene ages of foreland basin sedimentation in these areas suggest time transgressive, oblique collision of the Caribbean plate along the northern margin of South America. Comparison of the age of deformation along both the northern and southern edges of the pro-Caribbean plate yield reasonable estimates for the rate of relative motion of this small plate relative to the larger America plates.

  9. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.

    PubMed

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F

    2014-12-12

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.

  10. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.

    2014-12-01

    The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.

  11. A new libelluloid family from the Eocene Green River Formation (Colorado, USA) (Odonata, Anisoptera).

    PubMed

    Zeiri, Asma; Nel, Andre; Garrouste, Romain

    2015-10-16

    The new family Urolibellulidae is proposed for the new genus and species Urolibellula eocenica, based on a fossil dragonfly from the Eocene Green River Formation (USA). This new taxon is considered as the sister group of the extant Libellulidae. As the oldest libellulid dragonfly is dated from the Turonian, the Urolibellulidae should also be at least Late Cretaceous.

  12. The first Late Eocene continental faunal assemblage from tropical North America

    NASA Astrophysics Data System (ADS)

    Jiménez-Hidalgo, Eduardo; Smith, Krister T.; Guerrero-Arenas, Rosalia; Alvarado-Ortega, Jesus

    2015-01-01

    To date, the terrestrial faunal record of the North American late Eocene has been recovered from its subtropical and temperate regions. We report the first late Eocene continental faunal assemblage from tropical North America, in southern Mexico. Fossil specimens were collected from mudstones that crop out in the Municipality of Santiago Yolomécatl, in northwestern Oaxaca. Previously published K-Ar ages of 32.9 ± 0.9 and 35.7 ± 1.0 Ma in overlain nearby volcanic rocks and biostratigraphy of these new localities suggests a Chadronian mammal age for this new local fauna. The assemblage is composed by two turtle taxa, Rhineura, two caniform taxa, a sciurid, a jimomyid rodent, a geomyine rodent, Gregorymys, Leptochoerus, Perchoerus probus, Merycoidodon, a protoceratid, Poebrotherium, Nanotragulus, Miohippus assinoboiensis, a chalicotherid, a tapiroid, cf. Amynodontopsis, Trigonias and the hymenopteran ichnofossils Celliforma curvata and Fictovichnus sciuttoi. The records of these taxa in northwestern Oaxaca greatly expand southerly their former geographic distribution in North America. The records of the geomorph rodents and Nanotragulus extend their former known biochronological range to the late Eocene. The hymenopteran ichnofossils in the localities suggest the presence of a bare soil after periodic waterlogging, under a sub-humid to sub-arid climate. This new local fauna represents the first glimpse of Eocene vertebrate and invertebrate terrestrial life from tropical North America.

  13. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography.

    PubMed

    Antoine, Pierre-Olivier; Marivaux, Laurent; Croft, Darin A; Billet, Guillaume; Ganerød, Morgan; Jaramillo, Carlos; Martin, Thomas; Orliac, Maëva J; Tejada, Julia; Altamirano, Ali J; Duranthon, Francis; Fanjat, Grégory; Rousse, Sonia; Gismondi, Rodolfo Salas

    2012-04-07

    The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America.

  14. Arthropods from the Eocene Eckfelder Maar (Eifel, Germany) as a source for paleoecological information

    NASA Astrophysics Data System (ADS)

    Lutz, H.

    The arthropod-thanatocoenosis from the Middle-Eocene sediments of the Eckfelder Maar (Eifel, Germany) is characterized by a striking contrast between a highly diversified assemblage of terrestrial species on one hand and very few aquatic species on the other, hand. This most likely does not result from taphonomic biassing, but reflects a poor aquatic arthropod-community.

  15. Diatom and silicoflagellate biostratigraphy for the late Eocene: ODP 1090 (sub-Antarctic Atlantic)

    USGS Publications Warehouse

    Barron, John A.; Bukry, David B.; Gersonde, Rainer

    2014-01-01

    Abundant and well-preserved diatoms and silicofl agellate assemblages are documented through a complete late Eocene sequence, ODP Hole 1090B, recovered from the southern Agulhas Ridge in the sub-Antarctic South Atlantic. A sequence of Cestodiscus (diatom) species occurrence events involving C. pulchellus var. novazealandica, C. fennerae, C. antarcticus, C. convexus, C. trochus, and C. robustus is tied with paleomagnetic stratigraphy and provides the basis of proposing a new diatom zonation for the latest middle Eocene to early Oligocene (~37.6–33.4 Ma) of the sub-Antarctic South Atlantic. Comparison with previously published diatom occurrence charts suggested this zonation should be applicable throughout the low latitude regions of the world’s oceans. Silicofl agellates belong to the Dictyocha hexacantha and the overlying Corbisema apiculata Zones. The late Eocene succession of silicofl agellate species is dominated by Naviculopsis (20–60%). Naviculopsis constricta and N. foliacea dominate the D. hexacantha Zone, followed by the N. constricta, then N. biapiculata in the C. apiculata Zone. Cold-water Distephanus is most abundant in the latest Eocene along with N. biapiculata. The tops of zonal guide fossils Dictyocha hexacantha and Hannaites quadria (both 36.6 Ma) and Dictyocha spinosa (37.1 Ma) are tied with paleomagnetic stratigraphy.

  16. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  17. Occurrence and distribution of bacterial tetraether lipids in the Eocene Canadian Arctic paleosols: paleoclimate implications (Invited)

    NASA Astrophysics Data System (ADS)

    Mehay, S.; Jahren, A.; Schubert, B.; Eberle, J. J.; Summons, R. E.

    2010-12-01

    The Early to Middle Eocene (~56-45 Ma) was a “greenhouse” interval with average global temperatures warmer than any other time in the Cenozoic. This period was characterized by warm climates at high latitude leading to lush forests and the arrival of new mammal groups north of the Arctic Circle (>73°N). Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids characteristic of certain archaea and bacteria and it has been demonstrated that branched and cyclic GDGTs derived from soil bacteria vary in structure as a function of environmental factors. Proxies based on the relative abundances of methyl branched and cyclopentyl bacterial tetraethers are hypothesized to correlate with mean annual air temperature and soil pH. Here we present the occurrence and distribution of GDGTs in a range of paleosol and sediment samples from Axel Heiberg Island and Ellesmere Island, Nunavut (eastern Canadian Arctic) and Banks Island in the Northwest Territories (western Canadian Arctic). Preliminary results on 11 paleosol samples from the middle Eocene-aged Geodetic Hills Fossil Forest on Axel Heiberg Island indicate a mean annual air temperature of about 9°C. Earlier paleotemperature estimates for Axel Heiberg Island led to values ranging from 9°C to 15°C for the Middle Eocene. Recent temperature prediction for Ellesmere Island (Early Eocene) based upon oxygen isotope ratios of biogenic phosphate from mammal and fish fossils led to ~8°C. In contrast, GDGTs from a marine sedimentary sequence from Lomonosov Ridge in the central Arctic Ocean led to much higher Early Eocene temperature. Thus, the evaluation of the paleotemperature for the Early to Middle Eocene is still a subject of controversy. Ongoing GDGTs analysis of samples from Ellesmere and Banks Islands should give a more comprehensive paleoenvironmental description of the Eocene Arctic. Differences observed between the various paleotemperature estimates will also be discussed. GDGTs distributions are

  18. Greenland ice sheet initiation and Arctic sea ice coincide with Eocene and Oligocene CO2 changes

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna; Darby, Dennis

    2016-04-01

    Earth's modern ocean-climate system is largely defined by the presence of glacial ice on landmasses in both hemispheres. Northern Hemisphere ice was previously thought to have formed no earlier than the Miocene or Oligocene, about 20-30 million years after the widespread onset of Antarctic glaciation at the Eocene-Oligocene boundary. Controversially, the episodic presence of seasonal Arctic sea ice and glacial ice in the Northern Hemisphere beginning in the early Oligocene to Middle Eocene has been inferred from multiple observations. Here we use precise source determinations based on geochemical measurements of ice-rafted debris (IRD) from an ODP core in the Greenland Sea (75° N) to constrain glacial ice and sea ice-rafting in the Northern Hemisphere during the middle Eocene through early Oligocene. The chemical fingerprint of 2,334 detrital Fe oxide grains indicates most of these grains are from Greenland with >98% certainty. Thus the coarse IRD in the Greenland Sea originates from widespread areas of east Greenland as far south as the Denmark Strait area (~68° N), with additional IRD sources from the circum-Arctic Ocean. This is the first definitive evidence that mid-Eocene IRD in the Greenland Sea is from Greenland. Episodic glaciation of different source regions on Greenland is synchronous with times of ice-rafting in the western Arctic and ephemeral perennial Arctic ice cover. Intervals of bipolar glacial ice storage in the middle Eocene through early Oligocene coincide with evidence for periods of reduced CO2, associated with carbon cycle perturbations.

  19. Multiple States in the Vegetation-Atmosphere System during the Early Eocene

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2014-12-01

    Model simulations suggest that different initial conditions can lead to multiple stable vegetation-atmosphere states in the present-day Sahara. Here, we explore the stability of the vegetation-atmosphere system in the warm, nearly ice-free early Eocene climate. Using the MPI-ESM, we simulate the early Eocene vegetation starting from two different states: Continents are either completely covered by forest or completely barren, devoid of any vegetation. The soil albedo is similar to vegetation albedo. Hence, the albedo effect of vegetation is negligible. Without the albedo effect, the Charney effect which is suggested to cause multiple stable vegetation states in the present-day Sahara is absent. In our simulations, the hydrological effect of vegetation plays the major role. We perform the same simulations with preindustrial conditions to compare the stability of the vegetation-atmosphere system in both climate states. A desert evolves in Central Asia in both early Eocene simulations. This Asian desert is larger when the simulation starts from bare soil instead forest. Bare soil causes a dry climate in Central Asia in the beginning of the simulation. In the dry climate, vegetation does not establish. Forest enhances evaporation relative to bare soil leading to a stronger Asian monsoon and higher precipitation rates. The increased precipitation sustains plant growth and a smaller Asian desert evolves than in the simulation started from bare soil. Moreover, the stronger Asian monsoon affects global climate. Therefore, the two vegetation states in Central Asia accompany two globally different vegetation-atmosphere states. In the preindustrial climate, the Sahara is larger when the initial vegetation is bare soil instead of forest. The same hydrological effect causes the multiple vegetation states the Sahara as in the early Eocene Asian desert. However, the multiple stable vegetation states in the Sahara do not affect the global climate. This result emphasises that the

  20. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Windley, Brian F.; Zhang, Zhiliang; Fu, Bihong; Li, Shihu

    2016-02-01

    In contrast to the present hyper-arid inland basin surrounded by the high mountains of Central Asia, the western Tarim Basin was once connected with the Tajik Basin at least in the late Eocene, when an epicontinental sea extended from the western Tarim Basin to Europe. Western Tarim is a key site for studying the retreat of seawater, which was likely caused by the northward indentation of the Pamir arc and facilitated by the climatic cooling and eustatic sea level change in the Cenozoic. Here we present a new magnetostratigraphic record from the Tarim Basin that provides evidence of diachronous seawater retreat from its southwestern margin. We studied about 1360 m of well-exposed Eocene-Oligocene strata at Keliyang in the folded foreland of the West Kunlun orogen. Until now, the age of the strata has only been minimally constrained by the presence of late mid-Eocene marine fossils. Our biostratigraphic and magnetostratigraphic results demonstrate that the age of the sedimentary sequence ranges from ∼46 Ma to ∼26 Ma (mid-Eocene to late-Oligocene) and the seawater retreat at Keliyang took place at ∼40 Ma. Considering the stepwise northward indentation and uplift of the Pamir orogen, together with the other previous results, we propose that seawater retreat from the southwestern margin of the Tarim Basin was diachronous in the late Eocene ranging from 47 Ma to 40 Ma. The regional indentation, uplift and erosion of the Pamir orogen played the dominant and important role in controlling the seawater retreat from the southwestern margin of the Tarim Basin.

  1. Mid-latitude continental temperatures through the early Eocene in western Europe

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Collinson, Margaret E.; Riegel, Walter; Wilde, Volker; Farnsworth, Alexander; Lunt, Daniel J.; Valdes, Paul; Robson, Brittany E.; Scott, Andrew C.; Lenz, Olaf K.; Naafs, B. David A.; Pancost, Richard D.

    2017-02-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, the application of this proxy in coal deposits is limited and brGDGTs have only been detected in immature coals (i.e. lignites). Using samples recovered from Schöningen, Germany (∼48°N palaeolatitude), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of early Eocene lignites and associated interbeds. BrGDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences between lignites - representing peat-forming environments - and siliciclastic nearshore marine interbed depositional environments. Using the most recent brGDGT temperature calibration (MATmr) developed for soils, we generate the first continental temperature record from central-western continental Europe through the early Eocene. Lignite-derived MAAT estimates range from 23 to 26 °C while those derived from the nearshore marine interbeds exceed 20 °C. These estimates are consistent with other mid-latitude environments and model simulations, indicating enhanced mid-latitude, early Eocene warmth. In the basal part of the section studied, warming is recorded in both the lignites (∼2 °C) and nearshore marine interbeds (∼2-3 °C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this long-term warming trend is relatively well established in the marine realm, it has rarely been shown in terrestrial settings. Using a suite of model simulations we show that the magnitude of warming at Schöningen is broadly consistent with a doubling of CO2, in agreement with late Paleocene and early Eocene pCO2 estimates.

  2. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L.; Hollis, Christopher J.; Pagani, Mark; Jardine, Phillip E.; Pearson, Paul N.; Markwick, Paul; Galsworthy, Amanda M. J.; Raynham, Lauren; Taylor, Kyle. W. R.; Pancost, Richard D.

    2015-07-01

    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, %GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse.

  3. Depositional and diagenetic signatures of Late Eocene Oligocene sediments, South Carolina

    NASA Astrophysics Data System (ADS)

    Segall, M. P.; Siron, D. L.; Colquhoun, D. J.

    2000-07-01

    Surficial and near-surface soils of the South Carolina Coastal Plain reflect a variety of lithologies and depositional environments that are difficult to differentiate because of intense leaching and abrupt or laterally inconsistent facies changes. Binocular microscopic examination, scanning electron microscopic/energy dispersive X-ray (SEM/EDX) observations, and X-ray diffraction (XRD) analyses indicate that onshore Late Eocene to Late Oligocene Barnwell Group sediments are transitional facies ranging from high-energy fluvial deposits to offshore siliciclastic shelf sands. Interfingering of the units results in alternation of mineralogic signatures within a low-gradient fluvial/transitional/marine depositional system. Late Eocene and Early Oligocene offshore sediments were deposited in a mixed carbonate-siliciclastic, middle- to outer-shelf environment that was subjected to periods of erosion or non-deposition during transgressive events. Detrital and diagenetic characteristics of the onshore kaolinite-enriched, Late Oligocene Upland Unit sediments reflect deposition in a high- to low-energy fluvial system. Differentiation between these uppermost sediments and the underlying low-energy fluvial deposits of the Late Eocene Tobacco Road Sand is based on distinctive hydroxy-interlayered vermiculite (HIV) signatures. Intervals of HIV-enrichment are coincident with accumulations of carbonaceous material and identified as paleosols; these "soils" are used to infer offshore transgressive periods. Onshore sediments of the Late Eocene Dry Branch Formation contain high concentrations of smectite and flocculated, relatively poorly crystallized kaolinite flakes reflective of marine depositional conditions. At the base of this unit, authigenic Ca-minerals (Ca-zeolites and calcite) and quartz lepispheres (opal-CT) form coatings on and between sand grains. Late Eocene siliceous microfossils that contribute to opal-CT formation are identified in southwestern North Atlantic

  4. Stratigraphic responses to a major tectonic event in a foreland basin: the Ecuadorian Oriente Basin from Eocene to Oligocene times

    NASA Astrophysics Data System (ADS)

    Christophoul, Frédéric; Baby, Patrice; Dávila, Celso

    2002-02-01

    The Eocene to Oligocene sediments of the Ecuadorian Oriente Basin record two kinds of second-order stratigraphic response to the tectonic evolution. Lower Eocene shows evidences of local scale syntectonic deposits. This tectonic activity can be related to right lateral convergent movements inverting pre-cretaceous extensional structures. Upper Eocene and Oligocene sediments are integrated as the expression of an isostatic rebound characterizing a basin scale syntectonic deposition. This response is evidenced by a reciprocal architecture of the depositional sequences identified in the sedimentary formations. These data have allowed us to propose a new geodynamic model for the Paleogene evolution of the Oriente Basin.

  5. Stable isotope study of fluid inclusions in fluorite from Idaho: implications for continental climates during the Eocene

    USGS Publications Warehouse

    Seal, R.R.; Rye, R.O.

    1993-01-01

    Isotopic studies of fluid inclusions from meteoric water-dominated epithermal ore deposits offer a unique opportunity to study paleoclimates because the fluids can provide direct samples of ancient waters. Fluorite-hosted fluid inclusions from the Eocene (51-50 Ma) epithermal deposits of the Bayhorse mining district, have low salinities and low to moderate homogenization temperatures indicating meteoric origins for the fluids. Oxygen and hydrogen isotope data on inclusion fluids are almost identical to those of modern meteoric waters in the area. The equivalence of the isotope composition of the Eocene inclusion fluids and modern meteoric waters indicates that the Eocene climatic conditions were similar to those today. -from Authors

  6. Highly-seasonal monsoons controlled by Central Asian Eocene epicontinental sea

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; Tindall, Julia; de Rafélis, Marc; Reichart, Gert-Jan; de Nooijer, Lennart; Dupont-Nivet, Guillaume

    2015-04-01

    Modern Asian climate is mainly controlled by seasonal reverse winds driven by continent-ocean thermal contrast. This yields monsoon pattern characterized by a strong seasonality in terms of precipitation and temperature and a duality between humidity along southern and eastern Asia and aridity in Central Asia. According to climate models, Asian Monsoons and aridification have been governed by Tibetan plateau uplift, global climate changes and the retreat of a vast epicontinental sea (the Proto-Paratethys sea) that used to cover Eurasia in Eocene times (55 to 34 Myr ago). Evidence for Asian aridification and monsoons a old as Eocene, are emerging from proxy and model data, however, the role of the Proto-Paratethys sea remains to be established by proxy data. By applying a novel infra-annual geochemical multi-proxy methodology on Eocene oyster shells of the Proto-Paratethys sea and comparing results to climate simulations, we show that the Central Asian region was generally arid with high seasonality from hot and arid summers to wetter winters. This high seasonality in Central Asia supports a monsoonal circulation was already established although the climate pattern was significantly different than today. During winter months, a strong influence of the Proto-Paratethys moisture is indicated by enhanced precipitations significantly higher than today. Precipitation probably dwindled because of the subsequent sea retreat as well as the uplift of the Tibetan and Pamir mountains shielding the westerlies. During Eocene summers, the local climate was hotter and more arid than today despite the presence of the Proto Paratethys. This may be explained by warmer Eocene global conditions with a strong anticyclonic Hadley cell descending at Central Asian latitudes (25 to 45 N). urthermore, the Tibetan plateau emerging at this time to the south must have already contributed a stronger Foehn effect during summer months bringing warm and dry air into Central Asia. Proto

  7. A model-model and data-model comparison for the early Eocene hydrological cycle

    NASA Astrophysics Data System (ADS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine; Valdes, Paul J.; Winguth, Arne; Winguth, Cornelia; Pancost, Richard D.

    2016-02-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  8. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  9. A long-bodied centriscoid fish from the basal Eocene of Kabardino-Balkaria, northern Caucasus, Russia

    NASA Astrophysics Data System (ADS)

    Bannikov, Alexandre F.; Carnevale, Giorgio

    2012-05-01

    The Paleocene-Eocene transition is of crucial interest for interpreting the Cenozoic evolutionary radiation of vertebrates. A substantial increase of the number of vertebrate families occurred between the Late Paleocene and Early Eocene, with the appearance of most of the representatives of extant lineages. Basal Eocene marine fish diversity is currently poorly known, exclusively restricted to two assemblages from Denmark and Turkmenistan, respectively. Exceptionally well-preserved articulated skeletal remains of fishes have recently been discovered from a basal Eocene sapropelitic layer exposed along the Kheu River in the Republic of Kabardino-Balkaria, northern Caucasus, Russia. Here, we report on Gerpegezhus paviai gen. et sp. nov., a new peculiar syngnathoid fish from this new Ciscaucasian locality. The morphological structure of the single available specimen suggests that it is the first long-bodied member of the superfamily Centriscoidea, representing the sole member of the new family Gerpegezhidae, which forms a sister pair with the extant family Centriscidae.

  10. Fossil plants indicate that the most significant decrease in atmospheric CO2 happened prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer

    2016-04-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany was utilized to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the stomatal proxy, which relies on the inverse relationship between pCO2 and leaf stomatal density, we show that a ~40% decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene-Oligocene climate change, and a 'tipping point' was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.

  11. The Effects of Paleoelevation on the Early Eocene Climate of Western North America

    NASA Astrophysics Data System (ADS)

    Thrasher, B.; Sloan, L.

    2006-12-01

    Paleoelevation, while difficult to ascertain, played an important role in determining the climate of the Laramide Orogeny of Western North America during the early Eocene by way of both providing orographic lift to incoming air masses and establishing minimum annual temperatures for the region. Though fossil evidence suggests regional rainfall and temperature were substantial enough to support subtropical vegetation, isotopic evidence suggests the possibility of snow in some areas. Some studies have argued that extreme topographical relief was able to support permanent snow packs in the highest elevations, while others have argued that these extremes were not necessary and that winter precipitation was merely episodic in nature. This study employs a regional climate model to examine the effects of various topographic scenarios on temperature and precipitation under early Eocene conditions. This includes investigating the effects of an overall increase in elevation versus an increase in the elevation of only the regional highlands.

  12. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    NASA Astrophysics Data System (ADS)

    Westgate, James W.

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.

  13. Occurrence of a Pseudophragmina (Proporocyclina) Zaragosensis bank in upper Wilcox (lower Eocene), Pointe Coupee Parish, Louisiana

    SciTech Connect

    Nunn, L.L.; Lemoine, R.C.

    1987-09-01

    Rock-forming buildups of larger foraminifera, though not unknown in Louisiana, are rare, and are less common in the Gulf Coast than in Eocene strata from the Tethyan and Caribbean regions. In strata from the upper Wilcox Group (lower Eocene) in Pointe Coupee Parish, Louisiana, they have identified a thin, very rich faunal deposit, or bank made up almost exclusively of the tests of the larger foraminifera species, Pseudophragmina (Proporocyclina) zaragosensis. This is the first report of P. (P.) zaragosensis from the Louisiana Wilcox Group. The bank fauna colonized the sand sea floor on the continental shelf, flourished briefly, and then gradually declined, probably in response to increasing water depth, caused either by compaction-induced subsidence and/or a local or regional rise in relative sea level. This bank indicates that, during late Wilcox deposition, warm, shallow continental-shelf conditions prevailed in this region.

  14. Anthracobunids from the Middle Eocene of India and Pakistan Are Stem Perissodactyls

    PubMed Central

    Cooper, Lisa Noelle; Seiffert, Erik R.; Clementz, Mark; Madar, Sandra I.; Bajpai, Sunil; Hussain, S. Taseer; Thewissen, J. G. M.

    2014-01-01

    Anthracobunidae is an Eocene family of large mammals from south Asia that is commonly considered to be part of the radiation that gave rise to elephants (proboscideans) and sea cows (sirenians). We describe a new collection of anthracobunid fossils from Middle Eocene rocks of Indo-Pakistan that more than doubles the number of known anthracobunid fossils and challenges their putative relationships, instead implying that they are stem perissodactyls. Cranial, dental, and postcranial elements allow a revision of species and the recognition of a new anthracobunid genus. Analyses of stable isotopes and long bone geometry together suggest that most anthracobunids fed on land, but spent a considerable amount of time near water. This new evidence expands our understanding of stem perissodactyl diversity and sheds new light on perissodactyl origins. PMID:25295875

  15. Major element compositional variation within and between different late Eocene microtektite strewnfields

    NASA Astrophysics Data System (ADS)

    D'Hondt, S. L.; Keller, G.; Stallard, R. F.

    1987-03-01

    The major element composition of microspherules from all three late Eocene stratigraphic layers was analyzed using an electron microprobe. The results indicate a major element compositional overlap beween individual microspherules of different microtektite layers or strewn fields. However, multivariate factor analysis shows that the microtektites of the three late Eocene layers follow recognizably different compositional trends. The microtektite population of the North American strewn field is characterized by high concentrations of SiO2, Al2O3, and TiO2; the microspherules of an older layer, the Gl. cerroazulensis Zone, are relatively enriched in FeO and MgO and impoverished in SiO2 and TiO2; while those of the oldest layer in the uppermost G. semiinvoluta Zone are relatively enriched in CaO and impoverished in Al2O3 and Na2O.

  16. Species diversity and postcranial anatomy of eocene primates from Shanghuang, China.

    PubMed

    Gebo, Daniel L; Dagosto, Marian; Ni, Xijun; Beard, K Christopher

    2012-11-01

    The middle Eocene Shanghuang fissure-fillings, located in southern Jiangsu Province in China near the coastal city of Shanghai (Fig. 1), contain a remarkably diverse array of fossil primates that provide a unique window into the complex role played by Asia during early primate evolution.1 Compared to contemporaneous localities in North America or Europe, the ancient primate community sampled at the Shanghuang fissure-fillings is unique in several ways. Although Shanghuang has some typical Eocene primates (Omomyidae and Adapoidea), it also contains the earliest known members of the Tarsiidae and Anthropoidea (Fig. 2), and some new taxa that are not as yet known from elsewhere. It exhibits a large number of primate species, at least 18, most of which are very small (15-500 g), including some of the smallest primates that have ever been recovered.

  17. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    SciTech Connect

    Westgate, J.W. )

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Canderlaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan, The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone 16 and allow correlation with European beds of late Lutetian to early Bartonian age.

  18. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity.

    PubMed

    Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Cúneo, N Rubén

    2005-06-21

    South America has some of the most diverse floras and insect faunas that are known, but its Cenozoic fossil record of insects and insect herbivory is sparse. We quantified insect feeding on 3,599 leaves from the speciose Laguna del Hunco flora (Chubut, Argentina), which dates to the early Eocene climatic optimum (52 million years ago) and compared the results with three well preserved, rich, and identically analyzed early- and middle-Eocene floras from the following sites in North America: Republic, WA; Green River, UT; and Sourdough, WY. We found significantly more damage diversity at Laguna del Hunco than in the North American floras, whether measured on bulk collections or on individual plant species, for both damage morphotypes and feeding groups. An ancient history of rich, specialized plant-insect associations on diverse plant lineages in warm climates may be a major factor contributing to the current biodiversity of South America.

  19. The organic geochemistry of the Eocene-Oligocene black shales from the Lunpola Basin, central Tibet

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wang, Chengshan; Duan, Yi; Li, Yalin; Hu, Bin

    2014-01-01

    This paper reports on the depositional paleoenvironment and the potential hydrocarbons of the Eocene-Oligocene black shales from the Dingqinghu and Niubao Formations in the Lunpola Basin, central Tibet. Nineteen samples from two outcrop profiles were analysed. The contents of the total organic carbon (TOC) and sulphur were measured; other analyses included Rock-Eval pyrolysis, solvent extraction and gas chromatography-mass spectrometer (GC-MS). The results indicated that the shales from the Dingqinghu and Niubao Formations are thermally immature. The pyrolysis data show that the shales contain Type I organic matter and that lacustrine algal are the main organic matter sources. The low pristane to phytane ratios and the high gammacerane indices indicate that the shales were deposited in a reducing, stratified, and hypersaline palaeo-lake, which is consistent with the climate information provided by the development history of palaeo-lakes from the Eocene to the Oligocene epochs.

  20. A roller-like bird (Coracii) from the Early Eocene of Denmark

    PubMed Central

    Bourdon, Estelle; Kristoffersen, Anette V.; Bonde, Niels

    2016-01-01

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies. PMID:27670387

  1. An upper dentition of Aframonius dieides (Primates) from the Fayum, Egyptian Eocene

    PubMed Central

    Simons, Elwyn L.; Miller, Ellen R.

    1997-01-01

    The first known upper dentitions—an adult and subadult—of the cercamoniine adapiform Aframonius dieides are described. Comparisons show that A. dieides has an upper molar morphology resembling that of other cercamoniine adapids but the species lacks some of their typical specializations. The new dental material confirms that Aframonius stands closer to Mahgarita from west Texas and Cercamonius from Europe than it does to Schizarodon and Omanodon from Oman—all of which have been ranked as cercamoniines. Affinities of the latter two genera probably lie with the Anchomomys group. The presence of a cercamoniine adapid in the Eocene of Egypt supports the view that early African anthropoideans evolved not in isolation, but concomitantly with a contemporary Eocene prosimian radiation. PMID:9223301

  2. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  3. Fine structure of the late Eocene Ir anomaly in marine sediments

    NASA Technical Reports Server (NTRS)

    Asaro, F.

    1991-01-01

    The Late Eocene Ir abundance profile in deep sea cores from Ocean Drilling Program Leg 113 Hole 689B on the Maude Rise off of Antarctica was studied with 410 samples continuously in 10 cm increments and measured with the Iridium Coincidence (ICS). The ICS was subsequently modified to measure 13 other elements simultaneously with the Ir. The abundance profiles of these elements were then determined in the Late Eocene Massignano section in central Italy with 250 samples (encompassing roughly 2 million years of accumulation) which were collected about every 5 cm in about 2 cm increments. These studies augmented a previous one (which included many elements) of deep sea cores from Deep Sea Drilling Project Site 592 on the Lord Howe Rise in the Tasman Sea between Australia and New Zealand. In the latter study, 50 samples (encompassing roughly 0.7 million years of accumulation) were collected continuously in 10 cm increments. The results from these studies are discussed.

  4. Anthracobunids from the middle eocene of India and pakistan are stem perissodactyls.

    PubMed

    Cooper, Lisa Noelle; Seiffert, Erik R; Clementz, Mark; Madar, Sandra I; Bajpai, Sunil; Hussain, S Taseer; Thewissen, J G M

    2014-01-01

    Anthracobunidae is an Eocene family of large mammals from south Asia that is commonly considered to be part of the radiation that gave rise to elephants (proboscideans) and sea cows (sirenians). We describe a new collection of anthracobunid fossils from Middle Eocene rocks of Indo-Pakistan that more than doubles the number of known anthracobunid fossils and challenges their putative relationships, instead implying that they are stem perissodactyls. Cranial, dental, and postcranial elements allow a revision of species and the recognition of a new anthracobunid genus. Analyses of stable isotopes and long bone geometry together suggest that most anthracobunids fed on land, but spent a considerable amount of time near water. This new evidence expands our understanding of stem perissodactyl diversity and sheds new light on perissodactyl origins.

  5. Goulds Belt, Interstellar Clouds, and the Eocene-Oligocene Helium-3 Spike

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2015-01-01

    Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent small meteoroids with embedded helium to the Earth, perhaps explaining part or all of the (sup 3) He spike seen in the sedimentary record at the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits.

  6. No extreme bipolar glaciation during the main Eocene calcite compensation shift.

    PubMed

    Edgar, Kirsty M; Wilson, Paul A; Sexton, Philip F; Suganuma, Yusuke

    2007-08-23

    Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.

  7. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.

    PubMed

    Sexton, Philip F; Norris, Richard D; Wilson, Paul A; Pälike, Heiko; Westerhold, Thomas; Röhl, Ursula; Bolton, Clara T; Gibbs, Samantha

    2011-03-17

    'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (∼65-34 million years (Myr) ago). The most extreme hyperthermal was the ∼170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (∼40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

  8. Cool-water Eocene-Oligocene carbonate sedimentation on a paleobathymetric high, Kangaroo Island, southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Matenaar, Joanne; Bone, Yvonne

    2016-07-01

    The Kingscote Limestone is a thin, biofragmental 41 m thick Paleogene subtropical to cool-temperate carbonate interpreted to have accumulated in a seaway developed between a series of mid-shelf islands. It is a pivotal section that allows interpretation of a region in which there is little exposure of early Cenozoic shelf sediments. Sedimentation occurred on part of the shelf along the northern margin of an extensive Eocene embayment that evolved into a narrow Oligocene ocean following collapse of the Tasman Gateway. Eocene strata are subtropical echinoid-rich floatstones with conspicuous bryozoans, and mollusks, together with large and small benthic foraminifers. Numerous echinoid rudstone storm deposits punctuate the succession. Correlation with coeval Eocene strata across southern Australia supports a regional facies model wherein inner neritic biosiliceous spiculitic sediments passed outboard into calcareous facies. The silica was derived from land covered by a thriving subtropical forest and attendant deep weathering. Oligocene rocks are distinctively cooler cyclic cross-bedded bryozoan rudstones and floatstones with a similar benthic biota but dominated by bryozoans and containing no large benthic foraminifers. These deposits are interpreted as flood-dominated tidal subaqueous dunes that formed in a flood-tide dominated inter-island strait. Omission surfaces at the top of the Eocene and at the top of most Oligocene cycles are Fe-stained hardgrounds that underwent extensive multigeneration seafloor and meteoric diagenesis prior to deposition of the next cycle. Cycles in the Kingscote Limestone, although mostly m-scale and compositionally distinct are similar to those across the region and point to a recurring cycle motif controlled by icehouse eustasy and local paleogeography.

  9. Characterization of surface moisture changes between the PETM and Early Eocene in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.; Bowen, G. J.; Goldner, A. P.; Noone, D. C.

    2011-12-01

    One of the robust predictions from climate models is the expansion and poleward displacement of Hadley circulation zones-shifting and expanding arid zones across the globe-due to global warming. However, previous proxy studies and recent modeling work for the Eocene, Miocene, and Pliocene present scenarios for increased wetness, in areas like North America, due to a 'permanent' El Niño. One way to test the prediction that arid zones expand in a warmer world is to simulate the deep time paleoclimates, like the Eocene, and compare with proxy records. Using Eocene boundary conditions, we simulated the climatic period using the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3 (CAM3) including an atmospheric water isotopic tracer model (ISO-CAM). We present results from the simulations of two different pCO2 levels, 4480 and 2240 ppm, representing two different Eocene climates. Results show in the high pCO2 case that North America has an increase in precipitation during the summer monsoon season, and specifically a wetting in the pre-boreal summer monsoon season in most central regions. The increase in precipitation during the summer monsoon, however, is not stored in the soil system and is consequently converted to runoff. When the monsoon comes to an end, central North America experiences enhanced drying. Additionally, in North America, there is a shift towards heavier oxygen and hydrogen isotopes. This work can be compared to site proxy data and analysis of dynamics of the atmosphere explaining hydrological cycles in future and past climates.

  10. Upper Eocene glauconites from the Bahariya depression: An evidence for the marine regression in Egypt

    NASA Astrophysics Data System (ADS)

    El-Habaak, Galal; Askalany, Mohamed; Galal, Mohamed; Abdel-Hakeem, Mahmoud

    2016-05-01

    Glauconite deposits at the Bahariya Oasis are reported as Cenomanian and Upper Eocene deposits. The Upper Eocene glauconite deposits have received little attention in comparison with the Cenomanian counterpart. In the present study, glauconite deposits belonging to the Hamra Formation were investigated in terms of petrography, mineralogy and geochemistry to determine their origin and demonstrate their significance as proxies for the paleoenvironmental conditions. Petrographically, glauconite occurs as green to yellowish green, oval, sub-oval, rounded, fine to medium-grained (150-400 μm), moderately sorted pellets set in clayey matrix. Mineralogically, the studied deposit consists mainly of glauconite in association with quartz, feldspar, hematite, alunite, halloysite and calcite, whereas clay fractions (<2 μm) are composed essentially of glauconite with small amounts of illite-smectite mixed layer and kaolinite. Chemically, the studied glauconite contains K2O at average of 7.47%. Thus, it can be classified as evolved glauconite. The morphology of glauconite as oval, sub-oval, rounded pellets with deeply penetrating fractures on some grain surfaces, the moderate sort of these pellets and the occurrence of argillaceous matrix consisting of glauconitic plasma, illite-smectite mixed layer and kaolinite are considered criteria for the parautochthonous origin of the Upper Eocene glauconite. Moreover, the geochemistry of rare earth elements along with stratigraphy and the occurrences of many glauconitic ironstone horizons within the studied section proposed that the deposition of the studied glauconite, at depth of 100 m, started with marine transgression and terminated by marine regression during the Upper Eocene.

  11. Primate tarsal bones from Egerkingen, Switzerland, attributable to the middle Eocene adapiform Caenopithecus lemuroides

    PubMed Central

    Costeur, Loïc

    2015-01-01

    The middle Eocene species Caenopithecus lemuroides, known solely from the Egerkingen fissure fillings in Switzerland, was the first Paleogene fossil primate to be correctly identified as such (by Ludwig Rütimeyer in 1862), but has long been represented only by fragmentary mandibular and maxillary remains. More recent discoveries of adapiform fossils in other parts of the world have revealed Caenopithecus to be a biogeographic enigma, as it is potentially more closely related to Eocene adapiforms from Africa, Asia, and North America than it is to any known European forms. More anatomical evidence is needed, however, to provide robust tests of such phylogenetic hypotheses. Here we describe and analyze the first postcranial remains that can be attributed to C. lemuroides—an astragalus and three calcanei held in the collections of the Naturhistorisches Museum Basel that were likely recovered from Egerkingen over a century ago. Qualitative and multivariate morphometric analyses of these elements suggest that C. lemuroides was even more loris-like than European adapines such as Adapis and Leptadapis, and was not simply an adapine with an aberrant dentition. The astragalus of Caenopithecus is similar to that of younger Afradapis from the late Eocene of Egypt, and parsimony and Bayesian phylogenetic analyses that include the new tarsal data strongly support the placement of Afradapis and Caenopithecus as sister taxa to the exclusion of all other known adapiforms, thus implying that dispersal between Europe and Africa occurred during the middle Eocene. The new tarsal evidence, combined with previously known craniodental fossils, allows us to reconstruct C. lemuroides as having been an arboreal and highly folivorous 1.5–2.5 kg primate that likely moved slowly and deliberately with little or no capacity for acrobatic leaping, presumably maintaining consistent powerful grasps on branches in both above-branch and inverted postures. PMID:26131376

  12. Canine sexual dimorphism in Egyptian Eocene anthropoid primates: Catopithecus and Proteopithecus.

    PubMed

    Simons, E L; Plavcan, J M; Fleagle, J G

    1999-03-02

    Two very small late Eocene anthropoid primates, Catopithecus browni and Proteopithecus sylviae, from Fayum, Egypt show evidence of substantial sexual dimorphism in canine teeth. The degree of dimorphism suggests that these early anthropoids lived in social groups with a polygynous mating system and intense male-male competition. Catopithecus and Proteopithecus are smaller in estimated body size than any living primates showing canine dimorphism. The origin of canine dimorphism and polygyny in anthropoids was not associated with the evolution of large body size.

  13. Changes in the strength of Atlantic Ocean overturning circulation across repeated Eocene warming events

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, S.; Sexton, P. F.; Norris, R. D.; Wilson, P. A.; Charles, C. D.; Ridgwell, A.

    2015-12-01

    The Paleogene Period (~65 to 34 Ma) was a time of acute climatic warmth, with deep ocean temperatures exceeding 12°C at the height of the Early Eocene Climatic Optimum (~53 to 50 Ma). Multiple rapid warming events, associated with transient deep sea temperature increases of 2 to 4°C (termed 'hyperthermals'), potentially related to orbital forcing of the carbon cycle and climate, occurred from the late Paleocene through at least the early middle Eocene and onset of long-term Cenozoic cooling (~47 Ma). While deep ocean circulation patterns associated with the great glaciations of the Plio-Pleistocene have been studied extensively, the behavior of the ocean's overturning circulation on orbital-timescales in the extreme warmth of the early Cenozoic is largely unknown. Here we present new evidence for changing patterns of ocean overturning in the southern hemisphere associated with four orbitally paced hyperthermal events in the early-middle Eocene (~50 to 48 Ma) based on a combination of multi-site bulk carbonate and benthic foraminiferal stable isotope measurements and Earth system modeling. Our results suggest that southern-sourced overturning weakens and shoals in response to modest atmospheric carbon injections and consequent warming, and is replaced by invasion of nutrient-rich North Atlantic-sourced deep water, leading to predictable spatial patterns in deep-sea carbon isotope records. The changes in abyssal carbon isotope 'aging' gradients associated with these hyperthermals are, in fact, two to three times larger than the change in aging gradient associated with the switch in Atlantic overturning between the Last Glacial Maximum and today. Our results suggest that the Atlantic overturning circulation was sensitive to orbital-scale climate variability during Eocene extreme warmth, not just to interglacial-glacial climatic variability of the Plio-Pleistocene.

  14. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  15. Eocene-Oligocene aridification and uplift of the Tibetan Plateau, insight from chronostratigraphic and pollen analysis

    NASA Astrophysics Data System (ADS)

    Hoorn, C.; Dupont-Nivet, G.; Konert, M.; Krijgsman, W.; Langereis, C.; Abels, H.; Dai, S.; Fang, X.

    2007-12-01

    Continental aridification and the intensification of the monsoons in Asia are generally attributed to uplift of the Tibetan plateau and to the land-sea redistributions associated with the continental collision of India and Asia, whereas some studies suggest that past changes in Asian environments are mainly governed by global climate. The most dramatic climate event since the onset of the collision of India and Asia is the Eocene-Oligocene transition, an abrupt cooling step associated with the onset of glaciation in Antarctica 34 million years ago. However, the influence of this global event on Asian environments is poorly understood. Using magnetostratigraphy and cyclostratigraphy, we showed that aridification, which is indicated by the disappearance of playa lake deposits in the northeastern Tibetan plateau, occurred precisely at the time of the Eocene-Oligocene transition (Dupont-Nivet et al., 2007, Nature vol. 445, p. 637-638). This result suggest that this global transition is linked to significant aridification and cooling in continental Asia recorded by palaeontological and palaeoenvironmental changes, and thus support the idea that global cooling is associated with the Eocene-Oligocene transition. New insight is provided by preliminary pollen data recovered from gypsiferous beds of the playa deposits. The sudden and regional appearances of representatives of the Pinaceae family -and in particular that of Picea- which dominate the palynological record is interpreted to indicate a change to cooler and/or higher altitude conditions in surrounding paleoenvironments. This change occurring at ca. 38 Ma, predates by 4 My the major Eocene-Oligocene aridification but is in close correspondence to increasing sediment accumulation rates and tectonic rotations (see Dai et al., this meeting, Session GP12) and may thus be related to regional Tibetan uplift.

  16. Tibetan uplift prior to the Eocene-Oligocene transition, insight from chronostratigraphic and palynologic analyses

    NASA Astrophysics Data System (ADS)

    Straathof, J.; Abels, H. A.; Dupont-Nivet, G.; Hoorn, C.; Krijgsman, W.

    2009-04-01

    To unravel the interplay between Tibetan uplift and global climate, proxy records of Asian paleoenvironments constrained by accurate age models are needed for the Paleogene period. Uplift of the Tibetan Plateau and the Himalayas since the onset of the Indo-Asia collision is held responsible for Asian aridification and monsoon intensification, but may also have gradually cooled global climate, leading to the 34 Ma Eocene-Oligocene transition, an abrupt cooling step associated with the onset of glaciation in Antarctica. New insight is provided by integrated chronostratigraphic and pollen analyses of an exceptional Paleogene record from playa lake deposits of the Northeastern Tibetan Plateau (Xining Basin) constituted of red bed / gypsum alternations. Aridification is indicated by the disappearance of gypsum deposits occurring precisely at the time of the Eocene-Oligocene transition (Dupont-Nivet et al., 2007, Nature vol. 445, p. 637-638). In addition, regional orographic uplift is indicated by the sudden appearance of representatives of the Pinaceae family - and in particular that of Picea (Dupont-Nivet et al., 2008, Geology, vol. 36, p. 987-990). Cyclostratigraphic analysis indicates that the conifer appearance coincides with a change in the dominant orbital cycle forcing the paleoenvironment (see Abels et al., this session). These results suggest that threshold conditions for the vegetation change were reached after the long-term combined effects of regional uplift and gradual global cooling. Regional uplift at least 4 m.y. before the Eocene-Oligocene transition is consistent with the idea that the associated increase in rock weathering and erosion contributed to the Eocene-Oligocene transition

  17. Biostratigraphy of the Middle Eocene succession at Gebel Mishgigah, Wadi Rayan, Libyan Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Allam, A.; Shamah, K.; Zalat, A.

    The present study deals with the biozonation of the exposed section at Gebel Mishgigah, which is mainly composed of highly fossiliferous limestones, dolostones and marls. These deposits belong to Mishgigah Member of Wadi Rayan Formation and are of Late Lutetian to Bartonian (Late Middle Eocene) age. The collected samples were investigated for their microfaunal and nannofloral content. Different associations of calcareous nannoplankton, planktonic foraminifers, ostracods and bryozoans were detected. The depositional environments and paleoecologic factors that prevailed during the sedimentation were also interpreted.

