NASA Astrophysics Data System (ADS)
Duncan, Robert J.; Maas, Roland
2014-12-01
Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small U deposits around Mount Isa and may also suggest a relationship between U mineralization and regional Cu mobilization during the Isan orogeny. Our work suggests that non-conventional geochronometers should be used only if additional geological information and geochemical data (e.g., mineral chemistry, trace elements) are available to evaluate any resulting age calculations.
NASA Astrophysics Data System (ADS)
Hu, Haiying; Dai, Lidong; Li, Heping; Hui, Keshi; Sun, Wenqing
2017-04-01
The anomalously high electrical conductivities ( 0.1 to 1 S/m) in deep mantle wedge regions extensively detected by magnetotelluric studies are often associated with the presence of fluids released from the progressive dehydration of subducting slabs. Epidote minerals are the Ca-Al-rich hydrous silicates with huge stability fields exceeding those of amphibole (>70-80 km) in subducting oceanic crust, and they may therefore be transported to greater depth than amphibole and release water to the mantle wedge. In this study, the electrical conductivities of epidote were measured at 0.5-1.5 GPa and 573-1273 K by using a Solartron-1260 Impedance/Gain-Phase Analyzer in a YJ-3000t multianvil pressure within the frequency range of 0.1-106 Hz. The results demonstrate that the influence of pressure on electrical conductivity of epidote is relatively small compared to that of temperature. The dehydration reaction of epidote is observed through the variation of electrical conductivity around 1073 K, and electrical conductivity reaches up to 1 S/m at 1273 K, which can be attributed to aqueous fluid released from epidote dehydration. After sample dehydration, electrical conductivity noticeably decreases by as much as nearly a log unit compared with that before dehydration, presumably due to a combination of the presence of coexisting mineral phases and aqueous fluid derived from the residual epidote. Taking into account the petrological and geothermal structures of subduction zones, it is suggested that the aqueous fluid produced by epidote dehydration could be responsible for the anomalously high conductivities in deep mantle wedges at depths of 70-120 km, particularly in hot subduction zones.
Allanite and epidote weathering at the Coweeta hydrologic laboratory, western North Carolina, U.S.A.
Jason R. Price; Michael L. Velbel; Lina C. Pantino
2005-01-01
Allanite and epidote occur in the parent rocks of weathered regolith at the Coweeta Hydrologic Laboratory in North Carolina and exhibit different responses to weathering. Petrographically, epidote and allanite are identical at Coweeta, and only with additional analytical techniques (e.g., EDS or LAICP- MS) can the two be distinguished. Allanite is more...
Epidote from the Zard Mountains, Kharan, Balochistan, Pakistan
Brownfield, Michael E.; Lowers, Heather; Betterton, William K.
2013-01-01
The authors received two unusual crystals of epidote from Rock Currier, Jewel Tunnel Imports, in 2012. The mineral specimens were collected at Zard Mountain (Zard Koh), in the central part of the Ruskoh Mountains (Rusk Koh), west of Kharan, Balochistan, Pakistan (written communication, Rock Currier, 2013). The epidote locality was most likely discovered in 2010. These epidote crystals were unusual in both form and composition. The large crystals were flat tabular and pseudohexagonal in shape which is an uncommon crystal form for a monoclinic mineral (fig. 1). Other specimens from the same locality have been described as pseudo-octahedral in shape. The two crystals range in size from 5.5 to 6.5 centimeters (2.2 to 2.6 inches) and are slightly magnetic. The epidote crystals have a core matrix that resembles a weathered igneous rock. Some micro brown- to reddish-titanite crystals were observed under a binocular microscope on the surface and core areas of the crystals (figs. 2 and 3). Other minerals observed in the core areas include feldspar, biotite, and quartz. The crystals display evidence of cluster-growth with points of attachment to other crystals. The epidotes were most likely collected in pockets of a weathered igneous-skarn deposit.
NASA Astrophysics Data System (ADS)
Tsai, Chin-Ho; Iizuka, Yoshiyuki; Ernst, W. G.
2013-02-01
This paper presents new petrologic data for high-pressure, low-temperature (HP-LT) metamorphic rocks at Juisui. We reinterpret the so-called "Tamayen block" (Yang and Wang, 1985) or "Juisui block" (Liou, 1981; Beyssac et al., 2008) as a tectonic mélange. It is not a coherent sheet but rather a mixture dominated by greenschist and pelitic schist with pods of serpentinite, epidote amphibolite, and rare blueschist. Four types of glaucophane-bearing rocks are newly recognized in this mélange. Type I is in contact with greenschist lacking glaucophane and garnet. Glaucophane is present only as rare inclusions within pargasite. This type records metamorphic evolution from epidote blueschists-, epidote amphibolite-, to greenschist-facies. Type II contains characteristic zoned amphiboles from barroisite core to Mg-katophorite mantle and glaucophane rim, implying an epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Type III includes winchite and indicates P-T conditions of about 6-8 kbar, approaching 400 °C. Type IV contains paragonite but lacks garnet; amphibole shows a Na-Ca core surrounded by a glaucophane rim. This type shows a high-pressure (?) epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Amphibole zoning trends and mineral assemblages imply contradictory P-T paths for the four types of glaucophane-bearing rocks—consistent with the nature of a tectonic mélange. The new P-T constraints and petrologic findings differ from previous studies (Liou et al., 1975; Beyssac et al., 2008).
NASA Astrophysics Data System (ADS)
Tchameni, R.; Sun, F.; Dawaï, D.; Danra, G.; Tékoum, L.; Nomo Negue, E.; Vanderhaeghe, O.; Nzolang, C.; Dagwaï, Nguihdama
2016-09-01
We present the mineralogy and age of the magmatic epidote-bearing granite composing most of the Mokong pluton, in the Central Africa orogenic belt (North Cameroon). This pluton intrudes Neoproterozoic (~830 to 700 Ma) low- to high-grade schists and gneisses (Poli-Maroua group), and is crosscut or interleaved with bodies of biotite granite of various sizes. The pluton is weakly deformed in its interior, but solid-state deformation increases toward its margins marked by narrow mylonitic bands trending NNE-SSW. The magmatic epidote granitic rocks are classified as quartz monzodiorite, granodiorite, monzogranite, and syenogranite. They are medium- to coarse-grained and composed of K-feldspar + plagioclase + biotite + amphibole + epidote + magnetite + titanite + zircon + apatite. In these granites, the pistacite component [atomic Fe+3/(Fe3+ + Al)] in epidote ranges from 16 to 29 %. High oxygen fugacity (log ƒO2 - 14 to -11) and the preservation of epidote suggest that the magma was oxidized. Al-in hornblende barometry and hornblende-plagioclase thermometry indicate hornblende crystallization between 0.53 and 0.78 GPa at a temperature ranging from 633 to 779 °C. Zircon saturation thermometry gives temperature estimates ranging from 504 to 916 °C, the latter being obtained on samples containing inherited zircons. U/Pb geochronology by LA-ICP-MS on zircon grains characterized by magmatic zoning yields a concordia age of 668 ± 11 Ma (2 σ). The Mokong granite is the only known occurrence magmatic epidote in Cameroon, and is an important milestone for the comparison of the Central Africa orogenic belt with the Brasiliano Fold Belt, where such granites are much more abundant.
NASA Astrophysics Data System (ADS)
Brasilino, R. G.; Sial, A. N.; Ferreira, V. P.; Pimentel, M. M.
2011-12-01
A manifestation of the Pan-African-Brasiliano orogeny (700-550 Ma) in northeastern Brazil was the emplacement of widespread Neoproterozoic granitoids in diverse tectonic terranes. Among these plutons are the magmatic epidote-bearing Conceição das Creoulas, Caldeirão Encantado, Murici, and Boqueirão plutons, located close to the boundary between the Alto Pajeú and Cachoeirinha-Salgueiro terranes. The plutons are high-K calc-alkalic granodiorites to monzogranites, with tabular K-feldspar megacrysts. Pistacite [atomic Fe+ 3/(Fe3++ Al)] in epidote in these granitoids ranges from 21 to 27%. High oxygen fugacity (log fO2 - 19 to - 13) and the preservation of epidote suggest that the magma was oxidized. Al-in-hornblende barometry indicates hornblende solidification between 6 and 8 kbar, at 620 to 780 °C according to the hornblende-plagioclase thermometer. Zircon saturation thermometry attests to a near-liquidus temperature range from 794 to 853 °C. Partial corrosion of magmatic epidote in these four plutons occurred during an interval of no more than 10-30 years, which corresponds to maximum magma ascent rates of 650-1000 m/year. Diking, associated with regional shearing, probably facilitated rapid transport of granitic magma through hot continental crust at peak metamorphism, and permitted survival of epidote that was out of equilibrium at the low pressure of final emplacement. Similarities between mineralogical composition, chemistry, and isotopic compositions (εNd(0.60Ga) between - 2 and - 5,TDM from 1.2 to 1.3 Ga, δ18O values > 10‰, V-SMOW) of these four plutons and Neoproterozoic magmatic epidote-bearing plutons elsewhere in northeastern Brazil, argue for similar metabasaltic/mafic sources that had previously experienced low-temperature alteration.
New Gallium End-Member in Epidote Group
NASA Astrophysics Data System (ADS)
Soboleva, A. A.; Varlamov, D.; Mayorova, T.
2011-12-01
Unique ultrahigh-Ga (Ga up to 14.5 wt. %) mineral of epidote group is discovered in Tykatlova gold-sulfure ore occurrence in the eastern slope of the Subpolar Urals, Russia. It is the first find of the Ga silicate mineral in the world. Only five Ga minerals are presented in the IMA official list. Generally, two unique deposites in Africa contain Ga minerals - Tsumeb in Namibia and Kipushi in DR Congo. Tykatlova occurrence is situated in early Ordovician rhyolites and rhyodacites metamorphosed in greenschist facies, sulfide mineralization is located in fault zones. Ga-phases were found out in sphalerite-pyrite-galena assemblage with chalcopyrite and minor Ag-bearing bornite, tetrahedrite-tennantite, various Ag and Cu sulfides and sulfosalts. Secondary ore minerals are anglesite, cerussite, lead and zinc hydroxides. Vein minerals are quartz, calcite, Zn-Mn carbonates, anhydrite (or gypsum). Ga-minerals are usually inclusions (common in sphalerite, sometimes in pyrite and galena), they are rarely located between grains of sulfides or quartz. Ga-phases are assigned to epidote group due to morphology of grains, their chemical composition (EPMA using EDS and WDS), stoichiometry and Raman data. Their grains are elongated, roundish or well-shaped, they are 30-60 up to 100 μm in length, with complex zonality. The general sequence of zones from the core to rims: a) "epidote-(Ga)" with 6-20 wt.% Ga2O3, REE are almost absent; b) high Ga allanite-(Ce) with 3-11 wt.% Ga2O3, 3-20 wt.% REE (calculated as oxide); c) allanite-(Ce) with 0.0-2.0 wt.% Ga2O3, 4-19 wt.% REE; d) epidote-allanite rims without Ga, 0-6 wt.% REE. Empirical formula of phases mostly enriched in Ga: (Ca1.88Mg0.15Mn0.03)2.06(Al1.77Ga0.97Fe3+0.26)3.00(Si2.91Al0.09)3O12(OH) (Ca1.85Mg0.11Mn0.02)1.98(Al1.89Ga1.03Fe3+0.19)3.11(Si2.93Al0.07)3O12(OH). Crystal chemistry of Ga-epidote isn't clear yet, but we assume that Ga substitutes Fe3+ rather than Al. Correlation factor in Fe3+-Ga pair (core zones of grains) reaches -0.92. Decrease of Ga toward to grain rims "allows" occurrence of REE in the epidote structure, as Ga ceases to occupy a large octahedron where bivalent ions (Fe2+, Mg, Mn2+) can enter for compensation of trivalent REE cations. Raman spectra of the Ga-phases shows a high convergence with epidote spectra. Detectable Ga concentrations (0.048-0.058 wt.%, WDS) have been established only in sphalerite that includes grains of epidote-allanite enriched in Ga. So, the most probable source of Ga is Ga-enriched sphalerite. Growth of Ga phases might take place during greenschist facies metamorphism. However, we can't exclude vice versa variant - increase of Ga concentration in sphalerite in result of decomposition of primary high-Ga silicates. Conclusions: (1) A unique high-Ga mineral of the epidote group was discovered in the Subpolar Urals. (2) It is the first find of high-Ga silicate mineral in the world. Presumably it is new member of epidote group that could be named "epidote-(Ga)" (as it is recommended by the IMA Commission). Financial support by RFBR, grant 11-05-01087-a.
NASA Astrophysics Data System (ADS)
Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.
1999-03-01
Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under P<5 kbar. The percentage of corrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (<0.50×10 -3 SI), which is typical behavior of plutons which crystallized under low fO 2 (ilmenite-series granitoids), although Fe/(Fe+Mg) ratios in hornblende (0.40-0.65) indicate crystallization under high fO 2. Mesozoic to Tertiary calc-alkalic plutons in Chile, however, exhibit iron oxide minerals and MS values >3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE Brazil, Argentina and Chile, it seems that mEp is more common in Precambrian to Palaeozoic ilmenite-series granitoids, while its occurrence in magnetite-series granitoids is more restricted to Mesozoic to Tertiary granitoids.
RN12 and RN30 Epidote anlayses
Andrew Fowler
2015-01-01
Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.
Chang, J.M.; Andronicos, C.L.
2009-01-01
Petrology and P-T estimates indicate that a magmatic epidote-bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ???1.4 GPa and cooled nearly isobarically at ???0.9 GPa. The P-T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ???30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ???55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P-T path followed by magmas. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Jung, H.; HA, Y.; Raymond, L. A.
2016-12-01
In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45-70° and shear wave anisotropy (AVS) became stronger for vertically propagating S-waves with increasing subduction angle. Our data showed that phengite-rich blueschist, therefore, can contribute to strong trench-parallel seismic anisotropy observed in many subduction zones.
NASA Astrophysics Data System (ADS)
Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.
2014-05-01
Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the presence of both fluids. Alteration of monazite and subsequent formation of REE-rich epidote or allanite, REE-rich fluorapatite and britholite was promoted by high activity of Ca in the fluid, with high bulk CaO/Na2O ratio of ca. 11.5 in the system. In contrast, neither REE-rich epidote nor allanite does form in the presence of Na2Si2O5 + H2O fluid, with bulk CaO/Na2O ratio of ca. 1.0. Results indicating that stability field of allanite relative to monazite expands towards higher temperatures along with increased Ca bulk content are consistent with recent thermodynamic modeling of phase equilibria (Spear, 2010). Experiments also support natural observations from the amphibolite-facies Alpine metapelites regarding the influence of CaO/Na2O ratio in bulk content on the relative stabilities of monazite and REE-rich epidote (Janots et al., 2008). Alteration of xenotime is observed in all runs. (Y,HREE)-rich britholite or (Y,HREE)-rich fluorapatite always formed. In contrast to monazite experiments, (Y,HREE)-rich epidote formed only at 650°C and 8-10 kbar, in the presence of 2M Ca(OH)2. Results are partially consistent with natural observations showing that stability of (Y,HREE)-rich epidote is promoted by high Ca bulk content with high CaO/Na2O ratio (Janots et al., 2008). However, experimental results indicate that the relative stabilities of xenotime and (Y,HREE)-rich epidote are strongly controlled by pressure. Acknowledgements. The project was funded by the National Science Center of Poland, grant no. 2011/01/D/ST10/04588.
NASA Astrophysics Data System (ADS)
Narduzzi, F.; Farina, F.; Stevens, G.; Lana, C.; Nalini, H. A.
2017-06-01
Magmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of special petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97-1.07) Galiléia batholith (Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632-570 Ma) weakly foliated calc-alkaline granitoid body, characterized by the widespread occurrence of garnet (grossular 25-43 mol%) and epidote (pistacite 9.3-22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids worldwide. This evidence strongly suggests that the origin of the uncommon garnet + epidote parageneses is related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages and mineral compositions from this study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white mica is consistent with magma crystallization at pressures greater than 0.8 GPa (above 25 km depth) and at temperatures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet (plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen was already at least 25-30 km thick and relatively cool. However, this contrasts with the marked high heat flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids record granulite-facies metamorphism at the same pressure and time (ca. 570 Ma) of Galiléia granitoids crystallization. Thus, a more suitable geodynamic scenario is required in order to explain these two contrasting thermal regimes within the same orogen. Eventually, field, petrographic and mineral chemical analogies with similar garnet-bearing granitoids located in the fore-arc settings of the British Columbia subduction zone, possibly imply that the Galiléia granitoids represent "rare" garnet- and epidote-bearing metaluminous Cordilleran-I-type granites which can only form in a fore-arc setting.
Wintsch, R.P.; Aleinikoff, J.N.; Yi, K.
2005-01-01
Textures, microstructures, and patterns of chemical zoning in minerals in a granodioritic orthogneiss in the Glastonbury Complex, Connecticut, lead to the interpretation that foliation development was facilitated by retrograde hydration reactions in the presence of an aqueous fluid. Incomplete replacement of the metastable magmatic minerals K-feldspar + hastingsite + magnetite produced foliation-defining biotite + epidote + quartz. These reaction products did not replace K-feldspar - hastingsite interfaces; rather, either biotite or epidote replaced the amphibole, and plagioclase replaced K-feldspar. Biotite and epidote precipitated syntectonically in discrete layers that define the foliation in the orthogneiss, whereas quartz precipitated primarily in ribbons, further enhancing the fabric. Metastable REE-rich igneous titanite also dissolved, and was incompletely replaced by REE-poor, Al-bearing metamorphic titanite. The similar concentrations of the REE in epidote and titanite show that the REE released by titanite dissolution were precipitated locally as the allanite component in adjacent grains of epidote. The entire process was syntectonic, with most grains showing multiple overgrowths in the direction of extension as defined by stretched xenoliths. Sufficient U was present in the titanite overgrowths to allow SHRIMP dating of cores, mantles, and rims. These results suggest at least three retrograde Alleghanian events of growth in a span of ???30 m.y. Thus the dissolution - transportation - precipitation process not only describes the reaction mechanism but also leads to the redistribution of reaction products into nearly monomineralic layers, thus contributing to metamorphic differentiation and to the development of the foliation. The resulting orthogneiss was much weaker that the granodiorite protolith, owing to this reaction and textural softening.
