Sample records for ephemeroptera

  1. The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae).

    PubMed

    Willkommen, Jana; Hörnschemeyer, Thomas

    2007-06-01

    The ability to fly is the decisive factor for the evolutionary success of winged insects (Pterygota). Despite this, very little is known about the ground-pattern and evolution of the functionally very important wing base. Here we use the Ephemeroptera, usually regarded as the most ancient flying insects, as a model for the analysis of the flight musculature and the sclerites of the wing base. Morphology and anatomy of the pterothorax of 13 species of Ephemeroptera and five species of Plecoptera were examined and a detailed description of Habroleptoides confusa (Ephemeroptera: Leptophlebiidae) is given. A new homology of the wing base sclerites in Ephemeroptera is proposed. The wing base of Ephemeroptera possesses three axillary sclerites that are homologous to the first axillary, the second axillary and the third axillary of Neoptera. For example, the third axillary possesses the axillary-pleural muscle that mostly is considered as a characteristic feature of the Neoptera. Many of the muscles and sclerites of the flight system of the Ephemeroptera and Neoptera can be readily homologised. In fact, there are indications that a foldable wing base may be a ground plan feature of pterygote insects and that the non-foldable wing base of the Ephemeroptera is a derived state.

  2. Predator density and dissolved oxygen affect body condition of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) from intermittent streams

    Treesearch

    Joseph W. Love; Christopher M. Taylor; Melvin L. Warren

    2005-01-01

    The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition...

  3. A DNA barcode library for Germany's mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera).

    PubMed

    Morinière, Jérôme; Hendrich, Lars; Balke, Michael; Beermann, Arne J; König, Tobias; Hess, Monika; Koch, Stefan; Müller, Reinhard; Leese, Florian; Hebert, Paul D N; Hausmann, Axel; Schubart, Christoph D; Haszprunar, Gerhard

    2017-11-01

    Mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) are prominent representatives of aquatic macroinvertebrates, commonly used as indicator organisms for water quality and ecosystem assessments. However, unambiguous morphological identification of EPT species, especially their immature life stages, is a challenging, yet fundamental task. A comprehensive DNA barcode library based upon taxonomically well-curated specimens is needed to overcome the problematic identification. Once available, this library will support the implementation of fast, cost-efficient and reliable DNA-based identifications and assessments of ecological status. This study represents a major step towards a DNA barcode reference library as it covers for two-thirds of Germany's EPT species including 2,613 individuals belonging to 363 identified species. As such, it provides coverage for 38 of 44 families (86%) and practically all major bioindicator species. DNA barcode compliant sequences (≥500 bp) were recovered from 98.74% of the analysed specimens. Whereas most species (325, i.e., 89.53%) were unambiguously assigned to a single Barcode Index Number (BIN) by its COI sequence, 38 species (18 Ephemeroptera, nine Plecoptera and 11 Trichoptera) were assigned to a total of 89 BINs. Most of these additional BINs formed nearest neighbour clusters, reflecting the discrimination of geographical subclades of a currently recognized species. BIN sharing was uncommon, involving only two species pairs of Ephemeroptera. Interestingly, both maximum pairwise and nearest neighbour distances were substantially higher for Ephemeroptera compared to Plecoptera and Trichoptera, possibly indicating older speciation events, stronger positive selection or faster rate of molecular evolution. © 2017 John Wiley & Sons Ltd.

  4. The Ephemeroptera, Plecoptera, and Trichoptera of Missouri State Parks With Notes on Mesohabitat Associations and Distribution

    NASA Astrophysics Data System (ADS)

    Ferro, M. L.; Sites, R. W.

    2005-05-01

    Thirty-seven streams within 15 Missouri State Parks were sampled for immature and adult Ephemeroptera, Plecoptera, and Trichoptera (EPT) through 2002 and early 2003. All totaled, 34,251 EPT larvae were collected, all specimens of which were identified to the lowest taxon possible. Of approximately 70,000 adult specimens collected, 10,342 were identified to the lowest taxon possible. Fifteen species endemic to the Interior Highlands and two species on the Missouri Species of Conservation Concern Checklist were collected. This research revealed a total of 214 species in 100 genera and 37 families of EPT in the designated state parks, accounting for 52% of the EPT fauna known from Missouri. Specifically, 57 species in 35 genera and 13 families of Ephemeroptera, 43 species in 18 genera and 8 families of Plecoptera, and 114 species in 47 genera and 16 families of Trichoptera were collected. Of seven mesohabitats designated, species richness was significantly highest in the riffle. Many species are reported from each state park for the first time and Serratella sordida McDunnough (Ephemeroptera: Ephemerellidae) and Triaenodes perna Ross (Trichoptera: Leptoceridae) were collected in Missouri for the first time.

  5. Benthic Macro-Invertebrates of Rocky Creek, Eglin Air Force Base, Florida.

    DTIC Science & Technology

    1981-10-01

    Plecoptera , Odonata, and Ephemeroptera. The fauna at the sites were similar with sites sharing from 71 to 86% of their taxa. The differences in the...Coleoptera (8.9%), Trichoptera (6.9%), Plecoptera (3.6%), Odonata (2.6%), and Ephemeroptera (1.9%). In the light traps, the dominant group was the...Diptera); Stenelmis sp. (Coleoptera); Brachycentrus sp., Micrasema sp., Hydropsyche sp., and Agarodes sp. (Trichoptera); Allocapnia sp. ( Plecoptera

  6. Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage

    USGS Publications Warehouse

    Ross, R.M.; Long, E.S.; Dropkin, D.S.

    2008-01-01

    We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector - gatherer ratios; herbivores; collector - filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector - gatherers. An entire trophic level (herbivores) was 'restored' in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD. ?? Springer Science+Business Media B.V. 2007.

  7. Effects of Reservoir Releases on Water Quality, Macroinvertebrates, and Fish in Tailwaters: Field Study Results.

    DTIC Science & Technology

    1983-02-01

    abundant at station 1 included Simuliidae, Culicidae, and Trichoptera. Organisms more common to natural streams, such as Ephemeroptera, Plecoptera ...20 4 Culicidae 65 36 Ceratopogonidae 4 2 Trichoptera 56 25 Ephemeroptera 10 180 Plecoptera 1 10 Coleoptera 13 2 Lepidoptera 9 0 Hydracarima. 2 24... Plecoptera 0 0 25 Coleoptera 18 0 27 Odonata 86 43 156 Hydracarina 670 258 204 Oligochaeta 3,929 612 854 Hirudinea 97 2 22 Nema toda 208 74 44 Amphipoda

  8. NEW STATE RECORD OF THE MAYFLY BAETISCA LAURENTINA McDUNNOUGH FOR WEST VIRGINIA (EPHEMEROPTERA: BAETISCIDAE) AND NEW COUNTY RECORDS FOR SPECIES OF BAETISCA IN KENTUCKY AND WEST VIRGINIA, U.S.A.1(EPHEMEROPTERA:BAETISCIDAE) AND NEW COUNTY RECORDS FOR BAETISCA SPECIES IN KENTUCKY AND WEST VIRGINIA

    EPA Science Inventory

    Baetisca laurentina McDunnough is reported for the first time from West Virginia. One male imago was collected near Twelvepole Creek, Wayne County, West Virginia. This record extends the range of this species eastward to the Mid-Atlantic coastal region. New distributional records...

  9. Ecology of ephemeroptera, plecoptera and trichoptera (insecta) in rivers of the gunung jerai forest reserve: diversity and distribution of functional feeding groups.

    PubMed

    Hamid, Suhaila Ab; Md Rawi, Che Salmah

    2014-08-01

    A field study was performed to describe the functional feeding groups (FFGs) of Ephemeroptera, Plecoptera and Trichoptera (EPT) in the Tupah, Batu Hampar and Teroi Rivers in the Gunung Jerai Forest Reserve (GJFR), Kedah, Malaysia. Twenty-nine genera belonging to 19 families were identified. The EPTs were classified into five FFGs: collector-gatherers (CG), collector-filterers (CF), shredders (SH), scrapers (SC) and predators (P). In this study, CG and CF were the dominant groups inhabiting all three rivers. Ephemeroptera dominated these rivers due to their high abundance, and they were also the CG (90.6%). SC were the lowest in abundance among all groups. Based on the FFGs, the Teroi River was suitable for CG, whereas the Tupah and Batu Hampar Rivers were suitable for CG and CF. The distribution of FFGs differed among the rivers (CG, χ(2) = 23.6, p = 0.00; SH, χ(2) = 10.02, p = 0.007; P, χ(2) = 25.54, p = 0.00; CF, χ(2) = 21.95, p = 0.00; SC, χ(2) = 9.31, p = 0.01). These findings indicated that the FFGs found in rivers of the GJFR represent high river quality.

  10. Ecology of Ephemeroptera, Plecoptera and Trichoptera (Insecta) in Rivers of the Gunung Jerai Forest Reserve: Diversity and Distribution of Functional Feeding Groups

    PubMed Central

    Hamid, Suhaila Ab; Md Rawi, Che Salmah

    2014-01-01

    A field study was performed to describe the functional feeding groups (FFGs) of Ephemeroptera, Plecoptera and Trichoptera (EPT) in the Tupah, Batu Hampar and Teroi Rivers in the Gunung Jerai Forest Reserve (GJFR), Kedah, Malaysia. Twenty-nine genera belonging to 19 families were identified. The EPTs were classified into five FFGs: collector-gatherers (CG), collector-filterers (CF), shredders (SH), scrapers (SC) and predators (P). In this study, CG and CF were the dominant groups inhabiting all three rivers. Ephemeroptera dominated these rivers due to their high abundance, and they were also the CG (90.6%). SC were the lowest in abundance among all groups. Based on the FFGs, the Teroi River was suitable for CG, whereas the Tupah and Batu Hampar Rivers were suitable for CG and CF. The distribution of FFGs differed among the rivers (CG, χ2 = 23.6, p = 0.00; SH, χ2 = 10.02, p = 0.007; P, χ2 = 25.54, p = 0.00; CF, χ2 = 21.95, p = 0.00; SC, χ2 = 9.31, p = 0.01). These findings indicated that the FFGs found in rivers of the GJFR represent high river quality. PMID:25210588

  11. Initial commented checklist of Iranian mayflies, with new area records and description of Procloeon caspicum sp. n. (Insecta, Ephemeroptera, Baetidae)

    PubMed Central

    Bojková, Jindřiška; Sroka, Pavel; Soldán, Tomáš; Namin, Javid Imanpour; Staniczek, Arnold H.; Polášek, Marek; Hrivniak, Ľuboš; Abdoli, Ashgar; Godunko, Roman J.

    2018-01-01

    Abstract An initial checklist of mayflies (Ephemeroptera) of Iran is compiled based on critical review of available literature data, complemented with new data from 38 localities of Gilan and Ardabil provinces. At present, altogether only 46 species and 25 genera are known from Iran, 18 species are reported as new to Iran in this study. Some previously published data are critically evaluated and doubtful taxa are excluded from the list. Basic analysis of the distribution and biogeography of recorded species is given. Procloeon (Pseudocentroptilum) caspicum Sroka, sp. n. is described based on mature larva and egg. Critical differential diagnostic characters distinguishing the species from related taxa are discussed in detail. PMID:29674922

  12. Tricorythodes tragoedia sp. nov. (Ephemeroptera: Leptohyphidae), a new species from Rio Doce and surrounding areas, southeastern Brazil.

    PubMed

    Souto, Paula Malaquias; Angeli, Kamila Batista; Salles, Frederico Falcão

    2017-11-01

    A new species of Tricorythodes Ulmer (Ephemeroptera: Leptohyphidae) is described and illustrated based on nymphs and adults from the Doce River and surrounding areas in southeastern Brazil. Tricorythodes tragoedia sp. nov. is related to T. arequita Traver, T. mirca Molineri and T. sallesi Dias, Cabette & De Sousa, but its nymphs can be distinguished from these species by having a three-segmented maxillary palp with apical seta and one pair of submarginal denticles on the tarsal claws. Nymphs were collected from small to large rivers at altitudes of less than 100 m where they inhabit submersed substrates in areas with slow current. Nymphs and adults were found throughout the year.

  13. Preliminary survey of the mayflies (Ephemeroptera) and caddisflies (Trichoptera) of Big Bend Ranch State Park and Big Bend National Park

    PubMed Central

    Baumgardner, David E.; Bowles, David E.

    2005-01-01

    The mayfly (Insecta: Ephemeroptera) and caddisfly (Insecta: Trichoptera) fauna of Big Bend National Park and Big Bend Ranch State Park are reported based upon numerous records. For mayflies, sixteen species representing four families and twelve genera are reported. By comparison, thirty-five species of caddisflies were collected during this study representing seventeen genera and nine families. Although the Rio Grande supports the greatest diversity of mayflies (n=9) and caddisflies (n=14), numerous spring-fed creeks throughout the park also support a wide variety of species. A general lack of data on the distribution and abundance of invertebrates in Big Bend National and State Park is discussed, along with the importance of continuing this type of research. PMID:17119610

  14. Summer Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness and community structure in the lower Illinois River basin of Illinois

    USGS Publications Warehouse

    DeWalt, R.E.; Webb, D.W.; Harris, M.A.

    1999-01-01

    Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness is useful for monitoring stream health, but no published studies in Illinois quantitatively document EPT richness or assemblage structure. The objectives of this study were to characterize adult EPT richness and structure and relate these to relative water quality at eight stream sites (160-69,300 km3 area) in the lower Illinois River basin. Adults were ultra-violet light trapped in June, July, and August 1997. Nutrient enrichment by nitrate and nitrite nitrogen was strongly evident, especially in smaller drainages, while critical loss of stable habitat was observed in larger water bodies. Seventy EPT species were identified from 17,889 specimens. Trichoptera were by far the most speciose (41 species), followed by Ephemeroptera (26), and Plecoptera (3). Caddisflies also dominated species richness across sites, contributing 18.0 of the average 28.9 total EPT species collected. Site EPT richness varied significantly (F = 5.51, p = 0.003, df = 7), with smaller drainages supporting greater richness, generally. Differences were also evident for months (F = 21.7, p = 0.0001, df = 2), with June being lower (11.8 average) than either July (20.6) or August (18.1) values. Hilsenhoff biotic index (HBI) scores did not vary significantly across sites (F = 0.7, p = 0.7, df = 7), but were different across months (F = 5.4, p = 0.02, df = 2). June (4.23) and July (4.53) means were not different, but both were lower (of better quality) than August (5.33) scores. The relationship of EPT to HBI scores was not investigated statistically due to problems of sample size and interdependence of monthly samples, but graphical analysis suggested no consistent relationship. This suggested a decoupling of the HBI from the EPT and implied that the gain in taxonomic resolution achieved by using adults outstripped the resolution of the HBI. Use of the HBI to characterize adult aquatic insect communities is discouraged. New state records and range extensions for Ephemeroptera and Trichoptera are presented and possible loss of sensitive Plecoptera in the drainage is discussed.

  15. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach.

    PubMed

    Heneberg, Petr; Faltýnková, Anna; Bizos, Jiří; Malá, Milena; Žiak, Juraj; Literák, Ivan

    2015-02-08

    The cutaneous monostome trematode Collyriclum faba (Bremser in Schmalz, 1831) is a bird parasite with a hitherto unknown life cycle and highly focal occurrence across the Holarctic and Neotropic ecozones. Representative specimens of benthic organisms were sampled at multiple sites and dates within the known foci of C. faba occurrence in Slovakia. A combined approach involving detailed morphological examination and sequencing of two independent DNA loci was used for their analysis. We elucidated the complete life cycle of C. faba, which we determined to include the aquatic gastropod mollusk Bythinella austriaca (Frauenfeld, 1857) as the first intermediate host, the mayflies of the family Heptageniidae, Ecdyonurus venosus (Fabricius, 1775) and Rhithrogena picteti Sowa, 1971 x iridina (Kolenati, 1839), as the second intermediate hosts, and birds (primarily but not exclusively passeriform birds) as the definitive hosts. Bythinella austriaca occurs focally in the springs of tributaries of the Danube in the Alpine-Carpathian region. The restricted distribution of B. austriaca explains the highly focal distribution of C. faba noticed previously in spite of the broad distribution of its second intermediate and definitive host species. Utilization of both larval and adult Ephemeroptera spp. as the second intermediate hosts explains the known spectrum of the definitive host species, with the highest prevalence in species feeding on larvae of Ephemeroptera, such as Cinclus cinclus (Linnaeus, 1758) and Motacilla cinerea Tunstall, 1771, or adults of Ephemeroptera, such as Sylvia atricapilla (Linnaeus, 1758) and Regulus regulus (Linnaeus, 1758). In this study, we also determine the prevalence and DNA sequences of other immature trematode specimens found in the examined benthic organisms (particularly the families Microphallidae, Troglotrematidae and Nanophyetidae and Euryhelmis zelleri Grabda-Kazubska, 1980, Heterophyidae), and describe cercariae of C. faba. We determined the full life cycle of the Central European populations of C. faba. We speculate that other species of Bythinella and the closely related genus Amnicola may serve as first intermediate hosts in other parts of the distribution range of C. faba. Similarly, other Ephemeroptera of the family Heptageniidae may serve as the second intermediate hosts of C. faba in the Americas.

  16. Effects of food availability and habitat features on the Ephemeroptera species composition at seasonal and spatial scales from neotropical floodplain rivers.

    PubMed

    Melo, S M; Ragonha, F H; Pinha, G D; Takeda, A M

    2018-02-01

    Brazilian floodplains have suffered great changes in their natural characteristics in recent decades, mainly in the flood pulse. The Upper Paraná River floodplain is one of the few places where are found remained areas in which such peculiar characteristics keep reflecting on its high biodiversity. Ephemeroptera nymphs are one of the higher density groups among benthic community, occurring in many water bodies like large rivers and secondary channels. We sought to understand which factors are needed for the species establishment and how much important is the species colonization, especially in environments with anthropogenic changes. The marginal areas, which are more structured with presence of macrophytes, showed the highest density and richness even in the Paraná River that has great human impact. We verified dominance of Americabaetis alphus, Tricorythopsis araponga, Tricorythopsis artigas on the Parana River, correlated with transparency, depth and electric conductivity, while the dominance of Traverella sp. was correlated with water temperature, especially in marginal areas. Consequently, the increasing transparency and electric conductivity due to the Porto Primavera dam in Parana River can be favoring those Ephemeroptera species. We demonstrated the importance of preserving the wetlands of Ivinhema River State Park mainly for Guajirolus sp., which was only registered in this region. Therefore, our study provides support for understanding gaps from previously studies using artificial substrates in three large rivers which are of great importance to the upper Paraná River floodplain.

  17. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    USGS Publications Warehouse

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  18. Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan.

    PubMed

    Ali, Salar; Gao, Junfeng; Begum, Farida; Rasool, Atta; Ismail, Muhammad; Cai, Yongjiu; Ali, Shaukat; Ali, Shujaat

    2017-02-01

    This preliminary research was conducted to evaluate the alpine stream health by using water quality as an indicator in Khunjerab National park of the Karakoram ranges located in Pak-China boarder Pakistan having altitude of 3660 m. This study investigated the stream health in the context of the presence or absence of sensitive species, their diversity, and their taxa richness. The water and macroinvertebrate samples were collected from 17 different locations from upstream and downstream of the river by using random sampling method. Macroinvertebrate samples were obtained using kick net (500-μm mesh size) and hand-picking method (NYSDEC). A total of 710 counts including 41 families of macroinvertebrates were recorded comprising of 7 orders including: Ephemeroptera (46%) being the most dominant group, Plecoptera (33%), Trichoptera (5%), Chironomidae (Diptera) (14%), Heteroptera (1%), and Coleoptera (1%). Ephemeroptera, Trichoptera, and Plecoptera (EPT) were found in abundance at the main source, Qarchanai, Dhee, and Tourqeen Nullah, as compared to the other locations of the stream. The most dominant macroinvertebrate was Ephemeroptera whose relative abundance is Pi = 0.49 by using the Shannon index. However, different statistical tools, including principal component analysis (PCA), cluster analysis (CA), ANOVA, and linear regression model, show a strong correlation between water quality and macroinvertebrates. The overall results of the biological indicators showed better ecological health at downstream compared to upstream. This study will provide basic information and understanding about the macroinvertebrates for future researchers, and the data will be helpful for upcoming research programs on alpine streams for the discovery and occurrences of macroinvertebrates and associated fauna.

  19. DEVELOPMENT OF A STREAM BENTHIC MACROINVERTEBRATE INTEGRITY INDEX (SBMII) FOR WADEABLE STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    The Stream Benthic Macroinvertebrate Integrity Index (SBMII), a multimetric biotic index for assessing biological conditions of wadeable streams, was developed using seven macroinvertebrate metrics (Ephemeroptera richness, Plecoptera richness, Trichoptera richness, Collector-Filt...

  20. Part 1: Laboratory Culture of Centroptilum triangulifer (Ephemeroptera: BAETIDAE) Using a Standardized Diet of Three Diatoms.

    EPA Science Inventory

    Development of methods for assessing exposure and effects of waterborne toxicants on stream invertebrate species is important to elucidate environmentally relevant information. United States Environmental Protection Agency (USEPA) laboratory protocols for invertebrate toxicity te...

  1. Diet composition of larval and young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Fuller, D.B.; McClenning, N.D.

    2007-01-01

    Obtaining food following the transition from endogenous to exogenous feeding and during the first year of life is a critical event that strongly influences growth and survival of young-of-year fishes. For shovelnose sturgeon Scaphirhynchus platorynchus, limited information is available on food habits during the first year of life. The objective of this study was to quantify diet components of shovelnose sturgeon during the transition from endogenous to exogenous feeding and during the young-of-year life stage in the North Dakota and Montana portions of the Missouri River. Young-of-year shovelnose sturgeon were sampled between early August and early September 2003. Shovelnose sturgeon initiated exogenous feeding by 16 mm, and individuals 16–140 mm fed exclusively on two macroinvertebrate orders (Diptera and Ephemeroptera). Young-of-year shovelnose sturgeon exhibited an apparently high feeding success as 99 of 100 individuals contained food in the gut. The number of organisms in the gut increased exponentially with fish length for larval Diptera (r2 = 0.73, P < 0.0001) and linearly (r2 = 0.12, P = 0.0006) for larval Ephemeroptera, but the number of Diptera pupae in the gut was not significantly related (P = 0.55) to length of young-of-year shovelnose sturgeon. The length of ingested prey was linearly related to fish length for Diptera larvae (r2 = 0.20, P = 0.002), whereas the relationship between lengths of ingested Ephemeroptera larvae and lengths of young-of-year shovelnose sturgeon was best described by a power function (r2 = 0.50, P < 0.0001). These results provide the first quantification of feeding dynamics for young-of-year shovelnose sturgeon in a natural river environment.

  2. Climatic and Catchment-Scale Predictors of Chinese Stream Insect Richness Differ between Taxonomic Groups

    PubMed Central

    Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.

    2015-01-01

    Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190

  3. Pankovaia semitubulata gen. et sp. n. (Microsporidia: Tuzetiidae) from nymphs of mayflies Cloeon dipterum L. (Insecta: Ephemeroptera) in Western Siberia.

    PubMed

    Simakova, Anastasia V; Tokarev, Yuri S; Issi, Irma V

    2009-01-01

    The ultrastructure of a new microsporidian, Pankovaia semitubulata gen. et sp. n. (Microsporidia: Tuzetiidae), from the fat body of Cloeon dipterum (L.) (Ephemeroptera: Baetidae) is described. The species is monokaryotic throughout the life cycle, developing in direct contact with the host cell cytoplasm. Sporogonial plasmodium divides into 2-8 sporoblasts. Each sporoblast, then spore, is enclosed in an individual sporophorous vesicle. Fixed and stained spores of the type species P. semitubulata are 3.4 x 1.9microm in size. The polaroplast is bipartite (lamellar and vesicular). The polar filament is isofilar, possessing 6 coils in one row. The following features distinguish the genus Pankovaia from other monokaryotic genera of Tuzetiidae: (a) exospore is composed of multiple irregularly laid tubules with a lengthwise opening, referred to as "semitubules"; (b) episporontal space of sporophorous vesicle (SPV) is devoid of secretory formations; (c) SPV envelope is represented by a thin fragile membrane.

  4. Ephemeroptera, plecoptera, megaloptera, and trichoptera of Great Smoky Mountains National Park

    USGS Publications Warehouse

    Parker, C.R.; Flint, O.S.; Jacobus, L.M.; Kondratieff, B.C.; McCafferty, W.P.; Morse, J.C.

    2007-01-01

    Great Smoky Mountains National Park (GSMNP), situated on the mountainous border of North Carolina and Tennessee, is recognized as one of the most highly diverse protected areas in the temperate region. In order to provide baseline data for the scientific management of GSMNP, an All Taxa Biodiversity Inventory (ATBI) was initiated in 1998. Among the goals of the ATBI are to discover the identity and distribution of as many as possible of the species of life that occur in GSMNP. The authors have concentrated on the orders of completely aquatic insects other than odonates. We examined or utilized others' records of more than 53,600 adult and 78,000 immature insects from 545 locations. At present, 469 species are known from GSMNP, including 120 species of Ephemeroptera (mayflies), 111 species of Plecoptera (stoneflies), 7 species of Megaloptera (dobsonflies, fishflies, and alderflies), and 231 species of Trichoptera (caddisflies). Included in this total are 10 species new to science discovered since the ATBI began.

  5. Biological Assessment of Newfoundland Rivers Based on the Depauperate Macroinvertebrate Fauna With Emphasis on the Mayfly, Stonefly and Caddisfly Fauna: a Cautionary Tale.

    NASA Astrophysics Data System (ADS)

    Colbo, M. H.; Cote, D.; Kendall, V.

    2005-05-01

    The fauna of insular Newfoundland compared to the mainland is depauperate, e.g., 35 spp of mayflies versus about 160 spp in Maine. The question is can this depauperate fauna provide good biomonitoring information? A comparative study using present /absent data from 85 sites in eastern Newfoundland was analyzed with particular reference to the Ephemeroptera, Plecoptera and Trichoptera fauna. The results indicated these data did differentiate regions sampling type and land use when run through a simple Principle Component Analysis (PCA). The PCA 1 and 2 components varied from no to a strong correlation with both Ephemeroptera and Trichoptera richness and taxa richness of the major feeding groups. However, applying previously published biotic indices of species that occur in Newfoundland did not provide satisfactory results. It appears these indices may reflect oxygen gradients rather than pollutant concentrations and in our cold well oxygenated streams yield unsatisfactory discrimination among natural and perturb streams.

  6. Discovery of an alien species of mayfly in South America (Ephemeroptera).

    PubMed

    Salles, Frederico F; Gattolliat, Jean-Luc; Angeli, Kamila B; De-Souza, Márcia R; Gonçalves, Inês C; Nessimian, Jorge L; Sartori, Michel

    2014-01-01

    Despite its wide, almost worldwide distribution, the mayfly genus Cloeon Leach, 1815 (Ephemeroptera: Baetidae) is restricted in the Western hemisphere to North America, where a single species is reported. In the Neotropics, except for some species wrongly attributed to the genus in the past, there are no records of Cloeon. Recently, however, specimens of true Cloeon were collected along the coast of Espírito Santo, Southeastern Brazil. In order to verify the hypothesis that this species was recently introduced to Brazil, our aim was to identify the species based on morphological and molecular characters and to confirm the presence of true representatives of the genus in the Neotropics. Our results revealed that the specimens found in Brazil belong to the Afrotropical species C. smaeleni Lestage, 1924. The identity of the species, its distribution, along with its previous absence in regularly sampled sites, is a clear sign that the specimens of C. smaeleni found in Espírito Santo are introduced, well established, and that the colonization took place very recently.

  7. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in Neotropical Savanna headwater streams

    EPA Science Inventory

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...

  8. Burrowing mayflies (Hexagenia) as indicators of ecosystem health at Sleeping Bear Dunes National Lakeshore, Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Phillips, William E.

    2004-01-01

    The present study describes the provisional use of burrowing mayflies (Hexagenia [Ephemeroptera: Ephemeridae]) as an indicator organism to assess and monitor the health of the Loon Lake and lower Platte River ecosystem within Sleeping Bear Dunes National Lakeshore, Michigan.

  9. Evaluation and improvements of a mayfly, Neocloeon (Centroptilum) triangulifer ?(Ephemeroptera: Baetidae) toxicity test method

    EPA Science Inventory

    A recently published test method for Neocloeon triangulifer assessed the sensitivities of larval mayflies to several reference toxicants (NaCl, KCl, and CuSO4). Subsequent exposures have shown discrepancies from those results previously reported. To identify potential sources of ...

  10. Influence of dilution water composition on acute major ion toxicity to the mayfly Neocloeon triangulifer.

    EPA Science Inventory

    A number of field studies have shown that mayflies (Ephemeroptera) tend to be more sensitive than other benthic macroinvertebrates to elevated levels of total dissolved solids in streams. Until relatively recently, difficulties with culturing have limited the use of mayflies as ...

  11. Influence of dilution water ionic composition on acute major ion toxicity to the mayfly Neocloeon triangulifer

    EPA Science Inventory

    Both field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but very little is known about how ionic composition influences these responses. The present study evaluated the toxicity of various m...

  12. LANDSCAPE INFLUENCES ON IN-STREAM BIOTIC INTEGRITY: USE OF MACROINVERTEBRATE METRICS TO IDENTIFY LANDSCAPE STRESSORS IN HEADWATER CATCHMENTS

    EPA Science Inventory

    The biotic integrity of streams is profoundly influenced by quantitative and qualitative features in the landscape of the surrounding catchment. In this study, aquatic macroinvertebrate metrics (e.g., relative abundance of Ephemeroptera, Trichoptera, and/or Plecoptera taxa, or t...

  13. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  14. Growth and survivorship of the mayfly Centroptilum triangulifer (Ephemeroptera: Baetidae) exposed to elevated specific conductance in flow-through mesocosms

    EPA Science Inventory

    We tested sensitivity of a parthenogenetic mayfly, Centroptilum triangulifer, from a laboratory culture to excess conductivity created by adding NaCl and CaCl2 to natural stream water. Ions in these salts comprise approximately 95% of total dissolved solids in brine water produce...

  15. Evaluation and improvements of a mayfly, Neocloeon (Centroptilum) triangulifer (Ephemeroptera: Baetidae) toxicity test method - SETAC Europe 2016

    EPA Science Inventory

    A recently published test method for Neocloeon triangulifer assessed the survival and growth of larval mayflies exposed to several reference toxicants (NaCl, KCl, and CuSO4). Results were not able to be replicated in subsequent experiments. To identify potential sources of variab...

  16. Exploring drivers of sodium salt toxicity to the mayfly Neocloeon triangulifer, and comparing trends in mayfly and daphnid responses to major ions

    EPA Science Inventory

    Field studies have shown that mayflies (Ephemeroptera) tend to be more sensitive than other benthic macroinvertebrates to elevated levels of total dissolved solids in streams. While work with other species has shown that major ion toxicity is dependent on the ionic composition o...

  17. Temporal and spatial responses of Chironomidae (Diptera) and other benthic invertebrates to urban stormwater runoff

    Treesearch

    Susan E. Gresens; Kenneth T. Belt; Jamie A. Tang; Daniel C. Gwinn; Patricia A. Banks

    2007-01-01

    In a longitudinal study of two streams whose lower reaches received unattenuated urban stormwater runoff, physical disturbance by stormflow was less important than the persistant unidentified chemical impacts of urban stormwater in limiting the distribution of Chironomidae, and Ephemeroptera, Trichoptera and Plecoptera (EPT). A hierarchical spatial analysis showed that...

  18. Application of Aquatic Insects (Ephemeroptera, Plecoptera And Trichoptera) In Water Quality Assessment of Malaysian Headwater

    PubMed Central

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-01-01

    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers’ habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index. PMID:28890767

  19. Application of Aquatic Insects (Ephemeroptera, Plecoptera And Trichoptera) In Water Quality Assessment of Malaysian Headwater.

    PubMed

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers' habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index.

  20. Composition and Longitudinal Patterns of Aquatic Insect Emergence in Small Rivers of Palawan Island, the Philippines

    NASA Astrophysics Data System (ADS)

    Freitag, Hendrik

    2004-09-01

    This study presents the first emergence trap samples from streams in the Philippines and Greater Sunda. Aquatic insect emergence from two small rivers and longitudinal patterns including estuaries are compared. A decline of total emergence towards estuaries was observed, affecting all major orders. Diptera, namely Chironomidae, dominated all sites. High abundances in Ceratopogonidae, Odonata, and Coleoptera were found, compared to other emergence studies from tropical and temperate latitudes. Ephemeroptera displayed a highly variable contribution to the emergence from Palawan as well as in other comparative studies either supported by the appropriate conditions for certain functional groups or limited by environmental variables such as pH. Trichoptera are likely to tolerate a wider range of environmental conditions and they are consequently able to fill further niches where Ephemeroptera are under-represented. Except for scarce abundances of Plecoptera observed in this and other studies from the tropics, no substantial differences in emergence composition at order level existed between temperate and tropical rivers, however, with a remarkable local variation. Components of riparian and non-aquatic insects and non-emergent fauna contributing to the collections are discussed based on trap features. (

  1. Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution

    PubMed Central

    DeWalt, R. Edward; South, Eric J.

    2015-01-01

    Abstract Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22–70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15–25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders. PMID:26692811

  2. Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution.

    PubMed

    DeWalt, R Edward; South, Eric J

    2015-01-01

    Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22-70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15-25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders.

  3. Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada

    PubMed Central

    2009-01-01

    Background This study reports progress in assembling a DNA barcode reference library for Ephemeroptera, Plecoptera, and Trichoptera ("EPTs") from a Canadian subarctic site, which is the focus of a comprehensive biodiversity inventory using DNA barcoding. These three groups of aquatic insects exhibit a moderate level of species diversity, making them ideal for testing the feasibility of DNA barcoding for routine biotic surveys. We explore the correlation between the morphological species delineations, DNA barcode-based haplotype clusters delimited by a sequence threshold (2%), and a threshold-free approach to biodiversity quantification--phylogenetic diversity. Results A DNA barcode reference library is built for 112 EPT species for the focal region, consisting of 2277 COI sequences. Close correspondence was found between EPT morphospecies and haplotype clusters as designated using a standard threshold value. Similarly, the shapes of taxon accumulation curves based upon haplotype clusters were very similar to those generated using phylogenetic diversity accumulation curves, but were much more computationally efficient. Conclusion The results of this study will facilitate other lines of research on northern EPTs and also bode well for rapidly conducting initial biodiversity assessments in unknown EPT faunas. PMID:20003245

  4. A summary of the benthic-invertebrate and fish-community data from streams in the Indianapolis metropolitan area, Indiana, 1981-2012

    USGS Publications Warehouse

    Voelker, David C.; Bunch, Aubrey R.; Dobrowolski, Edward G.; Shoda, Megan E.

    2015-01-01

    Beginning in 1994, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index and Hilsenhoff Biotic Index (HBI) were calculated. Beginning in 1999, the Invertebrate Community Index (ICI) also was calculated from the benthic-invertebrate data. Fish-community data were collected periodically from 1999 to 2012, from which an Index of Biotic Integrity (IBI) was calculated.

  5. Aquatic Biota of Bank Stabilization Structures on the Missouri River, North Dakota.

    DTIC Science & Technology

    1982-05-01

    ephemeroptera, plecoptera , hemiptera, and coleoptera that were absent from the former. 103. The results of ANOVA and Duncan’s multiple range tests showed that...0.3) t Nematoda 1.2 2.0 1.2 3.2 4.0 11.6 (Percent) t (0.1) (0.1) (0.4) (0.1) (0.1) Plecoptera Perlodidae Isoperla 4.0 4.0 (Percent) (0.1) t Hemiptera

  6. Benthic Macro-Invertebrates of Bull Creek and Ramer Branch, Eglin AFB Reservation.

    DTIC Science & Technology

    1983-03-01

    Oligochaeta, Coleoptera, Trichoptera, Plecoptera , Odonata, and Ephermeroptera. The faunas at the sites were similar with sites sharing from 69 to 82...Coleoptera (11.4 percent), Ephemeroptera (8.2 percent), Odonata (6.8 percent), Plecoptera (4.4 percent), and Oligochaeta (4.4 percent). In the light...Hexatoma sp. (Diptera); Stenelmis sp. (Coleoptera); Anisocentropus sp., Oecetis sp., and Agarodes sp. (Trichoptera); Allocapnia sp. ( Plecoptera ); Gomphus sp

  7. Behavior responses of Drunella coloradensis (Ephemeroptera) nymphs to short-term pH reductions

    Treesearch

    Christopher M. Pennuto; Frank deNoyelles

    1993-01-01

    Behavioral responses of Drunella coloradensis nymphs were examined in outdoor experimental stream channels after pH reductions of 7 and 2 pH units below ambient. The severity of pH decline below the ambient of 7.8 influenced the behavior patterns displayed by nymphs. At pH 7.01 (an intermediate pH decline) nymphs sat less frequently and burrowed more than controls....

  8. Relations Between the Structure of Benthic Macro-Invertebrates and the Composition of Adult Water Beetle Diets from the Dytiscidae Family.

    PubMed

    Frelik, Anna; Pakulnicka, Joanna

    2015-10-01

    This paper investigates the relations between the diet structure of predaceous adult water beetles from the Dytiscidae family and the structure of macrofauna inhabiting the same environments. The field studies were carried out from April until September in 2012 and 2013 in 1-mo intervals. In total, >1,000 water beetles and 5,115 benthic macro-invertebrates were collected during the whole period of the study. Subsequently, 784 specimens of adult water beetles (70.6% out of the total sampled) with benthic macro-invertebrates found in their proventriculi, were subject to analysis. The predators were divided into three categories depending on their body size: small beetles (2.3-5.0 mm), medium-sized beetles (13-15 mm), and large beetles (27-37 mm). All adult Dytiscidae consumed primarily Ephemeroptera and Chironomidae larvae. Although Asellidae were numerically dominant inhabitants of the sites, the adult water beetles did not feed on them. The analysis of feeding relations between predators and their prey revealed that abundance of Ephemeroptera, Chironomidae, and larval Dytiscidae between the environment and the diet of adult Dytiscidae were strongly correlated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Remobilization and export of cadmium from lake sediments by emerging insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, R.S.; Fairchild, W.L.; Muir, D.C.G.

    1997-11-01

    Emerging insects including, Diptera, Odonata, Ephemeroptera, and Trichoptera were collected from Lake 382 (L382) in 1991 and 1992 to estimate quantitatively the export of Cd by aquatic insects from a natural system having elevated Cd concentrations in the water and sediment. L382 is a Canadian Shield lake, located within the Experimental Lakes Area in northwestern Ontario, that received experimental additions of Cd from 1987 to 1992. Emerging Diptera (mostly Chironomidae), Odonata, and Ephemeroptera had mean Cd concentrations of 1.41, 0.11, and 0.30 {micro}g/g wet weight, respectively. An estimated 1.32 to 3.90 g of Cd per year were exported from themore » sediments of L382 depending on the estimate of production rates used for these groups of insects. Approximately 0.05 to 0.17% of the whole-lake Cd load in L382 sediments was exported annually or 0.12 to 0.39% of the epilimnion Cd sediment load. Insect emergence may have resulted in greater Cd export from L382 relative to losses via the outflow. Cadmium exported from the sediments by insects may be remobilized and become more available to aquatic organisms or enter the terrestrial ecosystem and become available to insectivores.« less

  10. Influence of Habitat and Land Use on the Assemblages of Ephemeroptera, Plecoptera, and Trichoptera in Neotropical Streams

    PubMed Central

    do Amaral, Pedro Henrique Monteiro; da Silveira, Lidimara Souza; Rosa, Beatriz Figueiraujo Jabour Vescovi; de Oliveira, Vívian Campos; Alves, Roberto da Gama

    2015-01-01

    Insects of the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) are often used to assess the conditions of aquatic environments, but few studies have examined the differences in these communities between riffles and pools. Our objective was to test whether riffles shelter greater richness and abundance of EPT, as well as to assess the sensitivity of these insects for detecting impacts from different land uses in streams in southeastern Brazil. Samples were collected in the dry season of 2012 with a Surber sampler in riffles and pools of nine streams (forest, pasture, and urban areas). Principal component analysis distinguished the streams according to different land uses as a function of percentage of plant cover and water oxygenation level and showed partial distinction between riffles and pools as a function of current speed and percentage of ultrafine sand. Detrended correspondence analysis indicated the distinction in EPT composition between riffles and pools, except in urban streams. The results of this study confirm the expected differences in the EPT fauna structure between riffles and pools, especially in forest and pasture environments. The individual metrics of riffle and pool assemblages showed significantly different responses to land use. Therefore, we suggest individual sampling of riffles and pools, since the metrics of these assemblages’ insects can differ between these habitats and influence the results of assessments in low-order streams. PMID:25989807

  11. Influence of total organic carbon and UV-B radiation on zinc toxicity and bioaccumulation in aquatic communities.

    PubMed

    Kashian, Donna R; Prusha, Blair A; Clements, William H

    2004-12-01

    The effects of total organic carbon (TOC) and UV-B radiation on Zn toxicity and bioaccumulation in a Rocky Mountain stream community were assessed in a 10-d microcosm experiment. We predicted that TOC would mitigate Zn toxicity and that the combined effects of Zn and UV-B would be greater than Zn alone. However, TOC did not mitigate Zn toxicity in this study. In fact, treatments with TOC plus Zn had significantly lower community respiration as compared with the controls and Zn concentrations associated with the periphyton increased in the presence of TOC. UV-B had no additive effect on periphyton Zn accumulation or community respiration. Heptageniid mayflies (Ephemeroptera) were particularly sensitive to Zn, and reduced abundances were observed in all Zn treatments. UV-B did not additionally impact Heptageniid abundances; however UV-B did have a greater effect on macroinvertebrate drift than Zn alone. Ephemeroptera, Plecoptera, and Trichoptera (groups typically classified as sensitive to disturbance) were found in highest numbers in the drift of UV-B + Zn treatments. Measures of Zn accumulation in the caddisfly Arctopsyche grandis, periphyton biomass, and total macroinvertebrate abundance were not sufficiently sensitive to differentiate effects of TOC, UV-B, and Zn. These results indicate that UV-B and TOC affect Zn bioavailability and toxicity by impacting species abundance, behavior, and ecosystem processes.

  12. Co-authorship networks (and other contextual factors) behind the growth of taxonomy of South American Ephemeroptera: a scientometric approach.

    PubMed

    Domínguez, Eduardo; Dos Santos, Daniel Andrés

    2014-01-13

    Science carried out in South America has experienced a major rise in the levels of productivity and impact during the last decade. The continuity of this process depends upon strong policy decisions of personnel training and of increasing investments. We study the effects of a new regional paradigm, specifically, an increasing international visibility through knowledge support, using the particular case of taxonomy of an ancient group of insects (Ephemeroptera) in South America. We tracked the number of new species described in scholarly papers along a period of two centuries. We have also mined patterns of connections from the respective co-authorship network. A quantitative framework to analyze historical sequences of scientific output is also proposed. Our results point out three stages of taxonomic development: (i) a pioneering stage (1800's-1970's) where foreign authors coming from Europe and North America account for almost the totality of described species, (ii) a transitional stage (1980's-1990's) where new species are described by both foreign and regional authors, and (iii) an autonomous stage (1999-present) where the bulk of scientific output is performed by regional authors. Remarkably, the transitional stage coincides with the advent of democracy in the region. We hypothesize that conjunction of funding and interactions between researchers act synergistically to foster an autochthonous taxonomy in South America.

  13. A Benthic Community Index for streams in the Northern Lakes and Forests Ecoregion

    USGS Publications Warehouse

    Butcher, Jason T.; Stewart, Paul M.; Simon, Thomas P.

    2003-01-01

    Encompassing the northern glaciated section of the Midwest United States, the Northern Lakes and Forests Ecoregion is characterized by mixed conifer and deciduous forests and wetlands. Sites were randomly selected in the ecoregion using the Environmental Protection Agency's Environmental Monitoring and Assessment Program designed to develop an index of biotic integrity for wadeable streams. Macroinvertebrates were sampled during the fall of 1998 and 1999 using a multi-habitat, composite-sample method. Two hundred forty-six invertebrate taxa in 97 families were collected from 94 sites. Ten of 42 candidate metrics satisfied metric selection criteria, including six structural metrics (number of Ephemeroptera taxa, number of Diptera taxa, richness, Shannon-Wiener diversity, percent Trichoptera abundance, and percent Crustacea and Mollusca abundance), two functional metrics (number of Filterer taxa and number of Scraper taxa), and two conditional metrics (number of Ephemeroptera, Trichoptera, and Plecoptera taxa and Hilsenhoff Biotic Index). These metrics were used to develop a Benthic Community Index to assess the biological integrity of wadeable streams in the ecoregion. Index values ranged from 10 to 50, and scores from impaired sites were significantly different than non-impaired sites (P<0.001). Index values were divided into three narrative interpretations of biological integrity (poor, fair, and good). After further testing, the index may provide a useful biological assessment tool for resource managers in the ecoregion.

  14. Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters.

    PubMed

    Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera

    2017-04-16

    Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.

  15. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide.

    PubMed

    Chang, Feng-Hsun; Lawrence, Justin E; Rios-Touma, Blanca; Resh, Vincent H

    2014-04-01

    Tolerance values (TVs) based on benthic macroinvertebrates are one of the most widely used tools for monitoring the biological impacts of water pollution, particularly in streams and rivers. We compiled TVs of benthic macroinvertebrates from 29 regions around the world to test 11 basic assumptions about pollution tolerance, that: (1) Arthropoda are < tolerant than non-Arthropoda; (2) Insecta < non-Insecta; (3) non-Oligochaeta < Oligochaeta; (4) other macroinvertebrates < Oligochaeta + Chironomidae; (5) other macroinvertebrate taxa < Isopoda + Gastropoda + Hirudinea; (6) Ephemeroptera + Plecoptera + Trichoptera (EPT) < Odonata + Coleoptera + Heteroptera (OCH); (7) EPT < non-EPT insects; (8) Diptera < Insecta; (9) Bivalvia < Gastropoda; (10) Baetidae < other Ephemeroptera; and (11) Hydropsychidae < other Trichoptera. We found that the first eight of these 11 assumptions were supported despite regional variability. In addition, we examined the effect of Best Professional Judgment (BPJ) and non-independence of TVs among countries by performing all analyses using subsets of the original dataset. These subsets included a group based on those systems using TVs that were derived from techniques other than BPJ, and groups based on methods used for TV assignment. The results obtained from these subsets and the entire dataset are similar. We also made seven a priori hypotheses about the regional similarity of TVs based on geography. Only one of these was supported. Development of TVs and the reporting of how they are assigned need to be more rigorous and be better described.

  16. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  17. Habrophlebia hassainae, a new mayfly species (Ephemeroptera: Leptophlebiidae) from North Africa.

    PubMed

    Benhadji, Nadhira; Hassaine, Karima Abdellaoui; Sartori, Michel

    2018-04-05

    We present here a new species of Habrophlebia, H. hassainae sp. nov., described at nymphal, imaginal and egg stages obtained by rearing from the Tafna watershed, North western Algeria. The new species was previously identified as H. cf. fusca by Gagneur Thomas (1988). H. hassainae is in fact more related to H. lauta McLachlan, 1884, but can be separated by different characters on the male imago and nymphs. This is the third species of Habrophlebia reported from North Africa.

  18. Assessing the ecological base flow in an experimental watershed of Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, Chiang; Yang, Ping-Shih; Tian, Pei-Ling

    2010-05-01

    The ecological base flow is crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may damage the existence and balance of the community under extreme low conditions. Aquatic insect is selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. A stream located at the alpine area in central Taiwan is selected as the study area to evaluate the base flow. From the preliminary data (Aug 2008 to May 2009) collected from Creek C of Sitou watershed (area: 1.3 km^2) shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 26.3 and 17.2 %, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Excellent" and "Good" level while the EPT Index (Index of three orders: Ephemeroptera, Plecoptera, and Trichoptera) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 90%, 95% and 96% curve of duration for the daily discharge is 0.1582, 0.0476 and 0.0378 cms; the threshold value evaluated by curve of abundance vs. discharge is 0.0154 cms. Consistent observations are yet to be collected to yield more accurate results.