  18. Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings

    NASA Astrophysics Data System (ADS)

    Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E.

    2014-04-01

    We present evidence for Antarctic Circumpolar Current (ACC)-like effects on Atlantic deepwater circulation beginning in the late-middle Eocene. Modern ocean circulation is characterized by a thermal differentiation between Southern Ocean and North Atlantic deepwater formation regions. In order to better constrain the timing and nature of the initial thermal differentiation between Northern Component Water (NCW) and Southern Component Water (SCW), we analyze benthic foraminiferal stable isotope (δ18Obf and δ13Cbf) records from Ocean Drilling Program Site 1053 (upper deep water, western North Atlantic). Our data, compared with published records and interpreted in the context of ocean circulation models, indicate that progressive opening of Southern Ocean gateways and initiation of a circum-Antarctic current caused a transition to a modern-like deep ocean circulation characterized by thermal differentiation between SCW and NCW beginning ~38.5 Ma, in the initial stages of Drake Passage opening. In addition, the relatively low δ18Obf values recorded at Site 1053 show that the cooling trend of the middle-late Eocene was not global, because it was not recorded in the North Atlantic. The timing of thermal differentiation shows that NCW contributed to ocean circulation by the late-middle Eocene, ~1-4 Myr earlier than previously thought. We propose that early NCW originated in the Labrador Sea, based on tectonic reconstructions and changes in foraminiferal assemblages in this basin. Finally, we link further development of meridional isotopic gradients in the Atlantic and Pacific in the late Eocene with the Tasman Gateway deepening (~34 Ma) and the consequent development of a circumpolar proto-ACC.

  19. Integrated stratigraphy and astronomical tuning of Smirra cores, lower Eocene, Umbria-Marche basin, Italy.

    NASA Astrophysics Data System (ADS)

    Lauretano, Vittoria; Turtù, Antonio; Hilgen, Frits; Galeotti, Simone; Catanzariti, Rita; Reichart, Gert Jan; Lourens, Lucas J.

    2016-04-01

    The early Eocene represents an ideal case study to analyse the impact of increase global warming on the ocean-atmosphere system. During this time interval, the Earth's surface experienced a long-term warming trend that culminated in a period of sustained high temperatures called the Early Eocene Climatic Optimum (EECO). These perturbations of the ocean-atmosphere system involved the global carbon cycle and global temperatures and have been linked to orbital forcing. Unravelling this complex climatic system strictly depends on the availability of high-quality suitable geological records and accurate age models. However, discrepancies between the astrochronological and radioisotopic dating techniques complicate the development of a robust time scale for the early Eocene (49-54 Ma). Here we present the first magneto-, bio-, chemo- and cyclostratigraphic results of the drilling of the land-based Smirra section, in the Umbria Marche Basin. The sediments recovered at Smirra provide a remarkably well-preserved and undisturbed succession of the early Palaeogene pelagic stratigraphy. Bulk stable carbon isotope and X-Ray Fluorescence (XRF) scanning records are employed in the construction of an astronomically tuned age model for the time interval between ~49 and ~54 Ma based on the tuning to long-eccentricity. These results are then compared to the astronomical tuning of the benthic carbon isotope record of ODP Site 1263 to evaluate the different age model options and improve the time scale of the early Eocene by assessing the precise number of eccentricity-related cycles comprised in this critical interval.

  20. Palaeocene-Eocene evolution of a specific group of extinct deep-sea benthic foraminifera.

    NASA Astrophysics Data System (ADS)

    van Kerckhoven, L.; Hayward, B. W.

    2009-04-01

    To increase the understanding of global evolution and extinction drivers in the deep sea, we study the enigmatic extinction of a distinctive group of cosmopolitan deep-sea benthic foraminifera during the late Pliocene-Middle Pleistocene "Last Global Extinction" (LGE) (3 - 0.12 Ma). The LGE was coeval with the pulsed expansion of the northern hemisphere ice cap, rendering deep-sea conditions colder and more oxygenated during increasingly severe glacials. The so-called "Extinction Group", comprising nearly 100 species (c. 25% of deep-sea foraminiferal diversity at that time), all shared a similar morphology of elongate, cylindrical and uniserial tests with small, specialised apertures. To elucidate the factors driving their evolution and ultimate extinction, we extend the studies back in time. During the Cenozoic, the deep-sea benthic foraminiferal community was stirred up by three more intervals of increased turnover (late Palaeocene-early Eocene, Late Eocene-earliest Oligocene and middle Miocene) all of which seem to have coincided with intervals of major climatic change. In a first stage of the research, we performed a low-resolution study of ODP Sites 689 and 1211 to obtain a record of the occurrence and abundance of the "Extinction Group" species throughout the Cenozoic. In a second phase, here presented, the research focuses on a high-resolution study of the "Extinction Group" species in ODP Sites 689 and 690 (Southern Ocean) through the Palaeocene-Eocene warm event, during which 30 to 50 % of benthic foraminiferal species went extinct. Focus on the Palaeocene-Eocene warm period, and investigation of whether this warm event had any impact on the "Extinction Group" species, indicates whether only the cold related events caused the loss of "Extinction Group" taxa and helps us to understand the extent to which the LGE was stress-related or temperature-related.

  1. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    PubMed

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  2. Eocene marine to nonmarine (deltaic) deposits, Lower Piru Creek, Los Angeles and Ventura Counties, California

    SciTech Connect

    Yamashiro, D.A.; Squires, R.L.

    1986-04-01

    A 790-m thick vertical section of lower middle Eocene sandstone represents a regressive deltaic sequence that grades upward from delta front through lower delta plain into upper delta plain. The sandstone crops out as a narrow strip of overturned east-west strata and south-plunging open folds within the Topatopa Mountains, 16 km north of the town of Piru, California. The sandstone gradationally overlies prodelta/transition-zone siltstone of uppermost Capay stage (early Eocene) and underlies, with a 15/sup 0/ angular unconformity, Eocene to Oligocene nonmarine boulder conglomerate of the Sespe Formation. The lower 95 m of the sandstone is characterized by an upward-coarsening sequence, fine at the base to medium at the top, laminated to bioturbated sandstone. Bioturbation is as high as 75% with Ophiomorpha burrows common. Shallow marine mollusks diagnostic of the Domengine stage (late early through early middle Eocene) occur within lenses of medium sandstone. These rocks were deposited in a shoreface environment on a delta front. Above the delta-front deposits are about 100 m of coarse sandstone. Structureless and bioturbated sandstone is dominant, but herringbone cross-bedding, planar cross-bedding 10-150 cm high, planar lamination, and scour-and-fill structures are common. Structures are interpreted as megaripples, sand waves, and channels in a tidal sand-flat environment. Coal lenses higher in the section are interpreted to be marsh deposits. Bioturbation can be up to 80% and Ostrea occurs locally. This tidal flat differs from most cited modern examples because it lacks a mud component or associated mud-flat deposits. The tidal sand-flat and marsh deposits were formed within a lower delta plain. Overlying these rocks is a 205-m interval of interfingering tidal-flat and braided-river deposits.

  3. New genus and species names for the Eocene lizard Cadurcogekko rugosus Augé, 2005.

    PubMed

    Bolet, Arnau; Daza, Juan D; Augé, Marc; Bauer, Aaron M

    2015-07-10

    Cadurcogekko rugosus Augé, 2005 was described as a gekkotan lizard from the Eocene of France. A revision of the material has revealed that the holotype, a nearly complete dentary, actually belongs to a scincid lizard, for which we erect the new genus Gekkomimus. The rest of material originally referred to C. rugosus is of undoubted gekkotan nature and is included in the new species Cadurcogekko verus, with the exception of a partial left dentary belonging to the iguanid lizard Cadurciguana hoffstetteri.

  4. Geochemical anomalies near the Eocene-Oligocene and Permian-Triassic boundaries

    SciTech Connect

    Asaro, F.; Alvarez, L.W.; Alvarez, W.; Michel, H.V.

    1981-10-01

    Evidence is presented to support the theory that several mass extinctions, i.e., those that define the Permian-Triassic boundary, the Cretaceous-Tertiary boundary, and the Eocene-1 Oligocene boundary, were caused by impact on the earth of extraterrestrial objects having the composition of carbonaceous chondrites and diameters of about 10 km. The evidence consists of anomalously high concentrations of iridium and other siderophile elements at the stratigraphic levels defining the extinctions. (ACR)

  5. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    PubMed Central

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  6. Carbon Dioxide and the Early Eocene Climate of Western North America

    NASA Astrophysics Data System (ADS)

    Thrasher, B.; Sloan, L.

    2007-12-01

    Concentrations of atmospheric greenhouse gases play an important role in determining the climate by way of emitting longwave radiation towards the Earth, thereby increasing the temperature of the surface and lower atmosphere above that which would be measured in the absence of these constituents. Carbon dioxide (CO2), a well-mixed greenhouse gas, is naturally added to the atmosphere through aerobic biological respiration and decay, volcanic eruptions, and dissociation from ocean water. Meanwhile, it is removed from the atmosphere through photosynthesis, chemical weathering, and diffusion into the oceans. All of these factors make it difficult to pinpoint the concentration of atmospheric CO2 in the distant past. Indeed, estimates of CO2 concentration during the early Eocene (~ 55 million years ago) vary widely, from 300 ppm to upwards of 2000 ppm. This study employs a regional climate model to examine the effects of different CO2 levels on temperature and precipitation under early Eocene conditions. The region of interest, western North America, contains fossil evidence from the early Eocene that suggests regional rainfall was substantial enough and temperatures were warm enough to support subtropical vegetation, whereas today the region is primarily characterized by desert and steppe.

  7. Erosion and reworking of Pacific sediments near the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Moore, Ted C.

    2013-06-01

    The Eocene-Oligocene (E/O) boundary interval marks one of the largest and most rapid changes in climate during the last 50 Myr. Because of a very shallow calcium carbonate compensation depth in the Eocene, as well as the reworking of sediments and hiatuses in the boundary zone, it has also been one of the most difficult stratigraphic boundaries to study in deep water marine sections, especially in the Pacific Ocean. Recently, three drill sites have recovered complete sections of the E/O boundary interval in the tropical Pacific. A detailed study of these sections shows a series of pulses of reworked older radiolarians in the upper Eocene and lowermost Oligocene. The two largest pulses are coincident with the two sharp steps in carbon and oxygen isotope values that bracket the E/O boundary. Several smaller peaks in reworked material precede these two maxima. It is proposed that immixing of the older radiolarian species results from erosion and redeposition, possibly linked to pulses of new bottom water formation and the formation of a deep pycnocline.

  8. Carbon sequestration during the Palaeocene-Eocene Thermal Maximum by an efficient biological pump

    NASA Astrophysics Data System (ADS)

    Ma, Zhongwu; Gray, Ellen; Thomas, Ellen; Murphy, Brandon; Zachos, James; Paytan, Adina

    2014-05-01

    A perturbation of the carbon cycle and biosphere, linked to globally increased temperatures about 55.9 million years ago, characterized the Palaeocene-Eocene Thermal Maximum. Its effect on global oceanic productivity is controversial. Here we present records of marine barite accumulation rates that show distinct peaks during this time interval, suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. Higher seawater temperatures at that time increased bacterial activity and organic matter regeneration. Through this process much of the sinking particulate organic matter was probably converted to dissolved inorganic and organic carbon. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the Palaeocene-Eocene Thermal Maximum. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the Palaeocene-Eocene Thermal Maximum.

  9. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.

    PubMed

    Dupont-Nivet, Guillaume; Krijgsman, Wout; Langereis, Cor G; Abels, Hemmo A; Dai, Shuang; Fang, Xiaomin

    2007-02-08

    Continental aridification and the intensification of the monsoons in Asia are generally attributed to uplift of the Tibetan plateau and to the land-sea redistributions associated with the continental collision of India and Asia, whereas some studies suggest that past changes in Asian environments are mainly governed by global climate. The most dramatic climate event since the onset of the collision of India and Asia is the Eocene-Oligocene transition, an abrupt cooling step associated with the onset of glaciation in Antarctica 34 million years ago. However, the influence of this global event on Asian environments is poorly understood. Here we use magnetostratigraphy and cyclostratigraphy to show that aridification, which is indicated by the disappearance of playa lake deposits in the northeastern Tibetan plateau, occurred precisely at the time of the Eocene-Oligocene transition. Our findings suggest that this global transition is linked to significant aridification and cooling in continental Asia recorded by palaeontological and palaeoenvironmental changes, and thus support the idea that global cooling is associated with the Eocene-Oligocene transition. We show that, with sufficient age control on the sedimentary records, global climate can be distinguished from tectonism and recognized as a major contributor to continental Asian environments.

  10. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-02-01

    Earth surface temperatures, including in the deep sea increased by 5-10°C from the late Paleocene ca. 58 Myr ago to the Early Eocene Climatic Optimum (EECO) centered at about 51 Myr ago. A large (˜2.5‰) drop in δ13C of carbonate spans much of this interval. This suggests a long-term increase in the net flux of 13C-depleted carbon to the ocean and atmosphere that is difficult to explain by changes in surficial carbon cycling alone. We reveal a relationship between surface temperature increase and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales. We propose that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window across hundreds of sedimentary basins globally. Modelling the thermal evolution of four sedimentary basins in the southwest Pacific predicted an up to 50% increase in petroleum generation that would have significantly increased leakage of light hydrocarbons and oil degeneration products into the atmosphere. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have caused a climate feedback effect, driving or enhancing early Eocene climate warming.

  11. Late Jurassic to Eocene geochemical evolution of volcanic rocks in Puerto Rico

    SciTech Connect

    Schellekens, J.H. )

    1991-03-01

    The Late Jurassic to Eocene deformed volcanic, volcaniclastic and sedimentary rocks of Puerto Rico are divided into three igneous provinces, the southwestern, central, and northeastern igneous province. Based on the stratigraphic position approximate ages could be assigned to the flow rocks in these provinces. Ba/Nb and La/Sm diagrams are presented to illustrate the origin and evolution of the flow rocks. The oldest rock in the southwestern province may include MORB. Early Cretaceous volcanic rocks in the central and northeastern province have low Ba/nb and La/Sm, that are interpreted as an early island arc stage, with none or only minor contribution of slab-derived material. The Late Cretaceous to Eocene volcanic rocks have a wide range of values for the Ba/Nb and La/Sm that are interpreted as the result of admixture of a variable amount of slab-derived material. The Maricao Basalt (Maastrichtian to Eocene) in the southeastern igneous province has the geochemical signature of magmas formed in an extensional setting.

  12. The Best Modern Analog for Eocene Arctic Forests is within Today's Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L. O.; Ellsworth, P.; Eberth, D.; Sweet, A.

    2011-12-01

    In the 25 years that have passed since the first extensive descriptions of the Fossil Forests that persisted above the Arctic Circle during the Eocene (~45-54 Ma), no less than four locations have been suggested as modern analogs. These locations represent a diverse collection of biomes and temperature/precipitation environments, and include the southeastern Unites States and southeastern Asia (based on flora and fauna assemblages), southern Chile and the U.S. Pacific Northwest (based on biomass and productivity estimates), and Pacific Northwestern U.S. and Canada (based on mean annual temperature and mean annual precipitation). Here we report on new isotope datasets that allow for a prediction of best modern analog based on a quantitative characterization of paleoseasonality. First, we report high-resolution carbon isotope data from fossil tree rings that record the ratio of summer to winter precipitation. Second, we report analyses of the oxygen isotope composition of phenylglucosazone, a compound isolated from fossil cellulose that straightforwardly records the oxygen isotope composition of meteoric water available to the tree. Together, our analyses indicate that the fossil forests of the Eocene Arctic thrived under a summer-dominated, high-intensity, seasonal precipitation regime, with at least 279 mm of rainfall during the wettest month. A quantitative comparison of mean-annual temperature and precipitation, fossil and modern plant communities, and the seasonality indices, highlights the Korean peninsula as the most appropriate modern analog for the Arctic Eocene forests, in preference to the North and South American analogs previously proposed.

  13. “Terror Birds” (Phorusrhacidae) from the Eocene of Europe Imply Trans-Tethys Dispersal

    PubMed Central

    Angst, Delphine; Buffetaut, Eric; Lécuyer, Christophe; Amiot, Romain

    2013-01-01

    Background Phorusrhacidae was a clade including middle-sized to giant terrestrial carnivorous birds, known mainly from the Cenozoic of South America, but also occurring in the Plio-Pleistocene of North America and the Eocene of Africa. Previous reports of small phorusrhacids in the Paleogene of Europe have been dismissed as based on non-phorusrhacid material. Methodology we have re-examined specimens of large terrestrial birds from the Eocene (late Lutetian) of France and Switzerland previously referred to gastornithids and ratites and have identified them as belonging to a phorusrhacid for which the name Eleutherornis cotei should be used. Conclusions/Significance The occurrence of a phorusrhacid in the late Lutetian of Europe indicates that these flightless birds had a wider geographical distribution than previously recognized. The likeliest interpretation is that they dispersed from Africa, where the group is known in the Eocene, which implies crossing the Tethys Sea. The Early Tertiary distribution of phorusrhacids can be best explained by transoceanic dispersal, across both the South Atlantic and the Tethys. PMID:24312212

  14. A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications

    PubMed Central

    Ni, Xijun; Meng, Jin; Beard, K. Christopher; Gebo, Daniel L.; Wang, Yuanqing; Li, Chuankui

    2010-01-01

    Tarka and Tarkadectes are Middle Eocene mammals known only from the Rocky Mountains region of North America. Previous work has suggested that they are members of the Plagiomenidae, an extinct family often included in the order Dermoptera. Here we describe a new primate, Tarkops mckennai gen. et sp. nov., from the early Middle Eocene Irdinmanha Formation of Inner Mongolia, China. The new taxon is particularly similar to Tarka and Tarkadectes, but it also displays many features observed in omomyids. A phylogenetic analysis based on a data matrix including 59 taxa and 444 dental characters suggests that Tarkops, Tarka and Tarkadectes form a monophyletic group—the Tarkadectinae—that is nested within the omomyid clade. Within Omomyidae, tarkadectines appear to be closely related to Macrotarsius. Dermoptera, including extant and extinct flying lemurs and plagiomenids, is recognized as a clade nesting within the polyphyletic group of plesiadapiforms, therefore supporting the previous suggestion that the relationship between dermopterans and primates is as close as that between plesiadapiforms and primates. The distribution of tarkadectine primates on both sides of the Pacific Ocean basin suggests that palaeoenvironmental conditions appropriate to sustain primates occurred across a vast expanse of Asia and North America during the Middle Eocene. PMID:19386655

  15. The role of fire during the Eocene-Oligocene transition in southern South America

    NASA Astrophysics Data System (ADS)

    Strömberg, C. A. E.; Selkin, P. A.; Boyle, J.; Carlini, A. A.; Davies-Vollum, K. S.; Dunn, R. E.; Kohn, M. J.; Madden, R. H.

    2014-12-01

    The geological record of wildfire, particularly across climate transitions, can help elucidate the complex relationships between climate, vegetation, and fire at long temporal scales. Across Eocene-Oligocene Transition (EOT), previous workers have proposed climate changes (drying and changes in seasonality) contemporaneous with the growth of the Antarctic ice sheet that would have changed the likelihood of wildfires in terrestrial ecosystems. We document short-lived changes in fire regime and plant community in Patagonia near the time of the EOT. Specifically, the concentration of magnetic oxide minerals in Eocene-Oligocene loessites from the Sarmiento Formation correlates with the fraction of burnt palm phytoliths as well as with the fraction of non-palm phytoliths. We interpret the magnetic mineral assemblage magnetite + maghemite ± hematite as pyrogenic, forming in reducing conditions at temperatures between 300 and 600°C. The disappearance of fire-related characteristics near the EOT is possible if seasonal drought was suppressed due to a northward shift in the westerlies - a process consistent with changes in modal particle sizes in the Vera Member. Although the transitory nature of the changes in fire regime remains a puzzle, these results imply a more important role for fire in structuring Eocene-Oligocene landscapes than previously thought.

  16. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    SciTech Connect

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were deposited by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.

  17. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains.

    PubMed

    Orliac, M J; Gilissen, E

    2012-09-22

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls.

  18. Studies in neotropical paleobotany. XIV. A palynoflora from the middle Eocene Saramaguacan formation of Cuba

    USGS Publications Warehouse

    Graham, A.; Cozadd, D.; Areces-Mallea, A.; Frederiksen, N.O.

    2000-01-01

    An assemblage of 46 fossil pollen and spore types is described from a core drilled through the middle Eocene Saramaguacan Formation, Camaguey Province, eastern Cuba. Many of the specimens represent unidentified or extinct taxa but several can be identified to family (Palmae, Bombacaceae, Gramineae, Moraceae, Myrtaceae) and some to genus (Pteris, Crudia, Lymingtonia?). The paleo-climate was warm-temperate to subtropical which is consistent with other floras in the region of comparable age and with the global paleotemperature curve. Older plate tectonic models show a variety of locations for proto-Cuba during Late Cretaceous and later times, including along the norther coast of South America. More recent models depict western and central Cuba as two separate parts until the Eocene, and eastern Cuba (joined to northern Hispaniola) docking to central Cuba also in the Eocene. All fragments are part of the North American Plate and none were directly connected with northern South America in late Mesozoic or Cenozoic time. The Saramaguacan flora supports this model because the assemblage is distinctly North American in affinities, with only one type (Retimonocolpites type 1) found elsewhere only in South America.

  19. Studies in Neotropical paleobotany. XIV. A palynoflora from the Middle Eocene Saramaguacan Formation of Cuba.

    PubMed

    Graham, A; Cozadd, D; Areces-Mallea, A; Frederiksen, N O

    2000-10-01

    An assemblage of 46 fossil pollen and spore types is described from a core drilled through the middle Eocene Saramaguacán Formation, Camagüey Province, eastern Cuba. Many of the specimens represent unidentified or extinct taxa but several can be identified to family (Palmae, Bombacaceae, Gramineae, Moraceae, Myrtaceae) and some to genus (Pteris, Crudia, Lymingtonia?). The paleoclimate was warm-temperate to subtropical which is consistent with other floras in the region of comparable age and with the global paleotemperature curve. Older plate tectonic models show a variety of locations for proto-Cuba during Late Cretaceous and later times, including along the norther coast of South America. More recent models depict western and central Cuba as two separate parts until the Eocene, and eastern Cuba (joined to northern Hispaniola) docking to central Cuba also in the Eocene. All fragments are part of the North American Plate and none were directly connected with northern South America in late Mesozoic or Cenozoic time. The Saramaguacán flora supports this model because the assemblage is distinctly North American in affinities, with only one type (Retimonocolpites type 1) found elsewhere only in South America.

  20. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India

    PubMed Central

    Rust, Jes; Singh, Hukam; Rana, Rajendra S.; McCann, Tom; Singh, Lacham; Anderson, Ken; Sarkar, Nivedita; Nascimbene, Paul C.; Stebner, Frauke; Thomas, Jennifer C.; Solórzano Kraemer, Monica; Williams, Christopher J.; Engel, Michael S.; Sahni, Ashok; Grimaldi, David

    2010-01-01

    For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50–52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today. PMID:20974929

  1. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber

    PubMed Central

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C.; Peralta, Denilson F.; Renner, Matt; Schmidt, Alexander R.

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae. PMID:27244582

  2. Refinement of Eocene lapse rates, fossil-leaf altimetry, and North American Cordilleran surface elevation estimates

    NASA Astrophysics Data System (ADS)

    Feng, Ran; Poulsen, Christopher J.

    2016-02-01

    Estimates of continental paleoelevation using proxy methods are essential for understanding the geodynamic, climatic, and geomorphoric evolution of ancient orogens. Fossil-leaf paleoaltimetry, one of the few quantitative proxy approaches, uses fossil-leaf traits to quantify differences in temperature or moist enthalpy between coeval coastal and inland sites along latitudes. These environmental differences are converted to elevation differences using their rates of change with elevation (lapse rate). Here, we evaluate the uncertainty associated with this method using the Eocene North American Cordillera as a case study. To do so, we develop a series of paleoclimate simulations for the Early (∼55-49 Ma) and Middle Eocene (49-40 Ma) period using a range of elevation scenarios for the western North American Cordillera. Simulated Eocene lapse rates over western North America are ∼5 °C/km and 9.8 kJ/km, close to moist adiabatic rates but significantly different from modern rates. Further, using linear lapse rates underestimates high-altitude (>3 km) temperature variability and loss of moist enthalpy induced by non-linear circulation changes in response to increasing surface elevation. Ignoring these changes leads to kilometer-scale biases in elevation estimates. In addition to these biases, we demonstrate that previous elevation estimates of the western Cordillera are affected by local climate variability at coastal fossil-leaf sites of up to ∼8 °C in temperature and ∼20 kJ in moist enthalpy, a factor which further contributes to elevation overestimates of ∼1 km for Early Eocene floras located in the Laramide foreland basins and underestimates of ∼1 km for late Middle Eocene floras in the southern Cordillera. We suggest a new approach for estimating past elevations by comparing proxy reconstructions directly with simulated distributions of temperature and moist enthalpy under a range of elevation scenarios. Using this method, we estimate mean elevations for

  3. Remnants of the late Eocene erosion surface in the region between the Kaibab uplift and the Rio Grande rift

    SciTech Connect

    Ely, R.W. )

    1993-04-01

    A widespread low-relief erosion surface is thought to have formed in the Colorado Plateau region during the late Eocene between the end of the Laramide orogeny and the beginning of widespread Oligocene volcanism. The present configuration of the late-Eocene surface (LES) is depicted on east-west cross sections that extend from the Kaibab uplift to the Rio Grande rift. The LES is best preserved underneath the Oligocene Chuska Sandstone on the Defiance uplift at about 8,000 ft. MSL. The Chuska is an aeolian arkose that contains rhyolitic ash beds, and was eroded to hilly surface by 30 my ago prior to eruption of the Navajo volcanic field. To the north, the Paleocene Carrizo Mtns. intrusive appear to have been an isolated upland that stood above surrounding plains during the late Eocene. To the west, the north rim of Black Mesa is close to the elevation of the LES on the Defiance Plateau. Siliceous lag-gravels on the rim of Black Mesa may have been derived from sediments originally deposited on the LES. Farther west the Kaibab uplift rises above 9,000 ft. MSL for 14 miles along its crest. The Kaibab uplift probably was a karst plateau that stood above alluviated late Eocene lowlands to the east, north and west. East of the Defiance Plateau, the early Eocene San Jose Formation of the San Juan basin is preserved at elevations as high as 7,500 ft. under the eastern part of the basin, and as high as 8,450 ft. along the deformed eastern flank of the basin. Several thousand feet of middle Eocene deposits probably were once present in the basin. Several thousand feet of middle Eocene deposits probably were once present in the basin, putting the LES at about 9,000--10,000 ft MSL along the eastern side.

  4. Paleoweathering and paleoenvironmental change recorded in lacustrine sediments of the early to middle Eocene in Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Yang, Shiling; Wang, Xu; Cui, Linlin

    2017-01-01

    Deciphering the long-term interaction among continental silicate weathering, global climate, and atmospheric CO2 concentrations is helpful in understanding the mechanisms of the Cenozoic climate change and accessing the future climatic and environmental response to anthropogenic carbon emissions. The Eocene, which is characterized by the Early Eocene Climatic Optimum (EECO) and the following global cooling, represents an ideal test case. Here we generate geochemical data of the Eocene lacustrine sediments from the Fushun Basin, northeast China, to explore the regional climatic response to the global climate change. The chemical index of alteration (CIA) and plagioclase index of alteration (PIA) consistently show a gradual, long-term decrease, indicating a climatic transition from warm and humid to relatively cold and arid during the Eocene in the Fushun Basin. This climatic trend is broadly coincident with the global cooling and decreasing CO2 concentration, implying that the regional climate is closely correlated with the global climate change over geological time scales. Additionally, the extreme silicate weathering and high lake productivity as reflected by relatively positive δ13C values of lacustrine organic matter are associated with the EECO. This consistency may demonstrate that enhanced continental weathering and lake productivity had served as effective sinks to lower atmospheric CO2 across the EECO. Collectively, our new geochemical data add supporting evidence for a long-term, close coupling among continental silicate weathering, climate, and global carbon cycle during the Eocene.

  5. Nummulite biostratigraphy of the Eocene succession in the Bahariya Depression, Egypt: Implications for timing of iron mineralization

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Serra-Kiel, J.; Sanz-Montero, M. E.; Calvo, J. P.; Sallam, E. S.

    2016-08-01

    In the northern part of the Bahariya Depression (Western Desert, Egypt) the Eocene carbonate succession, unconformably overlying the Cretaceous deposits, consists of three main stratigraphic units; the Naqb, Qazzun and El Hamra formations. The Eocene carbonates are relevant as they locally host a large economic iron mineralization. This work revises the stratigraphic attribution of the Eocene formations on the basis of larger benthic foraminifers from both carbonate and ironstone beds. Eight Nummulites species spanning the late Ypresian - early Bartonian (SBZ12 to SBZ17) were identified, thus refining the chronostratigraphic framework of the Eocene in that region of Central Egypt. Moreover, additional sedimentological insight of the Eocene carbonate rocks is presented. The carbonate deposits mainly represent shallow marine facies characteristic of inner to mid ramp settings; though deposits interpreted as intertidal to supratidal are locally recognized. Dating of Nummulites assemblages from the youngest ironstone beds in the mines as early Bartonian provides crucial information on the timing of the hydrothermal and meteoric water processes resulting in the formation of the iron ore mineralization. The new data strongly support a post-depositional, structurally-controlled formation model for the ironstone mineralization of the Bahariya Depression.

  6. POST-Eocene subsidence of the Marshall Islands recorded by drowned atolls on Harrie and Sylvania guyots

    NASA Astrophysics Data System (ADS)

    Schlanger, S. O.; Campbell, J. F.; Jackson, M. W.

    Geophysical and geological surveys of Harrie and Sylvania Guyots in the northern Marshall Islands show that both of these volcanic edifices are capped by drowned atolls of Early Eocene age. The volcanic eruptions that formed both of these guyots were apparently coeval with the eruptions that formed the volcanic edifice below Enewetak Atoll. These Eocene eruptions took place in an off-ridge setting in a region that had experienced a complex history of Cretaceous mid-plate volcanism. Present depths to the tops of these drowned Eocene atolls are 1520 m at Harrie and 1480 m at Sylvania which, taken together with the coeval subsidence of Enewetak atoll of ˜1300-1400 m and the post-Late Cretaceous subsidence of the Nauru Basin of ˜1600 m, show that this region has subsided rapidly, as a unit, atop a thermally rejuvenated lithosphere of Middle Jurassic age. The Eocene atolls on Harrie and Sylvania Guyots drowned during a rapid sea level rise ˜49 Ma that followed a period of relatively high sea levels in Early Eocene time.

  7. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  8. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    PubMed

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.

  9. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  10. Iberian-Europe convergence: evolution of the Cretaceous and Eocene basins in Pyrenees and Provence

    SciTech Connect

    Muller, J.; Ducassel, L.; Guieu, G.; Razin, P.; Rochet, J.; Roussel, J.; Velasque, P.C.; Villeneuve, M. )

    1988-08-01

    During Cretaceous time the geodynamic evolution of Northern and Western Pyrenean basins was related to scissors-shaped rifting which evolved as a passive margin filled by thick flysch deposits. In Provence, the carbonate platform was marked since the late Albian by the arrival of significant detrital flows originated from an uplifted Paleozoic block situated in the Gulf of Lion. In Provence the northward migration of the basin from Cenomanian to Eocene and Oligocene indicates the growing of the Gulf of Lion-South Provence crustal uplift and its northward displacement. The Cretaceous opening of the western Pyrenean, Parentis, and Bay of Biscay basins is synchronous with the first stages of compression in the Gulf of Lion. These features are induced by the rotation of Iberia. During the Eocene the compression, resulting from the Iberian-Europe convergence, affected nearly the whole Pyrenean-Provencal area. In the southern part of the Pyrenees east of the Pamplona fault, the successive dislocations of carbonate platforms, migration of reefs, and filling of foreland basins became the signature of the intracontinental subduction of Iberia. The transform fault pattern, still well preserved in spite of the Eocene compression, prevents any important strike-slip movement between Europe and Iberia, especially along the so-called North Pyrenean fault zone, which shows several discontinuities in the western part of Pyrenees. The final evolution of Gulf of Lion crustal uplift generated a gliding of its cover (Provence overthrusts) and, during Oligocene, the opening of the Ligurian-Provencal basin by a propagating rift process.

  11. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    PubMed

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales.

  12. Late Eocene sea surface cooling of the western North Atlantic (ODP Site 647A)

    NASA Astrophysics Data System (ADS)

    Sliwinska, Kasia K.; Coxall, Helen K.; Schouten, Stefan

    2016-04-01

    The initial shift out of the early Cenozoic greenhouse and into a glacial icehouse climate occurred during the middle to late Eocene and culminated in the abrupt growth of a continental-scale ice cap on Antarctica, during an episode known as the Oligocene Isotope Event 1 (Oi-1) ˜33.7 Ma. Documenting the patterns of global and regional cooling prior to Oi-1 is crucial for understanding the driving force and feedback behind the switch in climate mode. Well-dated high-resolution temperature records, however, remain sparse and the climatic response in some of the most climatically sensitive regions of the Earth, including the high latitude North Atlantic (NA), where today large amounts of ocean heat are exchanged, are poorly known. Here we present a sea surface palaeotemperature record from the late Eocene to the early Oligocene (32.5 Ma to 35 Ma) of ODP Hole 647A based on archaeal tetraether lipids (TEX86H). The site is located in the western North Atlantic (Southern Labrador Sea) and is the most northerly located (53° N) open ocean site with a complete Eocene-Oligocene sequence which yields both calcareous and organic microfossils suitable for detailed proxy reconstructions. Our record agrees with the magnitude of temperature decrease (˜3 ° C sea surface cooling) recorded by alkenones and pollen data from the Greenland Sea, but our higher resolution study reveals that the high latitude NA cooling step occurred about 500 kyrs prior to the Oi-1 Antarctic glaciation, at around ˜34.4 Ma. This cooling can be explained by regional effects related to local NA tectonics including ocean gateways, known to have changed at the time, with potential to effect NA overturning circulation due to adjustments in the thermohaline density balance. Alternatively, the cooling itself may be due to changes in NA circulation, suggesting that global ocean circulation played a role in pre-conditioning the Earth for Antarctic glaciation.

  13. Magnetic microspherules associated with the K/T and upper Eocene extinction events

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1988-01-01

    Magnetic microspherules were identified in over 20 K/T boundary sites, and in numerous Deep Sea Drilling Project (DSDP) cores from the Caribbean and Pacific, synchronous with the extinction of several radiolarian species near the end of the Eocene. The K/T magnetic spherules are of particular interest as carriers of Ir and other siderophiles generally found in abundance in K/T boundary clay. Furthermore the textures and unusual chemistry of their component magnetic phases indicate an origin at high temperature, possibly related to (an) unusual event(s) marking the end of the Cretaceous and Eocene periods. Their origin, along with the non-magnetic (sanidine) spheules, is generally ascribed directly to megaimpact events hypothesized to have periodically disrupted life on Earth. A survey of microspherical forms associated with known meteorite and impact derived materials reveals fundamental differences from the extinction related spherules. Low temperature magnetic experiments on the K/T and Upper Eocene spheroids indicate that, unlike tektites, extremely small superparamagnetic carriers are not present in abundance. The extensive subaerial exposure of Cretaceous combustible black shale during sea level regression in the latest Cretaceous represents a potential source for the magnetic spheroids found in certain K/T boundary clays. The recent discovery of high Ir abundances distributed above and below the K/T boundary within shallow water sediments in Israel, which also contain the most extensive known zones of combustion metamorphism, the so called Mottled Zone, adds a further dramatic footnote to the proposed association between the magnetic spheroids and combustion of organic shales. Interestingly, the Mottled Zone also contains the rare mineral magnesioferrite, which was identified both within the K/T magnetic spheroids and as discrete crystals in boundary clay from marine and continental sites.

  14. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Dickinson, Kendell A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature ( δ13C = +16.9) consistent with residual carbon formed during methanogenic fermentation.

  15. Modifications in calcareous nannofossil assemblages during the Early Eocene: a tethyan perspective.

    NASA Astrophysics Data System (ADS)

    Agnini, Claudia; Rio, Domenico; Dallanave, Edoardo; Spofforth, David J. A.; Muttoni, Giovanni; Pälike, Heiko

    2010-05-01

    The available oxygen isotope records indicate a long-term warming trend from the late Paleocene through the early Eocene (ca. 59-52 Ma) that peaked at the Early Eocene Climatic Optimum (EECO) (Zachos et al., 2001). This trend was interrupted by at least two or more prominent carbon cycle perturbations, the PETM at ca. 55.5 Ma and the Eocene thermal maximum 2 (ETM2; also referred to as Elmo, H-1) at ca. 53,6 Ma (Kennett and Stott, 1991; Lourens et al., 2005). Here we present calcareous nannofossil data from the hemipelagic Cicogna section located in the Piave River Valley in north eastern Italy (Dallanave et al., 2009). This continuous sedimentary record was studied to reconstruct the main features in the calcareous nannoplankton communities during this critical interval. As is clearly shown by the results, some of the observed prominent modifications are related to short-lived phases of climate perturbation, as for instance the transient and abrupt appearance of odd species during the PETM or the prominent variations in the relative abundance within the assemblages during these events. These short-term changes are usually transitory and calcareous nannoplankton seem to be able to return back to pre-event state. Nonetheless, the overall shape of calcareous nannofossil assemblages showed long lasting or gradual changes, for example the extinction of genera Fasciculithus and Prinsius, the explosion of Zyghrablithus bijugatus and the gradual decrease of heterococcoliths/nannoliths ratio. Either transient or permanent modifications in calcareous nannofossils are associated to dramatic perturbation of paleoenviromental conditions or long trend climate evolution, respectively. References: Dallanave et al., 2009. Earth and Planetary Science Letters, 285, 39-51. Kennett and Stott, 1991. Nature, 353, 225-229. Lourens et al., 2005. Nature, 235, 1083-1087. Zachos et al., 2001. Science, 292, 686-693.

  16. New fauna of archaeocete whales (Mammalia, Cetacea) from the Bartonian middle Eocene of southern Morocco

    NASA Astrophysics Data System (ADS)

    Gingerich, Philip D.; Zouhri, Samir

    2015-11-01

    Six genera and species of archaic whales are present in a new fauna from the Aridal Formation at Gueran in the Sahara Desert of southwestern Morocco. Three of the archaeocete species represent semiaquatic Protocetidae and three species are fully aquatic Basilosauridae. Protocetids are characteristic of Lutetian lower middle Eocene strata, and basilosaurids are characteristic of Priabonian late Eocene beds. Similar representation of both families is restricted to intervening Bartonian strata and indicative of a late middle Eocene age. Archaeocetes from Gueran include (1) a small protocetid represented by a partial humerus, teeth, and vertebrae; (2) a middle-sized protocetid represented by a partial innominate and proximal femur; (3) the very large protocetid Pappocetus lugardi represented by teeth, a partial innominate, and two partial femora; (4) a new species of the small basilosaurid Chrysocetus represented by a dentary, teeth, humeri, and many vertebrae; (5) a new species of the larger basilosaurid Platyosphys (resurrected as a distinct genus) represented by a partial braincase, tympanic bulla, and many vertebrae; and (6) the large basilosaurid Eocetus schweinfurthi represented by teeth, a tympanic bulla, and lumbar vertebrae. The Gueran locality is important geologically because it constrains the age of a part of the Aridal Formation, and biologically because it includes a diversity of archaic whales represented by partial skeletons with vertebrae in sequence and by forelimb and hind limb remains. With further collecting, Gueran archaeocete skeletons promise to clarify the important evolutionary transition from foot-powered swimming in Protocetidae to the tail-powered swimming of Basilosauridae and all later Cetacea.

  17. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon.

    PubMed

    Wang, Qing; Spicer, Robert A; Yang, Jian; Wang, Yu-Fei; Li, Cheng-Sen

    2013-12-01

    Eocene palynological samples from 37 widely distributed sites across China were analysed using co-existence approach to determine trends in space and time for seven palaeoclimate variables: Mean annual temperature, mean annual precipitation, mean temperature of the warmest month, mean temperature of the coldest month, mean annual range of temperature, mean maximum monthly precipitation and mean minimum monthly precipitation. Present day distributions and observed climates within China of the nearest living relatives of the fossil forms were used to find the range of a given variable in which a maximum number of taxa can coexist. Isotherm and isohyet maps for the early, middle and late Eocene were constructed. These illustrate regional changing patterns in thermal and precipitational gradients that may be interpreted as the beginnings of the modern Asian Monsoon system, and suggest that the uplift of parts of the Tibetan Plateau appear to have taken place by the middle to late Eocene.

  18. Formation conditions of Upper Eocene olistostromes and retro-overthrusts at the southern slope of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Gamkrelidze, I. P.; Maisadze, F. D.

    2016-11-01

    The paper considers age, formation conditions, and tectonic setting of Upper Eocene olistostromes of the southern slope of the Greater Caucasus. The formation of olistostromes resulted from the contribution of coarse-clastic material to the Late Eocene basin, which was related to the erosion of thrusted sheets of the Racha-Vandam cordillera of the Gagra-Java zone of the southern slope of the Greater Caucasus and concomitant multiple catastrophic landslide processes. In the Early Pliocene (Rodanian folding phase), Upper Eocene olistostromes along with nappes of the flysch zone were thrust to the south. In the pre- Quaternary (Valakh) folding phase, due to intense shortening, olistostromes in the frontal part of nappes were squeezed, displaced to the north, and thrust with the formation of retro-overthrust, fragments of which remain as isolated blocks (klippen) inside the flysch zone.

  19. Paleoenvironmental setting and description of an estuarine oyster reef in the Eocene of Patagonia, southern Argentina

    NASA Astrophysics Data System (ADS)

    Raising, Martín Rodríguez; Casadío, Silvio; Pearson, Nadine; Mángano, Gabriela; Buatois, Luis; Griffin, Miguel

    2014-12-01

    A middle Eocene Crassostrea sp. reef near Río Turbio, southwestern Patagonia (Argentina), represents the earliest record of an oyster reef associated with estuarine facies in the southern hemisphere, and also one of the few known worldwide occurring in Paleogene rocks. The reef grew in an outer estuary environment subject to periodic changes in salinity and may have reached a maturing phase. The Río Turbio reef - by its dimensions, geometry, and substrate lithology- would have been located in a tidal channel convergence area. This reef provides new evidence suggesting that estuaries served as refuges for Crassostrea populations allowing them to disperse into fully marine environments many times throughout the Cenozoic.

  20. Paleocene-Eocene transition at Naqb Assiut, Kharga Oasis, Western Desert, Egypt: Stratigraphical and paleoenvironmental inferences

    NASA Astrophysics Data System (ADS)

    El-Dawy, Moustafa, Hassan; Obaidalla, Nageh Abdelrahman; Mahfouz, Kamel Hussien; Abdel Wahed, Samar Adel

    2016-05-01

    This work depends on the study of the lower part of the Esna Formation which encompasses the Paleocene-Eocene (P-E) transition in Egypt as well as at Naqb Assiut section, Kharga Oasis, Western Desert. The Paleocene/Eocene (P/E) boundary is represented by El Dababiya Quarry Member which consists of five distinctive beds (nos. 1-5) at the GSSP. On the other hand, at Naqb Assiut section this boundary is only represented by the upper two beds (nos. 4&5), whereas, the lower three beds (nos. 1-3) are missing due to a hiatus. This hiatus is marked by the occurrence of an irregular surface contains pebbles and phosphatic materials. This hiatus may be related to the echo of Sryian Arc Orogeny at the P/E time. Biostratigraphically; four planktonic foraminiferal zones are defined from base to top as: Acarinina soldadoensis/Globanomalina pseudomenardii and Morozovella velascoensis (late Paleocene), Acarinina sibaiyaensis and Pseudohastigerina wilcoxensis/Morozovella velascoensis (early Eocene). The Acarinina sibaiyaensis Zone which represents the P//E/boundary is characterized by the occurrence of intrazonal hiatus at it's lower part. The benthonic foraminiferal taxa contain abundant representatives of Midway-type fauna (∼91% of the whole assemblages), beside few Velasco-type faunal ones (∼9%), indicating an outer neritic (150-200 m) water depth of deposition during the P-E transition. Quantitative analysis and composition of benthonic foraminiferal assemblages are indicative for various environmental changes around the P/E boundary. They reflected a high diversity, increase of epifaunal taxa, and low-intermediate productivity conditions, which indicates a well-ventilated bottom water and oligo - to mesotrophic conditions during the late Paleocene age. Rapid extinction of about 18% of the entire benthonic foraminiferal species started at the P/E boundary, where the last occurrence of Angulogavelinella avnimelechi is pronounced at the base of this boundary. There is a

  1. Mammal Dispersion linked to The Paleocene Eocene Thermal Maximum (PETM): New Insights from India.

    NASA Astrophysics Data System (ADS)

    Khozyem, H.; Adatte, T.; Keller, G.; Spangenberg, J. E.; Bajpai, S.; Samant, B.; Mathur, S.

