Science.gov

Sample records for epidermal permeability barrier

  1. Integrity of the permeability barrier regulates epidermal Langerhans cell density.

    PubMed

    Proksch, E; Brasch, J; Sterry, W

    1996-04-01

    Previous studies have shown that barrier requirements regulate epidermal liquid and DNA synthesis. In the present study, we examined the possibility that the integrity of the permeability barrier influences epidermal Langerhans cells involved with the immune response. Barrier disruption was achieved by treatment of human skin with acetone, sodium dodecylsulphate (SDS), or tape stripping, until a 10-20-fold increase in transepidermal water loss was achieved. Serial biopsies were performed 6-168 h after treatment, and Langerhans cells were complexed with anti-CD1a (Leu6) or S-100 antibodies, and visualized with an immunoperoxidase technique. Acetone treatment resulted in an increase in epidermal Langerhans cell density, reaching a maximum of 94% over control (P < 0.01) by 24 and 48 h post-treatment. Following SDS treatment or tape stripping, epidermal Langerhans cell density was increased by 100 and 175% (P < 0.01), respectively. There was a linear correlation between the degree of barrier disruption and the increase in epidermal Langerhans cell density. Studies with the Ki-S3 proliferation-associated nuclear antigen revealed a two- to threefold increase in epidermal proliferation after barrier disruption. The time curves of the increase in Langerhans cell density and the increase in epidermal proliferation were similar, suggesting that there was a coordinate regulation. In contrast with our previous studies employing patch test reactions to allergens or irritants, disruption of barrier function neither resulted in an increased dermal Langerhans cell density, nor influenced T lymphocytes (CD3+, Leu4+), macrophages (KiM8+), ICAM-1 or ELAM-1 expression in the skin. In addition, barrier disruption did not result in either dermal inflammation or epidermal spongiosis. In summary, these findings support our hypothesis that the permeability barrier influences epidermal Langerhans cell density, which is involved in maintaining an immunological barrier.

  2. Epidermal Permeability Barrier Defects and Barrier Repair Therapy in Atopic Dermatitis

    PubMed Central

    Lee, Hae-Jin

    2014-01-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease perpetuated by gene-environmental interactions and which is characterized by genetic barrier defects and allergic inflammation. Recent studies demonstrate an important role for the epidermal permeability barrier in AD that is closely related to chronic immune activation in the skin during systemic allergic reactions. Moreover, acquired stressors (e.g., Staphylococcus aureus infection) to the skin barrier may also initiate inflammation in AD. Many studies involving patients with AD revealed that defective skin barriers combined with abnormal immune responses might contribute to the pathophysiology of AD, supporting the outside-inside hypothesis. In this review, we discuss the recent advances in human and animal models, focusing on the defects of the epidermal permeability barrier, its immunologic role and barrier repair therapy in AD. PMID:24991450

  3. Co-Regulation and Interdependence of the Mammalian Epidermal Permeability and Antimicrobial Barriers

    PubMed Central

    Aberg, Karin M.; Man, Mao-Qiang; Gallo, Richard L.; Ganz, Tomas; Crumrine, Debra; Brown, Barbara E.; Choi, Eung-Ho; Kim, Dong-Kun; Schröder, Jens M.; Feingold, Kenneth R.; Elias, Peter M.

    2009-01-01

    Human epidermis elaborates two small cationic, highly hydrophobic antimicrobial peptides (AMP), β-defensin 2 (hBD2), and the carboxypeptide cleavage product of human cathelicidin (hCAP18), LL-37, which are co-packaged along with lipids within epidermal lamellar bodies (LBs) before their secretion. Because of their colocalization, we hypothesized that AMP and barrier lipid production could be coregulated by altered permeability barrier requirements. mRNA and immunostainable protein levels for mBD3 and cathelin-related antimicrobial peptide (CRAMP) (murine homologues of hBD2 and LL-37, respectively) increase 1–8 hours after acute permeability barrier disruption and normalize by 24 hours, kinetics that mirror the lipid metabolic response to permeability barrier disruption. Artificial permeability barrier restoration, which inhibits the lipid-synthetic response leading to barrier recovery, blocks the increase in AMP mRNA/protein expression, further evidence that AMP expression is linked to permeability barrier function. Conversely, LB-derived AMPs are also important for permeability barrier homeostasis. Despite an apparent increase in mBD3 protein, CRAMP−/− mice delayed permeability barrier recovery, attributable to defective LB contents and abnormalities in the structure of the lamellar membranes that regulate permeability barrier function. These studies demonstrate that (1) the permeability and antimicrobial barriers are coordinately regulated by permeability barrier requirements and (2) CRAMP is required for permeability barrier homeostasis. PMID:17943185

  4. Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms.

    PubMed

    Hou, Maihua; Sun, Richard; Hupe, Melanie; Kim, Peggy L; Park, Kyungho; Crumrine, Debra; Lin, Tzu-Kai; Santiago, Juan Luis; Mauro, Theodora M; Elias, Peter M; Man, Mao-Qiang

    2013-03-01

    The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In this study, we first determined whether topical apigenin positively influences permeability barrier homoeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice daily for 9 days. At the end of the treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homoeostasis after tape stripping, although basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were upregulated by apigenin. Finally, both cathelicidin-related peptide and mouse beta-defensin 3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels and impaired antimicrobial defenses, such as atopic dermatitis.

  5. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function.

    PubMed

    Radner, Franz P W; Fischer, Judith

    2014-03-01

    Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous

  6. Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis.

    PubMed

    Denda, Mitsuhiro; Tsutsumi, Moe; Denda, Sumiko

    2010-09-01

    TRPA1 and TRPM8 receptors are activated at low temperature (A1: below 17 degrees C and M8: below 22 degrees C). Recently, we observed that low temperature (below 22 degrees C) induced elevation of intracellular calcium in keratinocytes. Moreover, we demonstrated that topical application of TRPA1 agonists accelerated the recovery of epidermal permeability barrier function after disruption. In this study, we examined the effect of topical application of TRPM8 modulators on epidermal permeability barrier homoeostasis. Immunohistochemical study and RT-PCR confirmed the expression of TRPM8 or TRPM8-like protein in epidermal keratinocytes. Topical application of TRPM8 agonists, menthol and WS 12 accelerated barrier recovery after tape stripping. The effect of WS12 was blocked by a non-selective TRP antagonist, Ruthenium Red, and a TRPM8-specific antagonist, BTCT. Topical application of WS12 also reduced epidermal proliferation associated with barrier disruption under low humidity, and this effect was blocked by BTCT. Our results indicate that TRPM8 or a closely related protein in epidermal keratinocytes plays a role in epidermal permeability barrier homoeostasis and epidermal proliferation after barrier insult.

  7. Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites

    PubMed Central

    Liu, J.; Man, W.Y.; Lv, C.Z.; Song, S.P.; Shi, Y.J.; Elias, P.M.; Man, M.Q.

    2010-01-01

    Background/Objectives Prior studies have demonstrated that both the skin surface pH and epidermal permeability barrier function vary with skin pigmentation types. Although melanin deficiency is the main feature of vitiligo, alterations in cutaneous biophysical properties in vitiligo have not yet been well defined. In the present study, stratum corneum (SC) hydration, the skin surface pH and epidermal permeability barrier function in vitiligo were evaluated. Methods A total of 30 volunteers with vitiligo comprising 19 males and 11 females aged 13–51 years (mean age: 27.91 ± 2.06 years) were enrolled in this study. The skin surface pH, SC hydration, melanin/erythema index and transepidermal water loss (TEWL) were measured by respective probes connected to a Courage-Khazaka MPA5. SC integrity was determined by measuring the TEWL following each D-Squame application. The barrier recovery rate was assessed at 5 h following barrier disruption by repeated tape stripping. Results In addition to SC hydration, both melanin and erythema index were significantly lower in vitiligo lesions than in contralateral, nonlesional sites, while no difference in skin surface pH between vitiligo-involved and uninvolved areas was observed. In addition, neither the basal TEWL nor SC integrity in the involved areas differed significantly from that in the uninvolved areas. However, barrier recovery in vitiligo-involved sites was significantly delayed in comparison with uninvolved sites (40.83 ± 5.39% vs. 58.30 ± 4.71%; t = 2.441; p < 0.02). Conclusion Barrier recovery following tape stripping of the SC is delayed in vitiligo. Therefore, improvement in epidermal permeability barrier function may be an important unrecognized factor to be considered in treating patients with vitiligo. PMID:20185976

  8. Localization of epidermal sphingolipid synthesis and serine palmitoyl transferase activity: alterations imposed by permeability barrier requirements.

    PubMed

    Holleran, W M; Gao, W N; Feingold, K R; Elias, P M

    1995-01-01

    Sphingolipids, the predominant lipid species in mammalian stratum corneum play, a central role in permeability barrier homeostatis. Prior studies have shown that the epidermis synthesizes abundant sphingolipids, a process regulated by barrier requirements, and that inhibition of sphingolipid synthesis interferes with barrier homeostasis. To investigate further the relationship between epidermal sphingolipid metabolism and barrier function, we localized sphingolipid synthetic activity in murine epidermis under basal conditions, and following acute (acetone treatment) or chronic (essential fatty acid deficiency, EFAD) barrier perturbation, using dithiothreitol and/or the staphylococcal epidermolytic toxin to isolate the lower from the outer epidermis. Under basal conditions, both the activity of serine palmitoyl transferase (SPT), the rate-limiting enzyme of sphingolipid synthesis, and the rates of 3H-H2O incorporation into sphingolipids were nearly equivalent in the lower and the outer epidermis. Following acute barrier perturbation, SPT activity increased significantly in both the lower (35%; P < 0.05) and the outer epidermal layers (60%; P < 0.01). The rates of 3H-H2O incorporation into each major sphingolipid family, including ceramides, glucosylceramides and sphingomyelin, increased significantly in both the lower and the outer epidermis of treated flanks after acute barrier disruption. Finally, SPT activity was modestly elevated (20%; P < 0.01) in the lower but not in the outer epidermis of EFAD animals. These studies demonstrate the ability of both lower and outer epidermal cells to generate sphingolipids, and that permeability barrier homeostatic mechanisms appear to differentially regulate SPT activity and sphingolipid synthesis in the lower and the outer epidermis in response to acute and chronic barrier perturbation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7598529

  9. Hyaluronan Participates in the Epidermal Response to Disruption of the Permeability Barrier in Vivo

    PubMed Central

    Maytin, Edward V.; Chung, Helen H.; Seetharaman, V. Mani

    2004-01-01

    Hyaluronan (hyaluronic acid, HA) is a glycosaminoglycan in the extracellular matrix of tissues that plays a role in cellular migration, proliferation and differentiation. Injury to the stratum corneum elicits an epidermal hyperproliferative response, a pathogenic feature in many cutaneous diseases including eczema and psoriasis. Because HA is abundant in the matrix between keratinocytes, we asked whether the presence of HA is required for epidermal hyperplasia to occur in response to barrier injury. Disruption of the stratum corneum, by acetone application on the skin of hairless mice, led to a marked accumulation of HA in the matrix between epidermal basal and spinous keratinocytes, and also within keratinocytes of the upper epidermis. To test whether HA may have a functional role in epidermal hyperplasia, we used Streptomyces hyaluronidase (StrepH), delivered topically, to degrade epidermal HA and blunt the accumulation of epidermal HA after acetone. StrepH signficantly reduced epidermal HA levels, and also significantly inhibited the development of epidermal hyperplasia. This reduction in epidermal thickness was not attributable to any decrease in keratinocyte proliferation, but rather to an apparent acceleration in terminal differentiation (ie, increased keratin 10 and filaggrin expression). Overall, the data show that HA is a significant participant in the epidermal response to barrier injury. PMID:15466397

  10. Impaired Epidermal Permeability Barrier in Mice Lacking Elovl1, the Gene Responsible for Very-Long-Chain Fatty Acid Production

    PubMed Central

    Sassa, Takayuki; Ohno, Yusuke; Suzuki, Shotaro; Nomura, Toshifumi; Nishioka, Chieko; Kashiwagi, Toshiki; Hirayama, Taisuke; Akiyama, Masashi; Taguchi, Ryo; Shimizu, Hiroshi; Itohara, Shigeyoshi

    2013-01-01

    The sphingolipid backbone ceramide (Cer) is a major component of lipid lamellae in the stratum corneum of epidermis and has a pivotal role in epidermal barrier formation. Unlike Cers in other tissues, Cers in epidermis contain extremely long fatty acids (FAs). Decreases in epidermal Cer levels, as well as changes in their FA chain lengths, cause several cutaneous disorders. However, the molecular mechanisms that produce such extremely long Cers and determine their chain lengths are poorly understood. We generated mice deficient in the Elovl1 gene, which encodes the FA elongase responsible for producing C20 to C28 FAs. Elovl1 knockout mice died shortly after birth due to epidermal barrier defects. The lipid lamellae in the stratum corneum were largely diminished in these mice. In the epidermis of the Elovl1-null mice, the levels of Cers with ≥C26 FAs were decreased, while those of Cers with ≤C24 FAs were increased. In contrast, the levels of C24 sphingomyelin were reduced, accompanied by an increase in C20 sphingomyelin levels. Two ceramide synthases, CerS2 and CerS3, expressed in an epidermal layer-specific manner, regulate Elovl1 to produce acyl coenzyme As with different chain lengths. Elovl1 is a key determinant of epidermal Cer chain length and is essential for permeability barrier formation. PMID:23689133

  11. New treatments for restoring impaired epidermal barrier permeability: skin barrier repair creams.

    PubMed

    Draelos, Zoe Diana

    2012-01-01

    Skin health depends on an intact barrier composed of protein-rich corneocytes surrounded by the lamellar intercellular lipids. This barrier provides waterproof protection for the body, preventing infection, regulating electrolyte balance, maintaining body temperature, and providing a mechanism for sensation. Damage to the skin barrier results in skin disease that can be treated by a variety of externally applied substances, such as ceramides, hyaluronic acid, licorice extracts, dimethicone, petrolatum, and paraffin wax. These substances are found in moisturizers that are sold as cosmetics and in prescriptions as 510(k) devices. This contribution examines the formulation and effect of skin barrier creams.

  12. Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model

    SciTech Connect

    Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.; Maytin, Edward V. . E-mail: maytine@ccf.org

    2007-08-15

    Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.

  13. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier.

    PubMed Central

    Hanley, K; Jiang, Y; Crumrine, D; Bass, N M; Appel, R; Elias, P M; Williams, M L; Feingold, K R

    1997-01-01

    Members of the superfamily of nuclear hormone receptors which are obligate heterodimeric partners of the retinoid X receptor may be important in epidermal development. Here, we examined the effects of activators of the receptors for vitamin D3 and retinoids, and of the peroxisome proliferator activated receptors (PPARs) and the farnesoid X-activated receptor (FXR), on the development of the fetal epidermal barrier in vitro. Skin explants from gestational day 17 rats (term is 22 d) are unstratified and lack a stratum corneum (SC). After incubation in hormone-free media for 3-4 d, a multilayered SC replete with mature lamellar membranes in the interstices and a functionally competent barrier appear. 9-cis or all-trans retinoic acid, 1,25 dihydroxyvitamin D3, or the PPARgamma ligands prostaglandin J2 or troglitazone did not affect the development of barrier function or epidermal morphology. In contrast, activators of the PPARalpha, oleic acid, linoleic acid, and clofibrate, accelerated epidermal development, resulting in mature lamellar membranes, a multilayered SC, and a competent barrier after 2 d of incubation. The FXR activators, all-trans farnesol and juvenile hormone III, also accelerated epidermal barrier development. Activities of beta-glucocerebrosidase and steroid sulfatase, enzymes previously linked to barrier maturation, also increased after treatment with PPARalpha and FXR activators. In contrast, isoprenoids, such as nerolidol, cis-farnesol, or geranylgeraniol, or metabolites in the cholesterol pathway, such as mevalonate, squalene, or 25-hydroxycholesterol, did not alter barrier development. Finally, additive effects were observed in explants incubated with clofibrate and farnesol together in suboptimal concentrations which alone did not affect barrier development. These data indicate a putative physiologic role for PPARalpha and FXR in epidermal barrier development. PMID:9239419

  14. 3D In Vitro Model of a Functional Epidermal Permeability Barrier from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells

    PubMed Central

    Petrova, Anastasia; Celli, Anna; Jacquet, Laureen; Dafou, Dimitra; Crumrine, Debra; Hupe, Melanie; Arno, Matthew; Hobbs, Carl; Cvoro, Aleksandra; Karagiannis, Panagiotis; Devito, Liani; Sun, Richard; Adame, Lillian C.; Vaughan, Robert; McGrath, John A.; Mauro, Theodora M.; Ilic, Dusko

    2014-01-01

    Summary Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening. PMID:24936454

  15. CHOLINERGIC REGULATION OF KERATINOCYTE INNATE IMMUNITY AND PERMEABILITY BARRIER INTEGRITY: NEW PERSPECTIVES IN EPIDERMAL IMMUNITY AND DISEASE

    PubMed Central

    Curtis, Brenda J.; Radek, Katherine A.

    2015-01-01

    Several cutaneous inflammatory diseases and their clinical phenotypes are recapitulated in animal models of skin disease. However, the identification of shared pathways for disease progression is limited by the ability to delineate the complex biochemical processes fundamental for development of the disease. Identifying common signaling pathways that contribute to cutaneous inflammation and immune function will facilitate better scientific and therapeutic strategies to span a variety of inflammatory skin diseases. Aberrant antimicrobial peptide (AMP) expression and activity is one mechanism behind the development and severity of several inflammatory skin diseases and directly influences the susceptibility of skin to microbial infections. Our studies have recently exposed a newly identified pathway for negative regulation of AMPs in the skin by the cholinergic anti-inflammatory pathway via acetylcholine (ACh). The role of ACh in AMP regulation of immune and permeability barrier function in keratinocytes is reviewed, and the importance for a better comprehension of cutaneous disease progression by cholinergic signaling is discussed. PMID:21918536

  16. Lowered Humidity Produces Human Epidermal Equivalents with Enhanced Barrier Properties

    PubMed Central

    Sun, Richard; Celli, Anna; Crumrine, Debra; Hupe, Melanie; Adame, Lillian C.; Pennypacker, Sally D.; Park, Kyungho; Uchida, Yoshikazu; Feingold, Kenneth R.; Elias, Peter M.; Ilic, Dusko

    2015-01-01

    Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function. PMID:24803151

  17. Acne Vulgaris and the Epidermal Barrier

    PubMed Central

    Thiboutot, Diane

    2013-01-01

    Acne vulgaris is a common dermatological disorder that predominantly affects teenagers, but can also affect preadolescents and post-teen individuals. Despite the fact that acne vulgaris is the most common skin disorder encountered in ambulatory dermatology practice in the United States, there has been limited research on the epidermal permeability barrier in untreated skin of people with acne vulgaris and also after use of acne therapies. This article reviews the research results and discusses the available literature on this subject area. The importance of proper skin care as a component of the management of acne vulgaris is supported by the information that is currently available. PMID:23441236

  18. From Hyperactive Connexin26 Hemichannels to Impairments in Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-Ichthyosis-Deafness Syndrome.

    PubMed

    García, Isaac E; Bosen, Felicitas; Mujica, Paula; Pupo, Amaury; Flores-Muñoz, Carolina; Jara, Oscar; González, Carlos; Willecke, Klaus; Martínez, Agustín D

    2016-03-01

    The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease. PMID:26777423

  19. Effects of in Utero Exposure of C57BL/6J Mice to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Epidermal Permeability Barrier Development and Function

    PubMed Central

    Muenyi, Clarisse S.; Carrion, Sandra Leon; Jones, Lynn A.; Kennedy, Lawrence H.; Slominski, Andrzej T.

    2014-01-01

    Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis. Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB. Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1. Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group. Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease. Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045 PMID:24904982

  20. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  1. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  2. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  3. Barrier Requirements as the Evolutionary “Driver” of Epidermal Pigmentation in Humans

    PubMed Central

    ELIAS, PETER M.; MENON, GOPINATHAN; WETZEL, BRUCE K.; WILLIAMS, JOHN (JACK) W.

    2011-01-01

    Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have “driven” the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [≈1.5–0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ≈1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor⇒KIT; FOXn1⇒FGF2; IL-1α, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. PMID:20209486

  4. Filaggrin and the great epidermal barrier grief.

    PubMed

    McGrath, John A

    2008-05-01

    One of the principal functions of human skin is to form an effective mechanical barrier against the external environment. This involves the maturation and death of epidermal keratinocytes as well as the assembly of a complex network of differentially and spatially expressed proteins, glycoproteins and lipids into the keratinocyte cell membrane and surrounding extracellular space. In 2006, the key role of the granular cell layer protein filaggrin (filament-aggregating protein) in maintaining the skin barrier was determined with the identification of loss-of-function mutations in the profilaggrin gene (FLG). These mutations have been shown to be the cause of ichthyosis vulgaris and a major risk factor for the development of atopic dermatitis, asthma associated with atopic dermatitis as well as systemic allergies. Mutations in the FLG gene are extremely common, occurring in approximately 9% of individuals from European populations. The remarkable discovery of these widespread mutations is expected to have a major impact on the classification and management of many patients with ichthyosis and atopic disease. It is also hoped that the genetic discovery of FLG mutations will lead to the future development of more specific, non-immunosuppressive treatments capable of restoring effective skin barrier function and alleviating or preventing disease in susceptible individuals.

  5. The role of sphingolipid metabolism in cutaneous permeability barrier formation.

    PubMed

    Breiden, Bernadette; Sandhoff, Konrad

    2014-03-01

    The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the "collodion baby" in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous

  6. Phosphodiesterase inhibitors block the acceleration of skin permeability barrier repair by red light.

    PubMed

    Goto, Makiko; Ikeyama, Kazuyuki; Tsutsumi, Moe; Denda, Sumiko; Denda, Mitsuhiro

    2011-07-01

    We previously demonstrated that exposure to red light (550-670 nm) accelerates epidermal permeability barrier recovery after barrier disruption. Furthermore, we showed that photosensitive proteins, originally found in retina, are also expressed in epidermis. In retina, transducin and phosphodiesterase 6 play key roles in signal transmission. In this study, we evaluate the role of phosphodiesterese 6 in the acceleration by red light of epidermal permeability barrier recovery. Immunohistochemical study and reverse transcription-PCR assays confirmed the expression of both transducin and phosphodiesterase 6 in epidermal keratinocytes. Topical application of 3-isobutyl-1-methylxanthine, a non-specific phosphodiesterase inhibitor, blocked the acceleration of the barrier recovery by red light. Topical application of zaprinast, a specific inhibitor of phosphodiesterases 5 and 6, also blocked the acceleration, whereas T0156, a specific inhibitor of phosphodiesterase 5, had no effect. Red light exposure reduced the epidermal hyperplasia induced by barrier disruption under low humidity, and the effect was blocked by pretreatment with zaprinast. Our results indicate phosphodiesterase 6 is involved in the recovery-accelerating effect of red light on the disrupted epidermal permeability barrier.

  7. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    SciTech Connect

    Han, S.R.

    1988-01-01

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skin turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon.

  8. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure

    PubMed Central

    Celli, Anna; Crumrine, Debra; Meyer, Jason M.; Mauro, Theodora M.

    2016-01-01

    Ca2+ fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca2+ stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca2+ is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca2+ seen after barrier perturbation. We find that ER Ca2+ release correlates with a transient increase in extracellular Ca2+. Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca2+ ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca2+ store as a master regulator of the Ca2+ gradient response to epidermal barrier perturbation, and suggest that ER Ca2+ homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation. PMID:27255610

  9. Hydrogeologic modeling for permeable reactive barriers.

    PubMed

    Gupta, N; Fox, T C

    1999-08-12

    The permeable reactive barrier technology for in situ treatment of chlorinated solvents and other groundwater contaminants is becoming increasingly popular. Field scale implementation of this and other in situ technologies requires careful design based on the site-specific hydrogeology and contaminant plume characteristics. Groundwater flow modeling is an important tool in understanding the hydraulic behavior of the site and optimizing the reactive barrier design. A combination of groundwater flow modeling and particle tracking techniques was used to illustrate the effect of hydraulic conductivity of the aquifer and reactive media on key permeable barrier design parameters, such as the capture zone width, residence time, flow velocity, and discharge. Similar techniques were used to illustrate the modeling approach for design of different configurations of reactive barriers in homogeneous and heterogeneous settings.

  10. Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier

    PubMed Central

    Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.

    2016-01-01

    Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403

  11. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Holleran, Walter M.; Jiang, Yan J.; Schmuth, Matthias

    2010-01-01

    Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality “drives” pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO4) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to β-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation. PMID:18245815

  12. EVALUATION OF PERMEABLE REACTIVE BARRIER PERFORMANCE

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology represents a passive option for long-term treatment of ground-water contamination. PRBs are a potentially more cost-effective treatment option for a variety of dissolved contaminants, such as certain types of chlorinated solvents, ...

  13. Epidermal Differentiation in Barrier Maintenance and Wound Healing.

    PubMed

    Wikramanayake, Tongyu Cao; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-03-01

    Significance: The epidermal barrier prevents water loss and serves as the body's first line of defense against toxins, chemicals, and infectious microbes. Disruption of the barrier, either through congenital disorders of barrier formation or through wounds, puts the individual at risk for dehydration, hypersensitivity, infection, and prolonged inflammation. Epidermal barrier disorders affect millions of patients in the United States, causing loss of productivity and diminished quality of life for patients and their families, and represent a burden to the health-care system and society. Recent Advances: The genetic basis of many congenital barrier disorders has been identified in recent years, and great advances have been made in the molecular mechanisms of the formation and homeostasis of epidermal barrier, as well as acute and chronic wound healing. Progress in stem cell (SC) biology, particularly in induced pluripotent stem cells (iPSCs) and allogeneic mesenchymal stem cells (MSCs), has opened new doors for cell-based therapy of chronic wounds. Critical Issues: Understanding of the molecular mechanisms of barrier homeostasis in health and disease, as well as contributions of iPSCs and allogeneic MSCs to wound healing, will lead to the identification of novel targets for developing therapeutics for congenital barrier and wound healing disorders. Future Directions: Future studies should focus on better understanding of molecular mechanisms leading to disrupted homeostasis of epidermal barrier to identify potential therapeutic targets to combat its associated diseases. PMID:24669361

  14. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    PubMed

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. PMID:26967476

  15. TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation

    PubMed Central

    Malaisse, Jérémy; Balau, Benoit; Sterpin, Christiane; Achouri, Younes; Lambert De Rouvroit, Catherine; Poumay, Yves; Michiels, Carine; De Backer, Olivier

    2016-01-01

    TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype. The morphology of the epidermis assessed by histology and by labelling differentiation markers in immunofluorescence was not altered. Toluidine blue permeability assay showed that the epidermal barrier develops normally during embryonic development. We also showed that depletion of TMEM45A in human keratinocytes does not alter their potential to form in vitro 3D-reconstructed epidermis. Indeed, epidermis with normal morphogenesis were generated from TMEM45A-silenced keratinocytes. Their expression of differentiation markers quantified by RT-qPCR and evidenced by immunofluorescence labelling as well as their barrier function estimated by Lucifer yellow permeability were similar to the control epidermis. In summary, TMEM45A gene expression is dispensable for epidermal morphogenesis, keratinization and barrier formation. If this protein plays a role in the epidermis, its experimental depletion can possibly be compensated by other proteins in the two experimental models analyzed in this study. PMID:26785122

  16. pH-Regulated Mechanisms Account for Pigment-Type Differences in Epidermal Barrier Function

    PubMed Central

    Gunathilake, Roshan; Schurer, Nanna Y.; Shoo, Brenda A.; Celli, Anna; Hachem, Jean-Pierre; Crumrine, Debra; Sirimanna, Ganga; Feingold, Kenneth R.; Mauro, Theodora M.; Elias, Peter M.

    2009-01-01

    To determine whether pigment type determines differences in epidermal function, we studied stratum corneum (SC) pH, permeability barrier homeostasis, and SC integrity in three geographically disparate populations with pigment type I–II versus IV–V skin (Fitzpatrick I–VI scale). Type IV–V subjects showed: (i) lower surface pH (≈0.5 U); (ii) enhanced SC integrity (transepidermal water loss change with sequential tape strippings); and (iii) more rapid barrier recovery than type I–II subjects. Enhanced barrier function could be ascribed to increased epidermal lipid content, increased lamellar body production, and reduced acidity, leading to enhanced lipid processing. Compromised SC integrity in type I–II subjects could be ascribed to increased serine protease activity, resulting in accelerated desmoglein-1 (DSG-1)/corneodesmosome degradation. In contrast, DSG-1-positive CDs persisted in type IV–V subjects, but due to enhanced cathepsin-D activity, SC thickness did not increase. Adjustment of pH of type I–II SC to type IV–V levels improved epidermal function. Finally, dendrites from type IV–V melanocytes were more acidic than those from type I–II subjects, and they transfer more melanosomes to the SC, suggesting that melanosome secretion could contribute to the more acidic pH of type IV–V skin. These studies show marked pigment-type differences in epidermal structure and function that are pH driven. PMID:19177137

  17. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function.

    PubMed

    Gunathilake, Roshan; Schurer, Nanna Y; Shoo, Brenda A; Celli, Anna; Hachem, Jean-Pierre; Crumrine, Debra; Sirimanna, Ganga; Feingold, Kenneth R; Mauro, Theodora M; Elias, Peter M

    2009-07-01

    To determine whether pigment type determines differences in epidermal function, we studied stratum corneum (SC) pH, permeability barrier homeostasis, and SC integrity in three geographically disparate populations with pigment type I-II versus IV-V skin (Fitzpatrick I-VI scale). Type IV-V subjects showed: (i) lower surface pH (approximately 0.5 U); (ii) enhanced SC integrity (transepidermal water loss change with sequential tape strippings); and (iii) more rapid barrier recovery than type I-II subjects. Enhanced barrier function could be ascribed to increased epidermal lipid content, increased lamellar body production, and reduced acidity, leading to enhanced lipid processing. Compromised SC integrity in type I-II subjects could be ascribed to increased serine protease activity, resulting in accelerated desmoglein-1 (DSG-1)/corneodesmosome degradation. In contrast, DSG-1-positive CDs persisted in type IV-V subjects, but due to enhanced cathepsin-D activity, SC thickness did not increase. Adjustment of pH of type I-II SC to type IV-V levels improved epidermal function. Finally, dendrites from type IV-V melanocytes were more acidic than those from type I-II subjects, and they transfer more melanosomes to the SC, suggesting that melanosome secretion could contribute to the more acidic pH of type IV-V skin. These studies show marked pigment-type differences in epidermal structure and function that are pH driven.

  18. sPLA2 and the epidermal barrier

    PubMed Central

    Ilic, Dusko; Bollinger, James M.; Gelb, Michael; Mauro, Theodora M.

    2015-01-01

    The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F−/− mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. PMID:24269828

  19. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  20. Topical Corticosteroid Application and the Structural and Functional Integrity of the Epidermal Barrier

    PubMed Central

    Cash, Kimberly

    2013-01-01

    Topical corticosteroids are a very important part of the treatment of many skin disorders, especially eczematous dermatoses. When utilized properly and judiciously these agents often achieve excellent results in clearing or markedly improving many dermatological disorders. As some studies have shown, topical corticosteroids, despite their ability to decrease inflammation through several mechanisms, induce abnormalities in lipid synthesis and intercellular bilayer structure in the stratum corneum, which appear to prolong epidermal barrier recovery. These adverse effects may contribute to eariier eczematous flaring if measures to provide barrier repair are not undertaken. In addition, although topical corticosteroids are applied only to sites affected by the skin eruption, the incorporation of “barrier friendly” excipients into the vehicle that improve stratum corneum permeability barrier function and integrity is very rational. PMID:24307921

  1. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect

    Kershaw, D.S.; Pamukcu, S.

    1997-12-31

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  2. The diffusion-active permeable reactive barrier.

    PubMed

    Schwarz, Alex O; Rittmann, Bruce E

    2010-03-01

    Using the biogeochemical model CCBATCH, which we expanded to include transport processes, we study a novel approach for the treatment of aquifers contaminated with toxic concentrations of metals, the diffusion-active permeable reactive barrier (DAPRB), which is based on generation of sulfide by Sulfate Reducing Bacteria (SRB) as the groundwater moves through a layered treatment zone. In the DAPRB, layers of low conductivity (low-K) containing reactive materials are intercalated between layers of high conductivity (high-K) that transport the groundwater across the barrier. Because diffusion dominates transport in the reactive layers, microbial communities can take advantage there of the chemical-gradient mechanism for protection from toxicants. The ideal sulfidic DAPRB design includes particulate organic matter (POM) and solid sulfate mineral inside the reactive (low-K) layer. This leads to sulfate reduction and the formation of sulfide ligands that complex with toxic metals, such as Zn(2+) in the high-K layer. We perform a theoretical biogeochemical analysis of the ideal configuration of a DAPRB for treatment of Zn-contaminated groundwater. Our analysis using the expanded CCBATCH confirms the gradient-resistance mechanism for bio-protection, with the ZnS bio-sink forming at the intersection of the Zn and sulfide plumes inside the high-K layers of the DAPRB. The detailed DAPRB analysis also shows that total alkalinity and pH distributions are representative footprints of the two key biogeochemical processes taking place, sulfidogenesis and Zn immobilization as sulfide mineral. This is so because these two reactions consume or produce acidic hydrogen and alkalinity. Additionally, because Zn immobilization is due to ZnS mineral precipitation, the ZnS mineral distribution is a good indicator for the bio-sink. Bio-sinks are located for the most part within the high-K layers, and their exact position depends on the relative magnitude of metal and sulfide fluxes. Finally

  3. TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...

  4. PERMEABLE REACTIVE BARRIER TECHNOLOGIES FOR CONTAMINANT REMEDIATION

    EPA Science Inventory

    Environmental scientists are generally familiar with the concept of barriers for restricting the movement of contaminant plumes in ground water. Such barriers are typically constructed of highly impermeable emplacements of materials such as grouts, slurries, or sheet pilings to ...

  5. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    SciTech Connect

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.

  6. Controlling ferrofluid permeability across the blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J.

    2014-02-01

    In the present study, an in vitro blood-brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood-brain barrier model was completed by examining the permeability of FITC-Dextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood-brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood-brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood-brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood-brain barrier (e.g. CPB).

  7. Controlling ferrofluid permeability across the blood–brain barrier model.

    PubMed

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2014-02-21

    In the present study, an in vitro blood–brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood–brain barrier model was completed by examining the permeability of FITCDextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood–brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood–brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood–brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood–brain barrier (e.g. CPB). PMID:24457539

  8. Test device for measuring permeability of a barrier material

    SciTech Connect

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  9. Calmodulin 4 is dispensable for epidermal barrier formation and wound healing in mice.

    PubMed

    Lessard, Juliane C; Kalinin, Alexandr; Bible, Paul W; Morasso, Maria I

    2015-01-01

    Calcium-mediated signals play important roles in epidermal barrier formation, skin homoeostasis and wound repair. Calmodulin 4 (Calm4) is a small, Ca2+ -binding protein with strong expression in suprabasal keratinocytes. In mice, Calm4 first appears in the skin at the time of barrier formation, and its expression increases in response to epidermal barrier challenges. In this study, we report the generation of Calm4 knockout mice and provide evidence that Calm4 is dispensable for epidermal barrier formation, maintenance and repair. PMID:25316000

  10. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    PubMed Central

    Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-01-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function. PMID:26985171

  11. Nifedipine prevents sodium caprate-induced barrier dysfunction in human epidermal keratinocyte cultures.

    PubMed

    Uchino, Yoshihiro; Matsumoto, Junichi; Watanabe, Takuya; Hamabashiri, Masato; Tsuchiya, Takashi; Kimura, Ikuya; Yamauchi, Atsushi; Kataoka, Yasufumi

    2015-01-01

    Tight junctions (TJs) of the epidermis play an important role in maintaining the epidermal barrier. TJ breakdown is associated with skin problems, such as wrinkles and transepidermal water loss (TEWL). Clinical studies have reported that topical nifedipine is effective in reducing the depth of wrinkles and improving TEWL. However, it remains unknown whether nifedipine influences the TJ function in the epidermis. In the present study, we investigated the effect of nifedipine on epidermal barrier dysfunction in normal human epidermal keratinocytes (NHEKs) treated with sodium caprate (C10), a TJ inhibitor. Nifedipine reversed the C10-decreased transepithelial electrical resistance values as a measure of disruption of the epidermal barrier. Immunocytochemical observations revealed that nifedipine improved the C10-induced irregular arrangement of claudin-1, a key protein in TJs. Taken together, these findings suggest that nifedipine prevents epidermal barrier dysfunction, at least in part, by reconstituting the irregular claudin-1 localization at TJs in C10-treated NHEKs. PMID:26027835

  12. Evolutionary origin and diversification of epidermal barrier proteins in amniotes.

    PubMed

    Strasser, Bettina; Mlitz, Veronika; Hermann, Marcela; Rice, Robert H; Eigenheer, Richard A; Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold

    2014-12-01

    The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution. PMID:25169930

  13. Evolutionary Origin and Diversification of Epidermal Barrier Proteins in Amniotes

    PubMed Central

    Strasser, Bettina; Mlitz, Veronika; Hermann, Marcela; Rice, Robert H.; Eigenheer, Richard A.; Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold

    2014-01-01

    The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon–intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution. PMID:25169930

  14. Groundwater protection from cadmium contamination by permeable reactive barriers.

    PubMed

    Di Natale, F; Di Natale, M; Greco, R; Lancia, A; Laudante, C; Musmarra, D

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  15. Epidermal permeability barrier in the treatment of keratosis pilaris.

    PubMed

    Kootiratrakarn, Tanawatt; Kampirapap, Kowit; Chunhasewee, Chakkrapong

    2015-01-01

    Objectives. To evaluate and compare the efficacy, safety, hydrating properties, and tolerability of 10% lactic acid (LA) and 5% salicylic acid (SA) in the therapy of keratosis pilaris (KP). Material and Method. Patients with KP were randomized for treatment with either 10% LA or 5% SA creams being applied twice daily for 3 months. The patients were clinically assessed at baseline and after 4, 8, and 12 weeks of treatment and 4 weeks after treatment. The functional properties of the stratum corneum (SC) were determined before treatment, 12 weeks, and follow-up phase by high-frequency conductance and transepidermal water loss (TEWL). Results. At the end of the trial, the mean reduction of the lesions from baseline was statistically significant for 10% LA (66%) and 5% SA (52%). During the treatment, higher conductance values were found on both group and this improvement was maintained until the follow up period. No significant differences in transepidermal water loss were observed after treatment. The adverse effects were limited to mild irritation localized on the skin without systemic side effect. Conclusion. The study demonstrated that 10% LA and 5% SA are beneficial to treat KP with the significantly clearance and marked improvement as by instrumental evaluation. PMID:25802513

  16. MRI of Blood–Brain Barrier Permeability in Cerebral Ischemia

    PubMed Central

    Ewing, James R.; Chopp, Michael

    2013-01-01

    Quantitative measurement of blood–brain barrier (BBB) permeability using MRI and its application to cerebral ischemia are reviewed. Measurement of BBB permeability using MRI has been employed to evaluate ischemic damage during acute and subacute phases of stroke and to predict hemorrhagic transformation. There is also an emerging interest on the development and use of MRI to monitor vascular structural changes and angiogenesis during stroke recovery. In this review, we describe MRI BBB permeability and susceptibility-weighted MRI measurements and its applications to evaluate ischemic damage during the acute and subacute phases of stroke and vascular remodeling during stroke recovery. PMID:23997835

  17. Inflammatory mediators and modulation of blood-brain barrier permeability.

    PubMed

    Abbott, N J

    2000-04-01

    1. Unlike some interfaces between the blood and the nervous system (e.g., nerve perineurium), the brain endothelium forming the blood-brain barrier can be modulated by a range of inflammatory mediators. The mechanisms underlying this modulation are reviewed, and the implications for therapy of the brain discussed. 2. Methods for measuring blood-brain barrier permeability in situ include the use of radiolabeled tracers in parenchymal vessels and measurements of transendothelial resistance and rate of loss of fluorescent dye in single pial microvessels. In vitro studies on culture models provide details of the signal transduction mechanisms involved. 3. Routes for penetration of polar solutes across the brain endothelium include the paracellular tight junctional pathway (usually very tight) and vesicular mechanisms. Inflammatory mediators have been reported to influence both pathways, but the clearest evidence is for modulation of tight junctions. 4. In addition to the brain endothelium, cell types involved in inflammatory reactions include several closely associated cells including pericytes, astrocytes, smooth muscle, microglia, mast cells, and neurons. In situ it is often difficult to identify the site of action of a vasoactive agent. In vitro models of brain endothelium are experimentally simpler but may also lack important features generated in situ by cell:cell interaction (e.g. induction, signaling). 5. Many inflammatory agents increase both endothelial permeability and vessel diameter, together contributing to significant leak across the blood-brain barrier and cerebral edema. This review concentrates on changes in endothelial permeability by focusing on studies in which changes in vessel diameter are minimized. 6. Bradykinin (Bk) increases blood-brain barrier permeability by acting on B2 receptors. The downstream events reported include elevation of [Ca2+]i, activation of phospholipase A2, release of arachidonic acid, and production of free radicals, with

  18. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier.

    PubMed

    Jackson, Ben; Brown, Stuart J; Avilion, Ariel A; O'Shaughnessy, Ryan F L; Sully, Katherine; Akinduro, Olufolake; Murphy, Mark; Cleary, Michael L; Byrne, Carolyn

    2011-05-15

    The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.

  19. PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF INORGANIC CONTAMINANTS

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology is an in-situ approach for groundwater remediation that couples subsurface flow management with a passive chemical or biochemical treatment zone. The development and application of the PRB technology has progressed over the last de...

  20. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: LESSONS LEARNED

    EPA Science Inventory

    This presentation will provide an overview of research efforts at EPA on the application, monitoring, and performance of Permeable Reactive Barriers (PRBs) for groundwater restoration. Over the past 10 years, research projects conducted by research staff at EPA's National Risk M...

  1. Permeable Reactive Barriers for Treatment of Cr6

    EPA Science Inventory

    Several options are available for treatment of hexavalent chromium (Cr(VI)) in groundwater using the permeable reactive barrier (PRB) approach. They include conventional trench-and-fill systems, chemical redox curtains, and organic carbon redox curtains. Each of these PRB syste...

  2. MICROBIAL CHARACTERIZATION OF MANURE BASED PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    The implementation of permeable reactive barriers (PRB) provides a viable option for the remediation of contaminants of environmental significance such as dissolved metals (i.e., chromium), chlorinated solvents, and nitrate/ammonia. The designs of PRBs are usually based on the a...