NASA Astrophysics Data System (ADS)
Zhang, Jinrui; Wei, Chunjing; Chu, Hang
2015-01-01
Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the tectonic implication of blueschists in central Inner Mongolia is that they may be a new type attributed to closure of limited ocean basins and do not represent a tectonic regime occurred in conventional subduction setting.
NASA Astrophysics Data System (ADS)
Sial, Alcides N.; Vasconcelos, Paulo M.; Ferreira, Valderez P.; Pessoa, Ricardo R.; Brasilino, Roberta G.; Morais Neto, João M.
2008-10-01
Calc-alkalic to high-K calc-alkalic granitoid plutons in the Borborema province, northeastern Brazil, have been studied to constrain depth of emplacement by mineralogical and geological methods and to estimate upward magma transport rate based on partial dissolution of magmatic epidote. Laser-probe incremental heating 40Ar/ 39Ar dating of biotite and hornblende single crystals from the Neoproterozoic Tavares and Brejinho high-K calc-alkalic magmatic epidote (mEp)-bearing plutons reveals age differences of around 60 M.y. between these two minerals in each of these two intrusions. These data suggest solidification at relatively great depth followed by prolonged cooling interval between the closure temperatures of biotite and hornblende. Al-in-hornblende barometry indicates that hornblende in several mEp-bearing plutons in the Transversal Domain of the Borborema province solidified at 5 to 7 kbar, whereas in the Seridó and Macururé terranes, solidification pressures range from 3 to 4 kbar. Partial dissolution of epidote indicates very rapid upward transport. Partial corrosion occurred during 15-35 years (Cachoerinha-Salgueiro terrane), 10-30 years (Alto Pajeú), 15 years (Seridó), and 10 years (Macururé) corresponding to upward transport rates of 450-1300, 650-1050, 1200, and 1800 m/year respectively in these four terranes. Rapid upward magma migration in most cases was probably facilitated by diking simultaneous with regional shearing.
Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland
NASA Astrophysics Data System (ADS)
Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán; Fridriksson, Thráinn; Elders, Wilfred A.; Fridleifsson, Gudmundur Ó.
2009-08-01
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as -23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from -60 to -78‰, and δ18OEPIDOTE in these wells are between -3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ˜ -79‰ and -89‰, respectively, show δDEPIDOTE values of -115‰ and -125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is -68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes. Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is -125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.
NASA Astrophysics Data System (ADS)
Filimonova, L. G.; Sivtsov, A. V.; Trubkin, N. V.
2010-08-01
Lithiophorite and coronadite—varieties of vernadite and todorokite—make up finely dispersed colloform mixtures along with minor grains and nanoparticles of aluminosilicates and ore minerals in metasomatic rocks of the Dukat ore field, which were formed in local areas of fluid and hydrothermal-solution discharge at the upper level of the ore-forming system. Fe-vernadite associates with feroxyhyte, magnetite, apatite, K-feldspar, native silver, and acanthite in greisenized granitoids and with epidote, cerianite, plattnerite, and Fe-chlorite in quartz-garnet-chlorite propylites. Todorokite with high Pb, Tl, and Sn contents associates with epidote, albite, bitumen, and native silver in quartz-epidote-chlorite propylites. Al-vernadite, coronadite, and lithiophorite associate with opal, kaolinite, Fe-chlorite, zincite, uraninite, native silver, and acanthite in argillisites. These data allowed us to estimate the conditions of manganese accumulation in the epithermal ore-forming system and deposition conditions of Mn-rich, finely dispersed mineral mixtures in mineralized zones hosted in metasomatic rocks of the ore field.
An experimental assessment of the quartz-in-epidote barometer
NASA Astrophysics Data System (ADS)
Cisneros, M.; Ashley, K.
2017-12-01
We focus on quantifying the suitability of a quartz-in-epidote (qtz-in-ep) solid mineral barometer because theoretical calculations applying an isotropic elastic model suggest that qtz-in-ep inclusion pressures (Pincl) exhibit minimal temperature dependence, with the potential to elucidate the growth conditions of epidote in geologic environments with poor PT constraints (e.g., skarn deposits, retrograde metamorphic rocks). We carried-out heating experiments and compare Raman spectroscopic shifts in the 464 cm-1 band of quartz (and therefore Pincl) with modeled Pincl for three epidotes derived from samples with well constrained PT conditions: 1) FT-1E from Frosnitztal Tal (Pincl = 6.8 kbar), 2) LdC-31C from Lago-di-Cignana (Pincl = 2.6 kbar), and 3) HF-14C from the Upper Schieferhuelle in Western Tauern (Pincl = 0.74 kbar). At elevated temperatures, we encountered difficulties in separating the quartz 464 cm-1 Raman peak and shoulder epidote peaks due to the convergence resulting from the T-sensitivity of the quartz band. Our low pressure HF14C quartz peaks were particularly difficult to fit at elevated temperatures and displayed lower entrapment pressures (Pent) than modelled Pent for most entrapment temperatures (Tent); however, experimental Pent for samples FT-1E and LdC-31C match modelled Pent extremely well. Ambient quartz inclusion pressures are consistent with previously constrained PT conditions: 1) FT-1E: Pent = 21.5 (Tent = 625 ºC), 2) LdC-31C: Pent= 11.7 kbar (Tent = 550 ºC), 3) HF-14C: Pent = 7.4 kbar (Tent= 500 ºC). Reference PT conditions for these samples are as follows: 1) FT-1E: P = 20 - 24 kbar, T = 625 ºC, 2) LdC-31C: P = 32 - 34 kbar, T = 550 ºC, 3) HF-14C: P = 7 - 8 kbar, T = 500 ºC. Qtz-in-ep pressures from sample LdC-31C are consistent with early, low-P vein epidote precipitation that pre-dates high-P metamorphism or low-P retrogression in the Lago-di-Cignana region. Our work successfully demonstrates that a qtz-in-ep barometer can be used for accurate, robust entrapment pressure estimates of rocks from moderate to high pressure metamorphic terranes. Furthermore, our work suggests that other anisotropic mineral pairs may be suitable for Raman thermobarometry without the need to carry-out heating experiments to apply temperature-dependent Pent corrections.
1985-12-01
Adequate Several moderate to snail Santa Ynez Mts. sized creeks and streams The largest potential source for sediment is La Honda Canyon. Major drainage...Sized or Area Relative Size Sediment Rate Drainage Basin(s) Santa Ynez River (See note 5) Large 48,000 cu. yds./yr. Ref: 66 Honda Ck (See note 5) Small...Hematite- Ilmenite, Epidote. Ref: 4A Heavy Minerals* Ref: 56A Epidote Augite Hornblende Chlorite Opaques Los Angeles 9 6 23 12 33 Cliffs Laguna Beach "Coarse
NASA Astrophysics Data System (ADS)
Poli, S.
2013-12-01
Current knowledge on the solidus temperature for carbonate-bearing rocks suggests that carbonatitic liquids should not form in a subducted oceanic lithosphere, unless anomalous thermal relaxation occurs. For a mildly warm subduction path, COH-bearing basaltic eclogites are expected to loose all H2O component at epidote breakdown, located at approx. 2.8-3.0 GPa. Above this pressure limit, the solidus is that of a carbonated basaltic eclogite which shows a minimum temperature of 1020 °C at 4.0-4.5 GPa (Dasgupta et al. 2004). However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of An-rich plagioclase. It has been shown that epidote disappearance with pressure depend on the normative anorthite content of the bulk composition considered (Poli et al. 2009); we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. Notably, this applies to epidosite rocks formed in hydrothermal environments at oceanic settings, then recovered in high-pressure and ultra-high pressure terrains. New experimental data from 3.7 to 4.6 GPa, 750°C to 1000 °C are intended to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component (An37 and An45). Experiments are performed in piston cylinder and multianvil machines apparatus, using both single and, buffered, double capsule techniques. Garnet, clinopyroxene and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid saturated conditions, epidote coexists with kyanite, dolomite and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, kyanite is found at 4.2 GPa, 850 °C. At 900 °C, fluid-rich conditions, a silicate fluid/melt of granitoid composition, a carbonatitic melt and Na-carbonate are observed. Close to fluid-saturation, 3.8-4.2 GPa, 900 °C, garnet and Na-rich clinopyroxene coexist with a carbonatitic melt and dolomite. The carbonatitic melt is richer in Ca compared to dolomite, consistently with phase relationships in the model system MgCO3-FeCO3-CaCO3. In fluid-undersaturated compositions, fluid-absent melting of epidote + dolomite, enlarged in its pressure stability for An-rich gabbros, is expected to promote the generation of carbonatitic liquids. The subsolidus breakdown of epidote in the presence of carbonates at depths exceeding 120 km provides a major source of COH fluids at subarc depth. In warm subduction zones, the possibility of extracting carbonatitic liquids from a variety of gabbroic rocks and epidosites offers new scenarios on the metasomatic processes in the lithospheric wedge of subduction zones and a new mechanism for recycling carbon. Dasgupta R., Hirschmann M.M., Withers A. (2004) Earth Planet Sci Lett, 227: 73-85 Poli S., Franzolin E., Fumagalli P., Crottini A. (2009) Earth Planet Sci Lett, 278: 350-360
NASA Astrophysics Data System (ADS)
Goltz, A. E.; Hoover, W. F.; Page, F. Z.; Moreira, H.; Storey, C.; Kitajima, K.; Valley, J. W.
2017-12-01
Mélange fluids play a vital role in metamorphic processes; however, because of the complexity of the mélange, the fluid signals are hard to isolate. Microanalysis of Heavy Rare Earth Elements (HREE) in garnet has the potential to be a powerful tool in understanding the nature of these fluids. When coupled to oxygen isotope analysis, HREE signals may be attributed to an internal or external fluid source. This study pairs microanalysis of HREE and oxygen isotopes in garnet to reveal the origin of HREE enrichment events in two rocks (02WC1 and 02WC4) from the Ward Creek area of the Franciscan Complex. 02WC1 is an intergrown epidote-blueschist and eclogite, with the assemblage omph + ep + glc + gt + sph ± rt ± ab. Its whole-rock major element composition is similar to altered oceanic crust. Two generations of epidote are evident: the first Mn-rich, the other Mn-poor. Garnets have prograde zoning profiles with high spessartine contents ( 40%) in their cores, are unzoned in oxygen isotopes from core (9.6±0.4‰, 2SD, VSMOW) to rim (9.8±0.4‰), and have HREE peaks in their mantles. 02WC4 is also banded with zones of differing epidote content and overall assemblage ep + gt + hbl + omph + sph ± phg ± chl. The whole rock composition of 02WC4 is unusual; it is broadly basaltic but is also SiO2 poor (41.95%) and Cr and Ni rich (675 and 182 ppm, respectively). Epidote shows two generations with higher (cores) and lower (rims) Mn content. Garnet cores are high in spessartine ( 50%), and some garnet mantles have pronounced Mn and Fe plateaux. Garnets are zoned in oxygen isotopes from core (10.2±0.6‰) to rim (6.9±0.4‰). There is one HREE peak in the mantle, coincident with high values of δ18O and one in the rims corresponding to lower values of δ18O. The HREE peaks that occur in high δ18O areas throughout 02WC1 and 02WC4 are likely internally derived within the sample. Mn annuli in garnets and dissolution textures in epidote cores implicate epidote dehydration as the cause of HREE transfer in this case. On the other hand, HREE peaks in lower δ18O regimes are probably externally derived. In addition to δ18O and HREE zoning in the rims of garnets, the enrichment of Cr and Ni and depletion of SiO2 suggest a late-stage mantle metasomatic event in the rock. Correlated HREE and δ18O analysis in garnet provides a powerful new technique to unravel complicated fluid histories in rocks.
NASA Astrophysics Data System (ADS)
Buick, Ian S.; Frei, Robert; Cartwright, Ian
Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade ( 680 to 720°C), low-pressure/high-temperature metamorphism at 1594+/- 6Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet+epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566+/-32Ma, 1576+/-3Ma and 1577+/-5Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586+/-5 to 1568+/-4Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454+/-34 and 1469+/- 26Ma. The 100-120Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Bogdanow, Anya K.
2014-01-01
The Ahankashan and Rakhna prospect area is one of several gold and copper deposits within west-central Afghanistan. Here, various felsic to intermediate igneous porphyries intrude Lower Triassic to lower Paleogene sedimentary rocks, producing mineral and ore-bearing zones related to hydrothermal alteration, skarns, silicification, and crushing (brecciation). Mineralized skarns contain assemblages such as magnetite, magnetite-hematite, epidote-hematite, and epidote-garnet, as well as disseminations of chalcopyrite, covellite, chalcocite, cuprite, malachite, and azurite. Gold mineralization is mainly associated with zones of crushing along faults, and with small silicified igneous veins within granite and quartz porphyry.
Spatial and mineralogic variation of Na-Ca alteration in Laramide porphyry systems of Arizona
NASA Astrophysics Data System (ADS)
Runyon, S.; Seedorff, E.; Barton, M. D.; Mazdab, F. K.; Lecumberri-Sanchez, P.; Steele-MacInnis, M.
2017-12-01
Na-Ca alteration is characterized by the metasomatic addition of Ca ± Na and the loss of K. Minor volumes of Na-Ca alteration in Laramide porphyry systems develops from 3 to 8 km paleodepth. Mineral assemblages, mineral compositions, hydrogen isotopes, whole-rock analyses, and reconnaissance fluid inclusion characteristics have been documented for Na-Ca alteration in Laramide porphyry systems such as Tea Cup and Sierrita. Volumetrically minor Na-Ca alteration in Laramide porphyry systems documented in this study commonly takes the form of one of three mineral assemblages: albite-epidote-chlorite, Na-plagioclase-actinolite ± epidote, and garnet- or diopside-stable Na-plagioclase-actinolite ± epidote. These different Na-Ca mineral assemblages have broad spatial relationships, from shallow albite-chlorite-epidote to deeper Na-plagioclase-actinolite within a given district. Hydrogen isotope data on Na-Ca alteration minerals shows consistently distinct δD compositions of Na-Ca alteration minerals compared to igneous minerals in a given district. Further, calculated hydrogen isotope composition of fluids in equilibrium with Na-Ca alteration minerals are consistently enriched in δD compared to magmatic-hydrothermal fluids. Whole-rock analyses show consistent losses of K and variable addition of Na and Ca across different Na-Ca alteration assemblages. Na-Ca alteration has been well documented associated with the Jurassic arc. Previous studies demonstrated through mass balance, timing and spatial relationships, isotopic, and fluid inclusion studies that Na-Ca alteration associated with the Jurassic arc likely formed from the circulation of external, highly saline, non-magmatic fluids (e.g., Battles and Barton, 1995; Dilles et al., 1995). Na-Ca alteration documented in Laramide systems is generally similar to Na-Ca alteration documented along the Jurassic arc in mineral assemblages, compositions, and timing, but the volume of Na-Ca alteration in the Laramide systems is small as compared to the voluminous Na-Ca alteration documented in systems associated with the Jurassic arc.
NASA Astrophysics Data System (ADS)
Kabir, Md. Fazle; Takasu, Akira; Li, Weimin
2018-05-01
In the Gotsu area of the c. 200 Ma high-P/T Suo metamorphic belt in the Inner Zone of southwest Japan, blueschists occur as lenses or layers within pelitic schists. Prograde, peak, and retrograde stages are distinguished in the blueschists, and the prograde and the peak metamorphic conditions are determined using pseudosection modelling in the NCKFMASHO system. The prograde metamorphic stage is defined by inclusions in porphyroblastic epidote and glaucophane, such as phengite, chlorite, albite, epidote and glaucophane/winchite, and the estimated metamorphic conditions are <325 °C and < 4-5 kbar at the boundary between the glaucophane schist facies and the greenschist facies. The peak metamorphic stage is well-defined by the schistosity-forming minerals, i.e. epidote, glaucophanic amphibole, phengite, and chlorite, suggesting the glaucophane schist facies conditions of 475-500 °C and 14-16 kbar. Actinolite/magnesiohornblende, chlorite, and albite replacing the peak stage minerals suggest the retrograde metamorphism into the greenschist facies. The metamorphic facies series of the Suo belt is defined by pumpellyite-actinolite facies to epidote-blueschist facies, and it has a relatively lower-P/T compared with the c. 300 Ma Renge belt in the Inner Zone of southwest Japan, which is defined by a sequence of lawsonite-blueschist facies to glaucophane-eclogite facies. The P- {M}_{{H}_2O} pseudosection and water isopleth show that the rocks were dehydrated during the initial stage of the exhumation and remained in water-saturated conditions. Similarities of the detrital zircon and peak metamorphic ages of the blueschists from the Suo metamorphic belt in southwest Japan and the Heilongjiang Complex in northeast China suggest that both metamorphic belts were probably formed in the same Paleo-Pacific subduction system in the Late Triassic to Jurassic period.
NASA Astrophysics Data System (ADS)
López-Carmona, Alicia; Kusky, Timothy M.; Santosh, M.; Abati, Jacobo
2011-01-01
The southern Alaska convergent margin contains several small belts of sedimentary and volcanic rocks metamorphosed to blueschist facies, located along the Border Ranges fault on the contact between the Wrangellia and Chugach terranes. These belts are significant in that they are the most inboard, and thus probably contain the oldest record of Triassic-Jurassic northward-directed subduction beneath Wrangellia. The Liberty Creek HP-LT schist belt is the oldest and the innermost section of the Chugach terrane. Within this belt lawsonite blueschists contains an initial high-pressure assemblage formed by lawsonite + phengite + chlorite + sphene + albite ± apatite ± carbonates and quartz. Epidote blueschists are composed of sodic, sodic-calcic and calcic amphiboles + epidote + phengite + chlorite + albite + sphene ± carbonates and quartz. P-T pseudosections computed from four representative samples constrain maximum pressures at 16 kbar and 250-280 °C for the Lawsonite-bearing blueschists, and 15 kbar and 400-500 °C for the epidote-bearing blueschists, suggesting a initial subduction stage of 50-55 km depth. The growth of late albite porphyroblasts in all samples suggests a dramatic decompression from ca. 9 kbar to 5 kbar. The Liberty Creek schists can be correlated with the Seldovia blueschist belt on the Kenai Peninsula. Metamorphism in both terranes took place in the Early Jurassic (191-192 Ma), recording an early stage of subduction beneath Wrangellia. In the nearby terranes of the same margin, the age of metamorphism records an early stage of subduction at 230 Ma. Based on this difference in age, a maximum of 40 Ma were necessary to subduct the protoliths of the Seldovia and Liberty Creek blueschists to depths of circa 50-55 km, suggesting a minimum vertical component of subduction of 1.2-1.5 cm/year.