    2012-04-01

    The Paleocene Eocene Thermal Maximum (PETM, 55.5Ma) is globally related with the extinction of deep benthic foraminifera, the diversification of both plancktic foraminifera and mammals. In India, the tempo and timing of mammals dispersion, their association with the PETM or EECO (Early Eocene Climatic Optimum) and the India- Asia collision remain uncertain (Smith et al., 2006 Clementz, 2010). Three sections located in north and northwest India have been studied using sedimentology, micropaleontology, mineralogy (bulk and clay mineralogy) and geochemistry (stable isotopes, major and trace elements, organic matter). Both PETM and ETM2 (second Eocene Thermal Maximum, 53.7Ma), a short-lived warming episode that followed the PETM, are globally marked by a pronounced δ13Ccarb and org negative peak. Both isotopic excursions have been recognized in the Vastan and Tarkeswhar lignite mines (Cambay basin, Gujarat), above the main mammals bearing level. The lower shift is located above the first lignite seam (=lignite 2 of Sahni et al, 2004, 2009) and corresponds to the transition from continental to shallow marine conditions marked by benthic foraminifera and bivalves. The upper excursion appears to be linked to the ETM2 and corresponds to a second marine incursion containing bivalves, benthic (Nummulites burdigalensis) and planktic foraminifera located below the second lignite seam (lignite 1 of Sahni et al, 2004, 2009). A single but very pronounced δ13Corg peak has been detected in the Giral Lignite mine (Barmer, Rajhastan), around 6m above the vertebrates bearing level and may correspond to the PETM. This correlation is confirmed by palynological data (Tripathi et al., 2009, Sahni et al., 2004, 2009) and more particularly by an acme in the dinoflagellate Apectodinium that globally characterizes the PETM interval (Sluijs et al. 2007). Our micropaleontological data combined with stable carbone isotopes indicate the presence of both PETM and ETM2 events and constrain the

  2. Orbital forced sea level fluctuations during the Middle Eocene (ODP site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Warnaar, J.; Stickley, C.; Jovane, L.; Roehl, U.; Brinkhuis, H.; Visscher, H.

    2004-12-01

    Ocean Drilling Program leg 189 was undertaken to test and refine the hypothesis (by Kennett et al., 1975), that the reconfiguration of continents around Antarctica (e.g.: the opening of the Tasmanian Gateway and Drake passage) led to the onset of the Antarctic Circumpolar Current that, in turn, would cause thermal isolation and hence cooling of Antarctica. This would possibly even cause global cooling, as suggested by the 33.3 Ma Oi1 event. The cores of leg 189, site 1172 on the eastern side of the Tasmanian Gateway provided a nearly complete succession of Eocene and Oligocene sediments. Cyclostratigraphic analysis based on XRF derived Ca and Fe records indicates distinct Milankovitch cyclicity between 40 and 36 Ma. (Röhl et al, in press). In the core-section representing magnetochron 18n-1n, the Ca record shows precession cycles in combination with obliquity, suggested to reflect sea level fluctuations (Röhl et al, in press). New datasets include microfossil data (organic-walled dinoflagellate cysts, pollen/spores and diatoms), loss-on-ignition measurements, magnetic data (environmental magnetics - ARM). Here, we aim to further investigate the proposed relationship between astronomical forcing and sea-level fluctuations. Additionally, we aim to obtain insight in the palaeoecology of the distinct endemic circum-Antarctic late Middle to Late Eocene dinoflagellate cyst assemblages. Results corroborate the concept that the cyclicity recorded by Ca and Fe measurements is the result of sea-level fluctuations. This implies that during late Middle Eocene times, astronomical forcing has modulated sea level - most likely through Antarctic ice buildup and meltdown. In turn, this would indicate the presence of significant, though probably modest, ice masses already ~40 Ma ago, well before the onset of the Antarctic Circumpolar Current. Kennett, J. P., R. E. Houtz, et al. (1975). Development of the circum-Antarctic current. Science 186: 144-147. Röhl, U.; H. Brinkhuis, C

  3. Simplified stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Johnson, Ronald C.

    2013-01-01

    Thirteen stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado are presented in this report. Originally published in a much larger and more detailed form by Self and others (2010), they are shown here in simplified, page-size versions that are easily accessed and used for presentation purposes. Modifications to the original versions include the elimination of the detailed lithologic columns and oil-yield histograms from Fischer assay data and the addition of ground-surface lines to give the depth of the various oil shale units shown on the cross section.

  4. Reconstruction of Middle Eocene - Late Oligocene Southern Ocean paleoclimate through calcareous nannofossils and stable isotopes

    NASA Astrophysics Data System (ADS)

    Villa, Giuliana; Fioroni, Chiara; Persico, Davide; Pea, Laura; Bohaty, Steve

    2010-05-01

    The transition from the ice free early Paleogene world to the glaciated conditions of the early Oligocene has been matter of discussion in the last years. This transition has not been monotonic but punctuated by numerous transient cooling and warming events. Here we present a summary of recent studies based on Nannofossil response to climatic changes during the Eocene and Oligocene. Collected data issue from high latitudes ODP Sites 748, 738, 744, 689 and 690. Based on a detailed revision of the biostratigraphy carried out through quantitative analysis, we conducted paleoecological studies on calcareous nannofossils through the late middle Eocene to the - late Oligocene interval to identify abundance variations of selected taxa in response to changes in sea surface temperature (SST) and trophic conditions. The nannofossil-based interpretation has been compared with detailed oxygen and carbon stable isotope stratigraphy confirming the climate variability in the Southern Ocean for this time interval. We identify the Middle Eocene Climatic optimum (MECO) event, related with the regional exclusion of Paleogenic warm-water taxa from the Southern Ocean, followed by the progressive cooling trend particularly emphasized during the cooling events at about 39 Ma, 37 Ma and 35.5 Ma. In the earliest Oligocene, marked changes in calcareous nannofossil assemblages are strikingly associated with the Oi-1 event recorded in perfect accordance with the oxygen isotope records. For most of the Oligocene we recorded a cold phase, while a warming trend is detected in the late Oligocene. In addiction, a marked increase of taxa thriving in eutrophic conditions coupled with a decrease in oligotrophic taxa, suggests the presence of a time interval (from about 36 Ma to about 26 Ma) with prevailing eutrophic conditions that correspond to an increase of the carbon stable isotope curve. This interval well corresponds with the clay mineral concentration that shows at Site 738 a higher

  5. Paleocene-Early Eocene larger foraminiferal biostratigraphy of Yemen and Oman

    NASA Astrophysics Data System (ADS)

    Di Carlo, M.; Serra-Kiel, J.; Pignatti, J.

    2012-04-01

    The Paleogene larger foraminiferal biostratigraphy is today rather well assessed for the Tethyan domain. In order to contribute to the full integration of the Middle-East in the widely employed Shallow Benthic Zonation, a preliminary report on the Paleocene-Early Eocene larger foraminiferal assemblages from Yemen and Oman is provided here. The sections investigated in Yemen range in age from the Upper Cretaceous to the Oligocene. The Paleogene of Yemen is widely affected by dolomitization and only by analyzing over 1,700 thin sections from 60 stratigraphic sections (mainly from Hadramaut and Socotra) it has been possible to adequately investigate the fossil assemblages. In contrast, the deposits from northern Oman are characterized by rich and extraordinarily well-preserved Paleocene-Lower Eocene larger foraminiferal assemblages. This preliminary report focuses mainly on the Paleocene-Early Eocene deposits of the Umm-er-Radhuma formation. The Paleocene-Lower Eocene assemblages are characterized by strong affinities with northern Somalia. Hyaline forms such as Daviesina khatiyahi, Miscellanea gr. rhomboidea/dukhani, M. miscella, Saudia, Sakesaria, Lockhartia, Ranikothalia, Dictyokathina largely prevail in SBZ 3-4 deposits. Nummulites, Ranikothalia and Daviesina ruida characterize the Lower Ypresian. Subordinately, porcelaneous forms such as "Taberina" daviesi and conical agglutinated (Daviesiconus) also occur; alveolinids (such as Alveolina vredenburgi and A. decipiens) are relatively abundant in the basal Lower Ypresian of Socotra. In contrast to the coeval deposits from Yemen, the Paleocene section of Oman (Wadi Duqm, Abat-Tiwi platform) yields very well-preserved larger foraminiferal assemblages and agglutinated and porcelaneous forms are well represented. The occurrence of abundant Globoreticulina paleocenica is noteworthy along with an as yet undescribed Lacazinella species. The co-occurrence of Coskinon sp., "Plumokathina dienii", Dictyoconus turriculus and

  6. Penguin response to the Eocene climate and ecosystem change in the northern Antarctic Peninsula region

    NASA Astrophysics Data System (ADS)

    Jadwiszczak, Piotr

    2010-08-01

    Eocene Antarctic penguins are known solely from the La Meseta Formation (Seymour Island, James Ross Basin). They are most numerous and taxonomically diverse (at least ten species present) within strata formed at the end of this epoch, which is concomitant with a significant cooling trend and biotic turnover prior to the onset of glaciation. Moreover, all newly appeared taxa were small-bodied, and most probably evolved in situ. Interestingly, some chemical proxies suggest enhanced nutrient upwelling events that coincided with obvious changes in the record of La Meseta penguins.

  7. Goulds Belt, Interstellar Clouds, and the Eocene Oligocene Helium-3 Enhancement

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2015-01-01

    Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent interplanetary dust particle (IDPs) and small meteoroids with embedded helium to the Earth, perhaps explaining part the helium-3 flux increase seen in the sedimentary record near the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, IDPs in the inner Solar System may have been dragged to Earth, while dust and small meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits; however, this hypotheses does not explain the Popigai and Chesapeake Bay impacts.

  8. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum.

    PubMed

    Gibbs, Samantha J; Bown, Paul R; Sessa, Jocelyn A; Bralower, Timothy J; Wilson, Paul A

    2006-12-15

    The Paleocene-Eocene Thermal Maximum (PETM, approximately 55 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.

  9. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    PubMed

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  10. Local response to warm Antarctic terrestrial temperatures in the Eocene: evidence from terrestrial biomarkers

    NASA Astrophysics Data System (ADS)

    Toney, J. L.; Bendle, J. A.; Inglis, G.; Bijl, P.; Pross, J.; Contreras, L.; van de Flierdt, T.; Huck, C. E.; Jamieson, S.; Huber, M.; Schouten, S.; Roehl, U.; Bohaty, S. M.; Brinkhuis, H.

    2011-12-01

    The early Eocene (~55 to 49 Ma) was characterized by long-term, high global temperatures and elevated atmospheric pCO2 levels (ca. 1000 ppm to more than 2000 ppm). Superimposed on top of this long-term warmth were a series of abrupt high pCO2 (>2000 ppm) and high temperature events. This greenhouse world may be used as an analogue for the future response of the biosphere and global carbon cycle to recent anthropogenic, atmospheric CO2 emissions. A major uncertainty, however, is the response of high polar latitudes to these climate conditions. Here we show evidence of early Eocene warmth measured from terrestrial, bacteria-derived tetraethers at IODP Site U1356, situated along the Wilkes Land margin in East Antarctica. The presence of soil bacteria-derived hopanes and higher plant n-alkanes in drillcores obtained from this site are also used to help understand the terrestrial Antarctic climate evolution in a warmer world. Methyl-branched and cyclised tetraether compounds are derived from terrestrial, soil bacteria. The number of branches and cycles are related directly to the environmental temperature and pH. These compounds indicate that temperatures on Eastern Antarctica likely exceeded 22°C during the Eocene. These temperatures reflect locally sourced terrestrial material input from a variety of elevations along the coastal plain and from the hinterland. A local source region is supported by the palynological and neodymium isotope records and by the presence of hopanes that suggest input from terrigenous soil and/or wetland environments. In particular, the existence of the C31 (17α,21β) homohopane within a relatively immature hopane assemblage is reported at Site U1356 and suggests the presence of methane-producing, wetland environments on Antarctica. Compound-specific carbon isotopes analyzed on the bacterial derived hopanes are used to characterize changes in wetland carbon cycling and methanogenesis. Local adiabatic lapse rate and precipitation amount

  11. Asian Winter Monsoons in the Eocene: Evidence from the Aeolian Dust Series of the Xining Basin

    NASA Astrophysics Data System (ADS)

    Licht, A.; Adriens, R.; Pullen, A. T.; Kapp, P. A.; Abels, H.; van Cappelle, M.; Vandenberghe, J.; Dupont Nivet, G.

    2014-12-01

    The aeolian dust deposits of the Chinese Loess Plateau are attributed to spring and winter monsoonal storms sweeping clastic material from the deserts of the Asian interior into central China and are reported to begin 25-22 million years (Myr) ago. The beginning of aeolian dust sedimentation has been attributed to the onset of central Asia desertification and winter monsoonal circulation, and are commonly linked to development of high topographic relief associated with the Tibetan-Himalayan orogenic system. However, recent papers suggest that the core of the Tibetan Plateau may have reached significant elevation since the earliest phases of the India-Asia collision 55 Myr ago. Here, we extend the sedimentary record of the Chinese Loess Plateau at its western margin to include the late Eocene - late Oligocene deposits of the Xining Basin, which were deposited between 41 and 25 Myr ago based on detailed magnetostratigraphy. The particle size, shape, and surface microtexture of quartz grains in these deposits display textures indicative of prolonged aeolian transport; grain-size distributions show a bimodal distribution similar to Miocene through Quaternary deposits of the Chinese Loess Plateau. The clay mineralogy of the finer fraction and U/Pb zircon ages of the coarser fraction from Xining Loess sediments sampled along three sections spanning the whole studied interval are also similar to those observed in Quaternary and Neogene aeolian deposits of the Chinese Loess Plateau and thus suggest similar sources located in central China. However, slight differences in Eocene U/Pb zircon ages, such as the lack of Cenozoic ages or the scarcity of zircons older than 2000 Myr, suggest that the Tibetan Plateau may have contributed little to the aeolian dust deposition, in favor of sources located further north and west (Kunlun and Tian Shan Ranges). The Xining deposits are thus the first direct evidence that winter monsoonal winds were active 15 Myr earlier than previously

  12. Palaeoclimate reconstruction within the upper Eocene in central Germany using fossil plants

    NASA Astrophysics Data System (ADS)

    Moraweck, Karolin; Kunzmann, Lutz; Uhl, Dieter; Kleber, Arno

    2013-04-01

    The Eocene has been commonly called "The world`s last greenhouse period" covering the Paleocene-Eocene Thermal Maximum (PETM) as well as the Eocene-Oligocene turnover. In the mid-latitudes of Europe this turnover was characterized by pronounced climatic changes from subtropical towards temperate conditions that were accompanied by significant vegetational changes on land. Fossil plants are regarded as excellent palaeoenvironmental proxies, because leaf physiognomy often reflects climate conditions. The study site, the Paleogene Weißelster basin in central Germany, including fluvial, estuarine and lacustrine deposits, provides several excellently preserved megafloras for reconstructions of terrestrial palaeoclimate. For our case study we used material from different stratigraphic horizons within the late Eocene Zeitz megafloral assemblage recovered from the open-cast mines of Profen and Schleenhain. These horizons cover a time interval of ca. 3 Ma. The Zeitz megafloral assemblage ("Florenkomplex") was characterized by mainly evergreen, notophyllous vegetation, consisting of warm-temperate to subtropical elements. Tropical species are present but very rare. To infer the regional climatic conditions and putative climate changes from these fossil plants we compare proxy data obtained by the application of standard methods for quantitative reconstruction of palaeoclimate data: the coexistence approach (CA), leaf margin analysis (LMA) and Climate Leaf Analysis Multivariate Program (CLAMP).Before the CA was applied to the material the list of putative nearest living relative species (NLR) was carefully revisited and partly revised. In case of the LMA approach information of so-called "silent taxa" (fossil species preserved by diaspores, leaf margin state is inferred from NLR data) were partly included in the data set. The four floras from the Zeitz megafloral assemblage show slightly different floral compositions caused by various taphonomic processes. An aim of the

  13. Paleoceanographic, and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record

    USGS Publications Warehouse

    Barron, John A.; Stickley, Catherine E.; Bukry, John D.

    2015-01-01

    Tabulation of the first and last occurrences of 132 biostratigraphically-important diatoms suggests increased species turnover during the latest Paleocene to earliest Eocene that may be in part due to a monographic effect. An increasing rate of evolution of new diatom species between ~ 46 and 43 Ma and after ~ 40 Ma coincides respectively with the widespread expansion of diatom deposition in the Atlantic and with an increased pole-to-equator thermal gradient that witnessed the expansion of diatoms in high latitude oceans and coastal upwelling settings.

  14. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  15. Calcareous nannofossil and planktonic foraminifera biostratigraphy through the Middle to Late Eocene transition of Fayum area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Marzouk, Akmal Mohamed; El Shishtawy, Ahmed Moustafa; Kasem, Atef Masoud

    2014-12-01

    The Eocene sequence exposed at Gebel Naalun (Fayum-Nile divide), Guta section-I (West of Birket Qarun near Guta Village) and Guta section-II (Northwest of Birket Qarun near Guta Village) is differentiated, from base to top, into two formations; Gehannam Formation (Middle-Late Eocene) and Birket Qarun Formation (Late Eocene), respectively. Two calcareous nannofossil zones were recognized from the Eocene succession at Gebel Naalun; Discoaster saipanensis (NP17) and Chiasmolithus oamaruensis (NP18) zones as well as one planktonic foraminiferal zone; Truncorotaloides (Acaranina) rohri (P14) zone. However, at Guta section-I, two nannofossil zones were defined; Discoaster saipanensis (NP17) and Chiasmolithus oamaruensis (NP18) zones; the preservation of planktonic foraminiferal assemblage is too poor to enable us to recognize marker species as a result of many diagenetic processes. At Guta section-II, two nannofossil zones; Chiasmolitus oamaruensis (NP18) and Isthmolithus recurvus (NP19) and two planktonic foraminiferal zones; T. pseudoampliapertura zone and G. semiinvoluta zone are recorded. Several authors found that the lowest occurrence of Chiasmolithus oamaruensis is a poor criterion for defining the base of NP18 Zone, which is confirmed here. The same criticism has been applied to the lowest occurrence of Isthmolithus recurvus which defines the NP18/NP19 zonal boundary. It is generally agreed that NP19 Zone falls in the Priabonian (Late Eocene). As a result of the occurrence of the nannofossil marker species; Isthmolithus recurvus only in side views below and above the first appearance of Chiasmolithus oamaruensis at both Naalun and Guta section-I, this species is not reliable to define the NP18/NP19 zonal boundary. At Guta section-II, the Middle/Upper Eocene boundary can be delineated by the first appearance of Globigerinatheka semiinvoluta above the first occurrence of Isthmolithus recurvus in both plane and side views.

  16. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  17. Prolonged high relief in the northern Cordilleran orogenic front during middle and late Eocene extension based on stable isotope paleoaltimetry

    NASA Astrophysics Data System (ADS)

    Fan, Majie; Constenius, Kurt N.; Dettman, David L.

    2017-01-01

    The paleoelevation and size of the North America Cordilleran orogen during the late Cretaceous-Paleogene contractional and subsequent extensional tectonics remain enigmatic. We present new estimates of paleorelief of the northern Cordilleran orogenic front during the middle and late Eocene using oxygen isotope compositions of unaltered molluscan fossils and paleosol carbonates in the Kishenehn basin. Bounded by several mountains ranges to the east, the Kishenehn basin was a half graben developed during middle Eocene to early Miocene collapse of the Cordilleran orogen. These mollusk taxa include three sympatric groups with affinities to wet tropical, semi-arid subtropical, and temperate environments. Our reconstructed surface water δ18O values vary between -19.8‰ and -6.3‰ (VSMOW) during the middle and late Eocene. The large differences in paleoenvironments and surface water δ18O values suggest that the catchment of the Kishenehn basin was at variable elevation. The estimated paleorelief between the basin and the surrounding mountains, based on both Rayleigh condensation model and predictions of Eocene precipitation isotope values using an isotope-enabled global climate model, is ∼4 km, and the basin floor was <1.5 km high. This high topography and high relief paleogeography suggest that the Cordilleran orogenic front reached an elevation of at least 4 km, and the crust thickness may have reached more than 55 km before Eocene gravitational collapse. We attribute the maintenance of high Eocene topography to the combination of an inherited thick crust, thermal uplift caused by mantle upwelling, and isostatic uplift caused by removing lower lithosphere or oceanic slab.

  18. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei).

    PubMed

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  19. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei)

    PubMed Central

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  20. Siamopithecus eocaenus, a late Eocene anthropoid primate from Thailand: its contribution to the evolution of anthropoids in Southeast Asia.

    PubMed

    Ducrocq, S

    1999-06-01

    Dental remains of a late Eocene anthropoid primate from Thailand, Siamopithecus eocaenus, have been recently reported; complete description and comparisons of this material are given here. Siamopithecus displays several derived dental features that suggest close phylogenetic affinities among the Thai species, the Burmese Pondaungia, and the North African and Omani propliopithecines Aegyptopithecus and Moeripithecus. The geographic origin of anthropoid primates cannot be securely determined at present, but the available fossil record indicates that faunal exchanges between Africa and Southeast Asia were very probable during the Eocene, and that direct relationships between Asian and African anthropoid primates can be inferred.

  1. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).

  2. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.

    PubMed

    Merico, Agostino; Tyrrell, Toby; Wilson, Paul A

    2008-04-24

    One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.

  3. Late Eocene-Middle Miocene paleoclimates of the south-west Pacific: oxygen isotopic evidence

    SciTech Connect

    Kennett, J.P.; Murphy, M.G.

    1985-01-01

    High resolution oxygen isotopic stratigraphy is presented for Late Eocene-Middle Miocene sequences in a traverse of 6 DSDP sites from the southwest Pacific at water depths ranging from 1300 to 2000 m and from the warm subtropics to the cool temperature water masses. The data record the progressive increase of latitudinal temperature gradients from the late Eocene. A pattern of increasing isotopic offset between the latitudinally distributed sites is linked to the establishment and strengthening of the circum-Antarctic Current. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to Antarctic glaciation. Enriched oxygen isotopic values clustering in the middle Oligocene, are interpreted to represent accumulations of Antarctic ice, although this must have been temporary and of relatively low volume. This Antarctic ice must have disappeared by the Early Miocene when delta/sup 18/O values were relatively depleted, reaching minimum values during the late Early Miocene (19.5 to 16.5), the climax of Neogene warmth. This climatic optimum was immediately followed by a major enrichment in benthic delta/sup 18/O values between approx. 16.5 and 13.5 Ma, which is interpreted to represent major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters.

  4. Eocene primates of South America and the African origins of New World monkeys

    NASA Astrophysics Data System (ADS)

    Bond, Mariano; Tejedor, Marcelo F.; Campbell, Kenneth E.; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-01

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  5. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights.

    PubMed

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  6. Early Eocene Molluscan biostratigraphy, Mount Pinos-Lockwood Valley area, northern Ventura County, southern California

    SciTech Connect

    Squires, R.L.; Wilson, M.

    1987-05-01

    A 600-m thick unnamed marine, predominantly transition-zone siltstone unit along the south flank of the Mount Pinos uplift, in the northern Lockwood Valley area, previously has been suggested to be early Eocene (Capay Stage) in age at its base. This present study shows the entire unit to be this age. Unconformably overlying the pre-Tertiary granite basement is 30 m of unfossiliferous muddy siltstone that grades upward into 50 m of very fine sandstone with rarely fossiliferous lenses of medium to coarse sandstone. Gradationally above the sandstone is 100 m of muddy siltstone with less rarely fossiliferous lenses of conglomeratic sandstone. Macrofossil collections made at 10 localities in these lower 180 m yielded a sparse fauna of subtropical shallow-marine gastropods and bivalves, as well as rare specimens of discocyclinid foraminifera. from 180 to 500 m above the base of the section is unfossiliferous siltstone with local occurrences of lower shoreface, alternating laminated and bioturbated very fine sandstone. The uppermost 100 m of the section is siltstone with rarely fossiliferous lenses of fine to medium sandstone. Collections made at five localities yielded subtropical shallow-marine mollusks. Evidence of a West Coast provincial molluscan Capay Stage (early Eocene) age for all the fossiliferous beds of the siltstone unit is the presence of Turritella andersoni, a species diagnostic of this stage. Commonly associated mollusks are Cryptoconus cooperi, Cylichnina tantilla, Ectinochilus (Macilentos) macilentus, and Turritella buwaldana. Unconformably overlying the unit is the Oligocene-lower Miocene nonmarine Plush Ranch Formation.

  7. Anatomically preserved seeds of Nuphar (Nymphaeaceae) from the Early Eocene of Wutu, Shandong Province, China.

    PubMed

    Chen, Iju; Manchester, Steven R; Chen, Zhiduan

    2004-08-01

    Well-preserved seeds from the early Eocene of Wutu, Shandong, China are assigned to the genus Nuphar (Nymphaeaceae) based on morphology and anatomy. The seeds of Nuphar wutuensis sp. nov. are ellipsoidal to ovoid, 4-5 mm long with a clearly visible raphe ridge, and a truncate apex capped by a circular operculum ca. 1 mm in diameter bearing a central micropylar protrusion. These features, along with the testa composed of a uniseriate outer layer of equiaxial pentagonal to hexagonal surface cells and a middle layer 4-6 cells thick composed of thick-walled, periclinally elongate sclereids, correspond to the morphology and anatomy of extant Nuphar and distinguish this fossil species from all other extant and extinct genera of Nymphaeales. These seeds provide the oldest record for the genus in Asia and are supplemented by a similar well-preserved specimen from the Paleocene of North Dakota, USA. These data, together with the prior recognition of Brasenia (Cabombaceae) in the middle Eocene, indicate that the families Nymphaeaceae and Cabombaceae had differentiated by the early Tertiary.

  8. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean

    NASA Astrophysics Data System (ADS)

    Ho, Sze Ling; Laepple, Thomas

    2016-08-01

    The early Eocene (49-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2 (refs ,), and a flatter-than-present latitudinal surface temperature gradient. The multi-proxy-derived flat temperature gradient has been a challenge to reproduce in model simulations, especially the subtropical warmth at the high-latitude surface oceans, inferred from the archaeal lipid-based palaeothermometry, . Here we revisit the interpretation by analysing a global collection of multi-proxy temperature estimates from sediment cores spanning millennia to millions of years. Comparing the variability between proxy types, we demonstrate that the present interpretation overestimates the magnitude of past climate changes on all timescales. We attribute this to an inappropriate calibration, which reflects subsurface ocean but is calibrated to the sea surface, where the latitudinal temperature gradient is steeper. Recalibrating the proxy to the temperatures of subsurface ocean, where the signal is probably formed, yields colder -temperatures and latitudinal gradient consistent with standard climate model simulations of the Eocene climate, invalidating the apparent, extremely warm polar sea surface temperatures. We conclude that there is a need to reinterpret -inferred marine temperature records in the literature, especially for reconstructions of past warm climates that rely heavily on this proxy as reflecting subsurface ocean.

  9. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  10. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  11. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming.

    PubMed

    Svensen, Henrik; Planke, Sverre; Malthe-Sørenssen, Anders; Jamtveit, Bjørn; Myklebust, Reidun; Rasmussen Eidem, Torfinn; Rey, Sebastian S

    2004-06-03

    A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).

  12. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  13. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, P.C.; Warwick, P.D.; Breland, F.C.

    2007-01-01

    Wilcox Group (Paleocene-Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate-ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene-Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite-subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower ( 600??m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4 adsorption capacity.

  14. New Early Eocene Basal tapiromorph from Southern China and Its Phylogenetic Implications

    PubMed Central

    Bai, Bin; Wang, Yuanqing; Meng, Jin; Li, Qian; Jin, Xun

    2014-01-01

    A new Early Eocene tapiromorph, Meridiolophus expansus gen. et sp. nov., from the Sanshui Basin, Guangdong Province, China, is described and discussed. It is the first reported Eocene mammal from the basin. The new taxon, represented by a left fragmentary mandible, is characterized by an expanded anterior symphyseal region, a long diastema between c1 and p1, a rather short diastema between p1 and p2, smaller premolars relative to molars, an incipient metaconid appressed to the protoconid on p3, a prominent entoconid on p4, molar metaconid not twinned, cristid obliqua extending mesially and slightly lingually from the hypoconid, inclined metalophid and hypolophid, and small hypoconulid on the lower preultimate molars. Meridiolophus is morphologically intermediate between basal Homogalax-like taxa and derived tapiromorphs (such as Heptodon). Phylogenetic analysis indicates Equidae is more closely related to Tapiromorpha than to Palaeotheriidae, although the latter is only represented by a single species Pachynolophus eulaliensis. ‘Isectolophidae’, with exception of Meridiolophus and Karagalax, has the closest affinity with Chalicotherioidea. Furthermore, the majority rule consensus tree shows that Meridiolophus is closer to Karagalax than to any other ‘isectolophid’, and both genera represent stem taxa to crown group Ceratomorpha. PMID:25353987

  15. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    PubMed

    van Kempen, Monique M L; Smolders, Alfons J P; Lamers, Leon P M; Roelofs, Jan G M

    2012-01-01

    In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  16. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.

    PubMed

    Pound, Matthew J; Salzmann, Ulrich

    2017-02-24

    Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT.

  17. Global vegetation distribution and terrestrial climate evolution at the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Eocene - Oligocene transition (EOT; ca. 34-33.5 Ma) is widely considered to be the biggest step in Cenozoic climate evolution. Geochemical marine records show both surface and bottom water cooling, associated with the expansion of Antarctic glaciers and a reduction in the atmospheric CO2 concentration. However, the global response of the terrestrial biosphere to the EOT is less well understood and not uniform when comparing different regions. We present new global vegetation and terrestrial climate reconstructions of the Priabonian (late Eocene; 38-33.9 Ma) and Rupelian (early Oligocene; 33.9-28.45 Ma) by synthesising 215 pollen and spore localities. Using presence/absence data of pollen and spores with multivariate statistics has allowed the reconstruction of palaeo-biomes without relying on modern analogues. The reconstructed palaeo-biomes do not show the equator-ward shift at the EOT, which would be expected from a global cooling. Reconstructions of mean annual temperature, cold month mean temperature and warm month mean temperature do not show a global cooling of terrestrial climate across the EOT. Our new reconstructions differ from previous global syntheses by being based on an internally consistent statistically defined classification of palaeo-biomes and our terrestrial based climate reconstructions are in stark contrast to some marine based climate estimates. Our results raise new questions on the nature and extent of terrestrial global climate change at the EOT.

  18. Calcareous nannofossils and paleoenvironments of the Paleocene-Eocene thermal maximum (PETM) interval in central Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed

    2016-02-01

    The Paleocene-Eocene Thermal Maximum (PETM) interval was examined from four outcrops in Central Egypt to document the response of the floral communities across the PETM. The four outcrops are: Gebel Taramsa west of Qena, Gebel Duwi in the Red Sea Coast, and Gebel Qeryia, Gebel Arras sections in Wadi Qena. The qualitative and quantitative analyses of calcareous nannofossils used samples on a high resolution scale. The PETM is characterized by distinguished lithological succession, the Dababyia Quarry Beds (DQB) which extend over the Nile Valley, the Eastern Desert and the Western Desert. The calcareous nannofossils changes across the Paleocene/Eocene boundary (NP9a/NP9b) is marked by the following events: 1) abrupt decreases in both diversity and abundance, 2) dramatic decrease of Fasciculithus both in diversity and abundance, 3) first acme of Coccolithus pelagicus/Coccolithus subpertusus, and 4) first occurrence of excursion taxa including Discoaster araneus, Discoaster. anartios, Discoaster aegyptiacus and Rhomboaster spp). These events may refer to relatively warm and oligotrophic surface waters. The abundance of Toweius spp. in the upper part of the PETM which associated with Campylosphaera characterizes the return to normal conditions.

  19. The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater

    USGS Publications Warehouse

    Poag, C.W.; Poppe, L.J.

    1998-01-01

    The Toms Canyon structure [~20-22 km wide] is located on the New Jersey outer continental shelf beneath 80-100 m of water, and is buried by ~1 km of upper Eocene to Holocene sedimentary strata. The structure displays several characteristics typical of terrestrial impact craters (flat floor; upraised faulted rim: brecciated sedimentary fill), but several other characteristics are atypical (an unusually thin ejecta blanket; lack of an inner basin, peak ring, or central peak; bearing nearly completely filled with breccia). Seismostratigraphic and biostratigraphic analyses show that the structure formed during planktonic foraminiferal biochron P15 of the early to middle late Eocene. The fill unit is stratigraphically correlating with impact ejecta cored nearby at Deep Sea Drilling Project (DSDP) Site 612 and at Ocean Drilling Program (ODP) Sites 903 and 904 (22-35 km southeast of the Toms Canyon structure). The Toms Canyon fill unit also correlates with the Exmore breccia, which fills the much larger Chesapeake Bay impact crater (90-km diameter; 335 km to the southwest). On the basis of our analyses, we postulate that the Toms Canyon structure is an impact crater, formed when a cluster of relatively small meteorites approached the target site bearing ~N 50 E, and struck the sea floor obliquely.

  20. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum

    PubMed Central

    Wright, James D.; Schaller, Morgan F.

    2013-01-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  1. Ecological Turnover of Shallow Water Carbonate Producers Following the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Martindale, R. C.

    2015-12-01

    Modern coral reef ecosystems are under threat from global climate change (and associated, synergistic stresses) and local environmental degradation. Therefore, it is important for ecologists to understand how ecosystems adapt and recover from climate change. The fossil record provides excellent case studies of similar events, such as the Paleocene-Eocene Thermal Maximum (PETM). Although Paleocene and Eocene shallow water carbonates have not received the same degree of attention as the deep-water record, the PETM provides an opportunity to study the role of alternative stable states in maintaining the health and diversity of shallow water carbonate environments. It is generally accepted that during the PETM there is a transition from reef systems to foraminiferal shoals as the dominant shallow water carbonate producers. In fact, previous work has documented this interval as one of the major metazoan reef collapses of the Phanerozoic. This study fills an important gap in the shallow-water PETM record by quantitatively measuring the changes in carbonate production and ecology of 15 localities as they shift from coral reefs to foraminiferal shoal. The quantitative and semi-quantitative analysis is accomplished by using data from the PaleoReefs database and a simple carbonate production calculation to estimate the productivity of the shallow water system. Ecological data are gathered through a literature review of the localities. The results of this study will enable a better understanding of how modern reefs may react to global climate and environmental change.

  2. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    NASA Astrophysics Data System (ADS)

    Pound, Matthew J.; Salzmann, Ulrich

    2017-02-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT.

  3. Seismic stratigraphy, sediments, and basin history of Tonga forearc basin, late Eocene to Pleistocene

    SciTech Connect

    Herzer, R.H.; Ballance, P.F.; Cole, J.W.; Exon, N.F.; Stevenson, A.J.; Tappin, D.

    1986-07-01

    Four seismic reflectors (A, B, C, V) define primarily unconformity-bounded sedimentary sequences. Basement (V) is a block-faulted surface, apparently of Eocene volcanics. Above this, an upper Eocene sequence (CV) mainly buries the fault topography, pinching out locally on fault-block and volcanic highs along the eastern side of the basin. This sequence includes volcaniclastics and, on paleohighs, shallow-water limestones. Overlying this is a widespread upper Oligocene-lower Miocene sequence (BC), which also thins and pinches out locally against the high eastern side of the basin. Volcaniclastics are common, but limestones may occur locally. Seismic interpretations indicate little faulting during deposition of this sequence; prominent lenticular bodies could be either sills or reefs. Sequence AB, of middle and late Miocene to early Pliocene age, is composed of volcanopelagics deposited when the Lau arc was active, adjacent to the Tonga platform. No volcanic centers are seen in this sequence in the forearc, but shallow intrusions are common. Major tensional faulting developed toward the end of this depositional cycle. The uppermost sequence (SBA), of late Pliocene to Pleistocene age, also comprises volcanopelagic sediments. The volcanics are derived from the nearby Tofua arc, which developed with the opening of the Lau back-arc basin. Doming and tensional faulting in the late Pliocene-Pleistocene raised parts of the Tonga forearc basin, allowing wide reef platforms to develop.

  4. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    PubMed Central

    Pound, Matthew J.; Salzmann, Ulrich

    2017-01-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT. PMID:28233862

  5. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum.

    PubMed

    Zachos, James C; Röhl, Ursula; Schellenberg, Stephen A; Sluijs, Appy; Hodell, David A; Kelly, Daniel C; Thomas, Ellen; Nicolo, Micah; Raffi, Isabella; Lourens, Lucas J; McCarren, Heather; Kroon, Dick

    2005-06-10

    The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>2000 x 10(9) metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.

  6. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period.

    PubMed

    Nunes, Flavia; Norris, Richard D

    2006-01-05

    An exceptional analogue for the study of the causes and consequences of global warming occurs at the Palaeocene/Eocene Thermal Maximum, 55 million years ago. A rapid rise of global temperatures during this event accompanied turnovers in both marine and terrestrial biota, as well as significant changes in ocean chemistry and circulation. Here we present evidence for an abrupt shift in deep-ocean circulation using carbon isotope records from fourteen sites. These records indicate that deep-ocean circulation patterns changed from Southern Hemisphere overturning to Northern Hemisphere overturning at the start of the Palaeocene/Eocene Thermal Maximum. This shift in the location of deep-water formation persisted for at least 40,000 years, but eventually recovered to original circulation patterns. These results corroborate climate model inferences that a shift in deep-ocean circulation would deliver relatively warmer waters to the deep sea, thus producing further warming. Greenhouse conditions can thus initiate abrupt deep-ocean circulation changes in less than a few thousand years, but may have lasting effects; in this case taking 100,000 years to revert to background conditions.

  7. Eocene primates of South America and the African origins of New World monkeys.

    PubMed

    Bond, Mariano; Tejedor, Marcelo F; Campbell, Kenneth E; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-23

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  8. The influence of extraterrestrial material on the late Eocene marine Os isotope record

    NASA Astrophysics Data System (ADS)

    Paquay, François S.; Ravizza, Greg; Coccioni, Rodolfo

    2014-11-01

    A reconstruction of seawater 187Os/188Os ratios during the late Eocene (∼36-34 Ma), based upon bulk sediment analyses from the sub-Antarctic Southern Atlantic Ocean (Ocean Drilling Program (ODP) Site 1090), Eastern Equatorial Pacific Ocean (ODP Sites 1218 and 1219) and the uplifted (land-based) Tethyan section (Massignano, Italy), confirms that the previously reported abrupt shift to lower 187Os/188Os is a unique global feature of the marine Os isotope record that occurs in magnetochron C16n.1n. This feature is interpreted to represent the change in seawater 187Os/188Os caused by the Popigai impact event. Higher in the Massignano section, two other iridium anomalies previously proposed to represent additional impact events do not show a comparable excursion to low 187Os/188Os, suggesting that these horizons do not record multiple large impacts. Comparison of records from three different ocean basins indicates that seawater 187Os/188Os begins to decline in advance of the Popigai impact event. At Massignano this decline coincides with a previously reported episode of elevated 3He flux, suggesting that increased influx of interplanetary dust particles (IDPs) contributed to the pre-impact shift in 187Os/188Os and not to the longer-term latest Eocene 187Os/188Os decline that occurred ∼1 million year after the Popigai impact event.

  9. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  10. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights

    NASA Astrophysics Data System (ADS)

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  11. Description of two genera and species of late Eocene Anthropoidea from Egypt.

    PubMed

    Simons, E L

    1989-12-01

    In 1987 and 1988 fossils of two previously unknown genera and species of Egyptian early Tertiary Anthropoidea were discovered in the Fayum Depression of Egypt. These are much older than all other Fayum, Oligocene primates and are believed to be Eocene in age. These genera, here named Catopithecus and Proteopithecus, come from a new Fayum site, L-41, and resemble Oligopithecus from the Jebel Qatrani Formation (lower sequence) at quarry E. They are here placed with the latter in a subfamily, Oligopithecinae, that is ranked in the Propliopithecidae. The level of L-41 is separated from quarry E by at least one major unconformity and 47 m of section. Only a maxilla of Proteopithecus is known. Its molars and premolars resemble those of later Fayum Propliopithecus and Aegyptopithecus and do not resemble those of Apidium and Parapithecus, all of which come from the Jebel Qatrani Formation, upper sequence. The type specimen of Catopithecus confirms a lower dental formula of 2-1-2-3, as in Catarrhini. These species appear to be the oldest primates undoubtedly related to humans. Their dental anatomy points to a derivation of Anthropoidea from Eocene adapids.

  12. Description of two genera and species of late Eocene Anthropoidea from Egypt.

    PubMed Central

    Simons, E L

    1989-01-01

    In 1987 and 1988 fossils of two previously unknown genera and species of Egyptian early Tertiary Anthropoidea were discovered in the Fayum Depression of Egypt. These are much older than all other Fayum, Oligocene primates and are believed to be Eocene in age. These genera, here named Catopithecus and Proteopithecus, come from a new Fayum site, L-41, and resemble Oligopithecus from the Jebel Qatrani Formation (lower sequence) at quarry E. They are here placed with the latter in a subfamily, Oligopithecinae, that is ranked in the Propliopithecidae. The level of L-41 is separated from quarry E by at least one major unconformity and 47 m of section. Only a maxilla of Proteopithecus is known. Its molars and premolars resemble those of later Fayum Propliopithecus and Aegyptopithecus and do not resemble those of Apidium and Parapithecus, all of which come from the Jebel Qatrani Formation, upper sequence. The type specimen of Catopithecus confirms a lower dental formula of 2-1-2-3, as in Catarrhini. These species appear to be the oldest primates undoubtedly related to humans. Their dental anatomy points to a derivation of Anthropoidea from Eocene adapids. Images PMID:2513576

  13. Eocene bunoselenodont Artiodactyla from southern Thailand and the early evolution of Ruminantia in South Asia.

    PubMed

    Métais, Grégoire; Chaimanee, Yaowalak; Jaeger, J-J; Ducrocq, Stéphane

    2007-06-01

    Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic? Gelocus gajensis Pilgrim 1912 from the "base of the Gaj" (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.

  14. Inducement of heterochronic variation in a species of planktic foraminifera by a Late Eocene impact event

    NASA Technical Reports Server (NTRS)

    Macleod, N.; Kitchell, J. A.

    1988-01-01

    While it is well known that the cosmic impact event at or near the Cretaceous-Tertiary boundary coincides with an interval of mass extinction, a similar impact (or series of impacts) near the Eocene-Oligocene boundary presents a more complex picture, in terms of associated fluctuations in marine biotic diversity. Tektites, microtektites, and mineral grains exhibiting features of shock metamorphism found in Eocene sediments of the western N. Atlantic, Caribbean, and Gulf of Mexico (comprising the North American microtektite strewn field) offer compelling evidence for a catastrophic impact event. Despite the magnitude of this event, however, few extinctions in the planktic marine fauna are known to have occurred coincident with this event. Instead, changes in relative abundance, morphology, and development occurred. Cosmic impacts generally have been interpreted as influencing the course of evolution through the wholesale elimination of significant portions of standing biotic diversity. Indeed, extinction traditionally has been viewed as the negative side of evolution. In some instances, it is suggested such impact events can serve instead to increase, rather than decrease, morphological and ecological diversity, by altering the developmental programs within species at the level of the local population.

  15. Fossils and Fossil Climate: The Case for Equable Continental Interiors in the Eocene

    NASA Astrophysics Data System (ADS)

    Wing, Scott L.; Greenwood, David R.

    1993-08-01

    There are many methods for inferring terrestrial palaeoclimates from palaeontological data, including the size and species diversity of ectothermic vertebrates, the locomotor and dental adaptations of mammals, characteristics of leaf shape, size, and epidermis, wood anatomy, and the climatic preferences of nearest living relatives of fossil taxa. Estimates of palaeotemperature have also been based on stable oxygen isotope ratios in shells and bones. Interpretation of any of these data relies in some way on uniformitarian assumptions, although at different levels depending on the method. Most of these methods can be applied to a palaeoclimatic reconstruction for the interior of North America during the early Eocene, which is thought to be the warmest interval of global climate in the Cenozoic. Most of the data indicate warm equable climates with little frost. Rainfall was variable, but strong aridity was local or absent. The inferred palaeoclimate is very different from the present climate of the region and from model simulations for the Eocene. This suggests that models fail to incorporate forcing factors that were present at that time, that they treat the heat regime of continents unrealistically, and/or that model inputs such as sea surface temperature gradients or palaeotopography are incorrect.