  3. COLLECTION OF DESIGN DATA: SITE CHARACTERIZATION FOR PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Permeable reactive barriers (PRBs) for the restoration of contaminated ground water are no longer innovative. PRBs have evolved from innovative to accepted, standard practice, for the containment and treatment of a variety of contaminants in ground water. Like any remedial tech...

  4. Design and construction techniques for permeable reactive barriers.

    PubMed

    Gavaskar, A R

    1999-08-12

    Adequate site characterization, bench-scale column testing, and hydrogeologic modeling formed the basis for the design and construction of permeable reactive barriers for groundwater remediation at various sites, such as Dover Air Force Base, DE and Naval Air Station, Moffett Field, CA. Dissolved chlorinated solvents, such as perchloroethylene (PCE) and trichloroethylene (TCE), have been the focus at many sites because the passive nature of the reactive barrier operation makes such barriers particularly useful for treating groundwater contaminants that can persist in the aquifer for several years. A combination of conventional and innovative site characterization, design, and construction techniques were used at these sites to increase the potential cost effectiveness of field application.

  5. Simulation of solute transport across low-permeability barrier walls

    USGS Publications Warehouse

    Harte, P.T.; Konikow, L.F.; Hornberger, G.Z.

    2006-01-01

    Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases. ?? 2006.

  6. Simulation of solute transport across low-permeability barrier walls.

    PubMed

    Harte, Philip T; Konikow, Leonard F; Hornberger, George Z

    2006-05-30

    Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases.

  7. TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure

    PubMed Central

    Chen, Feng; Radisky, Evette S; Das, Pritam; Batra, Jyotica; Hata, Toshiyuki; Hori, Tomohide; Baine, Ann-Marie T; Gardner, Lindsay; Yue, Mei Y; Bu, Guojun; del Zoppo, Gregory; Patel, Tushar C; Nguyen, Justin H

    2013-01-01

    Blood–brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and 𝒟-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF. PMID:23532086

  8. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited.

    PubMed

    Elias, Peter M; Williams, Mary L

    2016-10-01

    The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities. PMID:27324932

  9. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited.

    PubMed

    Elias, Peter M; Williams, Mary L

    2016-10-01

    The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities.

  10. Dietary constituents are able to play a beneficial role in canine epidermal barrier function.

    PubMed

    Watson, Adrian L; Fray, Tim R; Bailey, Julie; Baker, Claire B; Beyer, Sally A; Markwell, Peter J

    2006-01-01

    Epidermal barrier function is a critical attribute of mammalian skin. The barrier is responsible for preventing skin-associated pathologies through controlling egress of water and preventing ingress of environmental agents. Maintaining the quality and integrity of the epidermal barrier is therefore of considerable importance. Structurally, the barrier is composed of two main parts, the corneocytes and the intercellular lamellar lipid. The epidermal lamellar lipid comprises mainly ceramides, sterols and fatty acids. Twenty-seven nutritional components were screened for their ability to upregulate epidermal lipid synthesis. Seven of the 27 nutritional components (pantothenate, choline, nicotinamide, histidine, proline, pyridoxine and inositol) were subsequently retested using an in vitro transepidermal diffusion experimental model, providing a functional assessment of barrier properties. Ultimately, the best performing five nutrients were fed to dogs at supplemented concentrations in a 12-week feeding study. Barrier function was measured using transepidermal water loss (TEWL). It was found that a combination of pantothenate, choline, nicotinamide, histidine and inositol, when fed at supplemented concentrations, was able to significantly reduce TEWL in dogs after 9 weeks. PMID:16364034

  11. Activated Protein C Enhances Human Keratinocyte Barrier Integrity via Sequential Activation of Epidermal Growth Factor Receptor and Tie2*

    PubMed Central

    Xue, Meilang; Chow, Shu-Oi; Dervish, Suat; Chan, Yee-Ka Agnes; Julovi, Sohel M.; Jackson, Christopher J.

    2011-01-01

    Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability. PMID:21173154

  12. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    SciTech Connect

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  13. Evidence of multiple permeability barriers in sarcolemmal (SL) aortic vesicles

    SciTech Connect

    Kaufman, L.J.; Kahn, A.M.; Allen, J.C.

    1986-03-05

    SL vesicles from canine aorta were prepared using Mg aggregation and differential centrifugation. Na/sup +/, K/sup +/-ATPase (NKA) and K/sup +/-Phosphatase (K-Pase) were determined in native and SDS treated SL with either 0.4 mM ouabain (OB) or the lipophilic inhibitor, digitoxigenin (DG). Native SL: OB inhibited NKA=0, DG inhibited NKA=7.7 ..mu..m/mg/hr; SDS treated SL: OB inhibited NKA=4.6, DG inhibited NKA=9.5; Native SL: OB inhibited K-Pase = 177nm/mg/hr, DG inhibited K-Pase = 285, SDS treated SL: OB inhibited K-Pase = 217, DG inhibited K- Pase = 283. Thus, native SL, primarily unbroken and both right side- and inside-out, may be impermeable to ATP and OB. Specific /sup 3/H-OB binding (Mg, P/sub i/) to SL was 5.0 pm/mg in native and 9.6 pm/mg in SL treated with the Mg chelator, CDTA. Altered binding was due to increased B/sub max/, not K/sub m/. Thus, in addition to the permeability barrier of SL, the Mg-bound basement membrane may present another barrier by obscuring OB binding sites. Gel filtration revealed that only the higher molecular weight fractions demonstrated specific OB binding which decreased with decreasing molecular weight, a finding consistent with varying vesicular size. These data indicate that SL prepared by Mg aggregation contain vesicles of differing size with at least two permeability barriers, SL and basement membrane.

  14. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    PubMed Central

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  15. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro.

    PubMed

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7-C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  16. Characterisation of the passive permeability barrier of nuclear pore complexes

    PubMed Central

    Mohr, Dagmar; Frey, Steffen; Fischer, Torsten; Güttler, Thomas; Görlich, Dirk

    2009-01-01

    Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve-like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross-linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant-negative importin β45-462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC-passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein-sized objects >10-fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier. PMID:19680228

  17. Flow Characteristics in Permeable Reactive Barrier Affected by Biological Clogging

    NASA Astrophysics Data System (ADS)

    Seki, K.; Hanada, J.; Miyazaki, T.

    2004-12-01

    Permeable reactive barriers (PRB) are becoming popular for the in situ remediation of contaminated groundwater. The efficiency of the PRB is affected by permeability of the reactive zone, because when permeability decreases contaminants can bypass the reactive zone without degraded. One of the factors affecting permeability of the permeable reactive zone is biological clogging of soil pore, i.e., biomass buildup and resultant decrease in hydraulic conductivity. So far biological clogging in laboratory was mostly observed in one-dimensional flow field, but the actual flow field in PRB is better simulated in two-dimensional flow field. The objective of this study is to observe the flow characteristics in PRB by using simulated flow cells in laboratory, by comparing one-dimensional and two-dimensional flow field. One-dimensional flow field was simulated by 20 cm length and 1 cm width flow cell, and two-dimensional flow field was simulated by 20 cm length and 10 cm width flow cell. Each flow cell was operated under water-saturated conditions, in horizontal position, and at a constant temperature of 20 degree centigrade. Glass beads of 0.1 mm mean diameter was packed uniformly in the flow cells and inoculum was injected into the nutrient injection ports at the middle of the flow cells. After 24 h incubation time continuous flow was started. Background flow of de-ionized water was supplied to the inlet ports, and the mineral medium was supplied from the nutrient injection ports. The flux was measured every day and local hydraulic head distribution was measured by water manometer, and hydraulic conductivity was calculated. The flow cell experiments were continued for 9 days. In one-dimensional flow cell, hydraulic conductivity of the nutrient supplied part decreased to about half of the initial value in 9 days flow period, where the hydraulic conductivity of the part where nutrient was not supplied remained constant. Bacterial and fungal number in the moderately clogged

  18. Directed site exploration for permeable reactive barrier design

    USGS Publications Warehouse

    Lee, J.; Graettinger, A.J.; Moylan, J.; Reeves, H.W.

    2009-01-01

    Permeable reactive barriers (PRBs) are being employed for in situ site remediation of groundwater that is typically flowing under natural gradients. Site characterization is of critical importance to the success of a PRB. A design-specific site exploration approach called quantitatively directed exploration (QDE) is presented. The QDE approach employs three spatially related matrices: (1) covariance of input parameters, (2) sensitivity of model outputs, and (3) covariance of model outputs to identify the most important location to explore based on a specific design. Sampling at the location that most reduces overall site uncertainty produces a higher probability of success of a particular design. The QDE approach is demonstrated on the Kansas City Plant, Kansas City, MO, a case study where a PRB was installed and failed. It is shown that additional quantitatively directed site exploration during the design phase could have prevented the remedial failure that was caused by missing a geologic body having high hydraulic conductivity at the south end of the barrier. The most contributing input parameter approach using head uncertainty clearly indicated where the next sampling should be made toward the high hydraulic conductivity zone. This case study demonstrates the need to include the specific design as well as site characterization uncertainty when choosing the sampling locations. ?? 2008 Elsevier B.V.

  19. Wave scattering by a permeable barrier over undulating bed topography

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Martha, S. C.

    2016-06-01

    The scattering of surface water waves by bottom undulation in the presence of a permeable vertical barrier is investigated for its solution. A mixed boundary value problem (BVP) arises here in a natural way while examining this physical problem. Regular perturbation analysis is employed to determine the solution of the BVP. By utilizing this analysis the given BVP reduces to two different BVPs up to first order. The solution of the zeroth order BVP is obtained with the aid of eigenfunction expansion method in conjunction with least-squares approximation. The first order BVP is solved with the help of the Green's integral theorem and the physical quantities, namely the reflection and transmission coefficients, are obtained in the form of integrals which involve the bottom undulation and the solution of the zeroth order BVP. A particular form of the bottom undulation which closely resembles to some obstacles made by nature due to sedimentation and ripple growth of sand, is considered to evaluate these integrals. The variation of these coefficients is examined for different values of the porous effect parameter, barrier length, number of ripples and ripple amplitude.

  20. Directed site exploration for permeable reactive barrier design.

    PubMed

    Lee, Jejung; Graettinger, Andrew J; Moylan, John; Reeves, Howard W

    2009-02-15

    Permeable reactive barriers (PRBs) are being employed for in situ site remediation of groundwater that is typically flowing under natural gradients. Site characterization is of critical importance to the success of a PRB. A design-specific site exploration approach called quantitatively directed exploration (QDE) is presented. The QDE approach employs three spatially related matrices: (1) covariance of input parameters, (2) sensitivity of model outputs, and (3) covariance of model outputs to identify the most important location to explore based on a specific design. Sampling at the location that most reduces overall site uncertainty produces a higher probability of success of a particular design. The QDE approach is demonstrated on the Kansas City Plant, Kansas City, MO, a case study where a PRB was installed and failed. It is shown that additional quantitatively directed site exploration during the design phase could have prevented the remedial failure that was caused by missing a geologic body having high hydraulic conductivity at the south end of the barrier. The most contributing input parameter approach using head uncertainty clearly indicated where the next sampling should be made toward the high hydraulic conductivity zone. This case study demonstrates the need to include the specific design as well as site characterization uncertainty when choosing the sampling locations. PMID:18573602

  1. Directed site exploration for permeable reactive barrier design.

    PubMed

    Lee, Jejung; Graettinger, Andrew J; Moylan, John; Reeves, Howard W

    2009-02-15

    Permeable reactive barriers (PRBs) are being employed for in situ site remediation of groundwater that is typically flowing under natural gradients. Site characterization is of critical importance to the success of a PRB. A design-specific site exploration approach called quantitatively directed exploration (QDE) is presented. The QDE approach employs three spatially related matrices: (1) covariance of input parameters, (2) sensitivity of model outputs, and (3) covariance of model outputs to identify the most important location to explore based on a specific design. Sampling at the location that most reduces overall site uncertainty produces a higher probability of success of a particular design. The QDE approach is demonstrated on the Kansas City Plant, Kansas City, MO, a case study where a PRB was installed and failed. It is shown that additional quantitatively directed site exploration during the design phase could have prevented the remedial failure that was caused by missing a geologic body having high hydraulic conductivity at the south end of the barrier. The most contributing input parameter approach using head uncertainty clearly indicated where the next sampling should be made toward the high hydraulic conductivity zone. This case study demonstrates the need to include the specific design as well as site characterization uncertainty when choosing the sampling locations.

  2. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  3. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  4. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite

  5. Application of controlled nutrient release to permeable reactive barriers.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-03-15

    The application of controlled release nutrient (CRN) materials to permeable reactive barriers to promote biodegradation of petroleum hydrocarbons in groundwater was investigated. The longevity of release, influence of flow velocity and petroleum hydrocarbon concentration on nutrient release was assessed using soluble and ion exchange CRN materials; namely Polyon™ and Zeopro™. Both CRN materials, assessed at 4 °C and 23 °C, demonstrated continuing release of nitrogen, phosphorus and potassium (N-P-K) at 3500 bed volumes passing, with longer timeframes of N-P-K release at 4 °C. Zeopro™-activated carbon mixtures demonstrated depletion of N-P-K prior to 3500 bed volumes passing. Increased flow velocity was shown to lower nutrient concentrations in Polyon™ flow cells while nutrient release from Zeopro™ was largely unchanged. The presence of petroleum hydrocarbons, at 1.08 mmol/L and 3.25 mmol/L toluene, were not shown to alter nutrient release from Polyon™ and Zeopro™ across 14 days. These findings suggest that Polyon™ and Zeopro™ may be suitable CRN materials for application to PRBs in low nutrient environments.

  6. Simplified, noninvasive PET measurement of blood-brain barrier permeability

    SciTech Connect

    Iannotti, F.; Fieschi, C.; Alfano, B.; Picozzi, P.; Mansi, L.; Pozzilli, C.; Punzo, A.; Del Vecchio, G.; Lenzi, G.L.; Salvatore, M.

    1987-05-01

    Blood-brain barrier (BBB) permeability to (/sup 68/Ga)EDTA was measured by positron emission tomography (PET) in four normal volunteers and in 11 patients with brain tumors. A unidirectional transfer constant, Ki, was calculated applying multiple-time graphical analysis (MTGA). This method allows the detection of backflux from brain to blood and, by generalization, the measurement of the constant Kb (brain to blood). Furthermore, the need for an independent measurement of the intravascular tracer is obviated: MTGA itself provides an estimate of the cerebral plasma volume (Vp). In the four normal volunteers the Ki was 3.0 +/- 0.8 X 10(-4) ml g-1 min-1 (mean +/- SD) and the Vp 0.034 +/- 0.007 ml g-1. A net increase in Ki up to a maximum of 121.0 X 10(-4) ml g-1 min-1 (correspondent value of Kb = 0.025 min-1) as well as an increase of Vp was observed in malignant tumors. The input function was calculated using both the (/sup 68/Ga)EDTA concentration in sequential arterial blood samples and, noninvasively, the activity derived from the superior sagittal sinus image. The values of Ki and Vp from these two calculations were in good agreement. The application of MTGA to PET permits the evaluation of passage of substances across the BBB without making assumptions about the compartments in which the tracer distributes.

  7. [Removal of nitrate from groundwater using permeable reactive barrier].

    PubMed

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  8. Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier

    PubMed Central

    Liashkovich, Ivan; Pasrednik, Dzmitry; Prystopiuk, Valeria; Rosso, Gonzalo; Oberleithner, Hans; Shahin, Victor

    2015-01-01

    Existence of a selective nucleocytoplasmic permeability barrier is attributed to Phenylalanine-Glycine rich proteins (FG-nups) within the central channel of the nuclear pore complex (NPC). Limited understanding of the FG-nup structural arrangement hinders development of strategies directed at disrupting the NPC permeability barrier. In this report we explore an alternative approach to enhancing the NPC permeability for exogenous macromolecules. We demonstrate that the recently discovered inhibitor of clathrin coat assembly Pitstop-2 compromises the NPC permeability barrier in a rapid and effective manner. Treatment with Pitstop-2 causes a collapse of the NPC permeability barrier and a reduction of Importin β binding accompanied by alteration of the NPC ultrastructure. Interestingly, the effects are induced by the same chemical agent that is capable of inhibiting clathrin-mediated endocytosis. To our knowledge, this is the first functional indication of the previously postulated evolutionary relation between clathrin and NPC scaffold proteins. PMID:25944393

  9. Ascorbate Reverses High Glucose- and RAGE-induced Leak of the Endothelial Permeability Barrier

    PubMed Central

    Meredith, M. Elizabeth; Qu, Zhi-chao; May, James M.

    2014-01-01

    High glucose concentrations due to diabetes increase leakage of plasma constituents across the endothelial permeability barrier. We sought to determine whether vitamin C, or ascorbic acid (ascorbate), could reverse such high glucose-induced increases in endothelial barrier permeability. Human umbilical vein endothelial cells and two brain endothelial cell lines cultured at 25 mM glucose showed increases in endothelial barrier permeability to radiolabeled inulin compared to cells cultured at 5 mM glucose. Acute loading of the cells for 30–60 min with ascorbate before the permeability assay prevented the high glucose-induced increase in permeability and decreased basal permeability at 5 mM glucose. High glucose-induced barrier leakage was mediated largely by activation of the receptor for advanced glycation end products (RAGE), since it was prevented by RAGE blockade and mimicked by RAGE ligands. Intracellular ascorbate completely prevented RAGE ligand-induced increases in barrier permeability. The high glucose-induced increase in endothelial barrier permeability was also acutely decreased by several cell-penetrant antioxidants, suggesting that at least part of the ascorbate effect could be due to its ability to act as an antioxidant. PMID:24472555

  10. Stress does not increase blood-brain barrier permeability in mice.

    PubMed

    Roszkowski, Martin; Bohacek, Johannes

    2016-07-01

    Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood-brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood-brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood-brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood-brain barrier permeability. To additionally assess if stress could change blood-brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood-brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood-brain barrier permeability. PMID:27146513

  11. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3

    PubMed Central

    de Guzman Strong, Cristina; Wertz, Philip W.; Wang, Chenwei; Yang, Fan; Meltzer, Paul S.; Andl, Thomas; Millar, Sarah E.; Ho, I-Cheng; Pai, Sung-Yun; Segre, Julia A.

    2006-01-01

    Skin lies at the interface between the complex physiology of the body and the external environment. This essential epidermal barrier, composed of cornified proteins encased in lipids, prevents both water loss and entry of infectious or toxic substances. We uncover that the transcription factor GATA-3 is required to establish the epidermal barrier and survive in the ex utero environment. Analysis of Gata-3 mutant transcriptional profiles at three critical developmental stages identifies a specific defect in lipid biosynthesis and a delay in differentiation. Genomic analysis identifies highly conserved GATA-3 binding sites bound in vivo by GATA-3 in the first intron of the lipid acyltransferase gene AGPAT5. Skin from both Gata-3−/− and previously characterized barrier-deficient Kruppel-like factor 4−/− newborns up-regulate antimicrobial peptides, effectors of innate immunity. Comparison of these animal models illustrates how impairment of the skin barrier by two genetically distinct mechanisms leads to innate immune responses, as observed in the common human skin disorders psoriasis and atopic dermatitis. PMID:17116754

  12. Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes.

    PubMed

    Taylor, Jennifer M; Street, Teresa L; Hao, Lizhong; Copley, Richard; Taylor, Martin S; Hayden, Patrick J; Stolper, Gina; Mott, Richard; Hein, Jotun; Moffatt, Miriam F; Cookson, William O C M

    2009-01-01

    The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease. PMID:19888454

  13. Effects of High-Intensity Endurance Exercise on Epidermal Barriers against Microbial Invasion

    PubMed Central

    Eda, Nobuhiko; Shimizu, Kazuhiro; Suzuki, Satomi; Lee, Eunjae; Akama, Takao

    2013-01-01

    For athletes, preventing infectious disease on skin is important. Examination measurement of epidermal barriers could provide valuable information on the risk of skin infections. The aim of this study was to determine the effects of high-intensity endurance exercise on epidermal barriers. Six healthy adult males (age; 22.3 ± 1.6 years) performed bicycle exercise at 75%HRmax for 60 min from 18:30 to 19:30. Skin surface samples were measured 18:30 (pre), 19:30 (post), 20:30 (60 min), and 21:30 (120 min). Secretory immunoglobulin A (SIgA) and human β-defensin 2 (HBD-2) concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). SIgA concentration at pre was significantly higher than at post, 60 min and 120 min (p < 0.05). HBD-2 concentration at post and 120 min was significantly higher than at pre (p < 0. 05). Moisture content of the stratum corneum was significantly higher at post than at pre, 60 min, and 120 min (p < 0.05). On the chest, moisture content of the stratum corneum was significantly lower at 120 min than at pre (p < 0.05). The number of staphylococci was significantly higher at post than at pre (p < 0.05), and tended to be higher at 60 min than at pre on the chest (p = 0. 08). High-intensity endurance exercise might depress the immune barrier and physical barrier and enhance the risk of skin infection. On the other hand, the biochemical barrier increases after exercise, and our findings suggest that this barrier might supplement the compromised function of other skin barriers. Key points The immune barrier and physical barrier might be depressed and the risk of skin infection might be enhanced by high-intensity endurance exercise. The biochemical barrier increases after high-intensity endurance exercise and might supplement the compromised function of other skin barriers. We recommend that athletes maintain their skin surface in good condition, for example, by showering immediately after sports activities and using moisturizers

  14. 'You shall not pass!': quantifying barrier permeability and proximity avoidance by animals.

    PubMed

    Beyer, Hawthorne L; Gurarie, Eliezer; Börger, Luca; Panzacchi, Manuela; Basille, Mathieu; Herfindal, Ivar; Van Moorter, Bram; R Lele, Subhash; Matthiopoulos, Jason

    2016-01-01

    Impediments to animal movement are ubiquitous and vary widely in both scale and permeability. It is essential to understand how impediments alter ecological dynamics via their influence on animal behavioural strategies governing space use and, for anthropogenic features such as roads and fences, how to mitigate these effects to effectively manage species and landscapes. Here, we focused primarily on barriers to movement, which we define as features that cannot be circumnavigated but may be crossed. Responses to barriers will be influenced by the movement capabilities of the animal, its proximity to the barriers, and habitat preference. We developed a mechanistic modelling framework for simultaneously quantifying the permeability and proximity effects of barriers on habitat preference and movement. We used simulations based on our model to demonstrate how parameters on movement, habitat preference and barrier permeability can be estimated statistically. We then applied the model to a case study of road effects on wild mountain reindeer summer movements. This framework provided unbiased and precise parameter estimates across a range of strengths of preferences and barrier permeabilities. The quality of permeability estimates, however, was correlated with the number of times the barrier is crossed and the number of locations in proximity to barriers. In the case study we found that reindeer avoided areas near roads and that roads are semi-permeable barriers to movement. There was strong avoidance of roads extending up to c. 1 km for four of five animals, and having to cross roads reduced the probability of movement by 68·6% (range 3·5-99·5%). Human infrastructure has embedded within it the idea of networks: nodes connected by linear features such as roads, rail tracks, pipelines, fences and cables, many of which divide the landscape and limit animal movement. The unintended but potentially profound consequences of infrastructure on animals remain poorly understood

  15. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  16. COST ANALYSIS OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF GROUND WATER

    EPA Science Inventory

    ABSTRACT

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment...

  17. LONG-TERM PERFORMANCE ASSESSMENT OF PERMEABLE REACTIVE BARRIERS TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    Permeable reactive barriers (PRBs) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented ...

  18. Iron Hydroxy Carbonate Formation in Zerovalent Iron Permeable Reactive Barriers: Characterization and Evaluation of Phase Stability

    EPA Science Inventory

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently obs...

  19. Performance Assessment of a Permeable Reactive Barrier for Ground Water Remediation Fifteen Years After Installation

    EPA Science Inventory

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminanttreatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium sourc...

  20. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  1. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier.

    PubMed

    Hoff, Dan; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2013-01-01

    In the present study, the permeability of 11 different iron oxide nanoparticle (IONP) samples (eight fluids and three powders) was determined using an in vitro blood-brain barrier model. Importantly, the results showed that the ferrofluid formulations were statistically more permeable than the IONP powder formulations at the blood-brain barrier, suggesting a role for the presently studied in situ synthesized ferrofluid formulations using poly(vinyl) alcohol, bovine serum albumin, collagen, glutamic acid, graphene, and their combinations as materials which can cross the blood-brain barrier to deliver drugs or have other neurological therapeutic efficacy. Conversely, the results showed the least permeability across the blood-brain barrier for the IONP with collagen formulation, suggesting a role as a magnetic resonance imaging contrast agent but limiting IONP passage across the blood-brain barrier. Further analysis of the data yielded several trends of note, with little correlation between permeability and fluid zeta potential, but a larger correlation between permeability and fluid particle size (with the smaller particle sizes having larger permeability). Such results lay the foundation for simple modification of iron oxide nanoparticle formulations to either promote or inhibit passage across the blood-brain barrier, and deserve further investigation for a wide range of applications. PMID:23426527

  2. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  3. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  4. Permeability reduction of self-affine fractures explained by means of the critical barrier concept

    NASA Astrophysics Data System (ADS)

    Talon, Laurent; Auradou, Harold; Hansen, Alex

    2011-11-01

    In many low permeability geological formations, flow occurs primarily through fracture networks. There is therfore a need for reliable modeling of the hydromechanical behavior of fracture. We consider here fracture with self-affine correlation. Most of the models fails to predict the effective permeability of such fracture as soon as some contact area are present. We introduce a model based on the generalization of the concept of the bottle neck which allows the prediction of the permeability of self-affine rough channels (one-dimensional fracture) and two-dimensional fractures over the entire range of possible apertures. In one-dimensional rough fracture, when the two wall are brought to contact, the permeability is increasingly controlled by the region of minimum aperture. This is the bottle neck concept. In two-dimensionnal fracture, the position of the minimum aperture is not so crucial since the flow can easily by-pass regions of low permeability. To generalize this concept, we introduce the most restrictive barrier path defined as being the barrier that has the smallest average permeability. Using numerical simulation, we identify three permeability scaling regime that will be explained by the introduction of other critical barrier ordered by its criticality.

  5. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis.

    PubMed

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle J; Frederiksen, Jette L; Larsson, Henrik B W

    2015-09-01

    Optic neuritis is an acute inflammatory condition that is highly associated with multiple sclerosis. Currently, the best predictor of future development of multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging. Previous research has found abnormalities in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging as part of the diagnostic work-up at time of diagnosis. Eighteen healthy controls were included for comparison. Patients had magnetic resonance imaging and lumbar puncture performed within 4 weeks of onset of optic neuritis. Information on multiple sclerosis conversion was acquired from hospital records 2 years after optic neuritis onset. Logistic regression analysis showed that baseline permeability in normal-appearing white matter significantly improved prediction of multiple sclerosis conversion (according to the 2010 revised McDonald diagnostic criteria) within 2 years compared to T2 lesion count alone. There was no correlation between permeability and T2 lesion count. An increase in permeability in normal-appearing white matter of 0.1 ml/100 g/min increased the risk of multiple sclerosis 8.5 times whereas having more than nine T2 lesions increased the risk 52.6 times. Receiver operating characteristic curve analysis of permeability in normal-appearing white matter gave a cut-off of 0.13 ml/100 g/min, which predicted conversion to multiple sclerosis with a sensitivity of

  6. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.

    PubMed

    Lee, Jai-Young; Lee, Kui-Jae; Youm, Sun Young; Lee, Mi-Ran; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2010-02-01

    The Permeable Reactive Barriers (PRBs) are relatively simple, promising technology for groundwater remediation. A PRBs consisting of two reactive barriers (zero valent iron-barrier and bio-barrier) were designed to evaluate the application and feasibility of the barriers for the removal of wide range of pollutants from synthetic water. After 470 days of Multi-PRBs column operation, the pH level in the water sample is increased from 4 to 7, whereas the oxidation reduction potential (ORP) is decreased to -180 mV. Trichloroethylene (TCE), heavy metals, and nitrate were completely removed in the zero valent iron-barrier. Ammonium produced during nitrate reduction is removed in the biologically reactive zone of the column. The results of the present study suggest that Multi-PRBs system is an effective alternate method to confine wide range of pollutants from contaminated groundwater.

  7. Potential performance of pillared inorgano- organo bentonite for soil mix technology permeable reactive barrier (Invited)

    NASA Astrophysics Data System (ADS)

    Abunada, Z. M.; Al-Tabbaa, A.

    2013-12-01

    Modified bentonite has gained more interest for their effect in contaminant removal and environmental protection. This study is investigating the use of three different modified inorgano-organo bentonite (IOB) in soil mixing permeable reactive barrier. IOB were prepared using pillaring agents and quaternary ammonium cations (QAC) with different loading ratios. The permeabilities of compacted specimens containing IOB with two different soil types (sandy and gravelly soil) were measured for site contaminated groundwater, pure water and TEX compounds to study the potential of soil mix permeable reactive barrier (PRB). The soil permeability decreased by 1-2 order of magnitude once mixed with IOB. It also decreased by about 100 in case of TEX compound and site groundwater. The IOB was tested to remove Toluene, Ethyl-benzene, and o-Xylene (TEX) compound from model contaminated water in both batch and column test. Physical characteristics such as pore volume, porosity and specific structure in addition to level of surfactant loading were determined. Materials removal efficiency varied due to the surfactant loading, soil type and contaminant molecular weight. Sorption isotherm showed that the adsorbates preference increased in the order of T>E>X in all IOB types. Maximum TEX compound sorptive capacity varied also due to soil type with the highest was 86.89% 93.19% and 90.2% for T,E,X respectively on sandy soil. Key words: Inorgano-organo bentonite, permeability, reactive barrier, soil mix, sorption

  8. A framework for understanding semi-permeable barrier effects on migratory ungulates

    USGS Publications Warehouse

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  9. Dexou low pH plume baseline permeable reactive barrier options

    SciTech Connect

    Phifer, M.A.

    2000-06-20

    The current Environmental Restoration Department (ERD) Permeable Reactive Barrier (PRB) baseline configuration consists of a limestone trench and a granular cast iron trench in series. This report provides information relative to the use of PRB technology for the remediation of the D-Area low pH groundwater plumes.

  10. CHROMIUM REMOVAL PROCESSES DURING GROUNDWATER REMEDIATION BY A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron, permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City (NC). The PRB was installed in 1996 to treat groundwater contami...

  11. Blood-Brain Barrier Permeability and Monocyte Infiltration in Experimental Allergic Encephalomyelitis

    ERIC Educational Resources Information Center

    Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…

  12. A clay permeable reactive barrier to remove Cs-137 from groundwater: Column experiments.

    PubMed

    De Pourcq, K; Ayora, C; García-Gutiérrez, M; Missana, T; Carrera, J

    2015-11-01

    Clay minerals are reputed sorbents for Cs-137 and can be used as a low-permeability material to prevent groundwater flow. Therefore, clay barriers are employed to seal Cs-137 polluted areas and nuclear waste repositories. This work is motivated by cases where groundwater flow cannot be impeded. A permeable and reactive barrier to retain Cs-137 was tested. The trapping mechanism is based on the sorption of cesium on illite-containing clay. The permeability of the reactive material is provided by mixing clay on a matrix of wood shavings. Column tests combined with reactive transport modeling were performed to check both reactivity and permeability. Hydraulic conductivity of the mixture (10(-4) m/s) was sufficient to ensure an adequate hydraulic performance of an eventual barrier excavated in most aquifers. A number of column experiments confirmed Cs retention under different flow rates and inflow solutions. A 1D reactive transport model based on a cation-exchange mechanism was built. It was calibrated with batch experiments for high concentrations of NH4+ and K+ (the main competitors of Cs in the exchange positions). The model predicted satisfactorily the results of the column experiments. Once validated, it was used to investigate the performance and duration of a 2 m thick barrier under different scenarios (flow, clay content, Cs-137 and K concentration).

  13. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: LESSONS LEARNED, FUTURE DIRECTIONS

    EPA Science Inventory

    Recently, a synthesis of research findings by EPA has been prepared and presented in an EPA report titled Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation (EPA/600/R-03/045 a,b). Another report has also be...

  14. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    This research brief presents findings over the past four years at two sites where detailed investigations by the U.S. Environmental Protection Agency (U.S. EPA) have focused on the long-term performance of PRBs under a Tri-Agency Permeable Reactive Barrier Initiative (TRI). This ...

  15. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  16. EVALUATION OF PERMEABLE REACTIVE BARRIER PERFORMANCE: A TRI-AGENCY INITIATIVE

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology represents a passive option for long-term treatment of ground-water contamination. PRBs are a potentially more cost-effective treatment option for a variety of dissolved contaminants, such as certain types of chlorinated solvents, ...

  17. A clay permeable reactive barrier to remove Cs-137 from groundwater: Column experiments.

    PubMed

    De Pourcq, K; Ayora, C; García-Gutiérrez, M; Missana, T; Carrera, J

    2015-11-01

    Clay minerals are reputed sorbents for Cs-137 and can be used as a low-permeability material to prevent groundwater flow. Therefore, clay barriers are employed to seal Cs-137 polluted areas and nuclear waste repositories. This work is motivated by cases where groundwater flow cannot be impeded. A permeable and reactive barrier to retain Cs-137 was tested. The trapping mechanism is based on the sorption of cesium on illite-containing clay. The permeability of the reactive material is provided by mixing clay on a matrix of wood shavings. Column tests combined with reactive transport modeling were performed to check both reactivity and permeability. Hydraulic conductivity of the mixture (10(-4) m/s) was sufficient to ensure an adequate hydraulic performance of an eventual barrier excavated in most aquifers. A number of column experiments confirmed Cs retention under different flow rates and inflow solutions. A 1D reactive transport model based on a cation-exchange mechanism was built. It was calibrated with batch experiments for high concentrations of NH4+ and K+ (the main competitors of Cs in the exchange positions). The model predicted satisfactorily the results of the column experiments. Once validated, it was used to investigate the performance and duration of a 2 m thick barrier under different scenarios (flow, clay content, Cs-137 and K concentration). PMID:26197347

  18. Nanosized iron based permeable reactive barriers for nitrate removal - Systematic review

    NASA Astrophysics Data System (ADS)

    Araújo, Rui; Castro, Ana C. Meira; Santos Baptista, João; Fiúza, António

    2016-08-01

    It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.

  19. GROUND WATER REMEDIATION RESEARCH: PERMEABLE REACTIVE BARRIERS AND SOURCE ZONE REMEDIATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Permeable Reactive Barriers for treatment of organic and inorganic contaminants and remediation of DNAPL source zones.

  20. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  1. SPATIAL DISTRIBUTION OF CARBON AND SULFUR PRECIPITATING WITHIN PERMEABLE REACTIVE BARRIERS: DEVELOPMENT OF ANALYTICAL METHODS

    EPA Science Inventory

    A permeable reactive barrier (PRB) is a wall of porous reactive material placed in the path of a dissolved contaminant plume for the purpose of removing contaminants from ground water. Chemical processes within these reactive materials remove both inorganic and organic contamina...

  2. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium

    PubMed Central

    Lie, Pearl P. Y.; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan

    2009-01-01

    In the seminiferous epithelium, Eps8 is localized to actin-based cell junctions at the blood-testis barrier (BTB) and the apical ectoplasmic specialization (ES) in stage V–VI tubules but is considerably diminished in stage VIII tubules. Eps8 down-regulation coincides with the time of BTB restructuring and apical ES disassembly, implicating the role of Eps8 in cell adhesion. Its involvement in Sertoli-germ cell adhesion was substantiated in studies using an in vivo animal model by treating rats with 1-(2,4-dichlorobenzy)-1H-indazole-3-carbohydrazide (adjudin) to induce anchoring junction restructuring, during which Eps8 disappeared at the apical ES before germ cell departure. In Sertoli cell cultures with established permeability barrier mimicking the BTB in vivo, the knockdown of Eps8 by RNAi led to F-actin disorganization and the mislocalization of the tight junction proteins occludin and ZO-1, suggesting the function of Eps8 in maintaining BTB integrity. In vivo knockdown of Eps8 in the testis caused germ cell sloughing and BTB damage, concomitant with occludin mislocalization, further validating that Eps8 is a novel regulator of cell adhesion and BTB integrity in the seminiferous epithelium.—Lie, P. P. Y., Mruk, D. D., Lee, W. M., Cheng, C. Y. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. PMID:19293393

  3. Measurement of blood-brain barrier permeability with positron emission tomography and (68Ga)EDTA

    SciTech Connect

    Kessler, R.M.; Goble, J.C.; Bird, J.H.; Girton, M.E.; Doppman, J.L.; Rapoport, S.I.; Barranger, J.A.

    1984-09-01

    Positron emission tomography (PET) was employed to examine time-dependent changes in blood-brain barrier (BBB) permeability to (68Ga)ethylenediaminetetraacetate (EDTA) in the rhesus monkey, following reversible barrier opening by intracarotid infusion of a hypertonic mannitol solution. The PET technique, when combined with measurements of plasma radioactivity, provided a quantitative measure of the cerebrovascular permeability-area product (PA) at different times following mannitol infusion. Hypertonic mannitol treatment reversibly increased PA to (68Ga)EDTA more than 10-fold; much of the barrier effect was over by 10 min after mannitol treatment. The results show that PET can be used to measure transient changes in BBB integrity in specific brain regions, under in vivo, noninvasive conditions.

  4. IL-31-Driven Skin Remodeling Involves Epidermal Cell Proliferation and Thickening That Lead to Impaired Skin-Barrier Function

    PubMed Central

    Singh, Brijendra; Jegga, Anil G.; Shanmukhappa, Kumar S.; Edukulla, Ramakrishna; Khurana, Gurjit H.; Medvedovic, Mario; Dillon, Stacey R.; Madala, Satish K.

    2016-01-01

    Interleukin-31 (IL-31) is a type 2 helper T-cell-derived cytokine that has recently been shown to cause severe inflammation and tissue remodeling in multiple chronic diseases of the skin and lungs. IL-31 is upregulated in allergic and inflammatory diseases, including atopic dermatitis, asthma, cutaneous T-cell lymphomas, and allergic rhinitis, as well as autoimmune diseases such as systemic erythematosus. Overexpression of IL-31 in T cells causes severe inflammation, with histological features similar to skin lesions of patients with atopic dermatitis. However, the molecular mechanisms involved in IL31-driven pathological remodeling in skin diseases remain largely unknown. Here, we studied the role of IL-31 in skin damage as a result of intradermal administration of recombinant IL-31 into mice. Notably, IL-31 was sufficient to increase epidermal basal-cell proliferation and thickening of the epidermal skin layer. Our findings demonstrate a progressive increase in transepidermal water loss with chronic administration of IL-31 into the skin. Further, analysis of the skin transcriptome indicates a significant increase in the transcripts involved in epidermal-cell proliferation, epidermal thickening, and mechanical integrity. In summary, our findings demonstrate an important role for IL-31 signaling in epidermal cell proliferation and thickening that together may lead to impaired skin-barrier function in pathological remodeling of the skin. PMID:27556734

  5. IL-31-Driven Skin Remodeling Involves Epidermal Cell Proliferation and Thickening That Lead to Impaired Skin-Barrier Function.

    PubMed

    Singh, Brijendra; Jegga, Anil G; Shanmukhappa, Kumar S; Edukulla, Ramakrishna; Khurana, Gurjit H; Medvedovic, Mario; Dillon, Stacey R; Madala, Satish K

    2016-01-01

    Interleukin-31 (IL-31) is a type 2 helper T-cell-derived cytokine that has recently been shown to cause severe inflammation and tissue remodeling in multiple chronic diseases of the skin and lungs. IL-31 is upregulated in allergic and inflammatory diseases, including atopic dermatitis, asthma, cutaneous T-cell lymphomas, and allergic rhinitis, as well as autoimmune diseases such as systemic erythematosus. Overexpression of IL-31 in T cells causes severe inflammation, with histological features similar to skin lesions of patients with atopic dermatitis. However, the molecular mechanisms involved in IL31-driven pathological remodeling in skin diseases remain largely unknown. Here, we studied the role of IL-31 in skin damage as a result of intradermal administration of recombinant IL-31 into mice. Notably, IL-31 was sufficient to increase epidermal basal-cell proliferation and thickening of the epidermal skin layer. Our findings demonstrate a progressive increase in transepidermal water loss with chronic administration of IL-31 into the skin. Further, analysis of the skin transcriptome indicates a significant increase in the transcripts involved in epidermal-cell proliferation, epidermal thickening, and mechanical integrity. In summary, our findings demonstrate an important role for IL-31 signaling in epidermal cell proliferation and thickening that together may lead to impaired skin-barrier function in pathological remodeling of the skin. PMID:27556734

  6. trans-4-(Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans.

    PubMed

    Denda, M; Kitamura, K; Elias, P M; Feingold, K R

    1997-07-01

    Because wounding the epidermis increases proteolytic activity and because disorders associated with barrier dysfunction have elevated protease activity, we studied the effect of protease inhibitors on the time course of barrier recovery and on the development of epidermal hyperplasia induced by repeated injury. After injuries to the epidermis produced by tape stripping, acetone treatment, or detergent (SDS) treatment that disrupt the barrier, a single application of 5% tranexamic acid [4-(aminomethyl)cyclohexane carboxylic acid, t-AMCHA], a well known anti-plasmin reagent, accelerated barrier recovery in both hairless mouse and human skin. In contrast, neither aminocaproic acid nor aminobutyric acid, inactive analogs of t-AMCHA, affected the time course of barrier recovery. Several trypsin-like serine protease inhibitors, e.g., leupeptin, TLCK, and PMSF, also accelerated barrier repair. In contrast other types of protease inhibitors, e.g., EDTA, pepstatin, N-ethylmaleimide, chymostatin, and TPCK, did not accelerate barrier recovery. We next evaluated the effects of daily topical application of t-AMCHA on epidermal hyperplasia, induced by repeated tape stripping or acetone treatment for 7 d. The degree of hyperplasia, quantified by the measurement of epidermal thickness, was reduced in both models by repeated applications of t-AMCHA. Finally, proteolytic activity in both human and mouse epidermis increased 1-2 h after epidermal injuries that disrupt the barrier. These results demonstrate that the inhibition of plasmin, a serine protease, accelerates barrier recovery and inhibits the epidermal hyperplasia induced by repeated barrier disruption, perhaps by decreasing the extent of attendant epidermal injury.