NASA Astrophysics Data System (ADS)
Budzyń, Bartosz; Harlov, Daniel E.; Kozub-Budzyń, Gabriela A.; Majka, Jarosław
2017-04-01
The relative stabilities of phases within the two systems monazite-(Ce) - fluorapatite - allanite-(Ce) and xenotime-(Y) - (Y,HREE)-rich fluorapatite - (Y,HREE)-rich epidote have been tested experimentally as a function of pressure and temperature in systems roughly replicating granitic to pelitic composition with high and moderate bulk CaO/Na2O ratios over a wide range of P-T conditions from 200 to 1000 MPa and 450 to 750 °C via four sets of experiments. These included (1) monazite-(Ce), labradorite, sanidine, biotite, muscovite, SiO2, CaF2, and 2 M Ca(OH)2; (2) monazite-(Ce), albite, sanidine, biotite, muscovite, SiO2, CaF2, Na2Si2O5, and H2O; (3) xenotime-(Y), labradorite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, and 2 M Ca(OH)2; and (4) xenotime-(Y), albite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, Na2Si2O5, and H2O. Monazite-(Ce) breakdown was documented in experimental sets (1) and (2). In experimental set (1), the Ca high activity (estimated bulk CaO/Na2O ratio of 13.3) promoted the formation of REE-rich epidote, allanite-(Ce), REE-rich fluorapatite, and fluorcalciobritholite at the expense of monazite-(Ce). In contrast, a bulk CaO/Na2O ratio of 1.0 in runs in set (2) prevented the formation of REE-rich epidote and allanite-(Ce). The reacted monazite-(Ce) was partially replaced by REE-rich fluorapatite-fluorcalciobritholite in all runs, REE-rich steacyite in experiments at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa, and minor cheralite in runs at 650-750 °C, 200-1000 MPa. The experimental results support previous natural observations and thermodynamic modeling of phase equilibria, which demonstrate that an increased CaO bulk content expands the stability field of allanite-(Ce) relative to monazite-(Ce) at higher temperatures indicating that the relative stabilities of monazite-(Ce) and allanite-(Ce) depend on the bulk CaO/Na2O ratio. The experiments also provide new insights into the re-equilibration of monazite-(Ce) via fluid-aided coupled dissolution-reprecipitation, which affects the Th-U-Pb system in runs at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa. A lack of compositional alteration in the Th, U, and Pb in monazite-(Ce) at 550 °C, 800-1000 MPa, and in experiments at 650-750 °C, 200-1000 MPa indicates the limited influence of fluid-mediated alteration on volume diffusion under high P-T conditions. Experimental sets (3) and (4) resulted in xenotime-(Y) breakdown and partial replacement by (Y,REE)-rich fluorapatite to Y-rich fluorcalciobritholite. Additionally, (Y,HREE)-rich epidote formed at the expense of xenotime-(Y) in three runs with 2 M Ca(OH)2 fluid, at 550 °C, 800 MPa; 650 °C, 800 MPa; and 650 °C, 1000 MPa similar to the experiments involving monazite-(Ce). These results confirm that replacement of xenotime-(Y) by (Y,HREE)-rich epidote is induced by a high Ca bulk content with a high CaO/Na2O ratio. These experiments demonstrate also that the relative stabilities of xenotime-(Y) and (Y,HREE)-rich epidote are strongly controlled by pressure.
NASA Astrophysics Data System (ADS)
Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki
2013-09-01
Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu arc. Our results demonstrate, therefore, that lawsonite has a strong influence on seismic velocities in the oceanic crust, and that lawsonite might be the cause of complex anisotropic patterns in subduction zones.
Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California
Hietanen, Anna Martta
1977-01-01
Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.
Znaczenie analizy minerałów ciężkich w badaniach osadów czwartorzędowych Polski
NASA Astrophysics Data System (ADS)
Racinowski, Roman
2008-01-01
In most regions of Poland the composition of heavy minerals assemblage permits to distinguish the Quaternary deposits from the older ones. The pre-Quaternary deposits are characterized by high content of glauconite, carbonate-ferruginous-manganese concretions, muscovite and chlorites. In their transparent heavy minerals spectrum the following minerals predominate: zircon, tourmaline, rutile, staurolite, disthene. However, the Tertiary deposits in the Carpathians and their foreland contain a significant amount of garnet, and sometimes also amphiboles, pyroxenes and biotite. Pyroxenes and sillimanite are found in the Sudetes foreland. In many Tertiary deposits of the northwestern and western Poland there are rather high contents of amphiboles, biotite, pyroxenes, garnets, rutile. In all Quaternary deposits in Poland the qualitative composition of heavy minerals assemblage is similar but the contents of particular minerals are different depending on the examined grain fraction. In tills (Table 1) and glaciofluvial deposits (Table 2), with the decreasing grain diameter the contents of zircon, rutile, and partly epidote increase, and those of amphiboles and garnets decrease. In rubble of coastal zone in the Polish Baltic Sea, with the decreasing grain diameter the contents of zircon, rutile and epidote increase, and those of amphibole, biotite and pyroxenes decrease (Tables 3-7). In Poland, glacial, glaciofluvial and glaciolacustrine deposits are characterized by quantitatively similar composition of heavy minerals assemblage. Amphiboles, biotite, epidotes, garnets and pyroxenes are typical transparent minerals (Tables 8 and 9). Young Pleistocene and Holocene sands of river terraces and dune fields in the upland zone of Poland differ from glacial deposits in low contents of amphiboles, biotite and pyroxenes, and higher contents of garnets and epidotes (Tables 8 and 9). Fossil river and lacustrine deposits of Polish Lowlands have very similar assemblage of heavy minerals to that found in glacial deposits. Both glacial and glaciofluvial deposits have similar composition of heavy minerals assemblage irrespective of their age (Tables 10, 11 and 12). This principle concerns also loesses (Table 13a, b) but the youngest ones are characterized by higher contents of amphiboles and epidotes. The composition of heavy minerals assemblage is useful for determining the source of material forming the Quaternary deposits. In the case of glacial deposits, the enrichment in glauconite, chlorites, and even zircon, rutile, tourmaline, staurolite indicates that material from local older substratum was supplied to the Quaternary deposits. Heavy minerals spectrum of non-glacial deposits can directly indicate the source material that formed a deposit. Conversely, it is difficult to draw the conclusions about fossil and modern weathering-soil horizons in loesses from the composition of heavy minerals assemblage (Tables 14 and 15). The results of heavy minerals analysis are useful for lithodynamic and lithofacial interpretation of flowing water environments, e.g. river (Table 16), glaciofluvial (Table 17) and sea coastal (Table 18).
Silberman, M.L.; MacKevett, E.M.; Connor, C.L.; Matthews, Alan
1980-01-01
The Middle and (or) Late Triassic Nikolai Greenstone, part of the allochthonous terrane of Wrangellia, is typically altered and locally metamorphosed to prehnite-pumpellyite facies with chlorite and epidote as the most common secondary minerals. Intrinsic copper content averages 155 ppm, and two types of concentrations of copper in the Nikolai are common: (1) native copper fillings of amygdules and rubble zones typically near flow tops, and (2) veins and thin replacement zones that contain native copper and copper-iron sulfides in quartz-epidote or calcite gangue in faults and fractures. Oxygen isotope data from quartz and epidote from three copperbearing veins yield calculated ore fluid temperatures of approximately 200°C and 6180 of approximately +1 per mil in agreement with a metamorphicsegregation origin of these deposits, as suggested by Sinclair (1977). Seven K-Ar ages of chloritized greenstone, including those adjacent to veins fall on an initial argon diagram with a zero intercept and a slope which yields an isochron age of 112 + 11 m.y. The ages define a Cretaceous thermalmetamorphic episode which is responsible for alteration and mineralization. The episode is younger than a major Jurassic progeny, accompanied by granitic intrusion, in the area, and appears to be unaffected by minor granitic intrusion in the middle to late Tertiary. We believe the Cretaceous event is related to accretion of Wrangellia to its present relative position in North America. This age of accretion agrees with stratigraphic and structural evidence cited by other workers.
NASA Astrophysics Data System (ADS)
Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian
2016-12-01
To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has the same initial 87Sr/86Sr ratio range as the Ep-AI, indicating that the amphibolite-facies fluid involved in the apatite crystallization was also internally derived. We propose that at least two separate stages of fluids were accounted for the amphibolite-facies retrogression of the Hualiangting eclogite. The fluid responsible for the growth of most of the amphibolite minerals was locally derived and behaved in a pervasive manner, whereas the influx of gneiss-derived fluid was transient, episodic, and highly channelized with a longer transport distance (> 60 m). The disparate origins and flow behavior of these fluids significantly influence the water budget and element transfer in exhumed HP-UHP slabs. This study also indicates that examining grain-scale Sr isotopic variations provides key information regarding the isotopic (dis)equilibrium, fluid origins, and fluid-flow regimes in metamorphic or metasomatic rocks that form in subduction-zone environments.
Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.
Morton, Andrew C.
1993-01-01
Heavy mineral assemblages in rivers in the Apure River drainage basin of Venezuela and Colombia closely reflect the nature of the source regions, which lie in the Andean orogenic terranes to the west and northwest. The Caribbean Mountains, largely composed of greenschist-facies pelites, phyllites, carbonates, and metavolcanics, supply assemblages dominated by epidote and calcic amphibole. Minor amounts of the high-pressure index minerals glaucophane and lawsonite indicate the presence of blueschistfacies rocks, reflecting the origin of the Caribbean Mountains by subduction-related tectonism. The northern Mérida Andes, which comprise basement gneisses and granites overlain by unmetamorphosed to low-grade metamorphosed clastics, supply two types of assemblage reflecting these two lithological types: garnet-sillimanite-staurolite-amphibole suites from the basement rocks, and epidote-amphibole suites from the overlying cover sequence. The southern Mérida Andes supply stable heavy mineral suites reflecting recycling from the extensive unmetamorphosed sandstones that occur at outcrop. By considering suites from different physiographical provinces, the effects of short-term alluvial storage in the Llanos on heavy mineral assemblages have been evaluated. Weathering during alluvial storage appears to be effective in modifying the apatite-tourmaline ratio, which shows a steady, marked decline with distance from the mountain front, resulting from the removal of apatite during weathering. Clinopyroxene and garnet may also show evidence of loss through weathering, although the trends are poorly constrained statistically. Epidote and amphibole proportions remain essentially constant, possibly through a balance between loss through weathering and continual resupply from the breakdown of rock fragments. In general, the heavy mineral assemblages are less affected than the bulk mineralogy by alluvial storage on the Llanos.
NASA Astrophysics Data System (ADS)
Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren
2016-04-01
Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.
Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.
2004-01-01
A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarifakioglu, E.; Dilek, Y.; Sevin, M.
2014-02-01
Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.
An automatic method for segmentation of fission tracks in epidote crystal photomicrographs
NASA Astrophysics Data System (ADS)
de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo
2014-08-01
Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.
NASA Technical Reports Server (NTRS)
Mackin, Steve; Munday, Tim; Hook, Simon
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were flown over undifferentiated sequences of acid to intermediate volcanics and intrusives; meta-sediments; and a series of partially lateritized sedimentary rocks. The area exhibits a considerable spectral variability, after the suppression of striping effects. Log residual, and Internal Average Relative Reflectance (IARR) analytical techniques were used to enhance mineralogically related spectral features. Both methods produce similar results, but did not visually highlight mineral absorption features due to processing artifacts in areas of significant vegetation cover. The enhancement of mineral related absorption features was achieved using a hybrid processing approach based on the relative reflectance differences between vegetated and non-vegetated surfaces at 1.2 and 2.1 micron. The result is an image with little overall contrast, but which enhances the more subtle spectral features believed to be associated with clays and epidote. The AIS data was subject to interactive analysis using SPAM. Clear separation of clay and epidote related absorption features was apparent, and the identification of kaolinite was possible despite detrimental spectral effects.
Metagabbro associated with the shear zone on Prins Karls Forland (Svalbard, Arctic)
NASA Astrophysics Data System (ADS)
Maraszewska, Maria; Manecki, Maciej; Czerny, Jerzy; Schneider, David; Myhre, Per Inge; Faehnrich, Karol; Barnes, Christopher
2016-04-01
Prins Karls Forland (PKF) is a N-S elongated island situated west of Spitsbergen in the Svalbard archipelago, High Arctic. The northern part of the island is dominated by siliciclastic metasediments regionally metamorphosed to greenshist facies assemblages during one distinct stage of tectonism. Amphibolite facies garnet-mica schists, mica schists, quartzites and carbonate-silicate rocks exhibiting evidence of at least two distinct, strong deformation episodes (including mylonitization) locally outcrop on the east coast of PKF, termed the Pinkie Unit. A ~1 km wide shear zone containing ductile to brittle structures and distinct outcrops of greenstones (metagabbros and greenschists), associated with magnetite ore, separates these two contrasting tectonic units. Ten samples of greenstones were collected on the slopes of Lauratzonfjellet and Boureefjellet for petrologic and geochemical analyses. Despite intense localized shearing, the metagabbros are undeformed and preserve coarse crystalline, magmatic texture, which is locally poikilitic. The primary magmatic assemblage consists of brown hornblende, plagioclase, biotite and opaque minerals, with accessory apatite and titanite. No relicts of pyroxenes are preserved. Formation of secondary uralite, sericite and chlorite is observed. Metamorphic assemblage consists of actinolite pseudomorhs after hornblende, epidote, and second generation biotite. Blue amphibole is observed in one sample from Boureefjellet; greenschists from Boureefjellet also contain fibrous blue amphibole, as well as garnets, actinolite, epidote and biotite. Some rocks sampled on Boureefjellet are more strongly deformed and exhibit probably two stages of metamorphism: amphibolite facies metamorphism resulting in blue amphibole-garnet assemblage followed by greenschist facies metamorphism resulting in actinolite-epidote-biotite paragenesis. Parallel and overlapping patterns on chondrite-normalized REE diagrams and spider diagrams indicate that these metagabbros are comagmatic. Enrichment in incompatible lighter elements and position of projections on discrimination diagrams suggest ocean island basalt (OIB) character of primary magmas. The age of these rocks is unknown and is an objective of ongoing investigation. This work is partially funded by AGH research grant no 11.11.140.319.
Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.
NASA Astrophysics Data System (ADS)
HA, Y.; Jung, H.; Raymond, L. A.; Bero, D.
2015-12-01
Seismic anisotropy has been found in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD technique and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a weak girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite was very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.
NASA Astrophysics Data System (ADS)
Diehl, Alexander; Bieseler, Bastian; Bach, Wolfgang
2017-04-01
Determining the depth, extent, and timing of high-temperature hydrothermal alteration in the ocean crust is key to understanding how the lower oceanic crust is cooled. We report data from 18 epidote veins from the Wadi Gideah section in the Wadi Tayin block, which is a reference section for alteration of the lower crust formed at a fast oceanic spreading center. 87Sr/86Sr ratios feature a narrow range from 0.70429 to 0.70512, while O isotope compositions vary between - 0.7 and +4.9‰ in δ18OSMOW. These compositions indicate uniform water-rock ratios between 1 and 2 and formation temperatures in the range of 300 to 450˚ C. There is no systematic trend in Sr and O isotope compositions down section. Fluid inclusion entrapment temperatures for a subset of four samples linearly increase from 338˚ C to 465˚ C in lowermost 3 km of crust of the Wadi Gideah section. Salinities are uniform throughout and scatter closely around seawater values. We developed a numerical cooling model to assign possible crustal ages to the thermal gradients observed. For pure conductive cooling, these ages range between 4 and 20 Ma. Our thermal model runs with a high Nusselt number (Nu) of 20 down to the base of the crust indicate that the epidote veins may record this near-axial deep circulation in crust of only 0.1 Ma (5-7 km off axis). When off-axis circulation is shut off in the more distal flanks, however, massive conductive reheating of the lower crust by as much as 200˚ C is predicted to take place. But there is no evidence for prograde metamorphic reactions in the samples we studied (or other hydrothermally altered oceanic gabbros). An intermediate model, in which Nu is 20 down to 2 km for the first 0.1 Ma and Nu is then 4 down to 6.5 km depth off axis to 1 Ma, is consistent with the permeability distribution within the ocean crust and predicts a thermal gradient for the lower crust that matches the observed one for ages between 1 and 3 Ma. The most plausible explanation for the origin of the epidote veins is that they formed in off-axial hydrothermal systems that reach the base of the crust within 50-150 km off the axis. This deep circulation provides an efficient mechanism for mining heat that escapes the crust in the young flanks of mid-ocean ridges where a sizeable fraction of the global oceanic hydrothermal heat flux is expected to take place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobo R, J.M.
1981-01-01
Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.