  16. Sequential palynostratigraphy of the Queen City and Weches formations (Middle Eocene Claiborne Group), southeast central Texas

    SciTech Connect

    Elsik, W.C. )

    1993-02-01

    Palynomorph sequences of several orders of magnitude were found in the Queen City and Weches formations respectively at Six Mile and Burleson bluffs on the Brazos River, Milam and Burleson counties, Texas. The long term development of the subtropical to tropical Claibornian palynoflora included Engelhardtia spp., Friedrichipollis claibornensis, Nudopollis terminalis, Pollenites laesius and Symplocoipollenites spp. Shorter term fluctuations in sea level were reflected by common herbaceous pollen in the Queen City, and common mangrove pollen in the Weches. Paleoenvironments were marginally to fully marine; dinocysts occurred throughout. The Wetzeliella group of dinocysts were present only in the Queen City at Six Mile Bluff. Late Paleocene to Early Eocene pollen, and Early Middle Eocene pollen with last effective occurrences near the Queen City and Weches boundary included Aesculiidites circumstriatus, Annona foveoreticulata and a new species of Platycarya. Five short term warmer-cooler couplet events were represented by successive abundance peaks of Juglandaceae followed by Ulmus; Alnus supports the three upper Ulmus peaks. One deep water event was recorded by an abundance of fresh water Pediastrum at the Queen City and Weches boundary. That boundary event was bracketed by two of the Alnus and Ulmus peaks.

  17. Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa.

    PubMed

    Chaimanee, Yaowalak; Chavasseau, Olivier; Beard, K Christopher; Kyaw, Aung Aung; Soe, Aung Naing; Sein, Chit; Lazzari, Vincent; Marivaux, Laurent; Marandat, Bernard; Swe, Myat; Rugbumrung, Mana; Lwin, Thit; Valentin, Xavier; Zin-Maung-Maung-Thein; Jaeger, Jean-Jacques

    2012-06-26

    Reconstructing the origin and early evolutionary history of anthropoid primates (monkeys, apes, and humans) is a current focus of paleoprimatology. Although earlier hypotheses frequently supported an African origin for anthropoids, recent discoveries of older and phylogenetically more basal fossils in China and Myanmar indicate that the group originated in Asia. Given the Oligocene-Recent history of African anthropoids, the colonization of Africa by early anthropoids hailing from Asia was a decisive event in primate evolution. However, the fossil record has so far failed to constrain the nature and timing of this pivotal event. Here we describe a fossil primate from the late middle Eocene Pondaung Formation of Myanmar, Afrasia djijidae gen. et sp. nov., that is remarkably similar to, yet dentally more primitive than, the roughly contemporaneous North African anthropoid Afrotarsius. Phylogenetic analysis suggests that Afrasia and Afrotarsius are sister taxa within a basal anthropoid clade designated as the infraorder Eosimiiformes. Current knowledge of eosimiiform relationships and their distribution through space and time suggests that members of this clade dispersed from Asia to Africa sometime during the middle Eocene, shortly before their first appearance in the African fossil record. Crown anthropoids and their nearest fossil relatives do not appear to be specially related to Afrotarsius, suggesting one or more additional episodes of dispersal from Asia to Africa. Hystricognathous rodents, anthracotheres, and possibly other Asian mammal groups seem to have colonized Africa at roughly the same time or shortly after anthropoids gained their first toehold there.

  18. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China

    NASA Astrophysics Data System (ADS)

    Meng, Qingtao; Liu, Zhaojun; Bruch, Angela A.; Liu, Rong; Hu, Fei

    2012-02-01

    The Fushun basin is a small, explored, coal and oil shale-bearing, Cenozoic fault basin in the Liaoning Province, northeast China. The basin mainly consists of Eocene swamp to lacustrine deposits of the Guchengzi to Xilutian Formation, and contains the biggest opencast oil shale mine in Asia. This mine has provided an ideal opportunity to undertake palaeoclimate reconstruction in this basin based on a single geological profile and the analyses of 93 samples, using various approaches, namely field geological observation, clay mineralogical and geochemical (Sr/Ba, Sr/Cu, stable C and O isotope) analyses, all of which were compared with palaeobotanical data. The Eocene climate of Fushun basin evolved from warm temperate to north subtropical, and generally changed from warm humid to subhumid-semiarid. Paleoclimatic and geochemical parameters shows that the very warm and humid climate during Jijuntun Formation increased the initial productivity of lake water, and caused a steady stratification of the lake water, then caused oxygen lack in the bottom of water. Productivity of the lake provides the mean origin of organic matters for oil shale formation, and steady anoxic environment is beneficial for the conservation of organic matters.

  19. Eocene bunoselenodont Artiodactyla from southern Thailand and the early evolution of Ruminantia in South Asia

    NASA Astrophysics Data System (ADS)

    Métais, Grégoire; Chaimanee, Yaowalak; Jaeger, J.-J.; Ducrocq, Stéphane

    2007-06-01

    Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic ? Gelocus gajensis Pilgrim 1912 from the “base of the Gaj” (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.

  20. A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales.

    PubMed

    Bajpai, S; Gingerich, P D

    1998-12-22

    Himalayacetus subathuensis is a new pakicetid archaeocete from the Subathu Formation of northern India. The type dentary has a small mandibular canal indicating a lack of auditory specializations seen in more advanced cetaceans, and it has Pakicetus-like molar teeth suggesting that it fed on fish. Himalayacetus is significant because it is the oldest archaeocete known and because it was found in marine strata associated with a marine fauna. Himalayacetus extends the fossil record of whales about 3.5 million years back in geological time, to the middle part of the early Eocene [ approximately 53.5 million years ago (Ma)]. Oxygen in the tooth-enamel phosphate has an isotopic composition intermediate between values reported for freshwater and marine archaeocetes, indicating that Himalayacetus probably spent some time in both environments. When the temporal range of Archaeoceti is calibrated radiometrically, comparison of likelihoods constrains the time of origin of Archaeoceti and hence Cetacea to about 54-55 Ma (beginning of the Eocene), whereas their divergence from extant Artiodactyla may have been as early as 64-65 Ma (beginning of the Cenozoic).

  1. An example of mixing-zone dolomite, Middle Eocene Avon Park Formation, Floridan aquifer system

    SciTech Connect

    Cander, H.S. )

    1994-07-01

    A late-formed dolomite cement in a core of the Middle Eocene Avon Park Formation, peninsular Florida, provides an example of dolomite cement from a mixing zone and illustrates how dolomite textural alteration and stabilization can occur at earth-surface conditions. The Avon Park Formation is a pervasively dolomitized peritidal platform carbonate 400 m thick in the Florida aquifer system. Typical Avon Park dolomite is inclusion-rich, fine-grained (< 40 mm), noncathodoluminescent, highly porous (average, 20%), and formed during the Eocene by normal to hypersaline seawater ([delta][sup 18]O = + 3.7[per thousand] PDB; [delta][sup 13]C = + 2.0[per thousand]; [sup 87]Sr/[sup 86]Sr = 0.70778; Sr = 167 ppm). In a 20 m interval in a core from southwest Florida, inclusion-free, cathodoluminescent dolomite overgrows the early-formed noncathodoluminescent marine dolomite. The cathodoluminescent dolomite cement profoundly alters the texture of Avon Park dolomite from typical Cenozoic-like porous, poorly crystalline dolomite to hard, dense, low-porosity, highly crystalline Paleozoic-like dolomite. The dolomite cement is not a replacement of limestone but an overgrowth of early-formed marine dolomite and pore-occluding cement. This study demonstrates that: (1) dolomite precipitated from a 75% seawater mixing-zone fluid that was both calcite saturated and sulfate-rich, and (2) dramatic textural maturation and stabilization in dolomite can occur in the near surface environment, without elevated temperature and burial conditions.

  2. Large sedimentary aquifer system and sustainable management: investigations of hydrogeological and geochemical variations in Eocene sand aquifer, south western France

    NASA Astrophysics Data System (ADS)

    Malcuit, E.; Negrel, P. J.; Petelet-Giraud, E.; Durst, P.

    2010-12-01

    In the sedimentary Aquitaine Basin, the Eocene Sand Aquifer system, mostly confined, represents strategic resources for drinking water, irrigation, gas storage and geothermal resources. Therefore, its quantity and quality issues are essential for the sustainable management in this large region that extends over 116,000 km2 (i.e. one-fifth of the French territory). The Eocene Sand Aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands, early Eocene, middle Eocene, and late Eocene. The extension and thickness of Eocene aquifer layers and negative confined layers vary throughout the basin, from several tens of metres to a hundred metres. The deposit sequences characterizing the Eocene Aquifer System are progradational westward from detrital deposits to carbonates. Eocene sands and Eocene limestones are hydraulically connected and covered by an aquiclude of up to several hundred metres thick of molassic sediments. The groundwater recharge is assumed to occur through the Eocene outcrops located in the north and north-east, and in the south east in contact with the Montagne Noire as well as by vertical leakage from the upper and lower aquifers. Another recharge is suspected in the south near the Petites Pyrenees. According to isotopic data, both present-day recharge and old recharge (16-35 ky) can be evidenced. The north and south evolutions of the piezometric surface are different. In the north, because of years of pumping, a trough in the potentiometric surface has been formed. The piezometric decline is roughly one meter per year in the depression centre. In the south, the decline of the water table is roughly half a meter per year. Furthermore, in the south part, around two sites of gas storage, significant fluctuations of the potentiometric surface are superimposed to the variations resulting from water abstraction, due to the injection and abstraction of gas. However, a major difficulty for the sustainable management is the lack of

  3. Long-distance longitudinal transport of gravel across the Cordilleran thrust belt of Montana and Idaho

    NASA Astrophysics Data System (ADS)

    Janecke, Susanne U.; Vandenburg, Colby J.; Blankenau, James J.; M'gonigle, John W.

    2000-05-01

    Two newly identified middle Eocene paleovalleys (≥ 100 km long) preserved on top of the southwest Montana reentrant of the Cordilleran fold-and-thrust belt indicate long-lived longitudinal flow across the thrust belt and resolve a long-standing debate about the source of the voluminous quartzite debris in the Upper Cretaceous to lower Tertiary Divide, Harebell, and Pinyon conglomerates of Montana, Idaho, and Wyoming. Geologic mapping, stratigraphic, provenance, and geochronologic studies revealed that Eocene volcanic and sedimentary rocks in the paleovalleys are as thick as 2 km, onlap preexisting bedrock, and interfinger with well-rounded conglomerate derived from formations exposed only to the west. The middle Eocene paleovalleys are the youngest expression of a major paleoriver system that transported sediment toward the foreland during the Sevier orogeny. An Eocene subcrop map shows that the headwaters of the Eocene paleovalleys coincided with structural culminations in the thrust belt that supplied sediment to the Divide conglomerate of the Upper Cretaceous to lower Tertiary Beaverhead Group. Ultimately, the Lemhi Pass and Hawley Creek paleovalleys provided several thousand cubic kilometers of quartzite debris to the Pinyon and Harebell conglomerates of northwest Wyoming 200 350 km away, and formed the northwest half of a giant longitudinal drainage system. Sevier contraction, not the rising Idaho batholith, first uplifted vast culminations beneath the headwaters of this river system.

  4. Biotic Response in Aquatic Reptiles (Testudines) during Earliest Eocene Climatic Warming

    NASA Astrophysics Data System (ADS)

    Holroyd, P. A.; Hutchison, J. H.

    2010-12-01

    The earliest Eocene is marked by significant events of global warming: the Paleocene-Eocene Thermal Maximum (PETM) at ~55.8 Ma and two short-lived events (ETM2 or Elmo and H2) approximately 2 Ma later. These environmental changes induced strong responses in the continental biota. Noteworthy changes in North American mid-latitude faunas and floras that are temporally correlated with earliest Eocene warming events include: increased diversity; turnover; and significant range changes, comprising both northward shifts in ranges of North American taxa as well as intercontinental dispersal across Holarctica. Evidence for these biotic changes comes directly from the fossil record and indirectly from phylogeographic analyses of molecular phylogenies of extant biota. To date, the stratigraphic record of biotic change has only been examined for the flora and terrestrial mammals. Data on reptiles and for continental aquatic systems are particularly lacking. In order to assess the impact of climate-mediated faunal change in aquatic systems during early Paleogene warming, we have focused on developing a detailed record of fossil turtles (Testudines) from the Bighorn Basin of Wyoming, where these records can be directly compared to similarly studied mammalian and floral data and to isotopic studies that provide independent proxies of climate change. Using genus-level occurrence data from more than 450 stratigraphically-constrained localities spanning ~2.5 Ma, we calculated first and last appearances, taxonomic richness, and relative abundance as measured by presence-absence (site occupancy). Among turtles, taxonomic richness increased episodically through the earliest Eocene with two new taxa appearing at the PETM, two immediately following it, and two at Biohorizon B, an interval associated with the younger hyperthermals. These new, immigrant taxa eventually comprised 40% of known generic richness. Phylogenetically, the inferred biogeographic source regions are southern North

  5. Radio-isotopic calibration of the Late Eocene - Early Oligocene geomagnetic polarity time scale

    NASA Astrophysics Data System (ADS)

    Sahy, Diana; Fischer, Anne U.; Condon, Daniel J.; Terry, Dennis O.; Hiess, Joe; Abels, Hemmo; Huesing, Silja K.; Kuiper, Klaudia F.

    2013-04-01

    The Geomagnetic Polarity Time Scale (GPTS) has been the subject of several revisions over the last few decades, with a trend toward increasing reliance on astronomically tuned age models over traditional radio-isotopic calibration. In the 2012 Geological Time Scale (GTS12) a comparison between radio-isotopic and astronomical age models for the GPTS yielded partially divergent results, with discrepancies of up to 0.4 Myr in the age of magnetic reversals around the Eocene - Oligocene transition (Vandenberghe et al., 2012). Radio-isotopic constraints on the age of Late Eocene - Early Oligocene magnetic reversals are available from two key sedimentary successions which host datable volcanic tuffs: the marine record of the Umbria-Marche basin in Italy, and the terrestrial White River Group of North America, however concerns have been raised regarding both the accuracy of dates obtained from these successions, and the reliability of their magnetic polarity records (Hilgen and Kuiper, 2009). Here we present a fully integrated radio-isotopic and magnetostratigraphic dataset from the Late Eocene - Early Oligocene North American terrestrial succession with the aim of assessing the accuracy and precision of numerical ages derived from the GPTS. We developed a magnetic polarity record for two partially overlapping sections: Flagstaff Rim in Wyoming and Toadstool Geologic Park in Nebraska, which together provide coverage for the time interval between 36-31 Myr (C16n.2n - C12n) and calibrated this record using an age model based on 14 Pb/U weighted mean ID-TIMS dates obtained on zircons from primary air fall tuffs. The uncertainty of our age model includes random and systematic components for all radio-isotopic tie-points, as well as estimated uncertainties in the stratigraphic position of both the magnetic reversals and the dated tuffs. Our Pb/U dates are 0.4 - 0.8 Myr younger than previously published Ar/Ar data (Swisher and Prothero,1990, recalculated to 28.201 Myr for Fish

  6. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D.

    2014-11-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic and Artic were warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis, and stable isotopes (δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual to annual scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean temperature estimate of 11.4 °C (1σ = 1.8 °C) based on δ18O. Dual-isotope spectral analysis suggests that multidecadal climate cycles similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30 year timescales.

  7. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  8. Paleontology, paleobiogeography and paleoecology of Carolia-bearing beds from the Late Eocene rocks at Nile-Fayum Divide, Egypt

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir H.; Abdel-Gawad, Gouda I.; Salama, Yasser F.; Sayed, Dina M.

    2016-12-01

    The Paleontological study of the Carolia-bearing beds in (Qasr El-Sagha Formation) at Nile-Fayum Divide reveals the presences of thirteen species (three gastropods, six oysters and four Carolias). The paleobiogeography of these fauna indicates that genus Carolia Cantraine, 1838 was first recorded from the Lower Eocene of Egypt and Indian-Pakistani Region and spread out throughout the Tethyan province, West Africa and North and South America and its last occurrence was in the Early Miocene of North America. It shows also that, the first appearance of Ostrea (T.) multicostata (Deshayes, 1832) was in the Paleocene of Tunis and Algeria, and spread during the Eocene into India, northwestern Europe and the entire northern African regions. However, Cubitostrea (Cubitostrea) cubitus (Deshayes, 1832) was first reported in the Middle Eocene of France and spread to Texas in North America and North Africa. The statistical study on genus Carolia indicates that the distance between the byssal muscle scar and the retractor muscle scar increases with the increase of the left valve convexity. The paleoecological study of these faunal groups shows that, the predation and the parasitic elements as well as the stress environmental factors, caused the extinction of genus Carolia at the end of Late Eocene in Egypt.

  9. The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Bottomley, Richard; Grieve, Richard; York, Derek; Masaitis, Victor

    1997-07-01

    Ages ranging from the Late Cretaceous (~65 Myr) to the Oligocene (~29 Myr) have been reported for the 100-km-diameter Popigai impact structure on the Anabar shield, central Siberia. These ages overlap the timing of several possible impact-related features, including the Cretaceous/Tertiary and Eocene/Oligocene stratigraphic boundaries, the North American tektites, and the recently reported occurrences of an iridium anomaly and shocked quartz in Late Eocene deposits in northern Italy. Here we report age determinations of several Popigai impact melt rocks using the 40Ar-39Ar step heating technique to constrain the age of the impact event. Our results are consistent with a Late Eocene impact age of 35.7+/- 0.2 Myr (2σ)-coincident in time with the impact deposits found in Italy. As this age is also similar to that of the North American tektites, which have been associated with the Chesapeake Bay impact structure in the eastern United States, there seem to have been at least two large and essentially contemporaneous impacts during the Late Eocene.

  10. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  11. Eocene paleomagnetic pole for South America: Northward continental motion in the Cenozoic, opening of Drake Passage and Caribbean convergence

    NASA Astrophysics Data System (ADS)

    Somoza, RubéN.

    2007-03-01

    A paleomagnetic study of Eocene volcanic rocks in Patagonia yields high unblocking temperature and high-coercivity magnetizations. Combining these results with those of a previous study on Patagonian Eocene basalts yields a high-precision, high-quality pole located at latitude 81°S, longitude 337.4°E, A95 = 5.7°. Critically, this paleopole is indistinguishable from that of the Late Cretaceous (circa 85-65 Ma) pole position of South America, indicating that the plate was essentially motionless with respect to the spin axis for a period of ˜45 m.y. The pole position places South America at higher (˜5°) than present-day latitudes during the Eocene, indicating that northward continental motion toward present-day latitudes must have been accomplished sometime since the late Eocene. Paleomagnetic and tectonic correlation admits the hypothesis that Cenozoic northward drift was associated with Oligocene-Miocene extension in the southern continental edge, leading to the opening of the Drake Passage, and it agrees with the timing of foredeep formation and development of fold-thrust belts in the northern continental edge. This positive correlation between the paleomagnetically predicted drift of a major continent with extension at its trailing edge and convergence at its leading edge during times for which seafloor tectonic fabric and the geological record are particularly well preserved illustrates the utility of paleomagnetism in constraining paleogeographic and tectonic reconstructions for pre-Cretaceous times.

  12. Eocene sea retreat out of Asia: paleogeography, controlling mechanisms and environmental impacts

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, Guillaume; Bosboom, Roderic; Proust, Jean-Noël; Mandic, Oleg; Villa, Giuliana; Grothe, Arjan; Stoica, Marius; Guo, Zhaojie; Krijgsman, Wout; Yang, Wei; Bougeois, Laurie; Aminov, Jovid; Ormukov, Cholponbec; Huang, Wentao

    2014-05-01

    The sediments of the Central Asian basins include the remnants of the easternmost extent of a large epicontinental sea. Before it retreated westward and eventually separated as the Paratethys Sea following the Eocene-Oligocene transition (EOT), this shallow marine sea extended across the Eurasian continent from the Mediterranean Tethys in the west to the Tarim Basin in western China in the east. However, the paleogeography and the timing of the westward retreat of the proto-Paratethys Sea are too poorly constrained to identify its proposed controlling mechanisms and paleoenvironmental impacts. The sea supposedly entered Central Asia in the Cretaceous and five third-order marine incursions have been recognized from the Cretaceous-Paleogene sedimentary record, of which the last two transgressions are documented here. We studied the sea retreat in the Tarim Basin in western China, the Alai Valley and Ferghana Basin in southern Kyrgyzstan and the Afghan-Tajik Basin in south-western Tajikistan. Integrated bio-magnetostratigraphic dating shows that the sea retreated westward from the Tarim Basin in stepwise fashion. The major fourth transgression occurred during the Lutetian, after which the sea retreated from the southwest Tarim Basin paleodepocenter at ~41 Ma (base C18r). The last and fifth transgression was restricted to the westernmost margin of the Tarim basin and occurred during latest Bartonian-early Priabonian (base C17n.3n-base C16n.1n). At the level of precision of our dating, each of these marine incursions is apparently synchronous across the Tarim Basin suggesting rapid regional transgression/regression cycles in these shallow epicontinental basins with limited diachroneity. The shallow marine near-shore sediments of these last two transgressions can be convincingly correlated by litho- and biostratigraphy across Central Asia, showing for the first time that the sea may have largely retreated from Central Asia in the late Eocene. The lack of apparent

  13. Eocene Topography of the Northern Sierra Nevada: Direct Paleoelevation Evidence from Hydrogen Isotopes in Kaolinite of Paleostream Channels

    NASA Astrophysics Data System (ADS)

    Mulch, A.; Graham, S. A.; Chamberlain, C. P.

    2005-12-01

    The links and feedbacks among topography, tectonics, and climate remain a poorly understood yet important problem in Earth Sciences. Large mountains and high-elevation plateaux exert a strong control on global climate and it is, therefore, critical to understand their topographic history. Despite its importance to global climate change relatively little is known of the Cenozoic topographic development of the western North America. For example, there is considerable debate as to when the Sierra Nevada developed as a mountain range, with one view that the bulk of elevation gain took place in the last 3-5 Ma and the other that it already existed as a major topographic feature throughout much of the Cenozoic. To address this debate we examined the hydrogen isotope composition of kaolinite from weathered Eocene fluvial sediments. These sediments, well known because of past gold mining, occur within Eocene river channels cut into the western flank of the northern Sierra Nevada and are found from paleo-sea level upstream into the modern range. Our results show that the deltaD of kaolinite along paleoslopes decreases systematically by up to 25 per mil within different paleodrainage systems from a high of -80 per mil in sediments deposited at the current base of the Sierra to -106 per mil about 60 km eastward on the flank of the Sierra Nevada. The observed isotopic difference between downstream and upstream samples suggests that the highest altitude samples, collected at ca. 1600 m current elevation, were deposited at Eocene elevations of 1100 m to 1300 m. Thus, Eocene topographic gradients may have been lower than todays, but still reflect mountainous topography, consistent with pebble- to cobble-sized clasts that dominate the Eocene fluvial deposits. Viewed in context of other isotopic and geomorphic studies, we therefore suggest that mountainous topography characterized the Eocene northern Sierra Nevada whose western flank was occupied by high discharge river systems

  14. The Late Eocene 187Os / 188Os excursion: Chemostratigraphy, cosmic dust flux and the Early Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Ravizza, Gregory E.; Peucker-Ehrenbrink, B.

    2006-01-01

    High resolution records (ca. 100 kyr) of Os isotope composition ( 187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151-165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO 2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes

  15. A Backarc Basin Origin for the Eocene Volcanic Rocks North of Abbas Abad, East of Shahrud, Northeast Iran

    NASA Astrophysics Data System (ADS)

    Khalatbari Jafari, M.; Mobasher, K.; Davarpanah, A.; Babaie, H.; La Tour, T.

    2008-12-01

    The region in northeastern Iran, bordered by the Miami fault and the Doruneh fault, mainly exposes the Eocene volcanic and Tertiary sedimentary rocks and sporadic outcrops of pre- Jurassic metamorphic rocks such as gneiss and mica-schist. We have divided the volcanic and volcanic-sedimentary rocks into six main units: E1 through the youngest E6. North of Abbas Abad, the Lower Eocene is conglomerate, sandstone, and red shale with lenses of nummulite-bearing limestone at the base, and dacitic lava (E1) at the top. The nummulites give an Early Eocene age for the limestone lenses. The E2 unit includes vesicular basalt, intercalated, intraformational conglomerate, and lenses of nummulite-bearing limestone. E3 is volcanic- sedimentary, and is made of green tuff, tuffite, shale, and nummulite bearing limestone. E4 includes basalt and vesicular trachy-basalt, and E5 is mostly sedimentary, made of tan marl, sandstone, shale, and lenses of Middle Eocene nummulite-bearing limestone. The E6 unit is the most extensive, with at least three levels of nummulite-bearing limestone lenses which give a Middle to Early Eocene age. The volcanic rocks of the E6 unit include few hundred meters of epiclastic to hyaloclastic breccia, with intercalations of lava at the base. These are overlain by four horizons of aphyric olivine basalt and basalt, and phyric trachy-andesite and trachy-basalt. The volume of the aphyric lavas decreases, and that of the phyric lavas increases upsection. The Eocene volcanic sequence is covered by turbidite; the marl washings give an Eocene-Oligocene age range. Chondrite-normalized multi-element plots indicate enrichment of the Eocene Abbas Abad volcanic rocks in the LILE elements, with variable ratios of La/Yb (4.36-19.33) and La/Sm (3.10-7.91). These plots show a gentle slope, and the volcanic rocks in the E1 to E4 units are less enriched than those in the E6 unit, probably reflecting the difference in the original source for the melt. The multi-element plots

  16. Characterization and genesis interpretation of charcoal-bearing concretions from the early Eocene Ione Formation, CA

    NASA Astrophysics Data System (ADS)

    Bair, D.; Aburto, F.

    2013-12-01

    Charcoal core concretions have been discovered in the kaolinitic soil horizons of the Ione formation (early Eocene epoch ~52Ma BP). It is thought that the Ione Formation in the Ione Basin was deposited in delta and estuarine waters that were subsequently exhumed and exposed to a warmer, humid, tropical-like environment during the early Eocene. The formation of concretions is indicative of seasonal dryness, and the charcoal cores are evidence of wildfires and of the existence of a forest ecosystem. The mineral outer shells of the concretions have been characterized by powder X-ray diffraction, Electron Microprobe and Laser Ablation Quadruple Mass Spectrometry (LA-ICP-MS). Micro-computed tomography (MCT) scans indicate that these concretions have at least three distinct shells and a inner core with fragments of charcoal without apparent internal organization. The outer shell is mainly composed of a layered mix of kaolinite, quartz, goethite, hematite and birnessite. Some pyrite and jarosite have also been found, which could indicate that goethite may be post-depositional and a product of the bacteria-mediated oxidation of pyrite. The central shell has a similar composition, but with a higher content of iron oxyhydroxides and jarosite. The inner cores of the concretions are mainly composed of a mixture of kaolinite and quartz which correspond to the layer in which the concretions were found. The concretion cores contain loose charcoal fragments in a unsolidified kaolinite matrix. The charcoal fragments have been characterized by Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), C/N isotope analysis, and Synchrotron radiation FTIR (SR-FTIR). Analysis of the ATR-FTIR spectra showed significant absorbance peaks at wavenumbers that coincided with the chemical functionality of other wood biochars. Charcoal from different concretions display (n =12) extremely similar spectra which suggest that they were originated from similar species and

  17. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    NASA Astrophysics Data System (ADS)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    Azolla is a free-floating freshwater fern that is renowned for its rapid vegetative spread and invasive biology, being one of the world's fastest growing aquatic macrophytes. Two species of this plant have been shown to have bloomed and reproduced in enormous numbers in the latest Early to earliest Middle Eocene of the Arctic Ocean and North Sea based on samples from IODP cores from the Lomonosov Ridge (Arctic) and from outcrops in Denmark (Collinson et al 2009 a,b Review of Palaeobotany and Palynology 155,1-14; and doi:10.1016/j.revpalbo.2009.12.001). To determine the geographic and temporal extent of this Azolla phenomenon, and the spatial distribution of the different species, we have examined samples from 15 additional sites using material from ODP cores and commercial exploration wells. The sites range from the Sub-Arctic (Northern Alaska and Canadian Beaufort Mackenzie Basin) to the Nordic Seas (Norwegian-Greenland Sea and North Sea Basin). Our data show that the Azolla phenomenon involved at least three species. These are distinguished by characters of the megaspore apparatus (e.g. megaspore wall, floats, filosum) and the microspore massulae (e.g. glochidia fluke tips). The Lomonosov Ridge (Arctic) and Danish occurrences are monotypic but in other sites more than one species co-existed. The attachment to one another and the co-occurrence of megaspore apparatus and microspore massulae, combined with evidence that these spores were shed at the fully mature stage of their life cycle, shows that the Azolla remains were not transported over long distances, a fact which could not be assumed from isolated massula fragments alone. Our evidence, therefore, shows that Azolla plants grew on the ocean surfaces for approximately 1.2 million years (from 49.3 to 48.1 Ma) and that the Azolla phenomenon covered the area from Denmark northwards across the North Sea Basin and the whole of the Arctic and Nordic seas. Apparently, early Middle Eocene Northern Hemisphere middle

  18. Microfacies and biofabric of nummulite accumulations (Bank) from the Eocene deposits of Western Alborz (NW Iran)

    NASA Astrophysics Data System (ADS)

    Hadi, Mehdi; Mosaddegh, Hossein; Abbassi, Nasrollah

    2016-12-01

    The nummulite bank from the Eocene Ziarat Formation is described for the first time from Alborz, Iran, enhancing the record of these nummulite-rich accumulations in the Eocene of the circum-Tethyan carbonate platform. Five microfacies types have been defined within the shallow-water carbonate deposits of the Ziarat formation located in the western Alborz zone. Microfacies type 1 contains the most diverse Alveolina species associated with predominance of Nummulites A-forms. Microfacies type 2 is characterized by the presence of bivalve (oysters) fragments. Microfacies type 3 is supported by the high abundance of nummulitids. Microfacies type 4 is dominated by the occurrence of encrusting foraminifera-algal with flat growth forms that are mainly formed within the acervulinids assemblage. Finally, there is the presence of orthophragminids and nummuitids represented by microfacies type 5. Microfacies data obtained from the investigation area show that nummulite banks were formed within the back, core and fore-bank palaeoenvironments. The classification method of this paper is based on use biometric, biofabric, taphonomic and palaeoecological characteristics of larger benthic foraminifera. In addition, the calculated intraskeletal porosity by the use of numerous sections and FE-SEM images of Nummulites tests were displacement of tests in order to achieve a better understanding of paleo-conditions that occurred during sedimentation. We conclude that differences among bank frameworks suggest that small biconvex A-forms of Nummulites tests along with alveolinids were living in shallow, euphotic waters, whereas robust and ovate nummulitid tests thrived and concentrated in the intermediate (40-80 m) water with biofabrics in the min-scales, which indicates the influence of waves and currents in combination with wave-winnowing processes. More distal accumulations, the fore-bank were characterized by orthophragminid and nummulitid tests in the deeper part of the photic zone

  19. Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.; Dickens, G. R.

    2013-12-01

    The late Paleocene to the early Eocene (˜58-52 Ma) was marked by significant changes in global climate and carbon cycling. The evidence for these changes includes stable isotope records that reveal prominent decreases in δ18O and δ13C, suggesting a rise in Earth's surface temperature (˜4°C) and a drop in net carbon output from the ocean and atmosphere. Concurrently, deep-sea carbonate records at several sites indicate a deepening of the calcite compensation depth (CCD). Here we investigate possible causes (e.g., increased volcanic degassing or decreased net organic burial) for these observations, but from a new perspective. The basic model employed is a modified version of GEOCARB III. However, we have coupled this well-known geochemical model to LOSCAR (Long-term Ocean-atmosphere Sediment CArbon cycle Reservoir model), which enables simulation of seawater carbonate chemistry, the CCD, and ocean δ13C. We have also added a capacitor, in this case represented by gas hydrates, that can store and release13C-depleted carbon to and from the shallow geosphere over millions of years. We further consider accurate input data (e.g., δ13C of carbonate) on a currently accepted timescale that spans an interval much longer than the perturbation. Several different scenarios are investigated with the goal of consistency amongst inferred changes in temperature, the CCD, and surface ocean and deep ocean δ13C. The results strongly suggest that a decrease in net organic carbon burial drove carbon cycle changes during the late Paleocene and early Eocene, although an increase in volcanic activity might have contributed. Importantly, a drop in net organic carbon burial may represent increased oxidation of previously deposited organic carbon, such as stored in peat or gas hydrates. The model successfully recreates trends in Earth surface warming, as inferred from δ18O records, the CCD, and δ13C. At the moment, however, our coupled modeling effort cannot reproduce the magnitude of

  20. Climatic and floral change during the Paleocene-Eocene Thermal Maximum in the Bighorn Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) is an interval of global warming lasting ~150 ka that occurred at the start of the Eocene, ~55.8 Ma. Globally, temperature rose 4-8 °C in association with carbon cycle changes attributed to the release of >5,000 Pg of C into the ocean-atmosphere system. Fossil plants from the PETM in the Bighorn Basin, northwestern Wyoming, show that latest Paleocene forests contained palms, deciduous taxodiaceous conifers, and a variety of deciduous and evergreen angiosperms, many belonging to lineages with north temperate distributions. Mean annual temperature (MAT) for the latest Paleocene inferred from leaf margin analysis is ~18 °C. Early and mid-PETM floras have a completely different composition. They lack conifers and broad-leaved deciduous taxa with north temperate distributions, and are dominated by palms, legumes, and other angiosperm taxa with living relatives in the dry tropical forests of Central and South America. Leaf margin analysis gives an MAT of ~23 °C. Floras of this type are known from a stratigraphic interval ~30 m thick that also produces geochemical and mammalian faunal indicators of the PETM. Floras from late PETM or earliest post-PETM time are composed largely of species that had been present in the latest Paleocene, with a few new species that are common in the early Eocene. The inferred MAT is ~18 °C. Leaf size data suggest that the PETM was drier than the immediately preceding and following times. Floral data from the Bighorn Basin indicate that the magnitude of temperature change in this mid-latitude continental interior was similar to that inferred for the surface ocean. Evidence for dryness or seasonal dryness during the PETM has been observed in sections in northern Spain as well as in Wyoming, raising the possibility of widespread water stress in the middle northern latitudes. Change in floral composition during the PETM is consistent with regional extinction in mid-latitude populations of plants

  1. Upper Paleocene-Lower Eocene biostratigraphy of Darb Gaga, Southeastern Kharga Oasis Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ouda, Khaled; Berggren, William A.; Abdel Sabour, Ayman

    2016-06-01

    Paleontological studies on the Upper Paleocene-Lower Eocene succession at Darb Gaga, southeastern Kharga Oasis, Western Desert, Egypt document the changes associated with the Paleocene-Eocene Thermal Maximum (PETM), such as 1) a radical alteration of the relative and absolute abundance of planktonic foraminifera; 2) a massive occurrence of the excursion planktonic foraminiferal taxa; 3) a widespread deposition of calcarenite yielding atypical (extremely high) faunal abundance associated with the younger phase of warming; and 4) a concentration of coprolites associated with the middle phase of warming. We also document the Lowest Occurrence (LO) of dimorphic larger benthic and excursion foraminifera during the earlier phase of warming at Darb Gaga, as recorded in Bed 1 of the Dababiya Quarry Member. The absence of these faunas in Bed 1 at Dababiya (the GSSP for the P/E Boundary) is likely to be due to both intense deficiency in dissolved oxygen and massive carbonate dissolution. Only remains (fish remains) of faunas that can tolerate the toxicity produced by low oxygen conditions are found in the stratigraphic record of this (oldest) phase at Dababiya. The Dababiya Quarry Member (DQM) at Darb Gaga reflects the unfolding of the sedimentary and biotic changes associated with the PETM global warming at, and following, the Paleocene/Eocene boundary on the southern Tethys platform. The changes began with a rapid increase in bottom and "intermediate" water temperature. The temperature increase was accompanied by removal of oxygen during the early and middle stages of warming. This led to the absence of both subbotinids and calcareous benthic foraminifera in the early and second coprolite-bearing phases (Beds 2 and 3 of the DQM). Dissolution seems to have no role during these stages as shown by the unusual abundance and good preservation of the warm-tolerant Ac. sibaiyaensis. This species reaches its maximum abundance in Bed 2 where it exhibits a broad range of size (63

  2. Cause(s) of the elevated bombardment in the late Eocene

    NASA Astrophysics Data System (ADS)

    Claeys, P.

    2007-12-01

    The late Eocene (38 - 34 Ma) is marked by a high concentration of impact craters, ejecta layers and an elevated flux of interplanetary dust particles (IDP). The two largest craters in the Cenozoic formed in this period, the 100-km in size Popigai in Siberia, dated at 35.7 ± 0.2 Ma, and the 85-km in diameter Chesapeake Bay, offshore Virginia, dated at 35.5±0.6 Ma. Their almost coeval formation was triggered by the impact of projectiles, in the range of 4 to 5 km in diameter. Several other smaller impact structures, some of which are not as precisely dated, are also known in this late Eocene. The IDP, which arrival is recorded by an 3He anomaly in marine sediments, range in size from 1 to 1000 μm. The flux of both large bodies and small particles on Earth increased significantly over 2 to 3 Myr compared to the background. This anomalous bombardment is attributed to a comet shower in the inner Solar System, triggered by a perturbation of the Oort Cloud. The projectiles that formed the Popigai and Wanapitei (Canada, 8 km, 37± 2 Ma) craters were both ordinary chondrites; most likely L-chondrites based on platinum group elemental ratios, determined in their impact-melt lithologies. A composition not compatible with a cometary origin. Such objects were most likely derived from S-type asteroids located in the belt between Mars and Jupiter. Consequently, a major collision in the asteroid belt is another possible cause of the late Eocene elevated bombardment. The cosmic ray exposure ages of L-chondrites also support a collision on the L-chondrite parent body ~ 40 Ma ago. However, no asteroid family of that age range has so far been discovered in the belt and a particularly efficient delivery mechanism, so far unclear, is required to send large and small bodies at roughly the same time on Earth crossing orbits. In particular, considering the small fraction of large (5 km) projectiles likely to hit Earth, a huge number of fragments in this size range have to be injected

  3. It's getting hot here - The Middle Eocene Climatic Optimum (MECO) in a terrestrial sedimentary record

    NASA Astrophysics Data System (ADS)

    Methner, K.; Wacker, U.; Fiebig, J.; Chamberlain, C.; Mulch, A.

    2013-12-01

    The Middle Eocene Climatic Optimum (MECO) represents an enigmatic global warming event during Cenozoic cooling that has been discovered in ocean drill cores from varying latitudes and oceanic basins. It is marked by a rapid negative shift in oxygen isotope ratios of foraminiferal calcite and thought to reflect the combined effects of freshwater input as well as an increase in sea surface and bottom water temperatures by up to 5 to 6 °C. MECO is therefore a temperature extreme during already warm Eocene climate. This makes the MECO to one of the hottest phases during Earth's climate history, yet it is largely unknown how MECO affected temperatures in the continental interiors as well as their rainfall and vegetation dynamics. Here, we present stable isotope (δ18O, δ13C) and clumped isotope temperature (Δ47) records from a middle Eocene (ca. 42.0 to 40.0 Ma) mammal fossil locality in southwestern Montana, USA. The sampled section (Upper Dell Beds, Sage Creek Basin) comprises about 60 m of stacked paleosols that were correlated to Chron C18r by paleomagnetics and biostratigraphy. δ18O values of pedogenic carbonate range from -12 to -18 per mil (SMOW) and to first-order follows the marine δ18O pattern. Low δ18O values coincide with peak-MECO conditions and show a relatively rapid ca. 5°C increase in soil temperatures reaching peak temperatures of ~27°C at the climax of MECO. Immediately after the MECO event temperatures drop rapidly by about 8°C. To our knowledge this is the first terrestrial MECO paleotemperature record that further provides insight into the precipitation dynamics deep within the North American continent during this early Cenozoic hyperthermal. Paleosol Δ47 temperatures are highly reproducible within and across individual soil sequences and provide a realistic temperature estimate prior, during and after the MECO event. The combined δ18O and Δ47 data therefore provide important insight into the isotopic evolution of precipitation and mean

  4. Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China

    NASA Astrophysics Data System (ADS)

    Cao, Hua-Wen; Pei, Qiu-Ming; Zhang, Shou-Ting; Zhang, Lin-Kui; Tang, Li; Lin, Jin-Zhan; Zheng, Luo

    2017-04-01

    The Lailishan deposit is an important tin deposit that is genetically associated with an Early Eocene biotite granite in the western Yunnan metallogenic belt in the Sanjiang region, SW China. This study reports new zircon U-Pb ages and Hf isotopic data, whole-rock elements, mica Ar-Ar age and C-H-O-S-Pb isotope for the Lailishan Sn deposit. The mineralization-related biotite granite crystallized during the Early Eocene (50.5 Ma), with its zircon εHf(t) values ranging from -11.5 to -7.6 and two-stage Hf model ages (TDM2) ranging from 1.60 to 1.85 Ga. The rocks are peraluminous with A/CNK values of 0.99-1.08. The granites display high Si, Al and K contents but low Mg, Fe and Ca contents. The rocks show flat chondrite-normalized REE patterns with strong Eu negative anomalies. These characteristics indicate that the magma originated from a continental crustal source. The hydrothermal muscovite exhibits an Ar-Ar plateau age of 50.4 ± 0.2 Ma. The δ18O and δD values of hydrothermal quartz from the deposit range from -7.32‰ to 4.01‰ and from -124.9‰ to -87.1‰, respectively. The δ13CPDB and δ18OSMOW values of calcite range from -11.3‰ to -3.7‰ and from +2.2‰ to +12.7‰, respectively. The sulfur isotopic compositions (δ34SV-CDT) range from +3.3‰ to +8.6‰ for sulfide separates, and the lead isotopic ratios 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb range from 18.668 to 18.746, from 15.710 to 15.743 and from 39.202 to 39.295, respectively. These isotopic compositions are similar to those of magma-derived fluids, indicating that the ore-forming fluids and materials mainly originated from magmatic rocks with some input from meteoric water. This evidence suggests that the tin mineralization is closely linked to the Lailishan I-type granites. In combination with previous data, it is proposed in this study that widespread early Eocene magmatism resulted from the slab breakoff of the subducting Neo-Tethyan slab at ca. 55 Ma.