  7. Effect of cryoprotectants for maintaining drug permeability barriers in porcine buccal mucosa.

    PubMed

    Marxen, Eva; Axelsen, Mary Carlos; Pedersen, Anne Marie Lynge; Jacobsen, Jette

    2016-09-10

    Ex vivo drug permeation studies are useful for early screening of drug candidates for buccal delivery. However, it is not always feasible to obtain fresh tissue for each experiment. Therefore, a method for storing excised tissue for later use is needed. The purpose of this study was to determine if permeability barriers for small molecules (nicotine and diazepam) were maintained after freezing porcine buccal mucosa with cryoprotectants to -80°C. Combinations of dimethyl sulfoxide, bovine serum albumin, glycerol and sucrose were used as cryoprotectants. The permeability of nicotine and diazepam across fresh or frozen/thawed tissue was determined using modified Ussing chambers. Haematoxylin-eosin stained tissue sections for histology were prepared. The permeability of nicotine across tissue frozen without cryoprotectants was significantly higher compared to tissue frozen with cryoprotectants or fresh tissue. Freezing with or without cryoprotectants did not significantly affect the flux of diazepam compared to fresh tissue. Only minor histological changes were seen in frozen/thawed porcine buccal mucosa compared to fresh tissue. In conclusion, permeability barriers for nicotine and diazepam were preserved after freezing with any of the combinations of cryoprotectants; however, the barrier may be damaged when freezing without cryoprotectants. PMID:27426107

  8. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    SciTech Connect

    Furth, A.J.; Burke, G.K.; Deutsch, W.L. Jr.

    1997-12-31

    The City of Philadelphia`s Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980`s, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m{sup 2} area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m{sup 2} landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing.

  9. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers.

    PubMed

    Kos, Bostjan; Lestan, Domen

    2003-02-01

    Chelate-induced remediation has been proposed as an effective tool for the extraction of lead (Pb) from contaminated soils by plants. However, side-effects, mainly mobilization and leaching of Pb, raise environmental concerns. Biodegradable, synthetic organic chelate ethylenediaminedisuccinic acid (EDDS), and commonly used ethylenedimanetetraacetic acid (EDTA) were used for induced phytoextraction with a test plant Brassica rapa and in situ washing of soil contaminated with 1350 mg/kg of Pb. Horizontal permeable barriers were placed 20 cm deep in soil columns and tested for their ability to prevent leaching of Pb. The reactive materials in the barriers were nutrient enriched vermiculite, peat or agricultural hydrogel, and apatite. EDTA and EDDS addition increased Pb concentrations in the test plant by 158 and 89 times compared to the control, to 817 and 464 mg/kg, respectively. In EDTA treatments, approximately 25% or more of total initial soil Pb was leached in single cycle of chelate addition. In EDDS treatments, 20% of the initial Pb was leached from columns with no barrier, while barriers with vermiculite or hydrogel and apatite decreased leaching by more than 60 times, to 0.35%. 11.6% of total initial Pb was washed from the soil above the barrier with vermiculite and apatite, where almost all leached Pb was accumulated. Results indicate that use of biodegradable chelate EDDS and permeable barriers may lead to environmentally safe induced Pb phytoextraction and in situ washing of Pb.

  10. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality.

  11. Sebaceous Gland, Hair Shaft, and Epidermal Barrier Abnormalities in Keratosis Pilaris with and without Filaggrin Deficiency

    PubMed Central

    Gruber, Robert; Sugarman, Jeffrey L.; Crumrine, Debra; Hupe, Melanie; Mauro, Theodora M.; Mauldin, Elizabeth A.; Thyssen, Jacob P.; Brandner, Johanna M.; Hennies, Hans-Christian; Schmuth, Matthias; Elias, Peter M.

    2016-01-01

    Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities. PMID:25660180

  12. Histamine H1 and H2 receptor antagonists accelerate skin barrier repair and prevent epidermal hyperplasia induced by barrier disruption in a dry environment.

    PubMed

    Ashida, Y; Denda, M; Hirao, T

    2001-02-01

    Keratinocytes have histamine H1 and H2 receptors, but their functions are poorly understood. To clarify the role of histamine receptors in the epidermis, we examined the effects of histamine receptor antagonists and agonists applied epicutaneously on the recovery of skin barrier function disrupted by tape stripping in hairless mice. Histamine H2 receptor antagonists famotidine and cimetidine accelerated the recovery of skin barrier function, but histamine and histamine H2 receptor agonist dimaprit delayed the barrier repair. Application of compound 48/80, a histamine releaser, also delayed the recovery. Imidazole, an analog of histamine, had no effect. The histamine H1 receptor antagonists diphenhydramine and tripelennamine accelerated the recovery. Histamine H3 receptor agonist Nalpha-methylhistamine and antagonist thioperamide had no effect. In addition, topical application of famotidine or diphenhydramine prevented epidermal hyperplasia in mice with skin barrier disrupted by acetone treatment in a dry environment (humidity < 10%) for 4 d. In conclusion, both the histamine H1 and H2 receptors in the epidermis are involved in skin barrier function and the cutaneous condition of epidermal hyperplasia.

  13. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  14. Permeable membranes containing crystalline silicotitanate as model barriers for cesium ion.

    PubMed

    Warta, Andrew M; Arnold, William A; Cussler, Edward L

    2005-12-15

    In diaphragm cell experiments, a permeable model reactive barrier for the containment of cesium is tested. Primary targets for cesium containment are former plutonium processing sites (e.g., Hanford, WA and Savannah River, SC), which are currently contaminated with cesium-137. Adding up to 10 wt % crystalline silicotitanate, a sacrificial reagent, to poly(vinyl alcohol) films increases the time before cesium can cross the film by a factor of 30. The increased lag times are consistent with theories developed for this type of reactive membrane. Theory also correctly predicts the effects of cesium concentration and membrane thickness on membrane performance. Because the relative improvements of the model barrier are expected to be independent of the polymer used, these increased lags should hold for less permeable polymers that are more resistant to radiation, although these polymers have not been tested. PMID:16475361

  15. Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis

    PubMed Central

    Sanchez, Susana; Barry, Nicholas P.; Kirschner, Nina; Meyer, Wilfried; Mauro, Theodora M.; Moll, Ingrid; Gratton, Enrico

    2015-01-01

    Calcium controls an array of key events in keratinocytes and epidermis: localized changes in Ca2+ concentrations and their regulation are therefore especially important to assess when observing epidermal barrier homeostasis and repair, neonatal barrier establishment, in differentiation, signaling, cell adhesion, and in various pathological states. Yet, tissue- and cellular Ca2+ concentrations in physiologic and diseased states are only partially known, and difficult to measure. Prior observations on the Ca2+ distribution in skin were based on Ca2+ precipitation followed by electron microscopy, or proton-induced X-ray emission. Neither cellular and/or subcellular localization could be determined through these approaches. In cells in vitro, fluorescent dyes have been used extensively for ratiometric measurements of static and dynamic Ca2+ concentrations, also assessing organelle Ca2+ concentrations. For lack of better methods, these findings together build the basis for the current view of the role of Ca2+ in epidermis, their limitations notwithstanding. Here we report a method using Calcium Green 5N as the calcium sensor and the phasor-plot approach to separate raw lifetime components. Thus, fluorescence lifetime imaging (FLIM) enables us to quantitatively assess and visualize dynamic changes of Ca2+ at light-microscopic resolution in ex vivo biopsies of unfixed epidermis, in close to in vivo conditions. Comparing undisturbed epidermis with epidermis following a barrier insult revealed major shifts, and more importantly, a mobilization of high amounts of Ca2+ shortly following barrier disruption, from intracellular stores. These results partially contradict the conventional view, where barrier insults abrogate a Ca2+ gradient towards the stratum granulosum. Ca2+ FLIM overcomes prior limitations in the observation of epidermal Ca2+ dynamics, and will allow further insights into basic epidermal physiology. PMID:21193994

  16. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers.

    PubMed

    Giusti, Serena; Sbrana, Tommaso; La Marca, Margherita; Di Patria, Valentina; Martinucci, Valentina; Tirella, Annalisa; Domenici, Claudio; Ahluwalia, Arti

    2014-09-01

    Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.

  17. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it

    SciTech Connect

    Zgurskaya, Helen I.; López, Cesar A.; Gnanakaran, Sandrasegaram

    2015-09-18

    Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This article summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.

  18. The mechanisms and quantification of the selective permeability in transport across biological barriers: the example of kyotorphin.

    PubMed

    Serrano, Isa D; Freire, Joao M; Carvalho, Miguel V; Neves, Mafalda; Melo, Manuel N; Castanho, Miguel A R B

    2014-02-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound physical chemistry reasoning and methodologies. Despite the relevance of permeability studies one often comes across inaccurate determinations, mostly from oversimplified data analyses. To worsen matters, the exact meaning of permeability is being lost along with this loss of accuracy. The importance of proper permeability calculation is illustrated with a family of derivatives of kyotorphin, an analgesic dipeptide. PMID:24456269

  19. Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest.

    PubMed

    Tress, Erika E; Clark, Robert S B; Foley, Lesley M; Alexander, Henry; Hickey, Robert W; Drabek, Tomas; Kochanek, Patrick M; Manole, Mioara D

    2014-08-22

    Pediatric asphyxial cardiac arrest (CA) results in unfavorable neurological outcome in most survivors. Development of neuroprotective therapies is contingent upon understanding the permeability of intravenously delivered medications through the blood brain barrier (BBB). In a model of pediatric CA we sought to characterize BBB permeability to small and large molecular weight substances. Additionally, we measured the percent brain water after CA. Asphyxia of 9 min was induced in 16-18 day-old rats. The rats were resuscitated and the BBB permeability to small (sodium fluorescein and gadoteridol) and large (immunoglobulin G, IgG) molecules was assessed at 1, 4, and 24 h after asphyxial CA or sham surgery. Percent brain water was measured post-CA and in shams using wet-to-dry brain weight. Fluorescence, gadoteridol uptake, or IgG staining at 1, 4h and over the entire 24 h post-CA did not differ from shams, suggesting absence of BBB permeability to these solutes. Cerebral water content was increased at 3h post-CA vs. sham. In conclusion, after 9 min of asphyxial CA there is no BBB permeability over 24h to conventional small or large molecule tracers despite the fact that cerebral water content is increased early post-CA indicating the development of brain edema. Evaluation of novel therapies targeting neuronal death after pediatric CA should include their capacity to cross the BBB.

  20. Plasma From Patients With HELLP Syndrome Increases Blood–Brain Barrier Permeability

    PubMed Central

    Tremble, Sarah M.; Owens, Michelle Y.; Morris, Rachael; Cipolla, Marilyn J.

    2015-01-01

    Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood–brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction. PMID:25194151

  1. Standardized diaper care regimen: a prospective, randomized pilot study on skin barrier function and epidermal IL-1α in newborns.

    PubMed

    Garcia Bartels, Natalie; Massoudy, Lida; Scheufele, Ramona; Dietz, Ekkehart; Proquitté, Hans; Wauer, Roland; Bertin, Christiane; Serrano, José; Blume-Peytavi, Ulrike

    2012-01-01

    Adaptation of skin barrier function and interleukin-1α (IL-1α) content in diapered and nondiapered skin are poorly characterized in newborns receiving standard skin care. In a monocentric, prospective pilot study 44 healthy, full-term neonates were randomly assigned to skin care with baby wipes (n = 21) or water-moistened washcloth (n = 23) at each diaper change. Transepidermal water loss (TEWL), skin hydration, skin-pH, IL-1α, and epidermal desquamation were measured on days 2, 14, and 28 postpartum. Microbiological colonization was evaluated at baseline and on day 28. Significantly lower TEWL was found on the buttock in the group using baby wipes compared to water. IL-1α and skin hydration significantly increased and pH decreased independent of skin care regimen. IL-1α was significantly higher in diapered skin compared to nondiapered skin. Although skin care with wipes seems to stabilize TEWL better than using water, the skin condition and microbiological colonization were comparable using both cleansing procedures. Increase of epidermal IL-1α may reflect postnatal skin barrier maturation. These data suggest that neither of the two cleansing procedures harms skin barrier maturation within the first four weeks postpartum. Longer observations on larger populations could provide more insight into postnatal skin barrier maturation. PMID:22260233

  2. Iron Sulfide as a Sustainable Reactive Material for Permeable Reactive Barriers

    NASA Astrophysics Data System (ADS)

    Henderson, A. D.; Demond, A. H.

    2012-12-01

    Permeable reactive barriers (PRBs) are gaining acceptance for groundwater remediation, as they operate in situ and do not require continuous energy input. The majority of PRBs use zero-valent iron (ZVI). However, some ZVI PRBs have hydraulically failed [1,2], due to the fact that ZVI may reduce not only contaminants but also water and non-contaminant solutes. These reactions may form precipitates or gas phases that reduce permeability. Therefore, there is a need to assess the hydraulic suitability of possible alternatives, such as iron sulfide (FeS). The capability of FeS to remove both metals and halogenated organics from aqueous systems has been demonstrated previously [3,4], and FeS formed in situ within a ZVI PRB has been linked to contaminant removal [5]. These results suggest possible applications in groundwater remediation as a permeable reactive barrier (PRB) material. However, the propensity of FeS for permeability loss, due to solids and gas production, must be evaluated in order to address its suitability for PRBs. The reduction in permeability for FeS-coated sands under the anoxic conditions often encountered at contaminated groundwater sites was examined through column experiments and geochemical modeling under conditions of high calcium and nitrate, which have been previously shown to cause significant permeability reduction in zero-valent iron (ZVI) systems [6]. The column experiments showed negligible production of both solids and gases. The geochemical model was used to estimate solid and gas volumes generated under conditions of varying FeS concentration. Then, the Kozeny-Carman equation and a power-law relationship was used to predict permeability reduction, with a maximum reduction in permeability of 1% due to solids and about 30% due to gas formation under conditions for which a complete loss of permeability was predicted for ZVI systems. This difference in permeability reduction is driven by the differences in thermodynamic stability of ZVI

  3. Evaluating Blood-Brain Barrier Permeability in Delayed Cerebral Infarction after Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Ivanidze, J.; Kesavabhotla, K.; Kallas, O.N.; Mir, D.; Baradaran, H.; Gupta, A.; Segal, A.Z.; Claassen, J.; Sanelli, P.C.

    2015-01-01

    BACKGROUND AND PURPOSE Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. MATERIALS AND METHODS We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. RESULTS Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P < .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. CONCLUSIONS Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction. PMID:25572949

  4. Organo-montmorillonite Barrier Layers Formed by Combustion: Nanostructure and Permeability

    SciTech Connect

    Fox, James B; Ambuken, Preejith V.; Stretz, Holly A; Meisner, Roberta Ann; Payzant, E Andrew

    2010-01-01

    Self-assembly of nanoparticles into barrier layers has been the most cited theoretical explanation for the significant reduction in flammability often noted for nanocomposites formed from polymers and montmorillonite organoclays. Both mass and heat transport reductions have been credited for such improvements, and in most cases a coupled mechanism is expected. To provide validation for early models, new model barrier layers were produced from organoclays, and these barrier layers subjected to novel permeability analysis to obtain a flux. The effects of surfactant, temperature and pressure on barrier layer structure were examined. XRD versus TGA results suggest that chemical degradation of four different organoclays and physical collapse on heating are not correlated. Addition of pressure as low as 7kPa also altered the structure produced. Permeability of Ar through the ash was found to be sensitive to structural change/self assembly of high aspect ratio MMT nanoparticles. Actual fluxes ranged from 0.139 to 0.151 mol(m2.sec)-1, values which will provide useful limits in verifying models for the coupled contribution of mass and heat transfer to flammability parameters such as peak heat release rate.

  5. Role of lipids in the formation and maintenance of the cutaneous permeability barrier.

    PubMed

    Feingold, Kenneth R; Elias, Peter M

    2014-03-01

    The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  6. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.

  7. Effect of some drugs on ethanol-induced changes in blood brain barrier permeability for /sup 14/C-tyrosine

    SciTech Connect

    Borisenko, S.A.; Burov, Yu.V.

    1987-06-01

    This investigation seeks to compare the effects of membrane stabilizers chlorpromazine and alpha-tocopherol, and also the dopaminergic antagonist haloperidol, in changes in permeability of the blood-brain barrier for carbon 14-labelled tyrosine.

  8. CARBON AND SULFUR ACCUMULATION AND IRON MINERAL TRANSFORMATION IN PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    EPA Science Inventory

    Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...

  9. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: AN UPDATE ON A U.S. MULTI-AGENCY INITIATIVE

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment option at seve...

  10. The effect of a tin barrier layer on the permeability of hydrogen through mild steel and ferritic stainless steel

    SciTech Connect

    Bowker, J.; Piercy, G.R.

    1984-11-01

    Experiments were performed to measure the effectiveness of a commercially electroplated tin layer as a barrier to hydrogen, and to see how this altered when the tin layer was converted to FeSn. The authors measured the permeability of hydrogen through AISI 410 ferritic stainless steel and determined the effectiveness of tin as a surface barrier on it. The measured values for the permeability of hydrogen in iron and ferritic stainless steel are shown.

  11. Geochemistry of a permeable reactive barrier for metals and acid mine drainage

    SciTech Connect

    Benner, S.G.; Blowes, D.W.; Herbert, R.B. Jr.; Ptacek, C.J.; Gould, W.D.

    1999-08-15

    A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO{sub 4}, Fe, trace metals, and alkalinity are observed. Populations of sulfate reducing bacteria are 10,000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 times higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2--120 mg/L, and the isotope {sup 34}S is enriched relative to {sup 32}S in the dissolved phase SO{sub 4}{sup 2{minus}} within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturated states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.

  12. Separation methods that are capable of revealing blood-brain barrier permeability.

    PubMed

    Dash, Alekha K; Elmquist, William F

    2003-11-25

    The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the

  13. Stress Induces Endotoxemia and Low-Grade Inflammation by Increasing Barrier Permeability

    PubMed Central

    de Punder, Karin; Pruimboom, Leo

    2015-01-01

    Chronic non-communicable diseases (NCDs) are the leading causes of work absence, disability, and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here, we hypothesize that stresses (defined as homeostatic disturbances) can induce low-grade inflammation by increasing the availability of water, sodium, and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases. PMID:26029209

  14. Von-Willebrand Factor Influences Blood Brain Barrier Permeability and Brain Inflammation in Experimental Allergic Encephalomyelitis

    PubMed Central

    Noubade, Rajkumar; del Rio, Roxana; McElvany, Benjamin; Zachary, James F.; Millward, Jason M.; Wagner, Denisa D.; Offner, Halina; Blankenhorn, Elizabeth P.; Teuscher, Cory

    2008-01-01

    Weibel-Palade bodies within endothelial cells are secretory granules known to release von Willebrand Factor (VWF), P-selectin, chemokines, and other stored molecules following histamine exposure. Mice with a disrupted VWF gene (VWFKO) have endothelial cells that are deficient in Weibel-Palade bodies. These mice were used to evaluate the role of VWF and/or Weibel-Palade bodies in Bordetella pertussis toxin-induced hypersensitivity to histamine, a subphenotype of experimental allergic encephalomyelitis, the principal autoimmune model of multiple sclerosis. No significant differences in susceptibility to histamine between wild-type and VWFKO mice were detected after 3 days; however, histamine sensitivity persisted significantly longer in VWFKO mice. Correspondingly, encephalomyelitis onset was earlier, disease was more severe, and blood brain barrier (BBB) permeability was significantly increased in VWFKO mice, as compared with wild-type mice. Moreover, inflammation was selectively increased in the brains, but not spinal cords, of VWFKO mice as compared with wild-type mice. Early increases in BBB permeability in VWFKO mice were not due to increased encephalitogenic T-cell activity since BBB permeability did not differ in adjuvant-treated VWFKO mice as compared with littermates immunized with encephalitogenic peptide plus adjuvant. Taken together, these data indicate that VWF and/or Weibel-Palade bodies negatively regulate BBB permeability changes and autoimmune inflammatory lesion formation within the brain elicited by peripheral inflammatory stimuli. PMID:18688020

  15. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression.

    PubMed

    Pinton, Philippe; Nougayrède, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  16. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  17. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    SciTech Connect

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  18. Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis.

    PubMed

    Wantanaphong, J; Mooney, S J; Bailey, E H

    2006-08-10

    Permeable reactive barriers (PRBs) are now an established approach for groundwater remediation. However, one concern is the deterioration of barrier material performance due to pore clogging. This study sought to quantify the effect of pore clogging on the alteration of the physical porous architecture of two novel potential PRB materials (clinoptilolite and calcified seaweed) using image analysis of SEM-derived images. Results after a water treatment contaminated with heavy metals over periods of up to 10 months identified a decrease in porosity from c. 22% to c. 15% for calcified seaweed and from c. 22% to c. 18% for clinoptilolite. Porosity was reduced by as much as 37% in a calcified seaweed column that clogged. The mean pore size (2D) of both materials slightly decreased after water treatment with c. 11% reduction in calcified seaweed and c. 7% reduction in clinoptilolite. An increase in the proportion of crack-shaped pores was observed in both materials after the contaminated water treatment, most noticeably in the bottom of columns where contaminated water first reacted with the material. The distribution of pores (within a given image) derived from the distance transform indicated the largest morphological differences in materials was recorded in calcified seaweed columns, which is likely to impact significantly on their performance as barrier materials. The magnitude of porosity reduction over a short time period in relation to predicted barrier longevity suggest these and similar materials may be unsuited for barrier installation in their present form.

  19. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    EPA Science Inventory

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  20. Emerging roles for anionic non-bilayer phospholipids in fortifying the outer membrane permeability barrier.

    PubMed

    Bishop, Russell E

    2014-09-01

    Lately, researchers have been actively investigating Escherichia coli lptD mutants, which exhibit reduced transport of lipopolysaccharide to the cell surface. In this issue of the Journal of Bacteriology, Sutterlin et al. (H. A. Sutterlin, S. Zhang, and T. J. Silhavy, J. Bacteriol. 196:3214-3220, 2014) now reveal an important functional role for phosphatidic acid in fortifying the outer membrane permeability barrier in certain lptD mutant backgrounds. These findings come on the heels of the first reports of two LptD crystal structures, which now provide a structural framework for interpreting lptD genetics.

  1. Emerging Roles for Anionic Non-Bilayer Phospholipids in Fortifying the Outer Membrane Permeability Barrier

    PubMed Central

    2014-01-01

    Lately, researchers have been actively investigating Escherichia coli lptD mutants, which exhibit reduced transport of lipopolysaccharide to the cell surface. In this issue of the Journal of Bacteriology, Sutterlin et al. (H. A. Sutterlin, S. Zhang, and T. J. Silhavy, J. Bacteriol. 196:3214–3220, 2014) now reveal an important functional role for phosphatidic acid in fortifying the outer membrane permeability barrier in certain lptD mutant backgrounds. These findings come on the heels of the first reports of two LptD crystal structures, which now provide a structural framework for interpreting lptD genetics. PMID:25022852

  2. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function.

    PubMed

    Gruber, Robert; Elias, Peter M; Crumrine, Debra; Lin, Tzu-Kai; Brandner, Johanna M; Hachem, Jean-Pierre; Presland, Richard B; Fleckman, Philip; Janecke, Andreas R; Sandilands, Aileen; McLean, W H Irwin; Fritsch, Peter O; Mildner, Michael; Tschachler, Erwin; Schmuth, Matthias

    2011-05-01

    Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.

  3. Long-Term Blood-Brain Barrier Permeability Changes in Binswanger’s Disease

    PubMed Central

    Huisa, Branko N; Caprihan, Arvind; Thompson, Jeffrey; Prestopnik, Jillian; Qualls, Clifford R; Rosenberg, Gary A

    2015-01-01

    Background and Purpose The blood brain-barrier (BBB) is disrupted in small vessel disease (SVD) patients with lacunes and white matter hyperintensities (WMHs). The relationship of WMHs and regional BBB permeability changes has not been studied. We hypothesized that BBB disruption occurs in normal appearing WM (NAWM) and regions near the WMHs. To test the hypothesis, we repeated BBB permeability measurements in patients with extensive WMHs related to Binswanger’s disease (BD). Methods We selected a subset of 22 BD subjects from a well-characterized larger prospective vascular cognitive impairment cohort. We used 16 age-matched controls for comparison. The abnormal WM permeability (WMP) was measured twice over several years using dynamic contrast-enhanced MRI (DCEMRI). WMP maps were constructed from voxels above a predetermined threshold. Scans from first and second visits were co-registered. WM was divided into 3 regions: NAWM, WMH ring and WMH core. The ring was defined as 2mm on each side of the WMH border. WMP was calculated in each of the three specific regions. We used paired t-test, ANOVA and Fisher’s exact test to compare individual changes. Results WMP was significantly higher in subjects than controls (p<0.001). There was no correlation between WMH load and WMP. High permeability regions had minimal overlap between first and second scans. Nine percent of WMP was within the WMHs, 49% within the NAWM, and 52% within the WMH ring (p<0.001; ANOVA). Conclusions Increased BBB permeability in NAWM and close to the WMH borders supports a relationship between BBB disruption and development of WMHs. PMID:26205374

  4. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    PubMed

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. PMID:27018328

  5. Fish dispersal in fragmented landscapes: a modeling framework for quantifying the permeability of structural barriers.

    PubMed

    Pépino, Marc; Rodríguez, Marco A; Magnan, Pierre

    2012-07-01

    Dispersal is a key determinant of the spatial distribution and abundance of populations, but human-made fragmentation can create barriers that hinder dispersal and reduce population viability. This study presents a modeling framework based on dispersal kernels (modified Laplace distributions) that describe stream fish dispersal in the presence of obstacles to passage. We used mark-recapture trials to quantify summer dispersal of brook trout (Salvelinus fontinalis) in four streams crossed by a highway. The analysis identified population heterogeneity in dispersal behavior, as revealed by the presence of a dominant sedentary component (48-72% of all individuals) characterized by short mean dispersal distance (<10 m), and a secondary mobile component characterized by longer mean dispersal distance (56-1086 m). We did not detect evidence of barrier effects on dispersal through highway crossings. Simulation of various plausible scenarios indicated that detectability of barrier effects was strongly dependent on features of sampling design, such as spatial configuration of the sampling area, barrier extent, and sample size. The proposed modeling framework extends conventional dispersal kernels by incorporating structural barriers. A major strength of the approach is that ecological process (dispersal model) and sampling design (observation model) are incorporated simultaneously into the analysis. This feature can facilitate the use of prior knowledge to improve sampling efficiency of mark-recapture trials in movement studies. Model-based estimation of barrier permeability and its associated uncertainty provides a rigorous approach for quantifying the effect of barriers on stream fish dispersal and assessing population dynamics of stream fish in fragmented landscapes.

  6. Blood-brain barrier permeability of bioactive withanamides present in Withania somnifera fruit extract.

    PubMed

    Vareed, Shaiju K; Bauer, Alison K; Nair, Kavitha M; Liu, Yunbao; Jayaprakasam, Bolleddula; Nair, Muraleedharan G

    2014-08-01

    The neuroprotective effect of Withania somnifera L. Dunal fruit extract, in rodent models, is known. Withanamides, the primary active constituents in W.somnifera fruit extract exhibited neuroprotective effects against β-amyloid-induced cytotoxicity in neuronal cell culture studies. Therefore, we investigated the blood-brain barrier permeability of withanamides in W.somnifera fruit extract in mice using HPLC coupled with high resolution quadrupole time of flight mass spectrometer (Q-TOF/MS) detection. Mice were administered with 250 mg/kg of W.somnifera extract by intraperitoneal injection, and the blood and brain samples analyzed by Q-TOF/MS detection. Four major withanamides were detected in brain and blood of mice administered with W.somnifera extract. The results suggested that the withanamides crossed the blood-brain barrier. These results may help to develop W.somnifera fruit extract as a preventive or therapeutic botanical drug for stress-induced neurological disorders.

  7. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.

    PubMed

    Moraci, Nicola; Calabrò, Paolo S

    2010-11-01

    Long-term behaviour is a major issue related to the use of zero-valent iron (ZVI) in permeable reactive barriers for groundwater remediation; in fact, in several published cases the hydraulic conductivity and removal efficiency were progressively reduced during operation, potentially compromising the functionality of the barrier. To solve this problem, the use of granular mixtures of ZVI and natural pumice has recently been proposed. This paper reports the results of column tests using aqueous nickel and copper solutions of various concentrations. Three configurations of reactive material (ZVI only, granular mixture of ZVI and pumice, and pumice and ZVI in series) are discussed. The results clearly demonstrate that iron-pumice granular mixtures perform well both in terms of contaminant removal and in maintaining the long-term hydraulic conductivity. Comparison with previous reports concerning copper removal by ZVI/sand mixtures reveals higher performance in the case of ZVI/pumice.

  8. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up.

    PubMed

    Scherer, M M; Richter, S; Valentine, R L; Alvarez, P J

    2000-01-01

    Permeable reactive barriers (PRBs) are receiving a great deal of attention as an innovative, cost-effective technology for in situ clean up of groundwater contamination. A wide variety of materials are being proposed for use in PRBs, including zero-valent metals (e.g., iron metal), humic materials, oxides, surfactant-modified zeolites (SMZs), and oxygen- and nitrate-releasing compounds. PRB materials remove dissolved groundwater contaminants by immobilization within the barrier or transformation to less harmful products. The primary removal processes include: (1) sorption and precipitation, (2) chemical reaction, and (3) biologically mediated reactions. This article presents an overview of the mechanisms and factors controlling these individual processes and discusses the implications for the feasibility and long-term effectiveness of PRB technologies.

  9. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability

    PubMed Central

    Mooney, Skyler J.; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier. PMID:27459643

  10. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation.

    PubMed

    Erto, A; Lancia, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2011-01-01

    A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical-physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality.

  11. Effects of Ligusticum chuanxiong and Gastrodia elata on blood-brain barrier permeability in migraine rats.

    PubMed

    Wang, Qiang; Shen, Lan; Ma, Shiyu; Chen, Meiwan; Lin, Xiao; Hong, Yanlong; Liang, Shuang; Feng, Yi

    2015-06-01

    The two herbs Ligusticum chuanxiong (LC) Hort. (Umbelliferae) and Gastrodia elata (GE) Blume (Orchidaceae), are widely used in the clinic for the treatment of migraine. This article aims to understand the effects of LC and GE on blood-brain barrier (BBB) permeability in migraine rats. Serotonin, excitatory amino acids (EAAs) and matrix metalloproteinase-9 (MMP-9) were determined at different sampling times to assess BBB disruption during a migraine attack. BBB permeability was examined by fluorescence imaging and Evans blue dye (EBD) extravasation. The results showed that the expression of serotonin in migraine rat brain was enhanced from 30 min to 120 min and glutamate (Glu) was suppressed from 30 min to 60 min in LC-GE group compared with the model group (p < 0.05 or 0.01), while the MMP-9 levels in migraine rat blood was increased at 30 min as well as decreased at 120 min in LC-GE group compared with the model group (p < 0.05 or 0.01). EBD levels in rat brain were significantly lower at 30-60 min and 120-150 min in LC-GE group than that of the model group (p < 0.05 or 0.01). Our findings demonstrated that LC and GE might decrease BBB permeability and maintain its integrity through regulating serotonin, EAAs and MMP-9 in migraine rats. PMID:26189306

  12. Aging and sex influence the permeability of the blood-brain barrier in the rat

    SciTech Connect

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer ({sup 14}C)-{alpha}-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels.

  13. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  14. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  15. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.

    PubMed

    Obiri-Nyarko, Franklin; Grajales-Mesa, S Johana; Malina, Grzegorz

    2014-09-01

    Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs.

  16. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  17. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice.

    PubMed

    Guan, Guiping; Wang, Hongbing; Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  18. Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer.

    PubMed

    Folch, Albert; Vilaplana, Marcel; Amado, Leila; Vicent, Teresa; Caminal, Glòria

    2013-11-15

    Biobarriers, as permeable reactive barriers (PRBs), are a common technology that mainly uses bacteria to remediate groundwater in polluted aquifers. In this study, we propose to use Trametes versicolor, a white-rot fungus, as the reactive element because of its capacity to degrade a wide variety of highly recalcitrant and xenobiotic compounds. A laboratory-scale artificial aquifer was constructed to simulate groundwater flow under real conditions in shallow aquifers. Orange G dye was chosen as a contaminant to visually monitor the hydrodynamic behaviour of the system and any degradation of the dye by the fungus. Batch experiments at different pH values (6 and 7) and several temperatures (15 °C, 18 °C, 20 °C and 25 °C) were performed to select the appropriate residence time and glucose consumption rate required for continuous treatment. The maximum Orange G degradation was 97%. Continuous degradation over 85% was achieved for more than 8 days. Experimental results indicate for the first time that this fungus can potentially be used as a permeable reactive barrier in real aquifers.

  19. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements.

  20. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.

    PubMed

    Obiri-Nyarko, Franklin; Grajales-Mesa, S Johana; Malina, Grzegorz

    2014-09-01

    Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs. PMID:24997925

  1. Quantitative assessment of the permeability of the rat blood-retinal barrier to small water-soluble non-electrolytes.

    PubMed

    Lightman, S L; Palestine, A G; Rapoport, S I; Rechthand, E

    1987-08-01

    1. The passive permeability of the blood-retinal barrier (b.r.b.) to the water-soluble non-electrolytes, sucrose and mannitol, was determined using a multiple time point-graphical approach as has been used in the assessment of blood-brain barrier (b.b.b.) permeability. 2. The calculated permeability surface area product for the b.r.b. for sucrose was 0.44 (+/- 0.081 S.E. of mean) X 10(-5) ml g-1 s-1 (n = 20) and for mannitol was 1.25 (+/- 0.30) X 10(-5) ml g-1 s-1 (n = 18). These values are similar and comparable to those found for the capillaries in the brain (P greater than 0.05) and significantly different from zero (P less than 0.01). 3. Data on the concentrations of sucrose in different parts of the eye show that the permeability of the blood-retinal barrier, rather than the more permeable blood-aqueous barrier permeability, was being measured by our technique. PMID:3119820

  2. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2016-02-01

    Fenestrated capillaries of the sensory circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis, the subfornical organ and the area postrema, lack completeness of the blood-brain barrier (BBB) to sense a variety of blood-derived molecules and to convey the information into other brain regions. We examine the vascular permeability of blood-derived molecules and the expression of tight-junction proteins in sensory CVOs. The present tracer assays revealed that blood-derived dextran 10 k (Dex10k) having a molecular weight (MW) of 10,000 remained in the perivascular space between the inner and outer basement membranes, but fluorescein isothiocyanate (FITC; MW: 389) and Dex3k (MW: 3000) diffused into the parenchyma. The vascular permeability of FITC was higher at central subdivisions than at distal subdivisions. Neither FITC nor Dex3k diffused beyond the dense network of glial fibrillar acidic protein (GFAP)-positive astrocytes/tanycytes. The expression of tight-junction proteins such as occludin, claudin-5 and zonula occludens-1 (ZO-1) was undetectable at the central subdivisions of the sensory CVOs but some was expressed at the distal subdivisions. Electron microscopic observation showed that capillaries were surrounded with numerous layers of astrocyte processes and dendrites. The expression of occludin and ZO-1 was also observed as puncta on GFAP-positive astrocytes/tanycytes of the sensory CVOs. Our study thus demonstrates the heterogeneity of vascular permeability and expression of tight-junction proteins and indicates that the outer basement membrane and dense astrocyte/tanycyte connection are possible alternative mechanisms for a diffusion barrier of blood-derived molecules, instead of the BBB. PMID:26048259

  3. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice.

    PubMed

    Li, Ching-Hao; Shyu, Ming-Kwang; Jhan, Cheng; Cheng, Yu-Wen; Tsai, Chi-Hao; Liu, Chen-Wei; Lee, Chen-Chen; Chen, Ruei-Ming; Kang, Jaw-Jou

    2015-11-01

    Gold nanoparticles (Au-NPs) are being increasingly used as constituents in cosmetics, biosensors, bioimaging, photothermal therapy, and targeted drug delivery. This elevated exposure to Au-NPs poses systemic risks in humans, particularly risks associated with the biodistribution of Au-NPs and their potent interaction with biological barriers. We treated human umbilical vein endothelial cells with Au-NPs and comprehensively examined the expression levels of tight junction (TJ) proteins such as occludin, claudin-5, junctional adhesion molecules, and zonula occludens-1 (ZO-1), as well as endothelial paracellular permeability and the intracellular signaling required for TJ organization. Moreover, we validated the effects of Au-NPs on the integrity of TJs in mouse brain microvascular endothelial cells in vitro and obtained direct evidence of their influence on blood-brain barrier (BBB) permeability in vivo. Treatment with Au-NPs caused a pronounced reduction of PKCζ-dependent threonine phosphorylation of occludin and ZO-1, which resulted in the instability of endothelial TJs and led to proteasome-mediated degradation of TJ components. This impairment in the assembly of TJs between endothelial cells increased the permeability of the transendothelial paracellular passage and the BBB. Au-NPs increased endothelial paracellular permeability in vitro and elevated BBB permeability in vivo. Future studies must investigate the direct and indirect toxicity caused by Au-NP-induced endothelial TJ opening and thereby address the double-edged-sword effect of Au-NPs.

  4. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model.

    PubMed

    Booth, R; Kim, H

    2014-12-01

    This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood-brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm(2) shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from -4.06 to -3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R (2) > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.

  5. Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets

    PubMed Central

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087

  6. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.

    PubMed

    Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M

    2016-01-15

    There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability

  7. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability

    PubMed Central

    Heye, Anna K.; Thrippleton, Michael J.; Armitage, Paul A.; Valdés Hernández, Maria del C.; Makin, Stephen D.; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M.

    2016-01-01

    There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model

  8. An Injectable Apatite Permeable Reactive Barrier for In Situ 90Sr Immobilization

    SciTech Connect

    Vermeul, Vincent R.; Szecsody, James E.; Fritz, Brad G.; Williams, Mark D.; Moore, Robert C.; Fruchter, Jonathan S.

    2014-04-16

    An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium-phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. An integrated, multi-scale development and testing approach was used that included laboratory bench-scale experiments, an initial pilot-scale field test, and the emplacement and evaluation of a 300-ft-long treatability-test-scale PRB. Standard groundwater wells were used for emplacement of the treatment zone, allowing treatment of contaminants too deep below ground surface for trench-and-fill type PRB technologies. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca-citrate complex and the other a Na-phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91-m (300-ft) -long permeable reactive barrier on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate the barrier is meeting performance objectives. The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.

  9. iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function.

    PubMed

    Brooke, Matthew A; Etheridge, Sarah L; Kaplan, Nihal; Simpson, Charlotte; O'Toole, Edel A; Ishida-Yamamoto, Akemi; Marches, Olivier; Getsios, Spiro; Kelsell, David P

    2014-08-01

    iRHOM2 is a highly conserved, catalytically inactive member of the Rhomboid family, which has recently been shown to regulate the maturation of the multi-substrate ectodomain sheddase enzyme ADAM17 (TACE) in macrophages. Dominant iRHOM2 mutations are the cause of the inherited cutaneous and oesophageal cancer-susceptibility syndrome tylosis with oesophageal cancer (TOC), suggesting a role for this protein in epithelial cells. Here, using tissues derived from TOC patients, we demonstrate that TOC-associated mutations in iRHOM2 cause an increase in the maturation and activity of ADAM17 in epidermal keratinocytes, resulting in significantly upregulated shedding of ADAM17 substrates, including EGF-family growth factors and pro-inflammatory cytokines. This activity is accompanied by increased EGFR activity, increased desmosome processing and the presence of immature epidermal desmosomes, upregulated epidermal transglutaminase activity and heightened resistance to Staphylococcal infection in TOC keratinocytes. Many of these features are consistent with the presence of a constitutive wound-healing-like phenotype in TOC epidermis, which may shed light on a novel pathway in skin repair, regeneration and inflammation.

  10. FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties

    PubMed Central

    Frey, Steffen; Görlich, Dirk

    2009-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo-cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation-promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin-mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self-healing' properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs. PMID:19680227

  11. Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall).

    PubMed

    Lu, Xiaoxia; Wilson, John T; Shen, Hai; Henry, Bruce M; Kampbell, Donald H

    2008-01-01

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base in Oklahoma, USA to treat trichloroethylene (TCE) contamination in groundwater emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 meters deep, and 0.5 meters wide. The barrier is also called a Biowall because one of the mechanisms for removal of TCE is anaerobic biodegradation. This study aimed at evaluating the performance of the pilot-scale Biowall after its installation. Data from over four years' monitoring indicated that the Biowall greatly changed geochemistry in the study area and stimulated TCE removal. The concentration of TCE in the Biowall and downgradient of the Biowall was greatly reduced as compared to that in ground water upgradient of the Biowall, while the concentration of cis-DCE in the Biowall and downgradient of the Biowall was much higher than that observed upgradient of the Biowall. Over time, the concentration of vinyl chloride in the Biowall and downgradient of the Biowall increased. Dehalococcoides DNA was detected within and downgradient of the Biowall, corresponding to the observation that vinyl chloride was produced at these locations. Results from a tracer study indicated that the regional groundwater flow pattern ultimately determined the flow direction in the area around the Biowall. The natural groundwater velocity was estimated at an average of 0.060 +/- 0.015 m/d.

  12. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater.

    PubMed

    Vogan, J L; Focht, R M; Clark, D K; Graham, S L

    1999-08-12

    A pilot-scale permeable reactive barrier (PRB) consisting of granular iron was installed in May 1995 at an industrial facility in New York to evaluate the use of this technology for remediation of chlorinated volatile organic compounds (VOCs) in groundwater. The performance of the barrier was monitored over a 2-year period. Groundwater velocity through the barrier was determined using water level measurements, tracer tests, and in situ velocity measurements. While uncertainty in the measured groundwater velocity hampered interpretation of results, the VOC concentration data from wells in the PRB indicated that VOC degradation rates were similar to those anticipated from laboratory results. Groundwater and core analyses indicated that formation of carbonate precipitates occurred in the upgradient section of the iron zone, however, these precipitates did not appear to adversely affect system performance. There was no indication of microbial fouling of the system over the monitoring period. Based on the observed performance of the pilot, a full-scale iron PRB was installed at the site in December 1997.

  13. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  14. Evaluation of a permeable reactive barrier to capture and degrade hydrocarbon contaminants.

    PubMed

    Mumford, K A; Powell, S M; Rayner, J L; Hince, G; Snape, I; Stevens, G W

    2015-08-01

    A permeable reactive barrier (PRB) was installed during 2005/2006 to intercept, capture and degrade a fuel spill at the Main Power House, Casey Station, Antarctica. Here, evaluation of the performance of the PRB is conducted via interpretation of total petroleum hydrocarbon (TPH) concentrations, degradation indices and most probable number (MPN) counts of total heterotroph and fuel degrading microbial populations. Results indicate that locations which contained the lowest TPH concentrations also exhibited the highest levels of degradation and numbers of fuel degrading microbes, based on the degradation indices and MPN methods selected. This provides insights to the most appropriate reactive materials for use in PRB's in cold and nutrient-limited environments. PMID:25899942

  15. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    EPA Science Inventory

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  16. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).