  19. Influence of habitat and land use on the assemblages of ephemeroptera, plecoptera, and trichoptera in neotropical streams.

    PubMed

    Amaral, Pedro Henrique Monteiro do; Silveira, Lidimara Souza da; Rosa, Beatriz Figueiraujo Jabour Vescovi; Oliveira, Vívian Campos de; Alves, Roberto da Gama

    2015-01-01

    Insects of the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) are often used to assess the conditions of aquatic environments, but few studies have examined the differences in these communities between riffles and pools. Our objective was to test whether riffles shelter greater richness and abundance of EPT, as well as to assess the sensitivity of these insects for detecting impacts from different land uses in streams in southeastern Brazil. Samples were collected in the dry season of 2012 with a Surber sampler in riffles and pools of nine streams (forest, pasture, and urban areas). Principal component analysis distinguished the streams according to different land uses as a function of percentage of plant cover and water oxygenation level and showed partial distinction between riffles and pools as a function of current speed and percentage of ultrafine sand. Detrended correspondence analysis indicated the distinction in EPT composition between riffles and pools, except in urban streams. The results of this study confirm the expected differences in the EPT fauna structure between riffles and pools, especially in forest and pasture environments. The individual metrics of riffle and pool assemblages showed significantly different responses to land use. Therefore, we suggest individual sampling of riffles and pools, since the metrics of these assemblages' insects can differ between these habitats and influence the results of assessments in low-order streams. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Benthic invertebrates in the headwaters of the Wye and Severn: effects of forestry and clear-felling

    NASA Astrophysics Data System (ADS)

    Gee, J. H. R.; Smith, B. D.

    Invertebrate communities were recorded in three surveys between 1974 and 1994 of headwaters of the Wye and Severn at Plynlimon: the Afon Gwy (unforested), the Afon Hore (initially forested) and the Afon Hafren (forested throughout). The data cover periods before and after the clear-felling of a large area of coniferous forest in the catchment of the Hore. All three streams contained invertebrates characteristic of acidic, upland conditions and had similar species richness. Differences in assemblage composition within streams between surveys could be related to differences in method or timing of sampling. All assemblages were dominated by Insecta, particularly Plecoptera and Diptera, whereas Ephemeroptera, Moilusca, Crustacca and some families of Trichoptera (notably Hydropsychidae and Philopotamidae) were poorly represented. The forested streams (Hafren and Hore) contained similar assemblages which differed from those in the unforested stream (Gwy) in containing lower densities of Ephemeroptera and Oligochacta and much higher densities of nemourid and leuctrid Plecoptera. Clear-felling of the Hore catchment resulted in changes in physical and chemical conditions (including a reduction of stream pH, and increases in dissolved aluminium concentration and summer water temperature) but no related change in the invertebrate assemblage. The apparent failure of invertebrates to respond as expected to substantial changes in local environmental conditions may reflect either a lack of understanding of causal links between invertebrates and environmental factors, or the over-riding influence of the dynamics of recruitment to populations.

  1. Sensitivity of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) to MgSO4 and Na2SO4

    NASA Astrophysics Data System (ADS)

    Vellemu, E. C.; Mensah, P. K.; Griffin, N. J.; Odume, O. N.

    2017-08-01

    Acid mine drainage (AMD) continues to deteriorate water quality in freshwater ecosystems. Sulphates, a major salt component in AMD, can exacerbate AMD effects in freshwater because salts are toxic to aquatic life in high concentrations. Sulphates are predominant in South African AMD impacted freshwater ecosystems. In this study, the sensitivity of nymphs of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) was investigated by exposing the organisms to magnesium sulphate (MgSO4) and sodium sulphate (Na2SO4) as models of mining salinisation in short-term (96 h) and long-term (240 h) in static system tests. Short-term and long-term lethal concentrations of each salt were estimated using regression analyses. The results indicated that A. auriculata was more sensitive to MgSO4 (LC50 = 3.81 g/L) than Na2SO4 (LC50 = 8.78 g/L) after short-term exposures. However, this species became sensitive to Na2SO4 (LC10 = 0.19 g/L) but tolerant to MgSO4 (LC10 = 0.35 g/L) after long-term exposures. These results suggest that the 0.25 g/L sulphate compliance limit for South Africa is inadequate to protect A. auriculata from Na2SO4 toxicity in the long-term, yet it overprotects this species from MgSO4 exposures in the short-term. The findings of this study are an important major step in understanding the ecological effects of AMD to aquatic life.

  2. Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera)

    NASA Astrophysics Data System (ADS)

    Kriska, György; Bernáth, Balázs; Horváth, Gábor

    2007-02-01

    Tisza mayflies, Palingenia longicauda (Olivier 1791), swarm exclusively over the river Tisza (from which the name of the mayfly was derived). This river is bordered by a high vertical wall of trees and bushes, which hinder P. longicauda to move away horizontally from the water. During swarming, Tisza mayflies fly immediately above the river in such a way that their cerci touch the water frequently or sweep its surface. This continuous close connection with water and the vertical wall of the shore and riparian vegetation result in that Tisza mayflies never leave the water surface; consequently, they need not search for water. Several Ephemeroptera species move away far from water and return to it guided by the horizontal polarization of water-reflected light. To reveal whether also P. longicauda is or is not polarotactic, we performed a field experiment during the very short swarming period of Tisza mayflies. We show here that also P. longicauda has positive polarotaxis, which, however, can be observed only under unnatural conditions, when the animals are displaced from the water and then released above artificial test surfaces. P. longicauda is the first species in which polarotactic water detection is demonstrated albeit it never leaves the water surface, and thus, a polarotactic water detection seems unnecessary for it. The polarotactic behaviour of Tisza mayflies explains the earlier observation that these insects swarm above wet asphalt roads running next to river Tisza.

  3. Stage description, new combination and new records of Neotropical Brachycercinae (Ephemeroptera: Caenidae).

    PubMed

    Angeli, Kamila Batista; Salles, Frederico Falcão; Paresque, Roberta; Molineri, Carlos; Lima, Lucas Ramos Costa

    2016-03-08

    We present taxonomic contributions and new records for Neotropical Brachycercinae based on material from Brazil. We performed a phylogenetic analysis in order to test the relationship between Alloretochus Sun & McCafferty, 2008 and Latineosus Sun & Mc- Cafferty, 2008, and Alloretochus sigillatus was recovered in the Latineosus clade. Therefore, we propose a new combination, Latineosus sigillatus comb. n. The nymph of Latineosus sigillatus is described and is associated with imago through molecular tools. Moreover, Alloretochus peruanicus (Soldán, 1986) is reported for the first time from Brazil.

  4. Growth and diet of fish in Waldo Lake, Oregon

    USGS Publications Warehouse

    Swanson, Nicola L.; Liss, W.J.; Ziller, Jeffrey S.; Wade, M.; Gresswell, R.E.

    2000-01-01

    Waldo Lake, located in the Oregon Cascades, is considered to be one of the most dilute lakes in the world. Even with low nutrient concentrations and sparse populations of zooplankton, introduced fish in the lake are large in size and in good condition when compared to fish from other lakes. This apparent anomaly is due to the availability of benthic macroinvertebrates. Taxa found in the stomach contents offish captured in Waldo Lake consist primarily of Chironomidae larvae and pupae, Trichoptera larvae and pupae, amphipods, Ephemeroptera larvae, and Odonata larvae.

  5. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States

    USGS Publications Warehouse

    Konrad, C.P.; Brasher, A.M.D.; May, J.T.

    2008-01-01

    4. Relative abundance of Plecoptera, richness of non-insect taxa and relative abundance of intolerant taxa were associated with multiple streamflow metrics. Metrics of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera), and intolerant taxa generally had ceilings associated with flow metrics while metrics of tolerant taxa, non-insects, dominance and chironomids generally had floors. Broader characteristics of invertebrate assemblages such as abundance and richness had fewer limits, but these limits were nonetheless associated with a broad range of streamflow characteristics.

  6. The Environmental Evaluation Work Group Fiscal Year 1979 Studies of the Winter Navigation Demonstration Program. Effects of Ship-Induced Waves in an Ice Environment on the St. Marys River Ecosystem

    DTIC Science & Technology

    1979-07-27

    April 17-21, immediately after the solid ice cover had been broken up by heavy vessel traffic. 4. 1acroinvertebrates of 56 taxa were identified in 75...clams), Amphipoda (scuds), Polychaeta, Ephemeroptera (mayflies), and Trichoptera (caddisflies) were common in all samples and collectively made up about...period of solid ice cover. Comparison of drift net catches in March when there was solid ice cover and moderate vessel traffic with catches in April

  7. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  8. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwestern streams, USA

    USGS Publications Warehouse

    Maret, T.R.; Cain, D.J.; MacCoy, D.E.; Short, T.M.

    2003-01-01

    Benthic macroinvertebrate assemblages, environmental variables, and associated mine density were evaluated during the summer of 2000 at 18 reference and test sites in the Coeur d'Alene and St. Regis River basins, northwestern USA as part of the US Geological Survey's National Water-Quality Assessment Program. Concentrations of Cd, Pb, and Zn in water and (or) streambed sediment at test sites in basins where production mine density was ???0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than concentrations at reference sites. Zn and Pb were identified as the primary contaminants in water and streambed sediment, respectively. These metal concentrations often exceeded acute Ambient Water Quality Criteria for aquatic life and the National Oceanic and Atmospheric Administration Probable Effect Level for streambed sediment. Regression analysis identified significant correlations between production mine density in each basin and Zn concentrations in water and Pb in streambed sediment (r2 = 0.69 and 0.65, p < 0.01). Metal concentrations in caddisfly tissue, used to verify site-specific exposures of benthos, also were highest at sites downstream from intensive mining. Benthic invertebrate taxa richness and densities were lower at sites downstream than upstream of areas of intensive hard-rock mining and associated metal enrichment. Benthic invertebrate metrics that were most effective in discriminating changes in assemblage structure between reference and mining sites were total number of taxa, number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, and densities of total individuals, EPT individuals, and metal-sensitive Ephemeroptera individuals.

  9. Two-Winged Cloeodes in Brazil: New Species, Stage Description, and Key to South American Species

    PubMed Central

    Massariol, Fabiana Criste; Lima, Lucas Ramos Costa; Pinheiro, Ulisses Dos Santos; Quieroz, Luciano Lopes; Oliveira, Leandro Gonçalves; Salles, Frederico Falcão

    2013-01-01

    The present work, based on material from northern, central-western, and northeastern Brazil, contributes to the knowledge of the two-winged Cloeodes Traver (Ephemeroptera: Baetidae) in South America. Two new species, C. maracatu, sp. nov. and C. spaceki, sp. nov., are described, the former based on nymphs and reared adults and the latter only on nymphs; the male and female imago of C. auwe and the female imago of C. redactus are described. Based on these findings, an updated key for South American nymphs and male adults of the two-winged Cloeodes is provided. PMID:23906240

  10. Toward a DNA Taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae) Using a Mixed Yule-Coalescent Analysis of Mitochondrial and Nuclear DNA

    PubMed Central

    Vuataz, Laurent; Sartori, Michel; Wagner, André; Monaghan, Michael T.

    2011-01-01

    Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera) inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC) model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1) marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality) or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe. PMID:21611178

  11. Louisiana waterthrush and benthic macroinvertebrate response to shale gas development

    USGS Publications Warehouse

    Wood, Petra; Frantz, Mack W.; Becker, Douglas A.

    2016-01-01

    Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of shale gas development warrant closer examination.

  12. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    PubMed

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects.

  13. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. © 2013 Society for Conservation Biology.

  14. Assessment of Ecological Quality of the Tajan River in Iran Using a Multimetric Macroinvertebrate Index and Species Traits

    NASA Astrophysics Data System (ADS)

    Aazami, Jaber; Esmaili Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J.

    2015-07-01

    The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon-Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.

  15. Assessment of ecological quality of the Tajan River in Iran using a multimetric macroinvertebrate index and species traits.

    PubMed

    Aazami, Jaber; Esmaili Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J

    2015-07-01

    The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon-Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.

  16. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  17. An annotated catalogue of the mayfly fauna of Turkey (Insecta, Ephemeroptera)

    PubMed Central

    Salur, Ali; Darilmaz, Mustafa Cemal; Bauernfeind, Ernst

    2016-01-01

    Abstract The mayfly fauna of Turkey was reviewed including all hitherto known distribution records together with references and a few new records. Additionally, comments on taxonomy, identification and nomenclature are provided. Two species are new for the Turkish fauna: Ephemera romantzovi Kluge, 1988 and Thraulus thraker Jacob, 1988. A list of taxa including their recorded distribution in Turkey (according to provinces) is provided in the annotated catalogue. The type locality is also given for each species originally described from Turkey. According to the literature and the new records, 157 mayfly taxa representing 33 genera and 14 families were described from Turkey. Among them, 24 species are considered endemic to Anatolia. PMID:27853408

  18. Comparison of macroinvertebrate community structure between two riffle-based sampling protocols in Wyoming, Colorado, and Montana, 2000-2001

    USGS Publications Warehouse

    Peterson, David A.; Zumberge, Jeremy R.

    2006-01-01

    Samples of benthic macroinvertebrates were collected side-by-side from riffles at 12 stream sites in Wyoming, Colorado, and Montana during 2000-2001, following protocols established by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program and the U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP). Samples from riffles were collected following NAWQA protocols, using a sampler with 425-micron net mesh-opening size from a total area of 1.25 m2 per sample in multiple riffles. Samples also were collected following EMAP protocols, using a sampler with 500-micron net mesh-opening size from a total area of 0.72 m2 per sample in multiple riffles. The taxonomic identification and enumeration of the samples followed procedures established for each program. Benthic macroinvertebrate community structure was compared between the data sets using individual metrics, a multimetric index, and multivariate analysis. Comparisons between the macroinvertebrate community structures were made after sequentially adjusting both data sets for: (1) ambiguous taxa, (2) taxonomic inconsistencies, and (3) differences in laboratory subsampling. After removal of ambiguous taxa, pair-wise differences in total taxa richness and Ephemeroptera taxa richness were statistically significant (p < 0.05). Differences between the data sets generally were not significant for richness of other taxa, tolerant taxa, semi-voltine taxa, functional feeding groups, diversity, and dominance. Sample scores calculated using the Wyoming Stream Integrity Index were not significantly different between the two data sets. After reconciling both data sets for taxonomic inconsistencies, total taxa richness and Ephemeroptera taxa richness remained significantly different between the data sets. After adjusting the data for differences in laboratory subsampling, the differences in taxa richness were no longer significant. Bray-Curtis similarity coefficients and non-metric multi-dimensional scaling were used to examine macroinvertebrate community structure. Similarity in community structure between sites was affected to a greater extent by taxa reconciliation than by adjustment for subsampling.

  19. An annotated list of aquatic insects of Fort Sill, Oklahoma, excluding diptera with notes on several new state records

    USGS Publications Warehouse

    Zuellig, R.E.; Kondratieff, B.C.; Schmidt, J.P.; Durfee, R.S.; Ruiter, D.E.; Prather, I.E.

    2006-01-01

    Qualitative collections of aquatic insects were made at Fort Sill, Lawton, Oklahoma, between 2002 and 2004. Ephemeroptera, Plecoptera, Trichoptera, Odonata, Coleoptera, aquatic Heteroptera, Neuroptera, and Megaloptera were targeted. Additional records are included from a survey that took place in 1999. More than 11,000 specimens from more than 290 collections were examined. Based on the current understanding of aquatic insect systematics, 276 taxa distributed over 8 orders, 46 families, and 141 genera were identified. Twenty-three of the 276 taxa, Plauditus texanus Wiersema, Tricorythodes allectus (Needham), Palmacorixa nana walleyi Hungerford, Climacia chapini Partin and Gurney, Oxyethira forcipata Mosely, Oxyethira janella Denning, Triaenodes helo Milne, Ylodes frontalis (Banks), Acilius fraternus Harris, Coptotomus loticus Hilsenhoff, Coptotomus venustus (Say), Desmopachria dispersa Crotch, Graphoderus liberus (Say), Hydrovatus pustulatus (Melsheimer), Hygrotus acaroides (LeConte), Liodessus flavicollis (LeConte), Uvarus texanus (Sharp), Gyrinus woodruffi Fall, Haliplus fasciatus Aube, Haliplus lewisii Crotch, Haliplus tortilipenis Brigham & Sanderson, Chaetarthria bicolor Sharp, Epimetopus costatus complex, and Hydrochus simplex LeConte are reported from Oklahoma for the first time. The three most diverse orders included Coleoptera (86 species), Odonata (67 species) and Trichoptera (59 species), and the remaining taxa were distributed among Heteroptera, (30 species), Ephemeroptera (21 species), Plecoptera (6 species), Megaloptera (4 species), and Neuroptera (3 species). Based on previous published records, many of the species collected during this study were expected to be found at Fort Sill; however, 276 taxa of aquatic insects identified from such a small geographic area is noteworthy, especially when considering local climatic conditions and the relatively small size of Fort Sill (38,300 ha). Despite agricultural practices in Oklahoma, the dust bowl days, and the development of water-based recreation at Fort Sill, a high percentage of the total known aquatic insect fauna of Oklahoma can be found in a small geographic area. ?? 2006 Kansas Entomological Society.

  20. [Effect of environmental factors on macroinvertebrate community structure in the Huntai River basin in the Huntai River basin].

    PubMed

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2015-01-01

    In May-June 2012, macroinvertebrates were investigated at 66 sampling sites in the Huntai River basin in Northeast of China. A total of 72 macrobenthos species were collected, of which, 51 species (70.83%) were aquatic insects, 10 species (13.89%) were mollusks, 7 species (9.72%) were annelids, and 4 species (5.56%) were arthropods. First, 13 candidate metrics (EPT taxa, Dominant taxon%, Ephemeroptera%, Trichoptera%, mollusks%, Heptageniidae/Ephemeroptera; Hydropsychidae/ Trichoptera, Oligochaeta%, intolerant taxon% , tolerant taxon%, Collector%, Clingers%, Shannon-wiener index.) which belonged to six types were chosen to represent macroinvertebrate community structure by correlation analysis. Then, relationships between anthropogenic and physiography pressures and macroinvertebrate community structure variables were measured using redundancy analysis. Then, this study compared the relative influences of anthropogenic and physiographic pressures on macroinvertebrate community structure and the relative influences of anthropogenic pressures at reach, riparian and catchment scales by pRDA. The results showed all environmental factors explained 72.23% of the variation of macroinvertebrate community structure. In addition, a large proportion of the explained variability in macroinvertebrate community structure was related to anthropogenic pressures (48.9%) and to physiographic variables (11.8%), anthropogenic pressures at reach scale influenced most significantly macroinvertebrate community structure which explained 35.3% of the variation of macroinvertebrate community structure. pH, habitat, TN, CODMn, hardness, conductivity, total dissolved particle and ammonia influenced respectively explained 4%, 3.6%, 1.8%, 1.7%, 1.7%, 0.9%, 0.9% and 0.9% of the variation of macroinvertebrate community structure. The land use at riparian and catchment scale respectively explained 10% and 7% of the variation of macroinvertebrate community structure. Finally, the relationships of land use at catchment and riparian scales and water quality factors, hydrological indicators, habitat, substrate types were analyzed. This study supports the idea that human pressures effects on river macroinvertebrate communities are linked at spatial scales and must be considered jointly.

  1. Effects of Habitat Characteristics and Water Quality on Macroinvertebrate Communities along the Neversink Riverin Southeastern New York, 1991-2001

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Schuler, George E.; Apse, Colin D.; Carter, James L.; Lester, Gary T.

    2008-01-01

    The Neversink River, in the Catskill Mountains of southeastern New York State, feeds the Neversink Reservoir, which diverts 85 percent of the river?s flow to New York City. Acidification of several headwater reaches has affected macroinvertebrate assemblages throughout the river system above the reservoir, and the alteration of flow conditions below the reservoir dam has affected macroinvertebrate assemblages for at least 10 kilometers downstream from the reservoir. In 1999, the U.S. Geological Survey, in cooperation with The Nature Conservancy, compiled data from 30 stream reaches to quantify the effects of acidification and of the reservoir on the structure and function of macroinvertebrate assemblages throughout the Neversink River. Acidic headwater reaches supported greater numbers of acid-tolerant chironomid taxa and fewer numbers of acid-sensitive Ephemeroptera and Trichoptera than neutral reaches, and fewer scraper individuals and more shredder individuals. The 14 reaches below the reservoir, with sharply decreased flows and altered flow patterns compared to reaches above the reservoir, supported more Chironomidae and fewer Ephemeroptera and Trichoptera than the upper reaches; they also had greater numbers of shredder individuals and fewer scraper and filterer individuals than reaches above the reservoir. Water-quality variables such as pH and aluminum concentration appear to have affected macroinvertebrate assemblages more strongly in the headwaters than below the reservoir, whereas physical-habitat variables such as mean channel width and water temperature have affected these assemblages more strongly downstream from the reservoir than in the headwaters. The water-quality changes due to acidification, combined with the decreased flows and lowered water temperatures below the reservoir, have disrupted downstream continuum of macroinvertebrate communities that would normally be observed from the headwaters to the mouth. The information presented herein provides a basis for further evaluation of the Neversink and similar river systems, and for assessment of the effectiveness of future conservation efforts.

  2. The effect of phorate on wetland macroinvertebrates

    USGS Publications Warehouse

    Dieter, Charles D.; Flake, Lester D.; Duffy, Walter G.

    1996-01-01

    The effects of phorate, an organophosphorus insecticide, on aquatic macroinvertebrates was studied in littoral mesocosms in South Dakota wetlands. In 1991 and 1992, four mesocosms were constructed in each of three wetlands. In each wetland, one mesocosm was a reference and phorate concentrations of 1.2, 2.4, and 4.8 kg/ha were applied to treatment mesocosms. Phorate caused mortality to amphipods and chironomids throughout the study. Leeches and snails were resistant to phorate. Few living macroinvertebrates were present in mesocosms after phorate treatment and populations recovered only slightly after 1 month. Macroinvertebrate taxa that were sensitive to phorate included: Odonata, Hemiptera, Culicidae, Heliidae, Ephemeroptera, Acarina, Coleoptera, Stratio-myidae, and Hydracarina. Taxa that were tolerant to phorate included: Hirudinea, Gastropoda, Oligochaeta, and Ostracoda.

  3. Description of Alloretochus sigillatus new species with comments and new distributional records for Alloretochus peruanicus (Ephemeroptera, Caenidae, Brachycercinae).

    PubMed

    Molineri, C

    2014-06-19

    Alloretochus sigillatus sp. nov. is described from adults of both sexes and eggs from Bolivia and Ecuador. Diagnostic characters of this species include: large body size, ratio pedicel/scape 1.75, presence of posteromedian projection on metanotum, characteristic blackish marks on abdominal terga, presence of vestiges of posterolateral projections on abdomen segments IV-VI, male subgenital plate broadly emarginated posteriorly, ratios forceps length/subbasal width 8.9, female sternum IX produced distally reaching apex of segment X, tapering distally with rounded apex, egg with 4 costae in lateral half. Additional characters for all stages and SEM photographs of eggs are provided for Alloretochus peruanicus, with new records of its presence in Argentina, Bolivia, Peru and Colombia.

  4. Scientific Coordination and Adaptive Management and Experimental Restoration of Longleaf Pine Community Structure, Function, and Composition

    DTIC Science & Technology

    1998-03-01

    0.035±0.014 0.040±+0.021 Tachiniclae 0.015±0.0 10 0.000±+0.000 0.000±+0.000 0.000±+0.000 0.005±0.005 Tephritidae 0.000±+0.000 0.000±+0.000 0.000±+0.000...0.020±0.010 Tachinidae 0.005±0.005 0.005±0.005 0.010±+0.006 0.005±0.005 0.005±0.005 Tephritidae 0.000±+0.000 0.010±+0.010 0.000±+0.000 0.000±+0.000...Tachinidae tachinid flies Tephritidae fruit flies Therevidae stiletto flies Tipulidae crane flies Xylophagidae xylophagid flies EPHEMEROPTERA MAYFLIES Baetidae

  5. An Inventory of Aquatic Macroinvertebrates and Calculation of Selected Biotic Indices for the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, September 2000 - August 2002

    USGS Publications Warehouse

    Robinson, Bret A.

    2004-01-01

    Biotic indices (indicators of water-quality conditions) were calculated from the macroinvertebrate data. Ephemeroptera, Plecoptera, Trichoptera Richness Index values calculated for 23 samples collected from 16 sites ranged from 5 to 15, with more than 75 percent of the values falling within the range of 7 to 11. Hilsenhoff Biotic Index scores and Invertebrate Community Index scores calculated for samples collected at three sites indicate that water quality at these sites ranged from good to poor. The one site with a poor water-quality index score had a small drainage area. The small drainage area and dry conditions during the sampling period may have contributed to the poor scores calculated for this site.

  6. Effects of sea lamprey (Petromyzon marinus) control in the Great Lakes on aquatic plants, invertebrates and amphibians

    USGS Publications Warehouse

    Gilderhus, P.A.; Johnson, B.G.H.

    1980-01-01

    The chemicals 3-trifluoromethyl-4-nitrophenol (TFM) or a combination of TFM and 2a??,5-dichloro-4a??-nitrosalicylanilide (Bayer 73) have been used to control the sea lamprey (Petromyzon marinus) in the Great Lakes for about 20 yr. These chemicals cause some mortalities of Oligochaeta and Hirudinea, immature forms of Ephemeroptera (Hexagenia sp.), and certain Trichoptera, Simuliidae, and Amphibia (Necturus sp.). The combination of TFM and Bayer 73 may affect some Pelecypoda and Gastropoda, but its overall effects on invertebrates are probably less than those of TFM alone. Granular Bayer 73 is likely to induce mortalities among oligochaetes, microcrustaceans, chironomids, and pelecypods. No evidence exists that the lampricides have caused the catastrophic decline or disappearance of any species. The overall impact of chemical control of sea lampreys on aquatic communities has been minor compared with the benefits derived.

  7. A new species of Cryptonympha Lugo-Ortiz McCafferty (Ephemeroptera, Baetidae) from Cerro Duida (Venezuela).

    PubMed

    Derka, TomÁŠ; Nieto, Carolina

    2018-02-05

    The genus Cryptonympha includes three species: C. copiosa Lugo-Ortiz McCafferty, 1998; C. dasilvai Salles Francischetti, 2004 and C. genevievae Thomas, Manchon Glémet, 2013, known only from the nymphal stage. A description of the nymph of a fourth representative, Cryptonympha tracheata sp. n. is provided here, based on material collected in a blackwater stream on the slopes of the Cerro Duida mountain in south-western Venezuela. The nymph of the new species can be easily distinguished from the other species of the genus by very long tracheal gills II-VII, 2.5 times the length of each tergum, gill I small, nearly half length of gill IV and by posterior margin of terga with rounded spines. A complete description of the new species and a key for nymphs of all known Cryptonympha species are provided.

  8. Invertebrate composition and abundance associated with Didymosphenia geminata in a montane stream

    USGS Publications Warehouse

    James, Daniel A.; Ranney, Steven H.; Chipps, Steven R.; Spindler, Bryan D.

    2010-01-01

    Didymosphenia geminata, a relatively new aquatic nuisance species that can form extensive, mucilaginous mats on stream substrates, was reported from Rapid Creek, South Dakota in 2002. To examine the association between D. geminata and the invertebrate community in Rapid Creek, macroinvertebrates were quantified using three gear types in the fall of 2006. D. geminata was present at two of four sites sampled (range = 5.53 to 809.68 g m−2 dry mass). At each site, invertebrates were collected using dip nets, Surber samplers, and drift nets. The combined percentage of Ephemeroptera, Plecoptera, and Trichoptera in areas with D. geminata was lower (41%) than in areas without D. geminata (76%). Diptera abundance was higher at sites with D. geminata than in sites where D. geminata was absent.

  9. Diversity and distribution of mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) of the South Platte River Basin, Colorado, Nebraska, and Wyoming, 1873-2010

    USGS Publications Warehouse

    Zuellig, Robert E.; Heinold, Brian D.; Kondratieff, Boris C.; Ruiter, David E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the C.P. Gillette Museum of Arthropod Diversity (Colorado State University, Fort Collins, Colorado), compiled collection record data to document the historical and present-day occurrence of mayfly, stonefly, and caddisfly species in the South Platte River Basin. Data were compiled from records collected between 1873 and 2010 to identify where regional knowledge about species occurrence in the basin is lacking and to encourage future researchers to locate additional populations of these poorly understood but very important organisms. This report provides a description of how data were compiled, a map of approximate collection locations, a listing of the most recent collection records from unique locations, general remarks for each species, a species list with selected summary information, and distribution maps of species collection records.

  10. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed Central

    Buchwalter, David; Davis, Jenny

    2016-01-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  11. Benthic invertebrates and quality of streambed sediments in the White River and selected tributaries in and near Indianapolis, Indiana, 1994-96

    USGS Publications Warehouse

    Voelker, David C.; Renn, Danny E.

    2000-01-01

    During this study, 369 benthic-invertebrate samples were collected at 21 sites and 33 streambed-sediment samples were collected at 14 sites to help develop and evaluate control strategies to mediate the impact of point and nonpoint sources of pollution on the White River and selected tributaries in and near Indianapolis, Indiana. Data analyses show that 124 taxa were identified and that most of the benthic invertebrates found belong to one of three taxa: the pollution-tolerant Diptera and the pollution-intolerant Ephemeroptera and Trichoptera. The Hilsenhoff Biotic Index, which was calculated from the number of arthropods and their tolerance to pollution, ranged from 4.4 (very good) to 9.4 (very poor) on the White River, and from 4.9 (good) to 9.1 (very poor) on the tributaries. The Ephemeroptera, Plecoptera, and Trichoptera (EPT) Richness Index, which was calculated from the number of taxa in pollution-intolerant species, ranged from 0 to 9 for the White River and from 0 to 9 for the tributaries. A high EPT Richness Index value reflects a great diversity of pollution-intolerant invertebrates at a site and generally indicates good water quality. A comparison of data collected during the 1994 through 1996 study to data collected during a 1981 through 1987 study indicates that the proportion of pollution-tolerant taxa increased in the immediate vicinity of Indianapolis. This increase may be an indicator that the water quality in the immediate vicinity of Indianapolis has declined since the earlier study. Comparison of the Hilsenhoff Biotic Index values, however, indicates there has been no change since the previous study. In the analysis of streambed sediments, small amounts of 12 metals were detected. Of those, only lead exceeded sediment-quality guidelines for the protection of aquatic life in three samples from two sites. Thirteen insecticides were detected in the streambed sediments, and of those only chlordane exceeded sediment-quality guidelines for the protection of aquatic life. Seventeen semivolatile organic compounds also were detected in streambed sediments at nine sites: four on the White River and five on the tributaries. Six of these compounds exceeded sedimentquality guidelines for the protection of aquatic life.

  12. Long-term historical analysis of benthic communities and physical habitat in an agricultural stream in California's San Joaquin River watershed.

    PubMed

    Hall, Lenwood W; Killen, William D; Alden, Raymond

    2009-05-01

    This study was designed to characterize long-term annual temporal and spatial trends (2001 to 2007) in physical habitat and benthic communities and to determine relationships of habitat and benthic communities during this 7-year period in an agricultural stream in the San Joaquin River watershed in California (Del Puerto Creek). The canonical discriminant analysis indicated that there were no overall significant temporal patterns for the habitat metrics although spatial patterns were prominent for nearly all the habitat metrics. Channel alteration, riparian vegetative zone, bank stability, vegetative protection and frequency of riffles/bends were the primary habitat metrics associated with these site effects. Approximately 3,700 to 4,500 individual macroinvertebrates were picked and identified from five Del Puerto Creek sites sampled annually from 2001 to 2007. The total number of taxa by year ranged from 81 in 2003 to 106 in 2007. These benthic assemblages were generally comprised of tolerant to moderately tolerant taxa such as blackflies, oligochaetes, snails and chironomids. The metrics % predators, % EPT index, % collectors/filterers and % shredders were the benthic metrics that were most associated with the temporal effects. Ephemeroptera taxa, trichoptera taxa, and % sensitive EPT index were the benthic metrics that were most associated with the site effects. The most upstream site in Del Puerto Creek had the most robust and healthy benthic communites. Strong statistical relationships were reported between certain benthic metrics and habitat metrics. Overall, samples taken from site-year combinations with sediments that were qualitatively less muddy (less fines) and that had higher habitat metric scores for embeddedness, riparian vegetative zone, and channel alteration tended to have benthic communities characterized by higher values of the benthic metrics such as EPT taxa, Ephemeroptera taxa, EPT index, abundance, and taxonomic richness, among others. Conversely, tolerance value and % tolerant taxa, the indicators of stressed benthic communities, were found to be inversely related to Bank Stability and Riparian vegetative zone (respectively), both indicators of habitat quality. Relationships between the quality of the physical habitat and the health of the benthic communities in aquatic systems, such as agricultural streams, needs to be considered before the impact of anthropogenic agents (e.g., pesticides, metals, and other potential toxicants) or other man-made perturbations may be understood. Otherwise, the interpretation of patterns of environmental conditions or causalities may be confounded.

  13. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River

    PubMed Central

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-01-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT. PMID:28890763

  14. The Diet of the Brown Trout Salmo trutta (L.) during the Reproductive Period: Size-Related and Sexual Effects

    NASA Astrophysics Data System (ADS)

    Montori, Albert; Tierno de Figueroa, J. Manuel; Santos, Xavier

    2006-10-01

    We investigated the autumnal diet of the brown trout Salmo trutta, in a Prepyrenean stream (NW Iberian Peninsula) focusing on intraspecific dietary differences related to size and sex. The diet of trout included 18 types of prey, with Plecoptera and Ephemeroptera nymphs and Diptera larvae as the most consumed taxa. Large trout ate larger prey, than did small trout, and also increased the consumption of terrestrial-surface prey with respect to aquatic-benthic prey. As terrestrial-surface preys were larger than aquatic-benthic prey, the size-related differences in the diet of trout were related to gape-limitations. Although male and female trout did not differ in size, we found that males foraged on a more diverse type of prey than females, probably owing to male territoriality during the reproductive period. This study provides new evidence of dietary plasticity in the brown trout and confirms the importance of local dietary studies to better understand factors which drive trophic ecology of predators.

  15. A contribution to mayfly studies of Western Mongolia (Insecta, Ephemeroptera)

    PubMed Central

    Erdenee, Bolortsetseg; Maasri, Alain; Gelhaus, Jon K.; Bayartogtokh, Badamdorj

    2016-01-01

    Abstract Streams in the Mongolian Altai Mountains are mostly fed from glaciers and are extreme conditions for mayflies because of high elevation, low temperatures and low annual precipitation. Previous information about mayflies of Western Mongolia is scarce, but with this study a total of 38 species belonging to 26 genera and subgenera and 8 families of mayflies has been recorded in the Mongolian Altai region. Study material was entirely imagos and collected from 78 sites during expeditions led by the Mongolian Aquatic Insect Survey in 2008, 2009 and 2010. Raptobaetopus tenellus, Caenis luctuosa and Caenis rivulorum are recorded as new to the fauna of Mongolia, and there are new distribution records for Ameletus montanus, Baetis (Acentrella) lapponica, Baetis sibiricus, Baetis (Labiobaetis) attrebatinus, Centroptilum luteolum, Procloeon pennulatum, Ephemerella aurivillii, Serratella setigera, Ephemera sachalinensis, Ecdyonurus (Afronurus) abracadabrus, Cinygmula kurenzovi, Ecdyonurus (Afghanurus) vicinus and Epeorus (Belovius) pellucidus from the Mongolian Altai region. Baetis vernus and Ephemerella aurivillii are the most frequently encountered species in this region. PMID:28174499

  16. An application of bioassessment metrics and multivariate techniques to evaluate central Nebraska streams

    USGS Publications Warehouse

    Frenzel, S.A.

    1996-01-01

    Ninety-one stream sites in central Nebraska were classified into four clusters on the basis of a cluster analysis (TWINSPAN) of macroinvertebrate data. Rapid bioassessment protocol scores for macroinvertebrate species were significantly different among sites grouped by teh first division into two clusters. This division may have distinguished sites on the basis of water-quality imparement. Individual metrics that differed between clusters of sites were the Hilsenhoff Biotic Index, the number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, and the ratio of individuals in EPT to Chironomidae taxa. Canonical correspondence analysis of 57 of 91 sites showed that stream width, site altitude, latitude, soil permeability, water temperature, and mean annual precipitation were the most important environmental variables describing variance in the species-environment relation. Stream width and soil permeability reflected streamflow characteristics of a site, whereas site altitude and latitude were factors related to general climatic conditions. Mean annual precipitation related to both streamflow and climatic conditions.

  17. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River.

    PubMed

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.

  18. Agriculture and stream water quality: A biological evaluation of erosion control practices

    NASA Astrophysics Data System (ADS)

    Lenat, David R.

    1984-07-01

    Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.

  19. A comparison of selected diversity, similarity, and biotic indices for detecting changes in benthic-invertebrate community structure and stream quality

    USGS Publications Warehouse

    Lydy, M.J.; Crawford, Charles G.; Frey, J.W.

    2000-01-01

    Implementation of advanced wastewater treatment at the two municipal wastewater-treatment plants for Indianapolis, Indiana, resulted in substantial improvement in the quality of the receiving stream and significant changes in the benthic-invertebrate community. Diversity, similarity, and biotic indices were compared to determine which indices best reflected changes in the composition of the biota in the river. None of the indices perfectly reflected the changes in river quality or community structure. Similarity indices, especially percentage similarity, exhibit the most promise of the three classes of indices. Diversity indices were least useful, wrongly indicating that water quality deteriorated after the upgrade of the wastewater-treatment plants. The most descriptive tool in analyzing the data was the percentage of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa present. Using a mixture of indices and other analytical tools, such as EPT, in the analysis of biological data will ensure the most effective investigations of water quality.

  20. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    USGS Publications Warehouse

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.

  1. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  2. Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams.

    PubMed

    Sutherland, Andrew B; Culp, Joseph M; Benoy, Glenn A

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  3. Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis

    PubMed Central

    Gill, B. A.; Kondratieff, B. C.; Casner, K. L.; Encalada, A. C.; Flecker, A. S.; Gannon, D. G.; Ghalambor, C. K.; Guayasamin, J. M.; Poff, N. L.; Simmons, M. P.; Thomas, S. A.; Zamudio, K. R.; Funk, W. C.

    2016-01-01

    The ‘mountain passes are higher in the tropics’ (MPHT) hypothesis posits that reduced climate variability at low latitudes should select for narrower thermal tolerances, lower dispersal and smaller elevational ranges compared with higher latitudes. These latitudinal differences could increase species richness at low latitudes, but that increase may be largely cryptic, because physiological and dispersal traits isolating populations might not correspond to morphological differences. Yet previous tests of the MPHT hypothesis have not addressed cryptic diversity. We use integrative taxonomy, combining morphology (6136 specimens) and DNA barcoding (1832 specimens) to compare the species richness, cryptic diversity and elevational ranges of mayflies (Ephemeroptera) in the Rocky Mountains (Colorado; approx. 40°N) and the Andes (Ecuador; approx. 0°). We find higher species richness and smaller elevational ranges in Ecuador than Colorado, but only after quantifying and accounting for cryptic diversity. The opposite pattern is found when comparing diversity based on morphology alone, underscoring the importance of uncovering cryptic species to understand global biodiversity patterns. PMID:27306051

  4. An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna

    PubMed Central

    Dalu, Tatenda; Wasserman, Ryan J.; Jordaan, Martine; Froneman, William P.; Weyl, Olaf L. F.

    2015-01-01

    Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms. PMID:26540301

  5. Infection of aquatic insects with trematode metacercariae carrying Ehrlichia risticii, the cause of Potomac horse fever.

    PubMed

    Chae, J S; Pusterla, N; Johnson, E; Derock, E; Lawler, S P; Madigan, J E

    2000-07-01

    We provide evidence of Ehrlichia risticii Holland, the agent of Potomac horse fever, in trematode stages found in aquatic insects collected from a pasture stream in northern California, using nested polymerase chain reaction (PCR) amplification and sequence analyses of the 16S rRNA, 51 kDa major antigen and groEL heat shock protein genes. E. risticii was detected in metacercariae found in the immatures and adults of the following insects: caddisflies (Trichoptera), mayflies (Ephemeroptera), damselflies (Odonata, Zygoptera), dragonflies (Odonata, Anisoptera), and stoneflies (Plecoptera). The prevalence of E. risticii was 31.9% (n = 454 individuals) in aquatic insects (13 of 17 species were positive). Prevalence within orders was as follows: 43.5% (n = 207) in caddisflies, 15.2% (n = 92) in mayflies, 13.9% (n = 115) in damselflies, 10.0% (n = 10) in dragonflies, and 80.0% (n = 30) in stoneflies. This study demonstrates a broad intermediate host range for trematodes that act as vector for E. risticii. Insects are likely to play an important role in the epidemiology of this disease.

  6. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    PubMed

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  8. Development of a foraging model framework to reliably estimate daily food consumption by young fishes

    USGS Publications Warehouse

    Deslauriers, David; Rosburg, Alex J.; Chipps, Steven R.

    2017-01-01

    We developed a foraging model for young fishes that incorporates handling and digestion rate to estimate daily food consumption. Feeding trials were used to quantify functional feeding response, satiation, and gut evacuation rate. Once parameterized, the foraging model was then applied to evaluate effects of prey type, prey density, water temperature, and fish size on daily feeding rate by age-0 (19–70 mm) pallid sturgeon (Scaphirhynchus albus). Prey consumption was positively related to prey density (for fish >30 mm) and water temperature, but negatively related to prey size and the presence of sand substrate. Model evaluation results revealed good agreement between observed estimates of daily consumption and those predicted by the model (r2 = 0.95). Model simulations showed that fish feeding on Chironomidae or Ephemeroptera larvae were able to gain mass, whereas fish feeding solely on zooplankton lost mass under most conditions. By accounting for satiation and digestive processes in addition to handling time and prey density, the model provides realistic estimates of daily food consumption that can prove useful for evaluating rearing conditions for age-0 fishes.

  9. Evaluating adequacy of the representative stream reach used in invertebrate monitoring programs

    USGS Publications Warehouse

    Rabeni, C.F.; Wang, N.; Sarver, R.J.

    1999-01-01

    Selection of a representative stream reach is implicitly or explicitly recommended in many biomonitoring protocols using benthic invertebrates. We evaluated the adequacy of sampling a single stream reach selected on the basis of its appearance. We 1st demonstrated the precision of our within-reach sampling. Then we sampled 3 or 4 reaches (each ~20x mean width) within an 8-16 km segment on each of 8 streams in 3 ecoregions and calculated 4 common metrics: 1) total taxa; 2) Ephemeroptera, Plecoptera, and Trichoptera taxa; 3) biotic index; and 4) Sharmon's diversity index. In only 6% of possible cases was the coefficient of variation for any of the metrics reduced >10% by sampling additional reaches. Sampling a 2nd reach on a stream improved the ability to detect impairment by an average of only 9.3%. Sampling a 3rd reach on a stream additionally improved ability to detect impairment by only 4.5%. We concluded that a single well-chosen reach, if adequately sampled, can be representative of an entire stream segment, and sampling additional reaches within a segment may not be cost effective.

  10. Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams

    USGS Publications Warehouse

    Stepenuck, K.F.; Crunkilton, R.L.; Wang, L.

    2002-01-01

    Macroinvertebrates were used to assess the impact of urbanization on stream quality across a gradient of watershed imperviousness in 43 southeastern Wisconsin streams. The percentage of watershed connected imperviousness was chosen as the urbanization indicator to examine impact of urban land uses on macroinvertebrate communities. Most urban land uses were negatively correlated with the Shannon diversity index, percent of pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera individuals, and generic richness. Nonurban land uses were positively correlated with these same metrics. The Hilsenhoff biotic index indicated that stream quality declined with increased urbanization. Functional feeding group metrics varied across a gradient of urbanization, suggesting changes in stream quality. Proportions of collectors and gatherers increased, while proportions of filterers, scrapers, and shredders decreased with increased watershed imperviousness. This study demonstrated that urbanization severely degraded stream macroinvertebrate communities, hence stream quality. Good stream quality existed where imperviousness was less than 8 percent, but less favorable assessments were inevitable where imperviousness exceeded 12 to 20 percent. Levels of imperviousness between 8 and 12 percent represented a threshold where minor increases in urbanization were associated with sharp declines in stream quality.

  11. Gene Flow Patterns of the Mayfly Fallceon quilleri in San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Zickovich, J.; Bohonak, A. J.

    2005-05-01

    Management decisions and conservation strategies for freshwater invertebrates critically depend on an understanding of gene flow and genetic structure. We collected the mayfly Fallceon quilleri (Ephemeroptera: Baetidae) from 15 streams across three geographically distinct watersheds in San Diego County, California (San Dieguito, Santa Margarita, and Tijuana) and one site in Anza-Borrego desert. We sequenced a 667 base pair region of the mitochondrial DNA (COI) to assess genetic structure and gene flow. We found eight haplotypes across all populations. San Dieguito and Santa Margarita each contained six haplotypes. Tijuana and Anza Borrego each contained four haplotypes. The expected heterozygosity for San Dieguito, Santa Margarita, Tijuana, and Anza Borrego was 0.81, 0.83, 0.75, and 1.0, respectively. A hierarchical AMOVA analysis indicated restricted gene flow and a pairwise comparison indicated that Tijuana watershed differs significantly from San Dieguito and Anza Borrego. A haplotype cladogram revealed two internal ancestral haplotypes and six derived tip haplotypes that are unique to particular watersheds. These results suggest that Tijuana (the southernmost and the most impacted watershed) is more genetically distinct and isolated than the other watersheds sampled.

  12. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. © 2014 SETAC.

  13. Central Asian mountain Rhithrogenini (Ephemeroptera: Heptageniidae) with pointed and ephemeropteroid claws in the winged stages.

    PubMed

    Kluge, Nikita J

    2015-08-03

    Among mountain species of Heptageniidae from Central Asia, six species belonging to the taxa Cinygmula McDunnough 1933, Himalogena Kluge 2004 and Caucasiron Kluge 1997 have all claws of the winged stages (subimago and imago) pointed. In this area Cinygmula is represented by two species: C. hutchinsoni (Traver 1939) (with pointed claws) and C. joosti Braasch 1977 (with the more typical ephemeropteroid claws); for both species all stages of both sexes associated by rearing are redescribed. The Central Asian mountain taxon Himalogena includes seven species: Rhithrogena (Himalogena) tianshanica Brodsky 1930, Rh. (H.) pamirica sp. n., Rh. (H.) carnivora sp. n., Rh. (H.) semicarnivora sp. n., Rh. (H.) stackelbergi Sinitshenkova 1973, Rh. (H.) gunti sp. n. and Rh. (H.) nepalensis Braasch 1984; for five of them, all stages of both sexes associated by rearing are redescribed; Rh. (H.) semicarnivora is known as male imagoes reared from larvae; Rh. (H.) nepalensis formerly known only as larvae, is redescribed based on an anomalous female imago (with gynandromorphism caused by helminth in abdomen) reared from the larval stage. Among these species, Rh. (H.) tianshanica, Rh. (H.) pamirica, Rh. (H.) carnivora and Rh. (H.) semicarnivora have mandibles and the labrum modified for carnivorism, while the other three species have the usual Rhithrogena mouth apparatus. Imagoes and subimagoes of Rh. (H.) pamirica, Rh. (H.) carnivora, Rh. (H.) gunti and Rh. (H.) nepalensis, have both claws of each leg pointed, while the other species have ephemeropteroid claws. Corrections to the description of Rh. minima Sinitshenkova 1973 claw denticulation and to original figure references are given. The taxon Ironopsis/g1 is represented by two species in the Central Asian mountains: Epeorus (Caucasiron) guttatus (Braasch & Soldán 1979) (with pointed claws) and Epeorus (Ironopsis) rheophilus (Brodsky 1930) (with ephemeropteroid claws); for both species all stages of both sexes associated by rearing are redescribed. The character distribution patterns of pointed and ephemeropteroid claws within mayfly phylogeny leads one to assume that both types of claws repeatedly change back and forth within Ephemeroptera. However, within Heptageniidae, those species whose winged stages have pointed claws have overlapping ranges of distribution limited to high mountain systems of Central Asia; their larvae inhabit the same biotopes (stones in rapid streams), have the same habitat and can come into contact with one another when they aggregate on a stone. These observations allow for a hypothesis that explains the repeated change to pointed claws from ephemeropteroid claws among various Heptageniidae species via horizontal transfer of some hereditary factor during the evolutionary history of each of those species with the peculiar claw morphology.