NASA Astrophysics Data System (ADS)
Silva, Thyego R. da; Ferreira, Valderez P.; Lima, Mariucha M. Correia de; Sial, Alcides N.; Silva, José Mauricio R. da
2015-12-01
The Neoproterozoic Major Isidoro batholith (˜100 km2), composed of metaluminous to slightly peraluminous magmatic epidote-bearing tonalite to granite, is part of the Águas Belas-Canindé composite batholith, which intruded the Pernambuco-Alagoas Domain of the Borborema Province, northeastern Brazil. These rocks contain biotite, amphibole, titanite and epidote that often shows an allanite core as key mafic mineral phases. K-diorite mafic enclaves are abundant in this pluton as well as are amphibole-rich clots. The plutonic rocks are medium-to high-K calc-alkaline, with SiO2 varying from 59.1 to 71.6%, Fe# from 0.6 to 0.9 and total alkalis from 6.1 to 8.5%. Chondrite-normalized REE patterns are moderately fractionated, show (La/Lu)N ratios from 13.6 to 31.8 and discrete negative Eu anomalies (0.48-0.85). Incompatible-element spidergrams exhibit negative Nb-Ta and Ti anomalies. This batholith was emplaced around 627 Ma (U-Pb SHRIMP zircon age) coevally with an amphibolite-facies metamorphic event in the region. It shows Nd-model age varying from 1.1 to 1.4 Ga, average ɛNd(627Ma) of -1.60 and back-calculated (627 Ma) initial 87Sr/86Sr ratios from 0.7069 to 0.7086. Inherited zircon cores that yielded 206Pb/238U ages from 800 to 1000 Ma are likely derived from rocks formed during the Cariris Velhos (1.1-0.9 Ga) orogenic event. These isotopic data coupled with calculated δ18O(w.r.) value of +8.75‰ VSMOW indicate an I-type source and suggest a reworked lower continental crust as source rock. A granodioritic orthogneiss next to the Major Isidoro pluton, emplaced along the Jacaré dos Homens transpressional shear zone, yielded a U-Pb SHRIMP zircon age of 642 Ma, recording early tectonic movements along this shear zone that separates the Pernambuco-Alagoas Domain to the north, from the Sergipano Domain to the south. The emplacement of the Major Isidoro pluton was synkinematic, coeval with the development of a regional flat-lying foliation, probably during the peak of metamorphism related to the convergence/contractional deformation of the São Francisco craton and Pernambuco-Alagoas block during the Brasiliano Orogeny.
NASA Astrophysics Data System (ADS)
Sarifakioglu, E.; Dilek, Y.; Sevin, M.
2013-11-01
Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120-130 million years of oceanic magmatism in geological history of the Northern Neotethys.
NASA Astrophysics Data System (ADS)
Kitt, Shawn; Kisters, Alexander; Vennemann, Torsten; Steven, Nick
2018-02-01
The Omitiomire Cu deposit (resource of 137 Mt at 0.54% Cu) in the Ekuja Dome of the Damara Belt in Namibia is hosted by an anastomosing, low-angle Pan-African (ca. 520 Ma) shear zone system developed around an older (ca. 1100-1060 Ma), late Mesoproterozoic intrusive breccia between a suite of mafic rocks (originally lava flows) and later tonalitic gneisses. High-grade ore shoots preferentially formed along contacts between tectonically interleaved biotite-epidote-quartz-chalcocite schists and felsic gneisses, and are directly related to an increase in the number and cumulative thickness of thin, contact-parallel mineralized shear zones. Alteration and mineralization are associated with elevated concentrations of K2O, Cr, Rb, S, and Cu and a loss of Na2O, CaO, and MgO. Oxygen isotope fractionation for quartz-biotite, quartz-feldspar, and quartz-amphibole mineral pairs support equilibrium temperatures of between 500 and 650 °C during the fluid/rock interaction. Mineral separates from amphibole-biotite gneisses and mineralized schists have similar ranges in δ18O values of about 1.2 to 2 ‰ relative to VSMOW. Coexisting minerals are arranged in an order of increasing δ18O values from biotite, to epidote, amphibole, and quartz, suggesting that the Omitiomire Shear Zone was a rock-dominated system. Similarly, H-isotope results for mineral separates from biotite-epidote schists and amphibole gneisses do not show any reversals for D/H fractionations, with δD values of between -48 and -82 ‰, typical of metamorphic-magmatic rocks. The homogeneous and low δ34S values (-6.1 to -4.7 ‰ CDT) are compatible with a local redistribution of sulfur from magmatic rocks and interaction with sulfur derived from metamorphic fluids of metasedimentary origin. The relatively low fluid/rock ratios and elevated Cu values (>1500 ppm) from unaltered amphibolite point to a local redistribution of an earlier (late Mesoproterozoic) Keweenaw-type Cu mineralization into later Pan-African shear zones during the exhumation of the Ekuja Dome. The timing, polyphase evolution, and tectonic setting of the Omitiomire deposit show remarkable similarities with the large Cu deposits of the Domes Region in the adjoining Lufilian Arc of northern Zambia. This suggests the presence of a much larger, regionally significant Cu province extending from central Namibia, through northern Botswana, and into Zambia.
NASA Astrophysics Data System (ADS)
Deans, J. R.; Crispini, L.; Cheadle, M. J.; Harris, M.; Kelemen, P. B.; Teagle, D. A. H.; Matter, J. M.; Takazawa, E.; Coggon, J. A.
2017-12-01
Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Tayin massif, Samail ophiolite and both recovered ca. 400 m of continuous core through a section of the layered gabbros and the foliated-layered gabbro transition. Hole GT1A is cut by a discrete fault system including localized thin ultracataclastic fault zones. Hole GT2A is cut by a wider zone of brittle deformation and incipient brecciation. Here we report the structural history of the gabbros reflecting formation at the ridge to later obduction. Magmatic and high temperature history- 1) Both cores exhibit a pervasive, commonly well-defined magmatic foliation delineated by plagioclase, olivine and in places clinopyroxene. Minor magmatic deformation is present. 2) The dip of the magmatic foliation varies cyclically, gradually changing dip by 30o from gentle to moderate over a 50 m wavelength. 3) Layering is present throughout both cores, is defined by changes in mode and grain size ranging in thickness from 2 cm to 3 m and is commonly sub-parallel to the foliation. 4) There are no high temperature crystal-plastic shear zones in the core. Key observations include: no simple, systematic shallowing of dip with depth across the foliated-layered gabbro transition and layering is continuous across this transition. Cyclic variation of magmatic foliation dip most likely reflects the process of plate separation at the ridge axis. Near-axis faulting- i) On or near-axis structures consist of epidote-amphibole bearing hydraulic breccias and some zones of intense cataclasis with intensely deformed epidote and seams of clay and chlorite accompanied by syntectonic alteration of the wall rock. Early veins are filled with amphibole, chlorite, epidote, and anhydrite. ii) The deformation ranges from brittle-ductile, causing local deflection of the magmatic foliation, to brittle offset of the foliation and core and mantle structures in anhydrite veins. iii) The prevalent sense of shear is normal and slickenfibers indicate oblique offset. Obduction related faulting- i) Low temperature brittle faults and veins with laumontite, clay, and gypsum crosscut all structures. ii) Faults show a reverse sense of shear and crosscut, possibly reactivate, normal faults. Our observations suggest formation of reverse faults and late veins during obduction of the ophiolite.
Hydrothermal Alteration of the Lower Oceanic Crust: Insight from OmanDP Holes GT1A and GT2A.
NASA Astrophysics Data System (ADS)
Harris, M.; Zihlmann, B.; Mock, D.; Akitou, T.; Teagle, D. A. H.; Kondo, K.; Deans, J. R.; Crispini, L.; Takazawa, E.; Coggon, J. A.; Kelemen, P. B.
2017-12-01
Hydrothermal circulation is a fundamental Earth process that is responsible for the cooling of newly formed ocean crust at mid ocean ridges and imparts a chemical signature on both the crust and the oceans. Despite decades of study, the critical samples necessary to resolve the role of hydrothermal circulation during the formation of the lower ocean crust have remained poorly sampled in the ocean basins. The Oman Drilling Project successfully cored 3 boreholes into the lower crust of the Semail ophiolite (Holes GT1A layered gabbros, GT2A foliated gabbros and GT3A dike/gabbro transition). These boreholes have exceptionally high recovery ( 100%) compared to rotary coring in the oceans and provide an unrivalled opportunity to quantitatively characterise the hydrothermal system in the lower oceanic crust. Hydrothermal alteration in Holes GT1A and GT2A is ubiquitous and manifests as secondary minerals replacing primary igneous phases and secondary minerals precipitated in hydrothermal veins and hydrothermal fault zones. Hole GT1A is characterised by total alteration intensities between 10 -100%, with a mean alteration intensity of 60%, and shows no overall trend downhole. However, there are discrete depth intervals (on the scale of 30 -100 m) where the total alteration intensity increases with depth. Alteration assemblages are dominated by chlorite + albite + amphibole, with variable abundances of epidote, clinozoisite and quartz. Hole GT1A intersected several hydrothermal fault zones, these range from 2-3 cm up to >1m in size and are associated with more complex secondary mineral assemblages. Hydrothermal veins are abundant throughout Hole GT1A, with a mean density of 37 vein/m. Hole GT2A is characterised by total alteration intensities between 6-100%, with a mean alteration intensity of 45%, and is highly variable downhole. Alteration halos and patches are slightly more abundant than in Hole GT1A. The secondary mineral assemblage is similar to Hole GT1A, but Hole GT2A has higher abundances of epidote, clinozoisite, quartz, laumontite and iron-oxydroxides. Vein density in Hole GT2A is 61 veins/m. In both holes, cross cutting vein relationships indicate a relative timing from earliest to latest of: amphibole; epidote + zoisite + qtz; chlorite + prehnite + qtz, calcite-laumontite-anhydrite; gypsum.
A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman
NASA Astrophysics Data System (ADS)
Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.
2017-12-01
Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope compositions of the fault rock, clasts and hanging wall indicate interaction with a seawater-derived hydrothermal fluid during oceanic spreading at an ancient mid-ocean ridge. The considerable elemental mass changes in the fault rocks and surrounds compared to the primary layered gabbros suggests extensive hydrothermal fluid flow and exchange deep within the ocean crust.
NASA Astrophysics Data System (ADS)
Gonzalez, L. U.; Holk, G. J.; Clausen, B. L.; Poma Porras, O. A.
2015-12-01
A portion of the Peruvian Coastal Batholith near Ica, Peru is being studied using stable isotopes to determine the source of hydrothermal fluids that caused propylitic, phyllic, and potassic alteration in the mineralized Linga plutonic complex. Sources of hydrothermal fluids and water/rock ratios are estimated to understand the role of such fluids in alteration during cooling. A set of 64 mineral analysis from 18 igneous samples, 7 unaltered and 11 altered, were analyzed for D/H and 18O/16O isotopes. The δ18O values for whole rocks with no apparent alteration vary from +6.8‰ to +7.9‰, with sets of δ18O mineral values indicating isotopic equilibrium at closure temperatures from 571°C to 651°C, and no interaction with meteoric water. This conclusion is bolstered by hornblende (-87‰ to -64‰) and biotite (-81‰ to -74‰) δD values Most δ18O values for samples with hydrothermal alteration suggest that alteration results from magmatic fluids; however, several analyses indicate interaction with other fluids. The high δ18O values for plagioclase (+9.3‰) and hornblende (+6.3‰) from a metamorphic aureole in volcanic host rock near a plutonic intrusion may be due to interaction with metamorphic or low temperature magmatic fluids. Plagioclase (+2.6‰) and biotite (+0.1‰) δ18O values in a sample from the Jurassic volcanic envelope indicate a significant effect from meteoric-hydrothermal fluids. An altered monzonite yielded δ18O values for quartz (+5.5‰), K-spar (+5.6‰), and magnetite (+0.4‰), also suggesting interaction with meteoric fluids. A diorite from an area with strong epidotization produced an epidote δD value of -25.8‰ and a monzonite from a highly veined area has an epidote δD value of -36.1‰ suggesting interaction with sea water. This new data indicate that the Linga complex was primarily influenced by magmatic hydrothermal fluids, but metamorphic, meteoric, and sea water may have had some influence in producing alteration assemblages and in cooling the magmatic complex.
Magnetite deposits near Klukwan and Haines, southeastern Alaska
Robertson, Eugene C.
1956-01-01
Low-grade iron ore is found in magnetite-bearing pyroxenite bodies near Klukwan and Haines in Southeastern Alaska. An alluvial fan at Haines also contains magnetite-bearing rock of possible economic significance. The Haines-Klukwan area is underlain by rocks of Mesozoic Including epidote diorite, quartz diorite, and alaskite of the Coast Range batholith, metabasalt (recrystallized lava flows and pyroclastic rocks), and, in the southern part, interbedded slate and limestone. Layering and foliation, where perceptible, generally strike northwest and dip steeply northeast. The iron deposits are found at or near the contact between the metabasalt and epidote diorite; they appear to represent highly-altered lava flows that were metamorphosed during the emplacement of the batholith. Several billion tens of rock containing about 13 percent magnetic iron are included in the pyroxenite body at Klukwan. Sampling and dip-needle data suggest the presence there of two or three tabular aches in which the rock has an average magnetic iron content of 20 percent or more. Pyroxenite bodies outcropping in three areas near Haines apparently are lower in grade than the Klukwan deposit; lack of exposures prevented thorough sampling but reconnaissance traverses with a dip needle failed to reveal important zones of high-grade iron ore. An alluvial fan adjoining the pyroxenite body at Klukwan contains several hundred million tons of broken rock having a magneticiron content of about 10 percent.
Petrography and character of the bedrock surface beneath western Cape Cod, Massachusetts
Hallett, B.W.; Poppe, L.J.; Brand, S.G.
2004-01-01
Cores collected during recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. 62 drill sites spread over a ???140 km2 study area produced cores of granitoids (31), orthogneisses (20), basalts/diabases (4), amphibolites (3), felsic mylonites (2), and dolomitic rock (2). Granitoid cores range in composition from granite to tonalite to quartz diorite, but are dominated by single-mica granites. Alteration is common in nearly all cores examined in this study, and is evidenced by the secondary growth of chlorite and epidote. The granitoids resemble rocks of the Dedham and Fall River terranes (Wones and Goldsmith 1991). Gneisses from the study area generally contain the mineral assemblage hornblende+plagioclase+quartz+biotite+epidote??chlorite?? sphene??K-feldspar??sericite+oxides. Based on mineral assemblages, we estimate peak metamorphic grade to be of lower amphibolite facies. X-ray powder diffraction of unmetamorphosed dolomitic cores shows presence of layered silicates (clays), plagioclase, and possible magnesite. Contours of the bedrock surface show locally irregular topography suggesting erosion by glacial scour. The distribution of lithologies suggests a possible continuation of the New Bedford gneissic terrane that outcrops 25 km to the west. Dolomitic rocks may represent a lithified fault gouge material at the eastern edge of the gneissic zone. Basalts/diabases are interpreted to be post-metamorphic dikes of Late Paleozoic age, or possibly associated with Mesozoic rifting.
Preliminary report on the Nelson and Radovan copper prospects, Nizina district, Alaska
Sainsbury, C.J.
1952-01-01
Renewed copper exploration by Alaska Copper Mines, Incorporated, at the Nelson and Radovan prospects, Nizina district, Alaska, led the Geological Survey in 1951 to map in detail the Nelson fault block, and to re-examine the old workings. In addition, two new prospects were studied. The Nelson fault block is cut by many dominantly strike-slip faults of small displacement, and by bedding faults. Slickensided chalcocite shows post-mineral movement, and chalcocite veinlet in a filled solution cavity indicates that some of the chalcocite is secondary, perhaps very recent. Structural relations indicate two overthrust faults cut the block. The Radovan Greenstone prospect shows massive chalcocite, up to 3 feet wide, in a silicified, epidotized fault zone in the Nikolai greenstone. Ore indicated by surface exposures may amount to 450 tons of chalcocite. The Radovan Low-Contact prospect is on a continuation of the same fault approximately 3 miles southwest of the Greenstone prospect, and 150 feet above the contact of the Nikolai greenstone and the overlying Chitistone limestone. Limonite staining is widespread in bedding planes and small faults near the fault zone; mineralization in the fault zone consists of pyrite, chalcocite, bornite, malachite, realgar, orpiment and stibnite. The sulphides in the fault zone, plus the widespread silicification and epidotization indicate a strong zone of hydrothermal activity which merits extensive prospecting.
Nucleation and growth of strike slip faults in granite.
Segall, P.; Pollard, D.P.
1983-01-01
Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors
Sorensen, Sorena S.; Grossman, Jeffrey N.
1993-01-01
Data from the Gee Point and Catalina mélanges suggest that the accessory minerals titanite, rutile, apatite, zircon and REE-rich epidote play a significant role in the enrichment of trace elements in both mafic and ultramafic rocks during subduction-related fluid-rock interaction. Mobilization of incompatible elements, and deposition of such elements in the accessory minerals of mafic and ultramafic rocks may be fairly common in fluid-rich metamorphic environments in subduction zones.
NASA Astrophysics Data System (ADS)
Nakashole, Albertina N.; Hodgson, David M.; Chapman, Robert J.; Morgan, Dan J.; Jacob, Roger J.
2018-02-01
Establishing relationships between the long-term landscape evolution of drainage basins and the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These fragmented detrital archives help to constrain changes in river system character and provenance during sediment transfer from continents (source) to oceans (sink). Thick diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, provide a rare opportunity to investigate controls on the incision history of a continental-scale bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships (cross-cutting relationships) and strath and terrace top elevations, and secondarily on the proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by more banded iron formation clasts. Mapping of the downstepping terraces indicates that the Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the differences in clast character (size and roundness) and type between the two units, are ascribed to a more powerful river system during Proto-Orange River time, rather than reworking of older deposits, changes in provenance or climatic variations. In addition, from Proto- to Meso-Orange River times there was an increase in the proportion of sediments supplied from local bedrock sources, including amphibole-epidote in the heavy mineral assemblages derived from the Namaqua Metamorphic Complex. This integrated study demonstrates that clast assemblages are not a proxy for the character of the matrix, and vice versa, because they are influenced by the interplay of different controls. Therefore, an integrated approach is needed to improve prediction of placer mineral deposits in river gravels, and their distribution in coeval deposits downstream.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.
2007-12-01
We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.
Fluid-induced Blueschist Preservation on Syros, Cyclades, Southern Greece
NASA Astrophysics Data System (ADS)
Kleine, B. I.; Huet, B.; Skelton, A. D. L.