    PubMed

    Bujak, Renata; Struck-Lewicka, Wiktoria; Kaliszan, Michał; Kaliszan, Roman; Markuszewski, Michał J

    2015-04-10

    The goal of the present paper was to develop a quantitative structure-activity relationship (QSAR) method using a simple statistical approach, such as multiple linear regression (MLR) for predicting the blood-brain barrier (BBB) permeability of chemical compounds. The "best" MLR models, comprised logP and either molecular mass (M) or isolated atomic energy (E(isol)), tested on a structurally diverse set of 66 compounds, is characterized the by correlation coefficients (R) around 0.8. The obtained models were validated using leave-one-out (LOO) cross-validation technique and the correlation coefficient of leave-one-out- R(LOO)(2) (Q(2)) was at least 0.6. Analysis of a case from legal medicine demonstrated informative value of our QSAR model. To best authors' knowledge the present study is a first application of the developed QSAR models of BBB permeability to case from the legal medicine. Our data indicate that molecular energy-related descriptors, in combination with the well-known descriptors of lipophilicity may have a supportive value in predicting blood-brain distribution, which is of utmost importance in drug development and toxicological studies.

  17. Activation of epidermal toll-like receptor 2 enhances tight junction function – Implications for atopic dermatitis and skin barrier repair

    PubMed Central

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y.; Ivanov, Andrei I.; Barnes, Kathleen C.; Gallo, Richard L.; Borkowski, Andrew W.; Yamasaki, Kenshi; Leung, Donald Y.; Georas, Steve N.; De Benedetto, Anna; Beck, Lisa A.

    2012-01-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier. PMID:23223142

  18. Extracellular fluid movement in the pulp; the pulp/dentin permeability barrier.

    PubMed

    Bishop, M A

    1992-01-01

    Fluid movement in the pulp depends largely upon the physiology of the blood vessels; normally there is a net efflux of fluid and proteins from the capillaries into the extracellular environment. Most pulp capillaries lie close to the odontoblast layer and in order to see whether fluid can pass between the odontoblasts into the predentin we have perfused the vessels of molar tooth germs in anesthetized piglets with the electron dense tracer lanthanum. The results show that the tracer permeates the capillaries but encounters a barrier to permeability at the apical (predentinal) ends of the odontoblasts. The completeness of the barrier to the tracer lanthanum is discussed together with structural evidence of tight junctions between odontoblasts in both pigs and humans and the presence of collagen fibers through the tight junctional zone. It is concluded that there is little or no evidence that pulp fluid is normally confluent with predentin. An advantage of this arrangement may be that by maintaining an enclosed microenvironment it permits regulation of the orderly process of matrix deposition and mineralization of predentin to dentin. In order to maintain constant vascular and extracellular fluid pressures the capillary efflux has to be balanced by fluid removal; recent work in cats has shown that lymphatic vessels are available to transport fluid out of the pulp. In this paper the differences in the intrapulpal distribution of these vessels have been extrapolated to human teeth in an attempt to explain certain variations in the symptoms and progress of pulpal inflammatory conditions. PMID:1508889

  19. Asef controls vascular endothelial permeability and barrier recovery in the lung

    PubMed Central

    Tian, Xinyong; Tian, Yufeng; Gawlak, Grzegorz; Meng, Fanyong; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A.

    2015-01-01

    Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef−/− mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury. PMID:25518936

  20. Asef controls vascular endothelial permeability and barrier recovery in the lung.

    PubMed

    Tian, Xinyong; Tian, Yufeng; Gawlak, Grzegorz; Meng, Fanyong; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-02-15

    Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef(-/-) mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury. PMID:25518936

  1. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.

    PubMed

    Lee, Tony R; Wilkin, Richard T

    2010-07-30

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently observed as a secondary mineral precipitate in granular iron PRBs. Mineralogical characterization was carried out using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray absorption spectroscopy on materials collected from three field-based PRBs in the US (East Helena, MT; Elizabeth City, NC; Denver Federal Center, CO). These PRBs were installed to treat a range of contaminants, including chlorinated organics, hexavalent chromium, and arsenic. Results obtained indicate that chukanovite is a prevalent secondary precipitate in the PRBs. Laboratory experiments on high-purity chukanovite separates were carried out to constrain the room-temperature solubility for this mineral. An estimated Gibbs energy of formation (Delta(f)G degrees) for chukanovite is -1174.4 +/- 6 kJ/mol. A mineral stability diagram is consistent with observations from the field. Water chemistry from the three reactive barriers falls inside the predicted stability field for chukanovite, at inorganic carbon concentrations intermediate to the stability fields of siderite and ferrous hydroxide. These new data will aid in developing better predictive models of mineral accumulation in zerovalent iron PRBs.

  2. Injection-extraction treatment well pairs: an alternative to permeable reactive barriers.

    PubMed

    Cunningham, Jeffrey A; Reinhard, Martin

    2002-01-01

    Two of the biggest drawbacks of using permeable reactive barriers (PRBs) to treat contaminated ground water are the high capital cost of installation, particularly when the contaminated ground water is deep below ground surface, and the uncertainty of whether or not PRBs remain effective for the long time scales (e.g., decades) needed for many contaminant plumes. The use of an injection-extraction treatment well pair (IETWP) for capture and treatment of contaminated ground water can circumvent these difficulties, while still providing many of the same advantages offered by PRBs. In this paper, the hydraulics of IETWPs and PRBs are compared, focusing primarily on the width of the captured plume. It is demonstrated that IETWPs act as hydraulic barriers in a manner similar to PRBs, and that IETWPs provide excellent plume capture. A mathematical expression is presented for the plume capture width of an IETWP oriented perpendicular to the ground water flow direction in a homogeneous aquifer. Also discussed are other practical considerations that might determine whether an IETWP is better suited than a PRB for a particular contaminated site; these considerations include operating and maintenance costs, and the conditions under which an IETWP system can be used for in situ remediation.

  3. PERMEABLE REACTIVE SUBSURFACE BARRIERS FOR THE INTERCEPTION AND REMEDIATION OF CHLORINATED HYDROCARBON AND CHROMIUM (VI) PLUMES IN GROUND WATER

    EPA Science Inventory

    This document concerns the use of permeable reactive subsurface barriers for the remediation of plumes of chlorinated hydrocarbons and Cr(VI) species in ground water, using zero-valent iron (Fe0) as the reactive substrate. Such systems have undergone thorough laboratory research,...

  4. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS USING ZERO-VALENT IRON: GEOCHEMICAL AND MICROBIOLOGICAL EFFECTS

    EPA Science Inventory

    Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These ground water treatment systems use zero-valent iron filings (Peerless Meta...

  5. SCANNING ELECTRON ANALYSIS OF IRON FILINGS FROM A ZERO-VALENT IRON PERMEABLE BARRIER USED FOR GROUND WATER RESTORATION

    EPA Science Inventory

    Permeable iron reactive barriers have become a popular way to remediate contaminated ground water. Although this technology has been in use for about a decade, there is still little knowledge about long-term performance issues (l). One of the biggest concerns is the corrosion of ...

  6. Fifteen-year Assessment of a Permeable Reactive Barrier for Treatment of Chromate and Trichloroethylene in Groundwater

    EPA Science Inventory

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium sou...

  7. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    EPA Science Inventory

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  8. TREATMENT OF METALS IN GROUND WATER USING AN ORGANIC-BASED SULFATE-REDUCING PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI) filings, limestone and pea gravel was evaluated at a former phosphate fertilizer manufacturing facility in Charleston, S.C. The PRB is designed to treat arsenic and heavy met...

  9. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.

    PubMed

    Wang, Yu; Pleasant, Saraya; Jain, Pradeep; Powell, Jon; Townsend, Timothy

    2016-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Two in situ permeable reactive barriers (PRBs), comprised of limestone and crushed concrete, were installed downgradient of a closed, unlined landfill in Florida, USA, to remediate groundwater containing high concentrations of these metals. Influent groundwater to the PRBs contained mean Fe and Mn concentrations of approximately 30mg/L and 1.62mg/L, respectively. PRBs were constructed in the shallow aquifer (maximum depth 4.6m below land surface) and groundwater was sampled from a network of nearby monitoring wells to evaluate barrier performance in removing these metals. PRBs significantly (p<0.05) removed dissolved Fe and Mn from influent groundwater; Fe was removed from influent water at average rates of 91% and 95% (by mass) for the limestone and crushed concrete PRBs, respectively, during the first year of the study. The performance of the PRBs declined after 3years of operation, with Fe removal efficiency decreasing to 64% and 61% for limestone and concrete PRBs, respectively. A comparison of water quality in shallow and deep monitoring wells showed a more dramatic performance reduction in the deeper section of the concrete PRB, which was attributed to an influx of sediment into the barrier and settling of particulates from the upper portions of the PRBs. Although removal of Fe and Mn from redox impacts was achieved with the PRBs, the short time frame of effectiveness relative to the duration of a full-scale remediation effort may limit the applicability of these systems at some landfills because of the construction costs required.

  10. Morphological evidence for a permeability barrier in the testis and spermatic duct of Gymnotus carapo (Teleostei: Gymnotidae).

    PubMed

    Meneguelli De Souza, Lara C; Retamal, Claudio A; Rocha, Gustavo M; Lopez, Maria Luisa

    2015-09-01

    Cell-cell interactions play essential roles in the regulation of gametogenesis. The involvement of junctional complexes in permeability barriers, for example, provides structural and physiological support for male germ-cell development. This study describes morphological characteristics of the reproductive system of Gymnotus carapo, a neo-tropical freshwater fish widely distributed in South and Central America, focusing on the detection of permeability barriers using morphological and biochemical approaches. Ultrastructural analysis of testes treated with the lanthanum nitrate exclusion technique showed that the tracer penetrated the interstitial compartment of the testis, surrounding and appearing within cysts containing spermatogonia and spermatocytes in early stages of meiosis, but was not detected in the spermatid cysts or inside the lumen of spermatogenic tubules. These results suggest the presence of a permeability barrier that is stabilized after meiosis is completed and serves to protect the haploid cells from the vascular system. In the spermatic-duct region, the tracer was obstructed near the lumen of the duct. Junctional complexes and focal tight junctions between adjacent cells were observed in the testis and spermatic duct. Freeze-fracture methods indeed confirmed the presence of tight junctions, which were visualized as parallel rows of individual particles between adjacent cells. More evidence supporting the existence of a permeability barrier was gathered from differences observed in the electrophoretic protein profiles of testis and spermatic-duct fluids compared to blood plasma. Together, these observations demonstrate the existence of a permeability barrier formed by tight junctions in the testis and spermatic duct of G. carapo. PMID:26073744

  11. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity

    PubMed Central

    Kumar, Vinod; Bouameur, Jamal-Eddine; Bär, Janina; Rice, Robert H.; Hornig-Do, Hue-Tran; Roop, Dennis R.; Schwarz, Nicole; Brodesser, Susanne; Thiering, Sören; Leube, Rudolf E.; Wiesner, Rudolf J.; Vijayaraj, Preethi; Brazel, Christina B.; Heller, Sandra; Binder, Hans; Löffler-Wirth, Henry; Seibel, Peter

    2015-01-01

    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation. PMID:26644517

  12. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters.

    PubMed

    Hoque, M Tozammel; Kis, Olena; De Rosa, María F; Bendayan, Reina

    2015-05-01

    The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [(3)H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-L-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [(3)H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [(3)H]raltegravir efflux ratios. In rat intestinal segments, [(3)H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 μM) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([(3)H]mitoxantrone), or MRP1 [2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing

  13. Application Of Immobilized Sulfate Reducing Bacteria For Permeable Reactive Barriers In Abandoned Coal Mines

    NASA Astrophysics Data System (ADS)

    Kim, K.; Hur, W.; Choi, S.; Min, K.; Baek, H.

    2006-05-01

    The decline of the Korean coal industry has been drastic in production and consumption. This has been resulted mainly from the environmental concern and the collapse of commercial viability, which has eventually necessitated the government to implement the coal industry rationalization policies to reduce coal production and close down uneconomical mines. The overall drainage rates from abandoned coal mines reaches up to 80,000 ton/day. As a measure of controlling the acid mine drainage from abandoned coal mines, reactive materials in the pathways of drainage, designed to intercept and to transform the contaminants into environmentally acceptable forms can be applied at mines with small drainage rates. The main objective of this study is to design a permeable reactive barrier(PRB) to treat low flow and/or low contaminant loads of acid mine drainage. The PRB is comprised of immobilized sulfate reducing bacteria in hard beads and limestone to remove heavy metals and to raise the pH of AMD. A laboratory reactor was used to prepare a mixed culture of sulfate reducing bacteria. The microbes were separated and mixed with biodegradable matrix to form spherical beads. In order to maintain the viability of micro-organisms for a prolonged period, substrates such as saw dust, polysaccharide or glycerol was supplemented for the beads preparation. The strength of beads fortified by powered limestone to control the permeability of PRB. Different mixtures of limestone and the immobilized beads were tested to determine hydraulic conductivity and AMD treatment capacities. The characteristics of the spherical beads at various pH of AMD was investigated.

  14. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.

    PubMed

    Ahmad, Farrukh; Schnitker, Stephen P; Newell, Charles J

    2007-02-20

    Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h(-1) based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.

  15. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  16. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers

    NASA Astrophysics Data System (ADS)

    Ahmad, Farrukh; Schnitker, Stephen P.; Newell, Charles J.

    2007-02-01

    Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h - 1 based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.

  17. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This

  18. Tight junction regulates epidermal calcium ion gradient and differentiation

    SciTech Connect

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  19. Permeable Reactive Barriers Designed To Mitigate Eutrophication Alter Bacterial Community Composition and Aquifer Redox Conditions

    PubMed Central

    Hiller, Kenly A.; Foreman, Kenneth H.; Weisman, David

    2015-01-01

    Permeable reactive barriers (PRBs) consist of a labile carbon source that is positioned to intercept nitrate-laden groundwater to prevent eutrophication. Decomposition of carbon in the PRB drives groundwater anoxic, fostering microbial denitrification. Such PRBs are an ideal habitat to examine microbial community structure under high-nitrate, carbon-replete conditions in coastal aquifers. We examined a PRB installed at the Waquoit Bay National Estuarine Research Reserve in Falmouth, MA. Groundwater within and below the PRB was depleted in oxygen compared to groundwater at sites upgradient and at adjacent reference sites. Nitrate concentrations declined from a high of 25 μM upgradient and adjacent to the barrier to <0.1 μM within the PRB. We analyzed the total and active bacterial communities filtered from groundwater flowing through the PRB using amplicons of 16S rRNA and of the 16S rRNA genes. Analysis of the 16S rRNA genes collected from the PRB showed that the total bacterial community had high relative abundances of bacteria thought to have alternative metabolisms, such as fermentation, including candidate phyla OD1, OP3, TM7, and GN02. In contrast, the active bacteria had lower abundances of many of these bacteria, suggesting that the bacterial taxa that differentiate the PRB groundwater community were not actively growing. Among the environmental variables analyzed, dissolved oxygen concentration explained the largest proportion of total community structure. There was, however, no significant correlation between measured environmental parameters and the active microbial community, suggesting that controls on the active portion may differ from the community as a whole. PMID:26231655

  20. Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances

    SciTech Connect

    Trnovec, T.; Kallay, Z.; Bezek, S. )

    1990-12-01

    Ionizing radiation can impair the integrity of the blood brain barrier (BBB). Data on early and late damage after brain irradiation are usually reported separately, yet a gradual transition between these two types has become evident. Signs appearing within 3 weeks after irradiation are considered to be early manifestations. The mechanism of radiation-effected integrity impairment of the BBB is discussed in relation to changes in morphological structures forming the BBB, the endothelium of intracerebral vessels, and in the surrounding astrocytes. Alterations in the function of the BBB are manifested in the endothelium by changes in the ultrastructural location of the activity of phosphatases and by the activation of pinocytotic vesicular transport, and in astrocyte cytoplasm by glycogen deposition. The changes in ultrastructure were critically surveyed with regard to increasing doses of radiation to the brain in the range of 5 Gy to 960 Gy. The qualitative as well as the semiquantitative and quantitative observations on the passage of substances across the damaged BBB were treated separately. Qualitative changes are based mainly on findings of extravasation of vital stains and of labelled proteins. The quantitative studies established differences in radiation-induced changes in the permeability of the BBB depending on the structure and physico-chemical properties of the barrier penetrating tracers. Indirect evaluation of radiation-induced BBB changes is based on studies of pharmacological effects of substances acting on the CNS. In conclusion, radiation impairs significantly the integrity of the BBB following single irradiation of the brain with a dose exceeding 10-15 Gy. The response of the BBB to ionizing radiation is dependent both on the dose to which the brain is exposed and on specific properties of the tracer. 68 references.

  1. Permeable Reactive Barriers Designed To Mitigate Eutrophication Alter Bacterial Community Composition and Aquifer Redox Conditions.

    PubMed

    Hiller, Kenly A; Foreman, Kenneth H; Weisman, David; Bowen, Jennifer L

    2015-10-01

    Permeable reactive barriers (PRBs) consist of a labile carbon source that is positioned to intercept nitrate-laden groundwater to prevent eutrophication. Decomposition of carbon in the PRB drives groundwater anoxic, fostering microbial denitrification. Such PRBs are an ideal habitat to examine microbial community structure under high-nitrate, carbon-replete conditions in coastal aquifers. We examined a PRB installed at the Waquoit Bay National Estuarine Research Reserve in Falmouth, MA. Groundwater within and below the PRB was depleted in oxygen compared to groundwater at sites upgradient and at adjacent reference sites. Nitrate concentrations declined from a high of 25 μM upgradient and adjacent to the barrier to <0.1 μM within the PRB. We analyzed the total and active bacterial communities filtered from groundwater flowing through the PRB using amplicons of 16S rRNA and of the 16S rRNA genes. Analysis of the 16S rRNA genes collected from the PRB showed that the total bacterial community had high relative abundances of bacteria thought to have alternative metabolisms, such as fermentation, including candidate phyla OD1, OP3, TM7, and GN02. In contrast, the active bacteria had lower abundances of many of these bacteria, suggesting that the bacterial taxa that differentiate the PRB groundwater community were not actively growing. Among the environmental variables analyzed, dissolved oxygen concentration explained the largest proportion of total community structure. There was, however, no significant correlation between measured environmental parameters and the active microbial community, suggesting that controls on the active portion may differ from the community as a whole.

  2. A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing

    PubMed Central

    Nakano, Yoko; Kim, Sung H.; Kim, Hyoung-Mi; Sanneman, Joel D.; Zhang, Yuzhou; Smith, Richard J. H.; Marcus, Daniel C.; Wangemann, Philine; Nessler, Randy A.; Bánfi, Botond

    2009-01-01

    Hereditary hearing loss is one of the most common birth defects, yet the majority of genes required for audition is thought to remain unidentified. Ethylnitrosourea (ENU)–mutagenesis has been a valuable approach for generating new animal models of deafness and discovering previously unrecognized gene functions. Here we report on the characterization of a new ENU–induced mouse mutant (nmf329) that exhibits recessively inherited deafness. We found a widespread loss of sensory hair cells in the hearing organs of nmf329 mice after the second week of life. Positional cloning revealed that the nmf329 strain carries a missense mutation in the claudin-9 gene, which encodes a tight junction protein with unknown biological function. In an epithelial cell line, heterologous expression of wild-type claudin-9 reduced the paracellular permeability to Na+ and K+, and the nmf329 mutation eliminated this ion barrier function without affecting the plasma membrane localization of claudin-9. In the nmf329 mouse line, the perilymphatic K+ concentration was found to be elevated, suggesting that the cochlear tight junctions were dysfunctional. Furthermore, the hair-cell loss in the claudin-9–defective cochlea was rescued in vitro when the explanted hearing organs were cultured in a low-K+ milieu and in vivo when the endocochlear K+-driving force was diminished by deletion of the pou3f4 gene. Overall, our data indicate that claudin-9 is required for the preservation of sensory cells in the hearing organ because claudin-9–defective tight junctions fail to shield the basolateral side of hair cells from the K+-rich endolymph. In the tight-junction complexes of hair cells, claudin-9 is localized specifically to a subdomain that is underneath more apical tight-junction strands formed by other claudins. Thus, the analysis of claudin-9 mutant mice suggests that even the deeper (subapical) tight-junction strands have biologically important ion barrier function. PMID:19696885

  3. Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes.

    PubMed

    Piwkowska, Agnieszka; Rogacka, Dorota; Audzeyenka, Irena; Kasztan, Małgorzata; Angielski, Stefan; Jankowski, Maciej

    2015-08-01

    Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²⁺-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory β subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes. PMID:25952906

  4. Evaluation of the increase in permeability of the blood–brain barrier during tumor progression after pulsed focused ultrasound

    PubMed Central

    Yang, Feng-Yi; Wang, Hsin-Ell; Lin, Guan-Liang; Lin, Hui-Hsien; Wong, Tai-Tong

    2012-01-01

    Purpose The purpose of this study was to evaluate the permeability of the blood–brain barrier after sonication by pulsed high-intensity focused ultrasound and to determine if such an approach increases the tumor:ipsilateral brain permeability ratio. Materials and methods F98 glioma-bearing Fischer 344 rats were injected intravenously with Evans blue with or without blood–tumor barrier disruption induced by transcranial pulsed high-intensity focused ultrasound. Sonication was applied at a frequency of 1 MHz with a 5% duty cycle and a repetition frequency of 1 Hz. The permeability of the blood–brain barrier was assessed by the extravasation of Evans blue. Contrast-enhanced magnetic resonance images were used to monitor the gadolinium deposition path associated with transcranial pulsed high-intensity focused ultrasound, and the influencing size and location was also investigated. In addition, whole brain histological analysis was performed. The results were compared by two-tailed unpaired t-test. Results The accumulation of Evans blue in brains and the tumor:ipsilateral brain permeability ratio of Evans blue were significantly increased after pulsed high-intensity focused ultrasound exposure. Evans blue injection followed by sonication showed an increase in the tumor:ipsilateral brain ratio of the target tumors (9.14:1) of about 2.23-fold compared with the control tumors (x4.09) on day 6 after tumor implantation. Magnetic resonance images showed that pulsed high-intensity focused ultrasound locally enhances the permeability of the blood–tumor barrier in the glioma-bearing rats. Conclusion This method could allow enhanced synergistic effects with respect to other brain tumor treatment regimens. PMID:22359451

  5. Use of ground tire rubber in reactive permeable barriers to mitigate BTEX compounds

    SciTech Connect

    Kershaw, D.S.; Pamukcu, S.

    1997-12-31

    The ability of ground tire rubber to sorb BTEX compounds from groundwater was examined. The current study consisted of running both batch and packed bed column tests to determine the sorption capacity, the flow through utilization efficiency and the reversibility of BTEX sorption to ground tire rubber. Sorption tests for an equilibrium concentration of the contaminant in solution of 10 mg/L showed that the adsorption capacity of ground tire rubber based on a percentage of the adsorption capacity of activated carbon is: 5% for benzene, 4% for toluene, 4% for ethylbenzene, and 8% for p-xylene. Column tests produced utilization efficiencies for ground tire rubber of 32% to 61% when in contact with the contaminant for 36 minutes. Sorption tests indicate no measurable reduction in sorption capacity after 8 consecutive sorption/desorption tests. Possible future uses of ground rubber as a sorption media could include the use of ground rubber as an aggregate in slurry cut-off walls, or as a sorption media in in-situ reactive permeable barriers.

  6. Early breakthrough of molybdenum and uranium in a permeable reactive barrier.

    PubMed

    Morrison, Stan J; Mushovic, Paul S; Niesen, Preston L

    2006-03-15

    A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Cañon City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI. PMID:16570630

  7. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.

    PubMed

    Weber, Anne; Ruhl, Aki S; Amos, Richard T

    2013-08-01

    The reactive and hydraulic efficacy of zero valent iron permeable reactive barriers (ZVI PRBs) is strongly affected by geochemical composition of the groundwater treated. An enhanced version of the geochemical simulation code MIN3P was applied to simulate dominating processes in chlorinated hydrocarbons (CHCs) treating ZVI PRBs including geochemical dependency of ZVI reactivity, gas phase formation and a basic formulation of degassing. Results of target oriented column experiments with distinct chemical conditions (carbonate, calcium, sulfate, CHCs) were simulated to parameterize the model. The simulations demonstrate the initial enhancement of anaerobic iron corrosion due to carbonate and long term inhibition by precipitates (chukanovite, siderite, iron sulfide). Calcium was shown to enhance long term corrosion due to competition for carbonate between siderite, chukanovite, and aragonite, with less inhibition of iron corrosion by the needle like aragonite crystals. Application of the parameterized model to a field site (Bernau, Germany) demonstrated that temporarily enhanced groundwater carbonate concentrations caused an increase in gas phase formation due to the acceleration of anaerobic iron corrosion. PMID:23743511

  8. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2010-11-15

    A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. PMID:20678863

  9. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers.

    PubMed

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Mainelli, Sara; Toro, Luigi

    2009-10-30

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L(-1)). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 +/- 0.1; E(h)= -410 +/- 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  10. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2010-11-15

    A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs.

  11. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species. PMID:27309856

  12. Mechanisms involved in the blood-testis barrier increased permeability induced by EMP.

    PubMed

    Wang, Xiao-Wu; Ding, Gui-Rong; Shi, Chang-Hong; Zeng, Li-Hua; Liu, Jun-Ye; Li, Jing; Zhao, Tao; Chen, Yong-Bin; Guo, Guo-Zhen

    2010-09-30

    The blood-testis barrier (BTB) plays an important role in male reproductive system. Lots of environmental stimulations can increase the permeability of BTB and then result in antisperm antibody (AsAb) generation, which is a key step in male immune infertility. Here we reported the results of male mice exposed to electromagnetic pulse (EMP) by measuring the expression of tight-junction-associated proteins (ZO-1 and Occludin), vimentin microfilaments, and transforming growth factor-beta (TGF-beta3) as well as AsAb level in serum. Male BALB/c mice were sham exposed or exposed to EMP at two different intensities (200kV/m and 400kV/m) for 200 pulses. The testes were collected at different time points after EMP exposure. Immunofluorescence histocytochemistry, western blotting, laser confocal microscopy and RT-PCR were used in this study. Compared with sham group, the expression of ZO-1 and TGF-beta3 significantly decreased accompanied with unevenly stained vimentin microfilaments and increased serum AsAb levels in EMP-exposed mice. These results suggest a potential BTB injury and immune infertility in male mice exposed to a certain intensity of EMP.

  13. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead.

    PubMed

    Xin, Bao-Ping; Wu, Chih-Hung; Wu, Cheng-Han; Lin, Chi-Wen

    2013-01-15

    Ineffective biostimulation requires immediate development of new technologies for remediation of high concentration BTEX-contaminated (benzene, toluene, ethylbenzene and xylene) groundwater. In this study, bioaugmentation with Mycobacterium sp. CHXY119 and Pseudomonas sp. YATO411 immobilized bead was used to remediate BTEX-contaminated groundwater with about 100 mg l(-1) in total concentration. The batch test results showed that the CHXY119 and YATO411 immobilized bead completely biodegraded each BTEX compound, and the maximum biodegradation rates were 0.790 mg l(-1) h(-1) for benzene, 1.113 mg l(-1) h(-1) for toluene, 0.992 mg l(-1) h(-1) for ethylbenzene and 0.231 mg l(-1) h(-1) for p-xylene. The actual mineralization rates were 10.8% for benzene, 10.5% for toluene, 5.8% for ethylbenzene and 11.4% for p-xylene, which indicated that the bioremediation of BTEX by the immobilized bead requires a rather small oxygen supply. Degradation rates achieved by the bioaugmented permeable reactive barrier (Bio-PRB) system of the immobilized bead were 97.8% for benzene, 94.2% for toluene, 84.7% for ethylbenzene and 87.4% for p-xylene; and the toxicity of the groundwater fell by 91.2% after bioremediation by the bioaugmented PRB, which confirmed its great potential for remediating groundwater with high concentrations of contaminants.

  14. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier

    SciTech Connect

    Johnson, R. L.; Thoms, R. B.; Johnson, R. O.; Nurmi, J. T.; Tratnyek, Paul G.

    2008-07-01

    Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical characteristics. Precipitates containing iron and sulfide were present at much higher concentrations in native aquifer materials just upgradient of the PRB than in the PRB itself. Sulfur mass balance on core solids coupled with trends in ground water sulfate concentrations indicates that the average ground water flow after 20 months of PRB operation was approximately twenty fold less than the regional ground water velocity. Transport and reaction modeling of the aquifer PRB interface suggests that, at the calculated velocity, both iron and hydrogen could diffuse upgradient against ground water flow and thereby contribute to precipitation in the native aquifer materials. The initial hydraulic conductivity (K) of the native materials is less than that of the PRB and, given the observed precipitation in the upgradient native materials, it is likely that K reduction occurred upgradient to rather than within the PRB. Although not directly implicated, guar gum used during installation of the PRB is believed to have played a role in the precipitation and flow reduction processes by enhancing microbial activity.

  15. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.

    PubMed

    Jun, Dong; Yongsheng, Zhao; Weihong, Zhang; Mei, Hong

    2009-01-15

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD5/COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH4+, and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate.

  16. Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration.

    PubMed

    Li, Shengpin; Huang, Guoxin; Kong, Xiangke; Yang, Yingzhao; Liu, Fei; Hou, Guohua; Chen, Honghan

    2014-01-01

    In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH(4)(+)-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH(4)(+)-N was microbially oxidized to nitrate. Any remaining NH(4)(+)-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH(4)(+)-N was consistently removed, and approximately 40% of the influent NH(4)(+)-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH(4)(+)-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH(4)(+)-N removal.

  17. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.

  18. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.

    PubMed

    Wilkin, Richard T; Su, Chunming; Ford, Robert G; Paul, Cynthia J

    2005-06-15

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.

  19. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    PubMed

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (p<0.01). 1800MHz pulse modulated radio-frequency radiation exposure was found more effective on the male animals (p<0.01). For female groups; dye contents in the whole brains were 0.14±0.01mg% in the control, 0.24±0.03mg% in 900MHz exposed and 0.14±0.02mg% in 1800MHz exposed animals. No statistical variance found between the control and 1800MHz exposed animals (p>0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed

  20. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function.

    PubMed

    Roy, Sashwati; Elgharably, Haytham; Sinha, Mithun; Ganesh, Kasturi; Chaney, Sarah; Mann, Ethan; Miller, Christina; Khanna, Savita; Bergdall, Valerie K; Powell, Heather M; Cook, Charles H; Gordillo, Gayle M; Wozniak, Daniel J; Sen, Chandan K

    2014-08-01

    In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic preclinical model of wound biofilm infection aimed at addressing the long-term host response. Although biofilm-infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant, because it leads to the notion that even if a biofilm infected wound is closed, as observed visually, it may be complicated by the presence of failed skin, which is likely to be infected and/or further complicated postclosure. Study of the underlying mechanisms recognized for the first time biofilm-inducible miR-146a and miR-106b in the host skin wound-edge tissue. These miRs silenced ZO-1 and ZO-2 to compromise tight junction function, resulting in leaky skin as measured by transepidermal water loss (TEWL). Intervention strategies aimed at inhibiting biofilm-inducible miRNAs may be productive in restoring the barrier function of host skin.

  1. The role of the skin barrier in modulating the effects of common skin microbial species on the inflammation, differentiation and proliferation status of epidermal keratinocytes

    PubMed Central

    2013-01-01

    Background Skin resident microbial species are often thought of either as pathogenic or commensal. However, little is known about the role of the skin barrier in modulating their potential for causing disease. To investigate this question we measured the effects of three microbial species commonly found on the skin (Staphylococcus epidermidis, Staphylococcus aureus, and Propionibacterium acnes) on a reconstructed human epidermal model by either applying the bacteria on the model surface (intact barrier) or adding them to the culture medium (simulating barrier breach). Results When added to the medium, all of the tested species induced inflammatory responses and keratinocyte cell death with species-specific potency. P. acnes and S. epidermidis induced specific alterations in the expression of keratinocyte differentiation and proliferation markers, suggesting a barrier reparation response. S. aureus induced complete keratinocyte cell death. On the contrary, topically applied S. epidermidis and P. acnes caused no inflammatory response even when tested at high concentrations, while topical S. aureus induced a weak reaction. None of the tested species were able to alter the expression of keratinocyte differentiation or expression markers, when applied topically. Conclusions We show that the skin barrier prevents the effects of common skin bacteria on epidermal keratinocyte inflammation, differentiation and proliferation and highlight the importance of skin barrier in defending against the pathogenic effects of common skin bacteria. PMID:24245826

  2. Ultrastructure of skin from Refsum disease with emphasis on epidermal lamellar bodies and stratum corneum barrier lipid organization.

    PubMed

    Menon, G K; Orsó, E; Aslanidis, Charalampos; Crumrine, D; Schmitz, G; Elias, Peter M

    2014-10-01

    Classic Refsum disease (RD) is a rare, autosomal recessively-inherited disorder of peroxisome metabolism due to a defect in the initial step in the alpha oxidation of phytanic acid (PA), a C16 saturated fatty acid with four methyl side groups, which accumulates in plasma and lipid enriched tissues (please see van den Brink and Wanders, Cell Mol Life Sci 63:1752-1765, 2006). It has been proposed that the disease complex in RD is in part due to the high affinity of phytanic acid for retinoid X receptors and peroxisome proliferator-activated receptors. Structurally, epidermal hyperplasia, increased numbers of cornified cell layers, presence of cells with lipid droplets in stratum basale and reduction of granular layer to a single layer have been reported by Blanchet-Bardon et al. (The ichthyoses, SP Medical & Scientific Books, New York, pp 65-69, 1978). However, lamellar body (LB) density and secretion were reportedly normal. We recently examined biopsies from four unrelated patients, using both OsO4 and RuO4 post-fixation to evaluate the barrier lipid structural organization. Although lamellar body density appeared normal, individual organelles often had distorted shape, or had non-lamellar domains interspersed with lamellar structures. Some of the organelles seemed to lack lamellar contents altogether, showing instead uniformly electron-dense contents. In addition, we also observed mitochondrial abnormalities in the nucleated epidermis. Stratum granulosum-stratum corneum junctions also showed co-existence of non-lamellar and lamellar domains, indicative of lipid phase separation. Also, partial detachment or complete absence of corneocyte lipid envelopes (CLE) was seen in the stratum corneum of all RD patients. In conclusion, abnormal LB contents, resulting in defective lamellar bilayers, as well as reduced CLEs, likely lead to impaired barrier function in RD.

  3. Ultrastructure of skin from Refsum disease with emphasis on epidermal lamellar bodies and stratum corneum barrier lipid organization

    PubMed Central

    Menon, G.K.; Orsó, E.; Aslanidis, Charalampos; Crumrine, D.; Schmitz, G.; Elias, P.M.

    2014-01-01

    Classic Refsum disease (RD) is a rare, autosomal recessively-inherited disorder of peroxisome metabolism due to a defect in the initial step in the alpha oxidation of phytanic acid (PA), a C 16 saturated fatty acid with four methyl side groups, which accumulates in plasma and lipid enriched tissues (please see van den Brink, et al. 2006). It has been proposed that the disease complex in RD is in part due to the high affinity of phytanic acid for retinoid X receptors and peroxisome proliferator-activated receptors. Structurally, epidermal hyperplasia, increased numbers of cornified cell layers, presence of cells with lipid droplets in stratum basale and reduction of granular layer to a single layer have been reported by Blanchet-Bardon et al (1978). However, lamellar body (LB) density and secretion were reportedly normal. We recently examined biopsies from 4 unrelated patients, using both OsO4 and RuO4 post-fixation to evaluate the barrier lipid structural organization. Although lamellar body density appeared normal, individual organelles often had distorted shape, or had non-lamellar domains interspersed with lamellar structures. Some of the organelles seemed to lack lamellar contents altogether, showing instead uniformly electron-dense contents. In addition, we also observed mitochondrial abnormalities in the nucleated epidermis. Stratum granulosum-stratum corneum junctions also showed co-existence of non-lamellar and lamellar domains, indicative of lipid phase separation. Also, partial detachment or complete absence of corneocyte lipid envelopes (CLE) was seen in the stratum corneum of all RD patients. In conclusion, abnormal LB contents, resulting in defective lamellar bilayers, as well as reduced CLEs, likely lead to impaired barrier function in RD. PMID:24920240

  4. Design, installation, and performance of a multi-layered permeable reactive barrier, Los Alamos National Laboratory

    SciTech Connect

    Kaszuba, J. P.; Longmire, P. A.; Strietelmeier, E. A.; Taylor, T. P.; Den-Baars, P. S.

    2004-01-01

    A multi-layered permeable reactive barrier (PRB) has been installed in Mortandad Canyon, on the Pajarito Plateau in the north-central part of LANL, to demonstrate in-situ treatment of a suite of contaminants with dissimilar geochemical properties. The PRB will also mitigate possible vulnerabilities from downgradient contaminant movement within alluvial and deeper perched groundwater. Mortandad Canyon was selected as the location for this demonstration project because the flow of alluvial groundwater is constrained by the geology of the canyon, a large network of monitoring wells already were installed along the canyon reach, and the hydrochemistry and contaminant history of the canyon is well-documented. The PRB uses a funnel-and-gate system with a series of four reactive media cells to immobilize or destroy contaminants present in alluvial groundwater, including strontium-90, plutonium-238,239,240, americium-241, perchlorate, and nitrate. The four cells, ordered by sequence of contact with the groundwater, consist of gravel-sized scoria (for colloid removal); phosphate rock containing apatite (for metals and radionuclides); pecan shells and cotton seed admixed with gravel (bio-barrier, to deplete dissolved oxygen and destroy potential RCRA organic compounds, nitrate and perchlorate); and limestone (pH buffering and anion adsorption). Design elements of the PRB are based on laboratory-scale treatability studies and on a field investigation of hydrologic, geochemical, and geotechnical parameters. The PRB was designed with the following criteria: 1-day residence time within the biobarrier, 10-year lifetime, minimization of surface water infiltration and erosion, optimization of hydraulic capture, and minimization of excavated material requiring disposal. Each layer has been equipped with monitoring wells or ports to allow sampling of groundwater and reactive media, and monitor wells are located immediately adjacent to the up- and down-gradient perimeter of the

  5. Type I Interferon Response Limits Astrovirus Replication and Protects against Increased Barrier Permeability In Vitro and In Vivo

    PubMed Central

    Marvin, Shauna A.; Huerta, C. Theodore; Sharp, Bridgett; Freiden, Pamela

    2015-01-01

    ABSTRACT Little is known about intrinsic epithelial cell responses against astrovirus infection. Here we show that human astrovirus type 1 (HAstV-1) infection induces type I interferon (beta interferon [IFN-β]) production in differentiated Caco2 cells, which not only inhibits viral replication by blocking positive-strand viral RNA and capsid protein synthesis but also protects against HAstV-1-increased barrier permeability. Excitingly, we found similar results in vivo using a murine astrovirus (MuAstV) model, providing new evidence that virus-induced type I IFNs may protect against astrovirus replication and pathogenesis in vivo. IMPORTANCE Human astroviruses are a major cause of pediatric diarrhea, yet little is known about the immune response. Here we show that type I interferon limits astrovirus infection and preserves barrier permeability both in vitro and in vivo. Importantly, we characterized a new mouse model for studying astrovirus replication and pathogenesis. PMID:26656701

  6. Cerebrospinal Fluid Secretory Ca2+-Dependent Phospholipase A2 Activity: A Biomarker of Blood-Cerebrospinal Fluid Barrier Permeability

    PubMed Central

    Chalbot, Sonia; Zetterberg, Henrik; Blennow, Kaj; Fladby, Tormod; Grundke-Iqbal, Inge; Iqbal, Khalid

    2010-01-01

    The blood-brain barrier, the blood-cerebrospinal fluid barrier (BCB) and other specialized brain barriers are increasingly recognized as a major obstacle to the treatment of most brain disorders. The impairment of these barriers has been implicated in neuropathology of several diseases, such as autism, ischemia, multiple sclerosis and Alzheimer disease. This dual function of the blood-neural barriers points out the importance and need for the development of techniques that can evaluate the nature and level of their integrity. Here we report the discovery of CSF secretory Ca2+-dependent phospholipase A2 (sPLA2) activity as a measure of BCB permeability. Lumbar CSF from BCB-impaired (n=26), multiple sclerosis (n=18) and healthy control (n=32) cases was analyzed using both a newly developed continuous fluorescence assay for CSF sPLA2 activity and CSF/Serum albumin ratio (QAlb), the most common and established method to evaluate BCB permeability. While both measurements showed no significant differences between multiple sclerosis and age-matched normal healthy cases, they were highly correlated. Though the CSF sPLA2 activity and QAlb had over 95 % agreement, the former was found to be more sensitive than the latter in measuring low levels of BCB impairment. PMID:20470866

  7. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice

    PubMed Central

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F.; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G.; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4+ Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability. PMID:27199937

  8. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    PubMed

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability. PMID:27199937

  9. Documentation of impaired epidermal barrier in mild and moderate diaper dermatitis in vivo using noninvasive methods.

    PubMed

    Stamatas, Georgios N; Zerweck, Charles; Grove, Gary; Martin, Katharine M

    2011-01-01

    The presence of irritants from feces and urine with the concurrent mechanical friction and occlusion creates an environment in the diapered area that renders the skin prone to diaper dermatitis. Besides being a source of discomfort to the infant, these skin irritations pose a risk of secondary infections. In this study, we used noninvasive in vivo techniques to define measurable parameters that correlate with diaper dermatitis pathophysiology. In 35 infants (16 with mild or moderate and 19 without diaper dermatitis) we compared skin of diapered areas afflicted with diaper dermatitis to lesion-free diapered sites and to skin outside the diapered area (thigh). Our findings show significantly elevated cutaneous erythema, pH, and hydration, with significantly compromised water barrier function in involved areas compared to nonlesional sites both within and outside the diapered area. Furthermore, skin pH in nonlesional diapered skin for the diaper dermatitis cohort was significantly higher compared to the nondiapered sites. These observations are consistent with the current understanding of pathological skin changes in diaper dermatitis. In this study, we demonstrate that noninvasive methods can document relevant parameters to diaper dermatitis in vivo.

  10. Documentation of impaired epidermal barrier in mild and moderate diaper dermatitis in vivo using noninvasive methods.

    PubMed

    Stamatas, Georgios N; Zerweck, Charles; Grove, Gary; Martin, Katharine M

    2011-01-01

    The presence of irritants from feces and urine with the concurrent mechanical friction and occlusion creates an environment in the diapered area that renders the skin prone to diaper dermatitis. Besides being a source of discomfort to the infant, these skin irritations pose a risk of secondary infections. In this study, we used noninvasive in vivo techniques to define measurable parameters that correlate with diaper dermatitis pathophysiology. In 35 infants (16 with mild or moderate and 19 without diaper dermatitis) we compared skin of diapered areas afflicted with diaper dermatitis to lesion-free diapered sites and to skin outside the diapered area (thigh). Our findings show significantly elevated cutaneous erythema, pH, and hydration, with significantly compromised water barrier function in involved areas compared to nonlesional sites both within and outside the diapered area. Furthermore, skin pH in nonlesional diapered skin for the diaper dermatitis cohort was significantly higher compared to the nondiapered sites. These observations are consistent with the current understanding of pathological skin changes in diaper dermatitis. In this study, we demonstrate that noninvasive methods can document relevant parameters to diaper dermatitis in vivo. PMID:21504443

  11. Chromium-Removal Processes during Groundwater Remediation by a Zerovalent Iron Permeable Reactive Barrier

    SciTech Connect

    Wilkin, Richard T.; Su, Chunming; Ford, Robert G.; Paul, Cynthia J.