  14. Life cycles of dominant mayflies (Ephemeroptera) on a torrent of the high Bolivian Andes

    PubMed

    Molina, Carlos I; Puliafico, Kenneth P

    2016-03-01

    The mayflies of the temperate and cold zones have well-synchronized life cycles, distinct cohorts, short emergence and flight periods. In contrast, aquatic insects from the tropical zones are characterized by multivoltine life cycles, “non-discernible cohorts” and extended flight periods throughout the year. This report is the first observation of life cycle patterns made of two species of mayflies on a torrent in the high elevation Bolivian Andes. The samples were taken from four sites and four periods during a hydrological season. The life cycle of each species was examined using size-class frequency analysis and a monthly modal progression model (von Bertalanffy’s model) to infer the life cycle synchrony type. These first observations showed a moderately synchronized univoltine life cycle for Andesiops peruvianus (Ulmer, 1920), whereas Meridialaris tintinnabula Pescador and Peters (1987), had an unsynchronized multivoltine life cycle. These results showed that the generalization of all aquatic insects as unsynchronized multivoltine species in the Andean region may not be entirely accurate since there is still a need to further clarify the life cycle patterns of the wide variety of aquatic insects living in this high elevation tropical environment.

  15. Burrowing mayfly populations in Chequamegon Bay, Wisconsin: 2002 and 2012

    USGS Publications Warehouse

    Brunk, Kristin M.; Vinson, Mark R.; Ogle, Derek H.; Evrard, Lori M.

    2014-01-01

    Burrowing mayflies (Ephemeroptera: Ephemeridae) are sensitive to pollution and have been used as environmental indicators in the Great Lakes. Hexagenia limbata and Ephemera simulans population abundance and biomass estimates from Chequamegon Bay, Lake Superior, were compared between the years 2002 and 2012 as well as inside and outside the Northern States Power Lakefront Superfund site. Mean abundance was similar and mean biomass of Ephemeridae was slightly less in 2012 than in 2002, most likely due to the occurrence of E. simulans in 2012, a smaller species not collected in 2002. In 2012, mean ephemerid abundance and biomass outside the Superfund site was significantly higher than inside the Superfund site. Biomass was higher in clay, clay with sand, and sand with clay substrates than in fine sand, coarse sand, or wood debris substrates. Substrate in the Superfund site was predominantly wood debris. Future monitoring of ephemerid populations in Chequamegon Bay, and particularly in the Superfund site as clean up begins, would be valuable to establish long-term population trends for these two species and potentially shed light on the habitat requirements of E. simulans, an understudied species in the Great Lakes.

  16. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  17. Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Milner, Alexander M.; Knudsen, E. Eric; Soiseth, Chad; Robertson, Anne L.; Schell, Don; Phillips, Ian T.; Magnusson, Katrina

    2000-01-01

    In May 1997, physical and biological variables were studied in 16 streams of different ages and contrasting stages of development following glacial recession in Glacier Bay National Park, southeast Alaska. The number of microcrustacean and macroinvertebrate taxa and juvenile fish abundance and diversity were significantly greater in older streams. Microcrustacean diversity was related to the amount of instream wood and percent pool habitat, while the number of macroinvertebrate taxa was related to bed stability, amount of instream wood, and percent pool habitat. The percent contribution of Ephemeroptera to stream benthic communities increased significantly with stream age and the amount of coarse benthic organic matter. Juvenile Dolly Varden (Salvelinus malma) were dominant in the younger streams, but juvenile coho salmon (Oncorhynchus kisutch) abundance was greater in older streams associated with increased pool habitat. Upstream lakes significantly influenced channel stability, percent Chironomidae, total macroinvertebrate and meiofaunal abundance, and percent fish cover. Stable isotope analyses indicated nitrogen enrichment from marine sources in macroinvertebrates and juvenile fish in older streams with established salmon runs. The findings are encapsulated in a conceptual summary of stream development that proposes stream assemblages to be determined by direct interactions with the terrestrial, marine, and lake ecosystems.

  18. The decapod red pigment-concentrating hormone (Panbo-RPCH) is the first identified neuropeptide of the order Plecoptera and is interpreted as homoplastic character state.

    PubMed

    Gäde, Gerd; Marco, Heather G

    2015-09-15

    This paper presents the first neuropeptide structure, identified by mass spectrometry, in two species of Plectoptera (stoneflies) and in one species of the coleopteran family Lycidae. In all three species, the octapeptide Panbo-RPCH (first identified in Pandalus borealis as a red pigment-concentrating hormone: pGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp amide) is present. A review of the literature available on invertebrate neuropeptides that are identified or predicted from expressed sequence tags, transcriptome shotgun assemblies, and from fully sequenced genomes, show that Panbo-RPCH is found in Malacostraca (Crustacea) and certain hemipteran Heteroptera (Insecta). To date, Panbo-RPCH has not been shown present in non-Malacostracan crustaceans, nor in basal taxa of the Insecta (Archaeognatha, Zygentoma, Ephemeroptera, Odonata). The present data adds to knowledge on the distribution of Panbo-RPCH, and when taking into account the most accepted, current phylogenetics of the Crustacea-Hexapoda relationship, this distribution of Panbo-RPCH in Malacostraca, Plecoptera, some hemipteran Heteroptera and in Coleoptera (Lycidae) can best be explained by homoplasy, implying parallel evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Refernce Conditions for Streams in the Grand Prairie Natural Division of Illinois

    NASA Astrophysics Data System (ADS)

    Sangunett, B.; Dewalt, R.

    2005-05-01

    As part of the Critical Trends Assessment Program (CTAP) of the Illinois Department of Natural Resources (IDNR), 12 potential reference quality stream sites in the Grand Prairie Natural Division were evaluated in May 2004. This agriculturally dominated region, located in east central Illinois, is the most highly modified in the state. The quality of these sites was assessed using a modified Hilsenhoff Biotic Index and species richness of Ephemeroptera, Plecoptera, and Trichoptera (EPT) insect orders and a 12 parameter Habitat Quality Index (HQI). Illinois EPA high quality fish stations, Illinois Natural History Survey insect collection data, and best professional knowledge were used to choose which streams to evaluate. For analysis, reference quality streams were compared to 37 randomly selected meandering streams and 26 randomly selected channelized streams which were assessed by CTAP between 1997 and 2001. The results showed that the reference streams exceeded both taxa richness and habitat quality of randomly selected streams in the region. Both random meandering sites and reference quality sites increased in taxa richness and HQI as stream width increased. Randomly selected channelized streams had about the same taxa richness and HQI regardless of width.

  20. Macroinvertebrate Response to Drought in Undisturbed Headwater Streams of Southwest Georgia.

    NASA Astrophysics Data System (ADS)

    Winn, R. T.; Griswold, M. W.; Golladay, S. W.; Crisman, T. L.

    2005-05-01

    Macroinvertebrates were sampled in four headwater streams for two years (2001-2003) to establish baseline conditions for a study evaluating forestry best management practices. The Palmer Drought Severity Index indicated that the study site experienced a prolonged moderate to severe drought prior to study initiation, with year one of the study characterized as a moderate drought, while year two encompassed drought and initial rainfall recovery. Benthic macroinvertebrates were collected in streams during year one (December 2001/February 2002) and year two (December 2002/February 2003) using a multi-habitat sampling procedure. Individuals were identified to the lowest practical taxonomic level (mostly genus), and metrics including abundance, total number of taxa, and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa were calculated. Repeated measures ANOVA identified differences in macroinvertebrate assemblages due to sampling period, with lower values for December 2001 relative to February 2003. Abundance and EPT taxa showed an increasing relationship with average daily flow in successive samples of the study. Initiation of drought conditions prior to the study adversely affected species composition (low numbers of EPT taxa and long lived taxa) and trophic structure (co-dominance of shredders, collectors, and predators).

  1. Fish and invertebrate flow-biology relationships to support the determination of ecological flows for North Carolina

    USGS Publications Warehouse

    Phelan, Jennifer; Cuffney, Thomas F.; Patterson, Lauren A.; Eddy, Michele; Dykes, Robert; Pearsall, Sam; Goudreau, Chris; Mead, Jim; Tarver, Fred

    2017-01-01

    A method was developed to characterize fish and invertebrate responses to flow alteration in the state of North Carolina. This method involved using 80th percentile linear quantile regressions to relate six flow metrics to the diversity of riffle-run fish and benthic Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness. All twelve flow-biology relationships were found to be significant, with both benthos and fish showing negative responses to ecodeficits and reductions in flow. The responses of benthic richness to reduced flows were consistent and generally greater than that of fish diversity. However, the riffle-run fish guild showed the greatest reductions in diversity in response to summer ecodeficits. The directional consistency and differential seasonal sensitivities of fish and invertebrates to reductions in flow highlight the need to consider seasonality when managing flows. In addition, all relationships were linear, and therefore do not provide clear thresholds to support ecological flow determinations and flow prescriptions to prevent the degradation of fish and invertebrate communities in North Carolina rivers and streams. A method of setting ecological flows based on the magnitude of change in biological condition that is acceptable to society is explored.

  2. Diel feeding ecology of Slimy Sculpin in a tributary to Skaneateles Lake, New York

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.

    2016-01-01

    Interactions among the benthic community are typically overlooked but play an important role in fish community dynamics. We examined the diel feeding ecology of Slimy Sculpin (Cottus cognatus) from Grout Brook, a tributary to Skaneateles Lake. Of the six time periods examined, Slimy Sculpin consumed the least during the nighttime (2400 h and 0400 h). Chironomids were the major prey consumed during all time periods except for 2400 h when ephemeropterans were the major prey consumed. There was a moderate preference by Slimy Sculpin for food from the benthos (0.59 ± 0.06) with Diptera (Chironomids), Ephemeroptera (Baetidae), and Trichoptera (Brachycentridae) representing the major taxa. Slimy Sculpin appear to be opportunistic feeders selecting what is most available in the brook. Index of fullness was variable and averaged 1.15% across the diel cycle. Daily ration was measured as a function of fish dry body weight and ranged from 0.12 to 0.22. Estimates of daily consumption ranged from 0.007% to 4.0% of body weight, which corresponds to reports for other species. These findings have application in gauging the relative importance of Slimy Sculpin in streams where highly valued salmonid species also occur.

  3. [Fresh water macroinvertebrates of Costa Rica I].

    PubMed

    Springer, Monika; Ramirez, Alonso; Hanson, Paul

    2010-12-01

    This is the first in a series of three volumes on the freshwater macroinvertebrates of Costa Rica. The present volume includes an introductory chapter summarizing the major types of freshwater environments, the biology of freshwater macroinvertebrates (habitats, food, respiration, osmoregulation, etc.), ecological and economic importance, conservation and a synopis of the major groups, followed by a simplified key. The next two chapters discuss collecting methods and biomonitoring. These are followed by chapters on mayflies (Ephemeroptera: 10 families), dragonflies (Odonata: 13 families), stoneflies (Plecoptera: 1 family) and caddisflies (Trichoptera: 15 families). Both in this volume and in those to follow, the chapters treating individual taxa include a summary of the natural history, importance, taxonomy, collecting methods, morphology and an illustrated key to the families; each family is discussed separately and an illustrated key to genera is provided; each chapter ends with a bibliography and a table listing all the genera with information on number of species, distribution, habitat and tolerance to water pollution. While the emphasis is on families and genera known from Costa Rica, additional taxa occurring elsewhere in Central America are mentioned. The present volume also includes numerous color plates of aquatic macroinvertebrates.

  4. The influence of sawmill wood wastes on the distribution and population of macroinvertebrates at Benin River, Niger Delta area, Nigeria.

    PubMed

    Arimoro, Francis O; Osakwe, Emeka I

    2006-05-01

    The impact of sawmill wood wastes on the distribution of benthic macroinvertebrates at the Sapele section of Benin River, Niger Delta, Nigeria, was investigated from March 2005 to August 2005. A total of 434 individuals were collected by kick-sampling method, representing 21 taxa of benthic macroinvertebrates. Three stations, 1, 2, and 3, were selected from upstream of the site, receiving wood wastes discharge, the impacted site and its down stream, respectively. Among the water quality variables, conductivity, dissolved oxygen, biochemical oxigen demand (BOD(5)), nitrate-nitrogen, phosphate-phosphorus, transparency, and alkalinity were significantly different (P<0.05) among the stations. Orthogonal comparison by Duncan's multiple range test showed that station 2 (the impacted site) was the cause of the difference. More sensitive species such as Ephemeroptera or Plecoptera were completely absent from station 2, the impacted site. Species abundance was similar in station 1 and 3, indicating that the wood wastes must have adversely affected the distribution of these macroinvertebrates, especially the intolerant species. The wood waste discharge not only altered the water chemistry, but also stimulated the abundance of less-sensitive macroinvertebrate species.

  5. [Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes].

    PubMed

    Chacón, María M; Segnini, Samuel; Briceño, Daniela

    2016-03-01

    Daily emergence of mayflies in Neotropical rivers and their causes have been poorly studied. In temperate zones, this process is better known and attributed to several factors. In this work, we studied the daily emergence of subimagines of several Ephemeroptera genera in La Picón River of a Venezuelan Andean cloud forest and its relation with changes of environmental temperature. Four emergence traps were placed along a reach of 50 m of the stream, each one was examined each two hours in a 24 hr cycle to capture the newly emerged subimagos. This procedure was repeated for eight dates between November-2007 and February-2008 for a total of 32 observations in each sampling hour. The subimagos were reared to adults and identified to genus. The relative density of emergence per trap was calculated for each genus and sampling hour. Water and air temperature were measured each hour during the daily cycle of observation, and the averages of temperature and hour-degrees of air and water were calculated for each hour from the eight dates studied. Seven genera were identified: Leptohyphes Eaton, 1882 and Haplohyphes Allen 1966 (Leptophlebiidae); Prebaetodes Lugo-Ortiz and McCafferty, 1996, Andesiops Lugo-Ortiz and McCafferty, 1999, Baetodes Needham and Murphy, 1924 and Americabaetis Kluge, 1992 (Baetidae); and Thraulodes Ulmer, 1920 (Leptophlebiidae); being the more abundant Leptohyphes (38.4 %) and Thraulodes (20.5 %). The emergence occurred between 11:00 am and 23:00 pm showing the following: a) an emergence initiated during daylight hours by organisms of Leptohyphes, Prebaetodes and Haplohyphes; b) a nocturnal emergence, in Thraulodes, Andesiops, Baetodes and Americabaetis; and c) two peaks: one diurnal produced by Leptohyphes and other nocturnal with predominance of Thraulodes. These results are the first records on the diurnal daily emergence in Andesiops, Prebaetodes, Americabaetis, Haplohyphes, and Leptohyphes, as well as the nocturnal emergence in Thraulodes. It was evidenced that Leptohyphes, with small nymphs (average head width = 1.05 mm) needed to accumulate less hour-degrees to initiate the emergence than those required by Thraulodes whose nymphs are larger (average head width = 2.01 mm). This disparity in the emergence energy requirements must be consequence of differences between the sizes of mature nymphs of both genera; facts which rely on the constancy of sizes shown by these taxa along an altitudinal-thermal gradient and the little daily and seasonal variability of water temperature in La Picón River. In the daily lapse when the emergence occurred, the air and water average temperatures were higher than those registered in the no-emergence lapse; therefore; it is suggested that during the daily lapse, when this process occurs, the environment is thermally favorable for the emergence of subimagos and their survival out of water.

  6. The Widespread use of Methoprene for the Prevention and Control of West Nile Virus in Ontario, Canada: Is it Impairing our Streams?

    NASA Astrophysics Data System (ADS)

    Fletcher, R.; Baker, S. L.; Hayton, A.

    2005-05-01

    Catch basins have been identified as a major breeding location for the mosquito Culex pipiens, a primary vector for the spread of West Nile Virus in Ontario. Methoprene, an insect growth regulator, has been applied extensively in catch basins to combat the spread of mosquito populations. Since 2003, an estimated 1 million catch basins located around the Canadian shores of Lake Ontario were treated with 0.7g of 30-day, slow release methoprene pellets (4.25% active ingredient). Although studies have shown that methoprene breaks down quickly in the environment and is relatively non-toxic to mammals and fish, the large quantities being applied across Ontario raise concerns over the effects methoprene and its metabolites may have on non-target aquatic insects. The receiving streams of selected catch basins where methoprene was applied regularly were studied to assess the effects of methoprene application on stream macroinvertebrates. Although methoprene was not detected in the receiving waters, some changes in the community assemblages were observed. Many of the observed changes could be attributed to seasonality, however, percent Ephemeroptera, Plecoptera and Trichoptera (EPT) tended to be lower downstream of the storm sewer discharge compared to upstream and pre-application.

  7. Environmental impact of coal ash on tributary streams and nearshore water of Lake Erie. Progress report, June 1, 1975--December 31, 1975. [Cd, Zn, Cu, Cr, Fe, Mn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, K.

    The principal study site is the landfill of the Niagara Mohawk Power Corp., Dunkirk, N.Y. Concentrations of dissolved metals are determined in the waters from the site and aquatic invertebrates from ponds and streams at the site are being identified and analyzed for trace metals. Elevated levels of Fe and Mn occur in the runoff from the site and in the aquatic invertebrates. The metals Cd, Zn, Cu, and Cr are found at low levels (ppB range) in the waters and in variable, generally low concentrations in the biota. Taxonomic study is focused primarily on the Chironomidae (10 general) andmore » Ephemeroptera (6 genera) with detailed studies in progress. The rate of leaching of metals from coal ash is also being studied in the laboratory by two methods. Sediments from Lake Erie at Dunkirk, N.Y., are being assessed for textural classification and composition. Attempts are being made to distinguish between coal wastes and other sediment in the silt and finer size range. The dump site is being evaluated for groundwater, surface water, and geological structure, so that trace element cycling can be evaluated.« less

  8. Comparative Survey of Entomophagy and Entomotherapeutic Practices in Six Tribes of Eastern Arunachal Pradesh (India)

    PubMed Central

    2013-01-01

    A consolidated list of edible insects used in the eastern part of Arunachal Pradesh (N.E. India) by Wangcho (Wancho) and Nocte tribes of the Tirap District and the Shingpo, Tangsa, Deori and Chakma of the Changlang District has been prepared. The list is based on thorough, semi-structured field-interviews with 20 informants of each tribal group. At least 51 insect species, belonging to 9 orders were considered edible. The largest number of the edible species belonged to the Coleoptera (14), followed by 10 each of the Orthoptera and Hymenoptera, 9 of the Hemiptera, 3 Lepidoptera, 2 Isoptera and one each of Ephemeroptera, Odonata and Mantodea. As far as therapeutic uses of insects are concerned, 4 species (Hemiptera) were mentioned by the Wangcho (Wancho). Food insects are chosen by members of the various tribes according to traditional beliefs, taste, regional and seasonal availability of the insects. Depending on the species, only certain, but sometimes all, developmental stages are consumed. Preparation of the food insects for consumption involves mainly roasting or boiling. With the degradation of natural resources, habitat loss, rapid population growth, and increasing ‘westernization’ , the traditional wisdom of North-East Indian tribals related to insect uses is at risk of being lost. PMID:23866996

  9. Comparative survey of entomophagy and entomotherapeutic practices in six tribes of eastern Arunachal Pradesh (India).

    PubMed

    Chakravorty, Jharna; Ghosh, Sampat; Meyer-Rochow, V Benno

    2013-07-19

    A consolidated list of edible insects used in the eastern part of Arunachal Pradesh (N.E. India) by Wangcho (Wancho) and Nocte tribes of the Tirap District and the Shingpo, Tangsa, Deori and Chakma of the Changlang District has been prepared. The list is based on thorough, semi-structured field-interviews with 20 informants of each tribal group. At least 51 insect species, belonging to 9 orders were considered edible. The largest number of the edible species belonged to the Coleoptera (14), followed by 10 each of the Orthoptera and Hymenoptera, 9 of the Hemiptera, 3 Lepidoptera, 2 Isoptera and one each of Ephemeroptera, Odonata and Mantodea. As far as therapeutic uses of insects are concerned, 4 species (Hemiptera) were mentioned by the Wangcho (Wancho). Food insects are chosen by members of the various tribes according to traditional beliefs, taste, regional and seasonal availability of the insects. Depending on the species, only certain, but sometimes all, developmental stages are consumed. Preparation of the food insects for consumption involves mainly roasting or boiling. With the degradation of natural resources, habitat loss, rapid population growth, and increasing 'westernization' , the traditional wisdom of North-East Indian tribals related to insect uses is at risk of being lost.

  10. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  11. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects.

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-05-06

    Evolutionarily distinct lineages can vary markedly in their accumulation of, and sensitivity to, contaminants. However, less is known about variability among closely related species. Here, we compared dissolved Cd and Zn bioaccumulation in 19 species spanning two species-rich aquatic insect families: Ephemerellidae (order Ephemeroptera (mayflies)), generalized to be metal sensitive, and Hydropsychidae (order Trichoptera (caddisflies)), generalized to be metal tolerant. Across all species, Zn and Cd uptake rate constants (k(u)s), efflux rate constants (k(e)s) and bioconcentration factors (BCFs) strongly covaried, suggesting that these metals share transport pathways in these distinct lineages. K(u)s and BCFs were substantially larger in Ephemerellidae than in Hydropsychidae, whereas k(e)s did not dramatically differ between the two families. Body size played an important role in driving ku differences among species, but had no influence on k(e)s. While familial differences in metal bioconcentration were striking, each family exhibited tremendous variability in all bioaccumulation parameters. At finer levels of taxonomic resolution (within families), phylogeny did not account for differences in metal bioaccumulation. These findings suggest that intrafamily variability can be profound and have important practical implications in that we need to better understand how well "surrogate species" represent their fellow congeners and family members.

  12. Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie

    USGS Publications Warehouse

    Krieger, Kenneth A.; Schloesser, Don W.; Manny, Bruce A.; Trisler, Carmen E.; Heady, Susan E.; Ciborowski, Jan J.H.; Muth, Kenneth M.

    1996-01-01

    Burrowing mayflies (Hexagenia spp.) are native to western Lake Erie and were abundant until the 1950s, when they disappeared due to degraded water and sediment quality. Nymphs were absent from the sediments of most of western Lake Erie after the 1950s, although small, widely disjunct populations apparently persisted near shore. Sediment samples collected in 1993 revealed several small populations near the western and southern shores and beyond the mouths of the Detroit and Maumee rivers. A larger population was found in the southern island area, but nymphs were absent in the middle of the basin. By 1995, nymphs had spread throughout the western half and eastern end of the basin but remained absent from the middle of the basin. These data indicate thatHexagenia began recolonizing nearshore areas before offshore areas. Increasingly large swarms of winged Hexagenia on shore and over the lake between 1992 and 1994 further indicate that mayflies are recolonizing the basin. Factors that have permitted Hexageniarecovery in western Lake Erie probably include improved sediment and water quality attributed to pollution abatement programs implemented after the early 1970s, and perhaps environmental changes in the early 1990s attributed to effects of the exotic zebra mussel (Dreissena polymorpha).

  13. Longitudinal Changes in Physical Habitat and Macroinvertebrate Assemblages Along a Neotropical Stream Continuum

    NASA Astrophysics Data System (ADS)

    Colon-Gaud, C.; Whiles, M. R.

    2005-05-01

    Information on the structure and function of upland Neotropical streams is lacking compared to many other regions. We examined habitat characteristics and macroinvertebrate assemblages along an 8-km stretch of a stream originating on the continental divide in central Panama in order to examine patterns along a stream continuum. Wetted width and discharge ranged from 1 m and 18 L/s, respectively in the uppermost headwaters to 12 m and 1,580 L/s, respectively at the lowest reach examined. Percent substrate composition showed a decrease in fine particle sizes from upper headwater reaches (38%) to the lowest reach (10%). A total of 61 macroinvertebrate taxa were identified along the continuum, with more taxa present in lower reaches (45) compared to headwaters (28), but responses of individual groups varied. Trichoptera, Ephemeroptera, and Diptera richness increased from headwaters to the lowest site, whereas Hemiptera and Coleoptera richness decreased along the gradient. Collector-gatherers and predators were the dominant functional groups (~70% of total abundance) and changed little across sites. Shredder abundance was highest in headwaters (15% of total), while scrapers (20%) and collector/filterers (11%) peaked in the lower reaches. These patterns suggest that upland streams in this region follow basic tenets of the River Continuum Concept.

  14. New species and first records of trichomycetes from immature aquatic insects in Idaho.

    PubMed

    Bench, Molly E; White, Merlin M

    2012-01-01

    Trichomycetes, or gut fungi, are currently recognized as an ecological group of fungi and protists that inhabit the guts of immature insects or other stages and types of arthropods. The geographic distribution of these endosymbionts is worldwide. However trichomycete data from the Pacific Northwest are limited and this is the first account of gut fungi in Idaho. We report on the trichomycetes from a single site, Cottonwood Creek at Military Reserve Park, Boise, Idaho, where periodic surveys for more than a year resulted in the discovery of four newly named, three probably new but unnamed and 15 previously known species. Among the Harpellales three new species, Capniomyces sasquatchoides, Harpella torus and Lancisporomyces lampetriformis, are described, with two possibly new species of Smittium detailed but unnamed at this time pending further collections. A Genistelloides cf. hibernus also is included as a possible new species. One new species of Amoebidiales, Paramoebidium hamatum, is described as well. Hosts in which the gut fungi were recovered include larvae or nymphs of Diptera (Chironomidae and Simuliidae), Ephemeroptera (Baetidae) and Plecoptera (Capniidae and Taeniopterygidae). We hope to demonstrate that future surveys or bioprospecting investigations into the biodiversity of these early-diverging fungi in this region and worldwide remain promising.

  15. Assessment of Instream Restoration in the Cache River, Illinois: Macroinvertebrate Community Structure on Rock Weirs Compared to Snag and Streambed Habitats

    NASA Astrophysics Data System (ADS)

    Walther, D. A.; Whiles, M. R.

    2005-05-01

    Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.

  16. Constructed Pools-and-Riffles: Application and Assessment in Illinois.

    NASA Astrophysics Data System (ADS)

    Day, D. M.; Dodd, H. R.; Carney, D. A.; Holtrop, A. M.; Whiles, M. R.; White, B.; Roseboom, D.; Kinney, W.; Keefer, L. L.; Beardsley, J.

    2005-05-01

    The diversity of Illinois' streams provides a broad range of conditions, and thus a variety of restoration techniques may be required to adequately compensate for watershed alterations. Resource management agencies and research institutions in the state have collaborated on a variety of applied research initiatives to assess the efficacy of various stream protection and restoration techniques. Constructed pool-and-riffle structures have received significant attention because they tend to address watershed processes (i.e., channel evolution model) and may benefit biotic communities and processes along with physical habitat. Constructed pools-and-riffles have been applied primarily to address geomorphic instability, yet understanding biological responses can provide further rationale for their use and design specifications. In three stream systems around the state, fish were collected pre- and post- installation of structures, using primarily electrofishing techniques (e.g., electric seine & backpack). In general, within the first five years after installation, changes in fish communities have included a shift from high-abundance, small cyprinid-dominated assemblages to low-density Centrarchidae and Catostomidae assemblages. Changes in macro invertebrates at selected sites included increases in filter feeders and sensitive taxa such as the Ephemeroptera, Plecoptera, and Trichoptera (EPT). Ongoing assessments will be critical for understanding long-term influences on stream ecosystem structure and function.

  17. Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes

    PubMed Central

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera. PMID:24466028

  18. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes.

    PubMed

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  19. Mayflies, stoneflies, and caddisflies of streams and marshes of Indiana Dunes National Lakeshore, USA

    PubMed Central

    DeWalt, R. Edward; South, Eric J.; Robertson, Desiree R.; Marburger, Joy E.; Smith, Wendy W.; Brinson, Victoria

    2016-01-01

    Abstract United States National Parks have protected natural communities for one hundred years. Indiana Dunes National Lakeshore (INDU) is a park unit along the southern boundary of Lake Michigan in Indiana, USA. An inventory of 19 sites, consisting of a seep, 12 streams, four marshes, a bog, and a fen were examined for mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) (EPT taxa). Volunteers and authors collect 35 ultraviolet light traps during summer 2013 and supplementary benthic and adult sampling added species not attracted by lights or that were only present in colder months. Seventy-eight EPT species were recovered: 12 mayflies, two stoneflies, and 64 caddisflies. The EPT richness found at INDU was a low proportion of the number of species known from Indiana: caddisflies contributed only 32.7% of known state fauna, mayflies and stoneflies contributed 8.4% and 2.3%, respectively. Site EPT richness ranged from one for a seep to 34 for an 8 m-wide stream. Richness in streams generally increased with stream size. Seven new state records and rare species are reported. The number of EPT species at INDU is slightly larger than that found at Isle Royale National Park in 2013, and the community composition and evenness between orders were different. PMID:26877693

  20. Selecting Species Traits for Biomonitoring Applications in light of Phylogenetic Relationships among Lotic Insects

    NASA Astrophysics Data System (ADS)

    Poff, N.; Vieira, N. K.; Simmons, M. P.; Olden, J. D.; Kondratieff, B. C.; Finn, D. S.

    2005-05-01

    The use of species traits as indicators of environmental disturbance is being considered for biomonitoring programs globally. As such, methods to select relevant and informative traits for inclusion in biometrics need to be developed. In this research, we identified 20 traits of aquatic insects within six trait groups: morphology, mobility, life-history strategy, thermal tolerance, feeding guild and ecology (e.g., habitat preference). We constructed phylogenetic trees for 1) all lotic insect species of North America and 2) all Ephemeroptera, Plecoptera and Trichoptera species based on morphology- and molecular-based analyses and classifications. We then measured variability (i.e., plasticity) of the 20 traits and six trait groups across the two phylogenetic trees. Traits with higher degrees of plasticity indicated traits that were less phylogenetically constrained, and were considered informative for biomonitoring purposes. Thermal tolerance, rheophily, body size at maturity and feeding guild showed the highest plasticity across both phylogenetic trees. Two mobility traits, occurrence in drift and adult dispersal distance, showed moderate plasticity. By contrast, adult exiting ability, degree of attachment, adult lifespan and body shape showed low variability and were thus less informative. Plastic species traits that are less phylogenetically constrained may be most useful in detecting community change along environmental gradients.

  1. Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates

    USGS Publications Warehouse

    Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H.

    2009-01-01

    Biological indicators, particularly benthic macroinvertebrates, are widely used and effective measures of the impact of urbanization on stream ecosystems. A multimetric biological index of urbanization was developed using a large benthic macroinvertebrate dataset (n = 1,835) from the Baltimore, Maryland, metropolitan area and then validated with datasets from Cleveland, Ohio (n = 79); San Jose, California (n = 85); and a different subset of the Baltimore data (n = 85). The biological metrics used to develop the multimetric index were selected using several criteria and were required to represent ecological attributes of macroinvertebrate assemblages including taxonomic composition and richness (number of taxa in the insect orders of Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (number of taxa designated as filterers), and habit (percent of individuals which cling to the substrate). Quantile regression was used to select metrics and characterize the relationship between the final biological index and an urban gradient (composed of population density, road density, and urban land use). Although more complex biological indices exist, this simplified multimetric index showed a consistent relationship between biological indicators and urban conditions (as measured by quantile regression) in three climatic regions of the United States and can serve as an assessment tool for environmental managers to prioritize urban stream sites for restoration and protection.

  2. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms.

    PubMed

    Heckmann, Lars-Henrik; Friberg, Nikolai

    2005-03-01

    Pesticides are constantly being applied to agricultural catchments, but little is known about their impact on aquatic biota during natural exposure. In the present study, the impact of the pyrethroid lambda-cyhalothrin was studied in an in-stream mesocosm setup. Twice during the summer of 2002, the natural macroinvertebrate community was exposed in situ to a 30-min pulse of lambda-cyhalothrin. Pyrethroid doses were released through a modified drip set with nominal concentrations of 0.10, 1.00, and 10.0 microg L(-1) during the first exposure and 0.05, 0.50, and 5.00 microg L(-1) in the second exposure. Before, during, and after exposure, drifting macroinvertebrates were caught in nets. Quantitative benthic samples were taken both before and on two occasions after exposure. Macroinvertebrate drift increased immediately after the pulse exposure, with total drift being significantly higher at all concentrations. Gammarus pulex, various Ephemeroptera, Leuctra sp., and Simuliidae were some of the taxa showing the most pronounced drift response. Structural change in the community was found only at 5.00 and 10.0 microg L(-1), and recovery occurred within approximately two weeks. The present study may be valuable in assessing extrapolations based on laboratory results as well as in evaluating pyrethroid impact on natural freshwater environments.

  3. Contribution to the taxonomy of Paracloeodes Day 1955 (Ephemeroptera: Baetidae) from South America.

    PubMed

    Cruz, Paulo Vilela; Salles, Frederico falcÃo; Hamada, Neusa

    2018-04-03

    In recent decades, major advances in the systematics of the Western Hemisphere genus Paracloeodes Day have been made in South America. Despite the taxonomic progress, uncertainties in identification remain due to the morphological similarities among some nymphs and due to the general lack of knowledge of the imago stages (only 4 of 20 are described from throughout the range of the genus). This study addresses these impediments in part through description of the male imagoes of six species (P. atroari Nieto Salles, P. binodulus Lugo-Ortiz McCafferty, P. ibicui Lugo-Ortiz McCafferty, P. pacawara Nieto Salles, P. peri Nieto Salles, P. waimiri Nieto Salles), description of two new species based on morphologically distinct nymphs (P. aristotelesi sp. n. and P. carolinae sp. n.), description of one new species based on morphologically distinct nymph and male imago (P. prismatobranchus sp. n.); redescription of three species based on type material (P. ibicui Lugo-Ortiz McCafferty, P. leptobranchus Lugo-Ortiz McCafferty and P. eurybranchus Lugo-Ortiz McCafferty); proposal of one new synonym based on morphological analyses of specimens from Bolivia, Brazil and Uruguay, including type specimens (P. pacawara = P. morellii Emmerich Nieto); and the presentation of a new key to identify nymphs from South America to the species level.

  4. Using group-specific PCR to detect predation of mayflies (Ephemeroptera) by wolf spiders (Lycosidae) at a mercury-contaminated site.

    PubMed

    Northam, Weston T; Allison, Lizabeth A; Cristol, Daniel A

    2012-02-01

    Bioaccumulation of contaminants can occur across ecosystem boundaries via transport by emergent aquatic insects. In the South River, Virginia, USA, aquatic mercury has contaminated songbirds nesting in adjacent riparian forests. Spiders contribute the majority of mercury to these songbirds' diets. We tested the hypothesis that massive annual mayfly emergences provide a vector for mercury from river sediments to the Lycosid spiders most frequently eaten by contaminated songbirds. We designed mayfly-specific PCR primers that amplified mtDNA from 76% of adult mayflies collected at this site. By combining this approach with an Agilent 2100 electrophoresis system, we created a highly sensitive test for mayfly predation by Lycosids, commonly known as wolf spiders. In laboratory spider feeding trials, mayfly DNA could be detected up to 192h post-ingestion; however, we detected no mayfly predation in a sample of 110 wolf spiders collected at the site during mayfly emergence. We suggest that mayfly predation is not an important mechanism for dietary transfer of mercury to wolf spiders and their avian predators at the South River. Instead, floodplain soil should be considered as a potential proximate source for mercury in the terrestrial food web. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe).

    PubMed

    Vrba, Jaroslav; Kopácek, Jirí; Fott, Jan; Kohout, Leos; Nedbalová, Linda; Prazáková, Miroslava; Soldán, Tomás; Schaumburg, Jochen

    2003-07-01

    This paper evaluates long-term changes in the atmospheric depositions of S and N compounds, lake water quality, and biodiversity at eight glacial lakes in the Bohemian Forest over the past 130 years. This time interval covers (i) the 'background' pre-acidification status of the lakes, (ii) a period of changes in the communities that can be partly explained by introduction of fish, (iii) a period of strong lake acidification with its adverse impacts on the communities, (iv) the lake reversal from acidity, which includes the recent status of the lakes. The lake water chemistry has followed-with a characteristic hysteresis-both the sharp increase and decline in the deposition trends of strong anions. Remarkable changes in biota have mirrored the changing water quality. Fish became extinct and most species of zooplankton (Crustacea) and benthos (Ephemeroptera and Plecoptera) retreated due to the lake water acidification. Independent of ongoing chemical reversal, microorganisms remain dominant in the recent plankton biomass as well as in controlling the pelagic food webs. The first signs of the forthcoming biological recovery have already been evidenced in some lakes, such as the population of Ceriodaphnia quadrangula (Cladocera) returning into the pelagial of one lake or the increase in both phytoplankton biomass and rotifer numbers in another lake.

  6. Feeding ecology and development of juvenile black ducks in Maine

    USGS Publications Warehouse

    Reinecke, Kenneth J.

    1979-01-01

    Data from 41 juvenile Black Ducks (Anas rubripes) collected in the Penobscot River valley of Maine from June through August 1974-76 were used to estimate the proportion of aquatic invertebrates in the prefledging diet and the allometric growth rates of the tarsi, flight muscles, and alimentary system. The proportion of aquatic invertebrates in the diet of downy and partially feathered juveniles averaged 88 and 91% of dry weight, but decreased to 43% for fully feathered young. The most important invertebrate food organisms for juvenile Black Ducks were asellid isopods, molluscs, nymphs of Ephemeroptera and Odonata, and larvae of Coleoptera, Trichoptera, and Diptera. A high proportion of invertebrates was consumed during the period of fastest absolute and relative growth. Estimation of allometric growth rates with the power formula (Y = a·$X_{b}$) showed that (1) the legs were relatively large at hatching and developed slowly; (2) the flight muscles, which were relatively small at hatching, grew slowly until the 4-week period preceding fledging, when they increased as the 4.75 power of body weight; and (3) growth of the liver and gizzard was approximately proportional to body weight. The data support Ricklefs' thesis that delayed functional maturity of the wings permits an increase in the overall growth rate of waterfowl.

  7. A depth-adjusted ambient distribution approach for setting ...

    EPA Pesticide Factsheets

    We compiled and modelled macroinvertebrate assemblage data from samples collected in 1995-2014 from the estuarine portion of the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective to create depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) that can be used to plan remediation and restoration actions, and to assess progress toward achieving removal targets for the degraded benthos beneficial use impairment. The relationship between depth and benthos metrics was wedge-shaped. We therefore used 90th percentile quantile regression to define the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly larvae (e.g., Hexagenia). We also created a scaled trimetric index from the first three metrics. We examined gear type (standard vs. petite Ponar sampler), exposure class (derived from fetch), geographic zone of the AOC, and substrate type for confounding effects on the limiting depth. The effect of gear type was minimal. Metric values were generally higher at more exposed locations, but we judged the exposure effect less important for model application than variation among three geographic zones, so we combined data across exposure classes and created separate models for each geographic zone of the AOC. Based on qualitative substrate data for most samples, we

  8. Natural variability of biochemical biomarkers in the macro-zoobenthos: Dependence on life stage and environmental factors.

    PubMed

    Scarduelli, Lucia; Giacchini, Roberto; Parenti, Paolo; Migliorati, Sonia; Di Brisco, Agnese Maria; Vighi, Marco

    2017-11-01

    Biomarkers are widely used in ecotoxicology as indicators of exposure to toxicants. However, their ability to provide ecologically relevant information remains controversial. One of the major problems is understanding whether the measured responses are determined by stress factors or lie within the natural variability range. In a previous work, the natural variability of enzymatic levels in invertebrates sampled in pristine rivers was proven to be relevant across both space and time. In the present study, the experimental design was improved by considering different life stages of the selected taxa and by measuring more environmental parameters. The experimental design considered sampling sites in 2 different rivers, 8 sampling dates covering the whole seasonal cycle, 4 species from 3 different taxonomic groups (Plecoptera, Perla grandis; Ephemeroptera, Baetis alpinus and Epeorus alpicula; Tricoptera, Hydropsyche pellucidula), different life stages for each species, and 4 enzymes (acetylcholinesterase, glutathione S-transferase, alkaline phosphatase, and catalase). Biomarker levels were related to environmental (physicochemical) parameters to verify any kind of dependence. Data were statistically elaborated using hierarchical multilevel Bayesian models. Natural variability was found to be relevant across both space and time. The results of the present study proved that care should be paid when interpreting biomarker results. Further research is needed to better understand the dependence of the natural variability on environmental parameters. Environ Toxicol Chem 2017;36:3158-3167. © 2017 SETAC. © 2017 SETAC.

  9. Review of continental North and Central American Paracloeodes Day 1955 (Ephemeroptera: Baetidae), including description of a new species from Minnesota, U.S.A.

    PubMed

    Cruz, Paulo Vilela; Usher, Andrew K; Jacobus, Luke M

    2017-05-09

    Paracloeodes Day is a western hemisphere genus with 20 species, but only three of these valid species are known from continental North and Central America. Based on available literature comparisons, species-level identifications of these three species can be difficult. Considering the apparent similarity between them, the main objective of this study was to examine type and other material housed in the Purdue Entomological Research Collection and the University of Minnesota in order to evaluate species status and to elucidate additional diagnostic characters. The evaluation resulted in validation of P. fleeki McCafferty & Lenat, P. lugoi Randolph & McCafferty and P. minutus (Daggy) and the confirmation of P. abditus Day as a junior synonym of P. minutus. Furthermore, we discovered a new species from the type locality of P. minutus. Paracloedes lotor n. sp. is described based on the nymph stage and a putative male imago from the Mississippi River in Minnesota. Paracloeodes lotor n. sp. differs from the other continental North and Central American species of the genus by the apical half of the paraglossa having an abrupt decrease in width (the "subtriangular" condition) in nymphs, and by having the posterior margin of the styliger plate with a small and pointed spine in the male imago. We provide a new identification key for nymphs of the four continental North and Central American species.

  10. Responses of macroinvertebrate community metrics to a wastewater discharge in the Upper Blue River of Kansas and Missouri, USA

    USGS Publications Warehouse

    Poulton, Barry C.; Graham, Jennifer L.; Rasmussen, Teresa J.; Stone, Mandy L.

    2015-01-01

    The Blue River Main wastewater treatment facility (WWTF) discharges into the upper Blue River (725 km2), and is recently upgraded to implement biological nutrient removal. We measured biotic condition upstream and downstream of the discharge utilizing the macroinvertebrate protocol developed for Kansas streams. We examined responses of 34 metrics to determine the best indicators for discriminating site differences and for predicting biological condition. Significant differences between sites upstream and downstream of the discharge were identified for 15 metrics in April and 12 metrics in August. Upstream biotic condition scores were significantly greater than scores at both downstream sites in April (p = 0.02), and in August the most downstream site was classified as non-biologically supporting. Thirteen EPT taxa (Ephemeroptera, Plecoptera, Trichoptera) considered intolerant of degraded stream quality were absent at one or both downstream sites. Increases in tolerance metrics and filtering macroinvertebrates, and a decline in ratio of scrapers to filterers all indicated effects of increased nutrient enrichment. Stepwise regressions identified several significant models containing a suite of metrics with low redundancy (R2 = 0.90 - 0.99). Based on the rapid decline in biological condition downstream of the discharge, the level of nutrient removal resulting from the facility upgrade (10% - 20%) was not enough to mitigate negative effects on macroinvertebrate communities.

  11. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  12. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  13. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action.

    PubMed

    Rico, Andreu; Van den Brink, Paul J

    2015-08-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, family, and order levels using the acute toxicity data available in the US Environmental Protection Agency ECOTOX database. Biological trait information was linked to the calculated relative sensitivity to evaluate correlations between traits and sensitivity and to calculate a vulnerability index, which combines intrinsic sensitivity and traits describing the recovery potential of populations partially exposed to insecticides (e.g., voltinism, flying strength, occurrence in drift). The analysis shows that the relative sensitivity of arthropods depends on the insecticide mode of action. Traits such as degree of sclerotization, size, and respiration type showed good correlation to sensitivity and can be used to make predictions for invertebrate taxa without a priori sensitivity knowledge. The vulnerability analysis revealed that some of the Ephemeroptera, Plecoptera, and Trichoptera taxa were vulnerable to all insecticide classes and indicated that particular gastropod and bivalve species were potentially vulnerable. Microcrustaceans (e.g., daphnids, copepods) showed low potential vulnerability, particularly in lentic ecosystems. The methods described in the present study can be used for the selection of focal species to be included as part of ecological scenarios and higher tier risk assessments. © 2015 SETAC.

  14. Growth potential and habitat requirements of endangered age-0 pallid sturgeon (Scaphirhynchus albus) in the Missouri River, USA, determined using a individual-based model framework

    USGS Publications Warehouse

    Deslauriers, David; Heironimus, Laura B.; Rapp, Tobias; Graeb, Brian D. S.; Klumb, Robert A.; Chipps, Steven R.

    2018-01-01

    An individual-based model framework was used to evaluate growth potential of the federally endangered pallid sturgeon (Scaphirhynchus albus) in the Missouri River. The model, developed for age-0 sturgeon, combines information on functional feeding response, bioenergetics and swimming ability to regulate consumption and growth within a virtual foraging arena. Empirical data on water temperature, water velocity and prey density were obtained from three sites in the Missouri River and used as inputs in the model to evaluate hypotheses concerning factors affecting pallid sturgeon growth. The model was also used to evaluate the impacts of environmental heterogeneity and water velocity on individual growth variability, foraging success and dispersal ability. Growth was simulated for a period of 100 days using 100 individuals (first feeding; 19 mm and 0.035 g) per scenario. Higher growth was shown to occur at sites where high densities of Ephemeroptera and Chironomidae larvae occurred throughout the growing season. Highly heterogeneous habitats (i.e., wide range of environmental conditions) and moderate water velocities (0.3 m/s) were also found to positively affect growth rates. The model developed here provides an important management and conservation tool for evaluating growth hypotheses and(or) identifying habitats in the Missouri River that are favourable to age-0 pallid sturgeon growth.

  15. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region.

    PubMed

    Maltchik, Leonardo; Dalzochio, Marina Schmidt; Stenert, Cristina; Rolon, Ana Silvia

    2012-03-01

    The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.

  16. The concept of Compsoneuria Eaton, 1881 revisited in light of historical and new material from the Sunda Islands (Ephemeroptera: Heptageniidae: Ecdyonurinae).

    PubMed

    Sartori, Michel

    2014-07-09

    Based on re-examination of material belonging to the Museum of Zoology, Hamburg University, Germany, especially Georg Ulmer's collection, as well as newly collected specimens from the Sunda Islands, the genuine concept of Compsoneuria Eaton, 1881 is revised. The genus has had as junior synonyms Compsoneuriella Ulmer, 1939 (Oriental) and Notonurus Crass, 1947 (Afrotropical). A recent molecular study removed Notonurus from this synonymy. The type species of Compsoneuria, Compsoneuria spectabilis Eaton, 1881, is redescribed. A lectotype male imago is designated for Compsoneuriella thienemanni Ulmer, 1939, type species of Compsoneuriella. Based on egg morphology, nymphal stages of both Compsoneuria and Compsoneuriella are unequivocally attributed. The nymph of Compsoneuria spectabilis is described and corresponds in part to what Ulmer (1939) described as the nymph of Compsoneuriella thienemanni. The latter nymph is also redescribed from material collected recently in Sumatra. Due to the important number of morphological differences between these two species, Compsoneuriella stat. prop. is removed from its synonymy with Compsoneuria. Besides C. thienemanni, the genus Compsoneuriella encompasses C. langensis (Braasch & Boonsoong, 2010) comb. nov. from Thailand and C. tagbanua (Braasch & Freitag, 2008) comb. nov. from the Philippines (Palawan), which is partially redescribed. All other species under the combined concept of Compsoneuria/Compsoneuriella are mentioned and their generic placements are discussed. The new combination Afronurus taipokauensis (Tong & Dudgeon, 2003) comb. nov. from Hong Kong, China is proposed. 