2012-04-01
Local examples of preservation of high-pressure, low-temperature (HP-LT) mineral assemblages within retrograde metamorphosed greenschist are recorded from the Cyclades, Greece. Several models have been proposed to explain the preservation of HP-LT rocks in these areas. On Sifnos, a capping effect of impermeable marble units below the preserved blueschists caused diversion of the upward, cross-layer infiltration of retrograde fluids [1]. On Tinos, blueschist preservation occurred due to retrograde fluid flow channelization along lithological contacts with high flux rates [2]. HP-LT minerals were preserved in regions adjacent to these contacts where fluid fluxes were smaller. We propose a different mechanism of blueschist preservation based on observations from a costal section near Fabrika on Syros. At this locality a high strain zone cuts through a retrograde greenschist. Along the fault a dark blue halo occurs within the greenschist. Whole rock analyses along a profile from the fault into the greenschist show that only the areas directly adjacent to the deformation zone show chemical evidence of metasomatism, whereas the areas further away are chemically similar to greenschist. Point counting of 1000 evenly spaced points in thin sections of the profile shows a clear blueschist to greenschist transition with a blueschist mineral assemblage (glaucophane+phengite+calcite) nearer to the metasomatic zone and a typical greenschist mineral assemblage (epidote+chlorite+albite) farther away. We propose the following model to explain preservation of HP-LT mineral assemblage in this locality. During retrograde metamorphism a water-rich fluid infiltrated the blueschist rock from below. This occurred close to the brittle-ductile transition. This fluid caused a reaction front to propagate into the overlying blueschist at which its mineral assemblage glaucophane+phengite+calcite was replaced by the greenschist mineral assemblage epidote+albite+chlorite. Upwards-flowing fluid passing through the reaction front is buffered to higher X(CO2) by the reaction glaucophane+phengite+calcite+H2O=albite+chlorite+epidote+quartz+CO2. This fluid travels faster along paths of structural weakness (e.g. shear zones, faults). If this fluid reaches colder regions more rapidly such that the fluid chemistry is unable to "keep up" with the position of the reaction equilibria as the temperature falls, X(CO2) will be effectively shifted back into the blueschist stability field and blueschist will be preserved, specifically within high flux regions, such as shear zones and faults. [1] Matthews & Schliestedt (1984), Contributions to Mineralogy and Petrology, 88, 150-163. [2] Breeding et al. (2003), Geochemistry Geophysics Geosystems, 4, 1-11.
The Geology and Petrography of Yücebelen and Surrounding Area, Torul-Gümüşhane
NASA Astrophysics Data System (ADS)
Doǧacan, Özcan; Özpınar, Yahya
2013-04-01
The study area is located in the tectono-stratigraphic zone named "Eastern Pontide Zone" from the northeastern part of Turkey. Eastern Pontides were formed by the subduction of Tethys Ocean under the Eurasian plate, during the Early Cretaceous - Late Eocene. Eastern Pontide orogenic zone can be divided in two tectono-stratigraphic subgroups as the northern and southern zones. The study area is located very close to border of these two subgroups but located in northern zone. In this project, the first geological map of the study area at the scale 1:5000 was made. Subsequently, detailed geological maps at the scale 1:2000 were made for the areas rich in ores. In the study area, Upper Cretaceous volcanic rocks consisting of basalts and basaltic andesites take place at the bottom of the rock sequence. Basalts and basaltic andesites with hyaloophitic, vitrophiric and microporphyric texture comprise plagioclase +pyroxene +chlorite +calcite ±epidote ±chalcedony ±opaque minerals. They are overlain by concordant pyroclastic and dacitic-rhyodacitic rocks. Quarts + K-feldispar ±plagioclase? ±biotite ±chlorite ±calcite ±chalcedony minerals are determined as a result of microscope investigation on samples taken from these rocks. These rocks are overlain by sedimentary rocks intercalated with pyroclastic rocks. All those units mentioned above, were intruded by granitoids of supposed Upper Cretaceous-Eocene age. Granitoids that crop out in the area were classified in terms of Q-ANOR parameters as granodiorites (Adile Hamlet occurrence - investigated in detail), diorites (Tuzlak Hill occurrence- eastern-part of study area) and quartz monzodiorites (İstavroma Hill occurrence- northern part of study area). Adile Hamlet granodiorites comprise plagioclase +pyroxene +chlorite +calcite ±quarts ±epidote +opaque minerals. A sequence of quarts +orthoclase +plagioclase ±chlorite ±epidote ±calcite ±opaque minerals have been determined after investigation of the rock samples collected from Tuzlak Hill surrounding area. Also, petrographic investigation gave us plagioclase +hornblende ±biotite ±chlorite ±calcite ±quarts ±opaque minerals mineral sequence for the occurrences seen around İstavroma Hill. All of these units are intruded Late Eocene andesitic and dacitic dykes. It was determined that Cu-Pb-Zn mineralization depends on the quartz veins developed in the fracture zones of the granitoid body and its contacts with sedimentary rocks. These veins revealed a paragenesis consisting Cu-Pb-Zn minerals. Key words: Eastern Pontides, Gümüşhane-Torul, Granitoid, Cu-Pb-Zn mineralization, Gümüşhane-Torul
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, M.S.; Wesolowski, D.; Ragland, P.C.
1985-01-01
An alternative model for trondhjemite genesis is proposed where granite is transformed to trondhjemite via infiltration by a Na-rich metamorphic fluid. The Rockford Granite serves as the case example for this process and is characterized as a synmetamorphic, peraluminous trondhjemite-granite suite. The major process operative in the conversion of granite to trondhjemite involves cation exchange of Na for K in the feldspar and mica phases through a volatile fluid medium. Whole-rock delta/sup 18/O values for the trondhjemites are negatively correlated with the atomic prop. K/Na ratio indicating a partial reequilibration of the altered granitoids with a Na- and /sup 18/O-richmore » metamorphically derived fluid. Biotite decomposition to an Al-epidote-paragonitic muscovite-quartz assemblage is also associated with the Na-metasomatism, as are apatite replacement by Al-epidote and secondary zircon crystallization. The replacement of magmatic phases by metasomatic phases exemplifies the chemical changes produced during infiltration metasomatism where the trondhjemites are depleted in all REE's. The timing of the infiltration metasomatism is thought to have occurred during regional metamorphism, producing a discrete fluid phase in the surrounding amphibolite-grade metasediments. Foliation planes in the granitoid apparently served as conduts for fluid flow with reaction enhanced permeability accompanying the 8% molar volume reduction during Na for K exchange in the feldspars. A model is proposed where metamorphic fluids migrated updip and along strike from their source and were buffered by the presence or absence of two feldspars in the metasediments.« less
NASA Astrophysics Data System (ADS)
Elsner, Harald
1992-03-01
Heavy mineral placer deposits of Pleistocene age in northeastern Florida were examined sedimentologically. Neither general setting, nor granulometric or mineralogic results are in agreement with a concentration of the heavy minerals in a beach, eolian or fluvial environment. Granulometric moment parameters of the ore sands seem to be distinctive. They include moderate sorting, high positive skewness, high kurtosis and a distinctive fine tail. Similarities of grain size curves of the placer sands with nearshore-offshore sands exist. Mineralogically the samples are more variable but always impoverished in epidote. This scarcity of epidote is atypical for eolian sediments in the study area, and the lack of garnet and the fineness of ore sands are uncommon for beach placers of northeast Florida. Underlain by dune ridges, which acted as obstacles on the shallow sea floor during the Penholoway transgression (1.3 ± 0.1 Ma B.P.), heavy minerals in the Boulogne and Green Cove Springs main ore body must have been concentrated in bars by the interplay of longshore and transverse bottom currents. Lighter heavy minerals were deposited in smaller nearshore bars closer to the former coast (Green Cove Springs small ore body) or in dunes of barrier islands (Green Cove Springs western ore body). As is true today, layers of noteworthy concentrations of economic minerals in the swash zone of Florida beaches were formed only rarely during storms, contrary to the coasts of Australia or India, where higher energetic conditions prevail. The proposed model of concentration of heavy minerals in certain outer nearshore bars has long been assumed but never been proven.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammarstrom, J.M.; Brew, D.A.
1993-04-01
The Admiralty-Revillagigedo belt (ARB) of southeastern Alaska is an approximately 400 mile long northwest-trending belt of Late Cretaceous ([approximately]95 Ma) calcalkalic plutons that extends from Juneau to Ketchikan. The ARB is bounded on the east by the younger Coast plutonic complex sill and on the west by the mid-Cretaceous Muir-Chichagof plutonic belt. Near Petersburg, the ARB consists of a variety of plutons that include equigranular and porphyritic quartz diorite, tonalite, quartz monzodiorite, and granodiorite. Minerals in these plutons are: hornblende, biotite, plagioclase, potassium feldspar, quartz, apatite, zircon, titanite, and ilmenite [+-] epidote, minor allanite, magnetite, grossular-almandine garnet, clinopyroxene, and locallymore » trace amounts of sulfide minerals. New geochemical data for six samples from three plutons near Petersburg overlap data for the rest of the ARB, which is metaluminous to slightly peraluminous. The central ARB granitoids are moderately LREE-enriched with slightly negative to slightly positive europium anomalies. High strontium (700 to 800 ppm) and low rubidium contents in central ARB plutons overlap compositions of ARB plutons to the north and south, and magmatic epidote-bearing plutons elsewhere. Pressure estimates for pluton emplacement based on hornblende geobarometry (6 to 9 kbars) are compatible with pressure estimates for plutons to the south and for metamorphic aureole assemblages around ARB plutons elsewhere in the western metamorphic belt of southeastern Alaska. These data support the chemical consanguinity of plutons along the length of the magmatic arc now preserved as the ARB and suggest that the whole ARB has been uplifted and eroded to expose plutons emplaced at relatively deep crustal levels.« less
Zen, E-an
1981-01-01
The mineral assemblages from metamorphosed slightly calcic pelitic rocks of the Taconic Range in southwestern Massachusetts and adjacent areas of Connecticut and New York were studied petrographically and chemically. These rocks vary in metamorphic grade from those below the chloritoid zone through the chloritoid and garnet zones into the kyanite-staurolite zone. Microprobe data on the ferromagnesian minerals show that the sequence of increasing Fe/ (Fe+Mg) value is, from the lowest, chlorite, biotite, hornblende, chloritoid, staurolite, garnet. Hornblende, epidote, garnet, and plagioclase are the most common minerals that carry significant calcium. Biotite is persistently deficient in alkali but is abnormally rich in octahedral aluminum to such an extent that the overall charge balance can be ascribed to an AI=K+ (Fe,Mg) diadochy. Muscovite contains small though persistent amounts of iron and magnesium in octahedral positions but has a variable K/Na ratio, which is potentially useful as a geothermometer. One low-grade muscovite is highly phengitic, but the white micas in rocks from metamorphic grades higher than chloritoid zone do not contain significant phengite components. Chlorite is persistently high in aluminum and so its ratio of divalent ions to aluminum is approximately that of garnet. Many garnets show pronounced zoning in manganese and less pronounced zoning in calcium. Garnet coexisting with hornblende contains a high proportion of the grossularitic component. The calcium content is significant in all the analyzed garnets, except those from a cummingtonite-bearing sample that is free of muscovite. This suggests that in slightly calcic pelitic rocks, calcium-free garnet cannot coexist with muscovite. Most of the mineral assemblages formed in the presence of excess quartz and muscovite. The phase-petrologic analysis, made with the aid of an eight-phase multisystematic model, shows the following major points: 1. Chloritoid and staurolite coexist in a definite interval of prograde metamorphism. 2. Biotite-chloritoid does not constitute an alternative assemblage to garnet-chlorite-muscovite, because the former combination is found predominantly in the presence of the latter combination. Because the garnet contains lime, all five phases are stable together in lowlime pelitic rocks. 3. The first appearance of staurolite in the area does not correspond to the reaction leading to the first intrinsic stable existence of this phase. Inasmuch as the first appearanc,e of staurolite is always in chlorite-bearing as semblages, I suggest that the mapped staurolite zone marker corresponds to a reaction whereby staurolitechlorite becomes stable. The probable lower grade chemical equivalent, for example, chloritoid-aluminum silicate, however, has not been found in the area of study. Several staurolite-forming reactions discussed in the literature are ruled out because of the relative siderophility of the minerals. A second staurolite isograd involves the reaction, chloritoid+chlorite+muscovite= staurolite+biotite. A third isograd involves staurolite+ chlorite=biotite+kyanite; this reaction is postulated on the basis of the observed assemblage biotite-kyanitesta urolite-garnet-muscoviteplagioclase-quartzilmenite. 4. In low-grade rocks, epidote is stable considerably before the first appearance of chloritoid. The nature of the high-aluminum phase in low-grade rocks that leads to the formation of chloritoid remains obscure. The epidote is always rich in ferric iron (pistacite content of about 1/ 4 to 1/3). Garnet-bearing assemblages (with or without epidote) are formed next as metamorphic grade increases. The next more calcium-rich silicate is hornblende, and despite the meager data on assemblages that include hornblende, the first intrinsic appearance of this phase has probably been recorded. At highstaurolite grade, the most calcium-rich assemblage in pelitic rocks is hornblende-garnet-biotite-plagioclase (bytownit
NASA Astrophysics Data System (ADS)
Backstrom, Ann; Viola, Giulio; Rantakokko, Nina; Jonsson, Erik; Ask, Maria
2013-04-01
Our study aims at constraining the paleostress field evolution of neotectonic postglacial faulting in northern Sweden. Postglacial faulting is a special type of intraplate faulting triggered by the retreat of continental glaciers and by the induced changes of the local stress field. We investigated the longest known post-glacial fault (PGF) in Scandinavia, the Pärvie PGF. It is 155 km long and consists of a series of 3-10 m high fault scarps developed in several rock types such as mafic and felsic meta-volcanic rocks, and in the north, Archean granites and gneisses. Most of the scarps trend north-northeast and dip steeply to the west. A smaller sibling fault to the east (the Lansjärv PGF) displaces postglacial sediments. It is interpreted as resulting from a great earthquake (M≤8.2) at the end or just after the last glaciation (~10 ky B.P.). Microseismic activity is still present along the Pärvie fault zone. Unfortunately, the stress history of the Pärvie PGF before the last glaciation is poorly known. To reconstruct its stress history, we have performed fault-slip analysis. Fault slip data have been collected from two profiles across the Pärvie PGF in the Corruvagge valley and in Kamasjaure in the north, and Stora Sjöfallet in the southern part of the fault zone. Cross-cutting relationships, fracture mineralization and structural features of the brittle overprint of the rocks have been used to suggest a conceptual model of the brittle history of the fault. Ca. 40 kinematically constrained fault planes were used in the inversion study in addition to ca. 1060 fractures. Preliminary results indicate that the oldest generation of fractures are coated by pink plagioclase and clinoamphibole. The key mineral epidote is prominent along cataclastic structures. Rarly multiple kinematic indicators are identified along the same fracture, indicating polyphase reactivation. Epidote coating is found along fractures from all the computed stress-fields, indicating that epidote coating is diagnostic of the early faulting phases as well as of the youngest. Four distinct stress fields were identified, whereof the youngest is assigned to the Pärvie PG faulting event. This study confirms that postglacial faulting have reactivated an old fault system, which had accommodated at least three earlier episodes of brittle deformation. Comparison with paleostress studies of regional significance elsewhere in Fennoscandia makes it possible to tentatively assign these older events to a deformation phase shortly after the Svecokarelian orogeny, around 1,7 Ga, and one stress-field that can be either the stress field during the Sveconorwegian or Caledonian orogeny. An extensional phase has also been identified but not further constrained, yet.
Fluid infiltration of the Tudor Gabbro during regional metamorphism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, S.R.; Valley, J.W.
1985-01-01
The Tudor Gabbro (TG), an ovate body (4 x 9 km) 40 km SE of Bancroft. Ontario, was metamorphosed to upper greenschist facies along with surrounding sediments and volcanics. Allen (1976) delineated concentric isograds around the gabbro, including +sphene, +tremolite (to 1.5 km), +tremolite + clinozoisite, +diopside (approx. 120 m), and +garnet (approx. 80 m). Metamorphic conditions are inferred to be 490+/-50/sup 0/C, 5 kb with no thermal gradient. Allen suggested that H/sub 2/O infiltration of the marble and calc-schist accounts for the isograds. The gabbro mineralogy of titanaugite, andesine to labradorite, and minor hornblende is extensively recrystallized to albitemore » and/or oligoclase + actinolite + epidote + ilmenite + calcite (up to 4 wt%) +/- biotite +/- chlorite +/- sphene +/- scapolite. Isotopic analyses of calcite from 39 TG samples show delta/sup 18/O = 9.4 to 16.6 and delta/sup 13/C = -1.9 to 3.4. Bulk silicate delta/sup 18/O of TG range from 7.1 to 10.2. Calcites in metasediment have delta/sup 18/O = 18.1 to 25.3 and delta/sup 13/C = 1.3 to 5.6. Two whole rock silicate analyses of a skarn developed locally at the contact show intermediate delta/sup 18/O of 16.2 and 17.3. The stability of Czo component in epidote requires H/sub 2/O-rich fluids. The delta/sup 13/C of TG calcites average +0.7 nearly identical to the average of 178 carbonates from Grenville marbles (+1.0), showing that metasediment-derived CO/sub 2/ pervasively infiltrated the TG. The infiltration of H/sub 2/O into both the TG and the metasediment suggests that H/sub 2/O-rich fluids migrated upward along the contact.« less
Petrology and isotopic geochemistry of the Archaean basement lithologies near Gardiner, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, R.E.; Sinha, A.K.