    2008-06-09

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 {micro}g L{sup -1} in groundwater hydraulically upgradient of the PRB to values <1 {micro}g L{sup -1} in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.

  12. Remediation of MSW landfill leachate by permeable reactive barrier with vegetation.

    PubMed

    Chiemchaisri, Chart; Chiemchaisri, Wilai; Witthayapirom, Chayanid

    2015-01-01

    This research was conducted to investigate in situ treatment of leachate by pilot-scale permeable reactive barrier (PRB) with vegetation. Two different types of PRB media, with and without the presence of ferric chloride sludge, for the removal of pollutants were examined. The composite media of PRB comprised a clay and sand mixture of 40:60%w/w (system 1) and a clay, ferric chloride sludge and sand mixture of 30:10:60%w/w (system 2). The system was operated at a hydraulic loading rate of 0.028 m3/m2.d and hydraulic retention time of 10 days. The results showed that the performance of system 2 was better in terms of pollutant removal efficiencies, with average biochemical oxygen demand, chemical oxygen demand and total Kjeldahl nitrogen removals of 76.1%, 68.5% and 73.5%, respectively. Fluorescence excitation-emission matrix analyses of water samples and sequential extraction of PRB media suggested the removal of humic substances through the formation of iron-organic complex. Greenhouse gas (GHG) emissions during the treatment of PRB were 8.2-52.1 mgCH4/m2.d, 69.1-601.8 mgCO2/m2.d and 0.04-0.99 mgN2O/m2.d. The use of system 2 with vegetation resulted in lower GHG emissions. The results show that PRB with vegetation could be used as a primary treatment for leachate from closed landfill sites. PMID:25945857

  13. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models

    NASA Astrophysics Data System (ADS)

    Carniato, L.; Schoups, G.; Seuntjens, P.; Van Nooten, T.; Simons, Q.; Bastiaens, L.

    2012-11-01

    In this study we investigate the model uncertainties involved in predicting long-term permeable reactive barrier (PRB) remediation efficiency based on a lab-scale column experiment under accelerated flow conditions. A PRB consisting of 20% iron and 80% sand was simulated in a laboratory-scale column and contaminated groundwater was pumped into the column for approximately 1 year at an average groundwater velocity of 3.7E - 1 m d- 1. Dissolved contaminants (PCE, TCE, cis-DCE, trans-DCE and VC) and inorganic (Ca2 +, Fe2 +, TIC and pH) concentrations were measured in groundwater sampled at different times and at eight different distances along the column. These measurements were used to calibrate a multi-component reactive transport model, which subsequently provided predictions of long-term PRB efficiency under reduced flow conditions (i.e., groundwater velocity of 1.4E - 3 m d- 1), representative of a field site of interest in this study. Iron reactive surface reduction due to mineral precipitation and iron dissolution was simulated using four different models. All models were able to reasonably well reproduce the column experiment measurements, whereas the extrapolated long-term efficiency under different flow rates was significantly different between the different models. These results highlight significant model uncertainties associated with extrapolating long-term PRB performance based on lab-scale column experiments. These uncertainties should be accounted for at the PRB design phase, and may be reduced by independent experiments and field observations aimed at a better understanding of reactive surface deactivation mechanisms in iron PRBs.

  14. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.

    PubMed

    VanStone, Nancy; Przepiora, Andrzej; Vogan, John; Lacrampe-Couloume, Georges; Powers, Brian; Perez, Ernesto; Mabury, Scott; Sherwood Lollar, Barbara

    2005-08-01

    Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.

  15. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.

    PubMed

    Miller, Matthew L; Bhadha, Jehangir H; O'Connor, George A; Jawitz, James W; Mitchell, Jennifer

    2011-05-01

    Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg(-1). Sorption and desorption studies were conducted on the <2.0mm material and three size fractions within the <2.0mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ≥2 h). The effect of DOC was minimal at <150 mg DOCL(-1), but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L(-1). The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0mm) are ∼44 g kg(-1) and >75 g kg(-1), respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg(-l), but increased (<9% of the P sorbed) at cumulative P loads >70 g kg(-1). The <2.0mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.

  16. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models.

    PubMed

    Carniato, L; Schoups, G; Seuntjens, P; Van Nooten, T; Simons, Q; Bastiaens, L

    2012-11-01

    In this study we investigate the model uncertainties involved in predicting long-term permeable reactive barrier (PRB) remediation efficiency based on a lab-scale column experiment under accelerated flow conditions. A PRB consisting of 20% iron and 80% sand was simulated in a laboratory-scale column and contaminated groundwater was pumped into the column for approximately 1 year at an average groundwater velocity of 3.7 E-1 m d(-1). Dissolved contaminants (PCE, TCE, cis-DCE, trans-DCE and VC) and inorganic (Ca(2+), Fe(2+), TIC and pH) concentrations were measured in groundwater sampled at different times and at eight different distances along the column. These measurements were used to calibrate a multi-component reactive transport model, which subsequently provided predictions of long-term PRB efficiency under reduced flow conditions (i.e., groundwater velocity of 1.4 E-3m d(-1)), representative of a field site of interest in this study. Iron reactive surface reduction due to mineral precipitation and iron dissolution was simulated using four different models. All models were able to reasonably well reproduce the column experiment measurements, whereas the extrapolated long-term efficiency under different flow rates was significantly different between the different models. These results highlight significant model uncertainties associated with extrapolating long-term PRB performance based on lab-scale column experiments. These uncertainties should be accounted for at the PRB design phase, and may be reduced by independent experiments and field observations aimed at a better understanding of reactive surface deactivation mechanisms in iron PRBs.

  17. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation

    PubMed Central

    Brogden, N.K.; Mehalick, L.; Fischer, C.L.; Wertz, P.W.; Brogden, K.A.

    2012-01-01

    Skin is complex and comprised of distinct layers, each layer with unique architecture and immunologic functions. Cells within these layers produce differing amounts of antimicrobial peptides and lipids (sphingoid bases and sebaceous fatty acids) that limit colonization of commensal and opportunistic microorganisms. Furthermore, antimicrobial peptides and lipids have distinct, concentration-dependent ancillary innate and adaptive immune functions. At 0.1-2.0 μM, antimicrobial peptides induce cell migration and adaptive immune responses to co-administered antigens. At 2.0-6.0 μM, they induce cell proliferation and enhance wound healing. At 6.0-12.0 μM, antimicrobial peptides can regulate chemokine and cytokine production and at their highest concentrations of 15.0-30.0 μM, antimicrobial peptides can be cytotoxic. At 1-100 nM, lipids enhance cell migration induced by chemokines, suppress apoptosis, and optimize T cell cytotoxicity and at 0.3-1.0 μM, they inhibit cell migration and attenuate chemokine and pro-inflammatory cytokine responses. Recently many antimicrobial peptides and lipids at 0.1-2.0 μM have been found to attenuate the production of chemokines and pro-inflammatory cytokines to microbial antigens. Together, both the antimicrobial and the anti-inflammatory activities of these peptides and lipids may serve to create a strong, overlapping immunologic barrier that not only controls the concentrations of cutaneous commensal flora but also the extent to which they induce a localized inflammatory response. PMID:22538862

  18. Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vlachos, F.; Tung, Y.-S.; Konofagou, E. E.

    2010-09-01

    Focused ultrasound (FUS) in conjunction with microbubbles has been shown to successfully open the blood-brain barrier (BBB) in the mouse brain. In this study, we compute the BBB permeability after opening in vivo. The spatial permeability of the BBB-opened region was assessed using dynamic contrast-enhanced MRI (DCE-MRI). The DCE-MR images were post-processed using the general kinetic model (GKM) and the reference region model (RRM). Permeability maps were generated and the Ktrans values were calculated for a predefined volume of interest in the sonicated and the control area for each mouse. The results demonstrated that Ktrans in the BBB-opened region (0.02 ± 0.0123 for GKM and 0.03 ± 0.0167 min-1 for RRM) was at least two orders of magnitude higher when compared to the contra-lateral (control) side (0 and 8.5 × 10-4 ± 12 × 10-4 min-1, respectively). The permeability values obtained with the two models showed statistically significant agreement and excellent correlation (R2 = 0.97). At histological examination, it was concluded that no macroscopic damage was induced. This study thus constitutes the first permeability assessment of FUS-induced BBB opening using DCE-MRI, supporting the fact that the aforementioned technique may constitute a safe, non-invasive and efficacious drug delivery method.

  19. Monitoring the removal of phosphate from ground water discharging through a pond-bottom permeable reactive barrier

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Massey, A.J.

    2009-01-01

    Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO 4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%. ?? 2009 National Ground Water Association.

  20. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    SciTech Connect

    Korte, NE

    2001-06-11

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture. A review of the literature reveals that cautions regarding subsurface heterogeneity were published several years prior to the full-scale implementations. Nevertheless, design and construction have typically been undertaken as if the subsurface was homogeneous. More recently published literature has demonstrated that hydraulic heterogeneity can cause so much uncertainty in performance that use of a passive PRB is precluded. Thus, the primary conclusion of this review is that more attention must be given to site-specific issues. Indeed, the use of a passive PRB requires

  1. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    PubMed Central

    Wilkinson, Emma L.; Sidaway, James E.

    2016-01-01

    ABSTRACT Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. PMID:27543060

  2. Experimental and Theoretical Assessment of the Lifetime of a Gaseous-Reduced Vadose Zone Permeable Reactive Barrier

    SciTech Connect

    Thornton, Edward C.; Zhong, Lirong; Oostrom, Mart; Deng, Baolin

    2007-11-20

    The feasibility of using gaseous reduction to establish a vadose zone permeable reactive barrier was evaluated through a combination of laboratory testing activities and consideration of fundamental vadose zone transport concepts. For the experimental evaluation, a series of laboratory column tests were conducted in which sediment was first treated with diluted hydrogen sulfide. Water containing dissolved oxygen was then pumped through the columns at different flow rates to determine the reoxidation rate and the reductive capacity of the treated sediment. The results indicated that the treated sediment has a significant reductive capacity consistent with the basic reactions associated with the treatment and reoxidation processes. The observed reductive capacity was found to be dependent on the flow rate of water during the reoxidation phase of the tests. At lower flow rates, the reductive capacity approached the maximum value predicted on the basis of the treatment reaction. Thus, laboratory treatment tests should reliably predict the reductive capacity of the barrier under field conditions. A theoretical approach was undertaken to estimate the lifetime of the vadose zone barrier. An initial model assumed that the barrier lifetime is determined by the reoxidation of the barrier owing to the transport of oxygen through a vadose zone interval in which all sediment is unsaturated. The results of this evaluation suggest that barrier reoxidation is primarily related to diffusion of oxygen through the gas-filled portion of the sediment pore space. If so, the barrier lifetime could be fairly short (several years). However, the presence of finer grained strata with higher moisture content could potentially increase the barrier lifetime to 100 years or more owing to a decrease in the effective diffusion coefficient for oxygen. Thus, detailed stratagraphic characterization and modeling is needed to provide an accurate assessment of barrier lifetime at specific sites.

  3. Organic Ligand Enhanced Cr(VI) Treatment in Pyrite Permeable Reactive Barriers

    NASA Astrophysics Data System (ADS)

    Kantar, Cetin; Ari, Cihan; Samet Bulbul, Muhammet

    2014-05-01

    Permeable reactive barriers (PRB), installed in subsurface in the path of flowing groundwater can offer a viable option for in situ remediation of Cr(VI)-contaminated subsurface systems. In this study, batch and column experiments were performed to determine the effects of organic ligands (L) on Cr(VI) treatment in PRBs containing pyrite. The organic ligands used include citrate, tartrate, oxalate, EDTA and salycilate. The results indicate that in the absence of organic ligands, the Cr(VI)removal by pyrite occurred only under acidic conditions (e.g., pH > 5). However, organic ligands led to a significant increase in Cr(VI) removal with pyrite depending on the type of organic ligand used, Cr(VI)/LT ratio and water chemistry (e.g., pH). While salicylate had no effect on Cr(VI) removal relative to non-ligand systems, the organic ligands including citrate, tartrate and oxalate significantly improved Cr(VI) removal under acidic to alkaline pH range. On the other hand, EDTA only improved Cr(VI) removal by pyrite under alkaline pH conditions relative to non-ligand conditions. In general, the efficiency of organic ligands on Cr(VI) removal decreased in the order: citrate > tartrate> oxalate>EDTA>salycilate. The X-ray photoelectron spectroscopy (XPS) and zeta potential measurements suggest that the Cr(VI) removal by pyrite occured due to the reduction of Cr(VI) to Cr(III), coupled with the oxidation of Fe(II) to Fe(III) and disulfide (S22-) to sulfate (SO42-) at the pyrite surface as well as in aqueous phase. However, the precipitation of sparingly soluble Fe(III-Cr(III)(oxy) hydroxide phases on pyrite surface led to surface passivation, which, then, inhibited further Cr(VI) reduction. The addition of organic ligands increased Cr(VI) reduction by pyrite due to: 1) the removal of the surface oxidation products by forming highly soluble Cr(III) and Fe(III)-ligand complexes as well as 2) the ligand promoted dissolution of Fe(II) from pyrite, which, subsequently, reduced Cr

  4. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  5. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.

    PubMed

    Gupta, S; Basant, N; Singh, K P

    2015-01-01

    In this study, structure-activity relationship (SAR) models have been established for qualitative and quantitative prediction of the blood-brain barrier (BBB) permeability of chemicals. The structural diversity of the chemicals and nonlinear structure in the data were tested. The predictive and generalization ability of the developed SAR models were tested through internal and external validation procedures. In complete data, the QSAR models rendered ternary classification accuracy of >98.15%, while the quantitative SAR models yielded correlation (r(2)) of >0.926 between the measured and the predicted BBB permeability values with the mean squared error (MSE) <0.045. The proposed models were also applied to an external new in vitro data and yielded classification accuracy of >82.7% and r(2) > 0.905 (MSE < 0.019). The sensitivity analysis revealed that topological polar surface area (TPSA) has the highest effect in qualitative and quantitative models for predicting the BBB permeability of chemicals. Moreover, these models showed predictive performance superior to those reported earlier in the literature. This demonstrates the appropriateness of the developed SAR models to reliably predict the BBB permeability of new chemicals, which can be used for initial screening of the molecules in the drug development process.

  6. In vivo two-photon imaging measuring the blood-brain barrier permeability during early postnatal brain development in rodent

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián.

    2016-03-01

    The blood-brain barrier (BBB) is a unique structure between the cerebral blood circulation and the delicate neural environment that is important in regulating the movement of molecules and ions involved in brain development and function. However, little is known about the physiological permeability of molecules and ions across the BBB during brain development. In this study we applied an innovative approach to examine the development of BBB properties quantitatively. Two-photon microscopy was employed to measure BBB permeability in real time in vivo. Vascular growth and specific interactions between astrocyte end feet and microvessels were studied by using a combination of IB4 histochemistry, immunohistochemistry, confocal microscopy and 3D analysis.

  7. Hyperosmolar opening of the blood-brain barrier in the energy-depleted rat brain. Part 1. Permeability studies

    SciTech Connect

    Greenwood, J.; Luthert, P.J.; Pratt, O.E.; Lantos, P.L.

    1988-02-01

    A simple saline perfusion system was used to investigate the effects of hyperosmolar solutions of arabinose and mannitol upon the permeability of the blood-brain barrier. The small, polar molecule (/sup 14/C)mannitol and the larger, visual marker Evans blue were used as indicators of barrier integrity in the perfused energy-depleted brain. One-minute perfusion of hyperosmolar solutions consistently opened the barrier suggesting that the mechanism of osmotic barrier opening is independent of energy-producing metabolism. The accumulation of radiolabel in the brain was expressed as the ratio of tissue to perfusate radioactivity (Rt/Rp) and, for cerebrum, this increased from a control value of 0.0022 +/- 0.0007 (mean +/- SEM; n = 4) to a value of 0.0124 +/- 0.0008 (n = 4) following 0.9 M arabinose and to 0.0495 +/- 0.0072 (n = 4) following 1.8 M arabinose. There was a significant reduction of water content of hyperosmolar perfused brains. These findings support the hypothesis that osmotic barrier opening is the result of the passive shrinkage of endothelial cells and the surrounding tissue.

  8. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.

    PubMed

    Suzuki, Tasuma; Oyama, Yukinori; Moribe, Mai; Niinae, Masakazu

    2012-03-01

    Effective nitrate removal by Fe(0) permeable reactive barriers (Fe(0) PRB) has been recognized as a challenging task because the iron corrosion product foamed on Fe(0) hinders effective electron transfer from Fe(0) to surface-bound nitrate. The objectives of this study were (i) to demonstrate the effectiveness of an electrokinetic/Fe(0) PRB system for remediating nitrate-contaminated low permeability soils using a bench-scale system and (ii) to deepen the understanding of the behavior and fate of nitrate in the system. Bench-scale laboratory experiments were designed to investigate the influence of the Fe(0) content in the permeable reactive barrier, the pH in the anode well, and the applied voltage on remediation efficiency. The experimental results showed that the major reaction product of nitrate reduction by Fe(0) was ammonium and that nitrate reduction efficiency was significantly influenced by the variables investigated in this study. Nitrate reduction efficiency was enhanced by either increasing the Fe(0) content in the Fe(0) reactive barrier or decreasing the initial anode pH. However, nitrate reduction efficiency was reduced by increasing the applied voltage from 10 V to 40 V due to the insufficient reaction time during nitrate migration through the Fe(0) PRB. For all experimental conditions, nearly all nitrate nitrogen was recovered in either anode or cathode wells as nitrate or ammonium within 100 h, demonstrating the effectiveness of the system for remediating nitrate-contaminated subsurface soils. PMID:22153957

  9. Developing Enhanced Blood–Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling

    PubMed Central

    Wang, Wenyi; Kim, Marlene T.; Sedykh, Alexander

    2015-01-01

    Purpose Experimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process. Methods We compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models. Results The consensus QSAR models have R2=0.638 for fivefold cross-validation and R2=0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-validation and R2=0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool. Conclusions The BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models. PMID:25862462

  10. Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer.

    PubMed

    Adkins, Chris E; Mohammad, Afroz S; Terrell-Hall, Tori B; Dolan, Emma L; Shah, Neal; Sechrest, Emily; Griffith, Jessica; Lockman, Paul R

    2016-04-01

    The blood-brain barrier (BBB) is compromised in brain metastases, allowing for enhanced drug permeation into brain. The extent and heterogeneity of BBB permeability in metastatic lesions is important when considering the administration of chemotherapeutics. Since permeability characteristics have been described in limited experimental models of brain metastases, we sought to define these changes in five brain-tropic breast cancer cell lines: MDA-MB-231BR (triple negative), MDA-MB-231BR-HER2, JIMT-1-BR3, 4T1-BR5 (murine), and SUM190 (inflammatory HER2 expressing). Permeability was assessed using quantitative autoradiography and fluorescence microscopy by co-administration of the tracers (14)C-aminoisobutyric acid (AIB) and Texas red conjugated dextran prior to euthanasia. Each experimental brain metastases model produced variably increased permeability to both tracers; additionally, the magnitude of heterogeneity was different among each model with the highest ranges observed in the SUM190 (up to 45-fold increase in AIB) and MDA-MB-231BR-HER2 (up to 33-fold in AIB) models while the lowest range was observed in the JIMT-1-BR3 (up to 5.5-fold in AIB) model. There was no strong correlation observed between lesion size and permeability in any of these preclinical models of brain metastases. Interestingly, the experimental models resulting in smaller mean metastases size resulted in shorter median survival while models producing larger lesions had longer median survival. These findings strengthen the evidence of heterogeneity in brain metastases of breast cancer by utilizing five unique experimental models and simultaneously emphasize the challenges of chemotherapeutic approaches to treat brain metastases. PMID:26944053

  11. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    PubMed

    Davidson, Donna C; Hirschman, Michael P; Sun, Anita; Singh, Meera V; Kasischke, Karl; Maggirwar, Sanjay B

    2012-01-01

    Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L) are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB) permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat) can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1) positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  12. Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer.

    PubMed

    Adkins, Chris E; Mohammad, Afroz S; Terrell-Hall, Tori B; Dolan, Emma L; Shah, Neal; Sechrest, Emily; Griffith, Jessica; Lockman, Paul R

    2016-04-01

    The blood-brain barrier (BBB) is compromised in brain metastases, allowing for enhanced drug permeation into brain. The extent and heterogeneity of BBB permeability in metastatic lesions is important when considering the administration of chemotherapeutics. Since permeability characteristics have been described in limited experimental models of brain metastases, we sought to define these changes in five brain-tropic breast cancer cell lines: MDA-MB-231BR (triple negative), MDA-MB-231BR-HER2, JIMT-1-BR3, 4T1-BR5 (murine), and SUM190 (inflammatory HER2 expressing). Permeability was assessed using quantitative autoradiography and fluorescence microscopy by co-administration of the tracers (14)C-aminoisobutyric acid (AIB) and Texas red conjugated dextran prior to euthanasia. Each experimental brain metastases model produced variably increased permeability to both tracers; additionally, the magnitude of heterogeneity was different among each model with the highest ranges observed in the SUM190 (up to 45-fold increase in AIB) and MDA-MB-231BR-HER2 (up to 33-fold in AIB) models while the lowest range was observed in the JIMT-1-BR3 (up to 5.5-fold in AIB) model. There was no strong correlation observed between lesion size and permeability in any of these preclinical models of brain metastases. Interestingly, the experimental models resulting in smaller mean metastases size resulted in shorter median survival while models producing larger lesions had longer median survival. These findings strengthen the evidence of heterogeneity in brain metastases of breast cancer by utilizing five unique experimental models and simultaneously emphasize the challenges of chemotherapeutic approaches to treat brain metastases.

  13. Evaluation of blood-brain barrier and blood-cerebrospinal fluid barrier permeability of 2-phenoxy-indan-1-one derivatives using in vitro cell models.

    PubMed

    Hu, Hai-Hong; Bian, Yi-Cong; Liu, Yao; Sheng, Rong; Jiang, Hui-Di; Yu, Lu-Shan; Hu, Yong-Zhou; Zeng, Su

    2014-01-01

    2-Phenoxy-indan-1-one derivatives (PIOs) are a series of novel central-acting cholinesterase inhibitors for the treatment of Alzheimer's disease (AD). The adequate distribution of PIOs to the central nervous system (CNS) is essential for its effectiveness. However, articles related with their permeability in terms of CNS penetration across the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) have not been found. This study was undertaken to evaluate the in vitro BBB and BCSFB transport of PIOs using Madin-Darby canine kidney (MDCK), MDCK-MDR1 and Z310 cell line models. As a result, the transepithelial transport of PIOs did not differ between MDCK and MDCK-MDR1, and the result suggested that PIOs were not substrates for P-gp, which means that multidrug resistance (MDR) function would not affect PIOs absorption and brain distribution. High permeability of PIOs in Z310 was found and it suggested that PIOs had high brain uptake potential. The experiment also showed that PIOs had inhibitory effects on the MDR1-mediated transport of Rhodamine123 with an IC50 value of 40-54 μM. And we suggested that 5,6-dimethoxy-1-indanone might be the pharmacophoric moiety of PIOs that interacts with the binding site of P-gp. PMID:24262988

  14. Selected hydrologic data for the field demonstration of three permeable reactive barriers near Fry Canyon, Utah, 1996-2000

    USGS Publications Warehouse

    Wilkowske, Chris D.; Rowland, Ryan C.; Naftz, David L.

    2001-01-01

    Three permeable reactive barriers (PRBs) were installed near Fry Canyon, Utah, in August 1997 to demonstrate the use of PRBs to control the migration of uranium in ground water. Reactive material included (1) bone-char phosphate, (2) zero-valent iron pellets, and (3) amorphous ferric oxyhydroxide coated gravel. An extensive monitoring network was installed in and around each PRB for collection of water samples, analysis of selected water-quality parameters, and monitoring of water levels. Water temperature, specific conductance, pH, Eh (oxidation-reduction potential), and dissolved oxygen were measured continuously within three different barrier materials, and in two monitoring wells. Water temperature and water level below land surface were electronically recorded every hour with pressure transducers. Data were collected from ground-water monitoring wells installed in and around the PRBs during 1996-98 and from surface-water sites in Fry Creek.

  15. The permeability of the plasma-lymph barrier of the small intestine of various species to macromolecules.

    PubMed

    Vogel, G; Martensen, I

    1982-03-01

    The filtration coefficients of polyvinylpyrrolidone (PVP) of molecular weight 10,000-110,000 were measured at the plasma-lymph barrier of the upper small intestine of rabbits, rats and cats. For this purpose the animals were given intravenous injections or infusions of PVP in such a way as to produce a constant blood level; PVP concentrations were measured in lymph obtained by cannulating the mesenteric duct and also in the plasma. In these species low molecular weight PVP had a filtration coefficient of 0.85-0.64, while high molecular weight PVP (MW 110,000) either had a very low filtration coefficient - 0.22 - or was not detectable in the intestinal lymph. The three species, representing herbivores, omnivores and carnivores, showed no differences in the penetration behavior of PVP, i.e., in the permeability of the plasma-lymph barrier to macromolecules.

  16. [The permeability of the hemato-encephalic barrier and the proteolytic potential of the cerebrospinal fluid in severe craniocerebral trauma].

    PubMed

    Churliaev, Iu A; Nikiforova, N V; Lutsik, A A; Kuksinskiĭ, V A; Lykova, O F; Martynenkov, V Ia; Karpenko, V S

    1999-01-01

    To study blood-brain barrier permeability and proteolytic changes in in patients with severe brain injury and to evaluate their impact on its course and outcome, the concentrations of albumin, plasminogen (plasmin), alpha 2-macroglobulin, alpha 2-antiplasmin, and alpha 1-antitrypsin were examined in 58 victims by enzyme immunoassay. The control group comprised 20 patients examined for lumbar discal hernia. The studies indicate that early severe brain injury showed blood-brain barrier dysfunction whose severity can be detected by the spinal fluid levels of albumin, plasminogen, and alpha 2-macroglobulin. Proteolytic changes in spinal fluid are determined by its albumin, plasminogen (plasmin), alpha 2-macroglobulin, alpha 2-antiplasmin, and alpha 1-antitrypsin concentrations and affect the development of secondary brain lesion and they are of practical value. PMID:10696680

  17. MR assessment of radiation-induced blood-brain barrier permeability changes in a rat glioma model

    SciTech Connect

    Krueck, W.G. Univ. of Washington School of Medicine, Seattle, WA ); Schmiedl, U.P.; Maravilla, K.R.; Starr, F.L.; Kenney, J. )

    1994-04-01

    To assess the potential of a T1-weighted, gadolinium-enhanced MR technique for quantifying radiation-induced changes of blood-brain barrier permeability in a model of stereotactically implanted intracerebral gliomas in rats. We calculated the gadolinium blood-to-tissue transport coefficient for gadopentetate dimeglumine from signal intensities in sequential MR images in nine control animals that were not irradiated and in five and three animals that had received 2500 cGy and 1500 cGy whole-brain irradiation, respectively, at 2 days before imaging. The average blood-to-tissue transport coefficient values were 9.76 mL[center dot]kg[sup [minus]1][center dot]min[sup [minus]1] in the control group, 23.41 mL[center dot]kg[sup [minus]1][center dot]min[sup [minus]1] in the 2500-cGy group, and 25.63 mL[center dot]kg[sup [minus]1][center dot]min[sup [minus]1] in the 1500-cGy group. Blood-to-tissue transport coefficients were significantly higher after irradiation, indicating increased radiation-induced blood-brain barrier permeability. Similar increased blood-brain barrier leakiness in brain tumors after high-dose irradiation has been shown by previous nuclear medicine studies using quantitative autoradiography. Contrast-enhanced dynamic MR of brain gliomas is a sensitive method to document radiation-induced blood-brain barrier breakdown. Quantitative gadolinium-enhanced MR may become a useful tool for the management of patients with brain tumors undergoing radiation therapy. 28 refs., 4 figs., 1 tab.

  18. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability.

    PubMed

    Kürti, Levente; Veszelka, Szilvia; Bocsik, Alexandra; Ozsvári, Béla; Puskás, László G; Kittel, Agnes; Szabó-Révész, Piroska; Deli, Mária A

    2013-05-01

    The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm(2), the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10(-6) cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.

  19. The effects of polar excipients transcutol and dexpanthenol on molecular mobility, permeability, and electrical impedance of the skin barrier.

    PubMed

    Björklund, Sebastian; Pham, Quoc Dat; Jensen, Louise Bastholm; Knudsen, Nina Østergaard; Nielsen, Lars Dencker; Ekelund, Katarina; Ruzgas, Tautgirdas; Engblom, Johan; Sparr, Emma

    2016-10-01

    In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol.

  20. The effects of polar excipients transcutol and dexpanthenol on molecular mobility, permeability, and electrical impedance of the skin barrier.

    PubMed

    Björklund, Sebastian; Pham, Quoc Dat; Jensen, Louise Bastholm; Knudsen, Nina Østergaard; Nielsen, Lars Dencker; Ekelund, Katarina; Ruzgas, Tautgirdas; Engblom, Johan; Sparr, Emma

    2016-10-01

    In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol. PMID:27388135

  1. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    PubMed Central

    Oláh, Gáspár; Herédi, Judit; Menyhárt, Ákos; Czinege, Zsolt; Nagy, Dávid; Fuzik, János; Kocsis, Kitti; Knapp, Levente; Krucsó, Erika; Gellért, Levente; Kis, Zsolt; Farkas, Tamás; Fülöp, Ferenc; Párdutz, Árpád; Tajti, János; Vécsei, László; Toldi, József

    2013-01-01

    Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines. PMID:24068867

  2. No Dynamic Changes in Blood-brain Barrier Permeability Occur in Developing Rats During Local Cortex Exposure to Microwaves.

    PubMed

    Masuda, Hiroshi; Hirota, Shogo; Ushiyama, Akira; Hirata, Akimasa; Arima, Takuji; Kawai, Hiroki; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Nagai, Akiko; Ohkubo, Chiyoji

    2015-01-01

    Little information is available about the effects of exposure to radiofrequency electromagnetic fields (RF) on cerebral microcirculation during rat developmental stages. We investigated whether the permeability of the blood-brain barrier (BBB) in juvenile and young adult rats was modified during local cortex exposure to RF under non-thermal conditions. The cortex tissue targeted was locally exposed to 1457 MHz RF at an average specific absorption rate of 2.0 W/kg in the target area for 50 min and permeability changes in the BBB of the pia mater were measured directly, using intravital fluorescence microscopy. There was no significant difference in extravasation of intravenously-injected dye between exposed and sham-exposed groups of either category of rats. No histological evidence of albumin leakage was found in any of the brains just after exposure, indicating that no traces of BBB disruption remained. These findings suggest that no dynamic changes occurred in BBB permeability of the rats at either of these developmental stages, even during local RF exposure at non-thermal levels.

  3. Inhibition of prolactin with bromocriptine for 28days increases blood-brain barrier permeability in the rat.

    PubMed

    Rosas-Hernandez, H; Ramirez, M; Ramirez-Lee, M A; Ali, S F; Gonzalez, C

    2015-08-20

    The blood-brain barrier (BBB) is necessary for the proper function of the brain. Its maintenance is regulated by endogenous factors. Recent evidences suggest prolactin (PRL) regulates the BBB properties in vitro, nevertheless no evidence of these effects have been reported in vivo. The aim of this study was to evaluate the role of PRL in the maintenance of the BBB in the rat. Male Wistar rats were treated with Bromocriptine (Bromo) to inhibit PRL production for 28days in the absence or presence of lipopolysaccharide (LPS). BBB permeability was evaluated through the Evans Blue dye and fluorescein-dextran extravasation as well as through edema formation. The expression of claudin-5, occludin, glial fibrillary acidic protein (GFAP) and the PRL receptor (PRLR) was evaluated through western blot. Bromo reduced the physiological levels of PRL at 28days. At the same time, Bromo increased BBB permeability and edema formation associated with a decrement in claudin-5 and occludin and potentiated the increase in BBB permeability induced by LPS. However, no neuroinflammation was detected, since the expression of GFAP was unchanged, as well as the expression of the PRLR. These data provide the first evidence that inhibition of PRL with Bromo affects the maintenance of the BBB through modulating the expression of tight junction proteins in vivo.

  4. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.

  5. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood–Brain Barrier Permeability following Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Jing; Kobori, Nobuhide; Redell, John B.; Hylin, Michael J.; Hood, Kimberly N.; Moore, Anthony N.

    2016-01-01

    Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood–brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7−/−) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood–brain barrier (BBB) in response to traumatic brain injury (TBI

  6. TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5

    PubMed Central

    McMillin, Matthew; Frampton, Gabriel; Seiwell, Andrew; Patel, Nisha; Jacobs, Amber; DeMorrow, Sharon

    2016-01-01

    Recent studies have found that vasogenic brain edema is present during hepatic encephalopathy following acute liver failure and is dependent upon increased matrix metalloproteinase 9 (MMP9) activity and downregulation of tight junction proteins. Furthermore, circulating transforming growth factor β1 (TGFβ1) is increased following liver damage and may promote endothelial cell permeability. This study aimed to assess if increased circulating TGFβ1 drives changes in tight junction protein expression and MMP9 activity following acute liver failure. Blood-brain barrier permeability was assessed in azoxymethane (AOM)-treated mice at 6, 12, and 18 hours post-injection via Evan’s blue extravasation. Monolayers of immortalized mouse brain endothelial cells (bEnd.3) were treated with recombinant TGFβ1 (rTGFβ1) and permeability to fluorescein isothiocyanate-dextran (FITC-dextran), MMP9 and claudin-5 expression were assessed. Antagonism of TGFβ1 signaling was performed in vivo to determine its role in blood-brain barrier permeability. Blood-brain barrier permeability was increased in mice at 18 hours following AOM injection. Treatment of bEnd.3 cells with rTGFβ1 led to a dose-dependent increase of MMP9 expression as well as a suppression of claudin-5 expression. These effects of rTGFβ1 on MMP9 and claudin-5 expression could be reversed following treatment with a SMAD3 inhibitor. AOM-treated mice injected with neutralizing antibodies against TGFβ demonstrated significantly reduced blood-brain barrier permeability. Blood-brain barrier permeability is induced in AOM mice via a mechanism involving the TGFβ1-driven SMAD3-dependent upregulation of MMP9 expression and decrease of claudin-5 expression. Therefore, treatment modalities aimed at reducing TGFβ1 levels or SMAD3 activity may be beneficial in promoting blood-brain barrier integrity following liver failure. PMID:26006017

  7. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Yin, Li; Li, Xing; Tang, Meng; Zhang, Tao; Wang, Dayong

    2013-09-01

    Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L-1 of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged

  8. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.

    PubMed

    Basu, Anirban; Johnson, Thomas M

    2012-05-15

    Cr stable isotope measurements can provide improved estimates of the extent of Cr(VI) reduction to less toxic Cr(III). The relationship between observed (53)Cr/(52)Cr ratio shifts and the extent of reduction can be calibrated by determining the isotopic fractionation factor for relevant reactions. Permeable reactive barriers (PRB) made of Fe(0) and in situ redox manipulation (ISRM) zones effectively remediate Cr-contaminated aquifers. Here, we determine the isotopic fractionations for dominant reductants in reactive barriers and reduced sediments obtained from an ISRM zone at the US DOE's Hanford site. In all cases, significant isotopic fractionation was observed; fractionation (expressed as ε) was -3.91‰ for Fe(II)-doped goethite, -2.11‰ for FeS, -2.65‰ for green rust, -2.67‰ for FeCO(3), and -3.18‰ for ISRM zone sediments. These results provide a better calibration of the relationship between Cr isotope ratios and the extent of Cr(VI) reduction and aid in interpretation of Cr isotope data from systems with reactive barriers. PMID:22424120

  9. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier.

    PubMed

    Flury, Ibettina; Frommer, Jakob; Eggenberger, Urs; Mäder, Urs; Nachtegaal, Maarten; Kretzschmar, Ruben

    2009-09-01

    An innovative full-scale implementation of a permeable reactive barrier, consisting of a double-row of cylinders filled with zerovalent iron shavings, for chromate remediation was monitored over four years. Solid samples were analyzed to elucidate (i) the relevant corrosion mechanisms and products, (ii) the pathways of chromate reduction and immobilization, and (iii) the long-term performance of the barrier situated in a hydrological and geochemical complex groundwater regime. Sampling and analysis of groundwater and reactive material revealed an oxidative iron corrosion zone evolving in the inflow and a zone of anaerobic iron corrosion in the center and outflow of the barrier. Chromate reduction was mainly confined to the inflow region. The formation and thickness of corrosion rinds depended on sampling time, position, and depth, as well as on the size, shape, and graphite content In the inflow, the corrosion rinds mostly consisted of goethite and ferrihydrite. X-ray absorption fine structure spectroscopy revealed two distinct Cr(III) species, most likely resulting from homogeneous and heterogeneous redox reaction pathways, respectively. The longevity and long-term effectiveness of the PRB appears to be primarily limited by reduced corrosion rates of the ZVI-shavings because of the thick layers of Fe-hydroxides.

  10. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore

  11. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    PubMed

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  12. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  13. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  14. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history.

    PubMed

    Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M; Johansson, Pia A; Habgood, Mark D; Møllgård, Kjeld; Bauer, Hans-Christian

    2014-01-01

    Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term "blood-brain barrier" "Blut-Hirnschranke" is often attributed to Lewandowsky, but it does not appear in his papers. The first person to use this term seems to be Stern in the early 1920s. Studies in embryos by Stern and colleagues, Weed and Wislocki showed results similar to those in adult animals. These were well-conducted experiments made a century ago, thus the persistence of a belief in barrier immaturity is puzzling. As discussed in this review, evidence for this belief, is of poor experimental quality, often misinterpreted and often not properly cited. The functional state of blood-brain barrier mechanisms in the fetus is an important biological phenomenon with implications for normal brain development. It is also important for clinicians to have proper evidence on which to advise pregnant women who may need to take medications for serious medical conditions. Beliefs in immaturity of the blood-brain barrier have held the field back for decades. Their history illustrates the importance of taking account of all the evidence and assessing its quality, rather than selecting papers that supports a preconceived notion or intuitive belief. This review attempts to right the wrongs. Based on

  15. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    SciTech Connect

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-12-31

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, {approximately}77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of {approximately}60 {mu}g/L to below the detection limit of the analytical methods.

  16. Behaviour of uranium in iron-bearing permeable reactive barriers: investigation with 237U as a radioindicator.

    PubMed

    Simon, Franz-Georg; Segebade, Christian; Hedrich, Martina

    2003-05-20

    This study was undertaken to investigate the long-term performance of elemental iron as reactive material for the removal of uranium in passive groundwater remediation systems. By using 237U as a radioindicator it was possible to track the movement of the contamination front through a test column without taking samples or dismantling the apparatus. The stoichiometric ratio between uranium and iron was found to be 1:(1390+/-62). The reaction between iron and uranium is of pseudo first-order kinetics and the rate constant was measured to be (1.1+/-0.09) x 10(-3) s(-1). These data enable the calculation of ideal lifetime for permeable reactive barriers (PRB) using iron for uranium removal neglecting hydrological factors that may impair the function of PRBs.

  17. Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237U as a radioindicator.

    PubMed

    Simon, Franz-Georg; Biermann, Vera; Segebade, Christian; Hedrich, Martina

    2004-06-29

    This study was undertaken to investigate the long-term performance of hydroxyapatite (HAP) as reactive material for the removal of uranium in passive groundwater remediation systems. 237U used as a radioindicator enabled tracking the movement of the contamination front through a test column without taking samples or dismantling the apparatus. The stoichiometric ratio between uranium and HAP was found to be 1:(487 +/- 19). Uranium removal by HAP is of pseudo first-order kinetics and the rate constant was measured to be (1.1 +/- 0.1) x 10(-3) s(-1). HAP can sorb more than 2900 mg/kg uranium. Possible reaction pathways of uranium and HAP are discussed. The data obtained enable the calculation of ideal lifetime for permeable reactive barriers (PRB) using HAP for uranium removal neglecting hydrological factors that may impair the function of PRBs.

  18. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers.

  19. Designing low permeability, optical-grade silicone systems: guidelines for choosing a silicone based on transmission rates for barrier applications

    NASA Astrophysics Data System (ADS)

    Velderrain, Michelle

    2012-03-01

    Unprotected electronic components exposed to moisture from high humidity may fail due to corrosion of metal leads or other unfavorable reactions on chemically sensitive components. This is of high interest for silicones that encapsulate Light Emitting Diodes (LEDs) dies. For these applications, moisture and oxygen may react with materials, such as phosphor, used to make white LEDs for back-lighting applications and decrease or change the light output and color over time. Of the polymeric adhesives and sealants commercially available, silicones are used for their thermal stability, clarity, and comparably low modulus that provides stress relief during thermal cycling. In addition, silicones are also known to be very permeable to low molecular weight gases such as water vapor and oxygen. Recently, several types of silicones were tested for the oxygen and water vapor transmission rates, and it was found that they can have drastically different results. Silicone properties strongly affecting permeability are polymer backbone chemistry, crosslink density and fillers. Phenyl (C6H5) and trifluoropropyl (CF3CH2) groups are used to optimize the refractive index of optically clear silicones. The effect of chemical composition on the water vapor transfer rate (WVTR) and the oxygen transfer rate (OTR) at 400 C and 90% Relative Humidity was investigated on several silicones with various refractive indices and compared to polydimethylsiloxane (PDMS) with similar durometers. It was found that polymer backbone chemistry had a significant influence on the permeation rates and will assist in material selection when designing for low-permeable barriers to improve package reliability.

  20. Fibrillin-1 impairment enhances blood-brain barrier permeability and xanthoma formation in brains of apolipoprotein E-deficient mice.