  5. Terrestrial astronomical age model for Eocene Thermal Maximum 2 and H2 hyperthermal events

    NASA Astrophysics Data System (ADS)

    Abels, Hemmo; Lourens, Lucas; Gingerich, Philip

    2013-04-01

    Knowledge of the duration and the rates of onset and recovery of early Paleogene hyperthermal events is crucial for understanding Earth's system response to massive input of greenhouse gases into the exogenic carbon pool. The second largest hyperthermal, Eocene Thermal Maximum 2 (ETM2), and its immediate successor H2 occur around 54 million years ago. Relative chronologies have been constructed for ETM2 and H2 in deep-sea records at Walvis Ridge in the southern Atlantic Ocean (Stap et al. 2009). Here, we construct an independent astronomical age model for these hyperthermals in terrestrial successions in the Bighorn Basin, Wyoming (Abels et al. 2012). We first generated parallel carbon isotope records of the ETM2-H2 interval in the Creek Star Hill, West Branch, and Purple Butte sections located between 1 and 3 km of the previously analyzed Upper Deer Creek (UDC) section. The carbon isotope patterns in the three new sections mimic both in time and magnitude the ETM2-H2 carbon isotope patterns from the UDC section. This confirms the reproducibility of the carbon isotope time series in these floodplain successions. The four sections were subsequently correlated by lateral tracing of distinctive paleosol horizons representing time lines at the sub-precession time scale. The correlation was confirmed by overbank-avulsion sedimentation cycles coevally occurring in the four sections. The constructed stratigraphic fence panel allows disentangling local fluvial variability in sedimentation from the regional signal. Coeval overbank-avulsion cyclicity at the precession time scale (Abels et al. 2013) are then used to construct an astronomical age model for the ETM2-H2 hyperthermal events. References Abels, H.A., W.C. Clyde, P.D. Gingerich, F.J. Hilgen, H.C. Fricke, G.J. Bowen, L.J. Lourens, 2012. Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals. Nature Geoscience 5, 326-329. Abels, H.A., M.J. Kraus, P.D. Gingerich, 2013. Precession

  6. Recognition of Early Eocene global carbon isotope excursions using lipids of marine Thaumarchaeota

    NASA Astrophysics Data System (ADS)

    Schoon, Petra L.; Heilmann-Clausen, Claus; Pagh Schultz, Bo; Sluijs, Appy; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2013-07-01

    The Paleocene-Eocene Thermal Maximum (PETM; ˜56 Ma) and Eocene Thermal Maximum 2 (ETM2; ˜53 Ma) are geological short (<200,000 years) episodes of extreme global warming and environmental change. Both the PETM and ETM2 are associated with the injection of 13C-depleted carbon into the ocean-atmosphere system as revealed through a globally recognized carbon isotope excursion (CIE) and massive dissolution of deep sea carbonate. However, the magnitude of these CIEs vary with the type of fossil matter, i.e. multiple carbonate phases, bulk organic matter, and terrestrial and marine biomarker lipids, making it difficult to constrain the actual CIE in atmospheric and oceanic carbon pools. Here we analyzed the stable carbon isotopic composition (δ13C) of glycerol dibiphytanyl glycerol tetraether lipids (GDGTs) derived from marine Thaumarchaeota in sediments deposited during the PETM in the North Sea Basin and ETM2 in the Arctic Ocean. The δ13C values of these lipids are potentially directly recording variations in δ13C dissolved inorganic carbon (DIC) and can thus provide a record of marine δ13C DIC across both these Eocene carbon cycle perturbations. Reconstructed pre-CIE δ13CDIC values are slightly lower (0.5-1‰) than modern day values, possibly because Thaumarchaeotal lipids are not only derived from surface waters but also from 13C-depleted subsurface waters. Their values decrease by ˜3.6 (±0.3) ‰ and ˜2.5 (±0.7)‰ during the PETM and ETM2, respectively. The CIE in crenarchaeol for ETM2 is higher than that in marine calcite from other locations, possibly because of the admixture of deep water 13C-depleted CO2 generated by the euxinic conditions that developed occasionally during ETM2. However, the reconstructed PETM CIE lies close to the CIE inferred from marine calcite, suggesting that the δ13C record of crenarchaeol may document changes in marine DIC during the PETM in the North Sea Basin. The δ13C of thaumarchaeotal lipids may thus be a novel tool to

  7. Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado

    NASA Technical Reports Server (NTRS)

    Gregory, Kathryn M.; Chase, Clement G

    1994-01-01

    New paleobotanical data suggest that in the late Eocene the erosion surface which capped the Front Range, Colorado was 2.2-2.3 km in elevation, which is similar to the 2.5-km present elevation of surface remnants. This estimated elevation casts doubt on the conventional belief that the low-relief geomorphic surface was formed by lateral planation of streams to a base level not much higher than sea level and that the present deeply incised canyons must represent Neogene uplift of Colorado. Description of the surface, calculations of sediment volume, and isostatic balance and fluvial landsculpting models demonstrate that while the high elevation of the erosion surface was due to tectonic forces, its smoothness was mostly a result of climatic factors. A sediment balance calculated for the Front Range suggests that from 2 to 4 km of material were eroded by the late Eocene, consistent with fission track ages. This amount of erosion would remove a significant portionof the 7 km of Laramide upper crustal thickening. Isostatic modeling implies that the 2.2-3.3 km elevation was most likely created by lower crustal thickening during the Laramide. A numerical model of fluvial erosion and deposition suggests a way that a late Eocene surface could have formed at this high elevation without incision. A humid climate with a preponderance of small storm events will diffusively smooth topography and is a possible mechanism for formation oflow-relief, high-level surfaces. Paleoclimate models suggest a lack of large strom events in the late Eocene because of cool sea surface temperatures in the equatorial region. Return to a drier but stormier climate post-Eocene could have caused the incision of the surface by young canyons. By this interpretation, regional erosion surfaces may represent regional climatic rather than tectonic conditions.

  8. Mineral occurrence data for the Eocene Green River Formation in the Piceance and Uinta Basins

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-01-01

    This legacy database lists occurrences of minerals identified in the Green River Formation in the Uinta and Piceance Basins, Utah and Colorado using X-ray diffraction (XRD). The database was compiled from data collected by the U.S. Geological Survey (USGS) and former U.S. Bureau of Mines (USBM). The database includes 1200 samples from 14 cores in the Uinta Basin and 9443 samples from 30 cores in the Piceance Basin; within that dataset over 40 mineral phases are represented between the two basins. Quartz, dolomite, and feldspars are the most common minerals. For nearly a century, these two agencies conducted extensive research on the oil shale deposits of the Eocene Green River Formation, Utah, Colorado, and Wyoming. Beginning in the early 1950s, this research included XRD mineral identification analysis from core and cuttings samples taken to assess oil shale resources.

  9. Pristine Early Eocene wood buried deeply in kimberlite from northern Canada.

    PubMed

    Wolfe, Alexander P; Csank, Adam Z; Reyes, Alberto V; McKellar, Ryan C; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ(18)O and δ(2)H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information.

  10. Pristine Early Eocene Wood Buried Deeply in Kimberlite from Northern Canada

    PubMed Central

    Wolfe, Alexander P.; Csank, Adam Z.; Reyes, Alberto V.; McKellar, Ryan C.; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada’s Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ18O and δ2H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12–17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. PMID:23029080

  11. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India.

    PubMed

    Rose, Kenneth D; Holbrook, Luke T; Rana, Rajendra S; Kumar, Kishor; Jones, Katrina E; Ahrens, Heather E; Missiaen, Pieter; Sahni, Ashok; Smith, Thierry

    2014-11-20

    Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo-Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea+Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (~54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia.

  12. Preliminary Stratigraphic Cross Sections of Oil Shale in the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Dyni, John R.

    2008-01-01

    Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.

  13. Sedimentation, structure and tectonics of the Umpqua group (paleocene to early eocene), southwestern Oregon

    NASA Astrophysics Data System (ADS)

    Ryberg, P. T.

    A major change in sedimentary and structural style occurs in Eocene strata exposed along the southern margin of the Oregon Coast Range. Lithofacies of the early Tertiary Umpqua Group are described, mapped and assigned to likely depositional environments. Submarine fan and slope facies (upper Roseburg Formation) overlie Paleocene basaltic basement rocks to the north, whereas fluvial, deltaic and shallow marine facies (Lookingglass Formation) overlie Franciscan equivalent strata to the south along the flank of the Klamath Mountains. These two depositional systems are gradational into one another, and were prograding northwestward until about 52 Ma. Means of clast compositions from sandstones and conglomerates from both the Roseburg and Lookingglass Formations suggest derivation from identical recycled orogen or arc continent collision sources in the Klamath Mountains.

  14. The circum-Antarctic sedimentary record; a dowsing rod for Antarctic ice in the Eocene

    NASA Astrophysics Data System (ADS)

    Scher, H.

    2012-12-01

    Arguments for short-lived Antarctic glacial events during the Eocene (55-34 Ma) are compelling, however the paleoceanographic proxy records upon which these arguments are based (e.g., benthic δ18O, eustatic sea level, deep sea carbonate deposition) are global signals in which the role of Antarctic ice volume variability is ambiguous. That is to say, the proxy response to ice volume may be masked other processes. As a result broad correlations between proxies for ice volume are lacking during suspected Eocene glacial events. I will present a more direct approach for detecting Antarctic ice sheets in the Eocene; utilizing provenance information derived from the radiogenic isotopic composition of the terrigenous component of marine sediments near Antarctica. The method relies on knowledge that marine sediments represent a mixture derived from different basement terrains with different isotopic fingerprints. A key issue when using sedimentary deposits to characterize continental sediment sources is to deconvolve different sources from the mixed signal of the bulk sample. The pioneering work of Roy et al. (2007) and van de Flierdt et al. (2007) represents a major advance in Antarctic provenance studies. It is now known that the isotopic composition of neodymium (Nd) and hafnium (Hf) in modern circum-Antarctic sediments are distributed in a pattern that mimics the basement age of sediment sources around Antarctica. For this study I selected two Ocean Drilling Program (ODP) sites on southern Kerguelen Plateau (ODP Sites 738 and 748) because of their proximity to Prydz Bay, where Precambrian sediment sources contribute to extremely nonradiogenic isotopic signatures in modern sediments in the Prydz Bay region. New detrital Nd isotope records from these sediment cores reveal an Nd isotope excursion at the Bartonian/Priabonian boundary (ca. 37 Ma) that coincides with a 0.5 ‰ increase in benthic foram δ18O values. Detrital sediment ɛNd values are around -12 in intervals

  15. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Speijer, Robert P.; Morsi, Abdel-Mohsen M.

    2002-01-01

    The ostracode response to oceanographic changes during the Paleocene-Eocene thermal maximum (PETM, ca. 55 Ma) is largely unknown. The Gebel Duwi section (Egypt) provides a detailed ostracode record across the PETM in a middle neritic setting. Quantitative analysis of this record reveals two significant results. (1) The PETM is marked by a sharp faunal turnover, as indicated by abundance changes, local extinctions, and immigrations. This turnover punctuated a gradual basin-wide faunal transition. (2) During the ˜60 k.y. period prior to the PETM, relative sea level fell rapidly by ˜15 m. This sea-level fall was followed by an ˜20 m sea-level rise during the PETM. A possible eustatic control on these fluctuations suggests the presence of a cryosphere and variations in its size during this time of global warmth.

  16. Evidence for abundant isolated magnetic nanoparticles at the Paleocene-Eocene boundary.

    PubMed

    Wang, Huapei; Kent, Dennis V; Jackson, Michael J

    2013-01-08

    New rock magnetic results (thermal fluctuation tomography, high-resolution first-order reversal curves and low temperature measurements) for samples from the Paleocene-Eocene thermal maximum and carbon isotope excursion in cored sections at Ancora and Wilson Lake on the Atlantic Coastal Plain of New Jersey indicate the presence of predominantly isolated, near-equidimensional single-domain magnetic particles rather than the chain patterns observed in a cultured magnetotactic bacteria sample or magnetofossils in extracts. The various published results can be reconciled with the recognition that chain magnetosomes tend to be preferentially extracted in the magnetic separation process but, as we show, may represent only a small fraction of the overall magnetic assemblage that accounts for the greatly enhanced magnetization of the carbon isotope excursion sediment but whose origin is thus unclear.

  17. Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Dietmar Müller, R.; Whittaker, Joanne; Flament, Nicolas; Seton, Maria

    2013-04-01

    The late Cretaceous to mid Eocene history of the southwest and southernmost Pacific has been subject to starkly contrasting interpretations, ranging from relative tectonic quiescence with the Lord Howe Rise (LHR) being part of the Pacific plate to a dynamic subduction setting. In the first scenario the Tasman Sea would have formed as a consequence of divergence between the Pacific and Australian plates, whereas in the second scenario it would have formed as a marginal basin associated with subduction. The first scenario is supported by a number of arguments, including a lack of evidence for deformation and tectonic activity in New Zealand during this period and a geodynamic modelling inference, namely that the bend in the Hawaiian-Emperor chain can be better reproduced if the LHR is part of the Pacific plate. The second scenario is supported by regional plate kinematic models reconciling a variety of observations including back-arc basin formation and destruction through time and the history of arc-continent collisions. The primary problem with the first scenario is the use of a plate circuit that leaves relative motion between East and West Antarctica unconstrained, leading to an improbable history of periodic compression and extension. The main problem with the alternative scenario is a lack of sampled late Cretaceous volcanic arc rocks east of the LHR. We analysed available geological and geophysical data to constrain the locations of and movements along the plate boundaries in the southwest and southern Pacific from the late Cretaceous to mid Eocene, and assessed how Pacific plate motion is best quantified during this period. Geological and geophysical evidence suggests that a plate boundary separated the Pacific plate from the LHR. The distribution of lower mantle slab material that is imaged by seismic tomography beneath New Zealand is best explained if subduction occurred to the east of the LHR during the entire late Cretaceous to mid Eocene period. Rocks

  18. Paleokarst processes in the Eocene limestones of the Pyramids Plateau, Giza, Egypt

    NASA Astrophysics Data System (ADS)

    El Aref, M. M.; Refai, E.

    The Eocene limestones of the Pyramids plateau are characterized by landforms of stepped terraced escarpment and karst ridges with isolated hills. The carbonate country rocks are also dominated by minor surface, surface to subsurface and subsurface solution features associated with karst products. The systematic field observations eludicate the denudation trend of the minor solution features and suggest the origin of the regional landscapes. The lithologic and structural characters of the limestone country rocks comprise the main factors controlling the surface and subsurface karst evolution. The development of the karst features and the associated sediments in the study area provides information on the paleohydrolic, chemical and climatic environments involved in the origin of the karstification.

  19. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera).

    PubMed

    Engel, Michael S; Grimaldi, David A; Nascimbene, Paul C; Singh, Hukam

    2011-01-01

    The fauna of termites (Isoptera) preserved in Early Eocene amber from the Cambay Basin (Gujarat, India) are described and figured. Three new genera and four new species are recognized, all of them Neoisoptera - Parastylotermes krishnai Engel & Grimaldi, sp. n. (Stylotermitidae); Prostylotermes kamboja Engel & Grimaldi, gen. et sp. n. (Stylotermitidae?); Zophotermes Engel, gen. n., with Zophotermes ashoki Engel & Singh, sp. n. (Rhinotermitidae: Prorhinotermitinae); and Nanotermes isaacae Engel & Grimaldi, gen. et sp. n. (Termitidae: Termitinae?). Together these species represent the earliest Tertiary records of the Neoisoptera and the oldest definitive record of Termitidae, a family that comprises >75% of the living species of Isoptera. Interestingly, the affinities of the Cambay amber termites are with largely Laurasian lineages, in this regard paralleling relationships seen between the fauna of bees and some flies. Diversity of Neoisoptera in Indian amber may reflect origin of the amber deposit in Dipterocarpaceae forests formed at or near the paleoequator.

  20. Geochemical and Petrologic Constraints on the Source of Eocene Volcanism at Mole Hill, Rockingham County, VA

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Beard, J. S.

    2010-12-01

    Mole Hill is an Eocene (48 Ma) basaltic volcanic neck located west of Harrisonburg, VA, and provides a unique opportunity to probe the mantle beneath the Shenandoah Valley. It lies on the northeastern edge of a swarm of alkaline-series volcanic plugs, dikes, and diatremes extending through Rockingham and Highland Counties, VA, and Pendleton County, WV. The Eocene volcanics are thought to have exploited extensive basement fracture systems originally formed during the Alleghenian Orogeny and subsequent rifting. The Eocene volcanism may have been triggered by reactivation of faults due to global shifts in relative plate motions (Southworth 1993, USGS Bull, B1839-I) but the source material and magmatic processes for the Eocene volcanism are largely unknown. Compositional and texture analyses of xenocrystic and groundmass clinopyroxene, olivine, and spinel were completed either at Virginia Tech on the Cameca SX-50 electron microprobe in the Dept of Geological Sciences, or in the Dept of Mineral Sciences, Smithsonian Institution, Washington, D.C using the JEOL JXA-8900R WD/EDS microanalyzer or the FEI NOVA nanoSEM600 FEG Variable Pressure Scanning Electron Microscope. Xenocrysts up to 2cm in diameter are distributed throughout the volcanic neck, with clinopyroxene >>spinel>olivine. The clinopyroxene and olivine xenocrysts show undulatory extinction in cross-polarized light and are found as individual crystals or as aggregates. Clinopyroxene xenocryst cores are high-Al, low-Cr augite ( ˜Wo44En46Fs10) with Mg# 78.5-85.9. The clinopyroxene xenocrysts have compositionally zoned rims 100-250 μm-wide containing abundant plagioclase inclusions and sparse melt inclusions in a sieve texture. The outer edges of xenocrysts approach the compositions of groundmass and microphenocryst clinopyroxenes ( ˜Wo47En38Fs15; Mg# 67.9-74.5). Olivine xenocrysts contain sulfide inclusions and Cr-rich spinel and have Mg-rich ( ˜Fo86-90) cores with more Fe- and Ca-rich rims (Fo70

  1. Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation.

    PubMed

    Jaramillo, Carlos; Ochoa, Diana; Contreras, Lineth; Pagani, Mark; Carvajal-Ortiz, Humberto; Pratt, Lisa M; Krishnan, Srinath; Cardona, Agustin; Romero, Millerlandy; Quiroz, Luis; Rodriguez, Guillermo; Rueda, Milton J; de la Parra, Felipe; Morón, Sara; Green, Walton; Bayona, German; Montes, Camilo; Quintero, Oscar; Ramirez, Rafael; Mora, Germán; Schouten, Stefan; Bermudez, Hermann; Navarrete, Rosa; Parra, Francisco; Alvarán, Mauricio; Osorno, Jose; Crowley, James L; Valencia, Victor; Vervoort, Jeff

    2010-11-12

    Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.

  2. Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum

    PubMed Central

    Schumann, Dirk; Raub, Timothy D.; Kopp, Robert E.; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V.; Sears, S. Kelly; Lücken, Uwe; Tikoo, Sonia M.; Hesse, Reinhard; Kirschvink, Joseph L.; Vali, Hojatollah

    2008-01-01

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene–Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability—a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming—drove diversification of magnetite-forming organisms, likely including eukaryotes. PMID:18936486

  3. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    NASA Astrophysics Data System (ADS)

    Bralower, Timothy J.; Self-Trail, Jean M.

    2016-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoaster during the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  4. Furrowed outcrops of Eocene chalk on the lower continental slop offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.; Kirby, John R.; Hampson, John C., Jr.; Gibson, Patricia R.; Hecker, Barbara

    1983-01-01

    A sea bottom of middle Eocene calcareous claystone cut by downslope-trending furrows was observed during an Alvin dive to the mouth of Berkeley Canyon on the continental slope off New Jersey. The furrows are 10 to 50 m apart, 4 to 13 m deep, linear, and nearly parallel in water depths of 2,000 m. They have steep walls and flat floors 3 to 5 m wide, of fine-grained sediment. Mid-range sidescan-sonar images show that similarly furrowed surfaces are found on nearby areas of the lower continental slope, not associated with canyons. The furrows are overlain in places by Pleistocene sediments. Although they show evidence of erosional origin, they do not appear to be related to observed structures, and their straight, parallel pattern is not well understood. A general cover of flocky unconsolidated sediments implies that bottom-current erosion is not active now.

  5. Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Jef; Abels, Hemmo; van Cappelle, Marijn

    2015-04-01

    Aeolian dust deposition during the Eocene-Oligocene in central to eastern Asia Jef Vandenberghe1, Hemmo Abels2 and Marijn van Cappelle3 1Dept. of Earth Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands 2Dept. of Earth Sciences, Universiteit Utrecht, 3584 CD, Utrecht, The Netherlands 3Dept. of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, U.K. The deposition of loess is generally attributed to a monsoonal climate system. Recently it has been shown that such a system existed already at the end of the Eocene on the northeastern Tibetan Plateau (Licht et al., 2014). One of the main arguments to prove the supply of loess by monsoonal winds is the use of grain size properties. The lower part of the Shuiwan section (Eocene) consists of metre-scale alternations of mudstone and gypsum beds; the upper part (Oligocene) is mainly mudstone (Dupont-Nivet et al., 2007; Abels et al., 2010). Sediments are categorized in six grain-size types based on the grain-size distribution and the mode of the silt grain sizes as measured using laser diffraction. Sediments of type 1, the only type with a unimodal grain-size distribution, consist exclusively of clay-sized particles (modal value of 2-2.5 µm). Types 2-6 have a multimodal composition. They contain an additional silt-sized fraction with a modal size of c. 16 µm in type 2; c. 26 µm in type 3 and c. 31 µm in type 4. Type 5 is a mixture of previous types, and type 6 contains in addition a slight amount of sand. Similar bimodal grain-size distributions occur in the Neogene Red Clay and in the Pleistocene loess of the Chinese Loess Plateau. All three silt fractions (with modal sizes 16, 26 and 31 µm) represent typical loess sediments, transported by dust storms in suspension at different altitudes. Their exact grain size depends on wind velocity, source material and transport distance. The 'clay component' may have settled from high suspension clouds in the air down to dry ground or to

  6. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    USGS Publications Warehouse

    Bralower, Timothy J.; Self-Trail, Jean

    2016-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoasterduring the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  7. Preliminary description of the cranium of Proteopithecus sylviae, an Egyptian late Eocene anthropoidean primate

    PubMed Central

    Simons, Elwyn L.

    1997-01-01

    Recent discovery of crania, dentitions, and postcrania of a primitive anthropoidean primate, Proteopithecus sylviae, at the late Eocene L-4l quarry in the Fayum, Egypt, provides evidence of a new taxonomic family of early African higher primates, the Proteopithecidae. This family could be part of the basal radiation that produced the New World platyrrhine primates, or it could be unrelated to any subsequent lineages. Although no larger than a small callitrichid or a dwarf lemur, this tiny primate already possessed many of the derived features of later anthropoids and was a diurnal and probably dimorphic species. In dental formula and other dental proportions, as well as in known postcranial features, Proteopithecus more nearly resembles platyrrhines than does any other Old World higher primate. The small size of the Proteopithecus cranium demonstrates that the defining cranial characteristics of Anthropoidea did not arise as a consequence of an increase in size during derivation from earlier prosimians. PMID:9405723

  8. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre

    1987-01-01

    It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.

  9. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  10. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  11. Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum

    PubMed Central

    Currano, Ellen D.; Wilf, Peter; Wing, Scott L.; Labandeira, Conrad C.; Lovelock, Elizabeth C.; Royer, Dana L.

    2008-01-01

    The Paleocene–Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59–55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures. PMID:18268338

  12. Dinocyst taphonomy, impact craters, cyst ghosts, and the Paleocene-Eocene thermal maximum (PETM)

    USGS Publications Warehouse

    Edwards, Lucy E.

    2012-01-01

    Dinocysts recovered from sediments related to the Chesapeake Bay impact structure in Virginia and the earliest Eocene suboxic environment in Maryland show strange and intriguing details of preservation. Features such as curled processes, opaque debris, breakage, microborings and cyst ghosts, among others, invite speculation about catastrophic depositional processes, rapid burial and biological and chemical decay. Selected specimens from seven cores taken in the coastal plain of Virginia and Maryland show abnormal preservation features in various combinations that merit illustration, description, discussion and further study. Although the depositional environments described are extreme, many of the features discussed are known from, or could be found in, other environments. These environments will show both similarities to and differences from the extreme environments here.

  13. Paleogeographic reconstruction of northwestern Oregon based on Eocene freshwater deposition in accreted terrane

    SciTech Connect

    Ries, J.E.

    1989-03-01

    Freshwater deposits exposed in the Coast Range of Oregon have been identified by the absence of marine organisms, significant floral remains, and the identification of a freshwater fish assemblage. These facies have been correlated with foraminiferal and lithologic horizons from test wells from the Mist Gas field of northwestern Oregon. Consistent records of inner neritic and marginal marine deposition in the Narizian stage, upper Cowlitz Formation, suggest the existence of an Eocene volcanic archipelago. Foraminiferal correlation through this stage is complicated by the absence of stratigraphically significant species in several of the wells. Floral remains from exposed sections have provided diverse elements, allowing paleogeographic reconstruction. A sea level coastal swamp was dominated by a subtropical flora consisting of Sabalites, Platanophyllum, and Equisetum. The swamp was apparently backed by higher altitude volcanic uplands dominated by a more temperate flora including Cornus, Chamaecyparis, Ailanthus, Pinus, and Picea.

  14. Eocene fossil is earliest evidence of flower-visiting by birds.

    PubMed

    Mayr, Gerald; Wilde, Volker

    2014-05-01

    Birds are important pollinators, but the evolutionary history of ornithophily (bird pollination) is poorly known. Here, we report a skeleton of the avian taxon Pumiliornis from the middle Eocene of Messel in Germany with preserved stomach contents containing numerous pollen grains of an eudicotyledonous angiosperm. The skeletal morphology of Pumiliornis is in agreement with this bird having been a, presumably nectarivorous, flower-visitor. It represents the earliest and first direct fossil evidence of flower-visiting by birds and indicates a minimum age of 47 million years for the origin of bird-flower interactions. As Pumiliornis does not belong to any of the modern groups of flower-visiting birds, the origin of ornithophily in some angiosperm lineages may have predated that of their extant avian pollinators.

  15. Whales originated from aquatic artiodactyls in the Eocene epoch of India.

    PubMed

    Thewissen, J G M; Cooper, Lisa Noelle; Clementz, Mark T; Bajpai, Sunil; Tiwari, B N

    2007-12-20

    Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellid Indohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea.

  16. Dynamic, Large-Magnitude CCD Changes in the Atlantic During the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Kordesch, W.; Bohaty, S. M.; Palike, H.; Wilson, P. A.; Edgar, K. M.; Agnini, C.; Westerhold, T.; Roehl, U.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO; ~40.1 Ma) is a transient global warming event that abruptly reversed the long-term Eocene cooling trend. The primary driving mechanism(s) must be linked to a CO2 increase; however, geochemical modeling experiments show that prevailing hypotheses are incompatible with the paleoclimate record. To further examine changes in deep-sea carbonate burial, we identify the MECO for the first time at ODP Site 929 (Equatorial Atlantic; ~3935 m paleodepth) and present new lithological and geochemical data for this site, including benthic foraminiferal stable isotopes (δ18O and δ13C), XRF scanning data, and an orbitally tuned age model. We combine these records with data from a suite of Atlantic sites to form a depth transect between ~2-4 km (DSDP Site 523, ODP Site 1260 and 1263, IODP Site U1404) representing the first detailed record of carbonate dissolution in the Atlantic spanning the MECO. This compilation reveals dissolution at water depths as shallow as ~2 km (>1 km shallower than previous estimates) with multiple and discrete short-lived (<100 kyr) phases of carbonate compensation depth (CCD) shoaling during and after the event. Careful reevaluation of the Pacific CCD records combined with new results suggests similar short-term variability and magnitude of shoaling globally. These data provide new constraints on carbon release history during the MECO and, potentially, the forcing mechanisms for warming. The transient CCD shoaling events indicate multiple pulses of carbon input and acidification decoupled from deep-sea δ18O and δ13C records, indicating that these events must not have been driven directly by changes in temperature or carbon burial/storage - potentially reconciling some of the data-model discrepancies.

  17. Decreased Temperate but not Polar Fish Productivity Across the Eocene-Oligocene Transition: Insights from Ichthyoliths

    NASA Astrophysics Data System (ADS)

    Zill, M.; Sibert, E. C.; Norris, R. D.

    2015-12-01

    The Eocene-Oligocene Transition (EOT, 38-28 Ma) was a period of global cooling and increased nutrient delivery to the ocean. It is associated with the onset of permanent ice sheet on Antarctica, and the beginning of a highly productive polar ecosystem, dominated by diatoms and favoring short, efficient food chains. In a highly efficient, large phytoplankton-dominated ecosystem, we would expect to see higher abundances of consumers, as fewer trophic steps means more carbon available to upper trophic level groups. Here we use the accumulation rate of ichthyoliths (fish teeth and dermal scales) to measure the relative export production of fish through this time period of changing climate. Records from the South Atlantic gyre (DSDP Site 522) the South Pacific Gyre (DSDP Site 596) and the Southern Ocean (DSDP Site 689) show a 50% reduction in ichthyolith accumulation rate in the vicinity the Eocene Oligocene boundary. However, this drop in fish production occurs just after the E/O in the Atlantic, 4 million years before the E/O in the Pacific and 6 million years prior to the E/O in the Southern Ocean. Since the EOT is generally associated with an increase in productivity and diatom blooms in the Southern Ocean and tropical Pacific, we would expect that the abundance of fish would increase across the transition. Our results are surprisingly the inverse of this expectation, and suggest that the transition from greenhouse to icehouse did not produce increase in forage fish or even a response of any kind during the climatological transition into the icehouse world. Indeed, it seems that ichthyolith accumulation rate and primary productivity are not perfectly linked, and it may be that ichthyolith accumulation is responding more to another factor, such as ocean temperature or prey availability that is not linked to the increased diatom production during the EOT.

  18. A High-Resolution Land Cover Study of Regional Early Eocene Climate

    NASA Astrophysics Data System (ADS)

    Thrasher, B. L.; Sloan, L. C.; Stauffer, H. L.

    2008-12-01

    Although the distribution of various types of land cover is directly affected by climate factors such as temperature and precipitation, the reverse is also true. Land cover itself can affect regional climate in a number of ways such as through changes in surface albedo, changes in moisture availability, and exchanges of gases with the atmosphere. Much of the research on the effect land cover type has on climate has dealt with modeling deforestation. The removal of boreal forests leads to an increase in albedo, decreases in both temperature and precipitation, and changes in the pattern of snowmelt. Tropical deforestation, on the other hand, leads to an increase in temperature but a decrease in precipitation and evapotranspiration. In addition to vegetation, climate effects due to surface water land cover types (lakes, wetlands, glaciers, etc.) have also been modeled. Studies of North Africa during the mid-Holocene have shown that the addition of lakes and wetlands decreases albedo and increases precipitation and evaporation in the region. Studies of Lake Victoria have shown that increases in the lake surface temperature lead to increases in regional precipitation amount and distribution. Global-scale modeling studies of the basins of Western North America have shown that the presence of a sizeable body of water in this area could have had a mitigating effect on the regional climate during the early Eocene (approximately 50-56 million years ago), keeping winter temperatures above freezing and decreasing the annual temperature range. Meanwhile, regional modeling studies of the same area and time have not examined varying land cover types and have instead used only extensive zones of singular land types. This study uses high-resolution land cover maps with a regional model to examine the climate sensitivity of Western North America during the early Eocene to the addition of land cover features such as lakes, marshland, and shrubs.

  19. Geochemical and geological control on filling history of Eocene reservoirs, Maracaibo Basin, Venezuela

    SciTech Connect

    Alberdi, M.; Maguregui, J.; Toro, C.; Marquina, M.

    1996-08-01

    Crude oils of Eocene fluvio-deltaic reservoirs in {open_quotes}Bloque V{close_quotes} and {open_quotes}Centro Lago{close_quotes} fields in the center of the Maracaibo Lake show many differences in composition, which are due to stratigraphically and structurally controlled reservoir geometry and a low rate of in-reservoir mixing of at least two successive petroleum charges. Oils produced from the top of structural highs contain 18(H) oleanane, higher Pr/Ph and C{sub 23-3}/C{sub 24-4} ratios, a lower proportion of DBT/P compounds, and clearly different fingerprint patterns in the C{sub 6}-C{sub 15} range, than those observed in oils produced from the lower parts of the structures. These compositional differences suggest that two source rocks, or two distinctive organic facies within the same Cretaceous La Luna Formation, generated and filled vertically poorly connected Eocene reservoirs. On the other hand, saturate-biomarkers ratios, triaromatics (C{sub 21}/C{sub 21}+C{sub 28}), n-paraffins (n-C{sub 20}/n-C{sub 29}) and n-heptane index suggest that oils in upper reservoirs are slightly less mature than oils in lower reservoirs and, consequently filled the structure first. Additional evidence from formation water analysis and tectonic basin evolution allow us to interpret at least two petroleum pulses from Cretaceous source rocks during Upper Miocene to present day kitchens located in the Andes foredeep at the southeast of the study area.

  20. An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Katinas, Liliana; Crisci, Jorge V.; Tellería, María C.; Bremer, Kåre; Passala, Mauro G.; Bechis, Florencia; Corsolini, Rodolfo

    2012-01-01

    Background and Aims Morphological, molecular and biogeographical information bearing on early evolution of the sunflower alliance of families suggests that the clade containing the extant daisy family (Asteraceae) differentiated in South America during the Eocene, although palaeontological studies on this continent failed to reveal conclusive support for this hypothesis. Here we describe in detail Raiguenrayun cura gen. & sp. nov., an exceptionally well preserved capitulescence of Asteraceae recovered from Eocene deposits of northwestern Patagonia, Argentina. Methods The fossil was collected from the 47·5 million-year-old Huitrera Formation at the Estancia Don Hipólito locality, Río Negro Province, Argentina. Key Results The arrangement of the capitula in a cymose capitulescence, the many-flowered capitula with multiseriate–imbricate involucral bracts and the pappus-like structures indicate a close morphological relationship with Asteraceae. Raiguenrayun cura and the associated pollen Mutisiapollis telleriae do not match exactly any living member of the family, and clearly represent extinct taxa. They share a mosaic of morphological features today recognized in taxa phylogenetically close to the root of Asteraceae, such as Stifftieae, Wunderlichioideae and Gochnatieae (Mutisioideae sensu lato) and Dicomeae and Oldenburgieae (Carduoideae), today endemic to or mainly distributed in South America and Africa, respectively. Conclusions This is the first fossil genus of Asteraceae based on an outstandingly preserved capitulescence that might represent the ancestor of Mutisioideae–Carduoideae. It might have evolved in southern South America some time during the early Palaeogene and subsequently entered Africa, before the biogeographical isolation of these continents became much more pronounced. The new fossil represents the first reliable point for calibration, favouring an earlier date to the split between Barnadesioideae and the rest of Asteraceae than previously

  1. Taxonomic description of in situ bee pollen from the middle Eocene of Germany

    PubMed Central

    Grímsson, FriĐgeir; Zetter, Reinhard; Labandeira, Conrad C.; Engel, Michael S.; Wappler, Torsten

    2017-01-01

    Abstract The middle Eocene Messel and Eckfeld localities are renowned for their excellently preserved faunas and diverse floras. Here we describe for the first time pollen from insect-pollinated plants found in situ on well-preserved ancient bees using light and scanning electron microscopy. There have been 140 pollen types reported from Messel and 162 pollen types from Eckfeld. Here we document 23 pollen types, six from Messel and 18 from Eckfeld (one is shared). The taxa reported here are all pollinated by insects and mostly not recovered in the previously studied dispersed fossil pollen records. Typically, a single or two pollen types are found on each fossil bee specimen, the maximum number of distinct pollen types on a single individual is five. Only five of the 23 pollen types obtained are angiosperms of unknown affinity, the remainder cover a broad taxonomic range of angiosperm trees and include members of several major clades: monocots (1 pollen type), fabids (7), malvids (4), asterids (5) and other core eudicots (1). Seven types each can be assigned to individual genera or infrafamilial clades. Since bees visit only flowers in the relative vicinity of their habitat, the recovered pollen provides a unique insight into the autochthonous palaeo-flora. The coexistence of taxa such as Decodon, Elaeocarpus, Mortoniodendron and other Tilioideae, Mastixoideae, Olax, Pouteria and Nyssa confirms current views that diverse, thermophilic forests thrived at the Messel and Eckfeld localities, probably under a warm subtropical, fully humid climate. Our study calls for increased attention to pollen found in situ on pollen-harvesting insects such as bees, which can provide new insights on insect-pollinated plants and complement even detailed palaeo-palynological knowledge obtained mostly from pollen of wind-pollinated plants in the dispersed pollen record of sediments. In the case of Elaeocarpus, Mortoniodendron, Olax and Pouteria the pollen collected by the middle Eocene

  2. Was Global Warming at the Paleocene-Eocene Boundary Terminated by Flood Volcanism?

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Larsen, R. B.

    2008-12-01

    The Paleocene-Eocene thermal maximum (PETM) has recently been attributed to greenhouse gases released from sedimentary basins in the Northeast Atlantic due to interaction with continental flood basalt magmatism. In the marine section in Denmark the alkaline Ash-17 has been dated at 55.1 plus minus 0.1 Ma and the PETM at 55.6-55.4 Ma. A similar alkaline tephra deposit in the uppermost part of the East Greenland flood basalt succession has also been dated at 55.1 plus minus 0.1 Ma and provides a linkage to Ash-17. Our recent results on the pressure of the coeval Skaergaard intrusion indicate that the majority of flood basalts erupted in less than 300,000 years. It is therefore possible to correlate the main flood basalt event with the interval immediately postdating PETM (55.4-55.1 Ma). This is consistent with a report of a small dinoflagellate cyst assemblage with a high proportion of Apectodinium homomorphum in one productive sample from sediments within the lower volcanics underlying the main flood basalt succession. The Apectodinium genus is usually abundant in the PETM interval. A scarcity of ash layers within the PETM interval also supports a correlation of the main flood basalt event with the overlying marine section including more abundant ash layers. The high eruption rate of the main flood basalts is likely to have resulted in atmospheric cooling caused by sulfuric acid aerosols produced from volcanic sulfur dioxide. Available estimates for volume and composition of the Northeast Atlantic flood basalts indicate that at least 36 teratonnes of sulfur dioxide was pumped into the atmosphere. This average 120 megatonnes per year over 300,000 years. For comparison, the historic Laki eruption in Iceland is estimated to have released 120 megatonnes sulfur dioxide over 5 months. We suggest that flood volcanism of the Northeast Atlantic terminated the global warming event at the Paleocene-Eocene boundary.

  3. Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Bachtadse, Valerian; Crouch, Erica M.; Tauxe, Lisa; Shepherd, Claire L.; Morgans, Hugh E. G.; Hollis, Christopher J.; Hines, Benjamin R.; Sugisaki, Saiko

    2016-01-01

    Studies of early Paleogene climate suffer from the scarcity of well-dated sedimentary records from the southern Pacific Ocean, the largest ocean basin during this time. We present a new magnetostratigraphic record from marine sediments that outcrop along the mid-Waipara River, South Island, New Zealand. Fully oriented samples for paleomagnetic analyses were collected along 45 m of stratigraphic section, which encompasses magnetic polarity Chrons from C23n to C21n (∼ 51.5- 47 Ma). These results are integrated with foraminiferal, calcareous nannofossil, and dinoflagellate cyst (dinocyst) biostratigraphy from samples collected in three different expeditions along a total of ∼80 m of section. Biostratigraphic data indicates relatively continuous sedimentation from the lower Waipawan to the upper Heretaungan New Zealand stages (i.e., lower Ypresian to lower Lutetian, 55.5 to 46 Ma). We provide the first magnetostratigraphically-calibrated age of 48.88 Ma for the base of the Heretaungan New Zealand stage (latest early Eocene). To improve the correlation of the climate record in this section with other Southern Ocean records, we reviewed the magnetostratigraphy of Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau) and Integrated Ocean Drilling Program (IODP) Site U1356 (Wilkes Land Margin, Antarctica). A paleomagnetic study of discrete samples could not confirm any reliable magnetic polarity reversals in the early Eocene at Site 1172. We use the robust magneto-biochronology of a succession of dinocyst bioevents that are common to mid-Waipara, Site 1172, and Site U1356 to assist correlation between the three records. A new integrated chronology offers new insights into the nature and completeness of the southern high-latitude climate histories derived from these sites.

  4. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum.

    PubMed

    Pagani, Mark; Pedentchouk, Nikolai; Huber, Matthew; Sluijs, Appy; Schouten, Stefan; Brinkhuis, Henk; Damsté, Jaap S Sinninghe; Dickens, Gerald R

    2006-08-10

    The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.

  5. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  6. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    NASA Astrophysics Data System (ADS)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  7. Volutidae (Mollusca: Gastropoda) of the Lakhra Formation (Earliest Eocene, Sindh, Pakistan): systematics, biostratigraphy and paleobiogeography.

    PubMed

    Merle, Didier; Pacaud, Jean-Michel; Métais, Grégoire; Bartolini, Annachiara; Lashari, Rafiq A; Brohi, Imdad A; Solangi, Sarfraz H; Marivaux, Laurent; Welcomme, Jean-Loup

    2014-06-27

    The paleobiodiversity of the Volutidae (Mollusca: Gastropoda) of the Ranikot Group (Sindh, Pakistan) and particularly of the Lakhra Formation (SBZ 5 biozone, Earliest Eocene), is reconsidered on the basis of new material collected during recent field trips. Ten new species are described (Mitreola brohii sp. nov., Lyrischapa vredenburgi sp. nov., L. brevispira sp. nov., Athleta (Volutopupa) citharopsis sp. nov., A. (Volutocorbis) lasharii sp. nov., Volutilithes welcommei sp. nov., V. sindhiensis sp. nov., Pseudaulicina coxi sp. nov., Sindhiluta lakhraensis sp. nov. and Pakiluta solangii sp. nov.) and one species is in open nomenclature (Lyria sp.). Three new genera are described: Lyriopsis gen. nov. [Volutinae, ?Lyriini, type species: Lyriopsis cossmanni (Vredenburg, 1923)], Sindhiluta gen. nov. [Volutilithinae, type species: Sindhiluta lakhraensis n. sp.] and Pakiluta gen. nov. [?Volutodermatinae, type species: Pakiluta solangii n. sp.]. Two new combinations are proposed: Lyriopsis cossmanni (Vredenburg, 1923) comb. nov. and Athleta (Volutopupa) intercrenatus (Cossmann & Pissarro, 1909) comb. nov. Lectotypes are designated for Lyria cossmanni Vredenburg, 1923, L. feddeni Vredenburg, 1923, Volutospina noetlingi Cossmann & Pissarro, 1909, V. intercrenata Cossmann & Pissarro, 1909 and Athleta (Volutocorbis) victoriae Vredenburg, 1923. With 21 species, this volutid fauna is the most diverse recorded from the Tethys Ocean during Earliest Eocene time. The assemblage is characterized by a strong turnover marked by regional speciation and the appearance of many western Tethyan invaders. Although at the species level, the assemblage documents a strong provincialism, at the genus level, the high number of shared genera between Eastern Tethyan and Old World Tethyan realms begins a phase of long-term homogeneity of volutid assemblages from the Tethyan paleobiogeographic province.

  8. Crustal shortening and Eocene extension in the southeastern Canadian Cordillera: Some thermal and rheological considerations

    NASA Astrophysics Data System (ADS)

    Liu, Mian; Furlong, Kevin P.

    1993-06-01

    Metamorphic core complexes in the southeastern Canadian Cordillera were formed during Eocene crustal extension, shortly (within a few millions of years) after Late Jurassic-Paleocene crustal shortening. Thermal-rheological modeling, constrained by geological and geochronological studies of the Valhalla core complex and other core complexes in this region, is used to investigate two major problems concerning the formation of these core complexes: (1) the dynamic links between crustal shortening and extension and (2) the cooling history and unroofing rates during extension. Thermal-rheological effects associated with crustal shortening are integrated through the history of crustal compression, since crustal shortening in this region was a long and slow process and cannot be treated as an instantaneous event. Our results suggest that crustal shortening may have played an important role in Eocene extension in the southeastern Canadian Cordillera by (1) producing a thickened and therefore unstable crust and (2) thermally weakening the lithosphere. However, heat generated by crustal shortening is not enough to account for the thermal state of the Valhalla complex, and additional heat sources at depth may be necessary. We then investigate thermal evolution during extension in both a simple shear model and a progressive pure stretching model. We show that the geotherm in an extensional region is time-and space-dependent and is affected by many variables including the preextensional thermal history and the mode of extension. Thus caution needs to be exercised when inferring unroofing rates from thermochronologic data. The cooling history of the Valhalla core complex may be explained by unroofing at rates of 1-2 mm/yr.

  9. Sedimentologic and biostratigraphic implications for early Eocene lacustrine systems, eastern Great Basin, Nevada

    SciTech Connect

    Dubiel, R.F.; Potter, C.J.; Snee, L.W. ); Good, S.C. )

    1993-04-01

    A multidisciplinary study integrating sedimentology, molluscan paleontology and paleoecology, structural and geologic mapping, and [sup 40]Ar/[sup 39]Ar dating of volcanic flows indicates the White Sage Formation north of the Deep Creek Range on the NV-UT border was deposited during the early Eocene in marginal-lacustrine, lacustrine, freshwater-marsh, and minor terrestrial settings. Sedimentary facies include wave-reworked, locally derived Paleozoic carbonate-clast basal conglomerates in contact with bedrock; carbonate tufa mounds; organic-rich mudstones; and laminated to medium-bedded carbonates. The wave-reworked conglomerate implies a broad lake with considerable fetch to generate large waves, but one with only small drainage basins with sharp relief to supply the locally-derived clasts. There is a striking lack of any fluvial, deltaic, or alluvial-fan deposits that would indicate development of substantial drainage areas. The large tufa mounds indicate a high-wave-energy shoaling environment with stable substrate and topography. The profusion of lacustrine carbonates indicates dominantly chemical- or biochemical-induced deposition in a carbonate-saturated lake. The aquatic molluscan fauna indicates shallow, quiet lacustrine conditions with emergent vegetation. The limpets inhabited areas of rooted aquatic vegetation, and the terrestrial gastropods indicate marshes adjacent to the lacustrine system. The molluscan assemblage constrains the age of the White Sage as early Eocene, indicating a lacustrine system equivalent to the Sheep Pass Formation and to outcrops near Illipah, NV that have similar facies and molluscan faunas and that also lack significant fluvial, deltaic, or alluvial fan deposits. The data are consistent with a model wherein the White Sage, Sheep Pass, and Illipah carbonates were deposited in a large lake superimposed on preexisting topography with low relief and little or no syndepositional extension.