1985-01-01
In an attempt to recognize potential source rocks for some of the rhyolites of the Yellowstone Rhyolite Plateau, four major exposures of Precambrian rocks have been analyzed for major and trace elements and isotopic composition. The terrain is characterized by granitic gneisses with subordinant mica schist, quartzite, amphibolite, and two-mica granite. The gneiss units from the northern (Yankee Jim Canyon) and eastern (Lamar Canyon) outcrops are characterized by k-feldspar augen in a gneissic groundmass of two-feldspar--quartz--mica--epidote. The feldspar compositions are Or/sub 95/ and An/sub 5-15/ indicating metamorphic re-equilibration. Mafic phases are iron-rich with Fe:Mg of 1.0 in epidote, 0.7 inmore » pyroxene, and 0.5 in biotite. Sr isotopic analyses yield present day values of 0.7201-0.7519 for Lamar Canyon, 0.7157-0.7385 for Yankee Jam Canyon, and 0.7200-0.7679 for mica schist from the western and northern outcrops. Rb-Sr whole-rock data indicate a complicated isotopic history with ages ranging from 2800 to 3600 my. The 2800 my ages are consistent with ages for the Tobacco Root and Ruby Mountains to the NW (James and Hedge, 1980) and the Beartooth Range to the NE (Nunes and Tilton, 1971) while the 3600 my age may be related to the formation of the protolith. The rhyolites of the northern Yellowstone Rhyolite Plateau (Sr/sub I/=0.7100) cannot be derived from the exposed Archaean rocks based on Sr isotopic and whole-rock chemistry, and must be derived from lithologies not exposed in the area. This study shows that care must be taken when using surface lithologies to model potential sources materials for volcanic rocks in an associated terrain.« less
Provenance Analysis of Lower Miocene Sediments in the Lower Austrian Molasse Basin
NASA Astrophysics Data System (ADS)
Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael
2015-04-01
In the Early Miocene (Late Ottnangian) a global drop of the sea level and the continuous rise of the Alps caused a regression of the Paratethys. During this time interval the Traisen Formation (formerly Oncophora beds) was deposited in the Lower Austrian Molasse Basin. These yellowish-brownish to greyish mica-rich and carbonate-free sands and silts with clayish interlayers were originally named after a brackish water bivalve ("Oncophora"- now Rzehakia). The southeastern part of the TF partly interfingers with finer sands of the Dietersdorf Formation (DF). The Pixendorf Group combines the TF and the DF [coarse sands, conglomerates, blocks] of the Upper Ottnangian lithostratigraphic units in Lower Austria. West to the Waschberg Zone a deeper-water environment (so called Oncophora beds in former literature, herein [informally] renamed to Wildendürnbach Member) with sediment gravity flows (turbidites, muddy/sandy slumps) is inferred from OMV well data. Examinations of these fine sandstones, silts and laminated pelites have been carried out on the basis of the Wildendürnbach-4 OMV drilling core. Analyses of the TF revealed rather homogenous heavy mineral assemblages, dominated by high amounts of garnet (~65%) and relatively high amounts of epidote/zoisite (~10%) and amphiboles (~10%). Conducted surveys point towards a primary influence of metamorphic (metapelitic) source rocks of Austroalpine Crystalline Complexes of the rising Eastern Alps. Heavy mineral analysis of the WDK-4 drilling core showed even higher amounts of garnet (~80%) combined with minor amounts of rutile, staurolite, apatite, epidote/zoisite, tourmalines, zircon and amphiboles. Consistent heavy mineral assemblages and chemical data (EMPA) suggest a stratigraphical correlation with the Křepice Formation and the Ždánice-Hustopeče Formation in the Czech Republic and sedimentary influence from the Western Carpathian Flysch Belt.
Partial melting of UHP calc-gneiss from the Dabie Mountains
NASA Astrophysics Data System (ADS)
Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin
2014-04-01
Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.
NASA Astrophysics Data System (ADS)
Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav; Vidjapin, Jury
2017-04-01
Clarification of the position of the granitic intrusions associated with the Blyb Metamorphic Complex is the important problem of the reconstruction of the structural evolution of the Greater Caucasus Fore Range zone. Based of the rock geochemistry we found out that the quartz diorites, granodiorites and syeno-granites of the BMC formed in suprasubduction conditions and refer to I-type granites. However, their emplacement was multistage coinciding with the various stages of the BMC evolution. We detected the mineral associations typical for the epidote-amphibolite facies in the Balkan massif, but these metamorphic features are absent in the granodiorite intrusions in the southern part of the Fore Range zone. Thus, quartz diorites of the Balkan intrusion intruded after the high-pressure metamorphism of the host rocks, but before the epidote-amphibolite stage, and the Southern granodiorite intrusions are younger. The measurements of the anisotropy of the magnetic susceptibility (AMS) in the Balkan intrusion indicated the shallow orientation of the minimal (north-eastern strike) and maximal (north-western strike) axes of the AMS ellipsoid. This result is compatible with the idea of the north-east compression fixed in the fold deformation structures of the BMC host rocks (Vidyapin, Kamzolkin, 2015). However, the macroscopic foliation in the granites dips to the east steeply. The discrepancy of the texture orientation of the granites, the host rock structure and the magnetic fabric can be explained as a result of the repeated changes of the stress field during the evolution of the Fore Range nappe structures. The reported study was partially supported by RFBR, research projects No. 16-35-00571mol_a; 16-05-01012a.
NASA Astrophysics Data System (ADS)
Kuwatani, T.; Okamoto, A.; Toriumi, M.
2005-12-01
Fluids in the subduction zone play an important role in magmatism, metamorphism, and mechanical processes involving seismic activity. Additionally, recent geophysical researches found low-frequency tremors which may be related to the movement of fluid (Obara, 2002) and a zone of high Poisson_fs ratio which reflects high pore fluid pressure (Kodaira et al.,2004) in the Southwest Japan fore-arc. It is widely accepted that these fluids are supplied by the dehydration of hydrous metamorphic minerals in the subducting oceanic plate. Although many previous studies attempted to estimate the water content of the subducting oceanic crust experimentally and theoretically (e.g., Schmidt and Poli, 1998; Hacker et al., 2003), there have been no studies which quantify the continuous dehydration reactions in detail. The aim of this study is to quantify the progress of the continuous dehydration reactions of mafic rocks in the condition of greenschist facies, corresponding to low-intermediate depth (10-50km) of warm subduction zone. We use the differential thermodynamics (Spear 1993) which include mass balance to predict the continuous metamorphic reaction history of mafic rocks along the P-T trajectory of the subducting slab. With fixed bulk chemical composition the thermodynamic system is divariant, as specified in Duhem_fs theorem. In differential thermodynamics, applying a series of changes in pressure and temperature (ΔP and ΔT, respectively) from initial conditions (P0, T0, X0s, M0s), we can trace ΔXs and ΔMs, that is, the progress (history) of the metamorphic reactions along the arbitrary P-T trajectory (Thermodynamic forward modeling). According to Okamoto and Toriumi, 2001, we modeled the greenschist/ blueschist/ (epidote -) amphibolite assemblage of mafic rocks, which consist of the following phases: Amphibole ± Epidote ± Chlorite + Plagioclase + Quartz + Fluid (H2O), in the system of Na2O - CaO - MgO - FeO - Fe2O3 - Al2O3 - SiO2 - H2O. The reference compositions and modes of minerals were assumed according to the natural sample of greenschist which has MORB-like bulk composition (Hacker et al. 2003). The reference temperature and pressure were set to be 300°C, 0.3GPa. Calculations were performed along the P-T paths of the Southwest Japan (4MPa/°C) and the Cape Mendocino (the North California, 2MPa/°C) predicted by Yamasaki and Seno, 2003. As a result, the water production rates have the peak depths at the boundary between the greenschist facies and the epidote-amphibolite facies in the Southwest Japan, and at the boundary between the greenschist facies and the amphibolite facies in the Cape Mendocino, respectively. Chlorite decomposition is the main dehydration reaction. These peak depths correspond to the zone of low frequency tremors, high Poisson_fs ratio and active seismicity (30-50km) in the Southwest Japan, and active seismicity (10-20km) in the Cape Mendocino, respectively.
NASA Astrophysics Data System (ADS)
Cisneros, M.; Barnes, J.; Behr, W. M.
2016-12-01
Retrograde metamorphic rocks are key to understanding the exhumation history of high-pressure/low-temperature terranes. The Cycladic Blueschist Unit of Syros, Greece experienced peak metamorphic conditions of 15 kbar and 500 °C at 50 Ma and was subsequently exhumed to the shallow-crust ( 1-3 km) by 15 Ma; however, the processes associated with exhumation from mantle depths to the mid-crust remain poorly understood. We present structural, microstructural, and geochemical analyses of greenschist facies metamafic rocks exposed on Lotos beach in Syros that help to constrain the early exhumation history of these rocks. The outcrop preserves two main fabrics: 1) an early transposition foliation (Ss) defined by tight, isoclinal folds with shallow hingelines, and 2) upright open folds with a steep axial-planar cleavage (Sc). Ss is associated with viscous deformation and alignment of both amphibole and epidote into the foliation plane, whereas Sc is associated with semi-brittle deformation, amphibole overgrowths, and boudinage in elongate epidote (ep). Amphiboles display a progressive evolution from Na-to-Ca-rich end-members and exhibit continuous crystallization throughout Ss and Sc, as evidenced by new amphibole growth and overgrowths oriented parallel to foliation. Cal-qtz precipitates in ep boudin necks and chl + cal pseudomorphs after actinolite represent the last stage of lower greenschist facies metamorphism. These results indicate that foliation-forming deformation initiated prior-to or during blueschist facies and continued through lowermost greenschist facies. Oxygen isotope thermometry indicates that qtz-cal pairs equilibrated at 187 °C. Carbon and oxygen isotope values of fluids in equilibrium with qtz-cal pairs (δ18O and δ13C ≈ 0 ‰) indicate a seawater-derived fluid source. Preliminary results suggest this shear zone experienced cooling during decompression, followed by interaction with fluids transferred along a low-angle detachment.
Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.
NASA Astrophysics Data System (ADS)
Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.
2017-12-01
In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and heavy-mineral data, combined with biostratigraphic, paleomagnetic, and geochemical evidence, allow us to unravel the sedimentary history of the Nicobar Fan as related to Himalayan uplift, erosion, and monsoon development during the last 10 Ma.
NASA Astrophysics Data System (ADS)
Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos
2016-10-01
An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.
Uwagi o badaniu minerałów ciężkich w lessach Polski
NASA Astrophysics Data System (ADS)
Racinowski, Roman
2010-01-01
Research on loess' heavy minerals had been carried out in Poland since the 30's of the 20th century. The research was intensified in the 2nd half of the 20th century as helpful in answer to the problem relating to loess' genesis and age. Since the size of heavy minerals in loess is grouped in the range of 20-100 μm, therefore their determination was proceeded on grains fraction 0.25-0.01 mm or 0.06-0.01 mm. These days determination is carried out on the material with diameter 0.10-0.06 mm. Heavy minerals dominating in the Polish loess are: garnets, zircon, rutile, the supporting ones are: amphiboles, biotite, epidotes, and tourmalines. Qualitatively similar heavy minerals appear in each loess fraction. However, their percentage fractions are variable in neighbouring profiles and cross-sections. Mineral content allows to draw preliminary conclusions on the source material of loess silts and on transport characteristics, as well as on the course of deposition process. In the case of the Polish loess stored material originates from blown away pre-Quaternary rock-mantle (rich in zircon, rutile, and partly in garnets), Pleistocene lacustrine-flooding muds and glacial tills (rich in amphibole, biotite, epidotes, and garnets). Comparing the spectrum of heavy minerals in the Polish loess one can state that in particular regions neighbouring profiles do not show significant similarity with regard to quantitative content of heavy minerals. Therefore, it is not possible in a universal manner to apply those results to unique lithostratigraphic inference. On the basis of research made on contemporarily developed loess soil levels, as well as appearing there levels of fossil soils, it is not possible to differentiate without any doubt the content of minerals with various resistance to destruction as a result of pedological processes.
NASA Astrophysics Data System (ADS)
Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa
2016-04-01
The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite with chlorite. Keywords: Mass balance calculations; hydrothermal alterations; Cu-Pb (-Zn) mineralization; Halilar area; NW Turkey
NASA Astrophysics Data System (ADS)
Abdullah, Fakhraddin Mohammad; Saeed Ahmad, Sheler
2014-05-01
The Hassan Salarn area is located 20km to southeast of Saqqez city in Kurdistan Province, western Iran. In this area there are two distinct granitic rock suites consisting A-type and I-type granites and also mylonitic granites. These A-type and I-type granites have various petrological and geochemical characteristics. They also have different origins and petrogenesis. A-type granitoids comprise alkali feldspar granite, syenogranite and quartz alkali feldspar syenite, whereas I-type granitoids are composed of monzogranite, granodiorite and tonalite. Geochemically, A-type granitoids are peralkaline and acmite-normative but I-type granitoids are subalkaline (calc-alkaline), metaluminous and diopside-normative. A-type granitoids are also ferroan alkali and ferroan alkali-calcic whereas I-type granitoids are magnesian and calcic. A-type granitoids resemble to within plate granites and post-orogenic granites whereas I-type granitoids resemble to volcanic arc granites. A-type granitoids contain higher concentrations of alkalies, Zr, Rb, Nb, Y, Th, Ce, high FeO/MgO ratios and lower concentrations of Mg, Ca and Sr, resembling post-orogenic A-type granites. It is possible that heat from a mantle-derived magma which intruded into the lower crust, and/or rapid crustal extension have been essential generation of approriate melts producing A-type granitoids. Thus we can conclude that A-type granitoids were generated from a mixed mantle-crust source. Negative Nb anomalies and low contents of Ti and P probably indicate a subduction-related origin for protolith of I-type granitoids. Negative Nb anomalies and enrichment in Ce relative to its adjacent elements can be related to involvement of continental crust in magmatic processes. I-type granitoids are also enriched in Rb, Ba, K, Th, Ce and depleted in Nb, Zr and Y, indicating that they have had interacted with crust. I-type granitoids may result from contamination of mantle-derived magmas by continental crust during a subduction event. The mylonitic granites are elongated masses with a NE-SW trend and their contacts with the A-type and I-type granitoids are fault contact. Hand specimens have a layered appearance with green bands made from chlorite and epidote and grey to white bands with quartz and feldspar. These rocks contain plagioclase, quartz and orthoclase under the microscope. Also fine-grained minerals such as quartz, sericite, epidote, chlorite and opaque minerals make the groundmass wrapping the porphyroclasts. Pressure shadows around porphyroclasts of plagioclase and quartz and crystallization of fine-grained quartz and sericite in these places along with intense alteration of plagioclase to epidote and sericite, existence of quartz with different sizes, andaluse extinction in quartz crystals, and elongation of chlorites, resulted from dynamic recrystallisation of biotites all indicate effect of stresses on the rocks. Considering the similar mineralogical composition of the mylonitic rocks with I-type granitoid, it could be concluded that the granodioritic magma, after intrusion and solidification, is changed to mylonite in a shear zone due to tectonical forces.
Calc-silicate mineralization in active geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, D.K.; Schiffman, P.; Elders, W.A.
The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+}more » rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.« less
NASA Astrophysics Data System (ADS)
Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul
2003-05-01
In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).
Grenne, Tor; Slack, John F.
2003-01-01
The jaspers are interpreted to record colloidal fallout from one or more hydrothermal plumes, followed by maturation (ageing) of an Si-Fe-oxyhydroxide gel, on and beneath the Ordovician sea floor. Small hematitic filaments in the jaspers reflect bacteria-catalysed oxidation of Fe2+ within the plume. The larger tubular filaments resulted from either microbial activity or inorganic self-organized mineral growth of Fe-oxyhydroxide within the Si-Fe-oxyhydroxide gel after deposition on the sea floor, prior to more advanced maturation of the gel as represented by the spheroidal and botryoidal silica-hematite textures. Bleaching and hematite±epidote growth are interpreted to reflect heat and fluids generated during deposition of basaltic sheet flows on top of the gels.
NASA Astrophysics Data System (ADS)
Schumacher, J. C.; Brady, J. B.; Prinkey, D. R.; Walton, A. J.; Able, L. M.; Sinitsin, A. G.; Cheney, J. T.
2004-05-01
The island of Syros is part of the Attic-Cycladic blueschist belt and high-P mineral assemblages indicating peak metamorphic conditions of at least 15-16 kbar and 500 C are common. Two main marble units, which locally contain Mississippian fossils, are partly dolomitic, contain abundant calcite pseudomorphs after aragonite (Dixon, 1969), and are intercalated with the glaucophane (Glau)-schists, retrograde greenschists, and minor quartzites and Mn-cherts. Discrete, fault-bounded packages of blueschist/eclogite-facies mafic rocks with minor serpentinite are also present. The mineral compositions and assemblages in marbles and associated rocks tightly constrain the metamorphic P, T and the fluid compositions and suggest X(H2O) in the range 0.97-0.99. In general, the mafic rocks have a variety of textures and modes, but most are either fine-grained, blueschists with a well-developed fabric (S approx.=L) or coarse-grained (>1 cm), massive omphacite- or Glau-rich rocks. Based on textures, mineralogy and field relations, previous workers (Dixon and Ridley, 1987) have interpreted the mafic rocks as meta-basalt and metagabbros. Evidence of pillow structures, as well as metamorphosed alteration zones which are interpreted as evidence of ocean-floor metamorphism (?) have survived locally. We obtained whole-rock XRF and INAA analyses for fine- and coarse-grained mafic and felsic rocks and some mica-rich samples. Low chemical index of alteration (CIA) for most samples suggest very minor weathering. On a TAS diagram, mafic rocks span the basalt - basaltic andesite - trachy-basalt - basaltic trachy-andesite fields. REE patterns generally fall between 10-100 times chondrite and show flat to moderately LREE-enriched patterns. Coarse-grained rocks have positive Eu anomalies, consistent with their interpretation by other investigators as fractionally crystallized gabbros. Felsic rocks (now epidote-mica-schists) that are associated with the metamorphosed gabbros have negative Eu anomalies, and modeling of the REEs suggests that the felsic rocks represent residual melts during the crystallization of the gabbros. The low CIA-values indicate that the mica-schist precursors lacked significant clay material. The presence of abundant epidote (Zo) is consistent with a feldspar-rich (magmatic) protolith for the mica-schists.
Kelley, Karen D.; Eppinger, Robert G.; Lang, J.; Smith, Steven M.; Fey, David L.