  17. Diet composition and feeding patterns of adult shovelnose sturgeon (Scaphirhynchus platorynchus) in the lower Platte River, Nebraska, USA

    USGS Publications Warehouse

    Rapp, T.; Shuman, D.A.; Graeb, B.D.S.; Chipps, Steven R.; Peters, E.J.

    2011-01-01

    Two-hundred and seven adult shovelnose sturgeon ranging from 450 to 718 mm in length were sampled from June to October 2001 and May to July 2002 to determine diet composition and feeding patterns in the lower Platte River. Shovelnose sturgeon fed primarily upon aquatic insect larvae and nymphs (>99% composition by number). Diptera of the family Chironomidae were the dominant prey items in both years and composed 98.1% of the shovelnose sturgeon diet in 2001 and 96.8% in 2002. Chironomidae were primarily represented by the four genera Paracladopelma, Chernovskiia, Saetheria and Robackia accounting for 90.2% of the ingested prey items in 2001 and 83.6% in 2002. In addition, shovelnose sturgeon showed in both years a generalized feeding pattern towards Ephemeroptera of the families Isonychiidae and Caenidae, as well as Trichoptera of the family Hydropsychidae. Other aquatic insects, terrestrial invertebrates and fishes were found infrequently and in low numbers in shovelnose sturgeon diets. The four most abundant Chironomidae genera are often found on sand and the high abundance of these taxa in the diet suggests that shovelnose sturgeon feed primarily near or on this substrate type. This highlights the importance of habitats that provide sand substrate for shovelnose sturgeon foraging in the lower Platte River.

  18. Macroinvertebrate Responses to Constructed Riffles in the Cache River, Illinois, USA

    NASA Astrophysics Data System (ADS)

    Walther, Denise A.; Whiles, Matt R.

    2008-04-01

    Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003-2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.

  19. Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity

    NASA Astrophysics Data System (ADS)

    Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.

    2011-12-01

    Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.

  20. Stream Communities Along a Catchment Land-Use Gradient: Subsidy-Stress Responses to Pastoral Development

    NASA Astrophysics Data System (ADS)

    Niyogi, Dev K.; Koren, Mark; Arbuckle, Chris J.; Townsend, Colin R.

    2007-02-01

    When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera-Plecoptera-Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.

  1. Multi-Scalar Land Cover Influences on Benthic Invertebrate Assemblages in Agricultural Streams. F.B. Daniel, M.B. Griffith, M.E. Troyer, and J.E. Lazorchak Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

    NASA Astrophysics Data System (ADS)

    Daniel, F. B.; Griffith, M. B.; Troyer, M. E.; Lazorchak, J. E.

    2005-05-01

    The northern half of the Little Miami River watershed (LMRW) was graded by the Wisconsinan glacier; the southern half lies beyond the glacier terminus and is set in an older, Illinoisan landscape. Benthic invertebrates were collected in 35 headwater streams (sub-watersheds) in the LMRW for four consecutive years and the land cover was quantified at three spatial scales (the catchment, the riparian corridor, and sampled reach) for each sub-watershed. In the northern sub-watersheds (N=19) a significantly greater percentage of land surface is committed to row crop agriculture and significantly lesser percent is covered in permanent grasses or forest relative to those in the south (N=16). Analysis of the invertebrate samples showed that Ephemeroptera, Plecoptera, and Trichoptera (EPT) constituted a significantly greater proportion of those assemblages collected from the southern sub-watersheds compared to those from the northern section In contrast, Coleoptera (Cole) and Odonata (Odon) were significantly increased in the northern streams. Approximately 60 % of the variation in the invertebrate assemblages, e.g., the ratio of EPT/(EPT+Cole+Odon), at these sites can be accounted for by consideration of land cover at either the catchment or riparian scale but not at the reach scale.

  2. Investigating the influence of heavy metals on macro-invertebrate assemblages using Partial Cononical Correspondence Analysis (pCCA)

    NASA Astrophysics Data System (ADS)

    Beasley, Gary; Kneale, Pauline E.

    This paper defines the spectrum of impairment to stream macroinvertebrates arising from urban runoff. Field sampling of stream sediments at 62 sites across Yorkshire, UK was used to investigate the influence of heavy metals and habitat on macroinvertebrate family distribution using partial Canonical Correspondence Analysis (pCCA). Increasing urbanization and trafficking was associated with increasing levels of metal pollution but, even when traffic is light, family numbers can be reduced by 50%. Industrial areas and motorway runoff depress macroinvertebrate numbers but drainage from streets with no off-road parking in residential areas can have similar impacts. The heavy metals in the sediment accounted for approximately 24% of the variation in macroinvertebrate community composition while the physical habitat variables used in RIVPACS (River InVertebrate Prediction And Classification System) (Wright, 2000) accounted for an additional 30%. Zinc and nickel were the main metal influences regardless of the time of sampling; at these sites copper is less than critical. Results agree with those reported in other studies in which families mainly from the orders Ephemeroptera (mayfly), Plecoptera (stonefly) and Tricoptera (caddisfly) displayed metal sensitivity in that they were absent from metal polluted streams. However, within each of these orders, a continuum of sensitivity is evident: this highlights the risks of generalising on orders rather than using family or indeed species data.

  3. Evaluation of coal-mining impacts using numerical classification of benthic invertebrate data from streams draining a heavily mined basin in eastern Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.

    1986-01-01

    Coal-mining impacts on Smoky Creek, eastern Tennessee were evaluated using water quality and benthic invertebrate data. Data from mined sites were also compared with water quality and invertebrate fauna found at Crabapple Branch, an undisturbed stream in a nearby basin. Although differences in water quality constituent concentrations and physical habitat conditions at sampling sites were apparent, commonly used measures of benthic invertebrate sample data such as number of taxa, sample diversity, number of organisms, and biomass were inadequate for determining differences in stream environments. Clustering algorithms were more useful in determining differences in benthic invertebrate community structure and composition. Normal (collections) and inverse (species) analyses based on presence-absence data of species of Ephemeroptera, Plecoptera, and Tricoptera were compared using constancy, fidelity, and relative abundance of species found at stations with similar fauna. These analyses identified differences in benthic community composition due to seasonal variations in invertebrate life histories. When data from a single season were examined, sites on tributary streams generally clustered separately from sites on Smoky Creek. These analyses compared with differences in water quality, stream size, and substrate characteristics between tributary sites and the more degraded main stem sites, indicated that numerical classification of invertebrate data can provide discharge-independent information useful in rapid evaluations of in-stream environmental conditions. (Author 's abstract)

  4. Life history attributes of the rare mayfly Siphlonisca aerodromia Needham (Ephemeroptera:Siphlonuridae)

    USGS Publications Warehouse

    Gibbs, K.E.; Siebenmann, M.

    1996-01-01

    Over a 3-y period, we examined the biology of late-instar nymphs, adults, and eggs of the rare predaceous mayfly S. aerodromia at Tomah Stream, Maine, to identify life history attributes associated with the mayfly's movements between the stream channel and the bordering floodplain. Eggs were deposited in the stream channel in June and hatched in November and December. Embryonic development occurred in 47-92% of eggs from unmated females. With rising water levels following snowmelt in March or April, nymphs moved from channel to floodplain, where most nymphal growth and development took place. Sex ratios of nymphs in the floodplain were female biased (1 M:1.4 F in 1991 and 1 M:2.1 F in 1992). Nymphs molted to the final instar earlier in 1991 than in 1992 and male nymphs molted to the final instar before female nymphs in 1991 but not 1992. Time in the final instar decreased as the season advanced. Seasonal emergence was protandrous and lasted 10-11 d during late May and early June; timing of seasonal emergence in 1991, 1992, and 1993 was related to maximum air temperatures and persistence of standing water in the floodplain during May. Emergence of subimagos was female biased in 1991, but male biased in 1992. Diel emergence was from 0700 to 1700 h (EST) and occurred only when water temperature was >11??C.

  5. Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates.

    PubMed

    Raby, Melanie; Nowierski, Monica; Perlov, Dmitri; Zhao, Xiaoming; Hao, Chunyan; Poirier, David G; Sibley, Paul K

    2018-05-01

    Neonicotinoids are a group of insecticides commonly used in agriculture. Due to their high water solubility, neonicotinoids can be transported to surface waters and have the potential to be toxic to aquatic life. The present study assessed and compared the acute (48- or 96-h) toxicity of 6 neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) to 21 laboratory-cultured and field-collected aquatic invertebrates spanning 10 aquatic arthropod orders. Test conditions mimicked species' habitat, with lentic taxa exposed under static conditions, and lotic taxa exposed under recirculating systems. Median lethal concentrations (LC50s) and median effect concentrations (EC50s; immobility) were calculated and used to construct separate lethal- and immobilization-derived species sensitivity distributions for each neonicotinoid, from which 5th percentile hazard concentrations (HC5s) were calculated. The results showed that the most sensitive invertebrates were insects from the orders Ephemeroptera (Neocloeon triangulifer) and Diptera (Chironomus dilutus), whereas cladocerans (Daphnia magna, Ceriodaphnia dubia) were the least sensitive. The HC5s were compared with neonicotinoid environmental concentrations from Ontario (Canada) monitoring studies. For all neonicotinoids except imidacloprid, the resulting hazard quotients indicated little to no hazard in terms of acute toxicity to aquatic communities in Ontario freshwater streams. For the neonicotinoid imidacloprid, a moderate hazard was found when only invertebrate immobilization, and not lethality, data were considered. Environ Toxicol Chem 2018;37:1430-1445. © 2018 SETAC. © 2018 SETAC.

  6. Partitioning taxonomic diversity of aquatic insect assemblages ...

    EPA Pesticide Factsheets

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in Neotropical Savanna (southeastern Brazilian Cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percent of EPT taxonomic α diversity (20.7%) was lower than the β1 and β2 diversities (53.1% and 26.2%, respectively). The EPT FFG α diversity (26.5%) was lower than the β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the Cerrado biome, which has been degraded by anthropogenic activities. Using adaptations of the US EPA’s National Aquatic Resource Survey (NARS) designs and methods, Ferreira and colleagues examined the distribution of taxonomic and functional diversity of aquatic insects among basins, stream sites within basins, and within stream sample reaches. They sampled 160 low-order stre

  7. Spatiotemporal variation of macroinvertebrates in relation to canopy cover and other environmental factors in Eriora River, Niger Delta, Nigeria.

    PubMed

    Arimoro, Francis O; Obi-Iyeke, Grace E; Obukeni, Prince J O

    2012-10-01

    Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.

  8. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    PubMed Central

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B.; Noumi, Emmanuel

    2008-01-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources. PMID:18441407

  9. Assessment of the effects of nickel on benthic macroinvertebrates in the field.

    PubMed

    Peters, Adam; Simpson, Peter; Merrington, Graham; Schlekat, Chris; Rogevich-Garman, Emily

    2014-01-01

    A field-based evaluation of the biological effects of potential nickel (Ni) exposures was conducted using monitoring data for benthic macroinvertebrates and water chemistry parameters for streams in England and Wales. Observed benthic community metrics were compared to expected community metrics under reference conditions using RIVPACS III+ software. In order to evaluate relationships between Ni concentrations and benthic community metrics, bioavailable Ni concentrations were also calculated for each site. A limiting effect from Ni on the 90th percentile of the maximum achievable ecological quality was derived at "bioavailable Ni" exposures of 10.3 μg l(-1). As snails have been identified as particularly sensitive to nickel exposure, snail abundance in the field in response to nickel exposure, relative to reference conditions, was also analysed. A "low effects" threshold for snail abundance based on an average of spring and autumn data was derived as 3.9 μg l(-1) bioavailable Ni. There was no apparent effect of Ni exposure on the abundance of Ephemeroptera (mayflies), Plecoptera (stoneflies) or Tricoptera (caddisflies) when expressed relative to a reference condition within the range of "bioavailable Ni" exposures observed within the dataset. Nickel exposure concentrations co-vary with the concentrations of other stressors in the dataset, and high concentrations of Ni are also associated with elevated concentrations of other contaminants.

  10. Does biodiversity of macroinvertebrates and genome response of Chironomidae larvae (Diptera) reflect heavy metal pollution in a small pond?

    PubMed

    Michailova, Paraskeva; Warchałowska-Śliwa, Elzbieta; Szarek-Gwiazda, Ewa; Kownacki, Andrzej

    2012-01-01

    The investigation was carried out on a small pond situated on a recent mine spoil at Bolesław in the Olkusz region with Zn-Pb ore deposits. Water of the pond had pH 7.2-8.5 and low concentrations of heavy metals. Concentrations of Pb (487 μg g( - 1)) and Zn (1,991 μg g( - 1)) in the sediment were very high and potentially could lead to toxicological effects. In the pond, 48 taxa of macroinvertebrates belonging to Oligochaeta and water stages of Ephemeroptera, Odonata, Megaloptera, Trichoptera, Heteroptera, Coleoptera and Diptera (mainly Chironomidae family) were found. The influence of heavy metals on macroinvertebrates diversity was not found. Effect of heavy metal pollution was observed on the appearance of chromosome aberrations in the polytene chromosomes of Chironomidae larvae. It was manifested by two ways: (1) in Kiefferulus tendipediformis and Chironomus sp. chromosome rearrangements in fixed state (tandem fusion and homozygous inversions), indicated intensive process of speciation; (2) in Chironomus sp., K. tendipediformis, Glyptotendipes gripekoveni (Chironomidae) somatic chromosome rearrangements (inversions, deficiencies, specific puffs, polyploidy) affected few cells of every individual. The somatic functional and structural alterations in Chironomidae species are particular suitable as biomarkers-they can be easily identified and used for detecting toxic agents in the environment.

  11. The value of the freshwater snail dip scoop sampling method in macroinvertebrates bioassessment of sugar mill wastewater pollution in Mbandjock, Cameroon.

    PubMed

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B; Noumi, Emmanuel

    2008-03-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources.

  12. Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation.

    PubMed

    Grant, Christopher James; Lutz, Allison K; Kulig, Aaron D; Stanton, Mitchell R

    2016-12-01

    Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.

  13. Macroinvertebrate biomonitoring in intermittent coastal plain streams impacted by animal agriculture.

    PubMed

    Davis, Stephanie; Golladay, Stephen W; Vellidis, George; Pringle, Catherine M

    2003-01-01

    Little attention has been given to the ecology of intermittent coastal plain streams in the southeastern United States, and it is not known whether available macroinvertebrate biomonitoring methods reliably detect degradation in these streams. This study compared differences in biomonitoring metrics between reference and agricultural streams, and between the flow period (January-April) and the intermittent flow period (May-December). Percentages of crustaceans, isopods, and Ephemeroptera-Plecoptera-Trichoptera (EPT) were significantly higher at the reference site than the two most impacted sites during the flow period, probably resulting from the abundance of leaf litter and lower temperatures. During this same period, the agriculturally impacted sites had a significantly higher percentage of dipterans--a group that thrives in the silty, nutrient-rich waters. Four metrics (percent Crustacea, Isopoda, Diptera, and EPT) had no overlap between values for the most impacted and the least impacted sites during the flow period, but no metrics were able to detect more discrete differences among sites. Sites were physically and biologically similar during the intermittent period when natural stresses (i.e., stagnant water, high temperatures, low dissolved oxygen) were high, with many metrics, such as percentages of dominant family, burrowers, chironomids, and dipterans becoming similar at all sites. Our findings indicate that development of a better understanding of invertebrate fauna in reference conditions and of the natural variation in intermittent streams is necessary to develop effective biomonitoring programs for these systems.

  14. A generalized watershed disturbance-invertebrate relation applicable in a range of environmental settings across the continental United States

    USGS Publications Warehouse

    Steuer, Jeffrey J.

    2010-01-01

    It is widely recognized that urbanization can affect ecological conditions in aquatic systems; numerous studies have identified impervious surface cover as an indicator of urban intensity and as an index of development at the watershed, regional, and national scale. Watershed percent imperviousness, a commonly understood urban metric was used as the basis for a generalized watershed disturbance metric that, when applied in conjunction with weighted percent agriculture and percent grassland, predicted stream biotic conditions based on Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness across a wide range of environmental settings. Data were collected in streams that encompassed a wide range of watershed area (4.4-1,714 km), precipitation (38-204 cm/yr), and elevation (31-2,024 m) conditions. Nevertheless the simple 3-landcover disturbance metric accounted for 58% of the variability in EPT richness based on the 261 nationwide sites. On the metropolitan area scale, relationship r ranged from 0.04 to 0.74. At disturbance values 15. Future work may incorporate watershed management practices within the disturbance metric, further increasing the management applicability of the relation. Such relations developed on a regional or metropolitan area scale are likely to be stronger than geographically generalized models; as found in these EPT richness relations. However, broad spatial models are able to provide much needed understanding in unmonitored areas and provide initial guidance for stream potential.

  15. Development and application of an agricultural intensity index to invertebrate and algal metrics from streams at two scales

    USGS Publications Warehouse

    Waite, Ian R.

    2013-01-01

    Research was conducted at 28-30 sites within eight study areas across the United States along a gradient of nutrient enrichment/agricultural land use between 2003 and 2007. Objectives were to test the application of an agricultural intensity index (AG-Index) and compare among various invertebrate and algal metrics to determine indicators of nutrient enrichment nationally and within three regions. The agricultural index was based on total nitrogen and phosphorus input to the watershed, percent watershed agriculture, and percent riparian agriculture. Among data sources, agriculture within riparian zone showed significant differences among values generated from remote sensing or from higher resolution orthophotography; median values dropped significantly when estimated by orthophotography. Percent agriculture in the watershed consistently had lower correlations to invertebrate and algal metrics than the developed AG-Index across all regions. Percent agriculture showed fewer pairwise comparisons that were significant than the same comparisons using the AG-Index. Highest correlations to the AG-Index regionally were −0.75 for Ephemeroptera, Plecoptera, and Trichoptera richness (EPTR) and −0.70 for algae Observed/Expected (O/E), nationally the highest was −0.43 for EPTR vs. total nitrogen and −0.62 for algae O/E vs. AG-Index. Results suggest that analysis of metrics at national scale can often detect large differences in disturbance, but more detail and specificity is obtained by analyzing data at regional scales.

  16. Macroinvertebrate community change associated with the severity of streamflow alteration

    USGS Publications Warehouse

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  17. Evaluation of biological data, Guanella Pass Area, Clear Creek and Park counties, Colorado, water years 1995-97

    USGS Publications Warehouse

    Cox-Lillis, Jennifer R.

    2000-01-01

    Macroinvertebrate and algal community samples were collected during a 3-year period at sites located near Guanella Pass, Colorado, to provide baseline characterization data. Water-quality sampling and habitat evaluations were used to aid in the interpretation of the biological data. The study was part of an environmental investigation for a proposed roadway reconstruction project on Guanella Pass. Discharge was strongly affected by snowmelt during May?July. Habitat scores were optimal (147?199), as determined by U.S. Environmental Protection Agency Rapid Bioassessment Protocol methods. Generally, low median concentrations of nitrogen and phosphorus (less than 0.02 milligram per liter) were detected at all sites. The water temperatures ranged from 0.4 to 11.2 degrees Celsius. The average pH for all sites was neutral, and specific conductivities were dilute (less than 160 microsiemens per centimeter at 25 degrees Celsius). The median suspended-sediment concentration was less than 20 milligrams per liter at all sites. During the study, 100 macroinvertebrate taxa were identified. The dominant taxonomic groups of macroinvertebrates were Diptera (true flies), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). Macroinvertebrate density ranged from 6.6 to 4,300 organisms per square meter at sampled sites. Shannon-Weaver diversity values for the macroinvertebrate samples ranged from 1.6 to 4.5. Collector-gatherers dominated the functional feeding groups at most sites. Average abundance of Ephemeroptera, Plecoptera, and Trichoptera (EPT) was 56.7 percent; EPT:Chironomidae ratios were greater than 2:1 for every site except during water years 1996 and 1997. Chironomids were greater than EPT at four sites in water year 1996 and at one site in water year 1997. The percentage of macroinvertebrate community similarity between site pairs varied from 0 to 80 percent. The number of algal taxa identified was 280. The dominant algal divisions, in terms of density, were Cyanophyta (blue-green algae), Chrysophyta (diatoms), Chlorophyta (green algae), Rhodophyta (red algae), and Euglenophyta (euglenoids). In general, diatom biovolumes dominated the algal assemblage, followed by blue-green algae, green algae, red algae, and euglenoids. Algal densities ranged from 3.1 X 102 to more than 4.7 X 106 cells per square centimeter, and algal biovolume ranged from 2.3 X 104 to 4.6 X 109 cells per cubic centimeter. Diversity values for diatoms ranged from 1.5 to 4.9. The pollution tolerance index (PTI) for diatoms ranged from 1.8 to 3.0. Sensitive diatoms were present at each site and ranged from 21 to 97 percent. The percentage of motile diatoms ranged from 0 to 13 percent. The presence of acid-tolerant diatoms ranged from less than 0.5 to greater than 20 percent. The percentage of community similarity between site pairs ranged from 1 to 97 percent. Overall, the biotic metrics that were evaluated during this study indicate that the macroinvertebrate and algal communities in the streams on Guanella Pass are not degraded by the existing road. Erosion may cause some localized effects but may not affect the overall health of the whole stream system. The degraded condition of Geneva Creek probably is due to natural effects as opposed to road effects. Although upper South Clear Creek, upstream from Naylor Creek, is located downstream from several sources of road runoff, the biological community at this site does not seem to be negatively affected.

  18. Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook Salmon rearing in riverine and reservoir habitats

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Erhardt, John M.; St. John, Scott J.

    2014-01-01

    We examined prey availability, prey consumed, and diet energy content as sources of variation in growth of natural fall Chinook Salmon Oncorhynchus tshawytscha subyearlings rearing in riverine and reservoir habitats in the Snake River. Subyearlings in riverine habitat primarily consumed aquatic insects (e.g., Diptera, Ephemeroptera, Trichoptera), of which a high proportion was represented by adult, terrestrial forms. In the reservoir, subyearlings also consumed aquatic insects but also preyed heavily at times on nonnative lentic amphipods Corophium spp. and the mysid Neomysis mercedis, which were absent in riverine habitats. The availability of prey was typically much higher in the reservoir due to N. mercedis often composing over 90% of the biomass, but when this taxon was removed from consideration, biomass estimates were more often higher in the riverine habitat. Subyearling diets during 2009–2011 were generally 17–40% higher in energy in the riverine habitat than in the reservoir. Observed growth in both length and weight were significantly higher in the riverine habitat than in the reservoir. Little is known about how temporal and spatial changes in the food web in large river landscapes influence populations of native anadromous fishes. Our results provide a glimpse of how the spread and establishment of nonnative prey species can reduce juvenile salmon growth in a large river impoundment, which in turn can affect migration timing and survival.

  19. Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands.

    PubMed

    Lunde, Kevin B; Resh, Vincent H

    2012-06-01

    Despite California policies requiring assessment of ambient wetland condition and compensatory wetland mitigations, no intensive monitoring tools have been developed to evaluate freshwater wetlands within the state. Therefore, we developed standardized, wadeable field methods to sample macroinvertebrate communities and evaluated 40 wetlands across Northern California to develop a macroinvertebrate index of biotic integrity (IBI). A priori reference sites were selected with minimal urban impacts, representing a best-attainable condition. We screened 56 macroinvertebrate metrics for inclusion in the IBI based on responsiveness to percent urbanization. Eight final metrics were selected for inclusion in the IBI: percent three dominant taxa; scraper richness; percent Ephemeroptera, Odonata, and Trichoptera (EOT); EOT richness; percent Tanypodinae/Chironomidae; Oligochaeta richness; percent Coleoptera; and predator richness. The IBI (potential range 0-100) demonstrated significant discriminatory power between the reference (mean = 69) and impacted wetlands (mean = 28). It also declined with increasing percent urbanization (R (2) = 0.53, p < 0.005) among wetlands in an independent validation dataset (n = 14). The IBI was robust in showing no significant bias with environmental gradients. This IBI is a functional tool to determine the ecological condition at urban (stormwater and flood control ponds), as well as rural freshwater wetlands (stockponds, seasonal wetlands, and natural ponds). Biological differences between perennial and non-perennial wetlands suggest that developing separate indicators for these wetland types may improve applicability, although the existing data set was not sufficient for exploring this option.

  20. Impact of aquatic insect life stage and emergence strategy on sensitivity to esfenvalerate exposure.

    PubMed

    Palmquist, Katherine R; Jepson, Paul C; Jenkins, Jeffrey J

    2008-08-01

    We investigated the impact of aquatic insect life stage and emergence strategy on sensitivity to esfenvalerate, a synthetic pyrethroid insecticide, using field-collected Brachycentrus americanus Banks (Trichoptera: Brachycentridae) and Cinygmula reticulata McDunnough (Ephemeroptera: Heptageniidae) insects. Final-instar C. reticulata emergence was observed for one week following three environmentally relevant, 48-h esfenvalerate exposures (0.005, 0.01, and 0.015 microg/L). Emergence was significantly depressed following exposure to esfenvalerate and resulted from an increase in nymph mortality during the emergence process. This experiment was duplicated for late-instar C. reticulata nymphs, which were similar in size to the final-instar nymphs but were not near emergence. Late-instar C. reticulata mayflies were approximately fivefold less sensitive to esfenvalerate exposures as gauged by one-week mortality rates. Brachycentrus americanus pupal mortality was significantly increased over that in controls following 48-h esfenvalerate exposures of 0.1 and 0.2 microg/L. These response concentrations correlated closely with those for case-abandonment rates of fourth-instar B. americanus larvae (a sublethal effect of esfenvalerate exposure). Pupal mortality rates were approximately 16-fold higher than those observed in larvae. Adult female egg weight as a percentage of total body weight was significantly decreased following pupal esfenvalerate exposures of 0.05, 0.1, and 0.2 microg/L. These findings suggest that exposure to esfenvalerate may impair hemimetabolous insect emergence behaviors and may decrease fecundity in holometabolous aquatic insects.

  1. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  2. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    PubMed

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  3. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    PubMed

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  4. A Multimetric Benthic Macroinvertebrate Index for the Assessment of Stream Biotic Integrity in Korea

    PubMed Central

    Jun, Yung-Chul; Won, Doo-Hee; Lee, Soo-Hyung; Kong, Dong-Soo; Hwang, Soon-Jin

    2012-01-01

    At a time when anthropogenic activities are increasingly disturbing the overall ecological integrity of freshwater ecosystems, monitoring of biological communities is central to assessing the health and function of streams. This study aimed to use a large nation-wide database to develop a multimetric index (the Korean Benthic macroinvertebrate Index of Biological Integrity—KB-IBI) applicable to the biological assessment of Korean streams. Reference and impaired conditions were determined based on watershed, chemical and physical criteria. Eight of an initial 34 candidate metrics were selected using a stepwise procedure that evaluated metric variability, redundancy, sensitivity and responsiveness to environmental gradients. The selected metrics were number of taxa, percent Ephemeroptera-Plecoptera-Trichoptera (EPT) individuals, percent of a dominant taxon, percent taxa abundance without Chironomidae, Shannon’s diversity index, percent gatherer individuals, ratio of filterers and scrapers, and the Korean saprobic index. Our multimetric index successfully distinguished reference from impaired conditions. A scoring system was established for each core metric using its quartile range and response to anthropogenic disturbances. The multimetric index was classified by aggregating the individual metric ..scores and the value range was quadrisected to provide a narrative criterion (Poor, Fair, Good and Excellent) to describe the biological integrity of the streams in the study. A validation procedure showed that the index is an effective method for evaluating stream conditions, and thus is appropriate for use in future studies measuring the long-term status of streams, and the effectiveness of restoration methods. PMID:23202765

  5. Macroinvertebrate diversity loss in urban streams from tropical forests.

    PubMed

    Docile, Tatiana N; Figueiró, Ronaldo; Portela, Clayton; Nessimian, Jorge L

    2016-04-01

    The increase of human activities in recent years has significantly interfered and affected aquatic ecosystems. In this present study, we investigate the effects of urbanization in the community structure of aquatic macroinvertebrates from Atlantic Forest streams. The sampling was conducted in the mountainous region of the State of Rio de Janeiro, Brazil in 10 urban and 10 preserved streams during the dry season (August-September) of 2012. The streams were characterized for its environmental integrity conditions and physico-chemical properties of water. The macroinvertebrates were sampled on rocky substrates with a kicknet. A total of 5370 individuals were collected from all streams and were distributed among Ephemeroptera, Odonata, Plecoptera, Hemiptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera, and Diptera. In urban sites, all those orders were found, except Megaloptera, while only Mollusca was not found in preserved streams. We performed a non-metric multidimensional scaling (NMDS) analysis that separated two groups distributed among sites in urban communities and another group outside this area. The dominance was significantly higher at urban sites, while the α diversity and equitability were greater in preserved sites. A canonical correspondence analysis (CCA) was also performed, indicating that most taxa associated with high values of the Habitat Integrity Index (HII) and a few genus of the order Diptera with the high values of ammonia, total nitrogen, associated to streams in urban sites. Urban and preserved streams differ by physical-chemical variables and aquatic macroinvertebrates. In urban streams, there is most dominance, while α diversity and equitability are higher in preserved streams.

  6. Assessing the ecological base and peak flow of the alpine streams in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Yang, P. S.; Tian, P. L.

    2009-04-01

    The ecological base and peak flow are crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may severely damage the existence and balance of the community under extreme conditions. Aquatic insects are selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base and peak flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. Two streams located at the alpine area in central Taiwan are selected as the study area to evaluate the base and peak flow. From the preliminary data (Aug 2008 to Dec 2008) collected from one stream Creek C originating from Sitou Area in Central Taiwan shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 32.47% and 31.11%, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Good" and "Very Good" level while the river pollution index (RPI) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 95% curve of duration for the daily discharge is 0.0234 cms. Consistent observations are yet to be collected to yield more accurate result and ecological peak flow in rainy and typhoon seasons.

  7. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran

    PubMed Central

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-01-01

    Background: Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. Methods: The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. Results: During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. Conclusion: The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies PMID:29062853

  8. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  9. Setting limits: The development and use of factor-ceiling distributions for an urban assessment using macroinvertebrates

    USGS Publications Warehouse

    Carter, J.L.; Fend, S.V.

    2005-01-01

    Lotic habitats in urban settings are often more modified than in other anthropogenically influenced areas. The extent, degree, and permanency of these modifications compromise the use of traditional reference-based study designs to evaluate the level of lotic impairment and establish restoration goals. Directly relating biological responses to the combined effects of urbanization is further complicated by the nonlinear response often observed in common metrics (e.g., Ephemeroptera, Plecoptera, and Trichoptera [EPT] species richness) to measures of human influence (e.g., percentage urban land cover). A characteristic polygonal biological response often arises from the presence of a generalized limiting factor (i.e., urban land use) plus the influence of multiple additional stressors that are nonuniformly distributed throughout the urban environment. Benthic macroinvertebrates, on-site physical habitat and chemistry, and geographical information systems-derived land cover data for 85 sites were collected within the 1,600-km2 Santa Clara Valley (SCV), California urban area. A biological indicator value was derived from EPT richness and percentage EPT. Partitioned regression was used to define reference conditions and estimate the degree of site impairment. We propose that an upper-boundary condition (factor-ceiling) modeled by partitioned regression using ordinary least squares represents an attainable upper limit for biological condition in the SCV area. Indicator values greater than the factor-ceiling, which is monotonically related to existing land use, are considered representative of reference conditions under the current habitat conditions imposed by existing land cover and land use.

  10. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    NASA Astrophysics Data System (ADS)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  11. An annotated list of the mayflies, stoneflies, and caddisflies of the Sand Creek basin, Great Sand Dunes National Park and Preserve, Colorado, 2004 and 2005

    USGS Publications Warehouse

    Zuellig, Robert E.; Kondratieff, Boris C.; Ruiter, David E.; Thorp, Richard A.

    2006-01-01

    The U.S. Geological Survey, in conjunction with the Great Sand Dunes National Park and Preserve and its cooperators, did an extensive inventory of certain targeted aquatic-insect groups in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, to establish a species list for future monitoring efforts. Study sites were established to monitor these groups following disturbance events. Such potential disturbances may include, but are not limited to, chemical treatment of perennial stream reaches to remove nonnative fishes and the subsequent reintroduction of native fish species, increased public use of backcountry habitat (such as hiking and fishing), and natural disturbances such as fire. This report is an annotated list of the mayflies, stoneflies, and caddisflies found in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, 2004 and 2005. The primary objective of the study was to qualitatively inventory target aquatic-insect groups in perennial streams, and selected unique standing-water habitats, such as springs, and wetlands associated with the Sand Creek Basin. Efforts focused on documenting the presence of aquatic-insect species within the following taxonomic groups: Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These insect orders were chosen because published species accounts, geographic distribution, and identification keys exist for many Colorado species. Given the extent of available information for these groups, there existed a potential for identifying new species and documenting range extensions of known species.

  12. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    PubMed Central

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  13. River Ecosystem Response to Prescribed Vegetation Burning on Blanket peatland

    PubMed Central

    Brown, Lee E.; Johnston, Kerrylyn; Palmer, Sheila M.; Aspray, Katie L.; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson’s diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems. PMID:24278367

  14. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    PubMed

    Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  15. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    USGS Publications Warehouse

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  16. Changes in species composition of water insects during 25-year monitoring of the Danube floodplains affected by the Gabčíkovo waterworks.

    PubMed

    Krno, Iľja; Beracko, Pavel; Navara, Tomáš; Šporka, Ferdinand; Mišíková Elexová, Emília

    2018-06-20

    This study was based on the complex environmental monitoring of the Danube River in Slovakia. Out of 23 monitored sites, three were chosen for the aim of this study. The three sites were sampled regularly three times per year during a 25-year period, which started in 1990, 2 years before the Gabčíkovo waterworks became operational. Each site represented one of the main potamal types, which we recognised according to the habitat characteristics as eupotamal, parapotamal and plesiopotamal. In order to assess changes which occurred during the 25 years, we studied taxocoenoses of Ephemeroptera, Plecoptera and Trichoptera, which sensitively reflect anthropogenic impacts. The changes caused by the Gabčíkovo waterworks manifested in a decrease of the species diversity in eupotamal because of the disappearance of rheophilous taxa. In the parapotamal and plesiopotamal sites, the initial decrease was followed by a partial recovery of biodiversity due to the artificial floodings. After they were stopped, the decrease occurred again and until 2015, the insect taxa became rare. Conversely, in the eupotamal site, there was an increasing trend in biodiversity since 2011 until 2015. Overall increase in the floodplain index values indicated a loss of connectivity between the floodplain habitats and their fauna with the main channel during the last 25 years. In this paper, we also extended the floodplain index with data on habitat values and indication weight for several stonefly species.

  17. Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, C.W.; Clements, W.H.

    1998-11-01

    The authors performed chemical analyses of heavy metals in water and periphyton, toxicity tests with Daphnia magna and an indigenous mayfly (Deleatidium sp.), and field surveys of benthic macroinvertebrates to estimate the degree of metal pollution in three catchments in the Coromandel Peninsula of New Zealand. Good agreement was found between toxicity tests and measures of benthic community structure, particularly at stations with the highest metal levels. Responses of benthic communities at stations with low or moderate levels of metal contamination were variable and were probably confounded by factors other than heavy metals. Effects of heavy metals on benthic communitiesmore » in New Zealand streams were similar to those reported for metal-polluted streams in North America and Europe, suggesting that responses to metal contamination are predictable. Abundance and species richness of mayflies, number of taxa in the orders Ephemeroptera, Plecoptera, and Trichoptera, and total taxonomic richness were the best indicators of heavy metals in New Zealand streams. In contrast, the quantitative macroinvertebrate community index (QMCI), a biotic index proposed for assessing effects of organic enrichment in New Zealand streams, could not distinguish between reference and metal-polluted streams. The poor performance of the QMCI was primarily due to incorrect tolerance scores for some taxa to heavy metals. Because of concerns regarding the subjective assignment of tolerance values to species, the authors recommend that tolerance values for dominant species in New Zealand streams should be verified experimentally in stream microcosms.« less

  18. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  19. Assessing the Fauna of Aquatic Insects for Possible Use for Malaria Vector Control in Large River, Central Iran.

    PubMed

    Shayeghi, Mansoureh; Nejati, Jalil; Shirani-Bidabadi, Leila; Koosha, Mona; Badakhshan, Mehdi; Mohammadi Bavani, Mulood; Arzamani, Kourosh; Choubdar, Nayyereh; Bagheri, Fatemeh; Saghafipour, Abedin; Veysi, Arshad; Karimian, Fateh; Akhavan, Amir Ahamd; Vatandoost, Hassan

    2015-01-01

    Insects with over 30,000 aquatic species are known as very successful arthropods in freshwater habitats. Some of them are applied as biological indicators for water quality control, as well as the main food supply for fishes and amphibians. The faunistic studies are the basic step in entomological researches; the current study was carried out emphasizing on the fauna of aquatic insects in Karaj River, northern Iran. A field study was carried out in six various sampling site of Karaj River during spring 2013. The aquatic insects were collected using several methods such as D-frame nets, dipping and direct search on river floor stones. Specimens were collected and preserved in Ethanol and identified by standard identification keys. Totally, 211 samples were collected belonging to three orders; Plecoptera, Trichoptera and Ephemeroptera. Seven genuses (Perla, Isoperla, Hydropsyche, Cheumatopsyche, Baetis, Heptagenia and Maccafferium) from five families (Perlidae, Perlodidae, Hydropsychidae, Batidae, Heptagenidae) were identified. The most predominant order was Plecoptera followed by Trichoptera. Karaj River is a main and important river, which provides almost all of water of Karaj dam. So, identification of aquatic species which exist in this river is vital and further studies about systematic and ecological investigations should be performed. Also, monitoring of aquatic biota by trained health personnel can be a critical step to describe water quality in this river. Understanding the fauna of aquatic insects will provide a clue for possible biological control of medically important aquatic insects such as Anopheles as the malaria vectors.

  20. Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Anderson, James T.; Lin, L.-S.; Chen, Y.; Wei, X.

    2010-01-01

    Highway construction in mountainous areas can result in sedimentation of streams, negatively impacting stream habitat, water quality, and biotic communities. We assessed the impacts of construction of a segment of Corridor H, a four-lane highway, in the Lost River watershed, West Virginia, by monitoring benthic macroinvertebrate communities and water quality, before, during, and after highway construction and prior to highway use at upstream and downstream sites from 1997 through 2007. Data analysis of temporal impacts of highway construction followed a Before-After-Control-Impact (BACI) study design. Highway construction impacts included an increase in stream sedimentation during the construction phase. This was indicated by an increase in turbidity and total suspended solids. Benthic macroinvertebrate metrics indicated a community more tolerant during and after construction than in the period before construction. The percent of Chironomidae and the Hilsenhoff Biotic Index (HBI) increased, while percent of Ephemeroptera, Plecoptera, and Trichoptera (EPT) decreased. Our 10-year study addressed short-term impacts of highway construction and found that impacts were relatively minimal. A recovery of the number of EPT taxa collected after construction indicated that the benthic macroinvertebrate community may be recovering from impacts of highway construction. However, this study only addressed a period of 3 years before, 3 years during, and 4 years post construction. Inferences cannot be made concerning the long-term impacts of the highway, highway traffic, runoff, and other factors associated with highway use. Continual monitoring of the watershed is necessary to determine if the highway has a continual impact on stream habitat, water quality, and biotic integrity. ?? 2010 Springer Science+Business Media B.V.

  1. Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams

    USGS Publications Warehouse

    Zweig, L.D.; Rabeni, Charles F.

    2001-01-01

    The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.

  2. Safety of the molluscicide Zequanox (R) to nontarget macroinvertebrates Gammarus lacustris (Amphipoda: Gammaridae) and Hexagenia spp. (Ephemeroptera: Ephemeridae)

    USGS Publications Warehouse

    Waller, Diane L.; Luoma, James A.; Erickson, Richard A.

    2016-01-01

    Zequanox® is a commercial formulation of the killed bacterium, Pseudomonas fluorescens (strain CL145A), that was developed to control dreissenid mussels. In 2014, Zequanox became the second product registered by the United States Environmental Protection Agency (USEPA) for use in open water environments as a molluscicide. Previous nontarget studies demonstrated the safety and selectivity of P. fluorescens CL154A, but the database on the toxicity of the formulation (Zequanox) is limited for macroinvertebrate taxa and exposure conditions. We evaluated the safety of Zequanox to the amphipod Gammarus lacustris lacustris, and nymphs of the burrowing mayfly, Hexagenia spp. at the maximum approved concentration (100 mg/L active ingredient, A.I.) and exposure duration (8 h). Survival of animals was assessed after 8 h of exposure and again at 24 and 96 h post-exposure. Histopathology of the digestive tract of control and treated animals was compared at 96 h post-exposure. The results showed no significant effect of Zequanox on survival of either species. Survival of G. lacustris exceeded 85% in all concentrations at all three sampling time points. Survival of Hexagenia spp. ranged from 71% (control) to 91% at 8 h, 89–93% at 24 h post-exposure, and 70–73% at 96 h post-exposure across all treatments. We saw no evidence of pathology in the visceral organs of treated animals. Our results indicate that application of Zequanox at the maximum approved concentration and exposure duration did not cause significant mortality or treatment-related histopathological changes to G. lacustris and Hexagenia spp.

  3. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales.

    PubMed

    Silva, Déborah R O; Ligeiro, Raphael; Hughes, Robert M; Callisto, Marcos

    2016-06-01

    Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.

  4. Effects of repeated TFM applications on riffle macroinvertebrate communities in four Great Lakes tributaries

    USGS Publications Warehouse

    Weisser, John W.; Adams, Jean V.; Schuldt, Richard J.; Baldwin, Gregg A.; Lavis, Dennis S.; Slade, Jeffrey W.; Heinrich, John W.

    2003-01-01

    As part of the sea lamprey control program in the Great Lakes, a suite of about 150 sea lamprey producing streams have been regularly treated with the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) every 3 to 5 years since 1958. State, provincial, and tribal agencies in the basin supported the use of TFM and urged that the risk to nontarget organisms be minimized. To determine the response of riffle macroinvertebrate communities to repeated TFM treatments over several years, paired samples were taken at control and treatment sites during 1986 to 1995 on four Great Lakes tributaries: the Bois Brule, West Branch Whitefish, Boardman, and Sturgeon (tributary to Cheboygan River system) rivers. Macroinvertebrates were collected in spring and fall by a standard traveling kick method. The communities were described with several metrics, and general linear models were used to test for different patterns of response in the paired control and treatment sites. Relative abundance of the class Oligochaeta, relative abundance of the genus Ephemerella, the Bray-Curtis similarity index (at the taxonomic level of order), EPT genus richness (the number of genera in the orders Ephemeroptera, Plecoptera, and Trichoptera), and total genus richness all increased more at the treatment sites than at the control sites after TFM application. The greater increase in abundance, similarity, and richness at the treatment sites was an indication of recovery in the treatment sites, where a short-term response to TFM was followed by a several-year rebound. TFM treatments in this study during the 1980s and 1990s had no long-lasting effects on riffle macroinvertebrate communities.

  5. Quantifying invertebrate resistance to floods: a global-scale meta-analysis.

    PubMed

    McMullen, Laura E; Lytle, David A

    2012-12-01

    Floods are a key component of the ecology and management of riverine ecosystems around the globe, but it is not clear whether floods have predictable effects on organisms that can allow us to generalize across regions and continents. To address this, we conducted a global-scale meta-analysis to investigate effects of natural and managed floods on invertebrate resistance, the ability of invertebrates to survive flood events. We considered 994 studies for inclusion in the analysis, and after evaluation based on a priori criteria, narrowed our analysis to 41 studies spanning six of the seven continents. We used the natural-log-ratio of invertebrate abundance before and within 10 days after flood events because this measure of effect size can be directly converted to estimates of percent survival. We conducted categorical and continuous analyses that examined the contribution of environmental and study design variables to effect size heterogeneity, and examined differences in effect size among taxonomic groups. We found that invertebrate abundance was lowered by at least one-half after flood events. While natural vs. managed floods were similar in their effect, effect size differed among habitat and substrate types, with pools, sand, and boulders experiencing the strongest effect. Although sample sizes were not sufficient to examine all taxonomic groups, floods had a significant, negative effect on densities of Coleoptera, Eumalacostraca, Annelida, Ephemeroptera, Diptera, Plecoptera, and Trichoptera. Results from this study provide guidance for river flow regime prescriptions that will be applicable across continents and climate types, as well as baseline expectations for future empirical studies of freshwater disturbance.

  6. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    PubMed

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide.

  7. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  8. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  9. Development and Validation of an Aquatic Fine Sediment Biotic Index

    NASA Astrophysics Data System (ADS)

    Relyea, Christina D.; Minshall, G. Wayne; Danehy, Robert J.

    2012-01-01

    The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (<2 mm) impacts on macroinvertebrate communities in northwestern US streams. We examined previously collected data of benthic macroinvertebrate assemblages and substrate particle sizes for 1,139 streams spanning 16 western US Level III Ecoregions to determine macroinvertebrate sensitivity (mostly at species level) to fine sediment. We developed FSBI for four ecoregion groupings that include nine of the ecoregions. The grouping were: the Coast (Coast Range ecoregion) (136 streams), Northern Mountains (Cascades, N. Rockies, ID Batholith ecoregions) (428 streams), Rockies (Middle Rockies, Southern Rockies ecoregions) (199 streams), and Basin and Plains (Columbia Plateau, Snake River Basin, Northern Basin and Range ecoregions) (262 streams). We excluded rare taxa and taxa identified at coarse taxonomic levels, including Chironomidae. This reduced the 685 taxa from all data sets to 206. Of these 93 exhibited some sensitivity to fine sediment which we classified into four categories: extremely, very, moderately, and slightly sensitive; containing 11, 22, 30, and 30 taxa, respectively. Categories were weighted and a FSBI score calculated by summing the sensitive taxa found in a stream. There were no orders or families that were solely sensitive or resistant to fine sediment. Although, among the three orders commonly regarded as indicators of high water quality, the Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.

  10. Limits on characteristics of invertebrate assemblages associated with streamflow patterns in the western United States

    NASA Astrophysics Data System (ADS)

    Konrad, C.; Brasher, A.; May, J.

    2007-12-01

    River restoration depends on re-establishment of the range of physical and biological processes that comprise the river ecosystem. Streamflow is the definitive physical processes for river ecosystems, so hydrologic alteration represents a potentially significant issue to be addressed by restoration efforts. Given adaptation of lotic species to naturally variable streamflow patterns over evolutionary time scales, however, lotic communities are resilient to at least some forms of hydrologic variability. As a result, river restoration may be successful despite limited but biologically insignificant hydrologic alteration. The responses of benthic invertebrate assemblages to variation in streamflow patterns across the western United States were investigated to identify biologically important forms and magnitudes of hydrologic variability. Biological responses to streamflow patterns were analyzed in terms of ceilings and floors on invertebrate assemblage diversity and structure using a non-parametric screening procedure and quantile regression. Variability at daily and monthly time scales was the most common streamflow pattern associated with broad metrics of invertebrate assemblages including abundance; richness and relative abundance of Ephemeroptera, Plecoptera, Trichoptera and non-insects; dominance; and diversity. Low flow magnitude and annual variability were associated with richness and trophic structure. The frequency, magnitude, and duration of high flows were associated with abundance and richness. Longer term streamflow metrics (calculated over at least 5 years) were more important than recent flows (30 and 100 days prior to invertebrate sampling). The results can be used as general guidance about when hydrologic alteration is likely to be an important factor and what streamflow patterns may need to be re-established for successful river restoration.