  10. Cascadiacarpa spinosa gen. et sp. nov. (Fagaceae): castaneoid fruits from the Eocene of Vancouver Island, Canada.

    PubMed

    Mindell, Randal A; Stockey, Ruth A; Beard, Graham

    2007-03-01

    Documenting the paleodiversity of well-studied angiosperm families serves to broaden their circumscription while also providing a time-specific reference point to mark the first occurrence of characters and appearance of lineages. More than 80 anatomically preserved specimens of spiny, cupulate fruits in various developmental stages have been studied from the Eocene Appian Way locality of Vancouver Island, British Columbia, Canada. Details of internal anatomy and external morphology are known for the cupules, fruits, and pedicels. Cupule spines branch and are often borne in clusters. Cupules lack clear sutures and are adnate to a single nut that is enclosed entirely with the exception of the apical stylar protrusion of the pistil. A central hollow cylinder of vascular tissue can be seen extending up the peduncle to the base of the fruit and along the inner wall of the cupule. The fruit has a sclerotic outer pericarp that grades into a parenchymatous mesocarp and a sclerotic endocarp lining the locules. Early in development, the two locules are divided by a thin septum to which the ovules are attached. Only one seed develops to maturity as evidenced by an embryo occupying the locule alongside an abortive apical ovule. Three-dimensional reconstructions of these fruits have allowed for comparisons to both extinct and extant fagaceous taxa. The Appian Way fruits are most similar to extant Castanopsis species (Fagaceae) but differ in having only two locules. Cascadiacarpa spinosa gen. et sp. nov. Mindell, Stockey et Beard is the first occurence of a bipartite gynoecium and earliest known occurrence of hypogeous fruits in Fagaceae. The appearance of Casacadiacarpa in the Eocene of British Columbia supports a Paleogene radiation of the family. The numerous derived characters of these fruits show that evalvate, spiny, single-fruited cupules of Fagaceae were present in the Paleogene of North America.

  11. Occurrence of gigantic biogenic magnetite during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Schumann, D.; Raub, T. D.; Kopp, R. E.; Guerquin-Kern, J. L.; Wu, T. D.; Rouiller, I.; Smirnov, A. V.; Sears, S. K.; Lücken, U.; Tikoo, S. M.; Hesse, R.; Kirschvink, J. L.; Vali, H.

    2009-04-01

    The Paleocene-Eocene Thermal Maximum (PETM) is one of the most severe climatic events of the Cenozoic Era. A massive injection of light carbon into the oceans and atmosphere over a few thousand of years triggered drastic perturbation of Earth's climate resulting in abrupt global warming of ~5-9oC [Sluijs et al., 2007] that persisted for ~180,000 years. This episode is marked by the diversification and radiation of terrestrial plants and mammals while in the marine realm numerous deep-sea benthic foraminifera species disappeared and new forms evolved. Sediments deposited during the PETM are clay-rich and contain distinct evidence of these climatic changes. Kopp et al., (2007) and Lippert & Zachos (2007) report an extraordinary magnetofossil ‘Lagerstätte' in lowermost Eocene kaolinite-rich clay sediments deposited at subtropical paleolatitude in the Atlantic Coastal Plain of New Jersey, USA. Magnetofossils are magnetic particles produced most abundantly by magnetotactic bacteria. Kopp et al. (2007) and Lippert & Zachos (2007) used ferromagnetic resonance (FMR) spectroscopy, other rock magnetic methods, and transmission electron microscopy (TEM) of magnetic separates to characterize sediments from boreholes at Ancora (ODP Leg 174AX) and Wilson Lake, NJ, respectively. These sediments contain abundant ~40- to 300-nm cuboidal, elongate-prismatic and bullet-shaped magnetofossils, sometimes arranged in short chains, resembling crystals in living magnetotactic bacteria. Despite the scarcity of intact magnetofossil chains, the asymmetry ratios of the FMR spectra reflects a profusion of elongate single domain (SD) crystals and/or chains. Here we address both conundrums by reporting the discovery from these same sediments of exceptionally large and novel biogenic magnetite crystals unlike any previously reported from living organisms or from sediments. Aside from abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite

  12. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2015-10-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic was warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated that mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis and stable isotopes (δ13C and δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual- to annual-scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean annual temperature (MAT) estimate of 11.4 °C (1 σ = 1.8 °C) based on δ18O, which is 16 °C warmer than the current MAT of the area (-4.6 °C). Early Eocene atmospheric δ13C (δ13Catm) estimates were -5.5 (±0.7) ‰. Isotopic discrimination (Δ) and leaf intercellular pCO2 ratio (ci/ca) were similar to modern values (Δ = 18.7 ± 0.8 ‰; ci/ca = 0.63 ± 0.03 %), but intrinsic water use efficiency (Early Eocene iWUE = 211 ± 20 μmol mol-1) was over twice the level found in modern high-latitude trees. Dual-isotope spectral analysis suggests that multidecadal climate cycles somewhat similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30-year timescales, influencing

  13. Early-middle Eocene chronology of the Southern Ocean: magnetostratigraphic data from the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Dallanave, E.; Bachtadse, V.; Agnini, C.; Muttoni, G.; Hollis, C. J.; Morgans, H. E.; Crampton, J. S.

    2012-12-01

    During the Paleogene the Earth experienced a pronounced warming trend culminating with the early Eocene climatic optimum (EECO, ~52-50 Ma), which was followed by a long-term cooling trend over the middle-late Eocene. This long-term climate evolution was punctuated by several transient (~10^3-5 yr) hyperthermal events (e.g. Paleocene Eocene thermal maximum). Even though great advances have been made in the last few years in understanding the paleoclimate history of the southwestern Pacific Ocean and the implications on the sedimentation patterns, a precise correlation between sites and global events is still missing. This is mainly because of the poor preservation of calcareous nannofossils, diachronous ranges of index species, and a lack of a good magnetic polarity reversals record. We present preliminary early-middle Eocene magnetostratigraphy from the Mid Waipara and the Mead Stream marine sections, cropping out in the South Island of New Zealand. These sections provide the best-known record of oceanic changes in the southern Pacific high-latitude (50-60°S) for this time period. Magnetostratigraphic data, integrated with new and published biostratigraphy, indicates that the sampled ~45 m of the Mid Waipara section straddles polarity Chrons from C23n to C21n (~51.5-47 Ma), with an average sediment accumulation rate of ~9 m/Myr, calculated by means of correlation with the GPTS2004 time scale. This robust chronological framework allow to constrain in time the paleotemperature dataset of Hollis et al. (EPSL 349-350, pp. 53-56, 2012), confirming that the Ashley Mudstone formation of Mid Waipara includes at least the upper part of the EECO and the early-middle Eocene transition. The sampled ~320 m of the Mead Stream section, which comprises the three upper member of the Amuri Limestone (Lower Marl, Upper Limestone and Upper Marl), encompass polarity Chrons from C24r to C18r (~55-40 Ma), with an average sedimentation rate of ~17 m/Myr. We confirm evidence from carbon

  14. A "tropical" Early Eocene marine environment on the Antarctic margin: TEX86 results from IODP expedition 318

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Bijl, P.; Toney, J. L.; Pross, J.; Contreras, L.; Schouten, S.; Roehl, U.; Tauxe, L.; Huber, M.; Brinkhuis, H.; Scientific Team of IODP Drilling Leg 318

    2011-12-01

    The early Eocene was characterised by high pCO2 (ca.1,000 to more than 2,000ppm) and mean global temperatures that reached a long-term maximum. Relative to the present day, meridional temperature gradients were unusually low, with warmer equatorial regions and much warmer subtropical Arctic and mid-latitude climates. Yet global climatic conditions during this pre-glacial interval have remained poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present dinoflagellate cyst assemblages and organic geochemical tetraether based sea-surface temperature estimates from IODP expedition 318, extracted from bio- and magnetostratigraphically dated, late early to early middle Eocene sediments recovered at Site U1356. For the first time, we reconstruct marine temperatures and ecological conditions from the Eocene Greenhouse world in direct proximity to the Antarctic continent. Early Eocene dinocyst assemblages are dominated by tropical dinocyst genus Apectodinium, whilst TEX86 results indicate persistent and remarkable warmth, with the magnitude of the reconstructed SSTs dependent on the applied calibration: TEX86-L = 20 - 26°C (Av. 23°C); TEX86-H = 27 - 33°C (Av. 32°C). Our marine based proxies are just several strands from multiple independent lines of evidence emerging from the Early Eocene of the Wilkes Land Antarctic margin, including: pollen, terrestrial biomarkers (e.g. MBT/CBT-MAT estimates of 22 - 27°C , Av. 26°C), compound specific plant wax D/H measurements and clay minerals. Taken together, this evidence of very high temperatures, thermophilic fauna, an invigorated hydrological cycle, chemically weathered soils and well developed wetlands gives a very compelling picture of environmental conditions comparable to the modern tropics. These results confirm that exceptionally warm polar-regions are a feature common to reconstructed Greenhouse periods. Such

  15. Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Creech, John B.; Baker, Joel A.; Hollis, Christopher J.; Morgans, Hugh E. G.; Smith, Euan G. C.

    2010-11-01

    We have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, and Ba/Ca) ratios of 13 species of variably preserved early to middle Eocene planktonic and benthic foraminifera from New Zealand. The foraminifera were obtained from Ashley Mudstone, mid-Waipara River, South Island, which was deposited at bathyal depth ( ca. 1000 m) on the northern margin of the east-facing Canterbury Basin at a paleo-latitude of ca. 55°S. LA-ICP-MS data yield trace element depth profiles through foraminifera test walls that can be used to identify and exclude zones of surficial contamination and infilling material resulting from diagenetic coatings, mineralisation and detrital sediment. Screened Mg/Ca ratios from 5 species of foraminifera are used to calculate sea temperatures from late Early to early Middle Eocene ( ca. 51 to 46.5 Ma), a time interval that spans the termination of the Early Eocene Climatic Optimum (EECO). During this time, sea surface temperatures (SST) varied from 30 to 24 °C, and bottom water temperatures (BWT) from 21 to 14 °C. Comparison of Mg/Ca sea temperatures with published δ 18O and TEX 86 temperature data from the same samples (Hollis et al., 2009) shows close correspondence, indicating that LA-ICP-MS can provide reliable Mg/Ca sea temperatures even where foraminiferal test preservation is variable. Agreement between the three proxies also implies that Mg/Ca-temperature calibrations for modern planktonic and benthic foraminifera can generally be applied to Eocene species, although some species (e.g., V. marshalli) show significant calibration differences. The Mg/Ca ratio of the Eocene ocean is constrained by our data to be 35-50% lower than the modern ocean depending on which TEX 86 - temperature calibration (Kim et al., 2008; Liu et al., 2009) - is used to compare with the Mg/Ca sea temperatures. Sea temperatures derived from δ 18O analysis of foraminifera from Waipara show

  16. Refining the Early and Middle Eocene Geomagnetic Polarity Time Scale: new results from ODP Leg 208 (Walvis Ridge)

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Roehl, U.; Frederichs, T.; Bohaty, S. M.; Florindo, F.; Zachos, J. C.; Raffi, I.; Agnini, C.

    2015-12-01

    Astronomical calibration of the Geomagnetic Polarity Time Scale (GPTS) for the Eocene (34-56 Ma) has advanced tremendously in recent years. Combining a cyclostratigraphic approach based on the recognition of the stable 405-kyr eccentricity cycle of Earth's orbit with high-resolution bio- and magnetostratigraphy from deep-sea sedimentary records (ODP Legs 171B, 189 and 207; IODP Exp. 320/321) resulted in a new calibration of the middle-to-late Eocene GPTS spanning Chrons C12r to C19n (30.9-41.3 Ma). A fully astronomically calibrated GPTS for the Eocene was established recently by integrating cyclo-bio-magnetostratigraphy from ODP Sites 702 and 1263 records spanning the middle Eocene with Site 1258 records covering the early Eocene. Comparison of this deep sea-derived GPTS with GTS2012 and GPTS calibration points from terrestrial successions show overall consistent results, but there are still major offsets for the duration of Chrons C20r, C22r and C23n.2n. Because of the relatively large uncertainty of the calibration point, a radioisotopic dated ash layer in DSDP 516F, at C21n.75 (46.24±0.5 Ma) the duration of C20r in GPTS2012 (2.292 myr) is uncertain. Offsets in durations of C22r and C23n.2n between GPTS2012 and the new astronomical GPTS (~400-kyr longer C22r; ~400-kyr shorter C23n.2n) could be due to uncertainties in the interpretation of Site 1258 magnetostratigraphic data. Here we present new results toward establishing a more accurate and complete bio-, magneto- and chemostratigraphy for South Atlantic Leg 208 sites encompassing magnetochrons C13 to C24 (33 to 56 Ma). Our study aims to integrate paleomagnetic records from multiple drilled sites with physical property data, stable isotope data and XRF core scanning data to construct an astronomically calibrated framework for refining GPTS age estimates. This effort will complete the Early-to-Middle Eocene GPTS and allow evaluation of the relative position of calcareous nannofossil events to magnetostratigraphy.

  17. Geology and paleoecology of the Cottonwood Creek delta in the Eocene Tipton Tongue of the Green River Formation and a mammalian fauna from the Eocene Cathedral Bluffs Tongue of the Wasatch Formation, Southeast Washakie Basin, Wyoming

    SciTech Connect

    Roehler, H.W.; Hanley, J.H.; Honey, J.G.

    1988-01-01

    Nonmarine mollusks are used to interpret paleoenvironments and patterns of sedimentation of a fan delta on the east margin of Eocene Lake Gosiute. The delta is composed of a lens of quartzose sandstone intertongued with oil shale. Delta morphology is illustrated by cross sections and paleogeographic maps. A fossil fauna representing five mammalian orders is described and used to establish the age of parts of the Wasatch and Green River formations. There are three chapters in this bulletin.

  18. Metre-scale cyclicity in Middle Eocene platform carbonates in northern Egypt: Implications for facies development and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Tawfik, Mohamed; El-Sorogy, Abdelbaset; Moussa, Mahmoud

    2016-07-01

    The shallow-water carbonates of the Middle Eocene in northern Egypt represent a Tethyan reef-rimmed carbonate platform with bedded inner-platform facies. Based on extensive micro- and biofacies documentation, five lithofacies associations were defined and their respective depositional environments were interpreted. Investigated sections were subdivided into three third-order sequences, named S1, S2 and S3. Sequence S1 is interpreted to correspond to the Lutetian, S2 corresponds to the Late Lutetian and Early Bartonian, and S3 represents the Late Bartonian. Each of the three sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The complete hierarchy of cycles can be correlated along 190 km across the study area, and highlighting a general "layer-cake" stratigraphic architecture. The documentation of the studied outcrops may contribute to the better regional understanding of the Middle Eocene formations in northern Egypt and to Tethyan pericratonic carbonate models in general.

  19. A partial skeleton of Proteopithecus sylviae (Primates, Anthropoidea): first associated dental and postcranial remains of an Eocene anthropoidean

    NASA Astrophysics Data System (ADS)

    Simons, Elwyn L.; Seiffert, Erik R.

    1999-12-01

    Recent excavation in the Late Eocene quarry L-41 (Fayum Depression, Egypt) revealed two tibiae and a femur in direct association with a mandible of Proteopithecus sylviae, arguably the most generalized African anthropoidean known from cranial remains. This discovery represents the first association of dental and postcranial material belonging to an Eocene anthropoidean, and provides new insights into the functional anatomy and phylogenetic position of Proteopithecus. The hindlimb morphology of Proteopithecus is most similar to small-bodied platyrrhines among living and extinct primates and is consistent with a locomotor repertoire that included a considerable amount of running and pronograde leaping. In certain dental and postcranial features, Proteopithecus differs from the other Fayum anthropoideansand shows a greater resemblance to living and extinct platyrrhines, but it is unclear whether these features are of particular phylogenetic significance.

  20. Third contribution on Rovno amber silken fungus beetles: a new Eocene species of Cryptophagus (Coleoptera, Clavicornia, Cryptophagidae)

    PubMed Central

    Lyubarsky, G.Yu.; Perkovsky, E.E.

    2011-01-01

    Abstract Cryptophagus alexagrestis Lyubarsky & Perkovsky, sp. n. is described based on a fossil inclusion in Late Eocene Rovno amber (Ukraine). The new species is similar to the extant Cryptophagus skalitzkyi Reitter and Cryptophagus dilutus Reitter, differing from the latter by having a very transverse, short and dilated 10th antennal segment, and from the former by the very elongate segments of the flagellum. PMID:22259281

  1. Description and correlation of Eocene rocks in stratigraphic reference sections for the Green River and Washakie basins, southwest Wyoming

    SciTech Connect

    Roehler, H.W.

    1992-01-01

    Stratigraphic reference sections of the Wasatch, Green River, and Bridger (Washakie) Formations were measured on outcrops in the Green River and Washakie basins adjacent to the Rock Springs uplift in southwest Wyoming. The Washakie basin reference section is 7,939 feet thick and consists of 708 beds that were measured, described, and sampled to evaluate the origin, composition, and paleontology of the rocks. The reference section in the Green River basin is 6,587 feet thick and consists of 624 beds that were measured and described but were not sampled. Columnar sections that have been prepared combine information on the stratigraphic nomenclature, age, depositional environments, lithologies, and fossils of each bed in the reference sections. Eocene strata in the Green River and Washakie basins have been correlated biostratigraphically, chronostratigraphically, and lithostratigraphically. The time boundaries of the lower, middle, and upper Eocene rocks in the reference sections are located partly from biostratigraphic investigations and partly from chronostratigraphic investigations. The time boundaries agree with North American land mammal ages. Major stratigraphic units and key marker beds correlated between the reference sections appeared similar in thickness and lithology, which suggests that most depositional events were contemporaneous in both basins. Rocks sampled in the Washakie basin reference section were examined petrographically and were analyzed using heavy mineral separations, X-ray techniques, and assays. The mineralogy suggests that source rocks in the lower part of the Eocene were mostly of plutonic origin and that source rocks in the upper part of the Eocene were mostly of volcanic origin. Economically significant beds of oil shale and zeolite were identified by the analyses. 51 refs., 31 figs., 5 tabs.

  2. Harpactoxanthopsis quadrilobata (Desmarest, 1822) from the Eocene of Slovakia and Italy: the phenomenon of inverted images of fossil heterochelous crabs

    PubMed Central

    Hyžný, Matúš

    2015-01-01

    This short note provides details on a specimen of Harpactoxanthopsis quadrilobata (Desmarest, 1822) deposited in the Natural History Museum of Slovak National Museum in Bratislava which was figured in the monograph by Lőrenthey and Beurlen (1929). The phenomenon of inverted images of fossil heterochelous crabs in the literature published in the 19th century is documented on the example of H. quadrilobata from the Eocene of Italy. PMID:25983384

  3. The first fossil record of the Emesinae genus Emesopsis Uhler (Hemiptera: Heteroptera, Reduviidae) from Eocene Baltic amber.

    PubMed

    Popov, Yuri A; Chłond, Dominik

    2015-11-06

    Two new fossil representatives of the assassin bug family Reduviidae are described as new from Baltic amber (Upper Eocene), belonging to the genus Emesopsis of the tribe Ploiariolini (Emesinae): Emesopsis putshkovi sp. nov. and E. similis sp. nov. These representatives of the Emesinae are the oldest fossil bugs of the genus Emesopsis known so far, and reported for the first time. This genus is also briefly diagnosed.

  4. Late Cretaceous to Middle Eocene Geological Evolution of the Northwestern Caribbean - Constraints from Cuban Data

    NASA Astrophysics Data System (ADS)

    Cobiella, J.; Hueneke, H.; Meschede, M.; Sommer, M.

    2006-05-01

    Cuba acts as the northwestern boundary of the Caribbean Sea. However it is not part of the Caribbean plate, its geological development is deeply related to the plate history. In fact, its Cretaceous volcanic arc rocks tightly correlate with coeval sections in Hispaniola and Puerto Rico, and the same probably occurs with the ophiolites. The early Palaeogene events in Cuba were also involved in the Caribbean plate history. In general, two principal structural levels can be distinguished in the geological structure of Cuba. The rocks belonging to the upper level (Eocene to Quaternary) are little disturbed and can be referred to as the cover. Below it occurs the great complex of the Cuban orogenic belt, which consists mainly of rocks of Jurassic to Eocene age. In addition, small outcrops of Proterozoic metamorphic rocks also occur in north central Cuba. The Palaeocene-Eocene section contains volcanic arc sequences in SE Cuba and northward thrusted piggy back and foreland basins in central and western Cuba. The Mesozoic rocks lies unconformably below. The contacts between the major Mesozoic elements are always tectonic. With the exception of the rocks of the passive Mesozoic margin of North America in northern Cuba, the remaining units represent tectonostratigraphic terranes extending parallel to the axis of the present main island of Cuba. The northernmost unit is the Mesozoic passive continental margin of North America. It consists of a Jurassic- Cretaceous mainly marine sedimentary sequence now exposed as a thrust and fold belt along the northern edge of the Cuban mainland. The other units are, from north to south: the Northern Ophiolitic Belt, the Volcanic Arc Terrane and the Southern Metamorphic Terranes. The ophiolites and the Cretaceous volcanic arc terranes belong to the Proto-Caribbean plate and were accreted to the palaeomargin during Late Cretaceous and early Palaeogene episodes. Some constrains to Caribbean plate origin and evolution according to data from

  5. Hydrological cycle during the early Eocene: What can we learn from leaf waxes?

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Pagani, M.; Huber, M.

    2012-12-01

    Understanding how rapid warming modified global precipitation patterns during periods of global warming is essential to forecasting the impact of future climate change. The early Eocene (~55-52 Ma) represents a period of peak warmth for the past 65 million years with global temperatures ~10 degrees C warmer than present. This period is also known for at least three, greenhouse gas-induced episodes of rapid global warming (hyperthermals: PETM; ~55 Ma, ETM-2; ~53.7 Ma and ETM-3; 52.8 Ma), often considered extreme analogues to modern climate change. Hyperthermals are also characterized by negative carbon isotope excursions (CIE), which reflect the input of isotopically light carbon responsible for observed temperature increases. A novel proxy used for hydrological reconstructions uses the hydrogen isotopic composition of compound-specific biomarkers preserved in the sedimentary record. For terrestrial leaf-wax lipids (e.g., n-alkanes), the hydrogen isotopic composition primarily reflects the isotopic composition of meteoric waters, which is dependent on distance of vapor transport, number of rainout events, precipitation amount, and evapotranspiration. Isotopic compositions of PETM n-alkanes (δDalkanes) recovered from the Arctic Ocean show a substantial deuterium (D)-enrichment at the onset of the CIE which was argued to potentially reflect reduced rainout in the mid-latitudes, resulting in increased precipitation in the Arctic (Pagani et al., 2006). D-depleted values of n-alkanes during peak warmth of the PETM suggest either modification of local precipitation or a global change in the fraction of rainout. In this study, we evaluate the veracity of previous conclusions by compiling existing δDalkanes records (including from Mar-2X, Venezuela; Tawanui, New Zealand; Wilkes Land, Antarctica; and the Lomonsov Ridge, Arctic) with new records from the Pacific and Atlantic oceans and marginal marine sections (including Cicogna, Italy; Giraffe Core, Canadian High Arctic

  6. Effects of Extreme Monsoon Precipitation on River Systems Form And Function, an Early Eocene Perspective

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2013-12-01

    Here we document effects of extreme monsoon precipitation on river systems with mountainous drainage basin. We discuss the effects of individual extreme monsoon seasons, as well as long-term changes in Earth surface system's form and function. The dataset spans across 1000 m of stratigraphy across ca 200 km of Paleocene and Early Eocene river deposits. The excessive 3-dimensional outcrops, combined with our new Carbon isotope, ichnological and paleosols record allow reconstruction of long-term river system's evolution during the Paleocene-Eocene Thermal Maximum (PETM) ca 56 million years ago, the transient global warming events during Early Eocene Climate Optimum (EECO) ca 53 to 51.5 million years ago, as well as the effects of highly peaked precipitation events during single monsoon seasons. On the single season scale, the increase in precipitation peakedness causes high discharge flooding events that remove large quantities of sediment from the drainage basin, due to stream erosion and landslide initiation. The initiation of landslides is especially significant, as the drainage basin is of high gradient, the monsoon intensification is accompanied by significant vegetation decline, as the monsoon cycle changes to multi-year droughts interrupted by extreme monsoon precipitation. These large discharge floods laden with sediment cause rapid deposition from high-velocity currents that resemble megaflood deposits in that they are dominated by high-velocity and high deposition rate sedimentary structures and thick simple depositional packages (unit bars). Such high deposition rates cause locally rapid channel bed aggradation and thus increase frequency of channel avulsions and cause catastrophic high-discharge terrestrial flooding events across the river basin. On long time scales, fluvial megafan systems, similar to those, e.g. in the Himalayan foreland, developed across the ca 200 km wide river basin, causing significant sediment aggradation and a landscape with high

  7. "Kasserine Island" boundaries variations during the Upper Cretaceous-Eocene (central Tunisia)

    NASA Astrophysics Data System (ADS)

    Kadri, Ali; Essid, El Mabrouk; Merzeraud, Gilles

    2015-11-01

    The emergent domain known as "Kasserine Island" in central Tunisia, to the West of the North-South Axis, was emerging during the Turonian. This area has undergone several changes during the Cretaceous-Eocene period. In the present study, the compilation of surface and sub-surface data provided new information about the boundaries variations of the emerged domain. The analysis of paleogeographic maps allowed the identification of three distinct stages of evolution. The first stage extents from the Middle Turonian to the Lower Maastrichtian where the emergent domain covers the area extending from Jebels Selloum-Sidi Aich in the West to Jebel Bouhedma in the East. The boundaries of this area coincide with the E-W Kasserine fault to the North, the N-S Lessouda-Boudinar fault in the East and the N 120 el Mech-Souinia flexure at the South. This emersion contemporaneous with a high eustatic level is most likely related to tectonic activity. The extensional tectonic regime that is characterized by a NE-SW minimal horizontal stress, has reactivated border faults with a normal component. The interference of the tilting of these border faults was at the origin of the emergence of this domain. The ascent of the Triassic salt may also have contributed in this uplift. In the second stage, the emerged domain has reached its maximum expansion to the North, the West and the South during the Middle Maastrichtian-Paleocene period. Its northern limit is irregular, while the southern limit coincides with the N120 Gafsa fault and the E-W fault of Jebels Orbata-Bouhedma. The N-S Lessouda-Boudinar fault forms the eastern limit. This expansion is mostly related to the global eustatic fall that is well characterized during this period, and partly to the compressive tectonic activity. The Lower Eocene is characterized by a marine transgression that has interested the northern edge of the Island, where the Ypresian deposits are discordant on older series. This edge was irregular and marked by

  8. Clumped Isotopes, trace elements, and δ18O of stromatolites from the Laney Member of the Green River Formation (Eocene): Implications for paleoenvironments during the Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Miller, H. M.; Asangba, A. E.; Johannessen, K. C.; Wang, D. T.; Petryshyn, V. A.; Tripati, A.; Shapiro, R. S.

    2013-12-01

    The Green River Formation, a large lacustrine deposit located across parts of Utah, Colorado, and Wyoming, was deposited during the Eocene Climatic Optimum (~50 Ma), a period of sustained high temperatures and high atmospheric CO2 levels that may provide a geologic analog for future climate scenarios. Large variations in basin hydrology, water chemistry, and paleotemperatures occurring on time scales of tens of thousands of years or longer have been documented in the sedimentary record. Here, we use stromatolites to investigate much finer-scale resolution of paleoenvironmental changes in the Green River Formation and paleo-Lake Gosiute. We studied the lower LaClede Bed, the base of the Laney Member of the Green River Formation, comprised of cyclic layers of oil shale and carbonate. The lower LaClede Bed represents the filling of the lake following an extended period of closure during deposition of the underlying Wilkins Peak Member. To characterize fluctuations in water chemistry and lake level at greater temporal resolution, we conducted micro-stratigraphic and chemostratigraphic analyses on 24 distinct mm-scale laminae in a single 10 cm carbonate stromatolite bed, including δ13C, δ18O, and trace elemental analyses (Mg, Mn, Fe, Si, K, Na, Al, Sr). Sub-cm-scale correlations between petrographic analyses, elemental composition, and carbonate δ13C and δ18O suggest that this stromatolite records both hydrologically-closed and -open periods in the history of Lake Gosiute. During periods of apparent basin closure, we used two models to investigate lake volume change: 1) a Rayleigh distillation model of water evaporation to estimate lake depth variations and 2) a conservative ion model based on Na incorporation into the stromatolites. In both models, lake depth fluctuated by up to 8 m; this represents up to 40km of shoreline change in Lake Gosiute during the deposition of this stromatolite layer. Interestingly, the modern Great Salt Lake experienced similar

  9. Magnetostratigraphy and high precision U-Pb zircon geochronology of the Middle Eocene Bridger Formation, WY: Calibration of the Eocene GPTS

    NASA Astrophysics Data System (ADS)

    Tsukui, K.; Flynn, J. J.; Ramezani, J.; Machlus, M.; Nuñez, C.; Hemming, S. R.; Bowring, S. A.

    2011-12-01

    A new magnetostratigraphy of the Middle Eocene Bridger Formation from the Bridger Basin, WY allows correlation of the fossiliferous "Bridger B" through "Bridger D" intervals to the Geomagnetic Polarity Time Scale (GPTS). Paleomagnetic analyses were made on more than 200 samples from five overlapping stratigraphic sections spanning more than 250 meters using thermal and alternating field demagnetizing methods. The polarity sequence spans from the base of "Bridger B" (upper Blacks Fork Mbr.) to the top of the Upper White Layer ("Upper White Limestone") and correlates with the GPTS from Chrons C22n to C20r. Additionally, our magnetostratigraphy indicates that there is a short normal cryptochron within Chron C20r. A similar pattern was found in a magnetostratigraphic study of the Washakie Formation by Flynn (1986), raising a possibility that the minor but distinct magnetic anomaly captured by Cande and Kent (1992) within C20r in their South Atlantic Ocean magnetic profile may be a full reversal event. To further constrain the calibration of the GPTS, two distinctive volcanic ash beds that are correlated to the magnetostratigraphic section were dated using high-precision U-Pb zircon geochronology. The weighted mean 206Pb/238U zircon date of the Henrys Fork Tuff overlaps with previously published 40Ar/39Ar ages (normalized to FCs of 28.2 Ma, Smith et al., 2010) within fully propagated two-sigma uncertainties including tracer calibration and decay constant errors, whereas the Church Butte Tuff has a younger 206Pb/238U date than the corresponding 40Ar/39Ar dates. Both U-Pb and 40Ar/39Ar dates as well as the magnetostratigraphic placement of the Church Butte Tuff generally agree with the current calibration of the GPTS. However, the U/Pb and 40Ar/39Ar dates of the Henrys Fork Tuff are in disagreement with the current GPTS calibration for the correlated magnetochron, suggesting that the presently accepted age for Chron C20r may be too young and should be revised.

  10. Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy

    NASA Astrophysics Data System (ADS)

    Bassi, Davide; Nebelsick, James H.; Puga-Bernabéu, Ángel; Luciani, Valeria

    2013-11-01

    The Middle Eocene Calcari nummulitici formation from northeastern Italy, Venetian area, represents a shallow-marine carbonate ramp developed on the northern Tethyan margin. In the Monti Berici area, its main components are larger foraminifera and coralline red algal communities that constitute thick carbonate sedimentary successions. Middle ramp and proximal outer ramp environments are recognized using component relationships, biofacies and sedimentary features. The middle-ramp is characterized by larger flattened-lenticular Nummulites on palaeohighs between which rhodoliths formed. Larger Nummulites palaeohighs containing Nummulites millecaput, Nummulites crassus, Nummulites discorbinus and Nummulites cf. gizehensis developed more basin-wards. The following relatively quiet environments of basin-wards of the palaeohighs represent areas of maximum carbonate production. The transition between the distal middle- and the proximal outer-ramp settings is marked in the study area by a large erosional surface which is interpreted to have been formed as a result of an erosive channel body filled in by deposits re-sedimented from shallower depths. These off-shore re-sedimented channelized deposits, ascribed to the Shallow Benthic Zone SBZ 15, lying on hemipelagic marls (planktonic foraminiferal zone E9 (P11)) allow for a biostratigraphic correlation to the Late Lutetian. The studied deposits, represented by packstone to rudstones, were displaced whilst still unlithified. The Lutetian-Bartonian regression along with the local tectonic activity promoted the production of a high amount of biogenic shallow-water carbonates mainly produced in the Mossano middle-ramp settings. These prograded towards the basinal areas with high-sedimentation rate of carbonate deposits characterized by the larger Nummulites rudstones. Such high amounts of sediment led to sediment instability which potentially could be mobilized either by return currents due to occasional major storms or by

  11. Maastrichtian-Early Eocene litho-biostratigraphy and palægeography of the northern Gulf of Suez region, Egypt

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Marzouk, A. M.; Kuss, J.

    2001-02-01

    The Maastrichtian-Lower Eocene sediments on both sides of the northern Gulf of Suez can be subdivided into eight formal formations (including one group) and one informal formation that are described in detail. These lithostratigraphic units reflect three different environmental regimes of deposition or non-deposition. The first regime is characterised by uplift and erosion or non-deposition resulting mostly from the uplift of the Northern Galala/Wadi Araba structure, a branch of the Syrian Arc Foldbelt. The shallow water carbonate platform and slope deposits of the Late Campanian-Maastrichtian St Anthony Formation and the Paleocene-Lower Eocene Southern Galala and Garra Formations represent the second regime and are found north and south of the Northern Galala/Wadi Araba High. The third regime is represented by basinal chalks, marls and shales of the Maastrichtian Sudr Formation and of the Paleocene-Eocene Dakhla, Tarawan and Esna Formations, the Dakhla/Tarawan/Esna informal formation and the Thebes Group. The distribution and lateral interfingering of the above mentioned environmental regimes reflect different vertical movements, changing basin morphology, sea level changes and progradation of shallow water sediments and is illustrated on 11 palæogeographic maps.

  12. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Cramer, B. S.; Lanci, L.; Wang, D.; Wright, J. D.; Van der Voo, R.

    2003-06-01

    We hypothesize that the rapid onset of the carbon isotope excursion (CIE) at the Paleocene/Eocene boundary (˜55 Ma) may have resulted from the accretion of a significant amount of 12C-enriched carbon from the impact of a ˜10 km comet, an event that would also trigger greenhouse warming leading to the Paleocene/Eocene thermal maximum and, possibly, thermal dissociation of seafloor methane hydrate. Indirect evidence of an impact is the unusual abundance of magnetic nanoparticles in kaolinite-rich shelf sediments that closely coincide with the onset and nadir of the CIE at three drill sites on the Atlantic Coastal Plain. After considering various alternative mechanisms that could have produced the magnetic nanoparticle assemblage and by analogy with the reported detection of iron-rich nanophase material at the Cretaceous/Tertiary boundary, we suggest that the CIE occurrence was derived from an impact plume condensate. The sudden increase in kaolinite is thus thought to represent the redeposition on the marine shelf of a rapidly weathered impact ejecta dust blanket. Published reports of a small but significant iridium anomaly at or close to the Paleocene/Eocene boundary provide supportive evidence for an impact.

  13. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  14. Relationship of the trans-Challis fault system in central Idaho to Eocene and Basin and Range extensions

    NASA Astrophysics Data System (ADS)

    Bennett, Earl H.

    1986-06-01

    The trans-Challis fault system (TCFS) is a new structural province in central Idaho mapped during the Challis CUSMAP program conducted by the U.S. Geological Survey. The TCFS contains numerous northeast-trending faults, several eruptive centers for the Challis Volcanics, and many precious metal deposits. Major movement occurred in the fault system during Eocene extension that affected the area from the Snake River Plain north into British Columbia. The eastern Snake River Plain is the southern boundary of Eocene extension, and in Idaho the Lewis and Clark line is the northern boundary. The eastern Snake River Plain was “welded” together by passage of the plain over the Yellowstone hotspot. Younger Basin and Range faults were then able to extend across the plain and now terminate at the next major Eocene crustal break north of the plain, the TCFS. The TCFS is an extensional feature equal in importance to the Lewis and Clark zone and the eastern Snake River Plain and should be considered in Tertiary reconstructions for the Pacific Northwest.

  15. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin

    PubMed Central

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N.; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-01-01

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ18O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time. PMID:27272610

  16. Tropical/subtropical Upper Paleocene Lower Eocene fluvial deposits in eastern central Patagonia, Chile (46°45'S)

    NASA Astrophysics Data System (ADS)

    Suárez, M.; de la Cruz, R.; Troncoso, A.

    2000-11-01

    A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene-Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45'S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K-Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene-Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene-Lower Eocene contractional tectonism. Overlying Oligocene-Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.

  17. New Cricetid Rodents from Strata near the Eocene-Oligocene Boundary in Erden Obo Section (Nei Mongol, China)

    PubMed Central

    Li, Qian; Meng, Jin; Wang, Yuanqing

    2016-01-01

    New cricetids (Eucricetodon wangae sp. nov., Eucricetodon sp. and Pappocricetodon siziwangqiensis sp. nov.) are reported from the lower and middle parts of the “Upper Red” beds of the Erden Obo section in Nei Mongol, China. Eucricetodon wangae is more primitive than other known species of the genus from lower Oligocene of Asia and Europe in having a single anterocone on M1, a single connection between the protocone and the paracone, the anterior metalophule connection in M1-2 and weaker anteroconid and ectomesolophid in lower molars. Pappocricetodon siziwangqiensis is more advanced than other species of the genus in permanently missing P4 and having posterior protolophule connection. These fossils suggest that the age of the “Upper Red” of the Erden Obo section is younger than the age of the Upper Eocene Houldjin and Caijiachong formations, but older than those containing the Shandgolian faunas; the “Upper Red” is most closely correlative to the Ergilian beds in age, and probably close to the Eocene/Oligocene boundary. Given the age estimate, Eucricetodon wangae provides the new evidence to support that cricetid dispersal from Asia to Europe occurred prior to the Eocene-Oligocene boundary. PMID:27227833

  18. Paleocene-Eocene Paleoclimatic Event Records in the Chicxulub Crater (Yucatan, Gulf of Mexico)

    NASA Astrophysics Data System (ADS)

    Perez-Cruz, L. L.; Fucugauchi, J. U.

    2013-05-01

    Chicxulub crater was formed by an asteroid impact on the Yucatan carbonate platform about 65.5 Ma ago at the Cretaceous/Paleogene (K/Pg) boundary. After crater formation, carbonate deposition gradually covered the structure, preserving a largely undisturbed sedimentary record for the Paleogene. As part of the studies, drilling programs with continuous core recovery have been conducted over the past years. The cores preserve a record of post-impact processes, life recovery in target area, platform evolution and emergence, sea-level changes and the paleoceanographic and paleoclimatic conditions in the region. To contribute to the knowledge of the Paleocene-Eocene warming and changes in oceanic hydrography, we carried out x-ray fluorescence and stable oxygen and carbon isotope studies of the carbonate sections on top of the impact breccias sampled in the Santa Elena and Yaxcopoil-1 boreholes. The Santa Elena borehole is located 110 km radial distance from crater center, outside the crater rim. Yaxcopoil-1 borehole is located 62 km away from crater center in the terrace zone inside the crater rim. The Cenozoic sequence is about 332 m and 796 m thick in the Santa Elena and Yaxcopoil-1 boreholes. The stable isotope records are correlated to data on marine sediment cores from the ocean drilling projects for the Paleocene and Eocene, which permit inferences on the paleoceanographic and paleoclimatic reconstruction as well as additional stratigraphic constraints for the sections. The positive bulk carbon isotope (δ13C) values in the basal Paleocene sediments reflect a return or enhancement of ocean productivity following plankton extinctions following the K/Pg impact. The Paleocene represents a time of global warmth temperatures with low vertical and latitudinal gradients in the oceans, likely resulting from elevated CO2 levels. δ13C values in the Santa Elena borehole show increases between 3 and 4 % by the late Paleocene that decrease to levels prevailing before the K

  19. High resolution taxonomic study of the late Eocene (~34 Ma) Florissant palynoflora, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Bouchal, J. M.

    2012-04-01

    The Florissant Fossil Beds National Monument is located in Teller County in central Colorado, at approximate latitude 38°54'N and longitude 105°13'. The lithologies of the Florissant Formation consist of coarse-grained arkosic and volcanoclastic sandstones and conglomerates, finer shale, and tuffaceus mudstone and siltstone. It is divided into six units, mostly of lacustrine and fluvial origin with volcanic sediments interfingering and topping the strata. Volcanic units have been dated using the 40Ar/39Ar single-crystal method, giving an absolute age of ca. 34 Ma for the upper fossiliferous sedimentary unit. This pinpoints the formation of the Florissant sediments at the end of the Eocene, providing fruitful insight into the changing palaeoecosystem of the region at the dawn of the Oligocene. The formation is very well known for its rich fossil insect fauna and well preserved plant macrofossils found in the shale units, and the silicified tree stumps occurring in the lower mudstone unit. The sample used for this study originates from the upper shale unit, the fifth unit from the base of the formation. Previous studies on the plant macrofossils, mesofossils and the palynoflora have shown that during the late Eocene the surroundings of Florissant palaeo-lake were covered by diverse mixed broad-leaved evergreen/deciduous and needle-leafed forests. Until now pollen from the Florissant Formation has mostly been described according to conventional morphological nomenclature, using light microscopy (LM) only. In this study the same individual pollen grains are investigated using both LM and scanning electron microscopy (SEM), by means of single grain technique. This provides best exploitable results concerning a more detailed resolution regarding taxonomy and more accurate identifications. The main goal of this study is to compile a well resolved taxonomic species list based on the palynoflora, to clarify the generic and species diversity of selected families (e

  20. Discovery of coesite and shocked quartz associated with the upper Eocene cpx spherule layer

    NASA Technical Reports Server (NTRS)

    Liu, S.; Kyte, T.; Glass, B. P.

    2002-01-01

    At least two major impact ejecta layers have been discovered in upper Eocene strata. The upper layer is the North American microtektite layer. lt consists tektite fragments, microtektites, and shocked mineral grains (e.g., quartz and feldspar with multiple sets of PDFs, coesite and reidite (a high-pressure polymorph of zircon)). The slightly older layer contains clinopyroxene-bearing (cpx) spherules and microtektites associated with an Ir anomaly. The North American tektite layer may be derived from the Chesapeake Bay impact structure, and the cpx spherule layer may from the Popigai impact crater. A cpx spherule layer associated with a positive Ir anomaly was recently found at ODP Site 709, western Indian Ocean. A large sample (Hole 709C, core 31, section 4, 145-150 cm), originally used for a study of interstitial water by shipboard scientists, was acquired for the purpose of recovering a large number of spherules for various petrographic and geochemical studies. A split of the sample (50.35 g) was disaggregated and wet-sieved. More than 17,000 cpx spherules and several hundred microtektites (larger than 125 microns) were recovered from the sample. Rare white opaque grains were observed in the 125-250 micron size fraction after removal of the carbonate component using dilute HCI. Seven of the white opaque grains were X-rayed using a Gandolfi camera and six were found to be coesite (probably mixed with lechatelierite). Eighty translucent colorless grains from the 63-125 micron size fraction were studied with a petrographic microscope. Four of the grains exhibit one to two sets of planar deformation features (PDFs). The only other possible known occurrence of shocked minerals associated with the cpx spherule layer is at Massignano, Italy, where pancake-shaped clay spherules (thought to be diagenetically altered cpx spherules are associated with a positive Ir anomaly and Ni- rich spinel crystals. Shocked quartz grains with multiple sets of PDFs also occur at this site

  1. Orbitally-forced Azolla blooms and middle Eocene Arctic hydrology; clues from palynology

    NASA Astrophysics Data System (ADS)

    Barke, Judith; Abels, Hemmo A.; Sangiorgi, Francesca; Greenwood, David R.; Sweet, Arthur R.; Donders, Timme; Lotter, Andre F.; Reichart, Gert-Jan; Brinkhuis, Henk

    2010-05-01

    The presence of high abundances of the freshwater fern Azolla in the early Middle Eocene central Arctic Ocean sediments recovered from the Lomonosov Ridge during IODP Expedition 302, have been related to the presence of a substantial freshwater cap. Azolla massulae, belonging to the newly described Eocene species Azolla arctica Collinson et al., have been found over at least a ~4 m-thick interval. There are strong indications that Azolla has bloomed and reproduced in situ in the Arctic Ocean for several hundreds of thousands of years. Possible causes for the sudden demise of Azolla at ~48.1 Ma include salinity changes due to evolving oceanic connections or sea-level change. Distinct cyclic fluctuation in the Azolla massulae abundances have previously been related to orbitally forced climate changes. In this study, we evaluate the possible underlying forcing mechanisms for these freshwater cycles and for the eventual demise of Azolla in an integrated palynological and cyclostratigraphical approach. Our results show two clear periodicities of ~1.3 and ~0.7 m in all major aquatic and terrestrial palynomorph associations, which we can relate to obliquity (41 ka) and precession (~21 ka), respectively. Cycles in the abundances of Azolla, freshwater-tolerant dinoflagellate cysts, and swamp vegetation pollen show co-variability in the obliquity domain. Their strong correlation suggests periods of enhanced rainfall and runoff during Azolla blooms, possibly associated with increased summer season length and insolation during obliquity maxima. Cycles in the angiosperm pollen record are in anti-phase with the Azolla cycles. We interpret this pattern as edaphically drier conditions on land and reduced associated runoff during Azolla lows, possibly corresponding to obliquity minima. The precession signal is distinctly weaker than that for obliquity, and is mainly detectable in the cold-temperate Larix and bisaccate conifer pollen abundances, which is interpreted as a response to

  2. Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)

    NASA Astrophysics Data System (ADS)

    Dedert, M.; Stoll, H. M.; Kroon, D.; Shimizu, N.; Kanamaru, K.; Ziveri, P.