    PubMed

    Van der Donckt, C; Roth, L; Vanhoutte, G; Blockx, I; Bink, D I; Ritz, K; Pintelon, I; Timmermans, J-P; Bauters, D; Martinet, W; Daemen, M J; Verhoye, M; De Meyer, G R Y

    2015-06-01

    We recently reported that apolipoprotein E (ApoE)-deficient mice with a mutation in the fibrillin-1 gene (ApoE(-/-)Fbn1(C1039G+/-)) develop accelerated atherosclerosis with enhanced inflammation, atherosclerotic plaque rupture, myocardial infarction and sudden death. In the brain, fibrillin-1 functions as an attachment protein in the basement membrane, providing structural support to the blood-brain barrier (BBB). Here, we investigated whether fibrillin-1 impairment affects the permeability of the BBB proper and the blood-cerebrospinal fluid barrier (BCSFB), and whether this leads to the accelerated accumulation of lipids (xanthomas) in the brain. ApoE(-/-) (n=61) and ApoE(-/-)Fbn1(C1039G+/-) (n=73) mice were fed a Western-type diet (WD). After 14 weeks WD, a significantly higher permeability of the BBB was observed in ApoE(-/-)Fbn1(C1039G+/-) mice compared to age-matched ApoE(-/-) mice. This was accompanied by leukocyte infiltration, enhanced expression of pro-inflammatory cytokines, matrix metalloproteinases and transforming growth factor-β, and by decreased expression of tight junction proteins claudin-5 and occludin. After 20 weeks WD, 83% of ApoE(-/-)Fbn1(C1039G+/-) mice showed xanthomas in the brain, compared to 23% of their ApoE(-/-) littermates. Xanthomas were mainly located in fibrillin-1-rich regions, such as the choroid plexus and the neocortex. Our findings demonstrate that dysfunctional fibrillin-1 impairs BBB/BCSFB integrity, facilitating peripheral leukocyte infiltration, which further degrades the BBB/BCSFB. As a consequence, lipoproteins can enter the brain, resulting in accelerated formation of xanthomas. PMID:25797463

  1. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    NASA Astrophysics Data System (ADS)

    Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo

    2014-10-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.

  2. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma.

    PubMed

    Zhang, Fang; Xu, Chun-Lei; Liu, Chun-Mei

    2015-01-01

    Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood-brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.

  3. Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation

    PubMed Central

    Huang, Sin-Luo; Liu, Shing-Hwa; Yang, Feng-Yi

    2015-01-01

    It has been shown that the blood-brain barrier (BBB) can be locally disrupted by focused ultrasound (FUS) in the presence of microbubbles (MB) while sustaining little damage to the brain tissue. Thus, the safety issue associated with FUS-induced BBB disruption (BBBD) needs to be investigated for future clinical applications. This study demonstrated the neuroprotective effects induced by low-intensity pulsed ultrasound (LIPUS) against brain injury in the sonicated brain. Rats subjected to a BBB disruption injury received LIPUS exposure for 5 min after FUS/MB application. Measurements of BBB permeability, brain water content, and histological analysis were then carried out to evaluate the effects of LIPUS. The permeability and time window of FUS-induced BBBD can be effectively modulated with LIPUS. LIPUS also significantly reduced brain edema, neuronal death, and apoptosis in the sonicated brain. Our results show that brain injury in the FUS-induced BBBD model could be ameliorated by LIPUS and that LIPUS may be proposed as a novel treatment modality for controllable release of drugs into the brain. PMID:26517350

  4. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies.

    PubMed

    Li, Guanglei; Simon, Melissa J; Cancel, Limary M; Shi, Zhong-Dong; Ji, Xinying; Tarbell, John M; Morrison, Barclay; Fu, Bingmei M

    2010-08-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.

  5. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies.

    PubMed

    Li, Guanglei; Simon, Melissa J; Cancel, Limary M; Shi, Zhong-Dong; Ji, Xinying; Tarbell, John M; Morrison, Barclay; Fu, Bingmei M

    2010-08-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB. PMID:20361260

  6. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma

    PubMed Central

    Zhang, Fang; Xu, Chun-Lei; Liu, Chun-Mei

    2015-01-01

    Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery. PMID:25926719

  7. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  8. Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy.

    PubMed Central

    Gardner, T W

    1995-01-01

    PURPOSES: First, to develop an improved retinal capillary endothelial cell culture system which exhibits some of the physiologic features of the bloodretinal barrier; second, to use this model to determine how histamine and chemical conditions of diabetes effect expression of the tight junction protein, ZO-1; and third, to discuss application of the Henle-Koch postulates to the problem of diabetic retinopathy. METHODS: Bovine retinal capillary endothelial cells were exposed to varying serum and growth factor concentrations, as well as astrocyte-conditioned medium, in order to establish a model of the blood-retinal barrier. Cells were also exposed to varying concentrations of histamine, and of insulin and glucose. The expression of ZO-1 tight junction protein was determined by immunocytochemistry and immunoblotting. RESULTS: Modified concentrations of growth factors reduced endothelial cell proliferation, without reducing viability. Astrocyte conditioned medium increased ZO-1 protein content. Histamine reduced ZO-1 protein content. Both high glucose (20mM) and low insulin (10(-12)M) reduced ZO-1 protein content compared to control conditions (5mM glucose and 10(-9) M insulin). CONCLUSIONS: Control of culture conditions results in a more physiologic in vitro model of the blood-retinal barrier. Soluble factors from astrocytes promote tight junction formation. Both histamine and chemical conditions of diabetes diminish tight junction formation. These factors may mediate blood-retinal barrier breakdown in diabetic retinopathy. Henle-Koch postulates for diabetic retinopathy are presented. Images FIGURE 1A FIGURE 1B FIGURE 2 A FIGURE 2 B FIGURE 3 A FIGURE 3 B FIGURE 3 C FIGURE 4 FIGURE 5 A FIGURE 5 B FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719694

  9. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism.

    PubMed

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik; Olsson, Roger

    2016-05-18

    The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery. PMID:26930271

  10. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history

    PubMed Central

    Saunders, Norman R.; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M.; Johansson, Pia A.; Habgood, Mark D.; Møllgård, Kjeld; Bauer, Hans-Christian

    2014-01-01

    Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term “blood-brain barrier” “Blut-Hirnschranke” is often attributed to Lewandowsky, but it does not appear in his papers. The first person to use this term seems to be Stern in the early 1920s. Studies in embryos by Stern and colleagues, Weed and Wislocki showed results similar to those in adult animals. These were well-conducted experiments made a century ago, thus the persistence of a belief in barrier immaturity is puzzling. As discussed in this review, evidence for this belief, is of poor experimental quality, often misinterpreted and often not properly cited. The functional state of blood-brain barrier mechanisms in the fetus is an important biological phenomenon with implications for normal brain development. It is also important for clinicians to have proper evidence on which to advise pregnant women who may need to take medications for serious medical conditions. Beliefs in immaturity of the blood-brain barrier have held the field back for decades. Their history illustrates the importance of taking account of all the evidence and assessing its quality, rather than selecting papers that supports a preconceived notion or intuitive belief. This review attempts to right the wrongs

  11. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Yi; Lei, Rong; Huang, Hong-Duang; Wang, Na; Yuan, Lan; Xiao, Ru-Yue; Bai, Li-Dan; Li, Xue; Li, Li-Mei; Yang, Xiao-Da

    2015-01-01

    As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ~300 mg L-1, GQDs were innoxious to MDCK and did not affect the morphology and integrity of the cell monolayer. The Papp values were determined to be 1-3 × 10-6 cm s-1 for the 12 nm GQDs and 0.5-1.5 × 10-5 cm s-1 for the 3 nm GQDs, indicating that the 3 nm GQDs are well-transported species while the 12 nm GQDs have a moderate membrane permeability. The transport and uptake of GQDs by MDCK cells were both time and concentration-dependent. Moreover, the incubation of cells with GQDs enhanced the formation of lipid rafts, while inhibition of lipid rafts with methyl-β-cyclodextrin almost eliminated the membrane transport of GQDs. Overall, the experimental results suggested that GQDs cross the MDCK cell monolayer mainly through a lipid raft-mediated transcytosis. The present work has indicated that GQDs are a novel, low-toxic, highly-efficient general carrier for drugs and/or diagnostic agents in biomedical applications.As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ~300 mg L-1, GQDs were innoxious to MDCK and did not affect

  12. Transient blood-brain barrier permeability following profound temporary global ischemia: an experimental study using /sup 14/C-AIB

    SciTech Connect

    Dobbin, J.; Crockard, H.A.; Ross-Russell, R.

    1989-02-01

    The influence of reperfusion after profound incomplete forebrain ischemia on blood-brain barrier (BBB) permeability to a small protein tracer was studied in male Sprague-Dawley rats. The mean cortical blood to brain transfer constant (Ki) for /sup 14/C-amino isobutyric acid (AIB) was significantly greater at 3 and 6 h of reperfusion, 2.5 times the mean values of controls (p less than 0.05) (2.5 microliter g-1 min-1 and 1.0 microliters g-1 min-1 respectively), but had returned to control values after reperfusion for 24 h. Analysis of distribution of Ki values showed that following 15 min and 30 min of profound ischemia, there was a significant increase in transfer of AIB across the blood-brain barrier (BBB) after recirculation for up to 6 h, though there was no evidence of protein extravasation as assessed by Evans Blue (EB) dye. After 24 h of reperfusion, the BBB to AIB was restored, and Ki values had returned to control values. It is concluded that following transient global ischemia, the BBB may recover rapidly.

  13. Laboratory and Pilot Scale Evaluation of a Permeable Reactive Barrier Technology for Use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect

    Dwyer, B.P.; Hankins, M.G.

    1999-02-01

    Three reactive materials were evaluated to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a pellicular humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site; however, the iron filings were determined to be the most cost effective media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the full scale demonstration of this reactive barrier technology. Design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were provided to the design team in support of the final design.

  14. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis.

    PubMed

    Awad, Wageha A; Zentek, Jürgen

    2015-06-01

    Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis. PMID:24888376

  15. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis.

    PubMed

    Awad, Wageha A; Zentek, Jürgen

    2015-06-01

    Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis.

  16. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.

    PubMed

    Zolla, Valerio; Freyria, Francesca Stefania; Sethi, Rajandrea; Di Molfetta, Antonio

    2009-01-01

    Despite the wide diffusion of zero-valent iron (Fe(0)) permeable reactive barriers (PRBs), there is still a great uncertainty about their longevity and long-term performance. The aim of this study is to investigate the biological and the hydrogeochemical processes that take place at a Fe(0) installation located in Avigliana, Italy, and to derive some general considerations about long-term performance of PRBs.The examined PRB was installed in November 2004 to remediate a chlorinated solvents plume (mainly trichloroethene and 1,2-dichloroethene). The investigation was performed during the third year of operation and included: (1) groundwater sampling and analysis for chlorinated solvents, dissolved CH(4), dissolved H(2) and major inorganic constituents; (2) Fe(0) core sampling and analysis by SEM-EDS, XRD, and FTIR spectroscopy for the organic fraction; (3) in situ permeability tests and flow field monitoring by water level measurements.The study revealed that iron passivation is negligible, as the PRB is still able to effectively treat the contaminants and to reduce their concentrations below target values. Precipitation of several inorganic compounds inside the PRB was evidenced by SEM-EDS and XRD analysis conducted on iron samples. Groundwater sampling evidenced heavy sulfate depletion and the highest reported CH(4) concentration (>5,000 microg/L) at zero-valent iron PRB sites. These are due to the intense microbial activity of sulfate-reducers and methanogens, whose proliferation was most likely stimulated by the use of a biopolymer (i.e. guar gum) as shoring fluid during the excavation of the barrier. Slug tests within the barrier evidenced an apparent hydraulic conductivity two orders of magnitude lower than the predicted value. This occurrence can be ascribed to biofouling and/or accumulation of CH(4)(g) inside the iron filings.This experience suggests that when biopolymer shoring is planned to be used, long-term column tests should be performed beforehand

  17. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation

    PubMed Central

    Ohno, Yusuke; Nakamichi, Shota; Ohkuni, Aya; Kamiyama, Nozomi; Naoe, Ayano; Tsujimura, Hisashi; Yokose, Urara; Sugiura, Kazumitsu; Ishikawa, Junko; Akiyama, Masashi; Kihara, Akio

    2015-01-01

    A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production. PMID:26056268

  18. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 1 PERFORMANCE EVALUATIONS AT TWO SITES

    EPA Science Inventory

    The purpose of this document is to provide detailed performance monitoring data on full-scale Permeable Reactive Barriers (PRBs) installed to treat contaminated ground water at two different sites. This report will fill a need for a readily available source of information for si...

  19. ENVIRONMENTAL RESEARCH BRIEF: LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS USING ZERO-VALENT IRON: AN EVALUATION AT TWO SITES

    EPA Science Inventory

    Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These groundwater treatment systems use zero-valent iron filings to intercept an...

  20. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: LESSONS LEARNED ON DESIGN, CONTAMINANT TREATMENT, LONGEVITY, PERFORMANCE MONITORING AND COST - AN OVERVIEW

    EPA Science Inventory

    An overview of permeable reactive barrier (PRB) performance for field sites in the U.S. was evaluated over the last 10 years by the U.S. Environmental Protection Agencys Office of Research and Development (EPA-ORD) in collaboration with other U.S. federal agencies, consulting co...

  1. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  2. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: LESSONS LEARNED ON DESIGN, CONTAMINANT TREATMENT, LONGEVITY, PERFORMANCE MONITORING AND COST-AN OVERVIEW

    EPA Science Inventory

    This presentation will provide an overview of permeable reactive barrier performance for field sites in the U.S. evaluated over the last 10 years by the U.S. Environmental Protection Agency's Office of Research and Development (EPA-ORD) in collaboration with other U.S. federal ag...

  3. THE APPLICATION OF IN SITU PERMEABLE REACTIVE (ZERO-VALENT IRON) BARRIER TECHNOLOGY FOR THE REMEDIATION OF CHROMATE-CONTAMINATED GROUNDWATER: A FIELD TEST

    EPA Science Inventory

    A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating f...

  4. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms.

  5. Is Peripheral Immunity Regulated by Blood-Brain Barrier Permeability Changes?

    PubMed Central

    Bargerstock, Erin; Puvenna, Vikram; Iffland, Philip; Falcone, Tatiana; Hossain, Mohammad; Vetter, Stephen; Man, Shumei; Dickstein, Leah; Marchi, Nicola; Ghosh, Chaitali; Carvalho-Tavares, Juliana; Janigro, Damir

    2014-01-01

    S100B is a reporter of blood-brain barrier (BBB) integrity which appears in blood when the BBB is breached. Circulating S100B derives from either extracranial sources or release into circulation by normal fluctuations in BBB integrity or pathologic BBB disruption (BBBD). Elevated S100B matches the clinical presence of indices of BBBD (gadolinium enhancement or albumin coefficient). After repeated sub-concussive episodes, serum S100B triggers an antigen-driven production of anti-S100B autoantibodies. We tested the hypothesis that the presence of S100B in extracranial tissue is due to peripheral cellular uptake of serum S100B by antigen presenting cells, which may induce the production of auto antibodies against S100B. To test this hypothesis, we used animal models of seizures, enrolled patients undergoing repeated BBBD, and collected serum samples from epileptic patients. We employed a broad array of techniques, including immunohistochemistry, RNA analysis, tracer injection and serum analysis. mRNA for S100B was segregated to barrier organs (testis, kidney and brain) but S100B protein was detected in immunocompetent cells in spleen, thymus and lymph nodes, in resident immune cells (Langerhans, satellite cells in heart muscle, etc.) and BBB endothelium. Uptake of labeled S100B by rat spleen CD4+ or CD8+ and CD86+ dendritic cells was exacerbated by pilocarpine-induced status epilepticus which is accompanied by BBBD. Clinical seizures were preceded by a surge of serum S100B. In patients undergoing repeated therapeutic BBBD, an autoimmune response against S100B was measured. In addition to its role in the central nervous system and its diagnostic value as a BBBD reporter, S100B may integrate blood-brain barrier disruption to the control of systemic immunity by a mechanism involving the activation of immune cells. We propose a scenario where extravasated S100B may trigger a pathologic autoimmune reaction linking systemic and CNS immune responses. PMID:24988410

  6. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain

    PubMed Central

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs. PMID:23977451

  7. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat.

    PubMed

    Fernández-López, David; Faustino, Joel; Daneman, Richard; Zhou, Lu; Lee, Sarah Y; Derugin, Nikita; Wendland, Michael F; Vexler, Zinaida S

    2012-07-11

    The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked whether the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2-24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70 kDa dextran) and small (3 kDa dextran), gadolinium (III)-diethyltriaminepentaacetic acid tracers remained largely undisturbed 24 h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24 h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and matrix metalloproteinase-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin, and zonula occludens protein 1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of cytokine-induced neutrophil chemoattractant-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability, and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke. PMID:22787045

  8. Blood-brain barrier permeable anticholinesterase aurones: synthesis, structure-activity relationship, and drug-like properties.

    PubMed

    Liew, Kok-Fui; Chan, Kit-Lam; Lee, Chong-Yew

    2015-04-13

    A series of novel aurones bearing amine and carbamate functionalities at various positions (rings A and/or B) of the scaffold was synthesized and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Structure-activity relationship study disclosed several potent submicromolar acetylcholinesterase inhibitors (AChEIs) particularly aurones bearing piperidine and pyrrolidine moieties at ring A or ring B. Bulky groups particularly methoxyls, and carbamate to a lesser extent, at either rings were also prominently featured in these AChEI aurones as exemplified by the trimethoxyaurone 4-3. The active aurones exhibited a lower butyrylcholinesterase inhibition. A 3'-chloroaurone 6-3 originally designed to improve the metabolic stability of the scaffold was the most potent of the series. Molecular docking simulations showed these AChEI aurones to adopt favourable binding modes within the active site gorge of the Torpedo californica AChE (TcAChE) including an unusual chlorine-π interaction by the chlorine of 6-3 to establish additional bondings to hydrophobic residues of TcAChE. Evaluation of the potent aurones for their blood-brain barrier (BBB) permeability and metabolic stability using PAMPA-BBB assay and in vitro rat liver microsomes (RLM) identified 4-3 as an aurone with an optimal combination of high passive BBB permeability and moderate CYP450 metabolic stability. LC-MS identification of a mono-hydroxylated metabolite found in the RLM incubation of 4-3 provided an impetus for further improvement of the compound. Thus, 4-3, discovered within this present series is a promising, drug-like lead for the development of the aurones as potential multipotent agents for Alzheimer's disease. PMID:25768702

  9. Model-based hypothesis of gut microbe populations and gut/brain barrier permeabilities in the development of regressive autism.

    PubMed

    Downs, Ryan; Perna, Jonathon; Vitelli, Andrew; Cook, Daniel; Dhurjati, Prasad

    2014-12-01

    Regressive autism is a devastating disorder affecting children between the ages of 15-30 months. The disorder is characterized by the loss of social interaction and communication ability following otherwise healthy development. In spite of rising autism prevalence, current detection methods and treatment options for this disease are lacking. Therefore, this study introduces a systems-level model, which suggests that gut microbes and intestinal inflammation influence the onset of regressive autism through increasing gut permeability. This computational model provides a framework for quantitative understanding of how imbalances in populations of gut microbes alters the whole-body and brain distributions of neurotoxins produced by GI tract bacteria. Our results indicate that increased levels of the bacteria Bacteroides vulgatus lead to increased brain levels of propionic acid, a neurotoxin which has been known to cause symptoms characteristic of autism when injected into the brain of rats. Our results further indicate that immune response to virulence factors produced by bacteria in the gut leads to increased systemic levels of inflammatory cytokines, such as IL-1β, which significantly alter the permeability of the gut epithelial layer and the blood-brain barrier. Due to the large size of cytokines, however, we predict the time required for concentrations in the brain to stabilize to be on the order of years. This suggests that treatments preventing autism development could be administered after identifying microbial biomarkers of disease but before debilitating brain inflammation leads to regressive autism progression. Future research extending this work could provide new treatment options and diagnostic techniques to help combat regressive autism.

  10. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.

    PubMed

    Figley, Sarah A; Khosravi, Ramak; Legasto, Jean M; Tseng, Yun-Fan; Fehlings, Michael G

    2014-03-15

    Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI. PMID:24237182

  11. Electro-enhanced Permeable Reactive Barrier : Optimal Design of PRB System With External Current for Effective TCE Removal From Groundwater

    NASA Astrophysics Data System (ADS)

    Moon, J.; Moon, H.; Roh, Y.; Kim, H.; Song, Y.

    2002-12-01

    The objective of this study was to design an optimal electro-enhanced permeable reactive barrier (E2PRB) system for remediation of trichloroethylene (TCE)-contaminated water using zero valent iron (ZVI) and direct current (DC). A series of column experiments were conducted to evaluate the location of Fe0 permeable reactive barrier (PRB) and the effects of electrode arrangement in the column on the TCE removal efficiency and iron corrosion processes. In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive dechlorination of TCE was improved with simultaneous application of both ZVI and DC compared to that used ZVI only to evaluate the synergistic effect (SE). The most effective arrangement of electrode and ZVI for TCE removal from simulated groundwater was a column set with ZVI and cathode installed at the down gradient (outlet side). Based on the electrochemical study in the E2PRB system, application of direct current provided external electrons to the system so that the system did not depend entirely on the oxidation of the medium for the reductive dechlorination of TCE. The enhanced dechlorination rate of TCE in ZVI-DC systems is considered to attributed to more generation and fast formation kinetic of electron by following reactions: (1) direct supply of electrons from external DC source (2) the electrolysis of water generating additional electrons at the vicinity of the anode (3) the electro-reduction of the compound by released electrons on the ZVI surfaces by oxidation (4) released electron through oxidation of dissolved ferrous iron, and (5) oxidation of atomic hydrogen at the cathode. The competition between five different electron sources generated from five sources evidently influenced on the TCE removal efficiency, valid lifetime of E2PRB system, and reduction of energy expenditure in both of electrochemical and electrokinetic aspects. The results from a series of experiments with twelve columns showed a

  12. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4.

    PubMed

    Yu, Zhengquan; Lin, Kevin K; Bhandari, Ambica; Spencer, Joel A; Xu, Xiaoman; Wang, Ning; Lu, Zhongxian; Gill, Gordon N; Roop, Dennis R; Wertz, Philip; Andersen, Bogi

    2006-11-01

    Defective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation.

  13. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-01

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  14. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function.

    PubMed

    Park, Min Chul; Jeong, Hyobin; Son, Sung Hwa; Kim, YounHa; Han, Daeyoung; Goughnour, Peter C; Kang, Taehee; Kwon, Nam Hoon; Moon, Hyo Eun; Paek, Sun Ha; Hwang, Daehee; Seol, Ho Jun; Nam, Do-Hyun; Kim, Sunghoon

    2016-03-01

    Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance. PMID:26676754

  15. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function.

    PubMed

    Park, Min Chul; Jeong, Hyobin; Son, Sung Hwa; Kim, YounHa; Han, Daeyoung; Goughnour, Peter C; Kang, Taehee; Kwon, Nam Hoon; Moon, Hyo Eun; Paek, Sun Ha; Hwang, Daehee; Seol, Ho Jun; Nam, Do-Hyun; Kim, Sunghoon

    2016-03-01

    Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance.

  16. Development of modified flyash as a permeable reactive barrier medium for a former manufactured gas plant site, Northern Ireland

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Phillips, D. H.; McGeough, K. L.; Walsh, K. P.; Kalin, R. M.

    2006-05-01

    A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (<1 μm) cubic highly crystalline precipitates on the flyash, although this new crystalline zeolite growth did not occur rapidly enough to enable productive zeolite formation. Surface area measurements showed that biofilm growth on the medium could be a major factor in the comparative reduction of surface area between real and synthetic contaminant groundwaters. The modified flyash was found to be a highly sorptive granular material that did not inhibit microbiological activity, however, leaching tests revealed that the medium would fail as a long-term barrier material.

  17. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier.

    PubMed

    Liu, She-Jiang; Jiang, Bin; Huang, Guo-Qiang; Li, Xin-Gang

    2006-10-01

    In this study, an in situ biological two-layer permeable reactive barrier system consisting of an oxygen-releasing material layer followed by a biodegradation layer was designed to evaluate the remediation effectiveness of MTBE-contaminated groundwater. The first layer containing calcium peroxide (CaO(2)) and other inorganic salts is to provide oxygen and nutrients for the immobilized microbes in the second layer in order to keep them in aerobic condition and maintain their normal metabolism. Furthermore, inorganic salts such as potassium dihydrogen phosphate (KH(2)PO(4)) and ammonium sulphate ((NH(4))(2)SO(4)) can also decrease the high pH caused by the alkali salt degraded from CaO(2). The second layer using granular expanded perlite as microbial carrier is able to biodegrade MTBE entering the barrier system. Batch experiments were conducted to identify the appropriate components of oxygen-releasing materials and the optimum pH value for the biodegradation of MTBE. At pH=8.0, the biodegradation efficiency of MTBE is the maximum and approximately 48.9%. A laboratory-scale experiment using two continuous upflow stainless-steel columns was then performed to evaluate the feasibility of this designed system. The fist column was filled with oxygen-releasing materials at certain ratio by weight. The second column was filled with expanded perlite granules immobilizing MTBE-degrading microbial consortium. Simulated MTBE-contaminated groundwater, in which dissolved oxygen (DO) content was 0mg/L, was pumped into this system at a flow rate of 500mL/d. Samples from the second column were analyzed for MTBE and its major degradation byproduct. Results showed that MTBE could be removed, and its metabolic intermediate, tert-butyl alcohol (TBA), could also be further degraded in this passive system.

  18. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    PubMed Central

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  19. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition.

    PubMed

    Alluri, Himakarnika; Wilson, Rickesha L; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R; Davis, Matthew L; Huang, Jason H; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  20. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice

    PubMed Central

    Laval, L; Martin, R; Natividad, JN; Chain, F; Miquel, S; de Maredsous, C Desclée; Capronnier, S; Sokol, H; Verdu, EF; van Hylckama Vlieg, JET; Bermúdez-Humarán, LG; Smokvina, T; Langella, P

    2015-01-01

    Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities. PMID:25517879

  1. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice.

    PubMed

    Laval, L; Martin, R; Natividad, J N; Chain, F; Miquel, S; Desclée de Maredsous, C; Capronnier, S; Sokol, H; Verdu, E F; van Hylckama Vlieg, J E T; Bermúdez-Humarán, L G; Smokvina, T; Langella, P

    2015-01-01

    Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.

  2. Endophilin-1 regulates blood-brain barrier permeability by controlling ZO-1 and occludin expression via the EGFR-ERK1/2 pathway.

    PubMed

    Liu, Wenjing; Wang, Ping; Shang, Chao; Chen, Lin; Cai, Heng; Ma, Jun; Yao, Yilong; Shang, Xiuli; Xue, Yixue

    2014-07-21

    The blood-brain barrier (BBB) plays a pivotal role in maintenance and regulation of the neural microenvironment. Brain endothelial cells (BECs), held together by tight junctions (TJs), have a primary role in restricting the permeability of the BBB. Endophilin-1 is a multifunctional protein that influences epithelial growth factor receptor (EGFR) endocytosis and degradation and plays an important role in regulating the glomerular filtration barrier in the kidney. Endophilin-1 likely plays a similar role in controlling BBB permeability. In this study, we therefore analyzed the expression and function of endophilin-1 in the human BEC line hCMEC/D3. Our results show that endophilin-1 over-expression reduced the expression of the TJ-associated proteins ZO-1 and occludin and increased the paracellular permeability of hCMEC/D3 cells, whereas silencing of endogenous endophilin-1 yielded the opposite results. Over-expression of ZO-1 and occludin prevented the increase in permeability induced by endophilin-1 over-expression, whereas down-regulation of ZO-1 and occludin prevented the reduction in permeability induced by endophilin-1 silencing. Co-localization and co-immunoprecipitation experiments suggested that endophilin-1 interacts with the EGFR. The levels of EGFR and its downstream effector phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) are significantly decreased when endophilin-1 is over-expressed. Conversely, endophilin-1 down-regulation led to markedly increased levels of these proteins. In addition, the reduced permeability induced by endophilin-1 down-regulation was blocked by AG1478 and PD98059, inhibitors of EGFR and ERK1/2, respectively. Up-regulation of ZO-1 and occludin was blocked by the EGFR and ERK1/2 inhibitors. These results suggest that endophilin-1 regulates BBB permeability by controlling ZO-1 and occludin expression via the EGFR-ERK1/2 pathway in BECs.

  3. Enolase of Streptococcus Suis Serotype 2 Enhances Blood-Brain Barrier Permeability by Inducing IL-8 Release.

    PubMed

    Sun, Yingying; Li, Na; Zhang, Jing; Liu, Hongtao; Liu, Jianfang; Xia, Xiaojing; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Lei, Liancheng

    2016-04-01

    Streptococcus suis serotype 2 (SS2) is an emerging zoonosis, and meningitis is the most frequent clinical manifestation, but mechanism of its virulent factor, enolase (Eno), is unknown in meningitis. In this study, Eno was inducibly expressed and added to an in vitro Transwell co-culture model of the blood-brain barrier (BBB) consisted of porcine brain microvascular endothelial cells (PBMECs) and astrocytes (ACs), the results showed that Eno induces a significant increase in BBB permeability and promotes the release of IL-8 et al. cytokines. Furthermore, IL-8 could significantly destroy the integrity of the BBB model in vitro. In mice models administered Eno for 24 h, Eno could significantly promote Evans blue (EB) moving from the blood to the brain and significantly increased the serum and brain levels of IL-8, as detected by ELISA. While G31P (IL-8 receptor antagonist) significantly decreased the concentration of EB in the brains of mice injected with Eno. The present study demonstrated that SS2 Eno may play an important role in disrupting BBB integrity by prompting IL-8 release. PMID:26732390

  4. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier.

    PubMed

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-21

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  5. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier.

    PubMed

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions. PMID:26486449

  6. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    PubMed

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  7. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Omoregie, Enoma; Chaurand, Perrine; Borschneck, Daniel; Bastiaens, Leen; Rose, Jérôme

    2016-03-01

    Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent. PMID:26604198

  8. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  9. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Omoregie, Enoma; Chaurand, Perrine; Borschneck, Daniel; Bastiaens, Leen; Rose, Jérôme

    2016-03-01

    Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent.

  10. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  11. Capture and release zones of permeable reactive barriers under the influence of advective-dispersive transport in the aquifer

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; Mohamed, Mohamed M.; Perminova, Irina V.; Perlmutter, Mike

    2014-07-01

    The problem of permeable reactive barrier (PRB) capture and release behavior is investigated by means of an approximate analytical approach exploring the invariance of steady-state solutions of the advection-dispersion equation to conformal mapping. PRB configurations considered are doubly-symmetric funnel-and-gate as well as less frequent drain-and-gate systems. The effect of aquifer heterogeneity on contaminant plume spreading is hereby incorporated through an effective transverse macro-dispersion coefficient, which has to be known. Results are normalized and graphically represented in terms of a relative capture efficiency M of contaminant mass or groundwater passing a control plane (transect) at a sufficient distance up-stream of a PRB as to comply with underlying assumptions. Factors of safety FS are given as the ratios of required capture width under advective-dispersive and purely advective transport for achieving equal capture efficiency M. It is found that M also applies to the release behavior down-stream of a PRB, i.e., it describes the spreading and dilution of PRB treated groundwater possibly containing incompletely remediated contamination and/or remediation reaction products. Hypothetical examples are given to demonstrate results.

  12. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates.

    PubMed

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  13. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  14. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron

    NASA Technical Reports Server (NTRS)

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T.

    2002-01-01

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  15. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.

    PubMed

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T

    2002-12-15

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  16. Blood-brain barrier permeability of Gualou Guizhi granules and neuroprotective effects in ischemia/reperfusion injury.

    PubMed

    Li, Huang; Ye, Miao; Zhang, Yuqin; Huang, Mingqing; Xu, Wei; Chu, Kedan; Chen, Lidian; Que, Jinhua

    2015-07-01

    The present study aimed to estimate the blood-brain barrier (BBB) permeability of Gualou Guizhi granules (GLGZG) in normal rats and in rat models of ischemia/reperfusion (I/R) injury, and to examine the neuroprotective effects of GLGZG. A sensitive high‑performance liquid chromatography-quadrupole-time of flight-mass spectrometry analytical method was developed to determinate the components of GLGZG in the plasma and brain tissue. Middle cerebral artery occlusion (MCAO) in rats served as a model of in vivo I/R. Citrulline, gallic acid, albiflorin, peoniflorin, liquiritin apioside, liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigenin and glycyrrhizinic acid rapidly passed into the bloodstream. Citrulline, albiflorin, peoniflorin, liquiritin apioside, liquiritin, liquiritigenin, isoliquiritigenin and glycyrrhizinic acid also passed the BBB and reached the brain tissue of MCAO rats, while isoliquiritigenin and glycyrrhizinic acid were not detected in the brain tissue of the normal rats. The potential neuroprotective effect of GLGZG was determined in MCAO rats. The intragastric administration of GLGZG following reperfusion of rats for 2 h decreased the neurological defects and infarction volume, attenuated pathological changes of brain tissue and exerted a significant protective effect in cerebral ischemia injury. In conclusion, certain components of GLGZG passed through the BBB, particularly following cerebral ischemia injury, and this may be therapeutically effective for the treatment of cerebral ischemia injury in the human brain.

  17. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.

    PubMed

    Hudak, Paul F

    2014-01-01

    This modeling study compared the performance of a no-action and four active groundwater remediation alternatives: a permeable reactive barrier, a funnel and gate, nonpumped wells with filter media, and a low-capacity extraction and injection well. The simulated aquifer had an average seepage velocity of 0.04 m d(-1), and the initial contaminant plume was 58 m long and 13 m wide. For each active alternative, mass transport modeling identified the smallest structure necessary to contain and remove the contaminant plume. Although the no-action alternative did not contain the plume, each active alternative did contain and remove the plume, but with significantly different installation and operation requirements. Low-capacity pumping wells required the least infrastructure, with one extraction well and one injection well each discharging only 1.7 m(3) d(-1). The amount of time necessary to remove the contaminant plume was similar among active alternatives, except for the funnel and gate, which required much more time. Results of this study suggest that, for a modest seepage velocity and relatively narrow contaminant plume, low-capacity wells may be an effective alternative for groundwater remediation.

  18. Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene.

    PubMed

    Mondal, Pulin K; Lima, Glaucia; Zhang, David; Lomheim, Line; Tossell, Robert W; Patel, Paresh; Sleep, Brent E

    2016-08-01

    Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30μM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000μM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications. PMID:27054663

  19. Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene.

    PubMed

    Mondal, Pulin K; Lima, Glaucia; Zhang, David; Lomheim, Line; Tossell, Robert W; Patel, Paresh; Sleep, Brent E

    2016-08-01

    Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30μM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000μM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications.

  20. Evidence for a blood - uterine lumen permeability barrier in rats treated with hormones to mimic early pseudopregnancy.

    PubMed

    McRae, A C; Kennedy, T G

    1982-12-01

    Experiments have been carried out to investigate whether a blood - uterine lumen permeability barrier exists in rats treated with hormones to mimic the implantation period of gestation. Levels of radioactivity in fluid from the uterine lumen and in serum of rats at the equivalent of day 4, 5, or 6 of pseudopregnancy (day 1 = day of induced ovulation) were determined either 20 or 60 min after intravenous injection of a radiolabelled test substance. Following injection of [14C]urea or [3H]sucrose, uterine fluid (UF) radioactivity concentrations did not differ significantly between 20 and 60 min irrespective of day of pseudopregnancy. With [14C]urea, UF radioactivity concentrations were significantly less than those in serum in all groups except at the equivalent of day 6 of pseudopregnancy. After injection of [3H]sucrose, the UF radioactivity concentrations were significantly less than those in serum in all groups except at 60 min at the equivalent of day 6 of pseudopregnancy. Additionally, the UF radioactivity concentrations after injection of either [14C]urea or [3H]sucrose were significantly higher on the equivalent of day 6 of pseudopregnancy than on day 4. By contrast, when tritiated water was injected, the UF radioactivity concentrations were not markedly different from those in serum in all groups.

  1. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    PubMed Central

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions. PMID:26486449

  2. Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier

    PubMed Central

    Baghirov, Habib; Karaman, Didem; Viitala, Tapani; Duchanoy, Alain; Lou, Yan-Ru; Mamaeva, Veronika; Pryazhnikov, Evgeny; Khiroug, Leonard; de Lange Davies, Catharina; Sahlgren, Cecilia; Rosenholm, Jessica M.

    2016-01-01

    Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport. PMID:27547955

  3. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.

    PubMed

    Hudak, Paul F

    2014-01-01

    This modeling study compared the performance of a no-action and four active groundwater remediation alternatives: a permeable reactive barrier, a funnel and gate, nonpumped wells with filter media, and a low-capacity extraction and injection well. The simulated aquifer had an average seepage velocity of 0.04 m d(-1), and the initial contaminant plume was 58 m long and 13 m wide. For each active alternative, mass transport modeling identified the smallest structure necessary to contain and remove the contaminant plume. Although the no-action alternative did not contain the plume, each active alternative did contain and remove the plume, but with significantly different installation and operation requirements. Low-capacity pumping wells required the least infrastructure, with one extraction well and one injection well each discharging only 1.7 m(3) d(-1). The amount of time necessary to remove the contaminant plume was similar among active alternatives, except for the funnel and gate, which required much more time. Results of this study suggest that, for a modest seepage velocity and relatively narrow contaminant plume, low-capacity wells may be an effective alternative for groundwater remediation. PMID:24844898

  4. Improving Low-Dose Blood-Brain Barrier Permeability Quantification Using Sparse High-Dose Induced Prior for Patlak Model

    PubMed Central

    Fang, Ruogu; Karlsson, Kolbeinn; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Blood-brain-barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis. PMID:24200529

  5. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation).

  6. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). PMID:25262485

  7. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.

    PubMed

    Mak, Mark S H; Lo, Irene M C

    2011-12-01

    The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.

  8. Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier.

    PubMed

    Baghirov, Habib; Karaman, Didem; Viitala, Tapani; Duchanoy, Alain; Lou, Yan-Ru; Mamaeva, Veronika; Pryazhnikov, Evgeny; Khiroug, Leonard; de Lange Davies, Catharina; Sahlgren, Cecilia; Rosenholm, Jessica M

    2016-01-01

    Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport. PMID:27547955

  9. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.

    PubMed

    Wilkin, Richard T; Acree, Steven D; Ross, Randall R; Puls, Robert W; Lee, Tony R; Woods, Leilani L

    2014-01-15

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium source zone, reactive and hydraulic longevity of the PRB has outlived the mobile chromate plume. Chromium concentrations exceeding 3 μg/L have not been detected in regions located hydraulically down-gradient of the PRB. Trichloroethylene treatment has also been effective, although non-constant influent concentrations of trichloroethylene have at times resulted in incomplete dechlorination. Daughter products: cis-1,2-dichloroethylene, vinyl chloride, ethene, and ethane have been observed within and down-gradient of the PRB at levels <10% of the influent trichloroethylene. Analysis of potentiometric surfaces up-gradient and across the PRB suggests that the PRB may currently represent a zone of reduced hydraulic conductivity; however, measurements of the in-situ hydraulic conductivity provide values in excess of 200 m/d in some intervals and indicate no discernible loss of bulk hydraulic conductivity within the PRB. The results presented here are particularly significant because they provide the longest available record of performance of a PRB. The longevity of the Elizabeth City PRB is principally the result of favorable groundwater geochemistry and hydrologic properties of the site.

  10. In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain).

    PubMed

    Gibert, Oriol; Rötting, Tobias; Cortina, José Luis; de Pablo, Joan; Ayora, Carlos; Carrera, Jesús; Bolzicco, José

    2011-07-15

    Following on the accident occurred in Aznalcóllar in 1998, whereby a huge amount of acid mine drainage and heavy metal-bearing pyritic sludge was released to the Agrio river valley with the subsequent contamination of groundwater, a subsurface permeable reactive barrier (PRB) was installed to mitigate the long-term impacts by the spillage. The PRB material consisted of a mixture of limestone and vegetal compost. A particular characteristic of the Agrio aquifer is its high water flow velocity (0.5-1 m/d), which may pose difficulties in its remediation using PRB technology. The present study reports the 36-month performance of the PRB. Vertical differences in water velocity were observed within the PRB, with the deeper part being slower and more effective in neutralizing pH and removing heavy metals (Zn, Al, Cu). On the other hand, partial sulfate removal appeard to be restricted to the bottom of the PRB, but with no apparent influence on downgradient water quality. The results are finally compared with the other four reported existing PRBs for AMD worldwide.

  11. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater.

    PubMed

    He, Y Thomas; Wilson, John T; Wilkin, Richard T

    2008-09-01

    Iron and sulfur reducing conditions generally develop in permeable reactive barrier systems (PRB) constructed to treat contaminated groundwater. These conditions allow formation of FeS mineral phases. FeS readily degrades TCE, but a transformation of FeS to FeS2 could dramatically slow the rate of TCE degradation in the PRB. This study uses acid volatile sulfide (AVS) and chromium reducible sulfur (CRS) as probes for FeS and FeS2 to investigate iron sulfide formation and transformation in a column study and PRB field study dealing with TCE degradation. Solid phase iron speciation shows that most of the iron is reduced and sulfur partitioning measurements show that AVS and CRS coexist in all samples, with the conversion of AVS to CRS being most significant in locations with potential oxidants available. In the column study, 54% of FeS was transformed to FeS2 after 2.4 years. In the field scale PRB, 43% was transformed after 5.2 years. Microscopy reveals FeS, Fe3S4 and FeS2 formation in the column system; however, only pyrite formation was confirmed byX-ray diffraction. The polysulfide pathway is most likely the primary mechanism of FeS transformation in the system, with S0 as an intermediate species formed through H2S oxidation.

  12. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Weber, Anne; Jekel, Martin

    2012-11-01

    Uncertainties in long-term reactivity and gas accumulation in Fe(0) permeable reactive barriers still hinder a broad application of this groundwater remediation technology. In this study long-term column experiments were conducted under varying geochemical conditions. Generation of hydrogen by anaerobic corrosion in Fe(0) reactive filters was mainly influenced by the mass flux of dissolved inorganic carbon. Both increased concentrations and volume flows led to a substantial rise in gas generation but only to slight differences of gas accumulation within the pores of the reactive filter. Comparisons of columns with different lengths showed higher averaged corrosion rates in the shorter and lower corrosion rates in the longer columns. Calcium in conjunction with dissolved inorganic carbon formed compact and localized aragonite minerals, while in the absence of calcium chukanovite dominated, which covered and passivated the reactive surface to a higher extent. Magnetite was the major crystalline corrosion product in the absence of carbonate and no decline in long term corrosion rates was observed within up to 700 days of operation. Total gas yields of columns were restricted by passivation and approached a volume of approximately 13.5 mL/g granulated cast iron.

  13. Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater.