  11. Stream Invertebrate Communities, Water Quality, and Land-Use Patterns in an Agricultural Drainage Basin of Northeastern Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Whiles, Matt R.; Brock, Brent L.; Franzen, Annette C.; Dinsmore, Steven C., II

    2000-11-01

    We used invertebrate bioassessment, habitat analysis, geographic information system analysis of land use, and water chemistry monitoring to evaluate tributaries of a degraded northeast Nebraska, USA, reservoir. Bimonthly invertebrate collections and monthly water chemistry samples were collected for two years on six stream reaches to identify sources contributing to reservoir degradation and test suitability of standard rapid bioassessment methods in this region. A composite biotic index composed of seven commonly used metrics was effective for distinguishing between differentially impacted sites and responded to a variety of disturbances. Individual metrics varied greatly in precision and ability to discriminate between relatively impacted and unimpacted stream reaches. A modified Hilsenhoff index showed the highest precision (reference site CV = 0.08) but was least effective at discriminating among sites. Percent dominance and the EPT (number of Ephemeroptera, Plecoptera, and Trichoptera taxa) metrics were most effective at discriminating between sites and exhibited intermediate precision. A trend of higher biotic integrity during summer was evident, indicating seasonal corrections should differ from other regions. Poor correlations were evident between water chemistry variables and bioassessment results. However, land-use factors, particularly within 18-m riparian zones, were correlated with bioassessment scores. For example, there was a strong negative correlation between percentage of rangeland in 18-m riparian zones and percentage of dominance in streams (r 2 = 0.90, P < 0.01). Results demonstrate that standard rapid bioassessment methods, with some modifications, are effective for use in this agricultural region of the Great Plains and that riparian land use may be the best predictor of stream biotic integrity.

  12. Defining the Reference Condition for Wadeable Streams in the Sand Hills Subdivision of the Southeastern Plains Ecoregion, USA

    NASA Astrophysics Data System (ADS)

    Kosnicki, Ely; Sefick, Stephen A.; Paller, Michael H.; Jarrell, Miller S.; Prusha, Blair A.; Sterrett, Sean C.; Tuberville, Tracey D.; Feminella, Jack W.

    2014-09-01

    The Sand Hills subdivision of the Southeastern Plains ecoregion has been impacted by historical land uses over the past two centuries and, with the additive effects of contemporary land use, determining reference condition for streams in this region is a challenge. We identified reference condition based on the combined use of 3 independent selection methods. Method 1 involved use of a multivariate disturbance gradient derived from several stressors, method 2 was based on variation in channel morphology, and method 3 was based on passing 6 of 7 environmental criteria. Sites selected as reference from all 3 methods were considered primary reference, whereas those selected by 2 or 1 methods were considered secondary or tertiary reference, respectively. Sites not selected by any of the methods were considered non-reference. In addition, best professional judgment (BPJ) was used to exclude some sites from any reference class, and comparisons were made to examine the utility of BPJ. Non-metric multidimensional scaling indicated that use of BPJ may help designate non-reference sites when unidentified stressors are present. The macroinvertebrate community measures Ephemeroptera, Plecoptera, Trichoptera richness and North Carolina Biotic Index showed no differences between primary and secondary reference sites when BPJ was ignored. However, there was no significant difference among primary, secondary, and tertiary reference sites when BPJ was used. We underscore the importance of classifying reference conditions, especially in regions that have endured significant anthropogenic activity. We suggest that the use of secondary reference sites may enable construction of models that target a broader set of management interests.

  13. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    PubMed

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  14. Effects of land use on the water quality and biota of three streams in the Piedmont province of North Carolina

    USGS Publications Warehouse

    Crawford, J.K.; Lenat, D.R.

    1989-01-01

    Three small streams in North Carolina 's northern Piedmont were studied to compare the effects of land use in their watersheds on water quality characteristics and aquatic biota. Devil 's Cradle Creek (agricultural watershed) had more than two times the sediment yield of Smith Creek (forested watershed) (0.34 tons/acre compared to 0.13 tons/acre), and Marsh Creek (urban watershed) had more than four times the yield of Smith Creek (0.59 tons/acre). Concentrations of nutrients were consistently highest in Devil 's Craddle Creek. Concentrations of total copper, iron, and lead in samples from each of the three streams at times exceeded State water quality standards as did concentrations of total zinc in samples from both Smith and Marsh Creeks. Successively lower aquatic invertebrate taxa richness was found in the forested, the agricultural, and the urban watershed streams. Invertebrate biota in Smith Creek was dominated by insects, such as Ephemeroptera, that are intolerant to stress from pollution, whereas Devil 's Cradle Creek was dominated by the more tolerant Diptera, and Marsh Creek was dominated by the most pollution-tolerant group, the Oligochaeta. Fish communities in the forested and agricultural watershed streams were characterized by more species and more individuals of each species, relative to a limited community in urban Marsh Creek. Three independent variables closely linked to land use--suspended-sediment yield, suspended-sediment load, and total lead concentrations in stream water--are inversely associated with the biological communities of the streams.

  15. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe.

    PubMed

    Múrria, Cesc; Bonada, Núria; Vellend, Mark; Zamora-Muñoz, Carmen; Alba-Tercedor, Javier; Sainz-Cantero, Carmen Elisa; Garrido, Josefina; Acosta, Raul; El Alami, Majida; Barquín, Jose; Derka, Tomáš; Álvarez-Cabria, Mario; Sáinz-Bariain, Marta; Filipe, Ana F; Vogler, Alfried P

    2017-11-01

    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels. © 2017 John Wiley & Sons Ltd.

  16. Effects of grade control structures on the macroinvertebrate assemblage of an agriculturally impacted stream

    USGS Publications Warehouse

    Litvan, M.E.; Stewart, T.W.; Pierce, C.L.; Larson, C.J.

    2008-01-01

    Nearly 400 rock rip-rap grade control structures (hereafter GCS) were recently placed in streams of western Iowa, USA to reduce streambank erosion and protect bridge infrastructure and farmland. In this region, streams are characterized by channelized reaches, highly incised banks and silt and sand substrates that normally support low macroinvertebrate abundance and diversity. Therefore, GCS composed of rip-rap provide the majority of coarse substrate habitat for benthic macroinvertebrates in these streams. We sampled 20 sites on Walnut Creek, Montgomery County, Iowa to quantify macroinvertebrate assemblage characteristics (1) on GCS rip-rap and at sites located (2) 5-50 m upstream of GCS, (3) 5-50 m downstream of GCS and (4) at least 1 km from any GCS (five sites each). Macroinvertebrate biomass, numerical densities and diversity were greatest at sites with coarse substrates, including GCS sites and one natural riffle site and relatively low at remaining sites with soft substrates. Densities of macroinvertebrates in the orders Ephemeroptera, Trichoptera, Diptera, Coleoptera and Acariformes were abundant on GCS rip-rap. Increases in macroinvertebrate biomass, density and diversity at GCS may improve local efficiency of breakdown of organic matter and nutrient and energy flow, and provide enhanced food resources for aquatic vertebrates. However, lack of positive macroinvertebrate responses immediately upstream and downstream of GCS suggest that positive effects might be restricted to the small areas of streambed covered by GCS. Improved understanding of GCS effects at both local and ecosystem scales is essential for stream management when these structures are present. Copyright ?? 2007 John Wiley & Sons, Ltd.

  17. Effects of extreme floods on macroinvertebrate assemblages in tributaries to the Mohawk River, New York, USA

    USGS Publications Warehouse

    Calderon, Mirian R.; Baldigo, Barry P.; Smith, Alexander J.; Endreny, Theodore A.

    2017-01-01

    Climate change is forecast to bring more frequent and intense precipitation to New York which has motivated research into the effects of floods on stream ecosystems. Macroinvertebrate assemblages were sampled at 13 sites in the Mohawk River basin during August 2011, and again in October 2011, following historic floods caused by remnants of Hurricane Irene and Tropical Storm Lee. The annual exceedance probabilities of floods at regional flow-monitoring sites ranged from 0.5 to 0.001. Data from the first 2 surveys, and from additional surveys done during July and October 2014, were assessed to characterize the severity of flood impacts, effect of seasonality, and recovery. Indices of total taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness; Hilsenhoff's biotic index; per cent model affinity; and nutrient biotic index-phosphorus were combined to calculate New York State Biological Assessment Profile scores. Analysis of variance tests were used to determine if the Biological Assessment Profile, its component metrics, relative abundance, and diversity differed significantly (p ≤ .05) among the four surveys. Only total taxa richness and Shannon–Wiener diversity increased significantly, and abundance decreased significantly, following the floods. No metrics differed significantly between the July and August 2014 surveys which indicates that the differences denoted between the August and October 2011 surveys were caused by the floods. Changes in taxa richness, EPT richness, and diversity were significantly correlated with flood annual exceedance probabilities. This study increased our understanding of the resistance and resilience of benthic macroinvertebrate communities by showing that their assemblages were relatively impervious to extreme floods across the region.

  18. Evolution of insect wings and development - new details from Palaeozoic nymphs.

    PubMed

    Haug, Joachim T; Haug, Carolin; Garwood, Russell J

    2016-02-01

    The nymphal stages of Palaeozoic insects differ significantly in morphology from those of their modern counterparts. Morphological details for some previously reported species have recently been called into question. Palaeozoic insect nymphs are important, however - their study could provide key insights into the evolution of wings, and complete metamorphosis. Here we review past work on these topics and juvenile insects in the fossil record, and then present both novel and previously described nymphs, documented using new imaging methods. Our results demonstrate that some Carboniferous nymphs - those of Palaeodictyopteroidea - possessed movable wing pads and appear to have been able to perform simple flapping flight. It remains unclear whether this feature is ancestral for Pterygota or an autapomorphy of Palaeodictyopteroidea. Further characters of nymphal development which were probably in the ground pattern of Pterygota can be reconstructed. Wing development was very gradual (archimetaboly). Wing pads did not protrude from the tergum postero-laterally as in most modern nymphs, but laterally, and had well-developed venation. The modern orientation of wing pads and the delay of wing development into later developmental stages (condensation) appears to have evolved several times independently within Pterygota: in Ephemeroptera, Odonatoptera, Eumetabola, and probably several times within Polyneoptera. Selective pressure appears to have favoured a more pronounced metamorphosis between the last nymphal and adult stage, ultimately reducing exploitation competition between the two. We caution, however, that the results presented herein remain preliminary, and the reconstructed evolutionary scenario contains gaps and uncertainties. Additional comparative data need to be collected. The present study is thus seen as a starting point for this enterprise. © 2014 Cambridge Philosophical Society.

  19. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  20. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE PAGES

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  1. An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA

    USGS Publications Warehouse

    Poulton, B.C.; Allert, A.L.

    2012-01-01

    A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system.

  2. Development of a socio-ecological environmental justice model for watershed-based management

    NASA Astrophysics Data System (ADS)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  3. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises.

    PubMed

    Raupach, Michael J; Hendrich, Lars; Küchler, Stefan M; Deister, Fabian; Morinière, Jérome; Gossner, Martin M

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).

  4. Benthic invertebrates of fixed sites in the western Lake Michigan drainages, Wisconsin and Michigan, 1993-95

    USGS Publications Warehouse

    Lenz, Bernard N.; Rheaume, S.J.

    2000-01-01

    This report describes the variability in family-level benthic-invertebrate population data and the reliability of the data as a water-quality indicator for 11 fixed surface-water sites in the Western Lake Michigan Drainages study area of the National Water-Quality Assessment Program. Benthic-invertebrate-community measures were computed for the following: number of individuals, Hilsenhoff’s Family-Level Biotic Index, number and percent EPT (Ephemeroptera, Plecoptera, and Tricoptera), Margalef’s Diversity Index, and mean tolerance value. Relations between these measures and environmental setting, habitat, and of chemical water quality are examined. Benthic-invertebrate communities varied greatly among fixed sites and within individual streams among multiple-reach and multiple-year sampling. The variations between multiple reaches and years were sometimes larger than those found between different fixed sites. Factors affecting benthic invertebrates included both habitat and chemical quality. Generally, fixed-site streams with the highest diversity, greatest number of benthic invertebrates, and those at which community measures indicated the best water quality also had the best habitat and chemical quality. Variations among reaches are most likely related to differences in habitat. Variations among years are most likely related to climatic changes, which create variations in flow and/or chemical quality. The variability in the data analyzed in this study shows how benthic invertebrates are affected by differences in both habitat and water quality, making them useful indicators of stream health; however, a single benthic-invertebrate sample alone cannot be relied upon to accurately describe water quality of the streams in this study. Benthic-invertebrate data contributed valuable information on the biological health of the 11 fixed sites when used as one of several data sources for assessing water quality.

  5. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  6. Effects of urbanization on benthic macroinvertebrate communities in streams, Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, Robert T.

    2001-01-01

    The effect of urbanization on stream macroinvertebrate communities was examined by using data gathered during a 1999 reconnaissance of 14 sites in the Municipality of Anchorage, Alaska. Data collected included macroinvertebrate abundance, water chemistry, and trace elements in bed sediments. Macroinvertebrate relative-abundance data were edited and used in metric and index calculations. Population density was used as a surrogate for urbanization. Cluster analysis (unweighted-paired-grouping method) using arithmetic means of macroinvertebrate presence-absence data showed a well-defined separation between urbanized and nonurbanized sites as well as extracted sites that did not cleanly fall into either category. Water quality in Anchorage generally declined with increasing urbanization (population density). Of 59 variables examined, 31 correlated with urbanization. Local regression analysis extracted 11 variables that showed a significant impairment threshold response and 6 that showed a significant linear response. Significant biological variables for determining the impairment threshold in this study were the Margalef diversity index, Ephemeroptera-Plecoptera-Trichoptera taxa richness, and total taxa richness. Significant thresholds were observed in the water-chemistry variables conductivity, dissolved organic carbon, potassium, and total dissolved solids. Significant thresholds in trace elements in bed sediments included arsenic, iron, manganese, and lead. Results suggest that sites in Anchorage that have ratios of population density to road density greater than 70, storm-drain densities greater than 0.45 miles per square mile, road densities greater than 4 miles per square mile, or population densities greater than 125-150 persons per square mile may require further monitoring to determine if the stream has become impaired. This population density is far less than the 1,000 persons per square mile used by the U.S. Census Bureau to define an urban area.

  7. Using ecological indicators and a decision support system for integrated ecological assessment at two national park units in the Mid-Atlantic region, U.S.A.

    USGS Publications Warehouse

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce; Saunders, Michael C.

    2014-01-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks’ conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a −1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  8. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    PubMed Central

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  9. Comparison of macroinvertebrate-derived stream quality metrics between snag and riffle habitats

    USGS Publications Warehouse

    Stepenuck, K.F.; Crunkilton, R.L.; Bozek, Michael A.; Wang, L.

    2008-01-01

    We compared benthic macroinvertebrate assemblage structure at snag and riffle habitats in 43 Wisconsin streams across a range of watershed urbanization using a variety of stream quality metrics. Discriminant analysis indicated that dominant taxa at riffles and snags differed; Hydropsychid caddisflies (Hydropsyche betteni and Cheumatopsyche spp.) and elmid beetles (Optioservus spp. and Stenemlis spp.) typified riffles, whereas isopods (Asellus intermedius) and amphipods (Hyalella azteca and Gammarus pseudolimnaeus) predominated in snags. Analysis of covariance indicated that samples from snag and riffle habitats differed significantly in their response to the urbanization gradient for the Hilsenhoff biotic index (BI), Shannon's diversity index, and percent of filterers, shredders, and pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera (EPT) at each stream site (p ??? 0.10). These differences suggest that although macroinvertebrate assemblages present in either habitat type are sensitive to detecting the effects of urbanization, metrics derived from different habitats should not be intermixed when assessing stream quality through biomonitoring. This can be a limitation to resource managers who wish to compare water quality among streams where the same habitat type is not available at all stream locations, or where a specific habitat type (i.e., a riffle) is required to determine a metric value (i.e., BI). To account for differences in stream quality at sites lacking riffle habitat, snag-derived metric values can be adjusted based on those obtained from riffles that have been exposed to the same level of urbanization. Comparison of nonlinear regression equations that related stream quality metric values from the two habitat types to percent watershed urbanization indicated that snag habitats had on average 30.2 fewer percent EPT individuals, a lower diversity index value than riffles, and a BI value of 0.29 greater than riffles. ?? 2008 American Water Resources Association.

  10. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  11. Aquatic assemblages of the highly urbanized Santa Ana River Basin, California

    USGS Publications Warehouse

    Brown, Larry R.; Burton, Carmen; Belitz, Kenneth

    2005-01-01

    We assessed the structure of periphyton, benthic macroinvertebrate, and fish assemblages and their associations with environmental variables at 17 sites on streams of the highly urbanized Santa Ana River basin in Southern California. All assemblages exhibited strong differences between highly urbanized sites in the valley and the least-impacted sites at the transition between the valley and undeveloped mountains. Results within the urbanized area differed among taxa. Periphyton assemblages were dominated by diatoms (>75% of total taxa). Periphyton assemblages within the urbanized area were not associated with any of the measured environmental variables, suggesting that structure of urban periphyton assemblages might be highly dependent on colonization dynamics. The number of Ephemeroptera, Trichoptera, and Plecoptera (EPT) taxa included in macroinvertebrate assemblages ranged from 0 to 6 at urbanized sites. Benthic macroinvertebrate assemblages had significant correlations with several environmental variables within the urban area, suggesting that stream size and permanence were important determinants of distribution among the species able to survive conditions in urban streams. Only 4 of 16 fish species collected were native to the drainage. Fish assemblages of urbanized sites included two native species, arroyo chub Gila orcuttii and Santa Ana sucker Catostomus santaanae, at sites that were intermediate in coefficient of variation of bank-full width, depth, bed substrate, and water temperature. Alien species dominated urbanized sites with lesser or greater values for these variables. These results suggest that urban streams can be structured to enhance populations of native fishes. Continued study of urban streams in the Santa Ana River basin and elsewhere will contribute to the basic understanding of ecological principles and help preserve the maximum ecological value of streams in highly urbanized areas.

  12. Using ecological indicators and a decision support system for integrated ecological assessment at two national park units in the mid-Atlantic region, USA.

    PubMed

    Mahan, Carolyn G; Young, John A; Miller, Bruce J; Saunders, Michael C

    2015-02-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)-national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks' conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a -1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape-we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  13. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed.

    PubMed

    Gieswein, Alexander; Hering, Daniel; Feld, Christian K

    2017-09-01

    Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The rainy season increases the abundance and richness of the aquatic insect community in a Neotropical reservoir.

    PubMed

    Santana, H S; Silva, L C F; Pereira, C L; Simião-Ferreira, J; Angelini, R

    2015-01-01

    Alterations in aquatic systems and changes in water levels, whether due to rains or dam-mediated control can cause changes in community structure, forcing the community to readjust to the new environment. This study tested the hypothesis that there is an increase in the richness and abundance of aquatic insects during the rainy season in the Serra da Mesa Reservoir, with the premise that increasing the reservoir level provides greater external material input and habitat diversity, and, therefore, conditions that promote colonization by more species. We used the paired t test to test the differences in richness, beta diversity, and abundance, and a Non-metric Multidimensional Scaling (NMDS) was performed to identify patterns in the community under study. Additionally, Pearson correlations were analyzed between the richness, abundance, and beta diversity and the level of the reservoir. We collected 35,028 aquatic insect larvae (9,513 in dry period and 25,515 in the rainy season), predominantly of the Chironomidae family, followed by orders Ephemeroptera, Trichoptera, and Odonata. Among the 33 families collected, only 12 occurred in the dry season, while all occurred in the rainy season. These families are common in lentic environments, and the dominance of Chironomidae was associated with its fast colonization, their behavior of living at high densities and the great tolerance to low levels of oxygen in the environment. The hypothesis was confirmed, as the richness, beta diversity, and abundance were positively affected by the increase in water levels due to the rainy season, which most likely led to greater external material input, greater heterogeneity of habitat, and better conditions for colonization by several families.

  15. Effects of dietary esfenvalerate exposures on three aquatic insect species representing different functional feeding groups.

    PubMed

    Palmquist, Katherine R; Jenkins, Jeffrey J; Jepson, Paul C

    2008-08-01

    Given the chemical properties of synthetic pyrethroids, it is probable that compounds, including esfenvalerate, that enter surface waters may become incorporated into aquatic insect food sources. We examined the effect of dietary esfenvalerate uptake in aquatic insects representing different functional feeding groups. We used three field-collected aquatic insect species: A grazing scraper, Cinygmula reticulata McDunnough (Ephemeroptera: Heptageniidae); an omnivorous filter feeder, Brachycentrus americanus Banks (Trichoptera: Brachycentridae); and a predator, Hesperoperla pacifica Banks (Plecoptera: Perlidae). Laboratory-cultured algae were preexposed for 24 h to esfenvalerate concentrations of 0, 0.025, 0.05, and 0.1 microg/L and provided to two C. reticulata age classes (small and final-instar nymphs). Reduction in small nymph growth was observed following three weeks of feeding on algae exposed to 0.05 and 0.1 microg/L of esfenvalerate, and the highest dietary exposure reduced egg production in final-instar nymphs. The diet for B. americanus and H. pacifica consisted of dead third-instar Chironomus tentans larvae preexposed for 24 h to esfenvalerate concentrations ranging between 0.1 and 1.0 microg/L. Consumption of larvae exposed to 0.5 to 1.0 microg/L of esfenvalerate caused case abandonment and mortality in B. americanus caddisfly larvae. Although H. pacifica nymphs readily consumed esfenvalerate-exposed larvae, no adverse effects were observed during the present study. Furthermore, no evidence of esfenvalerate-induced feeding deterrence was found in any of the species tested, suggesting that aquatic insects may not be able to distinguish between pyrethroid-contaminated and uncontaminated food sources. These findings indicate that feeding deterrence is not a factor in regulating aquatic insect dietary exposures to synthetic pyrethroids.

  16. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA

    USGS Publications Warehouse

    Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and multivariate community analysis) suggest that elevated contaminant concentrations in sediments, in particular bifenthrin, is limiting macroinvertebrate communities in several of these Midwest streams.

  17. Chironomidae traits and life history strategies as indicators of anthropogenic disturbance.

    PubMed

    Serra, Sónia R Q; Graça, Manuel A S; Dolédec, Sylvain; Feio, Maria João

    2017-07-01

    In freshwater ecosystems, Chironomidae are currently considered indicators of poor water quality because the family is often abundant in degraded sites. However, it incorporates taxa with a large ecological and physiological diversity and different sensitivity to impairment. Yet, the usual identification of Chironomidae at coarse taxonomic levels (family or subfamily) masks genus and species sensitivities. In this study, we investigate the potential of taxonomic and functional (traits) composition of Chironomidae to detect anthropogenic disturbance. In this context, we tested some a priori hypotheses regarding the ability of Chironomidae taxonomic and trait compositions to discriminate Mediterranean streams affected by multiple stressors from least-disturbed streams. Both taxonomic and Eltonian trait composition discriminated sites according to their disturbance level. Disturbance resulted in the predicted increase of Chironomidae with higher number of stages with hibernation/diapause and of taxa with resistance forms and unpredicted increase of the proportion of taxa with longer life cycles and few generations per year. Life history strategies (LHS), corresponding to multivoltine Chironomidae that do not invest in hemoglobin and lack strong spring synchronization, were well adapted to all our Mediterranean sites with highly changeable environmental conditions. Medium-size animals favored in disturbed sites where the Mediterranean hydrological regime is altered, but the reduced number of larger-size/carnivore Chironomids suggests a limitation to secondary production. Results indicate that Chironomidae genus and respective traits could be a useful tool in the structural and functional assessment of Mediterranean streams. The ubiquitous nature of Chironomidae should be also especially relevant in the assessment of water bodies naturally poor in other groups such as the Ephemeroptera, Plecoptera, and Trichoptera, such as the lowland rivers with sandy substrates, lakes, or reservoirs.

  18. Biological assessment and streambed-sediment chemistry of streams in the Indianapolis metropolitan area, Indiana, 2003–2008

    USGS Publications Warehouse

    Voelker, David C.

    2012-01-01

    During 2003–2008, the U.S. Geological Survey sampled 13 sites in the Indianapolis metropolitan area in Indiana for benthic invertebrates, fish communities, and streambed-sediment chemistry. Data from seven White River sites and six tributary sites complement surface-water chemistry data collected by the Indianapolis Department of Public Works. The information is being used to assess changes in water quality in conjunction with the City's programs to reduce combined sewer overflows and other point and nonpoint sources of pollution in the Indianapolis area. During the study, 233 benthic-invertebrate taxa were identified from which the Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index, the Hilsenhoff Biotic Index (HBI), and the Invertebrate Community Index (ICI) were calculated. EPT index scores ranged from 2 to 16 on the White River and from 2 to 17 on the tributaries. EPT index scores indicate that these pollution-intolerant taxa are more prevalent upstream from and away from the combined-sewer areas of Indianapolis. HBI scores from sites on the White River ranged from 4.67 (good) to 9.55 (very poor), whereas on the tributaries, scores ranged from 4.21 (very good) to 8.14 (poor). Lower HBI scores suggest that less organic pollution was present and, like the EPT scores, indicate better conditions where combined-sewer overflows (CSOs) are not present. Similarly, ICI scores indicated better conditions upstream from the CSO outfalls on the White River. White River scores ranged from 12 to 46, where higher ICI scores indicate better conditions in the benthic-invertebrate community. ICI scores at the tributary sites ranged from 12 to 52, with the highest scores on streams without CSOs.

  19. Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana

    USGS Publications Warehouse

    1995-01-01

    We sampled macroinvertebrate communities at six sites on the upper Clark Fork River, Montana, to determine relations between macroinvertebrate community structure and metals in invertebrates and the best benthic community metrics to use for ranking sites based on the relative severity of the effects of metals. Concentrations (μg/g) of six metals in invertebrates were determined: Al (range = 591–4193), As (2.7–34.1), Cd (0.13–8.38), Cu (26–1382), Pb (0.54–67.1), and Zn (212–1665). Concentrations of As, Cd, Cu, Pb, and total metals were significantly correlated with at least one benthic metric. Copper (r = 0.88–0.94) and total metals (r = 0.90–0.97) provided the most highly significant correlations. Based on longitudinal site comparisons of metals in invertebrates, benthic community structure, and differences between proportionally scaled ranks, five benthic metrics provided the best indicators of relative impact: taxa richness, Ephemeroptera-Plecoptera-Trichoptera (EPT) richness, chironomid richness, percentage of the most dominant taxon, and density. The two sites with the highest accumulations of invertebrate metals also demonstrated the greatest relative degree of impact based on these parameters. The most meaningful combinations of metrics indicate that the benthic community at the most upstream site is being severely impacted by metals. Two sites demonstrated little or no negative impact, and three sites demonstrated low or moderate levels of negative impacts, which may be due to a combination of metals and other factors such as organic enrichment. We recommend that benthic community structure and metals in invertebrates collected from riffle habitats be used to determine relative impacts in metals-contaminated river systems, owing to their close relation to metal availability and transfer to higher trophic levels.

  20. Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development

    NASA Astrophysics Data System (ADS)

    Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.

    2007-02-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.

  1. Using Ecological Indicators and a Decision Support System for Integrated Ecological Assessment at Two National Park Units in the Mid-Atlantic Region, USA

    NASA Astrophysics Data System (ADS)

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce J.; Saunders, Michael C.

    2015-02-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks' conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a -1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  2. Effect of mesohabitats on responses of invertebrate community structure in streams under different land uses.

    PubMed

    da Silva, Marcos Vinícius Dias; Rosa, Beatriz F J V; Alves, Roberto G

    2015-11-01

    Riparian vegetation is one of the most important abiotic components determining the water flow pattern in lotic ecosystems, influencing the composition, richness, and diversity of invertebrates. We have identified whether differences in the structure of the assemblages of invertebrates between riffles and pools may influence the responses of fauna to the effects of land use. In addition, we investigated which fauna metrics are responsible for the differentiation between riffles and pools in streams subject to different land uses. During the dry season of 2012, the main substrates of riffles and pools were sampled (Surber collector) from nine streams within forest, pasture, and urban areas. Principal component analysis (PCA) and Permanova showed differences in the set of environmental variables between streams and mesohabitats. The first PCA axis distinguished the forest and pasture streams from the urban area streams and was related to variables indicative of nutrient enrichment and land use, while the second axis was formed by velocity flow and by the quantities of ultrafine and coarse sand, which distinguished the riffles and pools of the streams. The faunal composition distinguished the streams in pasture and forest areas from the urban streams. Riffles and pools were not concordant in the representation of the invertebrate fauna, indicating the importance of sampling both mesohabitats in the types of streams investigated. The richness, taxonomic composition, and relative abundance of families of Ephemeroptera, Plecoptera, and Trichoptera showed robust responses in riffles to the effects of environmental changes, while in pools, only the richness showed a significant response. It was possibly concluded that riffles were more sensitive in detecting the effects of land use. The information from this study help to understand how the community of invertebrates and the types of habitats in streams may be affected by anthropogenic impacts.

  3. Larval aquatic insect responses to cadmium and zinc in experimental streams

    USGS Publications Warehouse

    Mebane, Christopher A.; Schmidt, Travis S.; Balistrieri, Laurie S.

    2017-01-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration–response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pKa bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams.

  4. Aquatic Insects from the Caatinga: checklists and diversity assessments of Ubajara (Ceará State) and Sete Cidades (Piauí State) National Parks, Northeastern Brazil

    PubMed Central

    Santos, Allan Paulo Moreira; Pinto, Ângelo Parise; Henriques-Oliveira, Ana Lucia; Carvalho, Alcimar do Lago; Sampaio, Brunno Henrique Lanzellotti; Clarkson, Bruno; Moreira, Felipe Ferraz Figueiredo; Avelino-Capistrano, Fernanda; Gonçalves, Inês Corrêa; Cordeiro, Isabelle da Rocha Silva; Câmara, Josenir Teixeira; Barbosa, Julianna Freires; de Souza, W. Rafael Maciel; Rafael, José Albertino

    2016-01-01

    Abstract Background Diversity and distribution of Neotropical aquatic insects is still poorly known, with many species to be recorded and many others to be described, due to the small number of taxonomists and sparse faunistic studies. This knowledge is especially poor in the Caatinga Domain in Northeastern Brazil, even though, this region may have played an important historical role in the spatial evolution of faunas of forested areas in northern South America. New information Aquatic insect checklists of 96 species from Parque Nacional de Ubajara (Ceará State, Brazil) and 112 species from Parque Nacional de Sete Cidades (Piauí State, Brazil) are presented, representing the following taxa: Elmidae, Epimetopidae, Hydrophilidae, and Torridincolidae (Coleoptera), Hemerodromiinae (Diptera: Empididae), Ephemeroptera, Gerromorpha and Nepomorpha (Hemiptera), Odonata, Plecoptera, and Trichoptera. Because of the scarce number of biological inventories in Northeastern Brazil, several new distributional records (of species, genera, and families) for Brazil, Northeastern Brazil, and Ceará and Piauí states are provided. In addition, several undescribed species were detected, being 26 from Ubajara and 20 from Sete Cidades. Results represent a significant increase to the known fauna of these states, ranging from 13%-70% increase for Ceará and 41% to 91% increase for Piauí. Although both parks are relatively close to each other and within the Caatinga domain, their aquatic fauna display a very high complementarity (89% species), possibly due to structural differences of water bodies sampled in each park. Rarefaction curves based on quantitative light trap samples suggest a much higher expected species richness of aquatic insects at Sete Cidades than at Ubajara National Park. Discussion on biogeographical affinities of this sample of the Caatinga fauna is provided. PMID:27660528

  5. Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1994-12-01

    In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. Thesemore » stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)« less

  6. Burrowing mayflies as indicators of ecosystem health: Status of populations in two western Lake Superior embayments

    USGS Publications Warehouse

    Edsall, Thomas A.; Gorman, Owen T.; Evrard, Lori M.

    2004-01-01

    The U.S. Environmental Protection Agency and Environment Canada are supporting the development of indicators of ecosystem health that can be used to report on progress in restoring and maintaining the Great Lakes ecosystem, as called for in the Great Lakes Water Quality Agreement between the United States and Canada. One indicator under development for Great Lakes mesotrophic environments is based on burrowing mayflies (Hexagenia: Ephemeroptera: Ephemeridae). In this paper, we report the results of a benthic survey in spring 2002 to determine the status of nymphal populations of Hexagenia in two western Lake Superior embayments, the St. Louis River estuary, an area with significant water-use impairments, and Chequamegon Bay, an area with no known water-use impairments. Ponar grab samples collected throughout these embayments showed nymphs were generally abundant in finely particulate, cohesive substrate (clay or mixtures of clay and sand) in both embayments. However, in the St. Louis River estuary nymphs were absent in those preferred substrates at 11 stations in the eastern portion of St. Louis Bay and the adjoining northwestern portion of the Duluth-Superior Harbor, where the sediments were variously contaminated with visible amounts of taconite pellets, paint chips, oil, or combusted coal waste (clinkers). Our results suggest that human activities have rendered those portions of the St. Louis River estuary unsuitable for habitation by Hexagenia nymphs and we recommend that trend monitoring of the nymphal population there be conducted to permit reporting on progress in restoring and maintaining the health and integrity of this Great Lakes ecosystem embayment, consistent with the intent of the Great Lakes Water Quality Agreement.

  7. Aquatic Insects from the Caatinga: checklists and diversity assessments of Ubajara (Ceará State) and Sete Cidades (Piauí State) National Parks, Northeastern Brazil.

    PubMed

    Takiya, Daniela Maeda; Santos, Allan Paulo Moreira; Pinto, Ângelo Parise; Henriques-Oliveira, Ana Lucia; Carvalho, Alcimar do Lago; Sampaio, Brunno Henrique Lanzellotti; Clarkson, Bruno; Moreira, Felipe Ferraz Figueiredo; Avelino-Capistrano, Fernanda; Gonçalves, Inês Corrêa; Cordeiro, Isabelle da Rocha Silva; Câmara, Josenir Teixeira; Barbosa, Julianna Freires; de Souza, W Rafael Maciel; Rafael, José Albertino

    2016-01-01

    Diversity and distribution of Neotropical aquatic insects is still poorly known, with many species to be recorded and many others to be described, due to the small number of taxonomists and sparse faunistic studies. This knowledge is especially poor in the Caatinga Domain in Northeastern Brazil, even though, this region may have played an important historical role in the spatial evolution of faunas of forested areas in northern South America. Aquatic insect checklists of 96 species from Parque Nacional de Ubajara (Ceará State, Brazil) and 112 species from Parque Nacional de Sete Cidades (Piauí State, Brazil) are presented, representing the following taxa: Elmidae, Epimetopidae, Hydrophilidae, and Torridincolidae (Coleoptera), Hemerodromiinae (Diptera: Empididae), Ephemeroptera, Gerromorpha and Nepomorpha (Hemiptera), Odonata, Plecoptera, and Trichoptera. Because of the scarce number of biological inventories in Northeastern Brazil, several new distributional records (of species, genera, and families) for Brazil, Northeastern Brazil, and Ceará and Piauí states are provided. In addition, several undescribed species were detected, being 26 from Ubajara and 20 from Sete Cidades. Results represent a significant increase to the known fauna of these states, ranging from 13%-70% increase for Ceará and 41% to 91% increase for Piauí. Although both parks are relatively close to each other and within the Caatinga domain, their aquatic fauna display a very high complementarity (89% species), possibly due to structural differences of water bodies sampled in each park. Rarefaction curves based on quantitative light trap samples suggest a much higher expected species richness of aquatic insects at Sete Cidades than at Ubajara National Park. Discussion on biogeographical affinities of this sample of the Caatinga fauna is provided.

  8. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome.

    PubMed

    Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T

    2017-02-01

    The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: Implication to nutrient criteria development

    USGS Publications Warehouse

    Wang, L.; Robertson, Dale M.; Garrison, P.J.

    2007-01-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006 Springer Science+Business Media, Inc.

  10. Selective oviposition of the mayfly Baetis bicaudatus.

    PubMed

    Encalada, Andrea C; Peckarsky, Barbara L

    2006-06-01

    Selective oviposition can have important consequences for recruitment limitation and population dynamics of organisms with complex life cycles. Temporal and spatial variation in oviposition may be driven by environmental or behavioral constraints. The goals of this study were to: (1) develop an empirical model of the substrate characteristics that best explain observed patterns of oviposition by Baetis bicaudatus (Ephemeroptera), whose females lay eggs under rocks protruding from high-elevation streams in western Colorado; and (2) test experimentally selective oviposition of mayfly females. We surveyed the number and physical characteristics of potential oviposition sites, and counted the number and density of egg masses in different streams of one watershed throughout two consecutive flight seasons. Results of surveys showed that variability in the proportion of protruding rocks with egg masses and the density of egg masses per rock were explained primarily by seasonal and annual variation in hydrology, and variation in geomorphology among streams. Moreover, surveys and experiments showed that females preferred to oviposit under relatively large rocks located in places with high splash associated with fast current, which may provide visual, mechanical or both cues to females. Experiments also showed that high densities of egg masses under certain rocks were caused by rock characteristics rather than behavioral aggregation of ovipositing females. While aggregations of egg masses provided no survival advantage, rocks selected by females had lower probabilities of desiccating during egg incubation. Our data suggest that even when protruding rocks are abundant, not all rocks are used as oviposition sites by females, due to female selectivity and to differences in rock availability within seasons, years, or streams depending on variation in climate and hydrogeomorphology. Therefore, specialized oviposition behavior combined with variation in availability of quality oviposition substrata has the potential to limit recruitment of this species.

  11. Evidence of Niche Partitioning under Ontogenetic Influences among Three Morphologically Similar Siluriformes in Small Subtropical Streams

    PubMed Central

    Bonato, Karine Orlandi; Fialho, Clarice Bernhardt

    2014-01-01

    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed. PMID:25340614

  12. Natural growth and diet of known-age pallid sturgeon (Scaphirhynchus albus) early life stages in the upper Missouri River basin, Montana and North Dakota

    USGS Publications Warehouse

    Braaten, P.J.; Fuller, D.B.; Lott, R.D.; Haddix, T.M.; Holte, L.D.; Wilson, R.H.; Bartron, M.L.; Kalie, J.A.; DeHaan, P.W.; Ardren, W.R.; Holm, R.J.; Jaeger, M.E.

    2012-01-01

    Prior to anthropogenic modifications, the historic Missouri River provided ecological conditions suitable for reproduction, growth, and survival of pallid sturgeon Scaphirhynchus albus. However, little information is available to discern whether altered conditions in the contemporary Missouri River are suitable for feeding, growth and survival of endangered pallid sturgeon during the early life stages. In 2004 and 2007, nearly 600 000 pallid sturgeon free embryos and larvae were released in the upper Missouri River and survivors from these releases were collected during 2004–2010 to quantify natural growth rates and diet composition. Based on genetic analysis and known-age at release (1–17 days post-hatch, dph), age at capture (dph, years) could be determined for each survivor. Totals of 23 and 28 survivors from the 2004 and 2007 releases, respectively, were sampled. Growth of pallid sturgeon was rapid (1.91 mm day−1) during the initial 13–48 dph, then slowed as fish approached maximum length (120–140 mm) towards the end of the first growing season. The diet of young-of-year pallid sturgeon was comprised of Diptera larvae, Diptera pupae, and Ephemeroptera nymphs. Growth of pallid sturgeon from ages 1–6 years was about 48.0 mm year−1. This study provides the first assessment of natural growth and diet of young pallid sturgeon in the wild. Results depict pallid sturgeon growth trajectories that may be expected for naturally produced wild stocks under contemporary habitat conditions in the Missouri River and Yellowstone River.

  13. Burrowing mayflies (Hexagenia) as indicators of ecosystem health

    USGS Publications Warehouse

    Edsall, Thomas A.

    2001-01-01

    Three State of the Lakes Ecosystem Conferences have been held since 1996 to encourage the development of Great Lakes indicators of ecosystem health for use in reporting on progress in restoring and maintaining the chemical, physical and biological integrity of the Great Lakes ecosystem. Here we report on the development of an indicator based on burrowing mayflies , Hexagenia (Ephemeroptera: Ephemeridae), using production and biomass as the indicator metrics. Burrowing mayflies were selected because they (1) were historically abundant in unpolluted, soft-bottomed mesotrophic habitats throughout the Great Lakes, (2) are intolerant of and were extirpated by pollution in most of those habitats during the 1940s to1950s, (3) have shown the ability to recover in one of those habitats following pollution abatement, (4) are ecologically important as bioturbators of lakebed sediments and as trophic integrators that link detrital energy resources directly to fishes that feed preferentially on them, and (5) have highly visible mating flights, which carry the message directly to an informed public that the source water body is healthy. In addition, their annual production can be estimated from their mean annual biomass by the sizefrequency method. Productivity and biomass can also could be estimated with a 'cohort-direct' method, using the biomass of mature nymphs collected in May or early June from the cohort that is about to emerge as subimagos in late June or early July. Although both the size-frequency and cohort-direct methods provide reliable estimates of productivity and biomass, the latter method greatly reduces sample collection and processing effort and thus makes it feasible to use Hexagenia as an indicator of ecosystem health in surveys requiring the collection of large numbers of samples.

  14. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation Biology.

  15. Effects of changing climate on European stream invertebrate communities: A long-term data analysis.

    PubMed

    Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter

    2018-04-15

    Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates.

    PubMed

    Stein, Eric D; White, Bryan P; Mazor, Raphael D; Miller, Peter E; Pilgrim, Erik M

    2013-01-01

    Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.

  17. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    PubMed Central

    Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Miller, Peter E.; Pilgrim, Erik M.

    2013-01-01

    Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93–99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity. PMID:23308097

  18. The role of macroinvertebrates for conservation of freshwater systems.

    PubMed

    Nieto, Carolina; Ovando, Ximena M C; Loyola, Rafael; Izquierdo, Andrea; Romero, Fátima; Molineri, Carlos; Rodríguez, José; Rueda Martín, Paola; Fernández, Hugo; Manzo, Verónica; Miranda, María José

    2017-07-01

    Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian-protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí-Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the connectivity of the watersheds and create multiple-use modules.

  19. [Agricultural land use impacts on aquatic macroinvertebrates in small streams from La Vieja river (Valle del Cauca, Colombia].

    PubMed

    Giraldo, Lina Paola; Chará, Julián; Zúñiga, Maria del Carmen; Chará-Serna, Ana Marcela; Pedraza, Gloria

    2014-04-01

    The expansion of the agricultural frontier in Colombia has exerted significant pressure on its aquatic ecosystems during the last few decades. In order to determine the impacts of different agricultural land uses on the biotic and abiotic characteristics of first and second order streams of La Vieja river watershed, we evaluated 21 streams located between 1,060 and 1,534 m asl in the municipalities of Alcalá, Ulloa, and Cartago (Valle del Cauca, Colombia). Seven streams were protected by native vegetation buffers, eight had influence of coffee and plantain crops, and six were influenced by cattle ranching. Habitat conditions, channel dimensions, water quality, and aquatic macroinvertebrates were studied in each stream. Streams draining cattle ranching areas had significantly higher dissolved solids, higher phosphorus, higher alkalinity, higher conductivity, and lower dissolved oxygen than those covered by cropland and forests. Coarse substrates and diversity of flow regimes were significantly higher in cropland and protected streams when compared to streams affected by cattle ranching, whereas the percent of silt and slow currents was significantly higher in the latter. A total of 26,777 macroinvertebrates belonging to 17 orders, 72 families and 95 genera were collected. The most abundant groups were Diptera 62.8%, (Chironomidae 49.6%, Ceratopogonidae 6.7%), Mollusca 18.8% (Hydrobiidae 7.2%, Sphaeriidae 9.6%) and Trichoptera 5.7% (Hydropsychidae 3.7%). The Ephemeroptera, Trichoptera, and Plecoptera orders, known for their low tolerance to habitat perturbation, had high abundance in cropland and forested streams, whereas Diptera and Mollusca were more abundant in those impacted by cattle ranching. Results indicate that streams draining forests and croplands have better physical and biological conditions than those draining pastures, and highlight the need to implement protective measures to restore the latter.

  20. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    PubMed Central

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  1. Effects of human-induced environmental changes on benthic macroinvertebrate assemblages of wetlands in Lake Tana Watershed, Northwest Ethiopia.

    PubMed

    Gezie, Ayenew; Anteneh, Wassie; Dejen, Eshete; Mereta, Seid Tiku

    2017-04-01

    Wetlands of Lake Tana Watershed provide various ecological and socioeconomic functions. However, they are losing their vigor at alarming rate due to unwise management. Hence, there is an urgent need to monitor and assess these resources so as to identify the major drivers of its degradation and to provide information for management decisions. In this context, we aimed to assess the effects of human activities on macroinvertebrate assemblages of wetlands in Lake Tana Watershed. Biotic and abiotic data were collected from 46 sampling sites located in eight wetlands. A total of 2568 macroinvertebrates belonging to 46 families were recorded. Macroinvertebrate metrics such as Biological Monitoring Working Party score, Shannon diversity index, Ephemeroptera and odonata family richness, and total family richness portrayed a clear pattern of decreasing with increasing in human disturbances, whereas Family biotic index score, which is an indicator of organic pollution, increased with increasing in human disturbances. The regression analysis also revealed that livestock grazing, leather tanning, and eucalyptus plantation were important predictors of macroinvertebrate metrics (p < 0.05). In conclusion, human activities in and around the wetlands such as farming, leather tanning, solid waste dumping, and effluent discharges were contributed to the degradation of water quality and decreasing in the macroinvertebrate richness and diversity. These alterations could also reduce the availability of wetland products (sedges, craft materials, etc.) and the related ecosystem services. This in turn has an adverse effect on food security and poverty alleviation with considerable impact on communities who heavily depend on wetland products for their livelihood. Therefore, it is essential to formulate wetland policy for achieving wise use goals and necessary legal and institutional backup for sustainable wetland management in Ethiopia.

  2. Multilevel regression models describing regional patterns of invertebrate and algal responses to urbanization across the USA

    USGS Publications Warehouse

    Cuffney, T.F.; Kashuba, R.; Qian, S.S.; Alameddine, I.; Cha, Y.K.; Lee, B.; Coles, J.F.; McMahon, G.

    2011-01-01

    Multilevel hierarchical regression was used to examine regional patterns in the responses of benthic macroinvertebrates and algae to urbanization across 9 metropolitan areas of the conterminous USA. Linear regressions established that responses (intercepts and slopes) to urbanization of invertebrates and algae varied among metropolitan areas. Multilevel hierarchical regression models were able to explain these differences on the basis of region-scale predictors. Regional differences in the type of land cover (agriculture or forest) being converted to urban and climatic factors (precipitation and air temperature) accounted for the differences in the response of macroinvertebrates to urbanization based on ordination scores, total richness, Ephemeroptera, Plecoptera, Trichoptera richness, and average tolerance. Regional differences in climate and antecedent agriculture also accounted for differences in the responses of salt-tolerant diatoms, but differences in the responses of other diatom metrics (% eutraphenic, % sensitive, and % silt tolerant) were best explained by regional differences in soils (mean % clay soils). The effects of urbanization were most readily detected in regions where forest lands were being converted to urban land because agricultural development significantly degraded assemblages before urbanization and made detection of urban effects difficult. The effects of climatic factors (temperature, precipitation) on background conditions (biogeographic differences) and rates of response to urbanization were most apparent after accounting for the effects of agricultural development. The effects of climate and land cover on responses to urbanization provide strong evidence that monitoring, mitigation, and restoration efforts must be tailored for specific regions and that attainment goals (background conditions) may not be possible in regions with high levels of prior disturbance (e.g., agricultural development). ?? 2011 by The North American Benthological Society.

  3. Interplay of anthropogenic and natural disturbance impacts on the hyporheic ecology

    NASA Astrophysics Data System (ADS)

    Mori, N.; Brancelj, A.; Simčič, T.; Lukančič, S.

    2009-04-01

    The hyporheic invertebrate community from the pre-alpine river (W Slovenia) was studied in order to analyze the impacts of high discharge and in-stream gravel extraction. Two distinct river reaches were sampled from June 2004 to May 2005. At impacted site, where gravel extraction was carried out, the response of hyporheic community to the anthropogenic disturbance was studied. Physical and chemical parameters, together with the amounts organic matter and activity of the biofilm were measured. Invertebrates were sampled by Bou-Rouch pumping method. Discharge of the Bača River varied from 108 m3s-1 in October 2004 to 1.6 m3s-1 in March 2005. Streambed sediments at both sites were composed of heterogeneous mixture of boulders, cobbles, pebbles, gravel, sand and silt. Oxygen saturation was close to 100 %, indicating good sediment permeability. A total of 75 invertebrate taxa were identified, 40 of which belonged to the occasional hyporheos, 26 to the permanent hyporheos and 9 were stygobites. At both sites, fauna was dominated numerically by juveniles of Cyclopoida and early stages of Leuctra larvae (Plecoptera). Chironomidae (Diptera) contributed significantly to the total invertebrate density at reference site and Baetoidea (Ephemeroptera) to the total density at impacted site. At both sites a decrease in density occurred immediately after disturbance. The recovery was relatively fast (two and a half months). The CCA analysis revealed the importance of fine sediment amounts for hyporheic invertebrate distribution. The results indicated that discharge play an important role in shaping hyporheic invertebrate community in the Bača River and that the removal of sediments due to gravel extraction led to the impoverishment of the structural characteristics of the hyporheic community.