    2012-05-01

    The Early Eocene Thermal Maximum 2 (ETM2) at ~53.7 Ma is one of multiple hyperthermal events that followed the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma). The negative carbon excursion and deep ocean carbonate dissolution which occurred during the event imply that a substantial amount (103 Gt) of carbon (C) was added to the ocean-atmosphere system, consequently increasing atmospheric CO2(pCO2). This makes the event relevant to the current scenario of anthropogenic CO2 additions and global change. Resulting changes in ocean stratification and pH, as well as changes in exogenic cycles which supply nutrients to the ocean, may have affected the productivity of marine phytoplankton, especially calcifying phytoplankton. Changes in productivity, in turn, may affect the rate of sequestration of excess CO2 in the deep ocean and sediments. In order to reconstruct the productivity response by calcareous nannoplankton to ETM2 in the South Atlantic (Site 1265) and North Pacific (Site 1209), we employ the coccolith Sr/Ca productivity proxy with analysis of well-preserved picked monogeneric populations by ion probe supplemented by analysis of various size fractions of nannofossil sediments by ICP-AES. The former technique of measuring Sr/Ca in selected nannofossil populations using the ion probe circumvents possible contamination with secondary calcite. Avoiding such contamination is important for an accurate interpretation of the nannoplankton productivity record, since diagenetic processes can bias the productivity signal, as we demonstrate for Sr/Ca measurements in the fine (<20 μm) and other size fractions obtained from bulk sediments from Site 1265. At this site, the paleoproductivity signal as reconstructed from the Sr/Ca appears to be governed by cyclic changes, possibly orbital forcing, resulting in a 20-30% variability in Sr/Ca in dominant genera as obtained by ion probe. The ~13 to 21% increase in Sr/Ca above the cyclic background conditions as measured by ion

  3. Oxygen and Hydrogen Stable Isotope Composition of Eocene ( ~45 million year old) Fossil Tree Cellulose

    NASA Astrophysics Data System (ADS)

    Jahren, H.

    2001-05-01

    I report on \\delta18O and \\deltaD values gained from unusually old tree fossils, collected on Axel Heiberg Island of the Canadian High Arctic. A variety of workers have measured the δ ^{18}O value of cellulose and the δ D value of cellulose nitrate isolated from modern trees and compared it to various environmental parameters (esp. Epstein et al., 1977: 14 tree species sampled at 16 sites ranging from 18 \\deg to 62 \\deg North latitude; \\delta18O of cellulose ranged from +20 to +33 \\permil; \\deltaD of cellulose nitrate ranged from -181 to +18). To date the paleoenvironmental interpretations resulting from these studies have been restricted to application in recent and Quaternary earth history due to the lack of sufficiently preserved cellulose and tree ring structure in older tree fossils. An exception to this generalization are the middle Eocene (\\sim45 my old) fossil forests of Axel Heiberg Island, which contain abundant stumps, branches, twigs, cones and leaves of Metasequoia trees in exquisite preservational condition. These deciduous trees grew at a paleolatitude of 80 ° North, and endured prolonged periods of continuous daylight in the summer and continuous darkness in the winter, making the ecosystem completely unlike any forest community existing today. Fossil wood samples from the site have been slightly compressed, but otherwise exhibit minimal alteration: %C and % cellulose (by mass) are similar to modern Metasequoia wood. δ ^{18}O analyses on cellulose isolated from 14 fossil individuals has yielded the following results: range = +17 to +20 ‰ ; mean = +19 ‰ ; variability within an individual = 0.5 to 1.0 ‰ . In presentation, I will complement these results with δ D determinations on cellulose nitrate isolated from the same individuals, as well as from small plants presently growing in the arctic. I will also discuss the surprising result that Axel Heiberg fossil trees appear to have stable isotope composition as low or lower than trees

  4. Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Chao; Wu, Fu-Yuan; Ding, Lin; Liu, Xiao-Chi; Wang, Jian-Gang; Ji, Wei-Qiang

    2016-01-01

    The Xiaru dome is located in the middle section of the North Himalayan Gneiss Domes belt in southern Tibet. The leucogranite, which crops out in the core of the Xiaru dome, is a typical medium-grained garnet + tourmaline + muscovite leucogranite. U-(Th)-Pb dating of zircon and monazite from the leucogranite yielded ages of approximately 35 Ma. This finding supports a growing body of evidence indicating that an extensive magmatic event occurred during the late Eocene in the Himalayas. This leucogranite is strongly peraluminous with A/CNK values of 1.08-1.52 and characterized by evolved geochemical composition with high contents of SiO2 and alkali elements; low levels of CaO, MgO, TiO2, and FeOT; enriched large-ion lithophile elements (such as Rb); and depleted of high-field-strength elements (such as Nb, Zr, and Hf). The non-CHARAC (CHarge-And-Radius-Controlled) trace element behaviors, which are typical of a highly fractionated granite system, were recorded in the whole rock and the accessory minerals of the Xiaru leucogranite. Furthermore, the magmatic zircon overgrowths have extremely high content of Hf, consistent with those from the highly fractionated aqueous-like fluid system. In addition, whole-rock geochemical fractionation trends were observed, which can be explained by crystal fractionation of biotite, K-feldspar, zircon, xenotime, and monazite. These geochemical features indicate that the Xiaru leucogranite is a typical highly fractionated granite. The geochronological and geochemical features of the inherited zircons from the Xiaru leucogranite show a close affinity to those of the country rocks, suggesting a certain degree of assimilation from the country rocks during melt ascent and emplacement. Although a restricted range of εHf(t) values from - 12.8 to - 6.6 with Hf TDM2 model ages of 1.2-1.6 Ga was obtained from the late Eocene zircons, it is invalid to constrain the source of the parental magma due to the strong fractionation and assimilation

  5. Chicxulub Impact, Yucatan Carbonate Platform, Cretaceous-Paleogene Boundary and Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.

    2015-12-01

    Chicxulub formed 66 Ma ago by an asteroid impact on the Yucatan carbonate platform, southern Gulf of Mexico. Impact produced a 200 km diameter crater, platform fracturing, deformation and ejecta emplacement. Carbonate sedimentation restarted and crater was covered by up to 1 km of sediments. Drilling programs have sampled the Paleogene sediments, which record the changing sedimentation processes in the impact basin and platform. Here, results of a study of the Paleocene-Eocene sediments cored in the Santa Elena borehole are used to characterize the K/Pg and PETM. The borehole reached a depth of 504 m and was continuously cored, sampling the post-impact sediments and impact breccias, with contact at 332 m. For this study, we analyzed the section from ~230 to ~340 m, corresponding to the upper breccias and Paleocene-Eocene sediments. The lithological column, constructed from macroscopic and thin-section petrographic analyses, is composed of limestones and dolomitized limestones with several thin clay layers. Breccias are melt and basement clast rich, described as a suevitic unit. Section is further investigated using paleomagnetic, rock magnetic, X-ray fluorescence geochemical and stable isotope analyses. Magnetic polarities define a sequence of reverse to normal, which correlate to the geomagnetic polarity time scale from chrons 29r to 26r. The d13 C values in the first 20 m interval range from 1.2 to 3.5 %0 and d18 O values range from -1.4 to -4.8 %0. Isotope values show variation trends that correlate with the marine carbon and oxygen isotope patterns for the K-Pg boundary and early Paleocene. Positive carbon isotopes suggest relatively high productivity, with apparent recovery following the K-Pg extinction event. Geochemical data define characteristic trends, with Si decreasing gradually from high values in the suevites, low contents in Paleocene sediments with intervals of higher variability and then increased values likely marking the PETM. Variation trends are

  6. Complex caddisfly-dominated bioherms from the Eocene Green River Formation

    NASA Astrophysics Data System (ADS)

    Leggitt, V. Leroy; Cushman, Robert A.

    2001-12-01

    Complex, caddisfly-dominated (Insecta: Trichoptera) carbonate mounds up to 9 m tall and 40 m in diameter formed in the nearshore environment of Eocene Lake Gosiute. The mounds outcrop for 70 km in reef-like geometries along the northern margin of Lake Gosiute in Wyoming. The relationships among the caddisfly larvae, the benthic microbial mat and physicochemical nearshore processes of Eocene Lake Gosiute resulted in unique external and internal carbonate mound morphology. Externally, the large carbonate mounds are formed by the lateral and vertical coalescence of several layers of smaller columns. The smaller columns are generally 1-2 m tall and are 0.5-1 m in diameter. Each layer or generation of smaller columns tends to have a unique external morphology. This suggests that variable paleoenvironmental conditions produced subtle differences in tufa and stromatolite morphology. Internally, each of the smaller columns is composed of a core of caddisfly larval cases surrounded by layers of tufa and stromatolites. The smaller column cores are characterized by centimeter thick microbial-caddisfly couplets in which layers or packets of calcified caddisfly larval cases are covered by microbial mat-mediated, microlaminated carbonate. The microbial-caddisfly couplets suggest that both metazoans and microbes were responsible for column height and shape. In this paper, we propose a mechanism for the growth of these caddisfly-dominated mounds. The base of the Laney Member of the Green River Formation records a freshwater lacustrine transgression over the surrounding floodplains and mudflats of the Cathedral Bluffs Tongue of the Wasatch Formation. In nearshore areas of the lake's northern margin, carbonate hardgrounds developed in some areas of the softer, carbonate-rich, bottom muds. These hardgrounds provided nucleation sites for the carbonate mounds and columns by providing a stable substrate for the benthic microbial mat and for caddisfly larval case attachment during

  7. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  8. Sequence stratigraphic analysis of Eocene Rock Strata, Offshore Indus, southwest Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Natasha; Rehman, Khaista; Ahmad, Sajjad; Khokher, Jamil; Hajana, M. Iqbal; Hanif, M.

    2016-09-01

    In this study, seismic data from two wells (Pak G2-1 and Indus Marine-1C) and age diagnostic larger benthic foraminifera (LBF) within drill cuttings has been used for the first time to identify depositional sequences within the carbonates in the Offshore Indus Basin, Pakistan. The Offshore Indus is tectonically categorized as a passive continental margin where carbonates occur as shelf carbonates in the near offshore and on volcanic seamounts in deeper waters. Seismic data analysis has indicated the presence of minor faults and carbonate buildups above the igneous basement in the south. Patterns of the seismic reflections enabled definition of three seismic facies units identified as: Unit 1 basement, represented by chaotic, moderate amplitude reflection configuration; while parallel bedding and the drape of overlying strata is typical character of Unit 2, carbonate mound facies. The younger Miocene channels represent Unit 3. The diagnosis of Alveolina vredenburgi/cucumiformis biozone confirmed the Ilerdian (55-52 Ma) stage constituting a second order cycle of deposition for the Eocene carbonates (identified as Unit 2). The carbonate succession has been mainly attributed to an early highstand system tract (HST). The environmental conditions remained favorable leading to the development of keep-up carbonates similar to pinnacle buildups as a result of aggradation during late transgressive system tract and an early HST. The carbonate sequence in the south (Pak G2-1) is thicker and fossiliferous representing inner to middle shelf depths based on fauna compared to the Indus Marine-1C in the north, which is devoid of fossils. Three biozones (SBZ 5, SBZ 6 and SBZ 8) were identified based on the occurrence of LBF. The base of the SBZ 5 zone marks the larger foraminifera turnover and the Paleocene-Eocene (P-E) boundary. The LBF encountered in this study coincides with earlier findings for the P-E boundary. Our findings indicate that the entire Ilerdian stage ranges from 55

  9. Type Region of the Ione Formation (Eocene), Central California: Stratigraphy, Paleogeography, and Relation to Auriferous Gravels

    USGS Publications Warehouse

    Creely, Scott; Force, Eric R.

    2007-01-01

    The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high

  10. Rapid Oxic/Anoxic Changes in the Sediment-Water Interface During the Eocene- Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Nicholas, C. J.; O'Halloran, A.; Goodhue, R.

    2008-12-01

    The Eocene-Oligocene Transition (EOT) refers to a 500 kyr period of time, which includes the Eocene- Olicgocene Boundary, stretching from 33.5-34.0 Ma (Pearson et al. 2008). It includes all of the changes associated with the expansion of Antarctic glaciation and the concurrent changes in marine fauna and productivity, as well as any physical oceanographic changes that occurred. Shallow-level drilling recovered cores from southern Tanzania and Java, Indonesia. The cores sampled outer-shelf to slope, organic-rich marine clays which show excellent preservation of microfossils and a very low thermal maturity. As the drill sites are from either side of the Indian Ocean, at approximately 10° south of the equator, the comparison of results from these sites will allow insights into the global or regional nature of oceanic signals. Results from the Tanzanian cores have highlighted rapid oscillations in the oxic/anoxic nature of the sediment-water interface throughout the EOT. This is currently interpreted as a direct result of changes occurring in the ocean currents surrounding Antarctica. In the present, Sub-Antarctic Mode Waters (SAMW) deliver high-latitude climatic signals to the tropical Indian Ocean (Dunkley Jones et al., 2008). We suggest that during the EOT these Antarctic currents were in an infantile state, switching on and off during the transitional period, until cooling reached a stable state and the currents were able to fully establish. This could have caused the oxygenation state of the Indian Ocean bottom waters to oscillate during the EOT, only being oxygenated in a stable way after 33.5 Ma. However, the cores from Java will help us verify whether these signals are global or regional in nature. Recent studies have indicated that the heightened productivity of the time is more global than regional, and does not occur just in the high latitudes around Antarctica. Preliminary results from Indonesia indicate that the same increase in productivity was occurring

  11. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    NASA Astrophysics Data System (ADS)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  12. Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Pascher, K. M.; Hollis, C. J.; Bohaty, S. M.; Cortese, G.; McKay, R. M.

    2015-07-01

    The Eocene was characterised by "greenhouse" climate conditions that were gradually terminated by a long-term cooling trend through the middle and late Eocene. This long-term trend was determined by several large-scale climate perturbations that culminated in a shift to "ice-house" climates at the Eocene-Oligocene Transition. Geochemical and micropaleontological proxies suggest that tropical-to-subtropical sea-surface temperatures persisted into the late Eocene in the high-latitude Southwest Pacific Ocean. Here, we present radiolarian microfossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) Sites 277, 280, 281 and 283 from the middle Eocene to early Oligocene (~ 40-33 Ma) to identify oceanographic changes in the Southwest Pacific across this major transition in Earth's climate history. The Middle Eocene Climatic Optimum at ~ 40 Ma is characterised by a negative shift in foraminiferal oxygen isotope values and a radiolarian assemblage consisting of about 5 % of low latitude taxa Amphicraspedum prolixum group and Amphymenium murrayanum. In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift can be correlated to the Priabonian Oxygen Isotope Maximum (PrOM) event - a short-lived cooling event recognized throughout the Southern Ocean. Radiolarian abundance, diversity, and preservation increase during the middle of this event at Site 277 at the same time as diatoms. The PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. These high-latitude taxa also increase in abundance during the late Eocene and early Oligocene at DSDP Sites 280, 281 and 283 and are associated with very high diatom abundance. We therefore infer a~northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau towards the end of the late Eocene. In the early Oligocene (~ 33 Ma) there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms

  13. The Tectonic Event of the Cenozoic in the Tasman Area, Western Pacific, and Its Role in Eocene Global Change

    NASA Astrophysics Data System (ADS)

    Collot, J.; Sutherland, R.; Rouillard, P.; Patriat, M.; Roest, W. R.; Bache, F.

    2014-12-01

    The geometry and age progression of Emperor and Hawaii seamounts provide compelling evidence for a major change in Pacific plate motion over a short period of geological time at c. 50 Ma. This time approximately coincides with significant changes in plate boundary configuration and rate in the Indian Ocean, Antarctica, and with the onset of subduction zones in the western Pacific from Japan to New Zealand. This new subduction system that initiated during Eocene time can be divided into two sectors: The northern sector formed at the eastern boundary of the Philippine Sea plate and evolved into the Izu-Bonin-Mariana system. It has and is being extensively studied (2014 IODP expedition 351) to determine the magmatic products, but is limited in the record that is preserved because it is entirely intra-oceanic in character. The southern sector, the Tasman Area sector, borders continental fragments of Gondwana from Papua New Guinea, New Caledonia and New Zealand. This subduction zone evolved into the Tonga-Kemadec system. Because most of the southwest Pacific remained in marine conditions throughout Paleogene time and because rapid seawards roll-back of the subduction is inferred to have happened, it presents extensive well-preserved stratigraphic records to study the Eocene-Oligocene plate boundary evolution. The recent compilation of c. 100.000 km of 2D seismic data in the Tasman Frontier database has allowed us to describe, in the overriding plate of the proto subduction, stratigraphic evidence for large Cenozoic vertical movements (2-4 km) over a lateral extension of 2000 km (from New Caledonia to New Zealand), long-wavelength (~500 km) warping and large amounts of reverse faulting and folding near the proto-trench. These recent observations from the Lord Howe Rise, New Caledonia Trough and South Norfolk Ridge system reveal clear evidence for convergent deformation (uplift and erosion) and subsequent subsidence recorded in Eocene and Oligocene stratal relationships

  14. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  15. Decline of coral reefs during late Paleocene to early Eocene global warming

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Speijer, R. P.

    2007-10-01

    Since the 1980s the frequency of warming events has intensified and simultaneously widespread coral bleaching, and enhanced coral mortality have been observed. Yet, it remains unpredictable how tropical coral reef communities will react to prolonged adverse conditions. Possibly, coral reef systems are sufficiently robust to withstand continued environmental pressures. But if coral mortality increases, what will platform communities of the future look like? The co-evolution of early Paleogene carbonate platforms and palaeoclimate may provide insight. Here we document the impact of early Paleogene global warming on shallow-water carbonate platforms in the Tethys. Between 59 and 55 Ma, three discrete stages in platform development can be identified Tethys-wide: during the first stage carbonate platforms mainly consisted of coralgal reefs; during the second - transitional - stage coralgal reefs thrived only at middle latitudes and gave way to larger foraminifera as dominant carbonate producer in low latitudes; finally, during the third stage, newly developing larger foraminifera lineages completely took over the role as main carbonate-producing organisms in low to middle latitudes. We postulate that rising temperatures led to a stepwise demise of Paleocene coral reefs, giving way to an unprecedented expansion of larger foraminifera, dominating Tethyan platforms during the early Eocene.

  16. Paleocene-Eocene Thermal Maximum not a transient event for North Atlantic

    NASA Astrophysics Data System (ADS)

    Lyman, J.; Norris, R.

    2009-04-01

    Rapid global warming 55 million years ago at the Paleocene-Eocene Thermal Maximum (PETM) has long been seen as a transient event. This event is accompanied by a rapid drop in carbon isotopes in most cores (carbon isotope excursion - CIE), followed by a slower recovery, with the entire CIE typically lasting between 150 to 200kyrs. This event is not transient in all cores, however. In Deep Sea Drilling Program (DSDP) Site 401, this event causes long-lasting changes in the isotopic content of the surface and thermocline dwelling foraminifera, far after the benthic foraminifera have recovered isotopically. Benthic foraminifera do show a recovery, but have a smaller overall excursion than the surface dwelling forms. This is most likely due to an expulsion of photosymbionts from the foraminifera, resulting in a bleaching event not unlike those seen in corals today. Unlike Ocean Drilling Program (ODP) Site 690, the color of the core and the mineral content also show no recovery. The lack of recovery in surface dwelling foraminiferal isotopes, color change, and mineral content indicate the North Atlantic was affected by this event long after other areas of the globe.

  17. Decline of coral reefs during late Paleocene to early Eocene global warming

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Speijer, R. P.

    2008-07-01

    Since the 1980s the frequency of warming events has intensified and simultaneously widespread coral bleaching, and enhanced coral mortality have been observed. Yet, it remains unpredictable how tropical coral reef communities will react to prolonged adverse conditions. Possibly, coral reef systems are sufficiently robust to withstand continued environmental pressures. But if coral mortality increases, what will platform communities of the future look like? The co-evolution of early Paleogene carbonate platforms and palaeoclimate may provide insight. Here we document the impact of early Paleogene global warming on shallow-water carbonate platforms in the Tethys. Between 59 and 55 Ma, three discrete stages in platform development can be identified Tethys-wide: during the first stage carbonate platforms mainly consisted of coralgal reefs; during the second transitional stage coralgal reefs thrived only at middle latitudes and gave way to larger foraminifera as dominant carbonate producer in low latitudes; finally, during the third stage, newly developing larger foraminifera lineages completely took over the role as main carbonate-producing organisms in low to middle latitudes. We postulate that rising temperatures led to a stepwise demise of Paleocene coral reefs, giving way to an unprecedented expansion of larger foraminifera, dominating Tethyan platforms during the early Eocene.

  18. Fauna and paleoecological setting of the La Meseta Formation (Eocene), Antarctica

    SciTech Connect

    Feldmann, R.M.; Wiedman, L.A.; Zinsmeister, W.J.

    1985-01-01

    The La Meseta Formation, an Eocene sandstone from Seymour Island, Palmer Peninsula, Antarctica, has yielded a diverse fossil assemblage of body and trace fossils representative of a cool temperate, littoral to shallow sublittoral habitat. Over 61 taxa of macroinvertebrates, excluding gastropod body fossils, and more than 18 ichnogenera collected from the La Meseta represent the largest, most comprehensive and most diverse assemblage of Paleogene fossils from Antarctica. Included in the body fossil assemblage are species representative of at least 26 taxa of bivales, four taxa of echinoids, two of crinoids, two of ophiuroids, two of asteroids, one inarticulate and four articulate brachiopods, two barnacles, six decapod crustaceans, two cyclostome and two cheilostome bryozoans, a scaphopod and one coral. The traces include several burrow forms characteristic of the Skolithos ichnofacies of Seilacher (1967), several halo and rind burrows, gastropod predation borings, and abundant examples of teredid bivalve borings in lithified wood.Autecological analyses of the preserved organisms and environmental interpretations of the ichnogenera indicate a littoral to very shallow sublittoral environment of deposition, generally above wave base, for the la Meseta Sandstone. Modern congeneric descendants of the body fossils are known to inhabit both deep water and shallow water habitats. Of the 20 extant genera of bivalves reported from the La Meseta, 19 generally occur only in cool temperate habitats. Only one genus is known to occur south of 60/sup 0/. Most of the shallow water forms are known from cool temperate, austral regimes.

  19. Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Yang, Shiling; Zhang, Chunxia; Wang, Xu

    2016-06-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜55.5 million years ago (Ma) was associated with a massive release of carbon to the ocean-atmosphere system, as evidenced by a prominent negative carbon isotope excursion (CIE) and widespread dissolution of marine carbonates. The paleohydrologic response to the PETM warming has been studied worldwide; however, relevant records of environmental perturbation in Asia are lacking so far. Here we extend the record of this event in central China, a subtropical paleosetting, through geochemical and mineralogical analyses of lacustrine sediments. Geochemical indicators of authigenic carbonates—including molar Mg/Ca and Sr/Ca ratios—suggest an overall increased precipitation across the PETM, compatible with the disappearance of authigenic dolomite and the appearance of kaolinite in the strata. The relatively humid conditions persisted long after the carbon-cycle perturbation had stopped, implying that the transient hyper-greenhouse warming might have forced the regional climate system into a new climate state that was not easily reversed. Additionally, a gradual increase in chemical index of alteration (CIA) and the appearance of kaolinite are associated with the PETM, indicating an intensified silicate weathering and pedogenesis in the watershed in response to warmer and more humid climate. Our results corroborate the theory that an accelerated continental chemical weathering served as a negative feedback to sequester carbon and lower the atmospheric greenhouse-gas levels during the PETM.

  20. Fossil legumes from the Middle Eocene (46.0 Ma) Mahenge Flora of Singida, Tanzania.

    PubMed

    Herendeen, P S; Jacobs, B F

    2000-09-01

    Middle Eocene age caesalpinioid and mimosoid legume leaves are reported from the Mahenge site in north-central Tanzania. The Mahenge flora complements a sparse Paleogene tropical African fossil plant record, which until now consisted of a single macrobotanical assemblage, limited palynological studies in West Africa and Egypt, and fossil wood studies primarily from poorly dated deposits. Mahenge leaf macrofossils have the potential to add significantly to what is known of the evolutionary history of extant African plant groups and to expand our currently limited knowledge of African Paleogene environments. The site is associated with a kimberlite eruption and demonstrates the potential value of kimberlite-associated lake deposits as much-needed resources for African Paleogene floras. In this report we document a relatively diverse component of the flora consisting of the leaves of at least five species of Leguminosae. A new species of the extant genus Acacia (Mimosoideae), described herein, is represented by a bipinnate leaf. Another taxon is described as a new species of the extant genus Aphanocalyx (Caesalpinioideae), and a third leaf type may be related to the extant genus Cynometra (Caesalpinioideae). Two additional leaf types are less well understood: one appears to be referable to the Caesalpinioideae and subfamily affinities of the other taxon are unknown.

  1. What caused the long duration of the Paleocene-Eocene Thermal Maximum?

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.

    2013-09-01

    Paleorecords show that the Paleocene-Eocene Thermal Maximum (PETM, ˜56 Ma) was associated with a large carbon cycle anomaly and global warming >5 K, which persisted for at least 50 kyr. Conventional carbon cycle/climate models that include a single initial carbon input pulse over ˜10 kyr fail to reproduce the long duration of the PETM without invoking additional, slow carbon release over more than 50 kyr (hereafter referred to as bleeding). However, a potential carbon source for the bleeding, as well as its release mechanism, has hitherto remained elusive. Here I present first-principle calculations of heat transfer in marine sediments which demonstrate that a bottom water temperature anomaly as generated during the PETM takes tens of thousands of years to penetrate the top few hundred meters of deep-sea sediments. While the initial temperature rise has been suggested to cause dissociation of the majority of oceanic methane hydrate within ˜10 kyr, my calculations reveal a long tail of hydrate dissociation, causing smaller but continued carbon release substantially beyond 10 kyr. In addition, I suggest that temperature-enhanced metabolic processes in marine sediments and the absence of methane hydrate deposition during the PETM contributed to prolonged carbon input during the event. Enhanced fluxes of methane over this time scale would have sustained the carbon isotope excursion and amplified long-term greenhouse warming by elevating atmospheric concentrations of steady state CH4, or in oxidized form, CO2.

  2. Calcareous nannofossil assemblage changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting

    USGS Publications Warehouse

    Self-Trail, Jean M.; Powars, David S.; Watkins, David K.; Wandless, Gregory A.

    2012-01-01

    Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM.

  3. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1983-01-01

    The ichnofossil assemblage of the lower Eocene Willwood Formation consists of at least nine distinct endichnia that are preserved in full relief. Four forms (three ichnogenera and four ichnospecies) are new and represent fodinichnia and domichnia of oligochaete worms, an insect or spider, an unknown vertebrate (probably a mammal), and domichnia of an unidentified organism. Other potential trace makers of the ichnofauna include insects, mollusks, and decapods. In contrast to an Egyptian Oligocene fluvial ichnofauna produced largely by animals that burrowed in stream channel deposits, the Willwood assemblage is principally of flood-plain origin. Though the ichnofauna occurs in a variety of paleosol types, most of the fossils are restricted in distribution to specific sediment and soil types and, within paleosols, to specific identifiable horizons. This attribute will make them valuable indiced of paleoenvironment once they are better known in other ancient alluvial sequences. The environment suggested by the Willwood trace fossils (damp, but not wet soils with fluctuating water tables) is consistent with the warm temperate to subtropical (possibly monsoonal) conditions that are interpreted for the Willwood Formation by independent evidence of body fossils and paleopedology. ?? 1983.

  4. Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene.

    PubMed

    Zeebe, Richard E; Zachos, James C

    2013-10-28

    Over the next few centuries, with unabated emissions of anthropogenic carbon dioxide (CO2), a total of 5000 Pg C may enter the atmosphere, causing CO2 concentrations to rise to approximately 2000 ppmv, global temperature to warm by more than 8(°)C and surface ocean pH to decline by approximately 0.7 units. A carbon release of this magnitude is unprecedented during the past 56 million years-and the outcome accordingly difficult to predict. In this regard, the geological record may provide foresight to how the Earth system will respond in the future. Here, we discuss the long-term legacy of massive carbon release into the Earth's surface reservoirs, comparing the Anthropocene with a past analogue, the Palaeocene-Eocene Thermal Maximum (PETM, approx. 56 Ma). We examine the natural processes and time scales of CO2 neutralization that determine the atmospheric lifetime of CO2 in response to carbon release. We compare the duration of carbon release during the Anthropocene versus PETM and the ensuing effects on ocean acidification and marine calcifying organisms. We also discuss the conundrum that the observed duration of the PETM appears to be much longer than predicted by models that use first-order assumptions. Finally, we comment on past and future mass extinctions and recovery times of biotic diversity.

  5. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  6. Sea-level and salinity fluctuations during the Paleocene-Eocene thermal maximum in Arctic Spitsbergen

    NASA Astrophysics Data System (ADS)

    Harding, Ian C.; Charles, Adam J.; Marshall, John E. A.; Pälike, Heiko; Roberts, Andrew P.; Wilson, Paul A.; Jarvis, Edward; Thorne, Robert; Morris, Emily; Moremon, Rebecca; Pearce, Richard B.; Akbari, Shir

    2011-02-01

    Palaeoenvironmental manifestations of the Paleocene-Eocene thermal maximum (PETM; ~ 56 Ma) are relatively well documented in low- to mid-latitude settings and at high southern latitudes, but no documented high northern latitude sites record the entire hyperthermal event. We present high-resolution multi-proxy records from a PETM succession on Spitsbergen in the high Arctic (palaeolatitude ~ 75 °N). By comparing our results with those from Integrated Ocean Drilling Program Site 302-4A, we document regional palaeoenvironmental variations in the expression of the PETM, with evidence for major differences in basin-margin vegetation and water column oxygen depletion. Sedimentological, palynological and geochemical data demonstrate a pre-PETM sea level rise in Spitsbergen before the - 4‰ δ 13C TOC excursion, which culminated in maximum flooding during the peak of the event. The appearance of the dinoflagellate cyst Apectodinium before the onset of the carbon isotope excursion (CIE) corroborates that environmental change in the Arctic had begun prior to the CIE. Sedimentological and palynological evidence indicate that elevated terrestrial runoff resulted in water column stratification, providing further evidence for an intensification of the hydrological cycle during the PETM.

  7. The Paleocene-Eocene Thermal Maximum and the Global Carbon Cycle: Progress and Promise

    NASA Astrophysics Data System (ADS)

    Zachos, J. C.

    2005-12-01

    The initial documentation of a short-lived, but extreme global warming event (Paleocene-Eocene Thermal Maximum; PETM) and carbon isotope excursion (CIE) coincident with a major benthic foraminiferal extinction horizon at the end of the Paleocene (Kennett & Stott, 1991) represents one of the more exciting and important contributions to the field of Paleoceanography. In the time since this discovery, substantial progress has been made toward developing a comprehensive understanding of key aspects of this event including the character of the global carbon cycle perturbation, and impacts on climate, biogeochemical cycles, and marine and terrestrial ecosystems. In this presentation, I review the latest findings of investigations of pelagic and shallow marine sequences designed to provide new constraints on both the tempo and magnitude of the CIE and associated geochemical anomalies. In particular, I will focus on bulk and planktonic carbon isotope and proxy records of carbonate dissolution generated from analyses of Pacific and Atlantic deep sea cores, and discuss implications for changes in ocean carbon chemistry and the mass of carbon added to the ocean during this event. I will also explore several outstanding issues regarding the rate and magnitude of carbon fluxes during the PETM, and possible strategies to address these issues. Kennett, J. P., and L.D. Stott, Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225-229, 1991.

  8. The origin of Chubutolithes Ihering, ichnofossils from the Eocene and Oligocene of Chubut Province, Argentina.

    USGS Publications Warehouse

    Brown, T.M.; Ratcliffe, B.C.

    1988-01-01

    The distinctive trace fossil Chubutolithes gaimanensis n. ichnosp. occurs in Casamayoran (early Eocene) and Colhuehaupian (late Oligocene) alluvial rocks of the Sarmiento Formation in eastern Chubut Province, Argentina. Though known for nearly 70 years, its origin has remained obscure. Examination of new specimens and comparisons with modern analogs demonstrate that specimens of Chubutolithes represent the fossil nests of a mud-dauber (Hymenoptera: Sphecidae). Virtually identical nests are constructed today by mud-daubers in areas as disparate as southern Santa Cruz Province, Argentina, and Nebraska, confirming that quite similar trace fossils can be produced by several different taxa in a higher taxonomic clade. No satisfactory ethological term exists for trace fossils that, like Chubutolithes, were constructed by organisms above, rather than within, a substrate or medium. The new term aedificichnia is proposed. Chubutolithes occurs in alluvial paleosols and is associated with a large terrestrial ichnofauna. These trace fossils include the nests of scarab beetles, compound nests of social insects, and burrows of earthworms. -Authors

  9. Comparative studies of Eocene silicified peat and lignite: transition between peat and lignite

    SciTech Connect

    Ting, F.T.C.

    1985-01-01

    Silicified Eocene peats with excellent preserved cellular structures were found in lignite beds in western North Dakota and were comparatively studied. The well preserved plant tissues resemble that of modern Taxodium peat. The most striking difference between silicified peat and lignite is the disappearance of cell cavities when peat is transformed to lignite, a phenomenon caused primarily by compaction rather than cell wall swelling through humification or gelification. The differences between textinite and ulminite can be traced back to the differences between early wood and late wood of the secondary xylem. What appear to be cutinites in lignite are compressed cortex tissues of young plants. Silicified leaf and cortex tissues contain more visible fluorinite exhibiting brilliant fluorescence. Clustering phloem fibers or stone cells give rise to a material resembling resinite but are more akin to huminite A and/or suberinite. They converge to vitrinite when vitrinite reflectance exceeds 0.6%. Alternating banded phloem fibers and phloem parenchyma give rise to alternating layers of huminite A and huminite B. True micrinite does occur in lignite but in limited quantities.

  10. Impact damage to dinocysts from the Late Eocene Chesapeake Bay event

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.

    2003-01-01

    The Chesapeake Bay impact structure, formed by a comet or meteorite that struck the Virginia continental shelf about 35.5 million years ago, is the focus of an extensive coring project by the U.S. Geological Survey and its cooperators. Organic-walled dinocysts recovered from impact-generated deposits in a deep core inside the 85-90 km-wide crater include welded organic clumps and fused, partially melted and bubbled dinocysts unlike any previously observed. Other observed damage to dinocysts consists of breakage, pitting, and folding in various combinations. The entire marine Cretaceous, Paleocene, and Eocene section that was once present at the site has been excavated and redeposited under extreme conditions that include shock, heat, collapse, tsunamis, and airfall. The preserved dinocysts reflect these conditions and, as products of a known impact, may serve as guides for recognizing impact-related deposits elsewhere. Features that are not unique to impacts, such as breakage and folding, may offer new insights into crater-history studies in general, and to the history of the Chesapeake Bay impact structure in particular. Impact-damaged dinocysts also are found sporadically in post-impact deposits and add to the story of continuing erosion and faulting of crater material.

  11. Paleoceanography Of The Middle Eocene Arctic Ocean Based On Geochemical Measurements Of Biogenic Matter

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Takahashi, K.; Yamanaka, T.

    2007-12-01

    The IODP Expedition 302, Arctic Coring Expedition (ACEX), recovered 428 m long sediment cores on the Lomonosov Ridge in the central Arctic Ocean. Chemical analyses for biogenic opal, total organic carbon (TOC), total sulfur (TS), and stable sulfur isotopic composition were conducted on the middle Eocene section of the ACEX cores. The previous study for microfossil assemblages on this section indicated the presence of low- salinity water mass in the Arctic Ocean. However, % TS contents were high in all intervals, indicating that abundant sea water was present in the deep layer of the paleo Arctic Ocean in contrast with low salinity surface water. The light sulfur isotope composition indicates the microbial sulfate reduction in an open system. This supports the continuous supply of sea water from the outside of the Arctic Ocean. The euxinic condition of the bottom water is suggested by the TOC-TS diagram. The anoxic environment was brought about by salinity stratification like the modern Black Sea. The high values of the accumulation of biogenic opal and TOC indicate high productivity which continued for nine myr. The high productivity was related to the estuarine type circulation in the semi-closed Arctic Ocean.

  12. Large-scale phylogeny of chameleons suggests African origins and Eocene diversification.

    PubMed

    Tolley, Krystal A; Townsend, Ted M; Vences, Miguel

    2013-05-22

    Oceanic dispersal has emerged as an important factor contributing to biogeographic patterns in numerous taxa. Chameleons are a clear example of this, as they are primarily found in Africa and Madagascar, but the age of the family is post-Gondwanan break-up. A Malagasy origin for the family has been suggested, yet this hypothesis has not been tested using modern biogeographic methods with a dated phylogeny. To examine competing hypotheses of African and Malagasy origins, we generated a dated phylogeny using between six and 13 genetic markers, for up to 174 taxa representing greater than 90 per cent of all named species. Using three different ancestral-state reconstruction methods (Bayesian and likelihood approaches), we show that the family most probably originated in Africa, with two separate oceanic dispersals to Madagascar during the Palaeocene and the Oligocene, when prevailing oceanic currents would have favoured eastward dispersal. Diversification of genus-level clades took place in the Eocene, and species-level diversification occurred primarily in the Oligocene. Plio-Pleistocene speciation is rare, resulting in a phylogeny dominated by palaeo-endemic species. We suggest that contraction and fragmentation of the Pan-African forest coupled to an increase in open habitats (savannah, grassland, heathland), since the Oligocene played a key role in diversification of this group through vicariance.

  13. Paleocene-Eocene thermal maximum and the opening of the Northeast Atlantic.

    PubMed

    Storey, Michael; Duncan, Robert A; Swisher, Carl C

    2007-04-27

    The Paleocene-Eocene thermal maximum (PETM) has been attributed to a sudden release of carbon dioxide and/or methane. 40Ar/39Ar age determinations show that the Danish Ash-17 deposit, which overlies the PETM by about 450,000 years in the Atlantic, and the Skraenterne Formation Tuff, representing the end of 1 +/- 0.5 million years of massive volcanism in East Greenland, are coeval. The relative age of Danish Ash-17 thus places the PETM onset after the beginning of massive flood basalt volcanism at 56.1 +/- 0.4 million years ago but within error of the estimated continental breakup time of 55.5 +/- 0.3 million years ago, marked by the eruption of mid-ocean ridge basalt-like flows. These correlations support the view that the PETM was triggered by greenhouse gas release during magma interaction with basin-filling carbon-rich sedimentary rocks proximal to the embryonic plate boundary between Greenland and Europe.

  14. Changes in floral composition with depositional environment in Texas Eocene Manning Formation lignites

    SciTech Connect

    Gennett, J.A.; Raymond, A.L.

    1986-09-01

    The floral composition of palynomorph assemblages of Jacksonian Texas lignites is closely linked to depositional systems. Localities on the eastern Gulf coastal plain are included in the late Eocene Fayette delta system, and lignite formation is considered to have occurred in lower deltaic environments. Samples are commonly dominated by grains of Caprifoliipites/Salixpollenites, Momites, or Nyssa, indicating dicotyledonous tree-dominated swamps. Some samples contain abundant Cicatricosspories spores, suggesting marshy, fern-dominated areas. The San Miguel lignite deposit in McMullen County is located on the eastern margin of the south Texas strand-plain/barrier-bar system. Caprifoliipites/Salixpollenites pollen is rare in the San Miguel, and most of the levels are dominated by small tricolporates such as cupuliferoipollenites and Sapotaceae. Nyssa is locally important. The lignite is considered to have been deposited in a nondeltaic freshwater swamp behind a barrier island. The Miguel Alleman deposit, across the Mexican border in Tamaulipas, is thought to have developed in a lagoonal-estuarine environment. Dinoflagellates such as Wetzeliella are common at some levels, indicating marine conditions. As with San Miguel, small tricolporates and Momipites are common. These assemblages contrast with Sabinian floras. Wilcox Group east Texas lignites were formed in fluvial environments. Betulaceous pollen is common in these coals. Sabinian south Texas lignites formed in marine environments yield dinoflagellates and Chenopodium-type pollen. Chenopods are common in present-day Gulf Coast salt marshes but seem to have been absent from Jackson-age seacoasts.

  15. Origin of the glauconite from the Middle Eocene, Qarara Formation, Egypt

    NASA Astrophysics Data System (ADS)

    Hegab, Omar A.; Abd El-Wahed, Ahmed G.

    2016-11-01

    Although the Middle Eocene sediments at the Nile Valley, Egypt have been extensively studied, the origin of glauconites in these sediments is still questionable. In this paper, the glauconites that occur in the Qarara Formation were subjected to petrographical and mineralogical studies to assess their origin. Glauconite pellets or grains have been separated from the glauconitic sandy units of the studied three sections. They are present in different colors and different forms. X-ray diffraction analysis indicated that bulk samples are composed of mixed - layer clays (illite-montmorillonite), quartz, microcline, and albite. The separated glauconite grains are present in two shapes, the first is spherical and the second is elliptical, both are green in color with different grades. They are authigenic in origin as evidenced by high sorting, presence of deep or surficial fractures, and as supported to form by alteration of fecal pellets. They are also less mature as evidenced by their pale green color and by the higher expandable layer contents in their mixed-layer clay composition.

  16. Revised Eocene-Oligocene kinematics for the West Antarctic rift system

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Damaske, D.