    PubMed

    Kong, Xiangke; Bi, Erping; Liu, Fei; Huang, Guoxin; Ma, Jianfei

    2015-01-01

    In order to remediate ammonium contaminated groundwater, an innovative multimedia permeable reactive barrier (M-PRB) was proposed, which consisted of sequential columns combining oxygen releasing compound (ORC), zeolite, spongy iron and pine bark in the laboratory scale. Results showed that both ammonium and nitrate could be reduced to levels below the regulatory discharge limits through ion exchange and microbial degradation (nitrification and denitrification) in different compartments of the M-PRB system. The concentration of dissolved oxygen (DO) increased from 2 to above 20 mg/L after the simulated groundwater flowed through the oxygen releasing column packed with ORC, demonstrating that ORC could supply sufficient oxygen for subsequent microbial nitrification. Ammonium was efficiently removed from about 10 to below 0.5 mg N/L in the aerobic reaction column which was filled with biological zeolite. After 54 operating days, more than 70% ammonium could be removed by microbial nitrification in the aerobic reaction column, indicating that the combined use of ion exchange and nitrification by biological zeolite could ensure high and sustainable ammonium removal efficiency. To avoid the second pollution of nitrate produced by the former nitrification, spongy iron and pine bark were used to remove oxygen and supply organic carbon for heterotrophic denitrification in the oxygen removal column and anaerobic reaction column separately. The concentration of nitrate decreased from 14 to below 5 mg N/L through spongy iron-based chemical reduction and microbial denitrification.

  14. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).

    PubMed

    Muchitsch, Nanna; Van Nooten, Thomas; Bastiaens, Leen; Kjeldsen, Peter

    2011-11-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier. PMID:22115091

  15. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).

    PubMed

    Muchitsch, Nanna; Van Nooten, Thomas; Bastiaens, Leen; Kjeldsen, Peter

    2011-11-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.

  16. The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model.

    PubMed

    Wu, Ni; Xu, Wei; Cao, Gui-Yun; Yang, Yan-Fang; Yang, Xin-Bao; Yang, Xiu-Wei

    2016-01-22

    The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp) were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10(-8)-10(-6) cm/s; those of 8-O-4'-neolignan and tetrahydrofuran-lignan were at 10(-6)-10(-5) cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10(-8)-10(-7) cm/s. To 5-methoxy-dehydrodiisoeugenol (2), erythro-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol acetate (6), verrucosin (8), and nectandrin B (9), an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1), myrislignan (7) and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.

  17. A new PAMPA model using an in-house brain lipid extract for screening the blood-brain barrier permeability of drug candidates.

    PubMed

    Bicker, Joana; Alves, Gilberto; Fortuna, Ana; Soares-da-Silva, Patrício; Falcão, Amílcar

    2016-03-30

    The determination of the permeability of drug candidates across the blood-brain barrier (BBB) is a fundamental step during drug discovery programs. The parallel artificial membrane permeability assay (PAMPA) is a high throughput screening tool applied to evaluate the passive permeability and adapted to predict BBB penetration. Herein, a new PAMPA model was developed using an in-house brain lipid extract capable of discriminating BBB permeable from non-permeable compounds. The apparent permeability (Papp) of 18 reference molecules and 10 test compounds was assessed and compared with phosphatidylcholine and commercial porcine polar brain lipid (PBL). The physicochemical selectivity of the in-house brain lipid extract was demonstrated by correlating Papp values with physicochemical properties and its predictive capacity estimated by establishing in vitro-in vivo correlations. The strong correlations achieved between 2% (w/v) in-house lipid extract and PBL for reference (r(2)=0.77) and test compounds (r(2)=0.94) support an equivalent discriminatory capacity and validate the presented model. Moreover, PAMPA studies performed with PBL and in-house lipid extract exhibited a higher correlation with the in vivo parameter logBB (r(2)=0.76 and r(2)=0.72, respectively) than phosphatidylcholine (r(2)=0.51). Overall, the applied lipid extraction process was reproducible, economical and provided lipid extracts that can be used to reliably assess BBB permeation.

  18. The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection.

    PubMed

    Marker, O; Nielsen, M H; Diemer, N H

    1984-01-01

    The ultrastructure and the blood-brain-barrier (BBB) permeability were studied in mice suffering from lymphocytic choriomeningitis (LCM). Brains and meninges from mice suffering from LCM virus-induced lymphocytic choriomeningitis were studied by investigating the BBB function and by electron and light microscopy. The cellular exudate in the leptomeninges was located in the subarachnoid space, in arachnoidea and pia, and it was dominated by proliferated pial cells and mononuclear cells, most of which were lymphocytes, while there were only a few neutrophil granulocytes. Many intravascular lymphocytes were seen adhering to as well as penetrating the vessel walls. Many of these lymphocytes were morphologically compatible with T cells. Lymphocytes and larger mononuclear cells were also accumulated in the choroid plexus, and lymphocytes were present in the ventricular system with a tendency to adhere to ependymal epithelial cells. Inspection of the ultrathin sections incubated for horseradish peroxidase (HRP)-activity revealed that the overwhelming part of the peroxidase activity was localized in the extracellular space of the meningeal vessel walls and especially in the abundant intercellular fluid which, like the inflammatory cells, was found in the subarachnoid space in arachnoidea and in pia. In the neuropil, only very small quantities of reaction product were seen intercellularly in the most superficial layers of the cortex. The tight junctions were always intact, but the possibility of a non-demonstrable opening is discussed. Evaluation of the BBB permeability for 2-amino[1-14C]isobutyric acid (AIB) was made by quantitative autoradiography, and it was demonstrated convincingly that AIB concentrations in the subpial and perichorodial tissues were markedly increased in diseased animals as compared to the controls. Our results seem to contradict previous theories on the cause of death resulting from the LCM disease. The findings presented here do not speak in favor

  19. Computational approaches to the prediction of blood-brain barrier permeability: A comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer's disease.

    PubMed

    Rishton, Gilbert M; LaBonte, Kristen; Williams, Antony J; Kassam, Karim; Kolovanov, Eduard

    2006-05-01

    This review summarizes progress made in the development of fully computational approaches to the prediction of blood-brain barrier (BBB) permeability of small molecules, with a focus on rapid computational methods suitable for the analysis of large compound sets and virtual screening. A comparative analysis using the recently developed Advanced Chemistry Development (ACD/Labs) Inc BBB permeability algorithm for the calculation of logBB values for known Alzheimer's disease medicines, selected central nervous system drugs and new secretase inhibitors for Alzheimer's disease, is presented. The trends in logBB values and the associated physiochemical properties of these agents as they relate to the potential for BBB permeability are also discussed. PMID:16729726

  20. Influences of follicle-stimulating hormone, proteases, and antiproteases on permeability of the barrier generated by Sertoli cells in a two-chambered assembly

    SciTech Connect

    Ailenberg, M.; Fritz, I.B.

    1989-03-01

    Factors have been identified that influence the integrity of the barrier generated by Sertoli cells (SC) in culture in a two-chambered assembly. The permeability of the barrier was assessed by determining rates of equilibration of (3H)methoxyinulin or (86Rb)Cl across the Sertoli cell monolayer. The complete system consisted of a confluent monolayer of SC maintained on an extracellular matrix (Matrigel)-coated filter together with peritubular cells on the opposite side of the filter. In confirmation of previous results, levels of plasminogen activator (PA) activity secreted were increased by treatment of SC with FSH or with cAMP derivatives ((Bu)2cAMP (dbcAMP)). PA levels in the culture medium were inversely related to times required for 50% equilibration of (3H)methoxyinulin across the SC monolayer. Thus, elevated PA levels, elicited by stimulation with FSH or dbcAMP, were associated with a decreased integrity of the barrier generated by SC preparations maintained in serum-free medium in the complete system. The increase in permeability of the barrier in SC elicited by FSH dbcAMP could be prevented, however, by the addition of various antiproteases. FSH actions on barrier function were complex. Effects of FSH that favored barrier integrity were most readily detected when proteolytic activity was inhibited. The addition of intact serum increased the integrity of the barrier, but acid-treated serum depleted of antiproteases had no such effect. We advance the hypothesis that proteases are implicated in modulation of the formation and maintenance of the seminiferous tubule barrier by SC.

  1. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.

    PubMed

    Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M

    2015-10-30

    The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used.

  2. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.

    PubMed

    Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M

    2015-10-30

    The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used. PMID:25956647

  3. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. PMID:27136160

  4. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching.

  5. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.

    PubMed

    Clark, Paul A; Al-Ahmad, Abraham J; Qian, Tongcheng; Zhang, Ray R; Wilson, Hannah K; Weichert, Jamey P; Palecek, Sean P; Kuo, John S; Shusta, Eric V

    2016-09-01

    Cancer-targeting alkylphosphocholine (APC) analogues are being clinically developed for diagnostic imaging, intraoperative visualization, and therapeutic applications. These APC analogues derived from chemically synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB), APC permeability across intact BBB remains unknown. Three of our APC analogues, CLR1404 (PET radiotracer), CLR1501 (green fluorescence), and CLR1502 (near-infrared fluorescence), were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEER > 1500 Ω-cm(2)) and functional expression of drug efflux transporters. The radioiodinated and fluorescent APC analogues demonstrated fairly low permeability across the iPSC-BMEC (35 ± 5.7 (CLR1404), 54 ± 3.2 (CLR1501), and 26 ± 4.9 (CLR1502) × 10(-5) cm/min) compared with BBB-impermeable sucrose (13 ± 2.5) and BBB-permeable diazepam (170 ± 29). Only the fluorescent APC analogues (CLR1501, CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model, and this efflux can be specifically blocked with pharmacological inhibition. None of the tested APC analogues appeared to undergo substantial P-gp transport. Limited permeability of the APC analogues across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover, addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP, and may affect fluorescence-guided applications. Overall, the characterization of APC analogue permeability across human BBB

  6. Effects of fractionated radiation on the brain vasculature in a murine model: Blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes

    SciTech Connect

    Yuan Hong; Gaber, M. Waleed . E-mail: wgaber@utmem.edu; Boyd, Kelli; Wilson, Christy M.; Kiani, Mohammad F.; Merchant, Thomas E.

    2006-11-01

    Purpose: Radiation therapy of CNS tumors damages the blood-brain barrier (BBB) and normal brain tissue. Our aims were to characterize the short- and long-term effects of fractionated radiotherapy (FRT) on cerebral microvasculature in mice and to investigate the mechanism of change in BBB permeability in mice. Methods and Materials: Intravital microscopy and a cranial window technique were used to measure BBB permeability to fluorescein isothiocyanate (FITC)-dextran and leukocyte endothelial interactions before and after cranial irradiation. Daily doses of 2 Gy were delivered 5 days/week (total, 40 Gy). We immunostained the molecules to detect the expression of glial fibrillary acidic protein and to demonstrate astrocyte activity in brain parenchyma. To relate the permeability changes to endothelial ultrastructural changes, we used electron microscopy. Results: Blood-brain barrier permeability did not increase significantly until 90 days after FRT, at which point it increased continuously until 180 days post-FRT. The number of adherent leukocytes did not increase during the study. The number of astrocytes in the cerebral cortex increased significantly; vesicular activity in endothelial cells increased beginning 90 days after irradiation, and most tight junctions stayed intact, although some were shorter and less dense at 120 and 180 days. Conclusions: The cellular and microvasculature response of the brain to FRT is mediated through astrogliosis and ultrastructural changes, accompanied by an increase in BBB permeability. The response to FRT is delayed as compared with single-dose irradiation treatment, and does not involve leukocyte adhesion. However, FRT induces an increase in the BBB permeability, as in the case of single-dose irradiation.

  7. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.

    PubMed

    Clark, Paul A; Al-Ahmad, Abraham J; Qian, Tongcheng; Zhang, Ray R; Wilson, Hannah K; Weichert, Jamey P; Palecek, Sean P; Kuo, John S; Shusta, Eric V

    2016-09-01

    Cancer-targeting alkylphosphocholine (APC) analogues are being clinically developed for diagnostic imaging, intraoperative visualization, and therapeutic applications. These APC analogues derived from chemically synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB), APC permeability across intact BBB remains unknown. Three of our APC analogues, CLR1404 (PET radiotracer), CLR1501 (green fluorescence), and CLR1502 (near-infrared fluorescence), were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEER > 1500 Ω-cm(2)) and functional expression of drug efflux transporters. The radioiodinated and fluorescent APC analogues demonstrated fairly low permeability across the iPSC-BMEC (35 ± 5.7 (CLR1404), 54 ± 3.2 (CLR1501), and 26 ± 4.9 (CLR1502) × 10(-5) cm/min) compared with BBB-impermeable sucrose (13 ± 2.5) and BBB-permeable diazepam (170 ± 29). Only the fluorescent APC analogues (CLR1501, CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model, and this efflux can be specifically blocked with pharmacological inhibition. None of the tested APC analogues appeared to undergo substantial P-gp transport. Limited permeability of the APC analogues across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover, addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP, and may affect fluorescence-guided applications. Overall, the characterization of APC analogue permeability across human BBB

  8. Linkage of Mineral Precipitation to the Development of Heterogeneity in Permeable Reactive Barrier: a Field Column Study

    NASA Astrophysics Data System (ADS)

    Kamolpornwijit, W.; Liang, L.; Liang, L.; Moline, G. R.; Sullivan, A. B.; West, O. R.

    2001-12-01

    A column study was conducted on site at Y-12, Oak Ridge, TN, to investigate the rate of mineral accumulation in relation to the hydraulic change as a result of heterogeneity development in a Fe(0) permeable reactive barrier (PRB). To better simulate the fluctuation in groundwater characteristics and the least disturbance to gas-water equilibrium, two columns filled with zero valent iron (mesh size 8-50 obtained from Peerless Industries) were set up with direct connections to a groundwater well. Water samples were taken periodically to observe iron deterioration, ionic species removal, mineral precipitation, and hydrological properties under both accelerated- and normal-groundwater flow conditions. According to the ionic species analysis and the hydraulic tracer tests, the initially established plug flow behavior in the accelerated-flow column was maintained after 150 pore volumes (PVs); the porosity loss due to mineral precipitation was estimated to be 6.2-8.7%. The precipitate volumes were calculated from mass balance with assumed precipitate species and densities of precipitates as pure compounds. As a result, this calculation represents the upper bound on precipitate amounts and porosity loss. Using literature published corrosion rate at 0.7 mM/Kg.day, the estimated lower bound for porosity loss is 2.3%. With time, the deviation from plug flow behavior was observed as the columns underwent complex heterogeneity development, which was reflected in both ionic species removals and hydrological performance. The development of preferential flow paths was caused by mineral precipitation and gas production. After 490 PVs, 4900 liters of groundwater, 215 days of column study, with an estimate of 16.7-24.7% porosity loss, the breakthrough time was shortened from 270 to 50 minutes. According to the resident time obtained from hydraulic tracer tests, the 215 days of column operation is equivalent to 9.5 years operation at a field site, based on 0.3m/d flow of 1-meter thick

  9. Verification and monitoring of deep granular iron permeable reactive barriers emplaced by vertical hydraulic fracturing and injection for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Hubble, David Wallace

    This study evaluated the use of vertical hydraulic fracturing and injection (VHFI) to emplace granular iron as a deep passive treatment system to remove organic contaminants from groundwater at the Massachusetts Military Reservation on Cape Cod, Massachusetts. It was the first permeable reactive barrier (PRB) constructed at a depth greater than 15 m below the ground surface. VHFI propagates a vertical fracture from a slot cut through the injection-well casing at a selected depth and orientation. Granular iron is suspended in a viscous fluid using a biodegradable guar polymer and pumped through the slot to form a thin vertical sheet. Two PRBs were emplaced 6 m apart and perpendicular to the groundwater flow direction with mid-depths of about 30 m below the ground surface. Due to the depth, all of the emplacement and verification methods used down-hole tools. Resistivity imaging used salt added to the guar as an electrical tracer to map the spread of the VHFI fluid for propagation control and to estimate the extent of the completed PRB. Radar tomography before and after emplacement also provided images of the PRBs and hydraulic pulse testing and electromagnetic logging provided additional data. One PRB consisted of 40 tonnes of granular iron and was estimated to be an average of 80 mm thick. Based on geophysical imaging, the 100% iron PRB was 15 m long and extended from about 24.5 to 35.5 m depth. The second PRB consisted of a mixture of 5.6 tonnes of well sand and 4.4 tonnes of iron, but was only partially completed. Based on imaging, the sand/iron PRB comprised an area 9 m long extending from about 27 to 34.5 m below the ground surface. The proximity of screened wells, which deviated significantly from vertical toward the PRB alignment, resulted in loss of VHFI control. A sub-horizontal layer of iron formed between the 100% iron PRB and several of the wells. Similarly, piping failure zones formed between the sand/iron PRB and two geophysical wells. Selected

  10. Design of a multifunctional permeable reactive barrier for the treatment of landfill leachate contamination: laboratory column evaluation.

    PubMed

    Van Nooten, Thomas; Diels, Ludo; Bastiaens, Leen

    2008-12-01

    This study describes a laboratory-scale multifunctional permeable reactive barrier (multibarrier) for the removal of ammonium (NH4+: 313 +/- 51 mg N L(-1)), adsorbable organic halogens (AOX: 0.71 +/- 0.25 mg Cl L(-1)), chemical oxygen demand (COD: 389 +/- 36 mg L(-1)), and toxicity from leachate originating from a 40-year-old Belgian landfill. The complexity of the contamination required a sequential setup combining different reactive materials and removal processes. All target contaminants could be removed to levels below the regulatory discharge limits. Ammonium was efficiently removed in a first microbial nitrification compartment, which was equipped with diffusive oxygen emitters to ensure a sufficient oxygen supply. Ammonium was mainly oxidized to nitrite and to a lesser extent to nitrate, with an average mass recovery of 96%. Remaining ammonium concentrations could be further removed by ion exchange in a second compartment filled with clinoptilolite, exhibiting a total ammonium removal capacity of 46.7 mg N per g of clinoptilolite. Athird microbial denitrification compartment fed with sodium butyrate as a carbon source, was used to remove nitrate and nitrite formed in the first compartment. Maximum nitrification and denitrification rates at 12 degrees C indicated that hydraulic retention times of approximately 62 h and approximately 32 h were required in the columns to remove 400 mg N L(-1) by nitrification and denitrification, respectively. Leachate toxicity decreased to background levelstogetherwiththe removal of ammonium and its oxidation products. AOX and COD were efficiently removed by sorption in an additional compartment filled with granular activated carbon.

  11. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    PubMed

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.

  12. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers.

    PubMed

    Han, Young-Soo; Gallegos, Tanya J; Demond, Avery H; Hayes, Kim F

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating.

  13. Hydraulic and geochemical performance of a permeable reactive barrier containing zero-valent iron, Denver Federal Center

    USGS Publications Warehouse

    McMahon, P.B.; Dennehy, K.F.; Sandstrom, M.W.

    1999-01-01

    The hydraulic and geochemical performance of a 366 m long permeable reactive barrier (PRB) at the Denver Federal Center; Denver, Colorado, was evaluated. The funnel and gate system, which was installed in 1996 to intercept and remediate ground water contaminated with chlorinated aliphatic hydrocarbons (CAHs), contained four 12.2 m wide gates filled with zero-valent iron. Ground water mounding on the upgradient side of the PRB resulted in a tenfold increase in the hydraulic gradient and ground water velocity through the gates compared to areas of the aquifer unaffected by the PRB. Water balance calculations for April 1997 indicate that about 75% of the ground water moving toward the PRB from upgradient areas moved through the gates. The rest of the water either accumulated on the upgradient side of the PRB or bypassed the PRB. Chemical data from monitoring wells screened down-gradient, beneath, and at the ends of the PRB indicate that contaminants had not bypassed the PRB, except in a few isolated areas. Greater than 99% of the CAH mass entering the gates was retained by the iron. Fifty-one percent of the CAH carbon entering one gate was accounted for in dissolved C1 and C2 hydrocarbons, primarily ethane and ethene, which indicates that CAHs may adsorb to the iron prior to being dehalogenated. Treated water exiting the gates displaced contaminated ground water at a distance of at least 3 m downgradient from the PRB by the end of 1997. Measurements of dissolved inorganic ions in one gate indicate that calcite and siderite precipitation in the gate could reduce gate porosity by about 0.35% per year. Results from this study indicate that funnel and gate systems containing zero-valent iron can effectively treat ground water contaminated with CAHs. However, the hydrologic impacts of the PRB on the flow system need to be fully understood to prevent contaminants from bypassing the PRB.

  14. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    USGS Publications Warehouse

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  15. Evaluation of removal of orthophosphate and ammonia from rainfall runoff using aboveground permeable reactive barrier composed of limestone and zeolite.

    PubMed

    Srinivasan, Rajani; Hoffman, Dennis W; Wolfe, June E; Prcin, Lisa J

    2008-10-01

    This paper evaluates the design and performance of an Aboveground Permeable Reactive Barrier (APRB) system made of polyethylene mesh bags (FlowBags) containing crushed limestone and zeolite for adsorption of orthophosphate-P (PO4-P) and ammonia-N (NH4-N) from rainfall runoff. Laboratory batch experiments, simulated runoff experiments and actual APRB implementations were performed to evaluate the performance of the APRB. Batch experiments were performed to determine adsorption efficiency of crushed zeolite and limestone as reactive materials in APRB for removal of dissolved ammonium nitrogen and orthophosphate phosphorus from aqueous solutions under controlled laboratory conditions. Adsorption efficiencies of zeolite and limestone were tested individually and in combination. Results show adsorption efficiency increases when the materials are used in combination. Effects of particle size, contact time, pH, and temperature were studied. Major emphasis was given to short contact times because the contact of rainfall runoff water under field conditions with APRBs would be approximately 5 minutes. Maximum removal of approximately 70% PO4-P and NH4-N was seen at 45 degrees C in 5 minutes within a pH range of 8-11. Optimum adsorbent concentration was 0.3 ppm with 20 g limestone and 10 g of zeolites. Simulated field experiments and actual APRB field installations showed variable results. Results from field evaluations of APRB showed mixed results from very high to negligible removal of orthophosphate-P and ammonia-N at different monitoring sites and storm events. Such variability may be due to the design of the bags, other biotic and abiotic factors and various physical factors, which are absent in the laboratory conditions. Some APRB design problems were also observed under field conditions and solutions are suggested. Overall results indicate that APRBs composed of combinations of crushed zeolite and limestone will offer an effective low maintenance and green alternative

  16. Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system.

    PubMed

    Mieles, John; Zhan, Hongbin

    2012-06-01

    The permeable reactive barrier (PRB) remediation technology has proven to be more cost-effective than conventional pump-and-treat systems, and has demonstrated the ability to rapidly reduce the concentrations of specific chemicals of concern (COCs) by up to several orders of magnitude in some scenarios. This study derives new steady-state analytical solutions to multispecies reactive transport in a PRB-aquifer (dual domain) system. The advantage of the dual domain model is that it can account for the potential existence of natural degradation in the aquifer, when designing the required PRB thickness. The study focuses primarily on the steady-state analytical solutions of the tetrachloroethene (PCE) serial degradation pathway and secondly on the analytical solutions of the parallel degradation pathway. The solutions in this study can also be applied to other types of dual domain systems with distinct flow and transport properties. The steady-state analytical solutions are shown to be accurate and the numerical program RT3D is selected for comparison. The results of this study are novel in that the solutions provide improved modeling flexibility including: 1) every species can have unique first-order reaction rates and unique retardation factors, and 2) daughter species can be modeled with their individual input concentrations or solely as byproducts of the parent species. The steady-state analytical solutions exhibit a limitation that occurs when interspecies reaction rate factors equal each other, which result in undefined solutions. Excel spreadsheet programs were created to facilitate prompt application of the steady-state analytical solutions, for both the serial and parallel degradation pathways.

  17. Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides.

    PubMed

    Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-04-01

    The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.

  18. Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides.

    PubMed

    Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-04-01

    The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency. PMID:26965642

  19. Effects of Immunomodulatory and Organism-Associated Molecules on the Permeability of an In Vitro Blood-Brain Barrier Model to Amphotericin B and Fluconazole ▿

    PubMed Central

    Pyrgos, Vasilios; Mickiene, Diane; Sein, Tin; Cotton, Margaret; Fransesconi, Andrea; Mizrahi, Isaac; Donoghue, Martha; Bundrant, Nikkida; Kim, Su-Young; Hardwick, Matthew; Shoham, Shmuel; Walsh, Thomas J.

    2010-01-01

    Amphotericin B (AMB) is used to treat fungal infections of the central nervous system (CNS). However, AMB shows poor penetration into the CNS and little is known about the factors affecting its permeation through the blood-brain barrier (BBB). Therefore, we studied immunomodulatory and organism-associated molecules affecting the permeability of an in vitro BBB model to AMB. We examined the effects of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan (ZYM), dexamethasone (DEX), cyclosporine, and tacrolimus on transendothelial electrical resistance (TEER); endothelial tight junctions; filamentous actin; and permeability to deoxycholate AMB (DAMB), liposomal AMB (LAMB), and fluconazole. Proinflammatory cytokines and organism-associated molecules significantly decreased the mean TEER by 40.7 to 100% (P ≤ 0.004). DEX increased the mean TEER by 18.2 to 26.4% (P ≤ 0.04). TNF-α and LPS increased the permeability to AMB by 8.2 to 14.5% compared to that for the controls (1.1 to 2.4%) (P ≤ 0.04). None of the other molecules affected the model's permeability to AMB. By comparison, the BBB model's permeability to fluconazole was >78% under all conditions studied, without significant differences between the controls and the experimental groups. LPS and TNF-α decreased tight-junction protein zona occludens 1 (ZO-1) between endothelial cells. In conclusion, IL-1β, ZYM, and LTA increased the permeability of the BBB to small ions but not to AMB, whereas TNF-α and LPS, which disrupted the endothelial layer integrity, increased the permeability to AMB. PMID:19995929

  20. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates.

    PubMed

    Sultana, Reshma; McBain, Andrew J; O'Neill, Catherine A

    2013-08-01

    In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain. PMID:23770906

  1. Strain-Dependent Augmentation of Tight-Junction Barrier Function in Human Primary Epidermal Keratinocytes by Lactobacillus and Bifidobacterium Lysates

    PubMed Central

    Sultana, Reshma; McBain, Andrew J.

    2013-01-01

    In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain. PMID:23770906

  2. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.

    2003-01-01

    Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ??? 5500 ??g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A?? was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A?? was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ??? 5500 ??g U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 ??g U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U

  3. Enhancing the Attenuation of Acid-Mine Drainage at Davis Mine, Rowe, Massachusetts via Installation of a Permeable Reactive Barrier.

    NASA Astrophysics Data System (ADS)

    Gillmor, A. M.; Yuretich, R. F.

    2008-12-01

    Acid Mine Drainage affects thousands of streams in the United States, sustaining the need for low-cost passive treatment options. Davis Mine, a 100 years-abandoned FeS2 mine in Western Massachusetts, is representative of the types of mines best suited for passive treatments; fairly remote, abandoned, and discharging moderately affected water (pH <3, Fe >100mg/L, SO42- >500mg/L) and is a good candidate for a 'starting point' of low-cost, low environmental impact remediation. We here report the shifts in pH, SO42-, and Fe following placement of reactive fill (50% CaMg(CO3)2, 25% cow manure, 25% seaweed compost) in a permeable reactive barrier placed below ground mid-way along the acidic effluent's path. Yearlong monitoring of water from 1 multi-level well (with ports in the shallow groundwater, middle groundwater, and bedrock) placed within the tailings pile over a previous year (2003-2004) showed for the three levels, respectively; pH 3.16, 4.24, and 4.04, Fe average concentrations of 4.5 mg/L, 6.5 mg/L, and 3.2 mg/L, and SO42- average concentrations of 235mg/L, 330mg/L, and 292 mg/L. One year (2007-2008) after placement of remediation mix, the three levels now average respectively; pH 4.16, 4.60, and 4.53, Fe concentrations of 0.7 mg/L, 4.8 mg/L, and 1.4 mg/L, and SO42- concentrations of 217 mg/L, 294 mg/L, and 266 mg/L. The most noticeable improvement in pH is seen in the shallow groundwater, consistent with its proximity to the reactive fill depth. Although complex microbial communities have been characterized at the site, uncertainty remains as to whether they are active in this case, and it is possible that these results may be explained solely by neutralization reactions. Results of this study indicate a good likelihood that this low environmental impact remediation could be effective.

  4. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice

    PubMed Central

    2013-01-01

    Background Traffic-generated air pollution-exposure is associated with adverse effects in the central nervous system (CNS) in both human exposures and animal models, including neuroinflammation and neurodegeneration. While alterations in the blood brain barrier (BBB) have been implicated as a potential mechanism of air pollution-induced CNS pathologies, pathways involved have not been elucidated. Objectives To determine whether inhalation exposure to mixed vehicle exhaust (MVE) mediates alterations in BBB permeability, activation of matrix metalloproteinases (MMP) -2 and −9, and altered tight junction (TJ) protein expression. Methods Apolipoprotein (Apo) E−/− and C57Bl6 mice were exposed to either MVE (100 μg/m3 PM) or filtered air (FA) for 6 hr/day for 30 days and resulting BBB permeability, expression of ROS, TJ proteins, markers of neuroinflammation, and MMP activity were assessed. Serum from study mice was applied to an in vitro BBB co-culture model and resulting alterations in transport and permeability were quantified. Results MVE-exposed Apo E−/− mice showed increased BBB permeability, elevated ROS and increased MMP-2 and −9 activity, compared to FA controls. Additionally, cerebral vessels from MVE-exposed mice expressed decreased levels of TJ proteins, occludin and claudin-5, and increased levels of inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β in the parenchyma. Serum from MVE-exposed animals also resulted in increased in vitro BBB permeability and altered P-glycoprotein transport activity. Conclusions These data indicate that inhalation exposure to traffic-generated air pollutants promotes increased MMP activity and degradation of TJ proteins in the cerebral vasculature, resulting in altered BBB permeability and expression of neuroinflammatory markers. PMID:24344990

  5. The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model.

    PubMed

    Wu, Ni; Xu, Wei; Cao, Gui-Yun; Yang, Yan-Fang; Yang, Xin-Bao; Yang, Xiu-Wei

    2016-01-01

    The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp) were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10(-8)-10(-6) cm/s; those of 8-O-4'-neolignan and tetrahydrofuran-lignan were at 10(-6)-10(-5) cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10(-8)-10(-7) cm/s. To 5-methoxy-dehydrodiisoeugenol (2), erythro-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol acetate (6), verrucosin (8), and nectandrin B (9), an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1), myrislignan (7) and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg. PMID:26805808

  6. A Review of the Mechanisms of Blood-Brain Barrier Permeability by Tissue-Type Plasminogen Activator Treatment for Cerebral Ischemia

    PubMed Central

    Suzuki, Yasuhiro; Nagai, Nobuo; Umemura, Kazuo

    2016-01-01

    Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), which forms a mechanical and functional barrier between systemic circulation and the central nervous system (CNS). In patients with ischemic stroke, the recombinant tissue-type plasminogen activator (rt-PA) is used to accelerate recanalization of the occluded vessels. However, rt-PA is associated with a risk of increasing intracranial bleeding (ICB). This effect is thought to be caused by the increase in cerebrovascular permeability though various factors such as ischemic reperfusion injury and the activation of matrix metalloproteinases (MMPs), but the detailed mechanisms are unknown. It was recently found that rt-PA treatment enhances BBB permeability not by disrupting the BBB, but by activating the vascular endothelial growth factor (VEGF) system. The VEGF regulates both the dissociation of endothelial cell (EC) junctions and endothelial endocytosis, and causes a subsequent increase in vessel permeability through the VEGF receptor-2 (VEGFR-2) activation in ECs. Here, we review the possibility that rt-PA increases the penetration of toxic molecules derived from the bloodstream including rt-PA itself, without disrupting the BBB, and contributes to these detrimental processes in the cerebral parenchyma. PMID:26834557

  7. Recombinant tissue-type plasminogen activator transiently enhances blood-brain barrier permeability during cerebral ischemia through vascular endothelial growth factor-mediated endothelial endocytosis in mice.

    PubMed

    Suzuki, Yasuhiro; Nagai, Nobuo; Yamakawa, Kasumi; Muranaka, Yoshinori; Hokamura, Kazuya; Umemura, Kazuo

    2015-12-01

    Recombinant tissue-type plasminogen activator (rt-PA) modulates cerebrovascular permeability and exacerbates brain injury in ischemic stroke, but its mechanisms remain unclear. We studied the involvement of vascular endothelial growth factor (VEGF)-mediated endocytosis in the increase of blood-brain barrier (BBB) permeability potentiated by rt-PA after ischemic stroke. The rt-PA treatment at 4 hours after middle cerebral artery occlusion induced a transient increase in BBB permeability after ischemic stroke in mice, which was suppressed by antagonists of either low-density lipoprotein receptor families (LDLRs) or VEGF receptor-2 (VEGFR-2). In immortalized bEnd.3 endothelial cells, rt-PA treatment upregulated VEGF expression and VEGFR-2 phosphorylation under ischemic conditions in an LDLR-dependent manner. In addition, rt-PA treatment increased endocytosis and transcellular transport in bEnd.3 monolayers under ischemic conditions, which were suppressed by the inhibition of LDLRs, VEGF, or VEGFR-2. The rt-PA treatment also increased the endocytosis of endothelial cells in the ischemic brain region after stroke in mice. These findings indicate that rt-PA increased BBB permeability via induction of VEGF, which at least partially mediates subsequent increase in endothelial endocytosis. Therefore, inhibition of VEGF induction may have beneficial effects after thrombolytic therapy with rt-PA treatment after stroke.

  8. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    PubMed Central

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  9. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening.

    PubMed

    Shao, Xiaojian; Gao, Dan; Chen, Yongli; Jin, Feng; Hu, Guangnan; Jiang, Yuyang; Liu, Hongxia

    2016-08-31

    Since most of the central nervous system (CNS) drug candidates show poor permeability across the blood-brain barrier (BBB), development of a reliable platform for permeability assay will greatly accelerate drug discovery. Herein, we constructed a microfluidic BBB model to mimic drug delivery into the brain to induce cytotoxicity at target cells. To reconstitute the in vivo BBB properties, human cerebral microvessel endothelial cells (hCMEC/D3) were dynamically cultured in a membrane-based microchannel. Sunitinib, a model drug, was then delivered into the microchannel and forced to permeate through the BBB model. The permeated amount was directly quantified by an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after on-chip SPE (μSPE) pretreatment. Moreover, the permeated drug was incubated with glioma cells (U251) cultured inside agarose gel in the downstream to investigate drug-induced cytotoxicity. The resultant permeability of sunitinib was highly correlated with literature reported value, and it only required 30 min and 5 μL of sample solution for each permeation experiment. Moreover, after 48 h of treatment, the survival rate of U251 cells cultured in 3D scaffolds was nearly 6% higher than that in 2D, which was in accordance with the previously reported results. These results demonstrate that this platform provides a valid tool for drug permeability and cytotoxicity assays which have great value for the research and development of CNS drugs.

  10. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier.

    PubMed

    Lemos, Maria P; Lama, Javier R; Karuna, Shelly T; Fong, Youyi; Montano, Silvia M; Ganoza, Carmela; Gottardo, Raphael; Sanchez, Jorge; McElrath, M Juliana

    2014-01-01

    Male circumcision provides partial protection against multiple sexually transmitted infections (STIs), including HIV, but the mechanisms are not fully understood. To examine potential vulnerabilities in foreskin epithelial structure, we used Wilcoxon paired tests adjusted using the false discovery rate method to compare inner and outer foreskin samples from 20 healthy, sexually active Peruvian males who have sex with males or transgender females, ages 21-29, at elevated risk of HIV infection. No evidence of epithelial microtrauma was identified, as assessed by keratinocyte activation, fibronectin deposition, or parakeratosis. However, multiple suprabasal tight junction differences were identified: 1) inner foreskin stratum corneum was thinner than outer (p = 0.035); 2) claudin 1 had extended membrane-bound localization throughout inner epidermis stratum spinosum (p = 0.035); 3) membrane-bound claudin 4 was absent from inner foreskin stratum granulosum (p = 0.035); and 4) occludin had increased membrane deposition in inner foreskin stratum granulosum (p = 0.042) versus outer. Together, this suggests subclinical inflammation and paracellular transport modifications to the inner foreskin. A setting of inflammation was further supported by inner foreskin epithelial explant cultures secreting higher levels of GM-CSF (p = 0.029), IP-10 (p = 0.035) and RANTES (p = 0.022) than outer foreskin, and also containing an increased density of CCR5+ and CD4+ CCR5+ cells (p = 0.022). Inner foreskin dermis also secreted more RANTES than outer (p = 0.036), and had increased density of CCR5+ cells (p = 0.022). In conclusion, subclinical changes to the inner foreskin of sexually active males may support an inflammatory state, with availability of target cells for HIV infection and modifications to epidermal barriers, potentially explaining the benefits of circumcision for STI prevention. PMID:25268493

  11. The Inner Foreskin of Healthy Males at Risk of HIV Infection Harbors Epithelial CD4+ CCR5+ Cells and Has Features of an Inflamed Epidermal Barrier

    PubMed Central

    Lemos, Maria P.; Lama, Javier R.; Karuna, Shelly T.; Fong, Youyi; Montano, Silvia M.; Ganoza, Carmela; Gottardo, Raphael; Sanchez, Jorge; McElrath, M. Juliana

    2014-01-01

    Male circumcision provides partial protection against multiple sexually transmitted infections (STIs), including HIV, but the mechanisms are not fully understood. To examine potential vulnerabilities in foreskin epithelial structure, we used Wilcoxon paired tests adjusted using the false discovery rate method to compare inner and outer foreskin samples from 20 healthy, sexually active Peruvian males who have sex with males or transgender females, ages 21–29, at elevated risk of HIV infection. No evidence of epithelial microtrauma was identified, as assessed by keratinocyte activation, fibronectin deposition, or parakeratosis. However, multiple suprabasal tight junction differences were identified: 1) inner foreskin stratum corneum was thinner than outer (p = 0.035); 2) claudin 1 had extended membrane-bound localization throughout inner epidermis stratum spinosum (p = 0.035); 3) membrane-bound claudin 4 was absent from inner foreskin stratum granulosum (p = 0.035); and 4) occludin had increased membrane deposition in inner foreskin stratum granulosum (p = 0.042) versus outer. Together, this suggests subclinical inflammation and paracellular transport modifications to the inner foreskin. A setting of inflammation was further supported by inner foreskin epithelial explant cultures secreting higher levels of GM-CSF (p = 0.029), IP-10 (p = 0.035) and RANTES (p = 0.022) than outer foreskin, and also containing an increased density of CCR5+ and CD4+ CCR5+ cells (p = 0.022). Inner foreskin dermis also secreted more RANTES than outer (p = 0.036), and had increased density of CCR5+ cells (p = 0.022). In conclusion, subclinical changes to the inner foreskin of sexually active males may support an inflammatory state, with availability of target cells for HIV infection and modifications to epidermal barriers, potentially explaining the benefits of circumcision for STI prevention. PMID:25268493

  12. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier.

    PubMed

    Lemos, Maria P; Lama, Javier R; Karuna, Shelly T; Fong, Youyi; Montano, Silvia M; Ganoza, Carmela; Gottardo, Raphael; Sanchez, Jorge; McElrath, M Juliana

    2014-01-01

    Male circumcision provides partial protection against multiple sexually transmitted infections (STIs), including HIV, but the mechanisms are not fully understood. To examine potential vulnerabilities in foreskin epithelial structure, we used Wilcoxon paired tests adjusted using the false discovery rate method to compare inner and outer foreskin samples from 20 healthy, sexually active Peruvian males who have sex with males or transgender females, ages 21-29, at elevated risk of HIV infection. No evidence of epithelial microtrauma was identified, as assessed by keratinocyte activation, fibronectin deposition, or parakeratosis. However, multiple suprabasal tight junction differences were identified: 1) inner foreskin stratum corneum was thinner than outer (p = 0.035); 2) claudin 1 had extended membrane-bound localization throughout inner epidermis stratum spinosum (p = 0.035); 3) membrane-bound claudin 4 was absent from inner foreskin stratum granulosum (p = 0.035); and 4) occludin had increased membrane deposition in inner foreskin stratum granulosum (p = 0.042) versus outer. Together, this suggests subclinical inflammation and paracellular transport modifications to the inner foreskin. A setting of inflammation was further supported by inner foreskin epithelial explant cultures secreting higher levels of GM-CSF (p = 0.029), IP-10 (p = 0.035) and RANTES (p = 0.022) than outer foreskin, and also containing an increased density of CCR5+ and CD4+ CCR5+ cells (p = 0.022). Inner foreskin dermis also secreted more RANTES than outer (p = 0.036), and had increased density of CCR5+ cells (p = 0.022). In conclusion, subclinical changes to the inner foreskin of sexually active males may support an inflammatory state, with availability of target cells for HIV infection and modifications to epidermal barriers, potentially explaining the benefits of circumcision for STI prevention.

  13. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis.

    PubMed

    Vucicevic, Jelica; Nikolic, Katarina; Dobričić, Vladimir; Agbaba, Danica

    2015-02-20

    Imidazoline receptor ligands are a numerous family of biologically active compounds known to produce central hypotensive effect by interaction with both α2-adrenoreceptors (α2-AR) and imidazoline receptors (IRs). Recent hypotheses connect those ligands with several neurological disorders. Therefore some IRs ligands are examined as novel centrally acting antihypertensives and drug candidates for treatment of various neurological diseases. Effective Blood-Brain Barrier (BBB) permeability (P(e)) of 18 IRs/α-ARs ligands and 22 Central Nervous System (CNS) drugs was experimentally determined using Parallel Artificial Membrane Permeability Assay (PAMPA) and studied by the Quantitative-Structure-Permeability Relationship (QSPR) methodology. The dominant molecules/cations species of compounds have been calculated at pH = 7.4. The analyzed ligands were optimized using Density Functional Theory (B3LYP/6-31G(d,p)) included in ChemBio3D Ultra 13.0 program and molecule descriptors for optimized compounds were calculated using ChemBio3D Ultra 13.0, Dragon 6.0 and ADMET predictor 6.5 software. Effective permeability of compounds was used as dependent variable (Y), while calculated molecular parametres were used as independent variables (X) in the QSPR study. SIMCA P+ 12.0 was used for Partial Least Square (PLS) analysis, while the stepwise Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) modeling were performed using STASTICA Neural Networks 4.0. Predictive potential of the formed models was confirmed by Leave-One-Out Cross- and external-validation and the most reliable models were selected. The descriptors that are important for model building are identified as well as their influence on BBB permeability. Results of the QSPR studies could be used as time and cost efficient screening tools for evaluation of BBB permeation of novel α-adrenergic/imidazoline receptor ligands, as promising drug candidates for treatment of hypertension or neurological diseases

  14. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis.