  4. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food.

    PubMed

    Soucek, David J; Dickinson, Amy

    2015-09-01

    Although insects occur in nearly all freshwater ecosystems, few sensitive insect models exist for use in determining the toxicity of contaminants. The objectives of the present study were to adapt previously developed culturing and toxicity testing methods for the mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae), and to further develop a method for chronic toxicity tests spanning organism ages of less than 24 h post hatch to adult emergence, using a laboratory cultured diatom diet. The authors conducted 96-h fed acute tests and full-life chronic toxicity tests with sodium chloride, sodium nitrate, and sodium sulfate. The authors generated 96-h median lethal concentrations (LC50s) of 1062 mg Cl/L (mean of 3 tests), 179 mg N-NO3 /L, and 1227 mg SO4 /L. Acute to chronic ratios ranged from 2.1 to 6.4 for chloride, 2.5 to 5.1 for nitrate, and 2.3 to 8.5 for sulfate. The endpoints related to survival and development time were consistently the most sensitive in the tests. The chronic values generated for chloride were in the same range as those generated by others using natural foods. Furthermore, our weight-versus-fecundity plots were similar to those previously published using the food culturing method on which the present authors' method was based, indicating good potential for standardization. The authors believe that the continued use of this sensitive mayfly species in laboratory studies will help to close the gap in understanding between standard laboratory toxicity test results and field-based observations of community impairment. © 2015 SETAC.

  5. Changes in Benthic Biota between Mountain and Urban Streams

    NASA Astrophysics Data System (ADS)

    Sato, H.; Iijima, A.

    2016-12-01

    It is well known that the benthic biota in the river ecosystem changes drastically between the mountain and urban streams. However, there are few studies demonstrating the changes in biota by using quantitative techniques. In this study, field research on benthic species (mainly aquatic insects) was carried out at 6 different sites in the Kanna River in Japan. After that, we compared the biota quantitatively by using an EPT (Ephemeroptera, Plecoptera, and Trichoptera) index and a pollution index (Pantle-Buck Method). Moreover, we applied a cluster analysis to determine the statistical difference in the benthic biota among the sites. The monitoring stations (St.1-St.6 in order from the upper stream) were placed in the reaches of the Kanna River that is one of the headstreams flowing into the Tone River (fig.1-a). In those monitoring stations, St.1-3 are located in the mountain area, and St.4-6 are in the urban area. Field research was carried out every other month during February 2012 to January 2013 by a Beck-Tsuda β method. In total, we identified 7879 benthos of 153 species (fig.1-b). The EPT index tended to decrease toward the lower reaches (fig.1-c). Moreover, there were significant changes in the composition of EPT species between the mountain (St.1-3) and urban (St.4-6) area. In particular, Plecoptera species which has no pollution tolerance decreased drastically in the urban stream. The values of pollution index tended to increase toward the lower reaches (fig.1-d). In fact, the lower reaches of the Kanna River has a large population who has insufficient sewage treatment system. This is consistent with the changes in the EPT species. Cluster analysis demonstrated that the benthic biota in the Kanna River has been divided between St.3 and 4. Consequently, the water contamination in the urban stream is supposed to be the main cause of significant changes in benthic biota in the Kanna River's ecosystem.

  6. Carnivory during Ontogeny of the Plagioscion squamosissimus: A Successful Non-Native Fish in a Lentic Environment of the Upper Paraná River Basin

    PubMed Central

    Neves, Mayara Pereira; Delariva, Rosilene Luciana; Guimarães, Ana Tereza Bittencourt; Sanches, Paulo Vanderlei

    2015-01-01

    This study evaluated feeding patterns and ontogenetic variations in a non-native fish species (Plagioscion squamosissimus) in an isolated lake in the Upper Paraná River floodplain. Quarterly samplings were performed from April 2005 to February 2006 using plankton nets to capture larvae, seining nets for juveniles, and gill nets and trammel for adults. Stomach contents (n = 378) were examined according to the volumetric method in which the volume of each food item was estimated using graduated test tubes or a glass counting plate. During early development (larval stage), P. squamosissimus consumed mainly Cladocera and Copepoda. Juveniles showed a more diverse diet, including shrimp (Macrobrachium amazonicum), fish, aquatic insects (Trichoptera, Ephemeroptera, Chironomidae and pupae of Diptera) and plants. It was notable the high proportion of cannibalism (23.3%) in this stage. Adults consumed predominantly shrimp and fish. The use of food resources varied significantly between development stages (ANOSIM; r = 0.458; p<0.005), showing changes in food preferences during ontogeny. The Similarity Percentage Analysis (SIMPER) indicated that Cladocera and Copepoda were responsible for the differences observed between the larval stages of pre-flexion, flexion and post-flexion. M. amazonicum and Chironomidae were responsible for the differences between juvenile and larval stages, while M. amazonicum and other fishes caused the differences between adults and other ontogenetic stages. These results are confirmed by the relationship between standard length and developmental periods (ANCOVA; r2 = 0.94; p<0.0001). In general, there were low values of trophic niche breadth. The essentially carnivorous habit from the early stages of P. squamosissimus and the predominant use of M. amazonicum by adults have important roles in feeding patterns of the species, suggesting a major contribution to its success and establishment, especially in lentic environments. PMID:26524336

  7. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    PubMed Central

    dos Reis, Deusiano Florêncio; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; de Morais, Paula Benevides

    2017-01-01

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities. PMID:28085090

  8. Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages

    USGS Publications Warehouse

    Quist, Michael C.; Schultz, Randall D.

    2014-01-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.

  9. Enhancing the Biodiversity of Ditches in Intensively Managed UK Farmland

    PubMed Central

    Shaw, Rosalind F.; Johnson, Paul J.; Macdonald, David W.; Feber, Ruth E.

    2015-01-01

    Drainage ditches, either seasonally flooded or permanent, are commonly found on intensively managed lowland farmland in the UK. They are potentially important for wetland biodiversity but, despite their ubiquity, information on their biodiversity and management in the wider countryside is scarce. We surveyed 175 ditches for their physical and chemical characteristics, spatial connectivity, plant communities and aquatic invertebrates in an area of intensively managed farmland in Oxfordshire, UK and collected information on ditch management from farmer interviews. Water depth and shade had a small impact on the diversity of plant and invertebrate communities in ditches. Increased shade over the ditch channel resulted in reduced taxonomic richness of both channel vegetation and aquatic invertebrates and channel vegetation cover was lower at shaded sites. Invertebrate taxonomic richness was higher when water was deeper. Spatial connectivity had no detectable impact on the aquatic invertebrate or plant communities found in ditches. The number of families within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which contain many pollution-sensitive species, declined with decreasing pH of ditch water. As time since dredging increased, the number of EPT families increased in permanent ditches but decreased in temporary ditches. Whether or not a ditch was in an agri-environment scheme had little impact on the reported management regime or biodiversity value of the ditch. Measures for increasing the amount of water in ditches, by increasing the water depth or promoting retention of water in ditches, could increase the biodiversity value of ditches in agricultural land. Some temporary ditches for specialised species should be retained. Reducing the amount of shade over narrow ditches by managing adjacent hedgerows is also likely to increase the species diversity of plant and invertebrate communities within the ditch. We recommend that to preserve or enhance the biodiversity value of ditches, and improve their ecosystem service delivery, management prescriptions for hedgerows adjacent to ditches should differ from those aimed at hedgerows only. PMID:26445146

  10. Breakpoint analysis and relations of nutrient and turbidity stressor variables to macroinvertebrate integrity in streams in the Crawford-Mammoth Cave Uplands Ecoregion, Kentucky, for the development of nutrient criteria

    USGS Publications Warehouse

    Crain, Angela S.; Caskey, Brian J.

    2010-01-01

    To assist Kentucky in refining numeric nutrient criteria in the Pennyroyal Bioregion, the U.S. Geological Survey and the Kentucky Division of Water collected and analyzed water chemistry, turbidity, and biological-community data from 22 streams throughout the Crawford-Mammoth Cave Upland ecoregion (U.S. Environmental Protection Agency Level IV Ecoregion, 71a) within the Pennyroyal Bioregion from September 2007 to May 2008. Statistically significant and ecologically relevant relations among the stressor (total phosphorus, total nitrogen, and turbidity) variables and response (macroinvertebrate-community attributes) variables and the breakpoint values of biological-community attributes and metrics in response to changes in stressor variables were determined. Thirteen of 18 macroinvertebrate attributes were significantly and ecologically correlated (p-value < 0.10) with at least one nutrient measure. Total number of individuals, Ephemeroptera-Plecoptera-Trichoptera richness, and average tolerance value were macroinvertebrate measures that most strongly correlated with the concentrations of nutrients. Comparison of the average macroinvertebrate-breakpoint value for the median concentration of total phosphorus (TP, 0.033 mg/L) and for median concentration of total nitrogen (TN, 1.1 mg/L) to Dodds' trophic classification for TP and TN indicates streams in the Crawford-Mammoth Cave Uplands ecoregion within the Pennyroyal Bioregion would be classified as mesotrophic-eutrophic. The biological breakpoint relations with median concentrations of TP in this study were similar to the U.S. Environmental Protection Agency proposed numeric TP criteria (0.037 mg/L), but were 1.5 times higher than the proposed numeric criteria for concentrations of TN (0.69 mg/L). No sites were impacted adversely using median turbidity values based on a 25 Formazin nephelometric turbidity unit biological threshold. The breakpoints determined in this study, in addition to Dodds' trophic classifications, were used as multiple lines of evidence to show changes in macroinvertebrate community and attributes based on exposure to nutrients.

  11. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects.

    PubMed

    Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T

    2012-12-01

    Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.

  12. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.

    PubMed

    Clements, William H; Cadmus, Pete; Brinkman, Stephen F

    2013-07-02

    Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible for variation in sensitivity among metals and metal mixtures is of critical importance.

  13. Baseline assessment of fish communities, benthic macroinvertebrate communities, and stream habitat and land use, Big Thicket National Preserve, Texas, 1999-2001

    USGS Publications Warehouse

    Moring, J. Bruce

    2003-01-01

    The Big Thicket National Preserve comprises 39,300 hectares in the form of nine preserve units connected by four stream corridor units (with two more corridor units proposed) distributed over the lower Neches and Trinity River Basins of southeastern Texas. Fish and benthic macroinvertebrate data were collected at 15 stream sites (reaches) in the preserve during 1999–2001 for a baseline assessment and a comparison of communities among stream reaches. The fish communities in the preserve were dominated by minnows (family Cyprinidae) and sunfishes (family Centrarchidae). Reaches with smaller channel sizes generally had higher fish species richness than the larger reaches in the Neches River and Pine Island Bayou units of the preserve. Fish communities in geographically adjacent reaches were most similar in overall community structure. The blue sucker, listed by the State as a threatened species, was collected in only one reach—a Neches River reach a few miles downstream from the Steinhagen Lake Dam. Riffle beetles (family Elmidae) and midges (family Chironomidae) dominated the aquatic insect communities at the 14 reaches sampled for aquatic insects in the preserve. The Ephemeroptera, Plecoptera and Trichoptera (EPT) Index, an index sensitive to water-quality degradation, was smallest at the Little Pine Island Bayou near Beaumont reach that is in a State 303(d)-listed stream segment on Little Pine Island Bayou. Trophic structure of the aquatic insect communities is consistent with the river continuum concept with shredder and scraper insect taxa more abundant in reaches with smaller stream channels and filter feeders more abundant in reaches with larger channels. Aquatic insect community metrics were not significantly correlated to any of the stream-habitat or land-use explanatory variables. The percentage of 1990s urban land use in the drainage areas upstream from 12 bioassessment reaches were negatively correlated to the reach structure index, which indicates less stable habitat for aquatic biota.

  14. Development of a local-scale urban stream assessment method using benthic macroinvertebrates: An example from the Santa Clara Basin, California

    USGS Publications Warehouse

    Carter, J.L.; Purcell, A.H.; Fend, S.V.; Resh, V.H.

    2009-01-01

    Research that explores the biological response to urbanization on a site-specific scale is necessary for management of urban basins. Recent studies have proposed a method to characterize the biological response of benthic macroinvertebrates along an urban gradient for several climatic regions in the USA. Our study demonstrates how this general framework can be refined and applied on a smaller scale to an urbanized basin, the Santa Clara Basin (surrounding San Jose, California, USA). Eighty-four sampling sites on 14 streams in the Santa Clara Basin were used for assessing local stream conditions. First, an urban index composed of human population density, road density, and urban land cover was used to determine the extent of urbanization upstream from each sampling site. Second, a multimetric biological index was developed to characterize the response of macroinvertebrate assemblages along the urban gradient. The resulting biological index included metrics from 3 ecological categories: taxonomic composition ( Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (shredder richness), and habit ( clingers). The 90th-quantile regression line was used to define the best available biological conditions along the urban gradient, which we define as the predicted biological potential. This descriptor was then used to determine the relative condition of sites throughout the basin. Hierarchical partitioning of variance revealed that several site-specific variables (dissolved O2 and temperature) were significantly related to a site's deviation from its predicted biological potential. Spatial analysis of each site's deviation from its biological potential indicated geographic heterogeneity in the distribution of impaired sites. The presence and operation of local dams optimize water use, but modify natural flow regimes, which in turn influence stream habitat, dissolved O2, and temperature. Current dissolved O2 and temperature regimes deviate from natural conditions and appear to affect benthic macroinvertebrate assemblages. The assessment methods presented in our study provide finer-scale assessment tools for managers in urban basins. ?? North American Benthological Society.

  15. Effects of Management Legacies on Stream Fish and Aquatic Benthic Macroinvertebrate Assemblages

    NASA Astrophysics Data System (ADS)

    Quist, Michael C.; Schultz, Randall D.

    2014-09-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.

  16. Prescribed-fire effects on an aquatic community of a southwest montane grassland system

    USGS Publications Warehouse

    Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna

    2013-01-01

    The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality) of prescription burn and anticipated effects on aquatic communities.

  17. Understanding the effects of predictability, duration, and spatial pattern of drying on benthic invertebrate assemblages in two contrasting intermittent streams

    PubMed Central

    von Schiller, Daniel; Barberá, Gonzalo G.; Díaz, Angela M.; Arce, Maria Isabel; del Campo, Rubén; Tockner, Klement

    2018-01-01

    In the present study, we examined the effects of different drying conditions on the composition, structure and function of benthic invertebrate assemblages. We approached this objective by comparing invertebrate assemblages in perennial and intermittent sites along two intermittent Mediterranean streams with contrasting predictability, duration, and spatial patterns of drying: Fuirosos (high predictability, short duration, downstream drying pattern) and Rogativa (low predictability, long duration, patchy drying pattern). Specifically, we quantified the contribution of individual taxa to those differences, the degree of nestedness, and shifts in the composition, structure and function of benthic invertebrate assemblages along flow intermittence gradients. We observed greater effects of drying on the benthic invertebrate composition in Fuirosos than in Rogativa, resulting in a higher dissimilarity of assemblages between perennial and intermittent sites, as well as a lower degree of nestedness. Furthermore, a higher number of biotic metrics related to richness, abundance and biological traits were significantly different between perennial and intermittent sites in Fuirosos, despite a shorter dry period compared to Rogativa. At the same time, slightly different responses were detected during post-drying (autumn) than pre-drying (spring) conditions in this stream. In Rogativa, shifts in benthic invertebrate assemblages along increasing gradients of flow intermittence were found for three metrics (Ephemeroptera, Plecoptera and Trichoptera (EPT) and Odonata, Coleoptera and Heteroptera (OCH) abundances and aerial active dispersal. Furthermore, we demonstrated that combined gradients of dry period duration and distance to nearest perennial reach can generate complex, and different, responses of benthic invertebrate assemblages, depending on the flow intermittence metric. Our study advances the notion that special attention should be paid to the predictability, duration and spatial patterns of drying in intermittent streams in order to disentangle the effects of drying on benthic invertebrate assemblages, in particular in areas subject to high spatial heterogeneity and temporal variability in drying conditions. PMID:29590140

  18. Assessing water source and channel type as factors affecting benthic macroinvertebrate and periphyton assemblages in the highly urbanized Santa Ana River Basin, California

    USGS Publications Warehouse

    Burton, Carmen; Brown, Larry R.; Belitz, Kenneth

    2005-01-01

    The Santa Ana River basin is the largest stream system in Southern California and includes a densely populated coastal area. Extensive urbanization has altered the geomorphology and hydrology of the streams, adversely affecting aquatic communities. We studied macroinvertebrate and periphyton assemblages in relation to two categorical features of the highly engineered hydrologic system-water source and channel type. Four water sources were identified-natural, urban-impacted groundwater, urban runoff, and treated wastewater. Three channel types were identified-natural, channelized with natural bottom, and concrete-lined. Nineteen sites, covering the range of these two categorical features, were sampled in summer 2000. To minimize the effects of different substrate types among sites, artificial substrates were used for assessing macroinvertebrate and periphyton assemblages. Physical and chemical variables and metrics calculated from macroinvertebrate and periphyton assemblage data were compared among water sources and channel types using analysis of variance and multiple comparison tests. Macroinvertebrate metrics exhibiting significant (P < 0.05) differences between water sources included taxa and Ephemeroptera-Plecoptera-Trichoptera richness, relative richness and abundance of nonchironomid dipterans, orthoclads, oligochaetes, and some functional-feeding groups such as parasites and shredders. Periphyton metrics showing significant differences between water sources included blue-green algae biovolume and relative abundance of nitrogen heterotrophic, eutrophic, motile, and pollution-sensitive diatoms. The relative abundance of trichopterans, tanytarsini chironomids, noninsects, and filter feeders, as well as the relative richness and abundance of diatoms, were significantly different between channel types. Most physical variables were related to channel type, whereas chemical variables and some physical variables (e.g., discharge, velocity, and channel width) were related to water source. These associations were reflected in correlations between metrics, chemical variables, and physical variables. Significant improvements in the aquatic ecosystem of the Santa Ana River basin are possible with management actions such as conversion of concrete-lined channels to channelized streams with natural bottoms that can still maintain flood control to protect life and property.

  19. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    PubMed Central

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive. PMID:23593263

  20. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone?

    PubMed

    Zerlin, R A; Henry, R

    2014-05-01

    Benthic macro-invertebrates are important components of freshwater ecosystems which are involved in ecological processes such as energy transfer between detritus and consumers and organic matter recycling. The aim of this work was to investigate the variation in organism richness, diversity and density of benthic fauna during the annual cycle in Camargo Lake, a lake marginal to Paranapanema River, southeast Brazil. The correlation of environmental factors with community attributes of the macro-benthic fauna was assessed. Since Camargo Lake is connected to the river, we tested the hypothesis that water level variation is the main regulating factor of environmental variables and of the composition and abundance of benthic macro-invertebrates. The results indicated that lake depth varied with rainfall, being the highest at the end of the rising water period and the lowest at the beginning of this period. The sediment granulometry was more heterogeneous at the bottom of the lake by the end of the high water period. The benthic macro-invertebrate fauna was composed by 15 taxa. The Diptera order was represented by seven taxa and had greater richness in relation to other taxa. This group was responsible for 60% of the total abundance of organisms, followed by Ephemeroptera (22%) and Anellida (16%). Significant differences were observed over time in total richness and, in density of Narapa bonettoi, Chaoborus, Ablabesmyia gr. annulata, Chironomus gigas, Larsia fittkau, and Procladius sp. 2. Total taxa richness correlated negatively with water pH, transparency, conductivity, and bottom water oxygen. Higher positive correlations were found between the densities of some taxa and bottom water oxygen, conductivity and very fine sand, silt + clay of sediment, while negative correlations were recorded with organic matter, and fine, medium and coarse sand, bottom water temperature, mean temperature and rainfall. The significant temporal difference in water level was associated with changes in abiotic factors and macro-invertebrate community attributes.

  1. Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms.

    PubMed

    Cadmus, Pete; Guasch, Helena; Herdrich, Adam T; Bonet, Berta; Urrea, Gemma; Clements, William H

    2018-05-01

    Two mesocosm experiments were conducted to examine effects of ferric iron (Fe) and mixtures of ferric Fe with aqueous metals (Cu, Zn) on stream benthic communities. Naturally colonized benthic communities were exposed to a gradient of ferric Fe (0, 0.4, 1.0, 2.5, 6.2, and 15.6 mg/L) that bracketed the current US Environmental Protection Agency water quality criterion value (1.0 mg/L). After 10 d of exposure to ferric Fe, total macroinvertebrate abundance, number of taxa, and abundance of all major macroinvertebrate groups (Ephemeroptera, Plecoptera, Trichoptera, and Diptera) were significantly reduced. Heptageniid mayflies and chironomids were especially sensitive to Fe oxide deposition and were significantly reduced at 0.4 and 1.0 mg/L total Fe, respectively. In a second mesocosm experiment, periphyton and macroinvertebrate communities were exposed to ferric Fe (0.60 mg/L) with or without aqueous Cu and Zn at 2 treatment levels: low (0.01 mg/L Cu + 0.1 mg/L Zn) and high (0.05 mg/L Cu + 0.5 mg/L Zn). In contrast to previous research, we observed no evidence of a protective effect of Fe on toxicity of metals. Growth rates and protein content of periphyton were significantly reduced by both ferric Fe and aqueous metals, whereas abundance of heptageniid mayflies (Cinygmula) and whole community metabolism were significantly reduced by ferric Fe alone. We hypothesize that Fe oxides inhibited algal growth and enhanced metal accumulation, leading to a reduction in the quantity and quality of food resources for grazers. Mesocosm experiments conducted using natural benthic communities provide a unique opportunity to quantify the relative importance of indirect physical effects and to develop a better understanding of the relationship between basal food resources and consumers in natural stream ecosystems. Environ Toxicol Chem 2018;37:1320-1329. © 2017 SETAC. © 2017 SETAC.

  2. Decrease of Population Divergence in Eurasian Perch (Perca fluviatilis) in Browning Waters: Role of Fatty Acids and Foraging Efficiency

    PubMed Central

    Scharnweber, Kristin; Strandberg, Ursula; Karlsson, Konrad; Eklöv, Peter

    2016-01-01

    Due to altered biogeochemical processes related to climate change, highly colored dissolved organic carbon (DOC) from terrestrial sources will lead to a water “brownification” in many freshwater systems of the Northern Hemisphere. This will create deteriorated visual conditions that have been found to affect habitat-specific morphological variations in Eurasian perch (Perca fluviatilis) in a previous study. So far, potential drivers and ultimate causes of these findings have not been identified. We conducted a field study to investigate the connection between morphological divergence and polyunsaturated fatty acid (PUFA) composition of perch from six lakes across a gradient of DOC concentration. We expected a decrease in the prevalence of PUFAs, which are important for perch growth and divergence with increasing DOC concentrations, due to the restructuring effects of DOC on aquatic food webs. In general, rate of morphological divergence in perch decreased with increasing DOC concentrations. Proportions of specific PUFAs (22:6n-3, 18:3n-3, 20:5n-3, and 20:4n-6) identified to primarily contribute to overall differences between perch caught in clear and brown-water lakes tended to be connected to overall decline of morphological divergence. However, no overall significant relationship was found, indicating no severe limitation of essential fatty acids for perch inhabiting brown water lakes. We further broaden our approach by conducting a laboratory experiment on foraging efficiency of perch. Therefore, we induced pelagic and littoral phenotypes by differences in habitat-structure and feeding mode and recorded attack rate in a feeding experiment. Generally, fish were less efficient in foraging on littoral prey (Ephemeroptera) when visual conditions were degraded by brown water color. We concluded that browning water may have a strong effect on the forager’s ability to find particular food resources, resulting in the reduced development of evolutionary traits, such as habitat- specific morphological divergence. PMID:27610617

  3. Enhancing the Biodiversity of Ditches in Intensively Managed UK Farmland.

    PubMed

    Shaw, Rosalind F; Johnson, Paul J; Macdonald, David W; Feber, Ruth E

    2015-01-01

    Drainage ditches, either seasonally flooded or permanent, are commonly found on intensively managed lowland farmland in the UK. They are potentially important for wetland biodiversity but, despite their ubiquity, information on their biodiversity and management in the wider countryside is scarce. We surveyed 175 ditches for their physical and chemical characteristics, spatial connectivity, plant communities and aquatic invertebrates in an area of intensively managed farmland in Oxfordshire, UK and collected information on ditch management from farmer interviews. Water depth and shade had a small impact on the diversity of plant and invertebrate communities in ditches. Increased shade over the ditch channel resulted in reduced taxonomic richness of both channel vegetation and aquatic invertebrates and channel vegetation cover was lower at shaded sites. Invertebrate taxonomic richness was higher when water was deeper. Spatial connectivity had no detectable impact on the aquatic invertebrate or plant communities found in ditches. The number of families within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which contain many pollution-sensitive species, declined with decreasing pH of ditch water. As time since dredging increased, the number of EPT families increased in permanent ditches but decreased in temporary ditches. Whether or not a ditch was in an agri-environment scheme had little impact on the reported management regime or biodiversity value of the ditch. Measures for increasing the amount of water in ditches, by increasing the water depth or promoting retention of water in ditches, could increase the biodiversity value of ditches in agricultural land. Some temporary ditches for specialised species should be retained. Reducing the amount of shade over narrow ditches by managing adjacent hedgerows is also likely to increase the species diversity of plant and invertebrate communities within the ditch. We recommend that to preserve or enhance the biodiversity value of ditches, and improve their ecosystem service delivery, management prescriptions for hedgerows adjacent to ditches should differ from those aimed at hedgerows only.

  4. Influence of dilution water ionic composition on acute major ion toxicity to the mayfly Neocloeon triangulifer.

    PubMed

    Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell

    2018-05-01

    Field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but little is known about how ionic composition influences these responses. The present study evaluated the acute toxicity of major ion salts to the mayfly Neocloeon triangulifer over a range of background water quality conditions. The mayfly was particularly sensitive to Na 2 SO 4 , with the median lethal concentration (LC50) of 1338 mg SO 4 /L being lower than LC50s reported for 7 other species at that hardness. Increasing hardness of the dilution water from 30 to 150 mg/L (as CaCO 3 ) resulted in doubling of LC50s for sodium salts, and an approximately 1.5-fold increase in LC50 for MgSO 4 . Potassium salt toxicity was not strongly influenced by hardness, consistent with findings for other species. When hardness was held constant but the Ca to Mg ratio was manipulated, the ameliorative effect on Na 2 SO 4 and NaCl did not appear as strong as when hardness was varied; but for MgSO 4 the amelioration relative to Ca activity was similar between the 2 experiments. The toxicity of K salts to N. triangulifer was similar to Na salts on a millimolar basis, which contrasts with several other species for which K salts have been much more toxic. In addition, the toxicity of KCl to N. triangulifer was not notably affected by Na concentration, as has been shown for Ceriodaphnia dubia. Finally, plotting LC50s in terms of ion activity (Cl, SO 4 , Na, Mg, or K) over the range of Ca activities in dilution water resulted in significant positive relationships, with comparable slopes to those previously observed for C. dubia over the same range of Ca activities. Environ Toxicol Chem 2018;37:1330-1339. © 2018 SETAC. © 2018 SETAC.

  5. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity.

    PubMed

    Reis, Deusiano Florêncio Dos; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; Morais, Paula Benevides de

    2017-01-12

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities.

  6. Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages.

    PubMed

    Quist, Michael C; Schultz, Randall D

    2014-09-01

    Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.

  7. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    PubMed

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive.

  8. Noxious newts and their natural enemies: Experimental effects of tetrodotoxin exposure on trematode parasites and aquatic macroinvertebrates.

    PubMed

    Calhoun, Dana M; Bucciarelli, Gary M; Kats, Lee B; Zimmer, Richard K; Johnson, Pieter T J

    2017-10-01

    The dermal glands of many amphibian species secrete toxins or other noxious substances as a defense strategy against natural enemies. Newts in particular possess the potent neurotoxin tetrodotoxin (TTX), for which the highest concentrations are found in species within the genus Taricha. Adult Taricha are hypothesized to use TTX as a chemical defense against vertebrate predators such as garter snakes (Thamnophis spp.). However, less is known about how TTX functions to defend aquatic-developing newt larvae against natural enemies, including trematode parasites and aquatic macroinvertebrates. Here we experimentally investigated the effects of exogenous TTX exposure on survivorship of the infectious stages (cercariae) of five species of trematode parasites that infect larval amphibians. Specifically, we used dose-response curves to test the sensitivity of trematode cercariae to progressively increasing concentrations of TTX (0.0 [control], 0.63, 3.13, 6.26, 31.32, and 62.64 nmol L -1 ) and how this differed among parasite species. We further compared these results to the effects of TTX exposure (0 and 1000 nmolL -1 ) over 24 h on seven macroinvertebrate taxa commonly found in aquatic habitats with newt larvae. TTX significantly reduced the survivorship of trematode cercariae for all species, but the magnitude of such effects varied among species. Ribeiroia ondatrae - which causes mortality and limb malformations in amphibians - was the least sensitive to TTX, whereas the kidney-encysting Echinostoma trivolvis was the most sensitive. Among the macroinvertebrate taxa, only mayflies (Ephemeroptera) showed a significant increase in mortality following exogenous TTX exposure, despite the use of a concentration 16x higher than the maximum used for trematodes. Our results suggest that maternal investment of TTX into larval newts may provide protection against certain trematode infections and highlight the importance of future work assessing the effects of newt toxicity on both parasite infection success and the palatability of larval newts to invertebrate predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia.

    PubMed

    Al-Shami, Salman A; Md Rawi, Che Salmah; Ahmad, Abu Hassan; Abdul Hamid, Suhaila; Mohd Nor, Siti Azizah

    2011-07-01

    Abundance and diversity of benthic macroinvertebrates as well as physico-chemical parameters were investigated in five rivers of the Juru River Basin in northern Peninsula Malaysia: Ceruk Tok Kun River (CTKR), Pasir River (PR), Permatang Rawa River (PRR), Kilang Ubi River (KUR), and Juru River (JR). The physico-chemical parameters and calculated water quality index (WQI) were significantly different among the investigated rivers (ANOVA, P<0.05). The WQI classified CTKR, PR, and JR into class III (slightly polluted). However, PRR and KUR fell into class IV (polluted). High diversity and abundance of macroinvertebrates, especially the intolerant taxa, Ephemeroptera, Plecoptera, and Trichoptera, were observed in the least polluted river, CTKR. Decreasing abundance of macroinvertebrates followed the deterioration of river water quality with the least number of the most tolerant taxa collected from PR. On the basis of composition and sensitivity of macroinvertebrates to pollutants in each river, the highest Biological Monitoring Working Party (BMWP) index score of 93 was reported in CTKR (good water quality). BMWP scores in PRR and JR were 38.7 and 20.1, respectively, classifying both of them into "moderate water quality" category. Poor water quality was reported in PR and KUR. The outcome of the multivariate analysis (CCA) was highly satisfactory, explaining 43.32% of the variance for the assemblages of macroinvertebrates as influenced by 19 physical and chemical variables. According to the CCA model, we assert that there were three levels of stresses on macroinvertebrate communities in the investigated rivers: Level 1, characterized of undisturbed or slightly polluted as in the case of CTKR; Level 2, characterized by a lower habitat quality (the JR) compared to the CTKR; and Level 3 showed severe environmental stresses (PRR, PR, and KUR) primarily contributed by agricultural, industrial, and municipal discharges. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  11. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    USGS Publications Warehouse

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.

  12. Invertebrates as indicators for chemical stress in sewage-influenced stream systems: toxic and endocrine effects in gammarids and reactions at the community level in two tributaries of Lake Constance, Schussen and Argen.

    PubMed

    Peschke, Katharina; Geburzi, Jonas; Köhler, Heinz-R; Wurm, Karl; Triebskorn, Rita

    2014-08-01

    The present study investigates the impact of releases from waste water treatment plants and storm water overflow basins on gammarids and other macrozoobenthos. The study relates to a recent upgrading of a waste water treatment plant (Langwiese) at the Schussen river, an important tributary to Lake Constance. Samples were taken at different sites at the Schussen river upstream and downstream of a storm water overflow basin and the waste water treatment plant Langwiese and, in parallel, at the Argen river, a less polluted reference stream. We assessed the influence of water quality on the distribution of macrozoobenthos and on the health of gammarid populations by a variety of ecotoxicological methods including biomarkers prior to the expansion of the waste water treatment plant. Through histopathological studies, the impact of parasites on host tissue health was evaluated. Analyses of heat shock protein (hsp70) levels allowed us to draw conclusions about the proteotoxicity-related stress status of the organisms. Furthermore, gammarid populations from all sites were investigated in respect to sex ratio, parasitism rate, and fecundity. Macrozoobenthos community integrity was determined by means of the saprobic index and the abundance as well as by the number of taxa. In gammarids, the sex ratio was significantly shifted towards females, fecundity was significantly decreased, and the hsp70 level was significantly increased downstream of the waste water treatment plant Langwiese, compared to the upstream sampling site. Similarly, these effects could be detected downstream of three small storm water overflow basins. In the macrozoobenthos communities, the abundance of taxa, the number of taxa, the number of ephemeroptera, plecoptera, and trichoptera taxa (EPT-taxa), and the number of sensitive taxa decreased downstream of the storm water overflow basin Mariatal as well as downstream of the waste water treatment plant Langwiese. Our study showed, that waste water treatment plants and storm water overflow basins affected macroinvertebrate communities and the health of gammarids. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Larval aquatic insect responses to cadmium and zinc in experimental streams.

    PubMed

    Mebane, Christopher A; Schmidt, Travis S; Balistrieri, Laurie S

    2017-03-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration-response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pK a bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams. Environ Toxicol Chem 2017;36:749-762. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  14. Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct ecoregions in western US

    USGS Publications Warehouse

    Waite, Ian R.; Brown, Larry R.; Kennen, Jonathan G.; May, Jason T.; Cuffney, Thomas F.; Orlando, James L.; Jones, Kimberly A.

    2010-01-01

    The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The “best” multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and some form of EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness. Best models were developed for the same two invertebrate metrics even though the geographic regions reflect distinct differences in precipitation, geology, elevation, slope, population density, and land-use. With further development, models like these can be used to elicit better causal linkages to stream biological attributes or condition and can be used by researchers or managers to predict biological indicators of stream condition at unsampled sites.

  15. The impacts of thermokarst on sediment, organic matter, and macroinvertebrate community dynamics in arctic headwater streams

    NASA Astrophysics Data System (ADS)

    Flinn, M.; Kampman, J.; Larouche, J. R.; Bowden, W. B.

    2010-12-01

    Recent research has documented changes in arctic climate that influence permafrost degradation and the incidence of thermokarst formation. In 2009 and 2010, we examined several thermokarst failures on headwater streams near Toolik Lake, AK, and the Kelly River area of the Noatak National Preserve, AK, USA. We quantified significant differences between reference (upstream) and impacted stream reaches affected by these thermokarst features. Sediment deposition at Toolik in 2009, measured with sediment traps, showed no differences in the organic fractions; however, the inorganic fraction was ~2x higher (P<0.05) in the impacted reaches. In 2010, when discharge was lower and less flashy, the pattern reversed and only organic fractions varied between the impacted and reference reach. The patterns of benthic organic matter and fine sediment (stovepipe core) generally showed a 2-fold increase in the impacted reaches indicating that impacts may have a legacy over several years. Significant increases of ammonium (P<0.05) and benthic chlorophyll-a (P<0.01, rock scrubs) were significantly higher in the impacted reaches and increased sharply downstream of the thermokarst, especially in late summer (2009). Benthic macroinvertebrates showed a variable response in abundance and biomass in the impacted reaches. Collector-gatherers (Diptera, Chironomidae) abundance and biomass doubled in the impacted reaches by late summer, mostly due to Dicrotopus, Psudokiefferiella, and Rheotanytarsus. Nemoura (Plecoptera, Nemouridae), a shredding stonefly, abundance and biomass were over 5x higher in the impacted reaches (P<0.01). The increase in the collector-gatherer group was offset by a significant decrease in grazers. Baetis (Ephemeroptera, Baetidae) and Orthocladius (Diptera, Chironomidae) showed a 3-fold decrease in the impacted reaches (P<0.05). Results from several years of research indicate that thermokarst failures result in impacts that respond on different temporal scales. High sediment loading during initiation results in negative impacts on primary production and ecosystem function; however, the duration of these effects on primary consumers may diminish relatively quickly downstream and over time. Further research on these failures will help us to determine the trajectory of recovery.

  16. An index of biological integrity for northern Mid-Atlantic Slope drainages

    USGS Publications Warehouse

    Daniels, R.A.; Riva-Murray, K.; Halliwell, D.B.; Vana-Miller, D. L.; Bilger, Michael D.

    2002-01-01

    An index of biological integrity (IBI) was developed for streams in the Hudson, Delaware, and Susquehanna River drainages in the northeastern United States based on fish assemblage data from the Mohawk River drainage of New York. The original IBI, developed for streams in the U.S. Midwest, was modified to reflect the assemblage composition and structure present in Mid-Atlantic Slope drainages. We replaced several of the Midwestern IBI metrics and criteria scores because fishes common to the Midwest are absent from or poorly represented in the Northeast and because stream fish assemblages in the Northeast are less rich than those in the Midwest. For all replacement metrics we followed the ecology-based rationale used in the development of each of the metrics of the Midwestern IBI so that the basic theoretical underpinnings of the IBI remained unchanged. The validity of this modified IBI is demonstrated by examining the quality of streams in the Hudson, Delaware, and lower Susquehanna River basins. The relationships between the IBI and other indicators of environmental quality are examined using data on assemblages of fish and benthic macroinvertebrates and on chemical and physical stream characteristics obtained during 1993-2000 by the U.S. Geological Survey's National Water Quality Assessment Program in these three river basins. A principal components analysis (PCA) of chemical and physical variables from 27 sites resulted in an environmental quality gradient as the primary PCA axis (eigenvalue, 0.41 ). Principal components analysis site scores were significantly correlated with such benthic macroinvertebrate metrics as the percentage of Ephemeroptera, Plecoptera, and Trichoptera taxa (Spearman R = -0.66, P < 0.001). Index of biological integrity scores for sites in these three river basins were significantly correlated with this environmental quality gradient (Spearman R = -0.78, P = 0.0001). The northern Mid-Atlantic Slope IBI appears to be sensitive to environmental degradation in all three of the river basins addressed in this study. Adjustment of metric scoring criteria may be warranted, depending on composition of fish species in streams in the study area and on the relative effort used in the collection of fish assemblage data.

  17. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies

    USGS Publications Warehouse

    Carter, James L.; Resh, Vincent H.

    2001-01-01

    A survey of methods used by US state agencies for collecting and processing benthic macroinvertebrate samples from streams was conducted by questionnaire; 90 responses were received and used to describe trends in methods. The responses represented an estimated 13,000-15,000 samples collected and processed per year. Kicknet devices were used in 64.5% of the methods; other sampling devices included fixed-area samplers (Surber and Hess), artificial substrates (Hester-Dendy and rock baskets), grabs, and dipnets. Regional differences existed, e.g., the 1-m kicknet was used more often in the eastern US than in the western US. Mesh sizes varied among programs but 80.2% of the methods used a mesh size between 500 and 600 (mu or u)m. Mesh size variations within US Environmental Protection Agency regions were large, with size differences ranging from 100 to 700 (mu or u)m. Most samples collected were composites; the mean area sampled was 1.7 m2. Samples rarely were collected using a random method (4.7%); most samples (70.6%) were collected using "expert opinion", which may make data obtained operator-specific. Only 26.3% of the methods sorted all the organisms from a sample; the remainder subsampled in the laboratory. The most common method of subsampling was to remove 100 organisms (range = 100-550). The magnification used for sorting ranged from 1 (sorting by eye) to 30x, which results in inconsistent separation of macroinvertebrates from detritus. In addition to subsampling, 53% of the methods sorted large/rare organisms from a sample. The taxonomic level used for identifying organisms varied among taxa; Ephemeroptera, Plecoptera, and Trichoptera were generally identified to a finer taxonomic resolution (genus and species) than other taxa. Because there currently exists a large range of field and laboratory methods used by state programs, calibration among all programs to increase data comparability would be exceptionally challenging. However, because many techniques are shared among methods, limited testing could be designed to evaluate whether procedural differences affect the ability to determine levels of environmental impairment using benthic macroinvertebrate communities.

  18. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were collected from all four stream sites suggesting that the areas from which they were collected are relatively stable and unaffected by sedimentation.

  19. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA.

    PubMed

    Diamond, Jerome M; Bressler, David W; Serveiss, Victor B

    2002-06-01

    The free-flowing Clinch and Powell watershed in Virginia, USA, harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. To prioritize resource management strategies with respect to these fauna, a geographical information system was developed and various statistical approaches were used to relate human land uses with available fish, macroinvertebrate, and native mussel assemblage data. Both the Ephemeroptera, Plecoptera, Trichoptera (EPT) family-level index, and the fish index of biotic integrity (IBI) were lowest in a subwatershed with the greatest coal mining activity (analysis of variance [ANOVA], p < 0.05). Limited analyses in two other subwatersheds suggested that urban and agricultural land uses within a specified riparian corridor were more related to mussel species richness and fish IBI than land uses in entire catchments. Based on land uses within a riparian corridor of 200 m x 2 km for each biological site in the watershed, fish IBI was inversely related to percent cropland and urban area and positively related to pasture area (stepwise multiple regression, R2 = 0.55, p < 0.05). Sites less than 2 km downstream of urban areas, major highways, or coal mine activities had a significantly lower mean IBI value than those more than 2 km away (ANOVA, p < .05). Land use effects included poorer instream cover and higher substrate embeddedness (t test, p < 0.05). Weaker land use relationships were observed for EPT and mussel species richness. Episodic spills of toxic materials, originating from transportation corridors, mines, and industrial facilities, also have resulted in local extirpations of native species. particularly mussels. The number of co-occurring human activities was directly related to stream elevation in the Clinch River, with more human land uses in headwater areas. Approximately 60% of known U.S. Fish and Wildlife mussel concentration sites in the watershed are located within 2 km of at least two land use sources identified as potentially stressful in our analyses. Our results indicate that a number of land uses and stressors are probably responsible for the decline in native species. However, protection of naturally vegetated riparian corridors may help mitigate some of these effects.

  20. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (<7.5 km from shore), but were absent or rare offshore (0–7% of sites at 0–1 nymphs/m2). Increased abundance occurred offshore between 1991 (0% of sites) and 1993 (52% of sites at 7/m2). Annual sampling, beginning in 1995, indicates that nymphs increased in both nearshore and offshore waters. By 1997, nymphs were found throughout the lake (88% of sites) at a mean density 40-fold greater (392/m2) than that observed in 1993 (11/m2). In 1998, the distribution of nymphs remained the same as 1997 (88% of sites) but density declined 3-fold (392 to 134/m2). These data indicate that mayflies have recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs recolonized sediments in western Lake Erie in the 1990s.

  1. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in southern Africa

    PubMed Central

    2012-01-01

    Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S]) and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]). Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC) model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK) results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD) between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya). Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from neutral-to-alkaline streams found within eastern South Africa, Malawi and Zambia. The results of this study suggest that B. harrisoni as it is currently recognised is not a single species with a wide geographic range and pH-tolerance, but may comprise up to five species under the phylogenetic species concept, each with limited pH-tolerances, and that the B. harrisoni species group is thus in need of taxonomic review. PMID:22373076

  2. A longitudinal assessment of the aquatic macroinvertebrate community in the channelized lower Missouri River

    USGS Publications Warehouse

    Poulton, Barry C.; Wildhaber, Mark L.; Charbonneau, Collette S.; Fairchild, James F.; Mueller, Brad G.; Schmitt, Christopher J.

    2003-01-01

    We conducted an aquatic macroinvertebrate assessment in the channelized reach of the lower Missouri River, and used statistical analysis of individual metrics and multimetric scores to identify community response patterns and evaluate relative biological condition. We examined longitudinal site differences that are potentially associated with water qualityrelated factors originating from the Kansas City metropolitan area, using data from coarse rock substrate in flowing water habitats (outside river bends), and depositional mud substratein slack water habitats (dike fields). Three sites above rivermile (RM) 369 in Kansas City (Nebraska City, RM = 560; St. Joseph, RM = 530; Parkville, RM = 377) and three below (Lexington, RM = 319; Glasgow, RM = 228; Hermann, RM = 94) were sampled with rock basket artificial substrates, a qualitative kicknet method, and the Petite Ponar. We also compared the performance of the methods used. A total of 132 aquatic macroinvertebrate taxa were collected from the lower Missouri River; one third of these taxa belonged to the sensitiveEPOT insect orders (Ephemeroptera, Plecoptera, Odonata, and Trichoptera). Rock baskets had the highest mean efficiency (34.1%) of the methods, and the largest number of taxa was collected by Ponar (n = 69) and kicknet (n = 69) methods. Seven of the 15 metrics calculated from rock basket data, and five ofthe nine metrics calculated from Ponar data showed highly significant differences (ANOVA, P < 0.001) at one or more sitesbelow Kansas City. We observed a substantial reduction in net-spinning Trichoptera in rock habitats below Kansas City (Lexington), an increase in relative dominance of Oligochaeta in depositional habitats at the next site downstream (Glasgow), and lower relative condition scores in rock habitat at Lexingtonand depositional habitat at Glasgow. Collectively, these data indicate that some urban-related impacts on the aquatic macroinvertebrate community are occurring. Our results suggest that the methods and assessment framework we used in this studycould be successfully applied on a larger scale with concurrentwater and sediment chemistry to validate metrics, establish impairment levels, and develop a specific macroinvertebrate community index for the lower Missouri River. We recommend accomplishing this with longitudinal multi-habitat sampling at a larger number of sites related to all potential sources of impairment, including major tributaries, urban areas, and point sources.

  3. Ecological characterization of streams, and fish-tissue analysis for mercury and lead at selected locations, Fort Gordon, Georgia, June 1999 to May 2000

    USGS Publications Warehouse

    Gregory, M. Brian; Stamey, Timothy C.; Wellborn, John B.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Ga., documented the ecological condition of selected water-bodies on the Fort Gordon military installation from June 1999 to May 2000. This study includes stream-habitat assessments, aquatic invertebrate and fish-community surveys in selected stream reaches, and analyses of mercury and lead concentrations in largemouth bass (Micropterous salmoides) muscle tissue from three impoundments. Assessment surveys indicate lower habitat value scores in some streams draining the more developed areas on Fort Gordon. A small tributary to Butler Creek--which drains parking lots associated with military motor pools and other impervious surfaces--is characterized by moderate levels of bank erosion and excess sediment in the stream channel compared to reference sites. Four other stream reaches are more similar to reference streams in respect to habitat conditions. Invertebrate communities in streams draining these urbanized watersheds are inhabited by 13 to 16 taxa per reach; whereas, 23 and 33 taxa were collected from the two reference stream reaches. Measures of invertebrate abundance, taxa richness, Ephemeroptera, Plecoptera, and Tricoptera Index are lower in streams draining urbanized watersheds. Measures of community similarity also indicate differences between streams draining urbanized areas and reference streams. Streams draining developed areas on Fort Gordon are inhabited by 3 to 10 fish species and included more species regarded as tolerant of degraded water-quality conditions; whereas, the two reference stream reaches support 4 and 10 species, respectively, including one species considered intolerant of degraded water-quality conditions. Mercury was detected in all largemouth bass collected from three impoundments on Fort Gordon. Wet-weight mercury concentrations in fish tissue analyzed from all sites range from 0.08 micrograms per gram to 1.33 micrograms per gram. Median mercury concentrations in fish tissue are 0.83 micrograms per gram at Soil Erosion Lake, 0.72 micrograms per gram at Lower Leitner Lake, and 0.22 micrograms per gram at Gordon Lake. Median mercury concentrations in fish tissue analyzed from Soil Erosion Lake and Lower Leitner Lake are more than two times higher than U.S. Environmental Protection Agency recommendation of 0.3 micrograms per gram for fish consumption. Lead concentrations are below the minimum reporting limit for all specimens analyzed from reservoirs sampled at Fort Gordon.