2011-01-01
Porphyry Cu indicator minerals are mineral species in clastic sediments that indicate the presence of mineralization and hydrothermal alteration associated with porphyry Cu and associated skarn deposits. Porphyry Cu indicator minerals recovered from shallow till samples near the giant Pebble Cu-Au-Mo porphyry deposit in SW Alaska, USA, include apatite, andradite garnet, Mn-epidote, visible gold, jarosite, pyrite, and cinnabar. Sulphide minerals other than pyrite are absent from till, most likely due to the oxidation of the till. The distribution of till samples with abundant apatite and cinnabar suggest sources other than the Pebble deposit. With three exceptions, all till samples up-ice of the Pebble deposit contain 40grains/10kg) are in close proximity to smaller porphyry and skarn occurrences in the region. The distribution of Mn-epidote closely mimics the distribution of garnet in the till samples and further supports the interpretation that these minerals most likely reflect skarns associated with the porphyry deposits. All but two till samples, including those up-ice from the deposit, contain some gold grains. However, tills immediately west and down-ice of Pebble contain more abundant gold grains, and the overall number of grains decreases in the down-ice direction. Furthermore, all samples in the immediate vicinity of Pebble contain more than 65% pristine and modified grains compared to mostly re-shaped grains in distal samples. The pristine gold in till reflects short transport distances and/or liberation of gold during in-situ weathering of transported chalcopyrite grains. Jarosite is also abundant (1-2 500 grains/10kg) in samples adjacent to and up to 7 km down-ice from the deposit. Most jarosite grains are rounded and preliminary Ar/Ar dates suggest the jarosite formed prior to glaciation and it implies that a supergene cap existed over Pebble West. Assuming this interpretation is accurate, it suggests a shallow level of erosion of the Pebble deposit by glacial processes. Overall the results of this study indicate that porphyry Cu indicator minerals in till samples may be useful in the exploration for porphyry deposits in SW Alaska.
Experimental Insights into Multiphase (H2O-CO2) Fluid-Rock Interactions in Geothermal Systems
NASA Astrophysics Data System (ADS)
Kaszuba, J. P.; Lo Re, C.; Martin, J.; McPherson, B. J.; Moore, J. N.
2012-12-01
Integrated hydrothermal experiments and geochemical modeling elucidate fluid-rock interactions and reaction pathways in both natural and anthropogenic systems, including enhanced geothermal systems (EGS) in which CO2 is introduced as a working fluid. Experiments are conducted in rocker bombs and flexible Au-Ti reaction cells. Individual experiments require one to three months to complete; intensive in-situ fluid/gas sampling gauges reaction progress. Investigation of granitic reservoirs and associated vein minerals are broadly based on the Roosevelt Hot Springs thermal area, Utah, USA. The granite consists of subequal amounts of quartz, perthitic K-feldspar (~25% wt% albite and 75% wt% K-feldspar), and oligoclase (An23), and 4 wt% Fe-rich biotite. Vein minerals include epidote and chlorite (clinochlore). Experiments are conducted at 250°C and 25 to 45 MPa. Each experiment uses mineral powders (75 wt% of rock mass, ground to <45 um) to increase reactivity and also mineral pieces (0.1-0.7 cm in size) to promote petrologic evaluation of mineral reactions. The water (I ≈ 0.1 molal) initially contains millimolal quantities of SiO2, Al, Ca, Mg, K, SO4, and HCO3 and is designed to be saturated with all of the minerals present at the start of each experiment. Excess CO2 is injected to saturate the water and maintain an immiscible supercritical fluid phase. The entire evolutionary path of the natural system is not replicated at laboratory scales. Instead, experiments define a segment of the reaction path and, in combination with geochemical modeling, provide clear trajectories towards equilibrium. Reaction of granite+water yields illite+zeolite; smectite subsequently precipitates in response to CO2 injection. Reaction of granite+epidote+water yields illite+zeolite+smectite; zeolite does not precipitate after CO2 is injected. Water in all experiments become saturated with chalcedony. Carbonate minerals do not precipitate but are predicted as final equilbrium products. Enhanced Geothermal Systems are expected to follow similar reaction pathways and produce metastable minerals during initial development.
NASA Technical Reports Server (NTRS)
Burns, Roger G.; Straub, Darcy W.
1992-01-01
Inferences from these investigations are that Fe(3+)-bearing minerals such as hematite magnesioferrite, acmite, and epidote are thermodynamically unstable, and that magnetite is the predominant mixed-valence iron oxide mineral on venus. Recently, the Fe(2+)-Fe(3+) silicate mineral laihunite was proposed to be a reaction product of olivine with the venusian atmosphere. This possibility is discussed further here. We suggest that other mixed-valence Fe(2+)-Fe(3+)-Oz-OH(-) silicates could also result from surface-atmosphere interactions on Venus. Topics discussed include the following: (1) conversion of hematite to magnetite; (2) stability of laihunite; (3) the possible existence of oxy-amphiboles and oxy-micas on Venus; and (4) other mixed-valence Fe(2+)-Fe(3+) silicates likely to exist on Venus.
Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.
Evarts, R.C.; Schiffman, P.
1983-01-01
Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.
Mars, John L.
2013-01-01
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mungania, J.
Olkaria Geothermal area is located in the central sector of the Kenya, Rift Valley. A 45MW Geothermal power station has been operational at Olkaria since 1985 supplied by 22 of the 26 wells drilled in the Eastern production field (EPF). Between 1988 and 1993, eight more wells referred to as {open_quote}replacement wells{close_quote} were drilled in the same field to boost steam supply to the station. Petrographic analyses of the drill cuttings is usually done to determine detail stratigraphy of the field, extends of hydrothermal activity, subsurface structures and other parameters which may influence production potential of a well. Analyses ofmore » the drill cuttings from the EPF wells show that: Variations in the whole rock alteration intensities correlate with differences in rocktypes. Permeable horizons, especially the productive feeder zones are well marked by enhanced hydrothermal minerals depositions, mainly quartz, calcite, pyrite and epidote. Other aspects of state of reservoir like boiling are signified by presence of bladed calcite.« less
Partial melting of amphibolite to trondhjemite at Nunatak Fiord, St. Elias Mountains, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, F.; McLellan, E.L.; Plafker, G.
1985-01-01
At Nunatak Fiord, 55km NE of Yakutat, Alaska, a uniform layer of Cretaceous basalt ca. 3km thick was metamorphosed ca. 67 million years ago to amphibolite and locally partially melted to pegmatitic trondhjemite. Segregations of plagioclase-quartz+/-biotite rock, leucosomes in amphibolite matrix, range from stringers 5-10mm thick to blunt pods as thick as 6m. They tend to be parallel to foliation of the amphibolite, but crosscutting is common. The assemblage aluminous hornblende-plagioclase-epidote-sphene-quartz gave a hydrous melt that crystallized to plagioclase-quartz+/-biotite pegmatitic trondhjemite. 5-10% of the rock melted. Eu at 2x chondrites is positively anomalous. REE partitioning in melt/residum was controlled largelymore » by hornblende and sphene. Though the mineralogical variability precludes quantitative modeling, partial melting of garnet-free amphibolite to heavy-REE-depleted trondhjemitic melt is a viable process.« less
Petrology of Impact-Melt Rocks at the Chicxulub Multiring Basin, Yucatan, Mexico
NASA Technical Reports Server (NTRS)
Schuraytz, Benjamin C.; Sharpton, Virgil L.; Marin, Luis E.
1994-01-01
Compositions and textures of melt rocks from the upper part of the Chicxulub structure are typical of melt rocks at other large terrestrial impact structures. Apart from variably elevated iridium concentrations (less than 1.5 to 13.5 +/- 0.9 ppb) indicating nonuniform dissemination of a meteoritic component, bulk rock and phenocryst compositions imply that these melt rocks were derived exclusively from continental crust and platform-sediment target lithologies. Modest differences in bulk chemistry among samples from wells located approximately 40 km apart suggest minor variations in relative contributions of these target lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and plagioclase also support minor primary differences in chemistry between the melts. Evidence for pervasive hydrothermal alteration of the porous mesostasis includes albite, K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile element-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host important ore deposits.
Mineralogy and geochemistry of Eocene Helete formation , Adiyaman, Turkey
NASA Astrophysics Data System (ADS)
Choi, J.; Lee, I.; Yildirim, E.
2013-12-01
Helete formation is located at Adiyaman, Turkey which is in the Alpine-Himalayan orogeny belt. Helete formation is represented by andesitic, basaltic and gabbroic rocks cut by localized felsic intrusions and overlain by open-marine Nummulitic carbonate sediments. Electron microprobe analyses were conducted for 15 rocks samples of Helete formation. These rock samples are named as basalt, andesite, gabbro, diorite, dacite, and granite. Basalt and andesite samples are composed of clinopyroxene(augite), plagioclase(Ab98-96), carbonate, and hyaline. Gabbro samples have wide range of plagioclase composition from anorthite to albite(Ab92-16), and other minerals like clinopyroxene(augite) and amphibole(hornblende and actinolite). Diabase samples consist of epidote group minerals and sphene with plagioclase(Ab80), pyroxene and hornblende. Dacite samples are composed of dolomite and quartz. Granite samples are composed of quartz, chlorite, and plagioclase which range from albite to oligoclase in composition (Ab98-89).
NASA Astrophysics Data System (ADS)
Rolland, Y.; Rossi, M.
2016-11-01
The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the precipitation of quartz, epidote and muscovite from a local fluid hosted in the Helvetic cover. These two fluids advocate for the presence of an upper-crustal scaled fluid convection cell, with up-going fluids through the lower crust and likely down-going fluids in the 15 km upper crust.
NASA Astrophysics Data System (ADS)
Skora, Susanne; Freymuth, Heye; Blundy, Jon; Elliott, Tim; Guillong, Marcel
2017-09-01
Arc magmas are very distinct in their geochemical signatures, a consequence of trace element enriched components from the subducting slab that are incorporated into melts of the overlying mantle wedge. However, it is not always straightforward to distinguish such slab components from assimilation of crustal rocks during subsequent differentiation, given that both reservoirs can share similar geochemical characteristics. This has prompted the development of new tools, such as 98Mo/95Mo analyses used in combination with Ce/Mo measurements. The diverse range of δ98/95Mo in the surface environment gives rise to variable isotopic compositions of subducted Mo. Most diagnostic of these is the extremely isotopically heavy Mo in marine black shales, such as those drilled in the vicinity of the Lesser Antilles. However, subducting assemblages are invariably complex and differing melting behaviours and contrasting δ98/95Mo of various crustal components may counter-balance one another, requiring a more detailed investigation of the behaviour of Mo and Ce in the down-going slab. This study is dedicated to identifying possible hosts for Mo and Ce in sediments and basalt at sub-arc depths. New melting experiments were performed (3 GPa, 800-900 °C), using synthetic carbon-rich black shale and calcareous sediment compositions from the Lesser Antilles arc. In addition, new analyses of Mo concentrations and Ce/Mo data of previously published partial melting studies on altered oceanic crust and volcaniclastics (Mariana Arc) are presented. Our study suggests that sulfide and to a lesser extent rutile are the major hosts for Mo in eclogites, whereas the presence or absence of monazite (Ca-poor sediments), epidote (Ca-rich sediments) and carbonate (CaCO3-rich sediments) controls Ce concentrations in sediments. Redox conditions are found to be of great importance for the Ce/Mo ratios of slab components derived from these lithologies because of their influence on sulfide and epidote stability. It is further shown that rutile only hosts Mo at suitably reducing conditions, in concordance with previous studies. The combination of measured Ce/Mo with our experimental results thus places important constrains on phase petrology and redox conditions in the subducted slab.
NASA Astrophysics Data System (ADS)
Bach, W.; Busch, A.; Genske, F. S.; Beier, C.; Krumm, S.
2017-12-01
A stratigraphic section comprising >1000 m of upper crust in the Princess Alice Bank (PAB) of the western Azores Plateau was sampled during RV Meteor cruise M128 in July of 2016, using the ROV MARUM Quest 4000m. Twenty-two samples were recovered between 2484 and 1439 m water depth from the southfacing footwall of the Master fault bounding a prominent NW-SE striking rift zone within the PAB. Our geochemical and petrographic results show that virtually all samples are pervasively altered. The deeper part of the section (up to 1750 m water depth) was altered under greenschist-facies conditions to assemblages that include epidote, chlorite, albite, titanite, and actinolite. These rocks show 87Sr/86Sr values between 0.7036 and 0.7050. The topmost section was altered under lower metamorphic grades to chlorite/smectite-quartz-anatase. These rocks show severe losses of Ca and Sr, and gains in Mg, Li, and B, with 87Sr/86Sr ratios as high as 0.708. These geochemical signatures indicate an intensity of hydrothermal exchange between seawater and crust that is unmatched by any in situ section of upper ocean crust sampled by ocean drilling to date. Oxygen isotope data for epidote-calcite veins indicate temperatures of 250-300°C. Later quartz gives about 200°C. The implications of the intense hydrothermal alteration for crust-seawater exchange budgets can be evaluated in the light of the geological evolution of the PAB. Based on immobile element ratios of whole rocks and REE characteristics of relict clinopyroxene in the only incompletely altered sample, an E-type MORB primary composition of the basalts can be reconstructed. Our data suggest that the degrees of mantle melting were much higher than during extrusion of the <4 Ma old alkali-basalts recovered from the top of PAB (Beier et al., 2015, doi:10.1130/2015.2511(02)), and even higher than modern MORB at the adjacent mid-Atlantic Ridge. These results lead us to suggest that the deeper sections of the PAB formed during the initial stages of flood basalt activity. The extreme hydrothermal alteration may hence be directly linked to the prolonged magmatic period during which excess melting produced a 13-km thick igneous crust. Our results indicate that marine plateau-forming events may cause transient highs in hydrothermal flux rates.
NASA Astrophysics Data System (ADS)
Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.
2017-12-01
Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline metasediments and metabasalts. Metasediments have qtz + plag and mica + amphibole layers, with minor epidote, and become less abundant and poorer in K downhole. Metabasalts are massive, epidote-rich with less qtz and mica. Actinolite and possible pumpellyite needles in quartz suggest low T/P. Sediment and basalt compositions resemble alkali basalt.
NASA Astrophysics Data System (ADS)
Manning, C. E.; Nozaka, T.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; D'Andres, J.; Lefay, R.; Leong, J. A. M.; Zeko, D.; Kelemen, P. B.; Teagle, D. A. H.
2017-12-01
Oman Drilling Project Hole GT3A intersected 400 m of altered basaltic dikes, gabbros, and diorites. The 100% recovery affords an unprecedented opportunity to study metamorphism and hydrothermal alteration near the dike-gabbro transition in the ocean crust. Hydrothermal alteration is ubiquitous; all rocks are at least moderately altered, and mean alteration intensity is 54%. The earliest alteration in all rock types is background replacement of igneous minerals, some of which occurred at clinopyroxene amphibolite facies, as indicated by brown-green hornblende, calcic plagioclase, and secondary cpx. In addition, background alteration includes greenschist, subgreenschist, and zeolite facies minerals. More extensive alteration is locally observed in halos around veins, patches, and zones related to deformation. Dense networks of hydrothermal veins record a complex history of fluid-rock alteration. During core description, 10,727 individual veins and 371 vein networks were logged in the 400 m of Hole GT3A. The veins displayed a range of textures and connectivities. The total density of veins in Hole GT3A is 26.8 veins m-1. Vein density shows no correlation with depth, but may be higher near dike margins and faults. Vein minerals include amphibole, epidote, quartz, chlorite, prehnite, zeolite (chiefly laumontite) and calcite in a range of combinations. Analysis of crosscutting relations leads to classification of 4 main vein types. In order of generally oldest to youngest these are: amphibole, quartz-epidote-chlorite (QEC), zeolite-prehnite (ZP), and calcite. QEC and ZP vein types may contain any combination of minerals except quartz alone; veins filled only by quartz may occur at any relative time. Macroscopic amphibole veins are rare and show no variation with depth. QEC vein densities appear to be higher (>9.3 veins m-1) in the upper 300 m of GT3A, where dikes predominate. In contrast, there are 5.5 veins m-1 at 300-400 m, where gabbros and diorites are abundant. ZP veins increase in density downhole; the highest density of 17.5 ZP veins/m occurs in the lowest 100 m where substantial faulting is observed. Equilibrium coexistence of laumontite and prehnite in ZP veins implies formation at 100-250 °C, lower than amphibole and QEC veins. Calcite veins are abundant only in the uppermost 100 m of the hole.
Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia
Rowan, L.C.; Simpson, C.J.; Mars, J.C.