    PubMed

    Vucicevic, Jelica; Nikolic, Katarina; Dobričić, Vladimir; Agbaba, Danica

    2015-02-20

    Imidazoline receptor ligands are a numerous family of biologically active compounds known to produce central hypotensive effect by interaction with both α2-adrenoreceptors (α2-AR) and imidazoline receptors (IRs). Recent hypotheses connect those ligands with several neurological disorders. Therefore some IRs ligands are examined as novel centrally acting antihypertensives and drug candidates for treatment of various neurological diseases. Effective Blood-Brain Barrier (BBB) permeability (P(e)) of 18 IRs/α-ARs ligands and 22 Central Nervous System (CNS) drugs was experimentally determined using Parallel Artificial Membrane Permeability Assay (PAMPA) and studied by the Quantitative-Structure-Permeability Relationship (QSPR) methodology. The dominant molecules/cations species of compounds have been calculated at pH = 7.4. The analyzed ligands were optimized using Density Functional Theory (B3LYP/6-31G(d,p)) included in ChemBio3D Ultra 13.0 program and molecule descriptors for optimized compounds were calculated using ChemBio3D Ultra 13.0, Dragon 6.0 and ADMET predictor 6.5 software. Effective permeability of compounds was used as dependent variable (Y), while calculated molecular parametres were used as independent variables (X) in the QSPR study. SIMCA P+ 12.0 was used for Partial Least Square (PLS) analysis, while the stepwise Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) modeling were performed using STASTICA Neural Networks 4.0. Predictive potential of the formed models was confirmed by Leave-One-Out Cross- and external-validation and the most reliable models were selected. The descriptors that are important for model building are identified as well as their influence on BBB permeability. Results of the QSPR studies could be used as time and cost efficient screening tools for evaluation of BBB permeation of novel α-adrenergic/imidazoline receptor ligands, as promising drug candidates for treatment of hypertension or neurological diseases.

  15. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway.

    PubMed

    Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan

    2013-12-01

    Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. PMID:23973310

  16. Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability

    PubMed Central

    Xiong, Ranhua; Vandenbroucke, Roosmarijn E.; Broos, Katleen; Brans, Toon; Van Wonterghem, Elien; Libert, Claude; Demeester, Jo; De Smedt, Stefaan C.; Braeckmans, Kevin

    2016-01-01

    Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1–100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids. PMID:27653841

  17. Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Vandenbroucke, Roosmarijn E.; Broos, Katleen; Brans, Toon; van Wonterghem, Elien; Libert, Claude; Demeester, Jo; de Smedt, Stefaan C.; Braeckmans, Kevin

    2016-09-01

    Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids.

  18. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.

    PubMed

    Cevc, Gregor; Schätzlein, Andreas; Richardsen, Holger

    2002-08-19

    The stability of various aggregates in the form of lipid bilayer vesicles was tested by three different methods before and after crossing different semi-permeable barriers. First, polymer membranes with pores significantly smaller than the average aggregate diameter were used as the skin barrier model; dynamic light scattering was employed to monitor vesicle size changes after barrier passage for several lipid mixtures with different bilayer elasticities. This revealed that vesicles must adapt their size and/or shape, dependent on bilayer stability and elasto-mechanics, to overcome an otherwise confining pore. For the mixed lipid aggregates with highly flexible bilayers (Transfersomes), the change is transient and only involves vesicle shape and volume adaptation. The constancy of ultradeformable vesicle size before and after pores penetration proves this. This is remarkable in light of the very strong aggregate deformation during an enforced barrier passage. Simple phosphatidylcholine vesicles, with less flexible bilayers, lack such capability and stability. Conventional liposomes are therefore fractured during transport through a semi-permeable barrier; as reported by other researchers, liposomes are fragmented to the size of a narrow pore if sufficient pressure is applied across the barrier; otherwise, liposomes clog the pores. The precise outcome depends on trans-barrier flux and/or on relative vesicle vs. pore size. Lipid vesicles applied on the skin behave accordingly. Mixed lipid vesicles penetrate the skin if they are sufficiently deformable. If this is the case, they cross inter-cellular constrictions in the organ without significant composition or size modification. To prove this, we labelled vesicles with two different fluorescent markers and applied the suspension on intact murine skin without occlusion. The confocal laser scanning microscopy (CLSM) of the skin then revealed a practically indistinguishable distribution of both labels in the stratum

  19. MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c.

    PubMed

    Bukeirat, Mimi; Sarkar, Saumyendra N; Hu, Heng; Quintana, Dominic D; Simpkins, James W; Ren, Xuefang

    2016-02-01

    The blood-brain barrier is composed of cerebrovascular endothelial cells and tight junctions, and maintaining its integrity is crucial for the homeostasis of the neuronal environment. Recently, we discovered that mitochondria play a critical role in maintaining blood-brain barrier integrity. We report for the first time a novel mechanism underlying blood-brain barrier integrity: miR-34a mediated regulation of blood-brain barrier through a mitochondrial mechanism. Bioinformatics analysis suggests miR-34a targets several mitochondria-associated gene candidates. We demonstrated that miR-34a triggers the breakdown of blood-brain barrier in cerebrovascular endothelial cell monolayer in vitro, paralleled by reduction of mitochondrial oxidative phosphorylation and adenosine triphosphate production, and decreased cytochrome c levels. PMID:26661155

  20. SPATIAL AND TEMPORAL TRENDS IN GROUNDWATER CHEMISTRY AND PRECIPITATE FORMATION AT THE ELIZABETH CITY PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long-term performance of PRBs. Both processes can impact remedial performance by affecting zero-valent iron reactivity and permeability. Results will be presented from solid-phase and gro...

  1. FIELD TEST INSTRUCTION 100-NR-2 OPERABLE UNIT DESIGN OPTIMIZATION STUDY FOR SEQUESTRATION OF SR-90 SATURATED ZONE APATITE PERMEABLE REACTIVE BARRIER EXTENSION

    SciTech Connect

    BOWLES NA

    2010-10-06

    The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end of the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in the

  2. Low-Dose Endothelial Monocyte-Activating Polypeptide-II Increases Blood-Tumor Barrier Permeability by Activating the RhoA/ROCK/PI3K Signaling Pathway.

    PubMed

    Li, Zhen; Liu, Xiao-Bai; Liu, Yun-Hui; Xue, Yi-Xue; Liu, Jing; Teng, Hao; Xi, Zhuo; Yao, Yi-Long

    2016-06-01

    Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) can increase blood-tumor barrier (BTB) permeability via both paracellular and transcellular pathways. In addition, we revealed that the RhoA/Rho kinase (ROCK) signaling pathway is involved in EMAP-II-induced BTB opening. This study further investigated the exact mechanisms by which the RhoA/ROCK signaling pathway affects EMAP-II-induced BTB hyperpermeability. In an in vitro BTB model, low-dose EMAP-II significantly activated phosphatidylinositol-3-kinase (PI3K) in rat brain microvascular endothelial cells (RBMECs) at 0.75 h. Pretreatment with RhoA inhibitor C3 exoenzyme or ROCK inhibitor Y-27632 completely blocked EMAP-II-induced activation of PI3K. PKC-α/β inhibitor GÖ6976 pretreatment caused no change in EMAP-II-induced activation of PI3K. Besides, pretreatment with LY294002, a specific inhibitor of PI3K, did not affect EMAP-II-induced activation of PKC-α/β. Furthermore, LY294002 pretreatment significantly diminished EMAP-II-induced changes in BTB permeability, phosphorylation of myosin light chain and cofilin, expression and distribution of tight junction-associated protein ZO-1, and actin cytoskeleton arrangement in RBMECs. In summary, this study demonstrates that low-dose EMAP-II can increase BTB permeability by activating the RhoA/ROCK/PI3K signaling pathway.

  3. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  4. The transporter and permeability interactions of asymmetric dimethylarginine (ADMA) and L-arginine with the human blood-brain barrier in vitro.

    PubMed

    Watson, Christopher P; Pazarentzos, Evangelos; Fidanboylu, Mehmet; Padilla, Beatriz; Brown, Rachel; Thomas, Sarah A

    2016-10-01

    The blood-brain barrier (BBB) is a biological firewall that carefully regulates the cerebral microenvironment by acting as a physical, metabolic and transport barrier. This selectively permeable interface was modelled using the immortalised human cerebral microvascular endothelial cell line (hCMEC/D3) to investigate interactions with the cationic amino acid (CAA) L-arginine, the precursor for nitric oxide (NO), and with asymmetric dimethylarginine (ADMA), an endogenously derived analogue of L-arginine that potently inhibits NO production. The transport mechanisms utilised by L-arginine are known but they are not fully understood for ADMA, particularly at the BBB. This is of clinical significance giving the emerging role of ADMA in many brain and cerebrovascular diseases and its potential as a therapeutic target. We discovered that high concentrations of ADMA could induce endothelial dysfunction in the hCMEC/D3s BBB permeability model, leading to an increase in paracellular permeability to the paracellular marker FITC-dextran (40kDa). We also investigated interactions of ADMA with a variety of transport mechanisms, comparing the data with L-arginine interactions. Both molecules are able to utilise the CAA transport system y(+). Furthermore, the expression of CAT-1, the best known protein from this group, was confirmed in the hCMEC/D3s. It is likely that influx systems, such as y(+)L and b(0,+), have an important physiological role in ADMA transport at the BBB. These data are not only important with regards to the brain, but apply to other microvascular endothelia where ADMA is a major area of investigation. PMID:27431938

  5. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening.

    PubMed

    Shao, Xiaojian; Gao, Dan; Chen, Yongli; Jin, Feng; Hu, Guangnan; Jiang, Yuyang; Liu, Hongxia

    2016-08-31

    Since most of the central nervous system (CNS) drug candidates show poor permeability across the blood-brain barrier (BBB), development of a reliable platform for permeability assay will greatly accelerate drug discovery. Herein, we constructed a microfluidic BBB model to mimic drug delivery into the brain to induce cytotoxicity at target cells. To reconstitute the in vivo BBB properties, human cerebral microvessel endothelial cells (hCMEC/D3) were dynamically cultured in a membrane-based microchannel. Sunitinib, a model drug, was then delivered into the microchannel and forced to permeate through the BBB model. The permeated amount was directly quantified by an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after on-chip SPE (μSPE) pretreatment. Moreover, the permeated drug was incubated with glioma cells (U251) cultured inside agarose gel in the downstream to investigate drug-induced cytotoxicity. The resultant permeability of sunitinib was highly correlated with literature reported value, and it only required 30 min and 5 μL of sample solution for each permeation experiment. Moreover, after 48 h of treatment, the survival rate of U251 cells cultured in 3D scaffolds was nearly 6% higher than that in 2D, which was in accordance with the previously reported results. These results demonstrate that this platform provides a valid tool for drug permeability and cytotoxicity assays which have great value for the research and development of CNS drugs. PMID:27506359

  6. Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation.

    PubMed

    Mosberian-Tanha, Peyman; Øverland, Margareth; Landsverk, Thor; Reveco, Felipe E; Schrama, Johan W; Roem, Andries J; Agger, Jane W; Mydland, Liv T

    2016-01-01

    The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo.

  7. Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation.

    PubMed

    Mosberian-Tanha, Peyman; Øverland, Margareth; Landsverk, Thor; Reveco, Felipe E; Schrama, Johan W; Roem, Andries J; Agger, Jane W; Mydland, Liv T

    2016-01-01

    The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo. PMID:27547389

  8. Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud.

    PubMed

    Zijlstra, J J P; Dessì, R; Peretti, R; Zucca, A

    2010-04-01

    Metal sulfide tailings of the Sardinian (Italy) abandoned Baccu Locci arsenic mine show high concentrations of aluminum, arsenic, cadmium, copper, manganese, lead, and zinc in acid percolate (pH = 4) and have been classified as "dangerous waste." This paper shows that the release of toxic metals can be strongly reduced when the tailings are placed on a reactive permeable bed (7 wt %) of porous, alkaline pellets of transformed red mud (TRM). During a laboratory percolation test, two columns with 80 kg of waste, of which one contained a bottom layer of TRM pellets, were each alimented with 600 L of de-ionized water. Comparing pH, electroconductivity, metal, and sulfate concentrations of collected percolate from both columns demonstrates efficient neutralization (pH = 7.4) and removal of metals (80 to 99%) for the column with the permeable reactive bottom layer. PMID:20432649

  9. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling.

    PubMed

    Wanner, Christoph; Zink, Sonja; Eggenberger, Urs; Mäder, Urs

    2012-04-01

    In Thun, Switzerland, a permeable reactive barrier (PRB) for Cr(VI) reduction by gray cast iron was installed in May 2008. The PRB is composed of a double array of vertical piles containing iron shavings and gravel. The aquifer in Thun is almost saturated with dissolved oxygen and the groundwater flow velocities are ca. 10-15m/day. Two years after PRB installation Cr(VI) concentrations still permanently exceed the Swiss threshold value for contaminated sites downstream of the barrier at selected localities. Groundwater δ(53/52)Cr(SRM979) measurements were used to track Cr(VI) reduction induced by the PRB. δ(53/52)Cr(SRM979) values of two samples downstream of the PRB showed a clear fractionation towards more positive values compared to four samples from the hotspot, which is clear evidence of Cr(VI) reduction induced by the PRB. Another downstream sample did not show a shift to more positive δ(53/52)Cr(SRM979) values. Because this latter location correlates with the highest downstream Cr(VI) concentration it is proposed that a part of the Cr(VI) plume is bypassing the barrier. Using a Rayleigh fractionation model a minimum present-day overall Cr(VI) reduction efficiency of ca. 15% was estimated. A series of 2D model simulations, including the fractionation of Cr isotopes, confirm that only a PRB bypass of parts of the Cr(VI) plume can lead to the observed values. Additionally, the simulations revealed that the proposed bypass occurs due to an insufficient permeability of the individual PRB piles. It is concluded that with this type of PRB a complete and long-lasting Cr(VI) reduction is extremely difficult to achieve for Cr(VI) contaminations located in nearly oxygen and calcium carbonate saturated aquifer in a regime of high groundwater velocities. Additional remediation action would limit the environmental impact and allow to reach target concentrations.

  10. Curcumin ameliorates the permeability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells.

    PubMed

    Wang, Yan-feng; Gu, Yan-ting; Qin, Guang-hua; Zhong, Lei; Meng, Ying-nan

    2013-10-01

    Curcumin (Cur) is a major active component of the food flavor turmeric isolated from the powdered dry rhizome of Curcuma longa Linn., which has been used in traditional Chinese medicine to ameliorate intracerebral ischemic damage and reduce brain edema. However, the effects of Cur on the disruption of the blood-brain barrier (BBB) induced by brain ischemia are still unclear. The effects of Cur on the disruption of BBB and changes of tight junction (TJ) proteins induced by oxygen glucose deprivation (OGD) were studied in BBB in vitro. The transendothelial electrical resistance and the flux of horseradish peroxidase in BBB in vitro were measured. The expression and localization of the TJ proteins occludin and zonula occludens-1 (ZO-1) were evaluated by Western blots and immunofluorescence microscopy. The protein levels of heme oxygenase-1 (HO-1) were also analyzed via Western blots. Cur attenuated OGD-induced disruption of paracellular permeability and increased the expression of HO-1 protein in rat brain microvascular endothelial cells (RBMECs). After administration of OGD, the expression of occludin and ZO-1 proteins was restored by Cur, and this effect was blocked by a HO-1 inhibitor, zinc protoporphyrin (ZnPP). Cur protects RBMECs against OGD-induced disruption of TJ and barrier dysfunction via the HO-1 pathway. We propose that Cur is capable of improving the barrier function of BBB under ischemic conditions and this beneficial effect might be reversed by a HO-1 inhibitor, ZnPP. PMID:23494637

  11. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone.

    PubMed

    Nittby, Henrietta; Brun, Arne; Eberhardt, Jacob; Malmgren, Lars; Persson, Bertil R R; Salford, Leif G

    2009-08-01

    Microwaves were for the first time produced by humans in 1886 when radio waves were broadcasted and received. Until then microwaves had only existed as a part of the cosmic background radiation since the birth of universe. By the following utilization of microwaves in telegraph communication, radars, television and above all, in the modern mobile phone technology, mankind is today exposed to microwaves at a level up to 10(20) times the original background radiation since the birth of universe. Our group has earlier shown that the electromagnetic radiation emitted by mobile phones alters the permeability of the blood-brain barrier (BBB), resulting in albumin extravasation immediately and 14 days after 2h of exposure. In the background section of this report, we present a thorough review of the literature on the demonstrated effects (or lack of effects) of microwave exposure upon the BBB. Furthermore, we have continued our own studies by investigating the effects of GSM mobile phone radiation upon the blood-brain barrier permeability of rats 7 days after one occasion of 2h of exposure. Forty-eight rats were exposed in TEM-cells for 2h at non-thermal specific absorption rates (SARs) of 0mW/kg, 0.12mW/kg, 1.2mW/kg, 12mW/kg and 120mW/kg. Albumin extravasation over the BBB, neuronal albumin uptake and neuronal damage were assessed. Albumin extravasation was enhanced in the mobile phone exposed rats as compared to sham controls after this 7-day recovery period (Fisher's exact probability test, p=0.04 and Kruskal-Wallis, p=0.012), at the SAR-value of 12mW/kg (Mann-Whitney, p=0.007) and with a trend of increased albumin extravasation also at the SAR-values of 0.12mW/kg and 120mW/kg. There was a low, but significant correlation between the exposure level (SAR-value) and occurrence of focal albumin extravasation (r(s)=0.33; p=0.04). The present findings are in agreement with our earlier studies where we have seen increased BBB permeability immediately and 14 days after

  12. TRICHLOROETHYLENE REMOVAL FROM GROUNDWATER IN FLOW-THROUGH COLUMNS SIMULATING A PERMEABLE REACTIVE BARRIER CONSTRUCTED WITH PLANT MULCH

    EPA Science Inventory

    Ground water contaminated with TCE is commonly treated with a passive reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative re...

  13. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  14. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    PubMed

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software

  15. A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica.

    PubMed

    Statham, Tom M; Stark, Scott C; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2016-03-01

    A field trial was conducted at Casey Station, Antarctica to assess the suitability of a permeable reactive barrier (PRB) media sequence for the remediation of sites containing both hydrocarbon and heavy metal contamination. An existing PRB was modified to assess a sequence consisting of three sections: (i) Nutrient release/hydrocarbon sorption using ZeoPro™ and granular activated carbon; (ii) Phosphorus and heavy metal capture by granular iron and sand; (iii) Nutrient and excess iron capture by zeolite. The media sequence achieved a greater phosphorus removal capacity than previous Antarctic PRB configurations installed on site. Phosphorus concentrations were reduced during flow through the iron/sand section and iron concentrations were reduced within the zeolite section. However, non-ideal flow was detected during a tracer test and supported by analysis of media and liquid samples from the second summer of operation. Results indicate that the PRB media sequence trialled might be appropriate for other locations, especially less environmentally challenging contaminated sites.

  16. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.

    PubMed

    Calabrò, P S; Moraci, N; Suraci, P

    2012-03-15

    This paper presents the results of laboratory column tests aimed at defining the optimum weight ratio of zero-valent iron (ZVI)/pumice granular mixtures to be used in permeable reactive barriers (PRBs) for the removal of nickel from contaminated groundwater. The tests were carried out feeding the columns with aqueous solutions of nickel nitrate at concentrations of 5 and 50 mg/l using three ZVI/pumice granular mixtures at various weight ratios (10/90, 30/70 and 50/50), for a total of six column tests; two additional tests were carried out using ZVI alone. The most successful compromise between reactivity (higher ZVI content) and long-term hydraulic performance (higher Pumice content) seems to be given by the ZVI/pumice granular mixture with a 30/70 weight ratio.

  17. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with (68Ga)EDTA and positron emission tomography

    SciTech Connect

    Schlageter, N.L.; Carson, R.E.; Rapoport, S.I.

    1987-02-01

    Positron emission tomography with (/sup 68/Ga)ethylenediaminetetraacetic acid ((/sup 68/Ga)EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of (68Ga)EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type.

  18. Ocular fluorometry methodological improvements and clinical studies--with special reference to the blood-retina barrier permeability to fluorescein and fluorescein glucuronide.

    PubMed

    Larsen, M

    1993-01-01

    The measurement of fluorescence in the human eye can be made using relatively simple instruments. Fluorescence is evoked when illumination is absorbed by intrinsic fluorophores in the eye or by artificially introduced extrinsic fluorophores. Intrinsic fluorescence is evidence of important molecular characteristics of the ocular tissues, whereas the extrinsic fluorophores are used primarily in the study of the barriers between the anatomical and physiological compartments of the eye. Blood-retina barrier leakage of fluorescein can be examined after the intravenous injection of fluorescein by quantitative determination of fluorescence in plasma and in the vitreous. From these measurements of the distribution of fluorescein, the permeability of a hypothetical spherical interface between the blood and the retina can be estimated using a mathematical model of the barrier. The use of fluorescein as a tracer is problematic because of its rapid metabolic conversion to fluorescein glucuronide. This metabolite disturbs ocular fluorescence measurements because it fluoresces over the same part of the spectrum as the parent compound. Additionally, the glucuronide occurs in markedly different concentrations depending upon the patient's renal function. With the previously used fluorometry techniques it has been impossible to determine the contribution of fluorescein glucuronide to the vitreous fluorescence. The primary objective of the studies described in this thesis was to develop a method for the determination of fluorescein and fluorescein glucuronide in the human eye and in plasma, and to calculate the blood-retina barrier permeabilities of the two substances. The necessary methodological improvements included a detailed description of the geometrical optics of the eye and the optical filter properties of the lens. A new method was developed for the determination of the spatial locations of ocular fluorescence measurements and the intrinsic lens fluorescence was used to

  19. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): Application to normal controls and chronic exertional compartment syndrome patients

    PubMed Central

    Sigmund, Eric E.; Novikov, Dmitry S.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Babb, James S.; Liu, Kecheng; Feiweier, Thorsten; Kwon, Jane; Mcgorty, KellyAnne; Bencardino, Jenny; Fieremans, Els

    2014-01-01

    Purpose To collect diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3-T scanner at rest and after treadmill exertion at 4 different diffusion times. Radial diffusion values λrad were computed for each of 7 different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. Results All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p<0.05) increases with exercise for volunteers, and a increased significantly (p<0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p=0.07), and larger permeability increases (p=0.07) than controls. Conclusions Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be

  20. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.

    PubMed

    Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao

    2008-04-01

    Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.

  1. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice.

    PubMed

    Li, Wenmei; Sandhoff, Roger; Kono, Mari; Zerfas, Patricia; Hoffmann, Vickie; Ding, Bryan Char-Hoa; Proia, Richard L; Deng, Chu-Xia

    2007-02-06

    Very long chain fatty acids (VLCFA), either free or as components of glycerolipids and sphingolipids, are present in many organs. Elongation of very long chain fatty acids-4 (ELOVL4) belongs to a family of 6 members of putative fatty acid elongases that are involved in the formation of VLCFA. Mutations in ELOVL4 were found to be responsible for an autosomal dominant form of Stargardt's-like macular dystrophy (STGD3) in human. We have previously disrupted the mouse Elovl4 gene, and found that Elovl4+/- mice were developmentally normal, suggesting that haploinsufficiency of ELOVL4 is not a cause for the juvenile retinal degeneration in STGD3 patients. However, Elovl4-/- mice died within several hours of birth for unknown reason(s). To study functions of ELOVL4 further, we have explored the causes for the postnatal lethality in Elovl4-/- mice. Our data indicated that the mutant mice exhibited reduced thickness of the dermis, delayed differentiation of keratinocytes, and abnormal structure of the stratum corneum. We showed that all Elovl4-/- mice exhibited defective skin water permeability barrier function, leading to the early postnatal death. We further showed that the absence of ELOVL4 results in depletion in the epidermis of ceramides with omega-hydroxy very long chain fatty acids (> or = C28) and accumulation of ceramides with non omega-hydroxy fatty acids of C26, implicating C26 fatty acids as possible substrates of ELOVL4. These data demonstrate that ELOVL4 is required for VLCFA synthesis that is essential for water permeability barrier function of skin.

  2. Structure-permeability relationship analysis of the permeation barrier properties of the stratum corneum and viable epidermis/dermis of rat skin.

    PubMed

    Yamaguchi, Koji; Mitsui, Tetsuya; Aso, Yoshinori; Sugibayashi, Kenji

    2008-10-01

    The purpose of this study was to evaluate structure-permeability relationships for chemicals through stratum corneum (SC) and viable epidermis/dermis (VED). In vitro skin permeation of ten compounds through excised rat skin was analyzed based on a two-layer diffusion model and the diffusion coefficients in SC (D(SC)) and VED (D(VED)) were determined. The relationships between the permeation parameters and the physicochemical parameters (octanol-water partition coefficient (log K(o/w)), and hydrogen bond donor number (HBD)) of the compounds were analyzed. D(SC) increased as lipophilicity increased, whereas D(VED) decreased for log K(o/w) > 2. Increases in log K(o/w) caused a decrease in the permeability coefficient from SC through VED (P(VED/SC)) for log K(o/w) > 1. The simulation study suggests that the in vitro skin permeation of a highly lipophilic compound is strongly controlled by skin thickness due to low diffusivity in VED. The present study suggests that VED act as a considerable permeation barrier for highly lipophilic compounds due to low diffusivity. PMID:18228598

  3. The outer membrane of a heterocyst-forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells.

    PubMed

    Nicolaisen, Kerstin; Mariscal, Vicente; Bredemeier, Rolf; Pernil, Rafael; Moslavac, Suncana; López-Igual, Rocío; Maldener, Iris; Herrero, Antonia; Schleiff, Enrico; Flores, Enrique

    2009-10-01

    The multicellular Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N(2) in differentiated cells called heterocysts, which exchange nutritional and regulatory compounds with the neighbour photosynthetic vegetative cells. The outer membrane of this bacterium is continuous along the filament defining a continuous periplasmic space. The Anabaena alr0075, alr2269 and alr4893 gene products were characterized as Omp85-like proteins, which are generally involved in outer membrane protein biogenesis. Open reading frame alr2269 is the first gene of an operon that also carries genes for lipopolysaccharide lipid A biosynthesis including alr2270 (an lpxC homologue). Strains carrying inactivating alr2269 or alr2270 constructs showed enhanced sensitivity to erythromycin, SDS, lysozyme and proteinase K suggesting that they produce an outer membrane with increased permeability. These strains further exhibited increased uptake of sucrose, glutamate and, to a lesser extent, a few other amino acids. Increased uptake of the same metabolites was obtained by mechanical fragmentation of wild-type Anabaena filaments. These results document that the outer membrane is a permeability barrier for metabolites such as sucrose and glutamate, which are subjected to intercellular exchange in the diazotrophic filament of heterocyst-forming cyanobacteria.

  4. Expression of Neuronal CXCL10 Induced by Rabies Virus Infection Initiates Infiltration of Inflammatory Cells, Production of Chemokines and Cytokines, and Enhancement of Blood-Brain Barrier Permeability

    PubMed Central

    Chai, Qingqing; She, Ruiping; Huang, Ying

    2014-01-01

    It has been shown that enhancement of blood-brain barrier (BBB) permeability is modulated by the expression of chemokines/cytokines and reduction of tight junction (TJ) proteins in the brains of mice infected with rabies virus (RABV). Since CXCL10 was found to be the most highly expressed chemokine, its temporal and spatial expression were determined in the present study. The expression of the chemokine CXCL10 was initially detected in neurons as early as 3 days postinfection (p.i.) in the brains of RABV-infected mice, after which it was detected in microglia (6 days p.i.) and astrocytes (9 days p.i.). Neutralization of CXCL10 by treatment with anti-CXCL10 antibodies reduced gamma interferon (IFN-γ) production and Th17 cell infiltration, as well as restoring TJ protein expression and BBB integrity. Together, these data suggest that it is the neuronal CXCL10 that initiates the cascade that leads to the activation of microglia/astrocytes, infiltration of inflammatory cells, expression of chemokines/cytokines, reduction of TJ protein expression, and enhancement of the BBB permeability. PMID:25339777

  5. Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability.

    PubMed

    Chai, Qingqing; She, Ruiping; Huang, Ying; Fu, Zhen F

    2015-01-01

    It has been shown that enhancement of blood-brain barrier (BBB) permeability is modulated by the expression of chemokines/cytokines and reduction of tight junction (TJ) proteins in the brains of mice infected with rabies virus (RABV). Since CXCL10 was found to be the most highly expressed chemokine, its temporal and spatial expression were determined in the present study. The expression of the chemokine CXCL10 was initially detected in neurons as early as 3 days postinfection (p.i.) in the brains of RABV-infected mice, after which it was detected in microglia (6 days p.i.) and astrocytes (9 days p.i.). Neutralization of CXCL10 by treatment with anti-CXCL10 antibodies reduced gamma interferon (IFN-γ) production and Th17 cell infiltration, as well as restoring TJ protein expression and BBB integrity. Together, these data suggest that it is the neuronal CXCL10 that initiates the cascade that leads to the activation of microglia/astrocytes, infiltration of inflammatory cells, expression of chemokines/cytokines, reduction of TJ protein expression, and enhancement of the BBB permeability.

  6. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  7. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect.

    PubMed

    Boyd, Ben J; Galle, Adam; Daglas, Maria; Rosenfeld, Jeffrey V; Medcalf, Robert

    2015-01-01

    The opening of the tight junctions in the blood-brain barrier (BBB) following traumatic brain injury (TBI) is hypothesized to be sufficient to enable accumulation of large drug carriers, such as stealth liposomes, in a similar manner to the extravasation seen in tumor tissue via the enhanced permeability and retention (EPR) effect. The controlled cortical impact model of TBI was used to evaluate liposome accumulation in mice. Dual-radiolabeled PEGylated liposomes were administered either immediately after induction of TBI or at increasing times post-TBI to mimic the likely clinical scenario. The accumulation of radiolabel in the brain tissue ipsilateral and contralateral to the site of trauma, as well as in other organs, was evaluated. Selective influx of liposomes occurred at 0-8 h after injury, while the barrier closed between 8 and 24 hr after injury, consistent with reports on albumin infiltration. Significantly enhanced accumulation of liposomes occurred in mice subjected to TBI compared to anaesthetized controls, and accumulation was greater in the injured versus the contralateral side of the brain. Thus, stealth liposomes show potential to enhance drug delivery to the site of brain injury with a wide range of encapsulated therapeutic candidates.

  8. Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration.

    PubMed

    Kotula, Lukasz; Ranathunge, Kosala; Steudle, Ernst

    2009-12-01

    *Despite the importance of the barrier to oxygen losses of the roots of hygrophytes growing in wet environments devoid of oxygen, there are few data available on permeability coefficients for O(2) across outer root cell layers (P(OPR)) and how they may change in response to low O(2). *A gas perfusion technique was used to measure the P(OPR) of rice (Oryza sativa) plants grown in either aerated or deoxygenated solution. The contributions of the apoplast and of living cells to the overall P(OPR) were characterized either by blocking apoplastic pores with precipitates of brown Cu(2)[Fe(CN)(6)] or by killing cells with 0.1 N HCl. *Compared with that of plants from aerated hydroponics, the P(OPR) of plants grown in deoxygenated medium was smaller by an order of magnitude. Precipitates resulting from CuSO(4)/K(4)[Fe(CN)(6)] treatment only formed in plants grown in aerated solution, where they reduced the P(OPR) by 5-20%. Killing of root segments with HCl increased P(OPR) in plants grown in both conditions by 20-55%. *The results indicated that apoplastic barriers effectively restricted radial O(2) loss. The relative role of the respiratory O(2) consumption of root peripheral layers increased as P(OPR) decreased.

  9. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect.

    PubMed

    Boyd, Ben J; Galle, Adam; Daglas, Maria; Rosenfeld, Jeffrey V; Medcalf, Robert

    2015-01-01

    The opening of the tight junctions in the blood-brain barrier (BBB) following traumatic brain injury (TBI) is hypothesized to be sufficient to enable accumulation of large drug carriers, such as stealth liposomes, in a similar manner to the extravasation seen in tumor tissue via the enhanced permeability and retention (EPR) effect. The controlled cortical impact model of TBI was used to evaluate liposome accumulation in mice. Dual-radiolabeled PEGylated liposomes were administered either immediately after induction of TBI or at increasing times post-TBI to mimic the likely clinical scenario. The accumulation of radiolabel in the brain tissue ipsilateral and contralateral to the site of trauma, as well as in other organs, was evaluated. Selective influx of liposomes occurred at 0-8 h after injury, while the barrier closed between 8 and 24 hr after injury, consistent with reports on albumin infiltration. Significantly enhanced accumulation of liposomes occurred in mice subjected to TBI compared to anaesthetized controls, and accumulation was greater in the injured versus the contralateral side of the brain. Thus, stealth liposomes show potential to enhance drug delivery to the site of brain injury with a wide range of encapsulated therapeutic candidates. PMID:26079716

  10. Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom.

    PubMed

    Mendonça, Monique C P; Soares, Edilene S; Stávale, Leila M; Kalapothakis, Evanguedes; Cruz-Höfling, Maria Alice

    2014-01-01

    Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.

  11. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 2 LONG-TERM MONITORING OF PRBS: SOIL AND GROUND WATER SAMPLING

    EPA Science Inventory

    This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...

  12. The combined effects on neuronal activation and blood-brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI.

    PubMed

    Kuo, Yu-Ting; So, Po-Wah; Parkinson, James R; Yu, Wei Sheng; Hankir, Mohammad; Herlihy, Amy H; Goldstone, Anthony P; Frost, Gary S; Wasserfall, Clive; Bell, Jimmy D

    2010-05-01

    N-3 polyunsaturated fatty acids (n-3 PUFA) are known to have cardiovascular and neuroprotective properties in both humans and rodents. Here, we use manganese-enhanced magnetic resonance imaging (MEMRI) to compare the effects of these polyunsaturated fatty acids on the combined effects of neuronal activity and integrity of blood-brain barrier integrity with saturated fatty acids from buttermilk. C57BL/6 mice (4 weeks old) were fed isocaloric diets containing 3% fish oil (3% FO, n=5), 12% fish oil (FO, n=6), 3% buttermilk (3% BM, n=6) or 12% buttermilk (12% BM, n=6) for 6 months. Following metabolic cage analysis these mice were scanned using a standard MEMRI protocol at 28-32 weeks of age. Adult mice aged 28-32 weeks old (RM3, n=5) and 15-16 weeks old (YRM3, n=4) maintained on standard rodent chow were also studied to assess age-related changes in brain barrier systems and neuronal activity. Signal intensity (SI) in the anterior pituitary (AP), arcuate hypothalamic nucleus (ARC), ventromedial hypothalamic nucleus (VMH) and the paraventricular hypothalamic nucleus (PVN) was significantly reduced in young compared to older mice fed standard chow. Furthermore, fish oil supplementation led to a decrease in SI within the ARC and PVN, reaching significance in the VMH in age-matched controls. Interestingly, both fish oil and buttermilk supplementation resulted in a significant increase in SI within the AP, a structure outside the BBB. We conclude that MEMRI is able to detect the combined effects of the integrity of neuronal activity and blood-brain barrier permeability in the hypothalamus associated with dietary manipulation and aging. PMID:20097292

  13. The combined effects on neuronal activation and blood-brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI.

    PubMed

    Kuo, Yu-Ting; So, Po-Wah; Parkinson, James R; Yu, Wei Sheng; Hankir, Mohammad; Herlihy, Amy H; Goldstone, Anthony P; Frost, Gary S; Wasserfall, Clive; Bell, Jimmy D

    2010-05-01

    N-3 polyunsaturated fatty acids (n-3 PUFA) are known to have cardiovascular and neuroprotective properties in both humans and rodents. Here, we use manganese-enhanced magnetic resonance imaging (MEMRI) to compare the effects of these polyunsaturated fatty acids on the combined effects of neuronal activity and integrity of blood-brain barrier integrity with saturated fatty acids from buttermilk. C57BL/6 mice (4 weeks old) were fed isocaloric diets containing 3% fish oil (3% FO, n=5), 12% fish oil (FO, n=6), 3% buttermilk (3% BM, n=6) or 12% buttermilk (12% BM, n=6) for 6 months. Following metabolic cage analysis these mice were scanned using a standard MEMRI protocol at 28-32 weeks of age. Adult mice aged 28-32 weeks old (RM3, n=5) and 15-16 weeks old (YRM3, n=4) maintained on standard rodent chow were also studied to assess age-related changes in brain barrier systems and neuronal activity. Signal intensity (SI) in the anterior pituitary (AP), arcuate hypothalamic nucleus (ARC), ventromedial hypothalamic nucleus (VMH) and the paraventricular hypothalamic nucleus (PVN) was significantly reduced in young compared to older mice fed standard chow. Furthermore, fish oil supplementation led to a decrease in SI within the ARC and PVN, reaching significance in the VMH in age-matched controls. Interestingly, both fish oil and buttermilk supplementation resulted in a significant increase in SI within the AP, a structure outside the BBB. We conclude that MEMRI is able to detect the combined effects of the integrity of neuronal activity and blood-brain barrier permeability in the hypothalamus associated with dietary manipulation and aging.

  14. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy.

    PubMed

    Monickaraj, Finny; McGuire, Paul G; Nitta, Carolina Franco; Ghosh, Kaustabh; Das, Arup

    2016-04-01

    Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). We have previously reported increased monocyte (Mono) trafficking into the retinas of diabetic animals. In this study, we have examined the effect of activated Monos on retinal endothelial cells (ECs). The U937 Mϕ-conditioned medium (CM) significantly decreased the transendothelial resistance of EC monolayers as measured by electric cell-substrate impedance sensing (P= 0.007). The CM was fractioned, and the effective fraction (30-100 kDa) was analyzed by liquid chromatography-mass spectrometry, and cathepsin D (CD) was identified as a major secreted product. Immunoprecipitated CD resulted in decreased resistance in ECs (P= 0.006). The specificity of CD in mediating alterations of the EC barrier was confirmed using small interfering RNA. The decreased resistance correlated with a significantly increased gap between ECs. CD altered the Ras homolog gene family, member A/Rho-associated kinase pathway with increased stress actin filament formation in the EC layer. Increased CD levels were found in the retinas of diabetic mice (3-fold) and serum samples of patients with diabetic macular edema (1.6-fold) measured by Western blot and ELISA. These findings suggest an important role for Mϕ-derived CD in altering the blood-retinal barrier and reveal a potential therapeutic target in the treatment of DR.-Monickaraj, F., McGuire, P. G., Nitta, C. F., Ghosh, K., Das, A. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy. PMID:26718887

  15. Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis

    SciTech Connect

    Kurasawa, Masumi; Kuroda, Shohei; Kida, Naoko; Murata, Michiyo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2009-04-03

    Tight junctions (TJs) restrict paracellular flux of water and solutes in epithelia and endothelia. In epidermis, the physiological role of TJs is not fully understood. In this study, sodium caprate (C10), which dilates intestinal TJs, was applied to cultured human epidermal keratinocytes and reconstructed human epidermis to investigate the effects of C10 on epidermal TJs. C10 treatment decreased transepithelial electrical resistance and increased paracellular permeability, although Western blots showed that the expression of TJ-related transmembrane proteins was not decreased. The effects of C10 were reversible. Immunofluorescence microscopy and immuno-replica electron microscopy showed that the localization of TJ strands were disintegrated, concomitant with the dispersion and/or disappearance of TJ-related molecules from the cell surface. These findings suggest that C10 impairs barrier function by physically disrupting TJ conformation in the epidermis. Furthermore, these results also show that proper localization of the molecules on the cellular membrane is important for TJ barrier function.

  16. Development of Blood-Brain Barrier Permeable Nitrocatechol-Based Catechol O-Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity.

    PubMed

    Silva, Tiago; Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N; Martínez-González, Loreto; Pérez, Daniel I; Martínez, Ana; Valente, Maria João; Garrido, Jorge; Uriarte, Eugenio; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Borges, Fernanda

    2016-08-25

    Recent efforts have been focused on the development of centrally active COMT inhibitors, which can be valuable assets for neurological disorders such as Parkinson's disease, due to the severe hepatotoxicity risk associated with tolcapone. New nitrocatechol COMT inhibitors based on naturally occurring caffeic acid and caffeic acid phenethyl ester were developed. All nitrocatechol derivatives displayed potent inhibition of peripheral and cerebral COMT within the nanomolar range. Druglike derivatives 13, 15, and 16 were predicted to cross the blood-brain barrier in vitro and were significantly less toxic than tolcapone and entacapone when incubated at 50 μM with rat primary hepatocytes. Moreover, their unique acidity and electrochemical properties decreased the chances of formation of reactive quinone-imines and, as such, the potential for hepatotoxicity. The binding mode of 16 confirmed that the major interactions with COMT were established via the nitrocatechol ring, allowing derivatization of the side chain for future lead optimization efforts. PMID:27463695

  17. Development of Blood-Brain Barrier Permeable Nitrocatechol-Based Catechol O-Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity.

    PubMed

    Silva, Tiago; Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N; Martínez-González, Loreto; Pérez, Daniel I; Martínez, Ana; Valente, Maria João; Garrido, Jorge; Uriarte, Eugenio; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Borges, Fernanda

    2016-08-25

    Recent efforts have been focused on the development of centrally active COMT inhibitors, which can be valuable assets for neurological disorders such as Parkinson's disease, due to the severe hepatotoxicity risk associated with tolcapone. New nitrocatechol COMT inhibitors based on naturally occurring caffeic acid and caffeic acid phenethyl ester were developed. All nitrocatechol derivatives displayed potent inhibition of peripheral and cerebral COMT within the nanomolar range. Druglike derivatives 13, 15, and 16 were predicted to cross the blood-brain barrier in vitro and were significantly less toxic than tolcapone and entacapone when incubated at 50 μM with rat primary hepatocytes. Moreover, their unique acidity and electrochemical properties decreased the chances of formation of reactive quinone-imines and, as such, the potential for hepatotoxicity. The binding mode of 16 confirmed that the major interactions with COMT were established via the nitrocatechol ring, allowing derivatization of the side chain for future lead optimization efforts.

  18. In Situ Reduction of Aquifer Sediments to Create a Permeable Reactive Barrier to Remediate Chromate (CrO4 2-): BenchScale Tests to Determine Barrier Longevity

    SciTech Connect

    Szecsody, Jim E.; Fruchter, Jonathan S.; Vermeul, Vince R.; Williams, Mark D.; Devary, Brooks J.

    2005-01-02

    Laboratory tests were conducted to determine sediment geochemical properties needed to develop a design for implementation of the in-situ oxidation–reduction (redox) manipulation (ISRM) technology for chromate (CrO42–) remediation at a Superfund site and three other sites. A generalized hydrogeologic description of the Superfund site consist of a silty clay upper confining layer to a depth of ~6.71 m, the A1 unit from ~6.71 m to ~8.23 m, the A2 unit from ~8.23 m to ~10.67 m, and the A3 unit from ~10.67 m to ~12.19 m below ground surface. The A/B aquitard was encountered at a depth of ~12.19 m. The A1, A2, and A3 hydrostratigraphic units are all sandy gravels, but with considerable diff