  4. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charlie

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes inmore » the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.« less

  5. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biology of the caddisfly oligostomis ocelligera (Trichoptera: Phryganeidae) inhabiting acidic mine drainage in Pennsylvania

    USGS Publications Warehouse

    Redell, L.A.; Gall, W.K.; Ross, R.M.; Dropkin, D.S.

    2009-01-01

    Oligostomis ocelligera (a phryganeid caddisfly) is reported for the first time from a degraded lotic systema first-order stream in north-central Pennsylvania that was severely impacted by acid mine drainage. Although uncommonly collected and poorly known, O. ocelligera maintained a substantial population in the mine discharge, free of competition from Plecoptera, Ephemeroptera, and other species of Trichoptera. It thrived under conditions of very low pH (2.583.13), high concentrations of sulfate (542 mg/L) and heavy metals (Fe 12 mg/L, Mn 14 mg/L, Al 16 mg/L), and a nearly uniform springbrook-like temperature regime. More than 350 larvae were collected from deposits of leaves and woody detritus in a pool 0.32 km downstream from the mine entrance over a two-year period. Measurement of head-capsule widths yielded a multimodal distribution with five peaks, corresponding to five instars, in conformity with Dyar's Law. Eighty-three egg masses were observed along the stream channel from 3 June to 12 November at a mean distance of 6.1 cm above the water surface in moist, protected locations such as under moss mats or in crevices of logs. Eggs began hatching by mid-summer, first-instar larvae were present in samples from AugustOctober, all five instars were represented in October, instars IIV were still present in December, but only instars IV and V were represented in samples collected from March to July. The extended periods of oviposition and larval recruitment, together with a remarkably protracted flight period of six months (29 April30 October), led to the conclusion that the population of O. ocelligera at the mine site exhibited an asynchronous univoltine life cycle. Measurement of the width of the anterior border of the frontoclypeal apotome confirmed Wiggins' proposal that this metric is useful for distinguishing final instar larvae of O. ocelligera from its only Nearctic congener, O. pardalis. Occupied pupal cases were found embedded in sodden logs from 8 April to 10 June. Pupae had mandibles reduced to membranous lobes. A silken mesh closing the anterior end case of the pupal case is reported for the first time in O. ocelligera, representing the third evolutionary reversal for this behavioral character in the phylogeny of phryganeid genera proposed by Wiggins. Adults exhibited only diurnal flight, and were absent from light traps deployed on five nights. Females displayed more cryptic behavior, and their wing pattern was distinctly duller in color than males.

  7. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites.

    PubMed

    Henny, Charles J; Kaiser, James L; Packard, Heidi A; Grove, Robert A; Taft, Michael R

    2005-10-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10-20x) may be used, but with caution, to screen headwater streams for potential Hg-related effects on dippers. When actual feather concentrations or projected feather concentrations are equal to or lower than concentrations reported for the Coast Fork, dippers are expected to reproduce well (assuming adequate prey and suitable nest sites). When Hg concentrations are substantially higher, more detailed investigations may be required. Birds feeding almost exclusively on fish (e.g., osprey [Pandion haliaetus]) and usually found further downstream from the headwaters would not be adequately represented by dippers given the higher MeHg concentrations in fish resulting from biomagnification, compared to lower trophic level invertebrates.

  8. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites

    USGS Publications Warehouse

    Henny, Charles J.; Kaiser, James L.; Packard, Heidi A.; Grove, Robert A.; Taft, Mike R.

    2005-01-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10a??20??) may be used, but with caution, to screen headwater streams for potential Hg-related effects on dippers. When actual feather concentrations or projected feather concentrations are equal to or lower than concentrations reported for the Coast Fork, dippers are expected to reproduce well (assuming adequate prey and suitable nest sites). When Hg concentrations are substantially higher, more detailed investigations may be required. Birds feeding almost exclusively on fish (e.g., osprey [Pandion haliaetus]) and usually found further downstream from the headwaters would not be adequately represented by dippers given the higher MeHg concentrations in fish resulting from biomagnification, compared to lower trophic level invertebrates.

  9. Seasonal Variation, Export Dynamics and Consumption of Freshwater Invertebrates in an Estuarine Environment

    NASA Astrophysics Data System (ADS)

    Williams, D. D.; Williams, N. E.

    1998-03-01

    In the Aber Estuary, North Wales, significant numbers of freshwater benthic invertebrates occurred in the tidal freshwater area. Distinct seasonal patterns were observed in their longitudinal zonation which appeared to be unrelated to variations in tidal inundation. The December extension downstream of freshwater taxa is hypothesized to be in response to decreasing water temperatures. In April, larvae/nymphs of the Trichoptera (caddisflies), Ephemeroptera (mayflies) and Plecoptera (stoneflies) ranged as far as a site inundated by 80·9% of all high tides, and larval Elmidae and Chironomidae (midges) occurred at the most marine site (inundated twice daily by all high tides). In July, with the exception of the Chironomidae, the range of most aquatic insects had contracted to the upper estuary. Although, in general, densities of aquatic insects decreased towards the lower estuary, significant densities persisted there. For example, maxima of 3514 chironomid larvae and 48 caddisfly larvae m -2were recorded at the 80·9% inundation site. An estimated 31×10 6freshwater invertebrates (weighing 62·6 kg), per annum, passed from fresh water into salt water across any given transect along the estuary. In comparison, the annual influx of invertebrates carried upstream by incoming tides was estimated to be 1·9×10 6(6·2%; weighing 2·5 kg). Predominant in the downstream drift were the larvae/nymphs and/or pupae of chironomids, mayflies, stoneflies and caddisflies. The ' reverse ' drift comprised mainly copepods, ostracods, amphipods and oligochaetes. Mites and the brackishwater amphipod Gammarus zaddachicommonly moved in both directions. Highest drift densities occurred in July, whereas the lowest densities occurred in late autumn and winter. Multiple regression analysis showed no relationship between total drift or ' reverse ' drift densities and any of the measured environmental variables. Many of the freshwater invertebrates appeared not to die upon passing into tidal sections but resumed a benthic existence by virtue of varying degrees of salt tolerance. Of the three fish species common in the estuary, eel, common goby and flounder, the last two preyed measurably on freshwater taxa. Whereas gobies tended to be opportunistic feeders, depending on the section of estuary that they occupied, flounder were more restricted to the upper estuary where they fed selectively on chironomid larvae. On the latter diet, between March and September, the mean wet weight of flounders increased by more than 100 times (from 5 to 540 mg). Gobies were more numerous in the estuary from September to February, and although they ate insects their primary prey was G. zaddachi.

  10. Effects of urbanization on stream quality at selected sites in the seacoast region in New Hampshire, 2001-03

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Soule, Sally A.; Smith, Thor E.

    2005-01-01

    A study of selected water-quality and macroinvertebrate community data was conducted at 10 stream sites in the Seacoast region of New Hampshire to determine if a relation is present between stream quality and the extent of urbanization in a watershed. Watersheds with similar characteristics, but varying in their degree of urban development, were studied. The percent of impervious surface, the percent of urban land use in a watershed, and the percent of urban land use in two types of stream buffers were compared and correlated with stream-quality variables. Specific conductance, turbidity, nitrite plus nitrate yields, and selected macroinvertebrate community data were significantly correlated with most measures of urbanization used in this study; however, concentrations and total phosphorus yields were not statistically correlated with most measures of urbanization in this study. The measures of urbanization that had the highest correlations with stream-quality variables were those measures that were associated with the percent of urban land in buffer zones near and upstream of a sampling site. A water-quality and habitat conditions score was negatively correlated with the percent of urban land in a 1-kilometer radial buffer of the sampling site (rho (r) = -0.86; p < 0.001), the percent of impervious surface (r = -0.70; p < 0.05), and the percent of urban land in the watershed (r = -0.67; p < 0.05). A biological condition score also was negatively correlated with the percent of urban land in a 1-kilometer radial buffer of the sampling site (r = -0.95; p < 0.0001), the percent of impervious surface (r = -0.75; p < 0.05), and the percent of urban land in the watershed (r = -0.79; p < 0.01). The percent of urban land in a 25-meter stream buffer along the stream corridor also had negative correlations with a water-quality and habitat conditions score (r = -0.80; p < 0.01) and a biological condition score (r = -0.86; p < 0.01). Mean Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa richness showed a response to urbanization in a watershed, indicating that EPT taxa richness may be an appropriate metric to evaluate the effects of urban land use on small streams in this region. Results from this study indicate that the percent of urban land use in buffer zones and the percent of impervious surface in a watershed can be used as indicators of stream quality.

  11. Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates.

    PubMed

    Schroer, A F W; Belgers, J D M; Brock, T C M; Matser, A M; Maund, S J; Van den Brink, P J

    2004-04-01

    The toxicity of the pyrethroid insecticide lambda-cyhalothrin to freshwater invertebrates has been investigated using data from short-term laboratory toxicity tests and in situ bioassays and population-level effects in field microcosms. In laboratory tests, patterns of toxicity were consistent with previous data on pyrethroids. The midge Chaoborus obscuripes was most sensitive (48- and 96-h EC50 = 2.8 ng/L). Other insect larvae (Hemiptera, Ephemeroptera) and macrocrustacea (Amphipoda, Isopoda) were also relatively sensitive, with 48- and 96-h EC50 values between 10 and 100 ng/L. Generally, microcrustacea (Cladocera, Copepoda) and larvae of certain insect groups (Odonata and Chironomidae) were less sensitive, with 48-h EC50 values higher than 100 ng/L. Mollusca and Plathelminthes were insensitive and were unaffected at concentrations at and above the water solubility (5 microg/L). Generally, the EC50 values based on initial population responses in field enclosures were similar to values derived from laboratory tests with the same taxa. Also, the corresponding fifth and tenth percentile hazard concentrations (HC5 and HC10) were similar (laboratory HC5 = 2.7 ng/L and field HC5 = 4.1 ng/L; laboratory and field HC10 = 5.1 ng/L), at least when based on the same sensitive taxonomic groups (insects and crustaceans) and when a similar concentration range was taken into account. In the three field enclosure experiments and at a treatment level of 10 ng/L, consistent effects were observed for only one population (Chaoborus obscuripes), with recovery taking place within 3 to 6 weeks. The laboratory HC5 (2.7 ng/L) and HC10 (5.1 ng/L) based on acute EC50 values of all aquatic arthropod taxa were both lower than this 10 ng/L, a concentration that might represent the "regulatory acceptable concentration." The HC5 and HC10 values in this study in The Netherlands (based on static laboratory tests with freshwater arthropods) were very similar to those derived from a previous study in the United Kingdom (1.4 and 3.3 ng/L). This suggests that for pesticides like lambda-cyhalothrin, HC5 values based on static laboratory tests may provide a conservative estimate of the potential for community-level effects under field conditions. While these HC5 values are conservative for initial effects, they do not provide information on recovery potential, which may be important for regulatory decision-making.

  12. Comparison of 5 benthic samplers to collect burrowing mayfly nymphs (Hexagenia spp.:Ephemeroptera:Ephemeridae) in sediments of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Nalepa, Thomas F.

    2002-01-01

    The recent return of burrowing mayfly nymphs (Hexagenia spp.) to western Lake Erie of the Laurentian Great Lakes has prompted a need to find a sampler to obtain the most accurate (i.e., highest mean density) and precise (i.e., lowest mean variance) abundance estimates of nymphs. The abundance of burrowing nymphs is important because it is being used as a measure of ecosystem health to determine management goals for fisheries and pollution abatement programs for waters in both North America and Europe. We compared efficiencies of 5 benthic grab samplers (Ponar, Ekman, petite Ponar, Petersen, and orange-peel) to collect nymphs from sediments of western Lake Erie and Lake St. Clair. Samplers were used at one site with soft substrates in both lakes in 1997 (Ponar, Ekman, petite Ponar, and Petersen) and 1998 (Ponar and Ekman), and at one site with soft and one site with hard substrates in Lake St. Clair in 1999 (Ponar and orange-peel). In addition, the Ponar, Ekman, and Petersen samplers were used at one site with soft substrates of western Lake Erie in 2000 to examine the causes of differences among samplers. The Ponar was more accurate than the other samplers; it collected the highest densities of nymphs for 31 of 32 date and site comparisons. In soft substrates, the order of decreasing overall densities was: Ponar>Petersen>petite Ponar>Ekman in western Lake Erie and Ponar>Petersen> Ekman>petite Ponar in Lake St. Clair in 1997, Ponar>Ekman in both lakes in 1998, and Ponar>orange-peel in Lake St. Clair in 1999. In hard substrates, the Ponar was more accurate than the orange-peel in Lake St. Clair in 1999. Precision of the Ponar was generally greater than the Ekman, petite Ponar, and Petersen but similar to the orange-peel. Higher densities of nymphs obtained with the Ponar than other grabs are attributed to its relatively heavy weight, which allows it to sample deeper in sediments than the Ekman and petite Ponar. Also, the Ponar has a screened top, which allows it to minimize hydraulic shock waves more than the Petersen, and uniform sides, which allow it to sample nymphs more uniformly through sediments than the orange-peel. We recommend that future estimates of burrowing mayfly densities be obtained with a standard Ponar sampler similar to the one used in our study because it will yield the most accurate and precise measurements of burrowing mayfly nymphs such as Hexagenia spp.

  13. Hydrologic Links Among Urbanization, Channel Morphology, Aquatic Habitat, and Macroinvertebrates in North Carolina Piedmont Streams

    NASA Astrophysics Data System (ADS)

    Giddings, E. M.

    2005-12-01

    Landscape changes associated with urbanization have been shown to alter flow regimes of streams that, in turn, alter channel morphology, aquatic habitat, and biological communities. In order to mitigate the effects of urbanization on biological communities, it is important to understand the hydrologic links between these interactions. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, 30 stream sites in the Piedmont of North Carolina (including the cities Raleigh, Greensboro, and Winston-Salem) having a range of watershed urbanization were sampled. To measure urbanization intensity, a multimetric index of watershed and riparian land use, infrastructure, and socioeconomic conditions was used. Population density ranged from 24 to 3,276 people per square kilometer; 75 percent of the sites had less than 2,000 people per square kilometer. At each site, continuous discharge record was estimated for 1 year using continuous stream-stage data, instantaneous discharge measurements, and one-dimensional hydraulic modeling. Hydrologic variability metrics were calculated to compare the magnitude, frequency, and duration of high and low flows among sites. These metrics then were correlated with measures of channel morphology, habitat, a richness-based macroinvertebrate index, and the urban-intensity index. As urban intensity in the watershed increased, the frequency of quickly rising flows increased (R2=0.55, p<0.0001), and the duration of high flows decreased (R2=0.47, p=0.0001). Along with these changes, channels became more incised; bankfull channel depths (normalized by drainage area) increased as the frequency of quickly rising flows increased (R2=0.28, p=0.006) and the duration of high flows decreased (R2=0.17, p =0.04). Additionally, streams with higher frequencies of quickly rising flows had greater percentages of sand as a dominant substrate (R2=0.19, p=0.03) and greater differences between bankfull depth and low-flow depth at summer flows (R2=0.30, p= 0.004), which is considered an indicator of flow stability. A macroinvertebrate index of sensitive taxa (the orders Ephemeroptera, Plecoptera and Trichoptera) to tolerant taxa (the family Chironomid) richness at the sampled streams declined with increases in percentages of sand (R2=0.22, p=0.008) and bankfull channel depth (R2=0.25, p=0.005) and decreases in flow stability (R2=0.43, p<0.0001), illustrating the important hydrologic links among urbanization and channel morphology, habitat, and macroinvertebrates in piedmont streams.

  14. The effects of urbanization on the biological, physical, and chemical characteristics of coastal New England streams

    USGS Publications Warehouse

    Coles, J.F.; Cuffney, T.F.; McMahon, G.; Beaulieu, K.M.

    2004-01-01

    During August 2000, responses of biological communities (invertebrates, fish, and algae), physical habitat, and water chemistry to urban intensity were compared among 30 streams within 80 miles of Boston, Massachusetts. Sites chosen for sampling represented a gradient of the intensity of urban development (urban intensity) among drainage basins that had minimal natural variability. In this study, spatial differences were used as surrogates for temporal changes to represent the effects of urbanization over time. The degree of urban intensity for each drainage basin was characterized with a standardized urban index (0?100, lowest to highest) derived from land cover, infrastructure, and socioeconomic variables. Multivariate and multimetric analyses were used to compare urban index values with biological, physical, and chemical data to determine how the data indicated responses to urbanization. Multivariate ordinations were derived for the invertebrate-, fish-, and algaecommunity data by use of correspondence analysis, and ordinations were derived for the chemical and physical data by use of principal-component analysis. Site scores from each of the ordinations were plotted in relation to the urban index to test for a response. In all cases, the primary axis scores showed the strongest response to the urban index, indicating that urbanization was a primary factor affecting the data ordination. For the multimetric analyses, each of the biological data sets was used to calculate a series of community metrics. For the sets of chemical and physical data, the individual variables and various combinations of individual variables were used as measured and derived metrics, respectively. Metrics that were generally most responsive to the urban index for each data set included: EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa for invertebrates; cyprinid taxa for fish; diatom taxa for algae; bicarbonate, conductivity, and nitrogen for chemistry; and water depth and temperature for physical habitat. The slopes of the responses generally were higher between the urban index values of 0 to 35, indicating that the greatest change in aquatic health may occur between low and moderate levels of urban intensity. Additionally, many of the responses showed that at urban index values greater than 35, there was a threshold effect where the response variable no longer changed with respect to urban intensity. Recognizing and understanding this type of response is important in management and monitoring programs that rely on decisive interpretations of variable responses. Any biological, physical, or chemical variable that is used to haracterize stream health over a gradient of disturbance would not be a reliable indicator when a level of disturbance is reached where the variable does not respond in a predictable manner.

  15. Water Quality and Streamflow of the Indian River, Sitka, Alaska, 2001-02

    USGS Publications Warehouse

    Neal, Edward J.; Brabets, Timothy P.; Frenzel, Steven A.

    2004-01-01

    The Indian River Basin, located near Sitka Alaska, drains an area of 12.3 square miles. This watershed is an important natural resource of Sitka National Historic Park. At the present time, the watershed faces possible development on large tracts of private land upstream of the park that could affect the water quality of Indian River. Due to this concern, a study was conducted cooperatively with the National Park Service. The approach was to examine the water quality of the Indian River in the upper part of the watershed where no development has occurred and in the lower part of the basin where development has taken place. Measurements of pH, water temperature, and dissolved oxygen concentrations of the Indian River were within acceptable ranges for fish survival. The Indian River is calcium bicarbonate type water with a low buffering capacity. Concentrations of dissolved ions and nutrients generally were low and exhibited little variation between the two study sites. Analysis of bed sediment trace element concentrations at both sampling sites indicates the threshold effect concentration was exceeded for arsenic, chromium, copper, nickel, and zinc; while the probable effect concentration was exceeded by arsenic, chromium and nickel. However, due to relatively large amounts of organic carbon present in the bed sediments, the potential toxicity from trace elements is low. Discharge in the Indian River is typical of coastal southeast Alaska streams where low flows generally are in late winter and early spring and greater flows are during the wetter fall months. Alaska Department of Fish and Game has established instream flow reservations on the lower 2.5 miles of the Indian River. Discharge data indicate minimum flow requirements were not achieved during 236 days of the study period. Natural low flows are frequently below the flow reservations, but diversions resulted in flow reservations not being met a total of 140 days. Thirty-five algae species were identified from the sample collected at Indian River near Sitka while 24 species were identified from the sample collected at Indian River at Sitka. Most species of algae identified in the Indian River samples were diatoms and the majority were pinnate diatoms; however, green algae and (or) blue-green algae accounted for much of the algal biomass at the two sites. The trophic condition of the Indian River is oligotrophic, and algal productivity likely is limited by low concentrations of dissolved nitrogen. Few invertebrate taxa were collected relative to many high-quality streams in the contiguous United States, but the number of taxa in Indian River appears to be typical of Alaska streams. Ephemeroptera was the most abundant order sampled followed by Diptera.

  16. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In addition, natural summer streamflows were estimated for each study site using regional regression equations. This report describes PHABSIM modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. In addition, streamflow needs for riffle dwelling invertebrate taxa (Ephemeroptera, Plecoptera, and Trichoptera) are presented. Adult fish passage and discharge relations were evaluated at specific transects that were identified as potential low-streamflow passage barriers at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.

  17. Physical data and biological data for algae, aquatic invertebrates, and fish from selected reaches on the Carson and Truckee rivers, Nevada and California, 1993-97

    USGS Publications Warehouse

    Lawrence, S.J.; Seiler, R.L.

    2002-01-01

    This report, a product of the National Water- Quality Assessment Program, is a compilation of physical data and biological data for algae, aquatic invertebrates, and fish collected in the Carson and Truckee River Basins, Nevada and California. Most of the data were collected between 1993 and 1996 at selected reaches on the Carson and Truckee Rivers. Algae and aquatic invertebrate samples were collected from cobble riffles, submerged woody-snag habitats, and from depositional areas such as pools. Between 1993 and 1996, fish and crayfish were collected from all wadeable habitats at each of seven basic-fixed sites using either electroshocking methods or seining. Additional fish and crayfish were collected at one site on the Truckee River in 1997. Fish were identified to species, measured for total and standard length, checked for anomalies, and weighed at the collection site. Fish were returned to the stream after measurements were taken. Measurements of water depth, stream velocity, determinations of substrate type and substrate embeddedness were made at each sampling site. Algae and aquatic invertebrate samples were sent to the U.S. Geological Survey National Water-Quality Laboratory for identification and enumeration. A total of 103 semi-quantitative and 55 qualitative algae samples were collected at 20 river reaches on the Carson and Truckee Rivers between 1993 and 1996. These samples represent algae in cobble riffles, on submerged woody snags, and on sediment surfaces in depositional areas. In those 158 samples, 514 algal species, varieties, or forms were identified. Of the 8 algal phyla represented, the diatoms (Phylum Bacillariophyta) were the most abundant with 351 species, varieties, or forms. The green algae (Phylum Chlorophyta) were next in abundance with 108 species, varieties, or forms followed by the blue-green algae (Phylum Cyanophyta) with 41 species, varieties, or forms. A total of 49 semi-quantitative aquatic invertebrate samples were collected at 27 river reaches on the Carson and Truckee Rivers between 1993 and 1996. These samples represent invertebrates in cobble riffles and on submerged woody snags. In those 49 samples, members of 6 phyla were identified. Roundworms were identified only to phylum (Nematoda) and free-living flatworms and snails were identified only to class (Turbellaria and Gastroda). Organisms were identified as belonging to 19 invertebrate orders. Most of the invertebrates that could be identified to genus or species belonged in the orders Ephemeroptera, Plecoptera, and Trichoptera of the arthropod class Insecta. Fish and crayfish populations in the Carson and Truckee Rivers were sampled 29 times between 1993 and 1997. These collections resulted in the identification of 18 fish species and one endemic crayfish species. Twelve of the 18 fish species identified are not native to the Carson and Truckee River Basins.

  18. Macroinvertebrate communities evaluated prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho, 2001-16

    USGS Publications Warehouse

    MacCoy, Dorene E.; Short, Terry M.

    2017-11-22

    The U.S. Geological Survey, in cooperation with Blaine County and The Nature Conservancy, evaluated the status of macroinvertebrate communities prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho. The objective of the evaluation was to determine whether 2014 remediation efforts to restore natural channel conditions in an impounded area of Silver Creek caused declines in local macroinvertebrate communities. Starting in 2001 and ending in 2016, macroinvertebrates were sampled every 3 years at two long-term trend sites and sampled seasonally (spring, summer, and autumn) in 2013, 2015, and 2016 at seven synoptic sites. Trend-site communities were collected from natural stream-bottom substrates to represent locally established macroinvertebrate assemblages. Synoptic site communities were sampled using artificial (multi-plate) substrates to represent recently colonized (4–6 weeks) assemblages. Statistical summaries of spatial and temporal patterns in macroinvertebrate taxonomic composition at both trend and synoptic sites were completed.The potential effect of the restoration project on resident macroinvertebrate populations was determined by comparing the following community assemblage metrics:Total taxonomic richness (taxa richness);Total macroinvertebrate abundance (total abundance);Ephemeroptera, Plecoptera, Trichoptera (EPT) richness;EPT abundance;Simpson’s diversity; andSimpson’s evenness for periods prior to and following restoration.A significant decrease in one or more metric values in the period following stream channel restoration was the basis for determining impairment to the macroinvertebrate communities in Silver Creek.Comparison of pre-restoration (2001–13) and post‑restoration (2016) macroinvertebrate community composition at trend sites determined that no significant decreases occurred in any metric parameter for communities sampled in 2016. Taxa and EPT richness of colonized assemblages at synoptic sites increased significantly from pre-restoration in 2013 to post-restoration in 2015 and 2016. Similarly, total and EPT abundances at synoptic sites showed non-significant increases from 2013 to 2015 and 2016. Significant seasonal differences in macroinvertebrate assemblages were apparent at synoptic site locations and likely reflected typical life-history patterns of increased insect emergence and development in the late spring and early summer months. Taxa and EPT richness were each significantly higher in spring and summer than in autumn, and total abundances were significantly higher in spring than in summer and autumn. No significant differences in community diversity or evenness of colonized communities were noted at synoptic site locations between pre- and post-restoration years or among seasons. Select community-metric results from the trend- and synoptic‑site sampling indicated that the Silver Creek restoration effort in 2014 did not result in a significant decline in resident macroinvertebrate communities.

  19. The effects of urbanization on the biological, physical, and chemical characteristics of coastal New England streams

    USGS Publications Warehouse

    Coles, James F.; Cuffney, Thomas F.; McMahon, Gerard; Beaulieu, Karen M.

    2004-01-01

    During August 2000, responses of biological communities (invertebrates, fish, and algae), physical habitat, and water chemistry to urban intensity were compared among 30 streams within 80 miles of Boston, Massachusetts. Sites chosen for sampling represented a gradient of the intensity of urban development (urban intensity) among drainage basins that had minimal natural variability. In this study, spatial differences were used as surrogates for temporal changes to represent the effects of urbanization over time. The degree of urban intensity for each drainage basin was characterized with a standardized urban index (0-100, lowest to highest) derived from land cover, infrastructure, and socioeconomic variables. Multivariate and multimetric analyses were used to compare urban index values with biological, physical, and chemical data to determine how the data indicated responses to urbanization. Multivariate ordinations were derived for the invertebrate-, fish-, and algae-community data by use of correspondence analysis, and ordinations were derived for the chemical and physical data by use of principal-component analysis. Site scores from each of the ordinations were plotted in relation to the urban index to test for a response. In all cases, the primary axis scores showed the strongest response to the urban index, indicating that urbanization was a primary factor affecting the data ordination. For the multimetric analyses, each of the biological data sets was used to calculate a series of community metrics. For the sets of chemical and physical data, the individual variables and various combinations of individual variables were used as measured and derived metrics, respectively. Metrics that were generally most responsive to the urban index for each data set included: EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa for invertebrates; cyprinid taxa for fish; diatom taxa for algae; bicarbonate, conductivity, and nitrogen for chemistry; and water depth and temperature for physical habitat. The slopes of the responses generally were higher between the urban index values of 0 to 35, indicating that the greatest change in aquatic health may occur between low and moderate levels of urban intensity. Additionally, many of the responses showed that at urban index values greater than 35, there was a threshold effect where the response variable no longer changed with respect to urban intensity. Recognizing and understanding this type of response is important in management and monitoring programs that rely on decisive interpretations of variable responses. Any biological, physical, or chemical variable that is used to characterize stream health over a gradient of disturbance would not be a reliable indicator when a level of disturbance is reached where the variable does not respond in a predictable manner.

  20. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.

    1996-01-01

    Aluminum is extremely common throughout the world and is innocuous under circumneutral or alkaline conditions. However, in acidic environments, it can be a maJor limiting factor to many plants and aquatic organisms. The greatest concern for toxicity in North America occurs in areas that are affected by wet and dry acid deposition, such as eastern Canada and the northeastern U.S. Acid mine drainage, logging, and water treatment plant effluents containing alum can be other maJor sources of Al. In solution, the metal can combine with several different agents to affect toxicity. In general, Al hydroxides and monomeric Al are the most toxic forms. Dissolved organic carbons, F, PO(3)3- and SO(4)2- ameliorate toxicity by reducing bioavailability. Elevated metal levels in water and soil can cause serious problems for some plants. Algae tend to be both acid- and Al tolerant and, although some species may disappear with reduced pH, overall algae productivity and biomass are seldom affected if pH is above 3.0. Aluminum and acid toxicity tend to be additive to some algae when pH is less than 4.5. Because the metal binds with inorganic P, it may reduce P availability and reduce productivity. Forest die-backs in North America involving red spruce, Fraser fir, balsam fir, loblolly pine, slash pine, and sugar maples have been ascribed to Al toxicity, and extensive areas of European forests have died because of the combination of high soil Al and low pH. Extensive research on crops has produced Al-resistant cultivars and considerable knowledge about mechanisms of and defenses against toxicity. Very low Al levels may benefit some plants, although the metal is not recognized as an essential nutrient. Hyperaccumulator species of plants may concentrate Al to levels that are toxic to herbivores. Toxicity in aquatic invertebrates is also acid dependent. Taxa such as Ephemeroptera, Plecoptera, and Cladocera are sensitive and may perish when Al is less than 1 mg.L-1 whereas dipterans, molluscs, and isopods seem to be tolerant. In Al-sensitive species, elevated levels (approximately 500 micrograms.L-1) affect ion regulation and respiratory efficiency. Toxicity tends to be greatest near a species` threshold of pH sensitivity. At lower pHs, Al may have a slight ameliorative effect by interfering with H+ transport across membranes. Aquatic invertebrates can accumulate very high levels of Al, but most of this appears to be through adsorption rather than assimilation. Aluminum concentrations may be as high as 5000 mg.kg-1 in insects and greater than 17,000 mg.kg-1 in other invertebrates.

  1. Long-term macroinvertebrate response to flow abstraction at Alpine water intakes

    NASA Astrophysics Data System (ADS)

    Gabbud, Chrystelle; Savioz, Amélie; Lane, Stuart

    2016-04-01

    The natural flow hydrological characteristics of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained, following the hydrological, biochemical, morphodynamic, and biotic elements specific to Alpine streams. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. These kinds of impacts are well studied where river are regulated by dams, with sediments retained behind walls, but they are much less focus on water intakes, whose storage capacity is very smaller and thus have to flush flow and sediment regularly. Here we focus on the impacts of flow abstraction on macroinvertebrates, the most widely ecological group used in freshwater biomonitoring as they act typically as indicators of environmental health. Some key generalizations can be made. For instance, in European glacially fed river systems, Plecoptera, Chironomidae, Ephemeroptera, Simuliidae, and Diptera are the main taxa found in spring as they are better adapted to cold conditions. Petts and Bickerton (1994) published macroinvertebrate samples from the upper part of the glacial stream system the Borgne d'Arolla (Valais, Switzerland), highlighting that: (1) taxa variability and productivity decline in the river because of flow abstraction, (2) 60 % of the communities were provided by tributaries, (3) there is migration upstream of the species in response to the passage from a dominant ice-melt to a snow-melt regime, (4) the colonisation is difficult because of a significant modification of the habitat in the river by sediment transport, until it becomes warmer, clearer and more stable further downstream. In order to establish the long-term impacts of flow abstraction upon instream ecology where sediment delivery is maintained but transport capacity is reduced, and to determine if the above trends are accelerated, maintained or reversed, we revisited the study of Petts and Bickerton (1994) by repeating transects of interest for both the river and the tributaries during summer 2015. Based on macroinvertebrate sampling, determinations and statistics, preliminary results show that these trends have been maintained, with macroinvertebrate presence restricted to zones immediately downstream of unregulated tributaries. Despite the river having been protected as an alluvial zone of national importance since the 1990s, there is no evidence of life in the river except in isolated tributary-fed hotspots. The data suggest that restoring this kind of system will need new approaches to manage sediment, ones that environmental flows alone are unlikely to be able to address. Reference Petts GE, Bickerton MA (1994). Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d'Arolla, Valais, Switzerland. Freshwater Biology, 32:375-386.

  2. Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration

    USGS Publications Warehouse

    Gore, James A.; Layzer, James B.; Mead, Jim

    2001-01-01

    Over the past two decades of refinement and application of instream flow evaluations, we have examined the hydraulic habitat of aquatic macroinvertebrates in a variety of conditions, along with the role of these macroinvertebrates in sustaining ecosystem integrity. Instream flow analyses assume that predictable changes in channel flow characteristics can, in turn, be used to predict the change in the density or distribution of lotic species or, more appropriately, the availability of useable habitat for those species. Five major hydraulic conditions most affect the distribution and ecological success of lotic biota: suspended load, bedload movement, and water column effects, such as turbulence, velocity profile, and substratum interactions (near-bed hydraulics). The interactions of these hydraulic conditions upon the morphology and behavior of the individual organisms govern the distribution of aquatic biota. Historically, management decisions employing the Physical Habitat Simulation (PHABSIM) have focused upon prediction of available habitat for life stages of target fish species. Regulatory agencies have rarely included evaluation of benthos for flow reservations. Although ‘taxonomic discomfort’ may be cited for the reluctant use or creation of benthic criteria, we suggest that a basic misunderstanding of the links between benthic macroinvertebrate and the fish communities is still a problem. This is derived from the lack of a perceived ‘value’ that can be assigned to macroinvertebrate species. With the exception of endangered mussel species (for which PHABSIM analysis is probably inappropriate), this is understandable. However, it appears that there is a greater ability to predict macroinvertebrate distribution (that is, a response to the change in habitat quality or location) and diversity without complex population models. Also, habitat suitability criteria for water quality indicator taxa (Ephemeroptera, Plecoptera, and Trichoptera; the so-called ‘EPTs’) may also provide additional management options to stream regulators. The greatest application for macroinvertebrate criteria will be in low-order streams where a more immediate link to fish communities can be established. We present an example from Queens Creek, in North Carolina, USA, in which monthly allocations required to preserve the integrity of the benthic macroinvertebrate community were significantly higher than for the target benthic fish species, Cottus bairdi. In the months when both Cottus and community diversity of macroinvertebrates were the ‘bottleneck’ life stages, preservation of only fish species could result in an additional 5–25% loss in macroinvertebrate habitat. We suggest that, as there becomes an increased emphasis on maintaining macroinvertebrates as monitors of stream health, there will be a concurrent emphasis on incorporating hydraulic habitat conditions as a part of bioassessment.

  3. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.

    PubMed

    Morrissey, Christy A; Mineau, Pierre; Devries, James H; Sanchez-Bayo, Francisco; Liess, Matthias; Cavallaro, Michael C; Liber, Karsten

    2015-01-01

    Neonicotinoids, broad-spectrum systemic insecticides, are the fastest growing class of insecticides worldwide and are now registered for use on hundreds of field crops in over 120 different countries. The environmental profile of this class of pesticides indicate that they are persistent, have high leaching and runoff potential, and are highly toxic to a wide range of invertebrates. Therefore, neonicotinoids represent a significant risk to surface waters and the diverse aquatic and terrestrial fauna that these ecosystems support. This review synthesizes the current state of knowledge on the reported concentrations of neonicotinoids in surface waters from 29 studies in 9 countries world-wide in tandem with published data on their acute and chronic toxicity to 49 species of aquatic insects and crustaceans spanning 12 invertebrate orders. Strong evidence exists that water-borne neonicotinoid exposures are frequent, long-term and at levels (geometric means=0.13μg/L (averages) and 0.63μg/L (maxima)) which commonly exceed several existing water quality guidelines. Imidacloprid is by far the most widely studied neonicotinoid (66% of the 214 toxicity tests reviewed) with differences in sensitivity among aquatic invertebrate species ranging several orders of magnitude; other neonicotinoids display analogous modes of action and similar toxicities, although comparative data are limited. Of the species evaluated, insects belonging to the orders Ephemeroptera, Trichoptera and Diptera appear to be the most sensitive, while those of Crustacea (although not universally so) are less sensitive. In particular, the standard test species Daphnia magna appears to be very tolerant, with 24-96hour LC50 values exceeding 100,000μg/L (geometric mean>44,000μg/L), which is at least 2-3 orders of magnitude higher than the geometric mean of all other invertebrate species tested. Overall, neonicotinoids can exert adverse effects on survival, growth, emergence, mobility, and behavior of many sensitive aquatic invertebrate taxa at concentrations at or below 1μg/L under acute exposure and 0.1μg/L for chronic exposure. Using probabilistic approaches (species sensitivity distributions), we recommend here that ecological thresholds for neonicotinoid water concentrations need to be below 0.2μg/L (short-term acute) or 0.035μg/L (long-term chronic) to avoid lasting effects on aquatic invertebrate communities. The application of safety factors may still be warranted considering potential issues of slow recovery, additive or synergistic effects and multiple stressors that can occur in the field. Our analysis revealed that 81% (22/27) and 74% (14/19) of global surface water studies reporting maximum and average individual neonicotinoid concentrations respectively, exceeded these thresholds of 0.2 and 0.035μg/L. Therefore, it appears that environmentally relevant concentrations of neonicotinoids in surface waters worldwide are well within the range where both short- and long-term impacts on aquatic invertebrate species are possible over broad spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluating effects of potential changes in streamflow regime on fish and aquatic-invertebrate assemblages in the New Jersey Pinelands

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.

    2010-01-01

    Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.

  5. Assessment of ecological conditions and potential effects of water produced from coalbed natural gas development on biological communities in streams of the Powder River structural basin, Wyoming and Montana, 2005-08

    USGS Publications Warehouse

    Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.

    2010-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.

  6. Investigation of Water Quality and Aquatic-Community Structure in Village and Valley Creeks, City of Birmingham, Jefferson County, Alabama 2000-01

    NASA Astrophysics Data System (ADS)

    McPherson, A. K.

    2002-12-01

    The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham, Fivemile Creek and Little Cahaba River, that drain less urbanized areas. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. Aquatic-community structure, physical condition of fish, and analysis of fish tissue provided an indication of the cumulative effects of the water quality on the aquatic biota. Degraded water quality was seen at the more urbanized sites on Village and Valley Creeks. Elevated concentrations of nutrients, bacteria, trace elements, and organic contaminants were detected in the water column. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment and fish tissue at the Village and Valley Creek sites than at the reference site. The richness and density of the fish and benthic-invertebrate communities indicate that the integrity of the aquatic communities in Village and Valley Creeks is poor in comparison to that observed at the two reference sites. Correlations between land use and aquatic-community structure, water quality, bed sediment, and fish tissue were observed. The abundance of mayflies and the number of EPT (ephemeroptera, plecoptera, tricoptera) taxa were negatively correlated with industrial land use. The abundance of midges (an indicator of poor water quality) was positively correlated with industrial land use; the percentage of mosquitofishes (a tolerant species) was positively correlated with commercial land use. In contrast, the numbers of fish species, fish families, and the percentage of sunfishes (intolerant species) were positively correlated with forested land use, indicating that the more diverse fish communities were found in basins with a higher percentage of forested land. The concentrations of 12 water-quality constituents and 18 organic compounds detected in bed sediment were positively correlated with industrial land use. Mercury and molybdenum concentrations detected in fish-liver tissue also were positively correlated with industrial land use. The water quality and aquatic-community structure in Village and Valley Creeks are degraded in comparison to streams flowing through less urbanized areas. Decreased diversity and elevated concentrations of trace elements and organic contaminants in the water column, bed sediment, and fish tissues at Village and Valley Creeks are indicative of the effects of urbanization. Industrial land use, in particular, was significantly correlated to elevated contaminant levels in the water column, bed sediment, fish tissues, and to the declining health of the benthic-invertebrate communities. The results of this 16-month study have long-range watershed management implications, demonstrating the association between urban development and stream degradation. These data can serve as a baseline from which to determine the effectiveness of stream-restoration programs.

  7. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    USGS Publications Warehouse

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish were low, with the exceptions of chromium, copper, mercury, and selenium; however, these concentrations are not at levels of concern. Concentrations of all trace elements analyzed in whole caddisfly larvae also were low compared to those reported in the literature. During 1998, a total of 48 species of macroinvertebrates were identified at each of two sampled sites, with similar numbers of genera represented at both: 41 at Keshena and 44 at Langlade. The percentage EPT (Ephemeroptera, Plecoptera, and Trichoptera) was 52 at Keshena and 77 at Langlade; these relatively large percentages suggest very good to excellent water quality at these sites. A total of 52 algal taxa were identified at the Wolf River near Langlade. Diatoms made up 96 percent of the algal biomass. A total of 58 algal taxa were identified at Keshena, including 48 diatom taxa (83 percent). Although diatoms accounted for just 22 percent of the algal relative abundance, in cells per square centimeter, diatoms contributed 91 percent of the total algal biomass. The overall biological integrity of the Keshena and Langlade sites, based on diversity, siltation, and pollution indexes for diatoms is excellent.

  8. Fitness and community consequences of avoiding multiple predators.

    PubMed

    Peckarsky, Barbara L; McIntosh, Angus R

    1998-02-01

    We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.

  9. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables examined. To understand how the choice of sampling sites might have affected the results, an analysis of the drainage area and land use was done. The 34 randomly selected sites in the West Fork White River Basin in 2001 were skewed to small streams. The dominant mean land use of the sites sampled was agriculture, followed by forest, and urban. The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and IX and Level III Ecoregions 55 and 72. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values were either greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient Ecoregions and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the West Fork White River Basin would have exceeded the criteria.

  10. Hydrologic disturbance and response of aquatic biota in Big Darby Creek basin, Ohio

    USGS Publications Warehouse

    Hambrook, J.A.; Koltun, G.F.; Palcsak, B.B.; Tertuliani, J.S.

    1997-01-01

    Washout and recolonization of macroinvertebrates and algae associated with a spring and summer storm were measured at three sites in Ohio's Big Darby Creek Basin. Related factors, such as streamflow magnitude, shear stress, and streamed disturbance were considered when interpreting observed changes in densities and community structure of macroinvertebrates and algae. During the study, 184 macroinvertebrate taxa and 202 algal taxa were identified. The major taxonomic groups for macroinvertebrates were midges and other true flies (Diptera), caddisflies (Trichoptera), beetles (Coleoptera), mayflies (Ephemeroptera), and stoneflies (Plecoptera). Diatoms were the dominant algae (in terms of percentage of total taxa found) followed by green algae, blue-green algae, euglenoids, golden flagellates, and freshwater red algae. Streamflows associated with the storm events that occurred during April 6-16 and June 23-July 5, 1994, probably had little effect on streambed elevations, but streambed disturbance was documented in the form of shifts in the median particle-size diameters of the subsurface bed materials. The streamflow magnitudes did not correlate well with the magnitude of observed changes in macroinvertebrate and algal-cell densities, but reductions in macroinvertebrate and algal-cell densities generally did occur. Local minima of macroinvertebrate density did not generally correspond to the first sample after the storms, but instead lagged by about 1 to 3 weeks. Other biotic factors, such as emergence of Diptera, probably affected the observed mid-July depression in macroinvertebrate densities. Evaluation of pre-event macroinvertebrate community structure in terms of functional feeding groups and flow-exposure groups showed that, on the basis of percentage of total taxa found, gatherers were the dominant feeding group and flow-facultative taxa were the dominant flow-exposure group. Densities of gatherers decreased from pre-event levels following all the storm events at all sites, whereas flow-facultative and flow-avoiding taxa were significantly reduced only after the summer event at Big and Little Darby Creeks. Algal-cell densities in the first post-event samples always were lower than pre-event densities; however, the total number of taxa present generally were not statistically different. In four out of five of the first post-event samples, algal-cell densities were only 16 to 26 percent of the pre-event densities. The exception was at Little Darby Creek after the spring event, where only the density of stalked algal cells in the community were significantly reduced. The observed resistance to disturbance of the algal community at Little Darby Creek may have resulted from the relative abundance of the mat-forming blue-green algae Oscillatoria spp. The stalked cells were the most consistently reduced in the post-event-samples, whereas holdfast types (such as Audouinella hermannii) and prostrate epiphytes (such as Cocconeis spp) were the most resistant to washout. Algal recolonization rates, measured as the change in algal-cell densities over a 7-day period after the summer storm event, ranged from 0.05 to 1.51 billion cells per square meter per day. These recolonization rates are expected to be affected by factors such as nutrients, temperature, amount of canopy, initial post-event algal density, and grazing by macroinvertebrates and fish. On the basis of canopy and nutrient data, one would expect the algal recolonization rates for the three sites in this study to sort in the order observed.

  11. Chapter B. Physical, Chemical, and Biological Responses of Streams to Increasing Watershed Urbanization in the Piedmont Ecoregion of Georgia and Alabama, 2003

    USGS Publications Warehouse

    Gregory, M. Brian; Calhoun, Daniel L.

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program?s effort to assess the physical, chemical, and biological responses of streams to urbanization, 30 wadable streams were sampled near Atlanta, Ga., during 2002?2003. Watersheds were selected to minimize natural factors such as geology, altitude, and climate while representing a range of urban development. A multimetric urban intensity index was calculated using watershed land use, land cover, infrastructure, and socioeconomic variables that are highly correlated with population density. The index was used to select sites along a gradient from low to high urban intensity. Response variables measured include stream hydrology and water temperature, instream habitat, field properties (pH, conductivity, dissolved oxygen, turbidity), nutrients, pesticides, suspended sediment, sulfate, chloride, Escherichia coli (E. coli) concentrations, and characterization of algal, invertebrate and fish communities. In addition, semipermeablemembrane devices (SPMDs)?passive samplers that concentrate hydrophobic organic contaminants such as polycyclicaromatic hydrocarbons (PAHs)?were used to evaluate water-quality conditions during the 4 weeks prior to biological sampling. Changes in physical, chemical, and biological conditions were evaluated using both nonparametric correlation analysis and nonmetric multidimensional scaling (MDS) ordinations and associated comparisons of dataset similarity matrices. Many of the commonly reported effects of watershed urbanization on streams were observed in this study, such as altered hydrology and increases in some chemical constituent levels. Analysis of water-chemistry data showed that specific conductance, chloride, sulfate, and pesticides increased as urbanization increased. Nutrient concentrations were not directly correlated to increases in development, but were inversely correlated to percent forest in the watershed. Analyses of SPMD-derived data showed that bioassays and certain chemical constituents such as pyrene and benzophenanthrene, both PAHs found in coal tar, were strongly correlated with measures of watershed urbanization. Hydrologic variability metrics indicated that as urban development increased, streams became flashier, with characteristic high flows having shorter duration. The hydrologic effects associated with urbanization were greatest during the fall and least apparent during the winter. No correlations were observed between increasing urbanization and stream temperature or changes in stream habitat. Algal, invertebrate, and fish communities exhibited statistically significant changes as watersheds became increasingly urban, with the strongest responses observed in the invertebrate community followed by fishes, then algal diatom communities. Invertebrate communities were the most responsive to increasing urbanization with Ephemeroptera, Plecoptera, and Tricoptera taxa, especially Plecoptera (stoneflies) responding negatively and most strongly to increasing urbanization. Invertebrate communities were influenced more significantly by water quality, although significant responses to altered hydrology also were noted. In terms of the fish community, the percentage of cyprinids present in the stream was the only Index of Biotic Integrity metric that responded negatively to increases in watershed urbanization. Fish community response to urbanization was intermediate relative to algae and invertebrates with respect to significant metric responses as well as the overall community response to increasing urbanization. Measures of hydrologic variability were the most influential environmental variables affecting the algal community. Although sites were originally chosen to represent a gradient of increasing urbanization, a cluster analysis performed on the component metrics of the urban index categorized sites into four distinct groups. Multivariate analysis based on nonmetric MDS and related analyses of data ma

  12. Reconnaissance of chemical and biological quality in the Owyhee River from the Oregon State line to the Owyhee Reservoir, Oregon, 2001–02

    USGS Publications Warehouse

    Hardy, Mark A.; Maret, Terry R.; George, David L.