    2013-01-01

    Abstract<p label="1">Past plate motion between East and West Antarctica along the West Antarctic rift system had important regional and global implications. Although extensively studied, the kinematics of the rift during <span class="hlt">Eocene</span>-Oligocene time still remains elusive. Based on a recent detailed aeromagnetic survey from the Adare and Northern Basins, located in the northwestern Ross Sea, we present the first well-constrained kinematic model with four rotations for Anomalies 12o, 13o, 16y, and 18o (26.5-40.13 Ma). These rotation poles form a cluster suggesting a stable sense of motion during that period of time. The poles are located close to the central part of the rift implying that the local motion varied from extension in the western Ross Sea sector (Adare Basin, Northern Basin, and Victoria Land Basin) to dextral transcurrent motion in the Ross Ice Shelf and to oblique convergence in the eastern end of the rift zone. The results confirm previous estimates of 95 km of extension in the Victoria Land Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/7201978','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/7201978"><span id="translatedtitle">Early <span class="hlt">Eocene</span> biotic and climatic change in interior western North America</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wing, S.L. ); Bown, T.M.; Obradovich, J.D. )</p> <p>1991-12-01</p> <p>Imprecise correlation of the marine and terrestrial fossil records has been a major obstacle to understanding migration and extinction of continental biotas and early Cenozoic climate change. New {sup 40}Ar/{sup 39}Ar data from the Willwood Formation in the Bighorn Basin of Wyoming establish an age of 52.8 {plus minus} 0.3 Ma for earliest Lostcabinian (late Wasatchian) faunas and coeval early <span class="hlt">Eocene</span> floras. Strata just beneath earliest Wasatchian faunas can be correlated with the NP9/NP10 boundary in marine sedimentary units, which has an interpolated age of {approximately}55.7 Ma. This new information allows the authors to estimate the durations of the Wasatchian ({approximately}5 m.y.) and the Lostcabinian ({approximately}2 m.y.) and shows that the continental biotas are coeval with the acme of Cenozoic warmth inferred from {delta}{sup 18}O measurements of foraminifera. From 58 to 50 Ma, paleoclimate in the continental interior at about 45{degree}N was warm and equable, but patterns of temperature change inferred from continental floras do not track precisely the marine {delta}{sup 18}O record.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JESS..122..289R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JESS..122..289R"><span id="translatedtitle">Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early <span class="hlt">Eocene</span>), Gujarat, western India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam</p> <p>2013-04-01</p> <p>Early <span class="hlt">Eocene</span> sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11586350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11586350"><span id="translatedtitle">Warm tropical sea surface temperatures in the Late Cretaceous and <span class="hlt">Eocene</span> epochs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pearson, P N; Ditchfield, P W; Singano, J; Harcourt-Brown, K G; Nicholas, C J; Olsson, R K; Shackleton, N J; Hall, M A</p> <p>2001-10-04</p> <p>Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and <span class="hlt">Eocene</span> epochs there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15-23 degrees C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28-32 degrees C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11001051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11001051"><span id="translatedtitle">Termination of global warmth at the Palaeocene/<span class="hlt">Eocene</span> boundary through productivity feedback.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bains, S; Norris, R D; Corfield, R M; Faul, K L</p> <p>2000-09-14</p> <p>The onset of the Palaeocene/<span class="hlt">Eocene</span> thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5-7 degrees C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing and the pulsed release of approximately 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium--indicative of export palaeoproductivity--at times of maximum global temperatures and peak excursion values of delta13C. The unusually rapid return of delta13C to values similar to those before the methane release and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18316721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18316721"><span id="translatedtitle">The oldest North American primate and mammalian biogeography during the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beard, K Christopher</p> <p>2008-03-11</p> <p>Undoubted primates first appear almost synchronously in the fossil records of Asia, Europe, and North America. This temporal pattern has complicated efforts to reconstruct the early dispersal history of primates in relation to global climate change and eustatic fluctuations in sea level. Here, I describe fossils from the Tuscahoma Formation on the Gulf Coastal Plain of Mississippi documenting an anatomically primitive species of Teilhardina that is older than other North American and European primates. Consistent with its antiquity, a phylogenetic analysis of dental characters recognizes Teilhardina magnoliana, sp. nov., as the most basal member of this genus currently known from either North America or Europe. Its stratigraphic provenance demonstrates that primates originally colonized North America near the base of the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum (PETM), but before an important fall in eustatic sea level. Correlation based on carbon isotope stratigraphy and sequence stratigraphy indicates that the earliest North American primates inhabited coastal regions of the continent for thousands of years before they were able to colonize the Rocky Mountain Interior. The transient provincialism displayed by early North American primates corresponds to similar biogeographic patterns noted among fossil plants. Decreased precipitation in the Rocky Mountain Interior during the early part of the PETM may have been an important factor in maintaining biotic provincialism within North America at this time. These results underscore the need to obtain multiple, geographically dispersed records bearing on significant macroevolutionary events such as the PETM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP31B2019S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP31B2019S"><span id="translatedtitle">Global nannoplankton dynamics across the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum: A statistical approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, L. J.; Bralower, T. J.; Patzkowsky, M.; Kump, L.</p> <p>2012-12-01</p> <p>Global warming during the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum (PETM; 55.8 Ma) had a profound effect on life on land and in the ocean. With global temperatures rising 5°C over ~20 kyr, the PETM is considered to be the most analogous interval to modern day climate change. Calcareous nannoplankton, a group of calcifying marine phytoplankton, have been extensively studied across this event. Results from these studies indicate nannoplankton assemblages responded to changing surface water temperatures and nutrient availability. Together, these records can provide a global picture of nannofossil assemblage dynamics during this critical interval. Issues such as the timing and nature of assemblage change on a global scale, the rate of assemblage change, and how assemblage shifts differ regionally can be further resolved. Here we use an ordination technique (detrended correspondence analysis; DCA), which condenses complex assemblage data and displays it in a simple, interpretable way. We applied the DCA to previously published nannofossil abundance data from 7 globally distributed sites and compared these results to published benthic and bulk δ13C records across the PETM. Our initial results show that changes in the nannofossil assemblage, as displayed through DCA 1, closely follow the trends of the δ13C curves at each site. This suggests that the organisms are closely linked to the carbon cycle in some way during this time period. From this study we will have a better understanding of how global nannoplankton populations responded to rapid climate change and when environmental alterations began to take place.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CliPa..10..759E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CliPa..10..759E"><span id="translatedtitle">A seasonality trigger for carbon injection at the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eldrett, J. S.; Greenwood, D. R.; Polling, M.; Brinkhuis, H.; Sluijs, A.</p> <p>2014-04-01</p> <p>The Paleocene-<span class="hlt">Eocene</span> Thermal Maximum (PETM) represents a ~170 kyr episode of anomalous global warmth ~56 Ma ago. The PETM is associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system reflected as a prominent negative carbon isotope excursion (CIE) in sedimentary components. Earth's surface and deep ocean waters warmed by ~5 °C, of which part may have occurred prior to the CIE. However, few records document continental climatic trends and changes in seasonality have not been documented. Here we present the first high-resolution vegetation and paleoclimate reconstructions for the PETM, based on nearest living relative analysis of terrestrially derived spore and pollen assemblages preserved in an expanded section from the central North Sea. Our data indicate reductions in boreal conifers and an increase in mesothermal to megathermal taxa, reflecting a shift towards wetter and warmer climate. We also record an increase in summer temperatures, greater in magnitude than the rise in mean annual temperature changes, and a shift to a summer-wet seasonality. Within the CIE, vegetation varies significantly with initial increases in epiphytic and climbing ferns, and development of extensive wetlands, followed by abundance of Carya spp. indicative of broadleaf forest colonization. Critically, the change in vegetation we report occurs prior to the CIE, and is concomitant with anomalous marine ecological change, as represented by the occurrence of Apectodinium augustum. This suggests that amplifications of seasonal extremes triggered carbon injection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPD...9.5837E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPD...9.5837E"><span id="translatedtitle">A seasonality trigger for carbon injection at the Paleocene-<span class="hlt">Eocene</span> thermal maximum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eldrett, J. S.; Greenwood, D. R.; Polling, M.; Brinkhuis, H.; Sluijs, A.</p> <p>2013-10-01</p> <p>The Paleocene-<span class="hlt">Eocene</span> thermal maximum (PETM) represents a ~170 kyr episode of anomalous global warmth ~56 Ma ago. The PETM is associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system reflected as a prominent negative carbon isotope excursion (CIE) in sedimentary components. Earth's surface and deep ocean waters warmed by ~5 °C, of which part may have occurred prior to the CIE. However, few records document continental climatic trends and changes in seasonality have not been documented. Here we present the first high-resolution vegetation reconstructions for the PETM, based on bioclimatic analysis of terrestrially-derived spore and pollen assemblages preserved in an expanded section from the Central North Sea. Our data indicate reductions in boreal conifers and an increase in mesothermal to megathermal taxa, reflecting a shift towards wetter and warmer climate. We also record an increase in summer temperatures, greater in magnitude than the rise in mean annual temperature changes. Within the CIE, vegetation varies significantly with initial increases in epiphytic and climbing ferns, and development of extensive wetlands, followed by abundance of Carya spp. indicative of broadleaf forest colonization. Critically, the change in vegetation we report occurs prior to the CIE, and is concomitant with anomalous marine ecological change, as represented by the occurrence of Apectodinium augustum. This suggests that amplifications of seasonal extremes triggered carbon injection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T53A1566M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T53A1566M"><span id="translatedtitle">North America - Caribbean plate motion as constrained by provenance of <span class="hlt">Eocene</span> beds in Central Guatemala</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martens, U.; Gutierrez, A.</p> <p>2009-12-01</p> <p>The continental Subinal Formation of Central Guatemala is composed of red conglomerates and sandstones that outcrop along the Motagua Valley. The geographic distribution of the Subinal basin is elongate and constrained by the faults of the Motagua system. This suggests the basin developed as a trans-extensional feature associated with strike-slip tectonics at the Caribbean-North American plate boundary. Stratigraphic position of the Subinal implies a post-Cretaceous depositional age, possibly <span class="hlt">Eocene</span>. This chronologic constraint is supported by detrital zircon geochronology by the LA-ICPMS U-Pb method. The presence of eclogite in conglomerate indicates that HP belts of the Guatemala Suture Complex were already exposed at that time. The study of pebbles in conglomerate indicates that the relative abundance of some clast groups correlates with the rock units exposed north, across the San Agustín fault. This implies provenance from the North American plate and minor motion along this fault. We hypothesize that the Subinal basin was formed as an onland response to the opening of the coveal Cayman Trough.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP11D..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP11D..06F"><span id="translatedtitle">The Paleocene - <span class="hlt">Eocene</span> Thermal Maximum: Temperature and Ecology in the Tropics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frieling, J.; Gebhardt, H.; Adekeye, O. A.; Akande, S. O.; Reichart, G. J.; Middelburg, J. J. B. M.; Schouten, S.; Huber, M.; Sluijs, A.</p> <p>2014-12-01</p> <p>Various records across the Paleocene - <span class="hlt">Eocene</span> Thermal Maximum (PETM) have established approximately 5 °C of additional surface and deep ocean warming, superimposed on the already warm latest Paleocene. The PETM is further characterized by a global negative stable carbon isotope excursion (CIE), poleward migration of thermophilic biota, ocean acidification, increased weathering, photic zone euxinia and intensified hydrological cycle. Reconstructed temperatures for the PETM in mid and high-latitudes regularly exceed modern open marine tropical temperatures. Constraints on absolute tropical temperatures are, however, limited. We studied the PETM in a sediment section from the Nigerian sector of the Dahomey Basin, deposited on the shelf near the equator. We estimate sea surface temperatures by paired analyses of TEX86, and Mg/Ca and δ18O of foraminifera from the Shagamu Quarry. These show Palaeocene temperatures of ~33 °C and SSTs rose by 4 °C during the PETM based on TEX86. During the PETM, intermittent photic zone euxinia developed based on the presence of the biomarker isorenieratane. Interestingly, during peak warmth, dinoflagellate cyst abundances and diversity are remarkably low. From our new data and evidence from modern dinoflagellate experiments, we conclude that thermal stress was the main driver for this observation. We derive that endothermal and most ectothermal nektonic and planktonic marine eukaryotic organisms could not have lived in the surface waters in this part of the tropics during the PETM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4820K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4820K"><span id="translatedtitle">Climatic impacts of an expanded Antarctic ice sheet at the <span class="hlt">Eocene</span>-Oligocene boundary.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, Alan; Lunt, Dan; Lear, Carrie; Farnsworth, Alex</p> <p>2015-04-01</p> <p>Multiple lines of evidence point to an expansion of the Antarctic ice sheet at the <span class="hlt">Eocene</span>-Oligocene boundary, ~34 million years ago. A decrease in atmospheric carbon dioxide is currently considered to be the most likely cause of this expansion; however, changes in palaeogeography and continental configuration may have played a role. Recently, two high-profile modelling studies have focussed on the oceanic and climatic effects of an increased Antarctic ice sheet (Knorr and Lohmann, Nature Geoscience, 2014; Goldner et al, Nature, 2014). These two studies were apparently inconsistent, in that they produced very different SST responses to an expanded ice sheet. These were, however, under different continental configurations and with different models, and so more detailed study is warranted. Here, we carry out a suite of model simulations with the UK Met Office model, HadCM3L, consisting of two different palaeogeographies (Chattian and Rupelian), both with and without an Antarctic ice sheet. The results show a very strong dependence on the underlying palaeogeography, with an SST response of opposite sign for the two palaeogeographies. We show the results and discuss the mechanisms behind the changes seen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/6083344','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/6083344"><span id="translatedtitle">Evolution of reef and atoll margin carbonates, upper <span class="hlt">Eocene</span> through lower Miocene, Enewetak, Marshall Islands</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Saller, A.H.; Schlanger, S.O.</p> <p>1988-01-01</p> <p>Two wells drilled along the margin of Enewetak Atoll penetrated approximately 1,000 m of upper <span class="hlt">eocene</span>, Oligocene, and lower Miocene carbonates. STrontium isotope stratigraphy indicates relatively continuous deposition of carbonate from 40 Ma to 20 Ma. Depositional environments show a gradual basinward progradation of facies with slope carbonates passing upward into fore-reef, reef, back-reef, and lagoonal carbonates. Slope strata contain wackestones and packstones with submarine-cemented lithoclasts, coral, coralline algae fragments, benthic rotaline forams, planktonic forams, and echinoderm fragments. Fore-reef strata are dominantly packstones and boundstones containing large pieces of coral, abundant benthic forams, coralline algae fragments, stromatoporoids(.), and minor planktonic forams. Reef and near-reef sediments include coralgal boundstones and grainstones with abundant benthic forams. Halimeda and miliolid forams are common in lagoonward parts of the back reef. Sponge borings, geopetal structures, and fractures are common in reef and fore-reef strata. Lagoonal strata are wackestones and packstones with common mollusks, coral, coralline algae, and benthic forams (rotaline and miliolid). Diagenesis has extensively altered strata near the atoll margin. Aragonite dissolution and calcite cements (radiaxial and cloudy prismatic are abundant in fore-reef, reef, and some back-reef strata). Petrographic and geochemical data indicate arogonite dissolution and calcite cementation in seawater at burial depths of 100 to 300 m. Dolomite occurs in slope and deeply buried reefal carbonates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SedG..191..227B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SedG..191..227B"><span id="translatedtitle">Sedimentology and paleoecology of an <span class="hlt">Eocene</span> Oligocene alluvial lacustrine arid system, Southern Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro</p> <p>2006-10-01</p> <p>A depositional model of the <span class="hlt">Eocene</span>-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP41A1104W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP41A1104W"><span id="translatedtitle">Evidence for isolated magnetic nanoparticles and subordinate magnetofossils at the Paleocene-<span class="hlt">Eocene</span> boundary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H.; Kent, D. V.; Jackson, M. J.</p> <p>2012-12-01</p> <p>New rock magnetic results (thermal fluctuation tomography, high resolution first-order reversal curves, low temperature magnetic property measurements and more) for samples from the Paleocene-<span class="hlt">Eocene</span> thermal maximum (PETM) and carbon isotope excursion (CIE) in cored clay sections from Ancora and Wilson Lake on the New Jersey Atlantic Coastal Plain indicate the presence of predominantly isolated, near-equidimensional single-domain (SD) maghemite particles rather than the magnetite magnetosome chains observed in a cultured magnetotactic bacteria (MTB) sample MV-1 or magnetofossils in extracts. The various current results can be reconciled with the recognition that chain magnetosomes are preferentially extracted in the magnetic separation process but represent only a small fraction (less than 10%) of the overall magnetic assemblage in the CIE clay. We conclude that while fossil magnetosomes may very well become more numerous during the CIE, it is the comparatively enormous singular abundance of distantly isolated near-equidimensional SD maghemite particles that is mainly responsible for the greatly enhanced SD magnetic properties of CIE bulk sediments. Although the present data do not allow us to exclude that the Ancora CIE clay happens to contain ad hoc mixtures of biogenic magnetic particles of many sizes, shapes, and arrangements to produce the observed magnetic signatures, the findings of the majority of the ferromagnetic particles to be SD maghemite during the CIE plausibly support an origin as comet impact plume condensates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PalOc..29..357P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PalOc..29..357P"><span id="translatedtitle">Rapid and sustained surface ocean acidification during the Paleocene-<span class="hlt">Eocene</span> Thermal Maximum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penman, Donald E.; Hönisch, Bärbel; Zeebe, Richard E.; Thomas, Ellen; Zachos, James C.</p> <p>2014-05-01</p> <p>The Paleocene-<span class="hlt">Eocene</span> Thermal Maximum (PETM) has been associated with the release of several thousands of petagrams of carbon (Pg C) as methane and/or carbon dioxide into the ocean-atmosphere system within ~10 kyr, on the basis of the co-occurrence of a carbon isotope excursion (CIE), widespread dissolution of deep sea carbonates, and global warming. In theory, this rapid carbon release should have severely acidified the surface ocean, though no geochemical evidence has yet been presented. Using boron-based proxies for surface ocean carbonate chemistry, we present the first observational evidence for a drop in the pH of surface and thermocline seawater during the PETM. Planktic foraminifers from a drill site in the North Pacific (Ocean Drilling Program Site 1209) show a ~0.8‰ decrease in boron isotopic composition (δ11B) at the onset of the event, along with a 30-40% reduction in shell B/Ca. Similar trends in δ11B are present in two lower-resolution records from the South Atlantic and Equatorial Pacific. These observations are consistent with significant, global acidification of the surface ocean lasting at least 70 kyr and requiring sustained carbon release. The anomalies in the B records are consistent with an initial surface pH drop of ~0.3 units, at the upper range of model-based estimates of acidification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3831950','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3831950"><span id="translatedtitle">Hemoglobin-derived porphyrins preserved in a Middle <span class="hlt">Eocene</span> blood-engorged mosquito</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Greenwalt, Dale E.; Goreva, Yulia S.; Siljeström, Sandra M.; Rose, Tim; Harbach, Ralph E.</p> <p>2013-01-01</p> <p>Although hematophagy is found in ∼14,000 species of extant insects, the fossil record of blood-feeding insects is extremely poor and largely confined to specimens identified as hematophagic based on their taxonomic affinities with extant hematophagic insects; direct evidence of hematophagy is limited to four insect fossils in which trypanosomes and the malarial protozoan Plasmodium have been found. Here, we describe a blood-engorged mosquito from the Middle <span class="hlt">Eocene</span> Kishenehn Formation in Montana. This unique specimen provided the opportunity to ask whether or not hemoglobin, or biomolecules derived from hemoglobin, were preserved in the fossilized blood meal. The abdomen of the fossil mosquito was shown to contain very high levels of iron, and mass spectrometry data provided a convincing identification of porphyrin molecules derived from the oxygen-carrying heme moiety of hemoglobin. These data confirm the existence of taphonomic conditions conducive to the preservation of biomolecules through deep time and support previous reports of the existence of heme-derived porphyrins in terrestrial fossils. PMID:24127577</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206341','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206341"><span id="translatedtitle">Halophilic Archaea Cultivated from Surface Sterilized Middle-Late <span class="hlt">Eocene</span> Rock Salt Are Polyploid</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jaakkola, Salla T.; Zerulla, Karolin; Guo, Qinggong; Liu, Ying; Ma, Hongling; Yang, Chunhe; Bamford, Dennis H.; Chen, Xiangdong; Soppa, Jörg; Oksanen, Hanna M.</p> <p>2014-01-01</p> <p>Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late <span class="hlt">Eocene</span> (38–41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11–14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6–8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment. PMID:25338080</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25662358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25662358"><span id="translatedtitle">Late <span class="hlt">Eocene</span> siliceous sponge fauna of southern Australia: reconstruction based on loose spicules record.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Łukowiak, Magdalena</p> <p>2015-02-09</p> <p>An abundant and diversified assemblage of siliceous loose sponge spicules has been identified in the Late <span class="hlt">Eocene</span> deposits cropping out along the southern coasts of Australia. Based on the comparison of the obtained spicules with those of living sponges, representatives of at least 43 species within 33 genera, 26 families, and 9 orders of "soft" Demospongiae and Homoscleromorpha have been identified in the assemblage. Within the studied sediments, the spicules representing demosponge orders Poecilosclerida, Hadromerida, and Astrophorida were the most diverse. The rest of the five demosponge orders (Halichondrida, Agelasida, Haplosclerida, Spirophorida, and Chondrosida) are represented by single families. Also, a single family Plakinidae within the class Homoscleromorpha that includes two genera was present. The diversity of spicules is similar in all studied samples and areas, even distant geographically, and there are only minor differences between the sections. That indicates a homogenous character of this rich siliceous sponge assemblage. Most of the studied sponge spicules have Recent equivalents among present-day siliceous spicules. However, the fossil ones are bigger which is most likely due to different environmental conditions. Among the recognized sponge species, at least eleven (Agelas cf. axifera, Agelas cf. wiedenmayeri, Penares sclerobesa, Histodermella australis, Trikentrion flabelliforme, Cliona cf. mucronata, Tethya cf. omanensis, Terpios sp., Placinolopha cf. sarai, Dotona pulchella, and Sigmosceptrella quadrilobata) are noted for the first time in the fossil record.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/5698947','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/5698947"><span id="translatedtitle">Stratigraphy, sedimentology and paleontology of lower <span class="hlt">Eocene</span> San Jose formation, central San Juan basin, New Mexico</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Lucas, S.G.; Smith, L.N. )</p> <p>1989-09-01</p> <p>The lower <span class="hlt">Eocene</span> San Jose Formation in the central portion of the San Juan basin (Gobernador-Vigas Canyon area) consists of the Cuba Mesa, Regina, Llaves, and Tapicitos Members. Well log data indicate that, from its 100-m thickness, the Cuba Mesa Member thins toward the basin center and pinches out to the northeast by lat. 36{degree}40'N, long. 107{degree}19'W. The Regina Member has the most extensive outcrops in the central basin, and it decreases in sandstone/mud rock ratio to the north. The Llaves and Tapicitos Members occur only at the highest elevations, are thin due to erosion, and are not mappable as separate units. Well log data and 1,275 m of measured stratigraphic section in the Regina, Llaves, and Tapicitos Members indicate these strata are composed of approximately 35% medium to coarse-grained sandstone and 65% fine-grained sandstone and mud rock. Sedimentology and sediment-dispersal patterns indicate deposition by generally south-flowing streams that had sources to the northwest, northeast, and east. Low-sinuosity, sand-bedded, braided( ) streams shifted laterally across about 1 km-wide channel belts to produce sheet sandstones that are prominent throughout the San Jose Formation. Subtle levees separated channel environments from floodplain and local lacustrine areas. Avulsion relocated channels periodically to areas on the floodplain, resulting in the typically disconnected sheet sandstones within muddy overbank deposits of the Regina Member.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H21L..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H21L..04K"><span id="translatedtitle">Value of information analysis for groundwater quality monitoring network design Case study: <span class="hlt">Eocene</span> Aquifer, Palestine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khader, A.; McKee, M.</p> <p>2010-12-01</p> <p>Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the <span class="hlt">Eocene</span> Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/7158935','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/7158935"><span id="translatedtitle">Variation in sedimentology and architecture of <span class="hlt">Eocene</span> alluvial strata, Wind River and Washakie basins, Wyoming</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Patterson, P.E.; Larson, E.E. )</p> <p>1991-03-01</p> <p><span class="hlt">Eocene</span> continental, alluvial strata of the Wind River Formation (Wind River Basin) and the Cathedral Bluffs Member of the Wasatch Formation (Washakie basin) provide two examples of Laramide intermontane basin aggradation. These alluvial sediments primarily represent overbank flood deposits marginal to channel complexes. Their sedimentology and architecture, although grossly similar, appear to vary somewhat with proximity to Laramide uplifts. In both cases, repetitive sedimentation on the floodplain produced a succession of depositional couplets, each composed of a light-gray sand overlain by a red clay-rich silt or sand. The lower sands are tabular bodies that, near their distal margins, taper discernibly. They commonly display planar and ripple-drift laminations. Upper clay-rich layers, which are laminated, are also generally tabular. Those floodplain strata depositional proximal to Laramide uplifts show little evidence of scouring prior to deposition of the next, overlying couplet. Most of these sedimentary layers, therefore, are laterally continuous (up to 2 km). This alluvial architecture results in relatively uniform porosity laterally within depositional units but variable porosity stratigraphically through the sequence. In contrast, alluvial sediments deposited farther from the Laramide uplifts have undergone sporadic incision (either during rising flood stage or subsequently) followed by aggradation. As a result, many of these floodplain couplets are discontinuous laterally and, hence, exhibit large-scale lateral variability in porosity. Both alluvial sequences have undergone similar types and extents of burial diagenesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5016D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5016D"><span id="translatedtitle">Palaeocommunities, diversity and sea-level change from middle <span class="hlt">Eocene</span> shell beds of the Paris Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dominici, Stefano; Zuschin, Martin</p> <p>2016-04-01</p> <p>The middle <span class="hlt">Eocene</span>, a time of global transition from greenhouse to icehouse climate, was approached through high-resolution stratigraphy at a few classic localities of the Paris Basin. Quantitative data on the distribution of molluscan species abundance, collected at 12 different shell beds representative of the middle Lutetian and the lower Bartonian, formed the basis for a palaeoecological study. The succession can be subdivided into a hierarchy of depositional sequences, interpreted as the product of relative sea-level change. Abundance distributions are better correlated with 5th-order depositional sequences than geographic locality, suggesting that sea-level played an important role in the distribution of palaeocommunities. Rarefied diversities were measured and compared with analogous data from modern tropical and warm-temperate intertidal and subtidal communities. The palaeoecological analysis shows that sea-level variation is responsible for a major change in the upper part of the middle Lutetian, leading from high-diversity subtidal to low-diversity intertidal and shallow subtidal palaeocommunities. The study did not confirm that the stage-level drop in species richness documented in this basin is related to the global climatic deterioration. Instead, the global climatic signal might be obscured in the Paris Basin by facies control.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.439...29S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.439...29S"><span id="translatedtitle"><span class="hlt">Eocene</span> activity on the Western Sierra Fault System and its role incising Kings Canyon, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa, Francis J.; Farley, Kenneth A.; Saleeby, Jason; Clark, Marin</p> <p>2016-04-01</p> <p>Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the Kings River canyon, California we rediscover a west-down normal fault on the western slope of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) which we call the Western Sierra Fault System. Integrating field observations with apatite (U-Th)/He data, we infer a single fault trace 30 km long, and constrain the vertical offset across this fault to be roughly a kilometer. Thermal modeling of apatite 4He/3He data documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the fault activity. In the context of published data from the subsurface of the Sacramento and San Joaquin Valleys, our data from the Western Sierra Fault System suggests an <span class="hlt">Eocene</span> tectonic regime dominated by low-to-moderate magnitude extension, surface uplift, and internal structural deformation of the southern Sierra Nevada and proximal Great Valley forearc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T11B0383H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T11B0383H"><span id="translatedtitle">Transfer of the North-Western Caribbean Plate to the North American Continental Margin: Cuba from the Late Cretaceous to Late <span class="hlt">Eocene</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hueneke, H.; Sommer, M.; Cobiella-Reguera, J.; Meschede, M.</p> <p>2005-12-01</p> <p>The Cuban orogenic belt records subduction, volcanic arc formation and accretion along the pre-<span class="hlt">Eocene</span> north-western leading edge of the Caribbean plate. We review geologic evidence for a two-stage development with a change in subduction polarity from a south to south-west-dipping Cretaceous to a north-dipping Paleocene to Early <span class="hlt">Eocene</span> volcanic arc. During the Late Campanian, the Cretaceous arc collided with the North American continental margin. Ophiolites and thrust sheets of the Cretaceous arc advanced onto the North American continental margin until the Late <span class="hlt">Eocene</span>. Strike-slip faults bound domains that display an eastward younging trend in the termination of the thrusting process. After the initial Campanian collision, the Caribbean plate continued its relative northward movement. During the Maastrichtian, this resulted in the emplacement of oceanic lithosphere from the back arc on top of the southern extension of the inactive Cretaceous arc. During the Danian, a new north-dipping subduction zone was established that consumed oceanic lithosphere of the Caribbean plate until the Middle <span class="hlt">Eocene</span>. The arrival of the Caribbean Large Igneous Province stopped the subduction and the relative northward movement of the Caribbean plate. From the Middle <span class="hlt">Eocene</span> onward, the east-west trending Oriente transform fault system was established as the northern boundary of the Caribbean plate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAfES.100..614A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAfES.100..614A"><span id="translatedtitle">Provenance and sequence architecture of the Middle-Late <span class="hlt">Eocene</span> Gehannam and Birket Qarun formations at Wadi Al Hitan, Fayum Province, Egypt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anan, Tarek; El Shahat, Adam</p> <p>2014-12-01</p> <p>The Middle-Upper <span class="hlt">Eocene</span> Gehannam and Birket Qarun formations at Wadi Al Hitan (Valley of Whales) in Fayum Province of Egypt are dominated by marine siliciclastic sediments. Sedimentation took place in synclinal basins that were inherited from the Late Cretaceous tectonism. The siliciclastic sediments accumulated in low energy open shallow marine shelf. Most of the siliciclastics are heavily bioturbated by Thalassinoides. The abundance of unstable and moderately stable heavy minerals suggests that the Middle-Upper <span class="hlt">Eocene</span> clastics were largely derived from the weathered regolith of the exhumed basement rocks of the Red Sea mountains. The ultrastable heavies were mainly recycled from positive landmass that bound the <span class="hlt">Eocene</span> basins. Two sequence boundaries were observed in the studied succession. The first boundary lies within a rhizolith bearing-sandstone unit that occurs at the boundary between the Gehannam and Birket Qarun formations. The second sequence boundary occurs within the upper part of the Birket Qarun Formation, in a shale horizon bioturbated by Thalassinoides. Three 3rd order depositional sequences were recognized. These sequences may be formed due to tectonic activity that started in the Late Cretaceous and may be rejuvenated again during the <span class="hlt">Eocene</span> time. Also emergence activities that were active during the <span class="hlt">Eocene</span> led to the formation of the picked sequences by changing relative sea level. The recorded systems tracts are transgressive systems tract (TST), highstand systems tract (HST), and falling-stage systems tract (FSST).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CliPD..11.2615L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CliPD..11.2615L"><span id="translatedtitle">The pCO2 estimates of the late <span class="hlt">Eocene</span> in South China based on stomatal density of Nageia Gaertner leaves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, X.-Y.; Gao, Q.; Han, M.; Jin, J.-H.</p> <p>2015-07-01</p> <p>late <span class="hlt">Eocene</span> pCO2 concentration is estimated based on the species of Nageia maomingensis Jin et Liu from the late <span class="hlt">Eocene</span> of Maoming Basin, Guangdong Province. This is the first paleoatmospheric estimates for the late <span class="hlt">Eocene</span> of South China using stomatal data. Studies of stomatal density (SD) and stomatal index (SI) with N. motleyi (Parl.) De Laub., the nearest living equivalent species of the fossil, indicate that the SD inversely responds to atmospheric CO2 concentration, while SI has almost no relationships with atmospheric CO2 concentration. Therefore, the pCO2 concentration is reconstructed based on the SD of the fossil leaves in comparison with N. motleyi. Results suggest that the mean CO2 concentration was 391.0 ± 41.1 ppmv or 386.5 ± 27.8 ppmv during the late <span class="hlt">Eocene</span>, which is significantly higher than the CO2 concentrations documented from 1968 to 1955 but similar to the values for current atmosphere indicating that the Carbon Dioxide levels during that the late <span class="hlt">Eocene</span> at that time may have been similar to today.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SedG..165...53S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SedG..165...53S"><span id="translatedtitle">Diagenesis of the lower <span class="hlt">Eocene</span> Thebes Formation, Gebel Rewagen area, Eastern Desert, Egypt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaaban, Mohamad N.</p> <p>2004-03-01</p> <p>The diagenesis of lower <span class="hlt">Eocene</span> shallow water carbonates with flint was studied in the Gebel Rewagen area, Eastern Desert, Egypt. The carbonates are mainly wackestones to packstones with benthic bioclasts embedded in a dark red luminescent micrite matrix. The studied succession displays a complex diagenetic history that involves syngenetic and late diagenetic processes. Silica, which exists either as persistent bands, nodules and/or silicified benthic bioclasts shows a distinctive pattern regarding its distribution, source, depositional environments and timing. Three lines of evidence support a syngenetic origin of the chert bands: (1) they alternate in a cyclic manner within the host carbonates and (2) they exhibit noticeable lateral persistence throughout the investigated area following the strata boundaries and (3) there is a lack of any carbonate dissolution in limestone adjacent to chert bands. The deposition of silica bands in association with shallow water carbonates is possibly related to eustatic sea-level changes, which were accompanied by episodic variations in silica and carbonate productivities. With a relative sea-level fall and the establishment of a lowstand period at the end of the early <span class="hlt">Eocene</span>, a basinward shift of the groundwater zones is expected within the carbonate platform. During this period some late diagenetic processes took place, which involve: (1) the formation of siliceous and carbonate concretionary growths, (2) partial silicification of bioclasts, (3) neomorphic stabilization of the CaCO 3 bioclasts and (4) the formation of equant calcite cement. Siliceous and carbonate concretions are believed to have taken place within microenvironments created and controlled by sulphate-reducing bacteria and physico-chemical and kinetic factors near a marine-meteoric water mixing zone. This is inferred from the distribution of iron sulphides, the non-ferroan nature of all concretions and the depleted δ13C (-5.4‰ to -6.0‰ PDB) and δ18O (-5.8</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1084/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1084/report.pdf"><span id="translatedtitle">Sporomorphs from the Jackson Group (upper <span class="hlt">Eocene</span>) and adjacent strata of Mississippi and western Alabama</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frederiksen, Norman O.</p> <p>1980-01-01</p> <p> little within the interval from the upper part of the Claiborne to near the top of the Jackson. Near the top of the Jackson Group, there is a rapid rise to dominance or near dominance of the sporomorph assemblages by Quercoidites inamoenus (Takahashi) n. comb. (Fagaceae, Dryophyllum or Quercus). This remains the dominant sporomorph species through the lower part of the Vicksburg Group. On the basis of these range and relative-frequency data for spores and pollen grains, the Jackson Group is divided into two zones. Zone I includes the upper part of the Claiborne Group and all but the uppermost part of the Jackson Group; zone II includes the uppermost part of the Yazoo Clay and extends into the overlying Vicksburg Group. The two zones and the boundary between them can be traced from western Mississippi to western Alabama. Sporomorph data support evidence from physical stratigraphy and from other fossils that only a minor disconformity is present between the Claiborne and Jackson Groups in this region. In western Mississippi, the zone I-zone II boundary is below the minor disconformity separating the open marine Yazoo Clay from the uppermost lagoonal part of that formation. Sporomorph data agree with faunal evidence that no unconformity is between the Jack son and Vicksburg Groups in eastern Mississippi. No sporomorph-bearing samples were available from the uppermost part of the Yazoo Clay at Little Stave Creek in western Alabama; however, samples from above and below the uppermost part of the Yazoo show that the zone I-zone II boundary either coincides with, or is slightly below, the unconformity separating the Jackson and Vicksburg Groups there. The information on sporomorph ranges and relative frequencies suggests that the flora and the vegetation of southeastern North America changed little from late middle <span class="hlt">Eocene</span> time until almost the end of the late <span class="hlt">Eocene</span>. Then, perhaps because of a change in climate, some species disappeared from the regional f</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B51F0418S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B51F0418S"><span id="translatedtitle">Multi-proxy records of <span class="hlt">Eocene</span> vegetation and climatic dynamics from North America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheldon, N. D.; Smith, S. Y.; Stromberg, C. A.; Hyland, E.; Miller, L. A.</p> <p>2010-12-01</p> <p>The <span class="hlt">Eocene</span> is characterized by a “thermal maximum” in the early part, and a shift to “icehouse” conditions by the end of the epoch. Consequently, this is an interesting time to look at vegetation dynamics and understanding plant responses to environmental change, especially as refinement of global climate models is needed if we are to understand future climate change impacts. Paleobotanical evidence, such as phytoliths (plant silica bodies), and paleoenvironmental indicators, such as paleosols, offer an opportunity to study vegetation composition and dynamics in the absence of macrofossils on a variety of spatial and temporal scales. To examine the interaction between paleoclimatic/paleoenvironmental changes and paleovegetation changes, we will compare and contrast two well-dated, high-resolution, multi-proxy records from North America. The margins of the Green River Basin system during the Early <span class="hlt">Eocene</span> Climatic Optimum (53-50 Ma) are an extremely important location for understanding ecological composition and potential climatic drivers of North American floral diversification, because this area is widely considered the point of origin for many modern grass clades. We examined paleosols preserved in the fluvial, basin-margin Wasatch Formation preserved near South Pass, Wyoming. Field identification of the paleosols indicated a suite that includes Entisols, Inceptisols, and Alfisols. To reconstruct paleovegetation, pedogenic carbonates were analyzed isotopically, and samples were collected and extracted for phytoliths . By combining these paleobotanical proxies with quantitative climatic proxies on whole rock geochemistry, we will present an integrated vegetation-climate history of the EECO at the margins of the Green River Basin. Second, we will present high-resolution record of vegetation patterns based on phytoliths from a section of the Renova Formation, Timberhills region, Montana dated to 39.2 ± 3 Ma. The section is composed of Alfisols, Entisols</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..719D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..719D"><span id="translatedtitle">Petrology and petrogenesis of the <span class="hlt">Eocene</span> Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç</p> <p>2015-04-01</p> <p>Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the <span class="hlt">Eocene</span> volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, <span class="hlt">Eocene</span> in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMPP24B..08D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMPP24B..08D"><span id="translatedtitle">Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and <span class="hlt">Eocene</span> calibrations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.</p> <p>2010-12-01</p> <p>Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in <span class="hlt">Eocene</span> sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614762S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614762S"><span id="translatedtitle">Inception and variability of the Antarctic ice sheet across the <span class="hlt">Eocene</span>-Oligocene transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stocchi, Paolo; Galeotti, Simone; Ladant, Jan-Baptiste; DeConto, Robert; Vermeersen, Bert; Rugenstein, Maria</p> <p>2014-05-01</p> <p>Climate cooling throughout middle to late <span class="hlt">Eocene</span> (~48 - 34 Million years ago, Ma) triggered the transition from hot-house to ice-house conditions. Based on deep-sea marine δ18O values, a continental-scale Antarctic Ice Sheet (AIS) rapidly developed across the <span class="hlt">Eocene</span>-Oligocene transition (EOT) in two ~200 kyr-spaced phases between 34.0 - 33.5 Ma. Regardless of the geographical configuration of southern ocean gateways, geochemical data and ice-sheet modelling show that AIS glaciation initiated as atmospheric CO2 fell below ~2.5 times pre-industrial values. AIS likely reached or even exceeded present-day dimensions. Quantifying the magnitude and timing of AIS volume variations by means of δ18O records is hampered by the fact that the latter reflect a coupled signal of temperature and ice-sheet volume. Besides, bathymetric variations based on marine geologic sections are affected by large uncertainties and, most importantly, reflect the local response of relative sea level (rsl) to ice volume fluctuations rather than the global eustatic signal. AIS proximal and Northern Hemisphere (NH) marine settings show an opposite trend of rsl change across the EOT. In fact, consistently with central values based on δ18O records, an 60 ± 20m rsl drop is estimated from NH low-latitude shallow marine sequences. Conversely, sedimentary facies from shallow shelfal areas in the proximity of the AIS witness an 50 - 150m rsl rise across the EOT. Accounting for ice-load-induced crustal and geoidal deformations and for the mutual gravitational attraction between the growing AIS and the ocean water is a necessary requirement to reconcile near- and far-field rsl sites, regardless of tectonics and of any other possible local contamination. In this work we investigate the AIS inception and variability across the EOT by combining the observed rsl changes with predictions based on numerical modeling of Glacial Isostatic Adjustment (GIA). We solve the gravitationally self-consistent Sea Level</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112518P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112518P"><span id="translatedtitle">Early <span class="hlt">Eocene</span> biota (ostracoda, foraminifera) and paleoenvironment of the Blue Marls in the Corbieres Hills (Aude, France): building a framework for the identification of early <span class="hlt">Eocene</span> hyperthermals in continental margin records.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirkenseer, C.; King, C.; Steurbaut, E.; Speijer, R.</p> <p>2009-04-01</p> <p>The Corbières Foreland Basin represents the southeastern-most extension of the Aquitanian Basin and is thus palaeo(bio)geographically related to the West-European Cenozoic Basin. During the Ypresian (‘Ilerdien') a succession of marine carbonates (e.g., Calcaires blancs à Alvéolines), marine marls (Blue Marls, Marnes à Térebratulides), brackish marls to sandstones and subsequent fluvio-lacustrine sediments (e.g., Montlaur Molasse) were deposited in the Corbières Hills (Aude, France) area in several depositional sequences. The present study focuses on the upper part of the open marine Blue Marls and the overlying brackish marls and sandstones spanning about 120m thickness close to the village Pradelles-en-Val. Over one hundred samples were collected in 1m intervals in order to document the early <span class="hlt">Eocene</span> biogeographical and paleoenvironmental evolution of this open marine sequence, through a quantitative analysis of the ostracod assemblages. Furthermore, we aim at identifying anomalous environmental conditions that might be expected to be associated with the early <span class="hlt">Eocene</span> hyperthermals known as Elmo- (ETM2) and X-event (ETM3). These events are subordinate to the best known hyperthermal, the Paleocene-<span class="hlt">Eocene</span> thermal maximum, which has been recorded in deep-sea to non-marine depositional settings. ETM2 and ETM3, however, have until now only been demonstrated in deep-sea sequences, not in shelf deposits. In accordance with biostratigraphical data derived from other outcrops in the region, the sampled succession is attributed to the interval of calcareous nannofossil zones NP10-NP12. The occurrences of planktonic foraminifera of the Morozovella subbotinae-group are in agreement with this stratigraphic position (P6-7) for the lower part of the profile. Recorded fossil groups include generally abundant marine ostracoda, bryozoa, benthic and planktonic foraminifera, fragments of echinoderms including ophiuroidea, moulds of gastropods (often pyritised), large dinocysts</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2526106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2526106"><span id="translatedtitle">Osteology of Icadyptes salasi, a giant penguin from the <span class="hlt">Eocene</span> of Peru</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ksepka, Daniel T; Clarke, Julia A; DeVries, Thomas J; Urbina, Mario</p> <p>2008-01-01</p> <p>We present the first detailed description of the giant <span class="hlt">Eocene</span> penguin Icadyptes salasi. The species is characterized by a narrow skull with a hyper-elongate spear-like beak, a robust cervical column and a powerful flipper. The bony beak tip of Icadyptes is formed by fusion of several elements and is unique among penguins, differing markedly from previously described giant penguin beaks. Vascular canal patterning similar to that of boobies, frigatebirds and albatrosses suggests I. salasi may have had a thin, sheet-like rhamphotheca unlike the thick rugose rhamphotheca of modern penguins. Together, these features suggest a novel ecology for I. salasi, most likely involving the capture of larger prey items via spearing. As the first described giant penguin specimen to preserve a complete wing skeleton, the I. salasi holotype yields significant insight into the shape, proportions and orientation of the wing in giant penguins. In articulation, the forelimb of I. salasi is straighter, permitting less manus and antibrachium flexion, than previous depictions of giant penguin wings. Cross-sections of the humerus and ulna reveal a level of osteosclerosis equalling or surpassing that of extant penguins. Based on ontogenetic data from extant penguins and the morphology of the carpometacarpus of I. salasi, we infer the retention of a free alular phalanx in basal penguins. Previously, the status of this element in penguins was disputed. Differences in the proportions of the manual phalanges contribute to a more abruptly tapering wingtip in I. salasi compared with crown penguins. Fossils from Peru, including the I. salasi holotype specimen, document that penguins expanded to nearly the whole of their extant latitudinal range early in their evolutionary history and during one of the warmest intervals in the Cenozoic. PMID:18564073</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21844362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21844362"><span id="translatedtitle"><span class="hlt">Eocene</span> habitat shift from saline to freshwater promoted Tethyan amphipod diversification.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Zhonge; Sket, Boris; Fiser, Cene; Li, Shuqiang</p> <p>2011-08-30</p> <p>Current theory predicts that a shift to a new habitat would increase the rate of diversification, while as lineages evolve into multiple species, intensified competition would decrease the rate of diversification. We used Holarctic amphipods of the genus Gammarus to test this hypothesis. We sequenced four genes (5,088 bp) for 289 samples representing 115 Gammarus species. A phylogenetic analysis showed that Gammarus originated from the Tethyan region with a saline ancestry in the Paleocene, and later colonized the freshwater habitat in the Middle <span class="hlt">Eocene</span>. Ancestral range reconstruction and diversification mode analysis combined with paleogeological and paleoclimatic evidence suggested that the habitat shift from saline to freshwater led to an increased diversification rate. The saline lineage of Gammarus dispersed to both sides of the Atlantic at 55 million years ago (Ma), because of the few barriers between the Tethys and the Atlantic, and diversified throughout its evolutionary history with a constant diversification rate [0.04 species per million years (sp/My)]. The freshwater Gammarus, however, underwent a rapid diversification phase (0.11 sp/My) until the Middle Miocene, and lineages successively diversified across Eurasia via vicariance process likely driven by changes of the Tethys and landmass. In particular, the freshwater Gammarus lacustris and Gammarus balcanicus lineages had a relatively high diversification shift, corresponding to the regression of the Paratethys Sea and the continentalization of Eurasian lands during the Miocene period. Subsequently (14 Ma), the diversification rate of the freshwater Gammarus decreased to 0.05 and again to 0.01 sp/My. The genus Gammarus provides an excellent aquatic case supporting the hypothesis that ecological opportunities promote diversification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497801','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497801"><span id="translatedtitle">TEST FUSION IN ADULT FORAMINIFERA: A REVIEW WITH NEW OBSERVATIONS OF AN EARLY <span class="hlt">EOCENE</span> NUMMULITES SPECIMEN</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ferràndez-Cañadell, Carles; Briguglio, Antonino; Hohenegger, Johann; Wöger, Julia</p> <p>2015-01-01</p> <p>In foraminifera, so-called “double tests” usually arise due to abnormal growth originating mainly from twinning, but may also be caused by irregularities in the early chambers and by regeneration after test injury that modifies the direction of growth. A fourth cause of double tests has only rarely been reported: the fusion of the tests of two adult individuals. We studied an early <span class="hlt">Eocene</span> Nummulites double test consisting of two adult individuals that fused after an extended period of independent growth. The specimen was studied using computed tomography with micrometric resolution (micro-CT) that allowed bi- and three-dimensional visualization of the internal structure. Before fusion each individual test had 30–36 chambers, which, by comparison with growth rates in recent nummulitids, implies at least three months of independent growth. After fusion, the compound test grew in two spirals that fused after about one whorl and then continued in a single spiral. To fuse their tests, either adult individuals have to be forced to do so or the allorecognition (ability to distinguish between self and another individual) mechanisms must fail. A possible explanation for the merged Nummulites tests in this study is forced fusion in attached individuals after surviving ingestion and digestion by a metazoan. Alternatively, environmental stress could lead to a failure