    2004-01-01

    The Owyhee River drains an extremely rugged and sparsely populated landscape in northern Nevada, southwestern Idaho, and eastern Oregon. Most of the segment between the Oregon State line and Lake Owyhee is part of the National Wild and Scenic Rivers System, and few water-quality data exist for evaluating environmental impacts. As a result, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, assessed this river segment to characterize chemical and biological quality of the river, identify where designated beneficial uses are met and where changes in stream quality occur, and provide data needed to address activities related to environmental impact assessments and Total Maximum Daily Loads. Water-quality issues identified at one or more sites were water temperature, suspended sediment, dissolved oxygen, pH, nutrients, trace elements, fecal bacteria, benthic invertebrate communities, and periphyton communities. Generally, summer water temperatures routinely exceeded Oregon's maximum 7-day average criteria of 17.8 degrees Celsius. The presence of few coldwater taxa in benthic invertebrate communities supports this observation. Suspended-sediment concentrations during summer base flow were less than 10 milligrams per liter (mg/L). Dissolved solids concentrations ranged from 46 to 222 mg/L, were highest during base flow, and tended to increase in a downstream direction. Chemical compositions of water samples indicated that large proportions of upland-derived water extend to the lower reaches of the study area during spring runoff. Dissolved fluoride and arsenic concentrations were highest during base flow and may be a result of geothermal springs discharging to the river. No dissolved selenium was detected. Upstream from the Rome area, spring runoff concentrations of suspended sediment ranged from 0 to 52 mg/L, and all except at the Three Forks site were typically below 20 mg/L. Stream-bottom materials from the North Fork Owyhee River, an area with no mines, were enriched with nine trace elements, which indicates that this basin may be a natural source of these elements. Near Rome, the part of the study area not included in the National Wild and Scenic Rivers System, land-use impacts resulted in elevated populations of Escherichia coli bacteria (E. coli) during base flow and elevated concentrations of nitrogen and phosphorus during spring runoff. Sites in this area had the highest numbers of benthic invertebrates; the fewest Ephemeroptera, Plecoptera, and Trichoptera taxa; and the highest Hilsenhoff Biotic Index scores. These results suggest degraded stream quality. Periphyton communities at sites in this area approached nuisance levels and could cause significant dissolved oxygen depletions and pH values that exceed Oregon's recommended criteria. Stream-bottom materials from Jordan Creek were enriched with mercury and manganese, which probably were ultimately caused by past mining in that basin. Below Crooked Creek, elevated suspended sediment concentrations (142 mg/L), phosphorus concentrations (0.23 mg/L), and E. coli populations (370 most probable number per 100 milliliters) during the largest spring runoff event could be the result of inputs at the lower end of Jordan Valley and (or) inputs from Crooked Creek. The New Zealand Mud Snail, a highly competitive gastropod introduced to the Snake River in the 1980s, was collected just downstream from the Crooked Creek confluence.

  13. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL), except at two mining sites where concentrations of copper and zinc were below the PEL. Concentrations of arsenic, copper, iron, and lead in transplanted bryophytes were significantly different between nonmining and mining sites. Bioconcentration factors calculated for 15-day exposure using one-half of the minimum reporting level were significantly different between nonmining and mining sites. In general, concentrations of trace elements in streambed sediment and transplanted bryophytes were more closely correlated than were the concentrations of trace elements in the water column with streambed sediments or concentrations in the water column with transplanted bryophytes. Stream habitat was rated as optimal to suboptimal using the U.S. Environmental Protection Agency Rapid Bioassessment Protocols for all sites in the study area. Generally, stream habitat conditions were similar at nonmining compared to mining sites and were suitable for diverse macroinvertebrate communities. All study sites had optimal instream habitat except two mining sites with suboptimal instream habitat because of disturbances in stream habitat. The benthic macroinvertebrate community composition at nonmining sites and mining sites differed. Mining sites had significantly lower total abundance of macroinvertebrates, fewer numbers of taxa, and lower dominance of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), and a larger percentage of tolerant species than did nonmining sites. The predominance of Baetis sp. (mayflies), Hydropsychidae (caddisflies), and large percentage of Orthocladiinae chironomids (midges) at mining sites indicated that these species may be tolerant to elevated trace-element concentrations. The absence of Heptageniidae (mayflies), Chloroperlidae (stoneflies), and Rhyacophila sp. (caddisflies) at mining sites indicated that these species may be sensitive to elevated trace-element concentrations. Comparison of field parameters and

  14. River restoration and biocoenoses improvement in two streams renaturated using bioengeneering.

    NASA Astrophysics Data System (ADS)

    Leoni, B.; Forasacco, E.; Dobner, R.; Cotta Ramusino, M.

    2003-04-01

    The Bioengineering is a constructive discipline having its own technical, ecological and environmental friendly scopes, by using living materials. The aim of this study is to assess the river restoration efficiency of Bioengineering. The basic goals of many management-concepts are the integrity of the river habitat, self-regulation and self-regeneration, the preservation of intact resources, to recreate the uniqueness, diversity and beauty of natural river landscape. From an ecological point of view the richness, diversity and age composition of the populations developing after restoration as a result of habitat improvement reveal the degree to which comprehensive concepts were applied (Jungwirth et al., 1995). The following results summarised an investigation on streams Boesio and Rancina in Valcuvia, (Varese, Northern Italy). These streams are characterised by human impacts like water pollution, river engineering and river bioengineering (palificata doppia viva). The samples of macrobenthic fauna were collected between August 2000 and July 2001 in 4 stations for each stream, where the 3rd station of Boesio and Rancina streams is characterised by bioengeneering measure, using a Surber sampler (0.125 m2, mesh size 0.45 mm). The zoobenthic communities of these pre-alpine streams are characterised by low richness and diversity and few families and genera were predominant. In Rancina stream, Ephemeroptera (genus Baetis), Trichoptera (families Hydropsychidae, Limnephilidae and Rhyacophilidae) and Diptera (families Chironomidae and Simuliidae) are present throughout the year with significant densities. The faunal composition of Boesio stream is similar. It differs, only, from stream Rancina to costant presence of Plecoptera with genus Leuctra. To evaluate the restoration of environmental quality two indices were applied: Indice Biotico Esteso (I.B.E.- Ghetti, 1995); Indice di Funzionalità Fluviale (I.F.F.- Siligardi, 2000). The E.B.I. scores of Boesio stream indicate that stations 1 and 2 are in good condition (Ecological status classification: II): therefore the level of diversity and abundance of macrobenthic taxa is slightly outside the range associated with the normal conditions and the most of the sensitive taxa of the type specific communities are present. The stations 3 and 4 are in moderate condition (Ecological status classification: III): the level of diversity and abundance of invertebrate taxa is moderately outside the normal condition range, the taxa indicative of pollution are present and many of the sensitive taxa of the type specific communities are absent. In the Rancina stream in all of the 4 stations the ecological status is indicated like moderate (Ecological status classification: III): there is a predominance of taxa more resistant at pollution and at changes in other biological components of the stream. The I.F.F. show that in Boesio stream the right shore score is moderate-good and the left shore score is moderate-poor. Differently, the Rancina stream presents the right shore with a value poor and the left shore with a wide gradient between good and poor-bad. In conclusion, we can affirm the low efficiency of Bioengineering to restore the Boesio and Rancina streams, because we cannot observe the habitat and aquatic biocoenoses improvement. An explication could be that the conversions are restricted to morphological measures, which are carried out on a small way of banks. Whereas, the restoration using the Bioengineering requires taking the entire catchment area into consideration.

  15. Chapter D. Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington

    USGS Publications Warehouse

    Waite, Ian R.; Sobieszczyk, Steven; Carpenter, Kurt D.; Arnsberg, Andrew J.; Johnson, Henry M.; Hughes, Curt A.; Sarantou, Michael J.; Rinella, Frank A.

    2008-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 watersheds along a gradient of urbanization in the Willamette River basin and surrounding area, Oregon and Washington, from 2003 through 2005. The study that generated the report is one of several urban-effects studies completed nationally by the U.S. Geological Survey National Water-Quality Assessment Program. Watersheds were selected to minimize natural variability caused by factors such as geology, elevation, and climate, and to maximize coverage of different stages of urban development among watersheds. Because land use or population density alone often are not a complete measure of urbanization, a combination of land use, land cover, infrastructure, and socioeconomic variables were integrated into a multimetric urban intensity index (UII) to represent the degree of urban development in each watershed. Physical characteristics studied include stream hydrology, stream temperature, and habitat; chemical characteristics studied include sulfate, chloride, nutrients, pesticides, dissolved and particulate organic and inorganic carbon, and suspended sediment; and biological characteristics studied include algal, macroinvertebrate, and fish assemblages. Semipermeable membrane devices, passive samplers that concentrate trace levels of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons and polychlorinated biphenyls, also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization and (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities. Common effects documented in the literature of urbanization on instream physical, chemical, and biological characteristics, such as increased contaminants, increased streamflow flashiness, increased concentrations of chemicals, and changes in aquatic community structure toward a more tolerant community associated with organically enriched conditions, generally were observed in this study. The strongest correlations to the UII and to many of the algal, macroinvertebrate, and fish assemblage metrics and community ordination involved water-chemistry metrics including the total pesticide concentration, toxic equivalents (extract assay from semipermeable membrane devices), and dissolved oxygen. Hydrologic variability metrics, such as flashiness, that normally are considered to be one of the main processes of urban disturbance had a strong association to the algal and fish assemblages in this study; however, the hydrologic variables for macroinvertebrates were secondary to the water-chemistry metrics mentioned above. Generally, the high urban intensity sites had high abundances of eutrophic and lower dissolved oxygen-indicating diatoms, high abundances of noninsects and tolerant insects, and high abundances of nonnative fish species. On the other hand, the low urban intensity sites had higher abundances of pollution sensitive diatoms, larger numbers of the sensitive macroinvertebrate EPT taxa (Ephemeroptera, Plecoptera and Trichoptera Orders), and fish assemblages with higher abundances of sensitive salmonids. The percent salmonid and macroinvertebrate EPT richness metrics plotted against the UII indicated a possible threshold response at about 25 on the UII, which is equivalent to an impervious surface value of about 5 percent. However, due to the added agricultural land use at sites within the 25 to 60 UII range, this possible threshold probably is not solely due to urbanization, but a combination of urban and agricultural land use. The effects of agricultural and urban land use could not be distinguished from each other, yet combined they provide a good assessment of overall watershed disturbance.

  16. Gore Creek watershed, Colorado : assessment of historical and current water quantity, water quality, and aquatic ecology, 1968-98

    USGS Publications Warehouse

    Wynn, Kirby H.; Bauch, Nancy J.; Driver, Nancy E.

    2001-01-01

    The historical and current (1998) water-quantity, water-quality, and aquatic-ecology conditions in the Gore Creek watershed are described as part of a study by the U.S. Geological Survey, done in cooperation with the Town of Vail, the Eagle River Water and Sanitation District, and the Upper Eagle Regional Water Authority. Interpretation of the available water-quantity, water-quality, and aquatic-ecology data collected by various agencies since 1968 showed that background geology and land use in the watershed influence the water quality and stream biota. Surface-water nutrient concentrations generally increased as water moved downstream through the Town of Vail, but concentrations at the mouth of Gore Creek were typical when compared with national data for urban/undeveloped sites. Nitrate concentrations in Gore Creek were highest just downstream from a wastewater-treatment plant discharge, but concentrations decreased at sites farther downstream because of dilution and nitrogen uptake by algae. Recent total phosphorus concentrations were somewhat elevated when compared to the U.S. Environmental Protection Agency recommended level of 0.10 milligram per liter for control of eutrophication in flowing water. However, total phosphorus concentrations at the mouth of Gore Creek were relatively low when compared to a national study of phosphorus in urban land-use areas. Historically, suspended sediment associated with construction of Interstate 70 in the early 1970's has been of primary concern; however, recent data indicate that streambed aggradation of sediment originating from Interstate 70 traction sanding currently is a greater concern. About 4,000 tons of coarse sand and fine gravel is washed into Black Gore Creek each year following application of traction materials to Interstate 70 during adverse winter driving conditions. Suspended-sediment concentrations were low in Black Gore Creek; however, bedload-transport rates of as much as 4 tons per day have been measured. Water samples were collected during spring and fall of 1997 from five alluvial monitoring wells located throughout the Town of Vail. Nutrient concentrations generally were low in the alluvial monitoring wells. Specific-conductance values ranged from 265 to 557 microsiemens per centimeter at 25 degrees Celsius. Concentrations of radon in monitoring-well samples exceeded the 300-picocuries-per-liter U.S. Environmental Protection Agency proposed maximum contaminant level (which has been suspended pending further review). Low levels of bacteria and methylene blue active substances indicate there is little or no wastewater contamination of shallow ground water in the vicinity of the monitoring wells and one of the municipal water-supply wells. Ground-water ages in the alluvial aquifer ranged from about 2 to about 50 years old. These ages indicate that changes in land-management practices may not have an effect on ground-water quality for many years. Differences in macroinvertebrate-community structure were found among sites in Gore Creek by evaluating changes in relative abundance, total abundance, and dominant functional feeding groups of the major macroinvertebrate groups. Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Coleoptera (beetles) exhibited relatively low tolerance to water-quality degradation when compared with Diptera (midges) and non-insects (sludge worms). More than 80 percent of the macroinvertebrate community at sites located farthest upstream was composed of mayflies, stoneflies, and caddisflies, indicating favorable water-quality and habitat conditions. The relative percentages of midges and sludge worms greatly increased in the downstream reaches of Gore Creek, which drain relatively larger areas of urban and recreation land uses, indicating the occurrence of nutrient and organic enrichment in Gore Creek. The macroinvertebrate community in Black Gore Creek indicated adverse effects from sediment deposition. Macroinve

  17. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance. Ordination identified three site groups and three community types. Site groups consisted of (1) small streams of the Cascades and Eastern Cascades ecoregions, (2) small streams of the Columbia Basin ecoregions, and (3) large rivers of the Cascades and Columbia Basin ecoregions. The small streams of the Columbia Basin could be further subdivided into two groups--one where agricultural intensity was low and one where agricultural intensity was moderate to high. Dividing the basin into these three groups removed much of the influence of elevation and facilitated the analysis of land-use effects. Community types identified by ordination were (1) high elevation, cold-water communities associated with low agricultural intensity; (2) lower elevation, warm-water communities associated with low agricultural intensity, and (3) lower elevation, warm-water communities associated with moderate to high agricultural intensity. Multimetric community condition indices indicated that sites in the Cascades and Eastern Cascades site group were largely unimpaired. In contrast, all but two sites in the Columbia Basin site group were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor responsible for this impairment, and all impaired sites were characterized by multiple indicators of impairment. Three sites (Granger Drain, Moxee Drain, and Spring Creek) had high levels of impairment. Sites in the large-river site group were moderately to severely impaired downstream from the city of Yakima. High levels of impairment at large-river sites corresponded with high levels of pesticides in fish tissues and the occurrence of external anomalies. The response exhibited by invertebrates and algae to a gradient of agricultural intensity suggested a threshold response for sites in the Columbia Basin site group. Community condition declined precipitously at agricultural intensities above 50 (non-pesticide agricultural intensity index) and showed little respon

  18. Characterization of selected biological, chemical, and physical conditions at fixed sites in the Upper Colorado River basin, Colorado, 1995-98

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Mize, Scott V.; Spahr, Norman E.

    1999-01-01

    Biological community samples were collected at 15 sites in the Upper Colorado River Basin (UCOL) in Colorado as part of the National Water-Quality Assessment (NAWQA) Program. Sites sampled in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, represented agriculture, mining, urban and recreation, and mixed land uses and background conditions. Nine measures of water quality, which include information on nutrients, specific conductance (a surrogate for salinity), trace elements in streambed sediment, pesticides in fish tissue, fish communities, and macroinvertebrate richness and composition and stream habitat were used for comparisons among sites within the two physiographic provinces. Sampling sites from three other NAWQA study units?the Rio Grande Valley, the South Platte River Basin, and the Upper Snake River Basin study units?were categorized on the basis of land use and stream size in order to develop a larger data set for comparison to sites in the UCOL. Three categories of land use?forested (includes mining, urban and recreation, and background), agriculture, and mixed?were used for comparison to the UCOL fixed sites. Results indicated that all sites other than the Colorado River below Baker Gulch (a background site) showed some water-quality characteristics to be significantly affected. Results indicated that the concentrations of cadmium and zinc in streambed sediment at mining land-use sites in the Southern Rocky Mountains physiographic province generally were orders of magnitude higher than streambed-sediment concentrations at the background site. Streambed-sediment concentrations at mining land-use sites in the UCOL were greater than the 75th percentile of concentrations from sites in the three other NAWQA study units. Fish communities and habitat conditions were degraded at mining land-use sites compared to the background site. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness and the percentage of EPT were lower at mining land-use sites than at the background site and were less than the 50th percentile of those for sites from the three other NAWQA study units. Nutrient concentrations at urban and recreation sites in the Southern Rocky Mountain physiographic province generally were greater than concentrations at the background site and generally were between the 25th and 90th percentile of concentrations for sites from the three other NAWQA study units. Habitat conditions and fish communities at urban and recreation sites were slightly degraded compared to the background site. EPT richness and the percentage of EPT were lower at urban and recreation sites than at the background site and were between the 25th and 75th percentile of those for sites from the three other NAWQA study units. The percentage of Chironomidae, which may be indicative of pollutant-tolerant organisms, was higher at urban and recreation sites than at the background site. Mixed land-use sites in the Southern Rocky Mountains physiographic province had similar nutrient concentrations and similar cadmium and zinc streambed-sediment concentrations. Fish-community degradation index values were very different among the three mixed land-use sites in the Southern Rocky Mountains physiographic province. Larger percentages of omnivores and anomalies such as lesions and deformities at two mixed land-use sites resulted in higher degradation values of the fish community. Agriculture land-use sites had higher concentrations of nutrients and selenium than the background site in the Colorado Plateau physiographic province. Concentrations of p,p'-DDE in fish tissue at agriculture sites were higher than the 75th percentile of concentrations for sites from the three other NAWQA study units. Fish communities had degradation values near the 75th percentile for agriculture sites. The percentage of EPT was low at agriculture sites when compared to the background site. Two mixed land-use sites in the Colorado Plateau physiographi

  19. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst detection of catchment-scale effects of mitigation measures typically requires high resolution, resource-intensive, long term data sets, we found that simple approaches can be effective in bridging the gap between fine-scale ecosystem functioning and catchment-scale processes. Here, the new macro-invertebrate bio-monitoring index PSI (Proportion of Sediment-sensitive Invertebrates) has been shown to be more closely related to a physical measure of sedimentation (% fine bed sediment cover) (P = 0.002) than existing non-pressure specific macro-invertebrate metrics such as the Lotic Index for Flow Evaluation (LIFE) and % Ephemeroptera, Plecoptera & Trichoptera abundance (% EPT abundance) (P = 0.014)(Glendell et al., 2014a). Thus PSI and % fine bed sediment cover have the potential to become a sensitive tool for the setting and monitoring of twin sedimentation targets to inform the delivery of WFD objectives. Finally, whilst upland ditch management has not had any discernible effect on water quality in the semi-natural upland catchment one year after restoration, future monitoring will evaluate the effectiveness of the recent and soon to be implemented land management changes on delivering water quality improvements in the lowland agricultural catchment. GLENDELL, M. & BRAZIER, R. E. (in review) Accelerated export of sediment and carbon from a landscape under intensive agriculture. Science of the Total Environment. GLENDELL, M., EXTENCE, C. A., CHADD, R. P. & BRAZIER, R. E. (2014a) Testing the pressure-specific invertebrate index (PSI) as a tool for determining ecologically relevant targets for reducing sedimentation in streams. Freshwater Biology, 59, 353-367. GLENDELL, M., GRANGER, S., BOL, R. & BRAZIER, R. E. (2014b) Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 214-215, 25-41.

  20. Biological assessment of streams in the Indianapolis Metropolitan Area, Indiana, 1999-2001

    USGS Publications Warehouse

    Voelker, David C.

    2004-01-01

    During 1999?2001, benthic invertebrates and fish were sampled to describe biological communities in the White River and selected tributaries in the Indianapolis Metropolitan Area in Indiana. Twelve sites (six on the White River and six on tributaries) were sampled biannually for benthic invertebrates and annually for fish. The information complements water-chemistry data collected by the Indianapolis Department of Public Works in the study area. Evaluation of the habitat for sites in the study area was done, using a Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio Environmental Protection Agency. The QHEI scores basin and habitat characteristics for each site, with a maximum possible score of 100. Higher scores indicate better habitat conditions for biotic communities. The QHEI scores for sites on the White River ranged from 55 at the Harding site to 71 at the Waverly site; scores on the tributaries ranged from 45 on Pogues Run to 82 on Williams Creek. A total of 151 taxa were identified from the benthic-invertebrate samples. The Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index scores for sites on the White River ranged from 0 at the Harding site to 15 at the Nora site. The Nora site, which is upstream from Indianapolis, generally scored the highest of all White River sites. Sites in the immediate vicinity of Indianapolis scored the lowest and indicate a negative effect on benthic-invertebrate communities in that reach. EPT Index scores increased in the farthest downstream reaches, which indicate that water-quality conditions had improved in comparison to sites in Indianapolis. For the tributary sites, EPT Index values ranged from 0 at Pogues Run to 16 at Buck Creek. Tributary sites on Fall Creek, Pleasant Run, and Pogues Run consistently scored 7 or lower; sites on Buck Creek, Eagle Creek, and Williams Creek scored 7 or higher. Hilsenhoff Biotic Index (HBI) scores ranged from 4.9 (good) to 9.6 (very poor) for the White River sites and from 5.2 (good) to 8.0 (poor) for the tributary sites. The lowest scores among the White River sites were at the Nora site, indicating the best water-quality conditions were where the White River enters Marion County. The highest HBI scores were at the Morris and Harding sites, indicating the least-favorable water-quality conditions of all the White River sites. Of the tributary sites, HBI scores for Buck, Eagle, and Williams Creeks indicate fair water-quality conditions; HBI scores for Pleasant Run and Pogues Run were the highest, indicating relatively poor water-quality conditions. On the White River, the highest Invertebrate Community Index (ICI) scores, which indicate the best benthic-invertebrate conditions, were at the Nora site. Conditions were fair to poor in the downtown Indianapolis area; ICI scores indicate slight improvement in the downstream reaches of the study area. Of the tributary sites, Buck Creek was the only site with ICI scores indicating exceptional water quality. Williams Creek ICI scores indicate good water quality; the remaining tributary-site scores reflect fair conditions. A total of 74 species and 3 hybrids of fish were identified during the study period. The Cyprinidae (carps and minnows) was the largest group of fish identified and consisted of more than half of all fish collected. The most numerous species was the central stoneroller (Campostoma anomalum), which accounted for almost 25 percent of the fish identified. Two nonnative species, the koi carp (Cyprinus carpio) and the western mosquitofish (Gambusia affinis), and one species classified as an Indiana species of special concern, the northern studfish (Fundulus catenatus), also were collected during the study. Indiana Index of Biotic Integrity (IBI) and Ohio Index of Biotic Integrity scores were calculated to show the condition of the fish communities at each site. Results of the Indiana IBI calculations showed no apparent differences in scores among the Wh

  1. Water-quality, biological, and physical-habitat conditions at fixed sites in the Cook Inlet Basin, Alaska, National Water-Quality Assessment Study Unit, October 1998-September 2001

    USGS Publications Warehouse

    Brabets, Timothy P.; Whitman, Matthew S.

    2004-01-01

    The Cook Inlet Basin study unit of the U.S. Geological Survey National Water-Quality Assessment Program comprises 39,325 square miles in south-central Alaska. Data were collected at eight fixed sites to provide baseline information in areas where no development has taken place, urbanization or logging have occurred, or the effects of recreation are increasing. Collection of water-quality, biology, and physical-habitat data began in October 1998 and ended in September 2001 (water years 1999-2001). The climate for the water years in the study may be categorized as slightly cool-wet (1999), slightly warm-wet (2000), and significantly warm-dry (2001). Total precipitation was near normal during the study period, and air temperatures ranged from modestly cool in water year 1999 to near normal in 2000, and to notably warm in 2001. Snowmelt runoff dominates the hydrology of streams in the Cook Inlet Basin. Average annual flows at the fixed sites were approximately the same as the long-term average annual flows, with the exception of those in glacier-fed basins, which had above-average flow in water year 2001. Water temperature of all streams studied in the Cook Inlet Basin remained at 0 oC for about 6 months per year, and average annual water temperatures ranged from 3.3 to 6.2 degrees Celsius. Of the water-quality constituents sampled, all concentrations were less than drinking-water standards and only one constituent, the pesticide carbaryl, exceeded aquatic-life standards. Most of the stream waters of the Cook Inlet Basin were classified as calcium bicarbonate, which reflects the underlying geology. Streams in the Cook Inlet Basin draining areas with glaciers, rough mountainous terrain, and poorly developed soils have low concentrations of nitrogen, phosphorus, and dissolved organic carbon compared with concentrations of these same constituents in streams in lowland or urbanized areas. In streams draining relatively low-lying areas, most of the suspended sediment, nutrients, and dissolved organic carbon are transported in the spring from the melting snowpack. The urbanized stream, Chester Creek, had the highest concentrations of calcium, magnesium, chloride, and sodium, most likely because of the application of de-icing materials during the winter. Several volatile organic compounds and pesticides also were detected in samples from this stream. Aquatic communities in the Cook Inlet Basin are naturally different than similar sites in the contiguous United States because of the unique conditions of the northern latitudes where the Cook Inlet Basin is located, such as extreme diurnal cycles and long periods of ice cover. Blue-green algae was the dominant algae found at all sites although in some years green algae was the most dominant algae. Macroinvertebrate communities consist primarily of Diptera (true flies), Ephemeroptera (mayflies), and Plecoptera (stoneflies). Lowland areas have higher abundance of aquatic communities than glacier-fed basins. However, samples from the urbanized stream, Chester Creek, were dominated by oligochaetes, a class of worms. Most of the functional feeding groups were collector-gatherers. The number of taxa for both algae and macroinvertebrates were highest in water year 2001, which may be due to the relative mild winter of 2000?2001 and the above average air temperatures for this water year. The streams in the Cook Inlet Basin typically are low gradient. Bank substrates consist of silt, clay, or sand, and bed substrate consists of coarse gravel or cobbles. Vegetation is primarily shrubs and woodlands with spruce or cottonwood trees. Canopy angles vary with the size of the stream or river and are relatively low at the smaller streams and high at the larger streams. Suitable fish habitat, such as woody debris, pools, cobble substrate, and overhanging vegetation, is found at most sites. Of the human activities occurring in the fixed site basins ? high recreational use, logging, and urbanizat

  2. Water-quality and biological conditions in the Lower Boise River, Ada and Canyon Counties, Idaho, 1994-2002

    USGS Publications Warehouse

    MacCoy, Dorene E.

    2004-01-01

    The water quality and biotic integrity of the lower Boise River between Lucky Peak Dam and the river's mouth near Parma, Idaho, have been affected by agricultural land and water use, wastewater treatment facility discharge, urbanization, reservoir operations, and river channel alteration. The U.S. Geological Survey (USGS) and cooperators have studied water-quality and biological aspects of the lower Boise River in the past to address water-quality concerns and issues brought forth by the Clean Water Act of 1977. Past and present issues include preservation of beneficial uses of the river for fisheries, recreation, and irrigation; and maintenance of high-quality water for domestic and agricultural uses. Evaluation of the data collected from 1994 to 2002 by the USGS revealed increases in constituent concentrations in the lower Boise in a downstream direction. Median suspended sediment concentrations from Diversion Dam (downstream from Lucky Peak Dam) to Parma increased more than 11 times, nitrogen concentrations increased more than 8 times, phosphorus concentrations increased more than 7 times, and fecal coliform concentrations increased more than 400 times. Chlorophyll-a concentrations, used as an indicator of nutrient input and the potential for nuisance algal growth, also increased in a downstream direction; median concentrations were highest at the Middleton and Parma sites. There were no discernible temporal trends in nutrients, sediment, or bacteria concentrations over the 8-year study. The State of Idaho?s temperature standards to protect coldwater biota and salmonid spawning were exceeded most frequently at Middleton and Parma. Suspended sediment concentrations exceeded criteria proposed by Idaho Department of Environmental Quality most frequently at Parma and at all but three tributaries. Total nitrogen concentrations at Glenwood, Middleton, and Parma exceeded national background levels; median flow-adjusted total nitrogen concentrations at Middleton and Parma were higher than those in undeveloped basins sampled nationwide by the USGS. Total phosphorus concentrations at Glenwood, Middleton, and Parma also exceeded those in undeveloped basins. Macroinvertebrate and fish communities were used to evaluate the long-term integration of water-quality contaminants and loss of habitat in the lower Boise. Biological integrity of the macroinvertebrate population was assessed with the attributes (metrics) of Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness and metrics used in the Idaho River Macroinvertebrate Index (RMI): taxa richness; EPT richness; percent dominant taxon; percent Elmidae (riffle beetles); and percent predators. Average EPT was about 10, and RMI scores were frequently below 16, which indicated intermediate or poor water quality. The number of EPT taxa and RMI scores for the lower Boise were half those for least-impacted streams in Idaho. The fine sediment bioassessment index (FSBI) was used to evaluate macroinvertebrate sediment tolerance. The FSBI scores were lower than those for a site upstream in the Boise River Basin near Twin Springs, a site not impacted by urbanization and agriculture, which indicated that the lower Boise macroinvertebrate population may be impacted by fine sediment. Macroinvertebrate functional feeding groups and percent tolerant species, mainly at Middleton and Parma, were typical of those in areas of degraded water quality and habitat. The biological integrity of the fish population was evaluated using the Idaho River Fish Index (RFI), which consists of the 10 metrics: number of coldwater native species, percent sculpin, percent coldwater species, percent sensitive native individuals, percent tolerant individuals, number of nonindigenous species, number of coldwater fish captured per minute of electrofishing, percent of fish with deformities (eroded fins, lesions, or tumors), number of trout age classes, and percent carp. RFI scores for lower Boise sites indicated a d

  3. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Fish Creek, an approximately 25-kilometer-long tributary to Snake River, is located in Teton County in western Wyoming near the town of Wilson. Fish Creek is an important water body because it is used for irrigation, fishing, and recreation and adds scenic value to the Jackson Hole properties it runs through. Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address these concerns, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the hydrology, water quality, and biologic communities of Fish Creek during 2007–11. The hydrology of Fish Creek is strongly affected by groundwater contributions from the area known as the Snake River west bank, which lies east of Fish Creek and west of Snake River. Because of this continuous groundwater discharge to the creek, land-use activities in the west bank area can affect the groundwater quality. Evaluation of nitrate isotopes and dissolved-nitrate concentrations in groundwater during the study indicated that nitrate was entering Fish Creek from groundwater, and that the source of nitrate was commonly a septic/sewage effluent or manure source, or multiple sources, potentially including artificial nitrogen fertilizers, natural soil organic matter, and mixtures of sources. Concentrations of dissolved nitrate and orthophosphate, which are key nutrients for growth of aquatic plants, generally were low in Fish Creek and occasionally were less than reporting levels (not detected). One potential reason for the low nutrient concentrations is that nutrients were being consumed by aquatic plant life that increases during the summer growing season, as a result of the seasonal increase in temperature and larger number of daylight hours. Several aspects of Fish Creek’s hydrology contribute to higher productivity and biovolume of aquatic plants in Fish Creek than typically observed in streams of its size in Wyoming. Especially in the winter, the proportionately large, continuous gain of groundwater into Fish Creek in the perennial section keeps most of the creek free of ice. Because sunlight can still reach the streambed in Fish Creek and the water is still flowing, aquatic plants continue to photosynthesize in the winter, albeit at a lower level of productivity. Additionally, the cobble and large gravel substrate in Fish Creek provides excellent attachment points for aquatic plants, and when combined with Fish Creek’s channel stability allows rapid growth of aquatic plants once conditions allow during the spring. The aquatic plant community of Fish Creek was different than most streams in Wyoming in that it contains many different macrophytes—including macroalgae such as long streamers of Cladophora, aquatic vascular plants, and moss; most other streams in the state contain predominantly algae. From the banks of Fish Creek, the bottom of the stream sometimes appeared to be a solid green carpet. A shift was observed from higher amounts of microalgae in April/May to higher amounts macrophytes in August and October, and differences in the relative abundance of microalgae and macrophytes were statistically significant between seasons. Differences in dissolved-nitrate concentrations and in the nitrogen-to-phosphorus ratio were significantly different between seasons, as concentrations of dissolved nitrate decreased from April/May to August and October. It is likely that dissolved-nitrate concentrations in Fish Creek were lower in August and October because macrophytes were quickly utilizing the nutrient, and a negative correlation between macro-phytes and nitrate was found. Macroinvertebrates also were sampled because of their role as indicators of water quality and their documented responses to perturbation such as degradation of water quality and habitat. Statistically significant seasonal differences were noted in the macroinvertebrate community. Taxa richness and relative abundance of Ephemeroptera, Plecoptera, and Trichoptera, which tend to be intolerant of water-quality degradation, decreased from April/May to August; the same time period saw a corresponding increase in Diptera and noninsects, particularly Oligochaeta (worms) that are more tolerant. Seasonal changes in macroinvertebrate functional feeding groups were significantly different. The relative abundance of gatherer-collector and scraper feeding groups decreased from April/May to August, accompanied by an increase in filterer-collector and shredders feeding groups. Seasonal changes in feeding groups might be due to the seasonal shift in aquatic plant communities, as indicated by comparison with other streams in the area that had fewer aquatic macrophytes than Fish Creek. Statistical tests of macroinvertebrate metrics indicated few differences between years or biological sampling sites on Fish Creek, although the site farthest upstream sometimes was different not only in terms of macroinvertebrates but also in streamflow, water quality, and aquatic plants. Potential effects of contributions of additional nutrients to the Fish Creek ecosystem beyond the conditions sampled during the study period are not known. However, because virtually all of the detectable dissolved nitrate commonly was consumed by aquatic plants in August (leaving dissolved nitrate less than the reporting level in water samples), it is possible that increased nutrient contributions could cause increased growth of aquatic plants. Additional long-term monitoring of the stream, with concurrent data analysis and interpretation would be needed to determine the effects of additional nutrients on the aquatic plant community and on higher levels of the food chain.

  4. Preliminary synthesis and assessment of environmental flows in the middle Verde River watershed, Arizona

    USGS Publications Warehouse

    Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.

    2018-05-15

    A 3-year study was undertaken to evaluate the suitability of the available modeling tools for characterizing environmental flows in the middle Verde River watershed of central Arizona, describe riparian vegetation throughout the watershed, and estimate sediment mobilization in the river. Existing data on fish and macroinvertebrates were analyzed in relation to basin characteristics, flow regimes, and microhabitat, and a pilot study was conducted that sampled fish and macroinvertebrates and the microhabitats in which they were found. The sampling for the pilot study took place at five different locations in the middle Verde River watershed. This report presents the results of this 3-year study. The Northern Arizona Groundwater Flow Model (NARGFM) was found to be capable of predicting long-term changes caused by alteration of regional recharge (such as may result from climate variability) and groundwater pumping in gaining, losing, and dry reaches of the major streams in the middle Verde River watershed. Over the period 1910 to 2006, the model simulated an increase in dry reaches, a small increase in reaches losing discharge to the groundwater aquifer, and a concurrent decrease in reaches gaining discharge from groundwater. Although evaluations of the suitability of using the NARGFM and Basin Characteristic Model to characterize various streamflow intervals showed that smallerscale basin monthly runoff could be estimated adequately at locations of interest, monthly stream-flow estimates were found unsatisfactory for determining environmental flows.Orthoimagery and Moderate Resolution Imaging Spectroradiometer data were used to quantify stream and riparian vegetation properties related to biotic habitat. The relative abundance of riparian vegetation varied along the main channel of the Verde River. As would be expected, more upland plant species and fewer lowland species were found in the upper-middle section compared to the lower-middle section, and vice-versa. Vegetation changes within the upper-middle and lower-middle reaches are related to differences in climate and hydrology. In general, the riparian vegetation of the middle Verde River watershed is that of a healthy ecosystem’s mixed age, mixed patch structure, likely a result of the mostly unaltered disturbance regime.The frequency of in-river hydrogeomorphic features (pool, riffle, run) varied along the middle Verde River channel. There was a greater abundance of riffle habitat in the upper-middle reach; the lower-middle reach included more pool habitat. The Oak Creek tributary was more homogenous in geomorphic stream habitat composition than West Clear Creek, where runs dominated the upper reaches and pools dominated many of the lower reaches.On the basis of the period of record and discharges recorded at 15-minute intervals, five flows were found to reach the gravel-transport threshold. Sediment mobilization computed with flows averaged over daily time steps yielded just three flows that reached the gravel-transport threshold, and monthly averaged flows yielded none. In the middle Verde River watershed, 15-minute data should be used when possible to evaluate sediment transport in the river system.Data from more than 300 fish surveys conducted from 1992 to 2011 were analyzed using two schemes, one that divided the river into five reaches based on basin characteristics, and a second that divided the river into five reaches based on degree of flow alteration (specifically, diversions). Fish community metrics and assemblage data were used to analyze patterns of species composition and abundance in the two approaches. Overall, native and non-native species were regularly interacting and probably competing for similar resources. Fish abundances were also analyzed in response to floods and other flow metrics. Although the data are limited, native fish abundances increased more rapidly than non-native fish abundances in response to large floods. The basin-characteristic reach analysis showed native fish in greater abundance in the upper-middle reaches of the Verde River watershed and generally decreasing with downstream distance. The median relative abundance of native fish decreased by 50 percent from reach 1 to reach 5. Using the reach scheme based on degree of flow alteration, nondiverted reaches were found to have a greater abundance of native fish than diverted reaches. In heavily diverted reaches, non-native species outnumbered native species.Fish metrics and stream-flow metrics for the 30, 90, and 365-day periods before collection were computed and the results analyzed statistically. Only abundance of all fish species was associated with the 30-day flow metrics. The 90-day flow metrics were generally positively associated with fish metrics, whereas the 365-day flow metrics had more negative correlations. In particular, significant relations were found between fish metrics and the magnitude and frequency of high flows, including maximum monthly flow, median annual number of high-flow events, and median annual maximum streamflow. Native sucker (Catostomidae) populations tended to decrease in periods of extended base flow, and fish in the non-native sunfish family (Centrarchidae) decreased in periods of flashy, high magnitude flows.A pilot study surveyed fish at five locations in the upper part of the middle Verde River watershed as a means to measure microhabitat availability and quantify native and non-native fish use of that available microhabitat. Results indicated that native and non-native species exhibit some clear differences in microhabitat use. Although at least some native and non-native fish were found in each velocity, depth, and substrate category, preferential microhabitat use was common. On a percentage basis, non-native species had a strong preference for slow-moving and deeper water with silt and sand substrate, with a secondary preference for faster moving and very shallow water and a coarse gravel substrate. Native species showed a general preference for somewhat faster, moderate depth water over coarse gravel and had no clear secondary preference.Macroinvertebrate-variables index period, high-flow year, and collection location (upper-middle Verde River, lowermiddle Verde River, or Verde River tributaries) were found to be important explanatory variables in differentiating among community metrics. Overall richness (number of unique taxa), Shannon’s diversity index, and the percent of the most dominant taxa were all highly correlated, but their response to each macroinvertebrate variable was different. The percentage of mayfly (order Ephemeroptera) taxa was significantly higher in Oak Creek and the upper-middle and lower-middle Verde River reaches, locations which have higher flows and more urbanization than other reaches. When community metrics were related to hydrologic metrics, caddisfly (order Trichoptera) populations appeared to increase and mayfly populations to decrease in response to less flashy and more stable streamflows. Conversely, caddisfly populations appeared to decrease and mayfly populations to increase in response to greater flow variability.Six locations along the Verde River were sampled for macroinvertebrates as part of a pilot study associated with this report—(1) below Granite Creek, (2) near Campbell Ranch, (3) at the U.S. Geological Survey Paulden gage, (4) at the Perkinsville Bridge, (5) at the USGS Clarkdale gage, and (6) near the Reitz Ranch property. A nonmetric multidimensional scaling ordination of macroinvertebrate assemblages showed that the Verde River below Granite Creek site was different from the five other sites and that the Perkinsville Bridge and near Reitz Ranch samples had similar community structure. The near Campbell Ranch and Paulden gage locations had similar microhabitat characteristics, with the exception of riparian cover, yet the assemblage structure was very different. The different community composition at Verde River below Granite Creek was likely due to it having the smallest substrate sizes, lowest velocities, shallowest depths, and most riparian cover of the six sites.

  5. Effects of aquifer storage and recovery activities on water quality in the Little Arkansas River and Equus Beds Aquifer, south-central Kansas, 2011–14

    USGS Publications Warehouse

    Stone, Mandy L.; Garrett, Jessica D.; Poulton, Barry C.; Ziegler, Andrew C.

    2016-07-18

    The Equus Beds aquifer in south-central Kansas is aprimary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current (2016) and future water demands. The Equus Beds ASR project pumps water out of the Little Arkansas River during above-base flow conditions, treats it using drinking-water quality standards as a guideline, and recharges it into the Equus Beds aquifer for later use. Phase II of the Equus Beds ASR project currently (2016) includes a river intake facility and a surface-water treatment facility with a 30 million gallon per day capacity. Water diverted from the Little Arkansas River is delivered to an adjacent presedimentation basin for solids removal. Subsequently, waste from the surface-water treatment facility and the presedimentation basin is returned to the Little Arkansas River through a residuals return line. The U.S. Geological Survey, in cooperation with the city of Wichita, developed and implemented a hydrobiological monitoring program as part of the ASR project to characterize and quantify the effects of aquifer storage and recovery activities on the Little Arkansas River and Equus Beds aquifer water quality.Data were collected from 2 surface-water sites (one upstream and one downstream from the residuals return line), 1 residuals return line site, and 2 groundwater well sites (each having a shallow and deep part): the Little Arkansas River upstream from the ASR facility near Sedgwick, Kansas (upstream surface-water site 375350097262800), about 0.03 mile (mi) upstream from the residuals return line site; the Little Arkansas River near Sedgwick, Kans. (downstream surface-water site 07144100), about 1.68 mi downstream from the residuals return line site; discharge from the Little Arkansas River ASR facility near Sedgwick, Kansas (residuals return line site 375348097262800); 25S 01 W 07BCCC01 SMW–S11 near CW36 (MW–7 shallow groundwater well site 375327097285401); 25S01 W 07BCCC02 DMW–S10 near CW36 (MW–7 deep groundwater well site 375327097285402); 25S 01W 07BCCA01 SMW–S13 near CW36 (MW–8 shallow groundwater well site 375332097284801); and 25S 01W 07BCCA02 DMW–S14 near CW36 (MW–8 deep groundwater well site 375332097284802). The U.S. Geological Survey, in cooperation with the city of Wichita, assessed the effects of the ASR Phase II facility residuals return line discharges on stream quality of the Little Arkansas River by measuring continuous physicochemical properties and collecting discrete water-quality and sediment samples for about 2 years pre- (January 2011 through April 2013) and post-ASR (May 2013 through December 2014) Phase II facility operation upstream and downstream from the ASR Phase II facility. Additionally, habitat variables were quantified and macroinvertebrate and fish communities were sampled upstream and downstream from the ASR Phase II facility during the study period. To assess the effects of aquifer recharge on Equus Beds groundwater quality, continuous physicochemical properties were measured and discrete water-quality samples were collected before and during the onset of Phase II aquifer recharge in two (shallow and deep) groundwater wells.Little Arkansas River streamflow was about 10 times larger after the facility began operating because of greater rainfall. Residuals return line release volumes were a very minimal proportion (0.06 percent) of downstream streamflow volume during the months the ASR facility was operating. Upstream and downstream continuously measured water temperature and dissolved oxygen median differences were smaller post-ASR than pre-ASR. Turbidity generally was smaller at the downstream site throughout the study period and decreased at both sites after the ASR Phase II facility began discharging despite a median residuals return line turbidity that was about an order of magnitude larger than the median turbidity at the downstream site. Upstream and downstream continuously measured turbidity median differences were larger post-ASR than pre-ASR. Median post-ASR continuously measured nitrite plus nitrate and continuously computed total suspended solids and suspended-sediment concentrations were smaller than pre-ASR likely because of higher streamflows and dilution; whereas, median continuously computed dissolved and total organic carbon concentrations were larger likely because of higher streamflows and runoff conditions.None of the discretely measured water-quality constituents (dissolved and suspended solids, primary ions, suspended sediment, nutrients, carbon, trace elements, viral and bacterial indicators, and pesticides) in surface water were significantly different between the upstream and downstream sites after the ASR Phase II facility began discharging; however, pre-ASR calcium, sodium, hardness, manganese, and arsenate concentrations were significantly larger at the upstream site, which indicates that some water-quality conditions at the upstream and downstream sites were more similar post-ASR. Most of the primary constituents that make up dissolved solids decreased at both sites after the ASR Phase II facility began operation. Discretely collected total suspended solids concentrations were similar between the upstream and downstream sites before the facility began operating but were about 27 percent smaller at the downstream site after the facility began operating, despite the total suspended solids concentrations in the residuals return line being 15 times larger than the downstream site.Overall habitat scores were indicative of suboptimal conditions upstream and downstream from the ASR Phase II facility throughout the study period. Substrate fouling and sediment deposition mean scores indicated marginal conditions at the upstream and downstream sites during the study period, demonstrating that sediment deposition was evident pre- and post-ASR and no substantial changes in these habitat characteristics were noted after the ASR Phase II facility began discharging. Macroinvertebrate community composition (evaluated using functional feeding, behavioral, and tolerance metrics) generally was similar between sites during the study period. Fewer macroinvertebrate metrics were significant between the upstream and downstream sites post-ASR (6) than pre-ASR (14), which suggests that macroinvertebate communities were more similar after the ASR facility began discharging. Upstream-downstream comparisons in macroinvertebrate aquatic-life-support metrics had no significant differences for the post-ASR time period and neither site was fully supporting for any of the Kansas Department of Health and Environment aquatic-life-support metrics (Macroinvertebrate Biotic Index; Kansas Biotic Index with tolerances for nutrients and oxygen-demanding substances; Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness; and percentage of EPT species). Overall, using macroinvertebrate aquatic life-support criteria from the Kansas Department of Health and Environment, upstream and downstream sites were classified as partially supporting before and after the onset of ASR facility operations. Fish community trophic status and tolerance groups generally were similar among sites during the study period. Fish community Little Arkansas River Basin Index of Biotic Integrity scores at the upstream and downstream sites were indicative of fair-to-good conditions before the facility began operating and decreased to fair conditions after the facility began operating.Groundwater physicochemical changes concurrent with the beginning of recharge operations at the Sedgwick basin were more pronounced in shallow groundwater. No constituent concentrations in the pre-recharge period in comparison to the post-recharge period increased to concentrations exceeding drinking water regulations; however, nitrate decreased significantly from a pre-recharge exceedance of the U.S. Environmental Protection Agency maximum contaminant level to a post recharge nonexceedance. Shallow groundwater chemical concentrations or rates of detection increased after artificial recharge began for the ions potassium, chloride, and fluoride; phosphorus and organic carbon species; trace elements barium, manganese, nickel, arsenate, arsenic, and boron; agricultural pesticides atrazine, metolachlor, metribuzin, and simazine; organic disinfection byproducts bromodichloromethane and trichloromethane; and gross beta levels. Additionally, water temperature, and pH were larger after recharge began; and total solids and slime-forming bacteria concentrations and densities were smaller. Total solids, nitrate, and selenium significantly decreased; and potassium, chloride, nickel, arsenic, fluoride, phosphorus and carbon species, and gross beta levels significantly increased in shallow groundwater after artificial recharge. Results of biological activity reaction tests indicated that water quality microbiology was different before and after artificial recharge began; at times, these differences may lead to changes in dominant bacterial populations that, in turn, may lead to formation and expansion in populations that may cause bioplugging and other unwanted effects. Calcite, iron (II) hydroxide, hydroxyapatite, and similar minerals, had shifts in saturation indices that generally were from undersaturation toward equilibrium and, in some cases, toward oversaturation. These shifts toward neutral saturation indices might suggest reduced weathering of the minerals present in the Equus Beds aquifer. Chemical weathering in the shallow parts of the aquifer may be accelerated because of the increased water temperatures and the system is more vulnerable to clogged pores and mineral dissolution as the equilibrium state is affected by recharge and withdrawal. When oversaturation is indicated for iron minerals, plugging of aquifer materials may happen.

Top