2004-01-01
The Mordor Complex consists of a series of potassic ultramafic rocks which were intruded into Proterozoic felsic gneisses and amphibolite and are overlain by quartzite and unconsolidated deposits. In situ and laboratory 0.4 to 2.5 ??m reflectance spectra show Al-OH absorption features caused by absorption in muscovite, kaolinite, and illite/smectite in syenite, granitic gneiss, quartzite and unconsolidated sedimentary deposits, and Fe,Mg-OH features due to phlogopite, biotite, epidote, and hornblende in the mafic and ultramafic rocks. Ferrous-iron absorption positioned near 1.05 ??m is most intense in peridotite reflectance spectra. Ferric-iron absorption is intense in most of the felsic lithologies. HyMap data were recorded in 126 narrow bands from 0.43 to 2.5 ??m along a 7-km-wide swath with approximately 6-m spatial resolution. Correction of the data to spectral reflectance was accomplished by reference to in situ measurements of an extensive, alluvial plain. Spectral classes for matched filter processing were selected by using the pixel purity index procedure and analysis of in situ and laboratory spectra. Considering the spatial distribution of the resulting 14 classes, some classes were combined, which produced eight classes characterized by Al-OH absorption features, and three Fe,Mg-OH absorption-feature classes. Comparison of the distribution of these 11 spectral classes to a generalized lithologic map of the study area shows that the spectral distinction among the eight Al-OH classes is related to variations in primary lithology, weathering products, and vegetation density. Quartzite is represented in three classes, syenite corresponds to a single scattered class, quartz-muscovite-biotite schist defines a single very coherent class, and unconsolidated sediments are portrayed in four classes. The three mafic-ultramafic classes are distinguished on the basis of generally intense Fe,Mg-OH and ferrous-iron absorption features. A single class represents the main Mordor ultramafic mass. Epidote-bearing rocks define another class, which corresponds to biotite gneiss and, in the southern part of the area, to fracture zones. The third class, which exhibits Al-OH, as well as Fe,Mg-OH features, represents hornblende gneiss and other mafic gneisses. These results indicate the importance of analyzing the VNIR and SWIR spectral shape and albedo, as well as analyzing specific spectral features, for mapping lithologic units in this weathered terrain. ?? 2004 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schoneveld, Louise; Spandler, Carl; Hussey, Kelvin
2015-08-01
The Nolans Bore rare earth element (REE) deposit consists of a network of fluorapatite-bearing veins and breccias hosted within Proterozoic granulites of the Reynolds Range, Central Australia. Mineralisation is divided into three zones (north, central, and south-east), with the north and south-east zones consisting of massive REE-bearing fluorapatite veins, with minor brecciation and carbonate infill. The central zone is distinctively different in mineralogy and structure; it features extensive brecciation, a high allanite content, and a large, epidote-rich enveloping alteration zone. The central zone is a reworking of the original solid apatite veins that formed during the Chewings Orogeny at ca. 1525 Ma. These original apatite veins are thought to derive from phosphate-rich magmatic-hydrothermal fluid exsolved from as-yet unrecognised alkaline magmatic bodies at depth. We define four ore breccia types (BX1-4) in the central zone on the basis of detailed petrological and geochemical analysis of drillcore and thin sections. BX1 ore comprises fluorapatite with minor crackle brecciation with carbonate infill and resembles ore of the north and south-east zones. Breccia types BX2, BX3, and BX4 represent progressive stages of ore brecciation and development of calc-silicate mineral (amphibole, epidote, allanite, calcite) infill. Comparison of bulk ore sample geochemistry between breccia types indicates that REEs were not mobilised more than a few centimetres during hydrothermal alteration and brecciation. Instead, most of the REEs were partitioned from the original REE fluorapatite into newly formed allanite, REE-poor fluorapatite and minor REE carbonate in the breccias. Negative europium (Eu) anomalies in the breccia minerals are accounted for by a large positive Eu anomaly in epidote from the alteration zones surrounding the ore breccias. This observation provides a direct link between ore recrystallisation and brecciation, and the formation of the alteration halo in the surrounding host rocks. Where allanite and fluorapatite are texturally related, the fluorapatite is relatively depleted in the light rare earth elements (LREEs), whereas allanite is relatively LREE enriched, suggesting co-crystallisation. We tentatively date the BX1 ore stage to 1440 ± 80 Ma based on U-Pb dating of thorianite. Sm-Nd isotope isochrons derived from in situ isotope analysis of cognate apatite and allanite date the BX2 and BX3 events to ca. 400 Ma, while U-Pb dating of late-stage monazite from the BX4 ore stage returned an age of ca. 350 Ma. Therefore, formation of the central zone at Nolans Bore involved multiple alteration/brecciation events that collectively span over 1 billion years in duration. We suggest that the BX1-type veins and breccias were formed from REE-rich, saline (F- and Cl-bearing) fluids that infiltrated the granulite-grade host rocks in association with either shear activation events of the Redbank Shear Zone (1500-1400 Ma) or intrusion of late-stage pegmatites of the Mt Boothby area. BX2, BX3, and BX4 events record deformation and hydrothermal alteration associated with the Alice Springs Orogeny (400-350 Ma). These hydrothermal events occurred at temperatures of 450 to ~600 °C, due to inflow of highly acidic hydrous fluids derived from a magmatic source, or from mixing of meteoric and metamorphic fluids. Our data testify to the long and complex geological history of not only the Nolans Bore REE deposit, but also of the rocks of the eastern Reynolds Range, and demonstrate the great utility of using hydrothermally derived REE minerals to trace the timing of crustal deformation events and source of associated hydrothermal fluids.
Geology of the Bir Nifazi Quadrangle, Kingdom of Saudi Arabia
Quick, James E.; Bosch, Paul S.
1990-01-01
A north-trending, 10-km-long belt of gossans crops out within the ophiolite beneath the upper-basalt sequence at Jabal Mardah. Reconnaissance drilling indicates that one of the larger gossans is underlain by a steeply dipping, 15-m-thick, sulfide-rich volcanic wacke that averages 1 percent nickel locally. The ore is composed of pyrite, millerite, polydymite, and minor sphalerite that fill interstices between clasts of the wacke and are intimately intergrown with quartz and nickel-rich epidote and chlorite. These textures and assemblages suggest that the sulfides crystallized in situ from infiltrating hydrothermal fluids. Tuffs and basalt flows appear to have acted as impermeable barriers that channeled the hydrothermal fluids through the more permeable wacke where sulfides were deposited. Carbonate-replaced serpentinized peridotite at the base of the ophiolite is considered a potential source for the nickel. In contrast to most nickel deposits, the mineralized rocks at Jabal Mardah have extremely high Ni/Cu (130 to 260) and negligible concentrations (< 5 ppb) of platinum-group elements.
NASA Astrophysics Data System (ADS)
Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.
2014-10-01
In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1 by the non-coaxial exhumation-related foliation S2. During exhumation and retrograde D2 deformation, the garnet-mica schist and amphibolite were tectonically mingled at a depth of ca. 30 km at ca. 315 Ma. We propose that the Punta Sirena unit comprises a “pseudo”-coherent sequence formed by heterogeneous lithologies that followed non-chaotic exhumation mingling, now representing the remnants of the fossil subduction channel developed at the onset of the Late Paleozoic subduction at central Chile.
Detrital fingerprints of fossil continental-subduction zones (Axial Belt Provenance, European Alps)
NASA Astrophysics Data System (ADS)
Resentini, Alberto; Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; Malusà, Marco G.; Padoan, Marta; Paparella, Paolo
2010-05-01
Alpine-type collision orogens are generated by attempted subduction of thinned continental margins. Because of complex tectonic structure, orogenic detritus is characterized by a range of detrital signatures, making its recognition an arduous task (Dickinson and Suczek, 1979). Among the various orogenic sub-provenances, Axial Belt Provenance, derived from the erosion of the neometamorphic axial pile, can be regarded as the most typifying signature of collision orogens (Garzanti et al., 2007). In the Austroalpine Cretaceous and Penninic Eocene axial belts of the Alps, we ideally distinguish three structural levels, each characterized by diagnostic detrital fingerprints. The shallow level chiefly consists of offscraped remnant-ocean turbidites and unmetamorphosed continental-margin sediments, and mostly produces lithic to lithoquartzose sedimentaclastic sands yielding very-poor heavy-mineral suites including ultrastable minerals. The intermediate level includes low-grade metasediments and polymetamorphic basements, and sheds lithoquartzose to quartzolithofeldspathic metamorphiclastic sands yielding moderately-rich epidote- amphibole suites with chloritoid or garnet. The deep level contains eclogitic remnants of continent- ocean transitions, and supplies quartzofeldspathic to quartzolithic high-rank metamorphiclastic to lithic ultramaficlastic sands yielding rich to extremely-rich suites dominated by garnet, hornblende, or epidote depending on protoliths (continental vs. oceanic) and pressure/temperature paths followed during exhumation. Although widely overprinted under greenschist-facies or amphibolite-facies conditions, occurrence of ultradense eclogite in source areas is readily revealed by the Heavy Mineral Concentration (HMC) index, which mirrors the average density of source rocks in the absence of hydraulic-sorting effects (Garzanti and Andò 2007). The Metamorphic Index (MI, Garzanti and Vezzoli, 2003) and Hornblende Colour Index (HCI) reflect peak temperatures reached at later stages, when subduction is throttled by arrival of thicker continental crust and geothermal gradients increase. Experience gained from modern sediments provides fundamental help to decrypt the innumerable pieces of information stored in the sedimentary record, and thus to identify and reconstruct subduction events of the past. Dickinson, W., R., Suczek, C.A., 1979.Plate tectonics and sandstone compositions. AAPG Bull. 63, 2164-2182. Garzanti, E. and Andò, S. 2007. Heavy-mineral concentration in modern sands: implications for provenance interpretation. In Mange, M., and Wright, D., eds. Heavy Minerals in Use. Developments in Sedimentology Series 58. Amsterdam, Elsevier, p. 517-545. Garzanti, E., and Vezzoli, G. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res. 73:830-837. Garzanti, E., Doglioni, C., Vezzoli, G., Andò, S., 2007. Orogenic belts and orogenic sediment provenante. J. Geology, 115:315-334.
NASA Astrophysics Data System (ADS)
Schneider, Sandra; Hornung, Jens; Hinderer, Matthias; Garzanti, Eduardo
2016-05-01
In hot-humid equatorial climate chemical weathering may be so strong that provenance signatures may be largely lost and even detritus derived from crystalline basement rocks reduced to quartzose sand. We tested this hypothesis in western Uganda, where stable plateau areas contrast with the active tectonic setting of the Albertine Rift (western branch of the East African Rift System, EARS), culminating in the strongly exhumed fault block of the > 5000 m high Rwenzori Mountains. In this setting, sediments derived from similar types of basement rocks including gneiss, schist, amphibolite, metasediments and granites can be traced from rapidly eroding high-altitude areas to low-altitude areas undergoing prolonged weathering. Sand and mud carried by 51 rivers overall in these two contrasting landscapes were sampled to study how and to what extent detrital modes are modified by the selective loss of unstable detrital minerals. Sediments generated in the high-relief Rwenzori Mountains show abundant feldspar (up to 32%) and rock fragments (up to 52%), which together with low SiO2/Al2O3 ratio and composition close to the Upper Continental Crust (UCC standard) reflect erosion in weathering-limited conditions. In the central Rwenzoris, low Th/Sc and Zr/Sc ratios, weak negative Eu anomaly, lower LaN/YbN values, and heavy-mineral assemblages with hornblende and epidote reflect the lithology of source rocks in the Buganda-Toro-Greenstone Belt. In contrast, sediments produced on the low-relief plateau have quartz content up to 98% and higher SiO2/Al2O3 ratio. Systematic loss of mobile elements is indicated by high chemical weathering indices CIA, PIA and WIP. However, provenance from metamorphic basement rocks is still indicated by heavy-mineral assemblages dominated by epidote and amphibole, whereas provenance from granitic rocks is revealed by high Th/Sc and Zr/Sc ratio, negative Eu anomaly and higher LaN/YbN values. We conclude that first-cycle sediments generated in high-relief areas preserve the original imprint of parent lithologies even in very humid equatorial climate. In low-relief areas, although weathering processes have proceeded over millions of years turning basement-derived detritus into an almost pure quartzose resistate, provenance signals are not erased entirely, and can be still retrieved from the residual heavy-mineral suite and relative abundance of high-field-strength trace elements.
NASA Astrophysics Data System (ADS)
Vho, Alice; Bistacchi, Andrea
2015-04-01
A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After having tested and refined the image analysis processing for some typical images, we have recorded a macro with ImageJ-Fiji allowing to process all the images for a given DOM. As a result, the three different types of rocks can be semi-automatically mapped on large DOMs using a simple and efficient procedure. This allows to develop quantitative analyses of fault rock distribution and thickness, fault trace roughness/curvature and length, fault zone architecture, and alteration halos due to hydrothermal fluid-rock interaction. To improve our workflow, additional or different morphological operators could be integrated in our procedure to yield a better resolution on small and thin pseudotachylyte veins (e.g. perimeter/area ratio).
NASA Astrophysics Data System (ADS)
Blumenthal, V. H.; Linnen, R. L.
2009-05-01
Copper mineralization in central Yukon is well known, but the metallogeny of the Ruby Range batholith, west of the copper belt, is poorly understood. The Hopper property, situated in the south western part of the Yukon in the Yukon-Tanana terrane, contains copper mineralization hosted by granodiorite and quartz feldspar porphyry of cal-alkaline affinity. These rock units, interpreted to be part of the Ruby Range batholith, intruded metasediments of the Ashihik Metamorphic Suite rocks. Mafic dykes cross cut the intrusion followed by aplite dykes. Small occurrences of skarn also occur in the area and some of these contain copper mineralization. The copper mineralization at the Hopper property appears to have a porphyry-type affinity. However, it is associated with a shear zone and propylitic alteration unlike other typical copper porphyry-type deposits. This raises the question whether or not the mineralization is orthomagmatic in origin, i.e., whether or not this is a true porphyry system. The main zone of mineralization is 1 kilometer long and 0.5 kilometer wide. It is characterized by disseminated chalcopyrite and pyrite, which also occur along fractures. Molybdenite mineralization was found to be associated with slickensides. Alteration minerals associated with the copper mineralization are chlorite, epidote-clinozoisite, carbonate and titanite. Chlorite and epidote-clinozoisite are concentrated in the mineralized zone, whereas an earlier potassic alteration shows a weaker spatial correlation with the mineralization. The association of the mineralization with propylitic alteration leads us to believe the mineralization is shear related, although a deeper porphyritic system may be present at depth. Two populations of titanite at the Hopper property are recognized based on their shape, size and association with other minerals. The first population, defined by a length of 100 micrometers to 1 centimeter, euhedral boundaries, and planar contacts with other magmatic phases, is interpreted to be magmatic in origin. The second population is 10 to 500 micrometers long, anhedral and shows a close association with chlorite and chalcopyrite. This type of titanite is hydrothermal in origin. Preliminary electron microprobe analyses of titanite show the magmatic titanite grains have higher concentrations of Al, Fe, Nb, Ce, Zr and Mn, and lower concentrations of Ti and Ca compared to hydrothermal titanite grains. This corresponds with substitutions of Al, Fe, Nb, and Ce to Ti and substitutions of Ce, Zr to Ca. The association of titanite with propylitic alteration and its susceptibility to trace element substitutions make this an ideal test case to evaluate magmatic versus hydrothermal titanite.
NASA Astrophysics Data System (ADS)
Laborda-López, Casto; López Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Gómez-Pugnaire, María Teresa; Garrido, Carlos J.; Jabaloy-Sánchez, Antonio; Padrón-Navarta, José Alberto
2016-04-01
Rodingites are common rocks associated with serpentinites in exhumed terrains that experienced subduction and high pressure metamorphism. However, the response of these rocks to devolatilization and redox reactions in subduction settings is not well constrained. In the Cerro del Almirez ultramafic massif (southern Spain) rodingites constitute about 1-2% of the total volume of exposed rocks. Metarodingites are enclosed in antigorite-serpentinite and chlorite-harzburgite separated by a transitional zone that represents the front of prograde serpentinite-dehydration in a paleo-subduction setting (Padrón-Navarta et al., 2011). Metarodingites occur as boudin lenses, 1 to 20 m in length and 30 cm to 2 m in thickness. During serpentinization of peridotite host rocks, dolerites and basalts precursor of rodingites underwent intense seafloor metasomatism, causing the enrichment in Ca and remobilization of Na and K. Subsequent metamorphism during subduction transformed the original igneous and seafloor metamorphic mineralogy into an assemblage of garnet (Ti-rich hydrogrossular), diopside, chlorite, and epidote. During prograde metamorphism, garnet composition changed towards higher andradite contents. High-pressure transformation of enclosing antigorite-serpentinite to chlorite-harzburgite released fluids which induced breakdown of garnet to epidote in metarodingites. Ti liberation by this latter reaction produced abundant titanite. Released fluids also triggered the formation of amphibole by alkalis addition. Highly recrystallized metarodingites in chlorite-harzburgite present a new generation of idiomorphic garnet with composition equal to 10-30% pyrope, 30-40% grossular and 35-55% almandine + spessartine. This garnet has titanite inclusions in the core and rutile inclusions in the rim. The contact between metarodingites and ultramafic rocks consists of a metasomatic zone (blackwall) with variable thickness (7 to 40 cm) constituted by chlorite, diopside, and titanite. Close to the contact with the blackwall, antigorite-serpentinite is very rich in diopside, olivine and Ti-clinohumite. In this study we present a thermodynamic model of phase relationships in rodingites and transitional blackwalls during their metamorphic history. We mainly aim to establish the evolution of P-T conditions experienced by metarodingites during subduction and the influence of fluids in the formation of mineral assemblages at different metamorphic stages. REFERENCES Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., Gómez-Pugnaire, M.T., (2011): Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro Del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52, 2047-2078.
NASA Astrophysics Data System (ADS)
Ren, G. L.; Yi, H.; Yang, M.; Liang, N.; Li, J. Q.; Yang, J. L.
2016-11-01
Hyperspectral information of altered minerals plays an important role in the identifications of mineralized zones. In this study, the altered minerals of two gold deposits from Fangshankou-Laojinchang regions of Beishan metallogenic belt were measured by ASD field Spectrometer. Many gold deposits would have a close relationship with Variscan magma intrusion, which have been found in study region. The alteration minerals have been divided six types by the spectral results, i.e. sericite, limonite, dolomite, chlorite, epidote and calcite. The distribution characteristics and formations of altered minerals were discussed here. By the ASD, the spectral curve of different geological units in the Jintanzi and Fangshankou gold deposits were analysed and summarized. The results show that the sericite and limonite are mainly related with the gold mineralization and widely occurred in the gold deposits. Therefore, we proposed that the sericite and limonite are the iconic alteration mineral assemblages for gold mineralization and the models of altered minerals for gold deposits could be established in this region.
NASA Astrophysics Data System (ADS)
Liu, Lei; Feng, Jilu; Rivard, Benoit; Xu, Xinliang; Zhou, Jun; Han, Ling; Yang, Junlu; Ren, Guangli
2018-02-01
The Tiangong-1 Hyperspectral Imager (HSI) is a relatively new spaceborne hyperspectral remote sensing system that was launched by the Chinese government on September 29th 2011. The system has 64 shortwave infrared (SWIR) spectral bands (1000-2500 nm) and imagery is at a spatial resolution of 20 m. This study represents an evaluation of Tiangong-1 data for the production of alteration mineral maps. Alteration mineral maps resulting from the analysis of Tiangong-1 HSI data and airborne SASI (Shortwave infrared Airborne Spectrographic Imager) data are compared for the Jintanzi area, Beishan, Gansu province, northwest China where gold bearing veins are documented. The results illustrate the detection of muscovite, kaolinite, chlorite, epidote, calcite and dolomite from Tiangong-1 HSI data and most anomalies seen in the airborne SASI data are captured. The Tiangong-1 data appears to be well suited for the detection of surface mineralogy in support of regional mapping and exploration. The data complements that which will be offered by the Chinese GF-5 Hyperspectral Imager and the German EnMAP system, both scheduled for launch in 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakopoulos, A.
1991-01-01
This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less
Rare earth element mobility in vesicular lava during low-grade metamorphism
NASA Astrophysics Data System (ADS)
Nyström, Jan Olov
1984-12-01
A geochemical comparison of basaltic relicts and spilitic domains from two burial metamorphosed flows in central Chile, of similar original composition and rich and poor in amygdules, respectively, demonstrates a relationship between initial vesicularity and rare earth element (REE) mobility. During spilitization the REE were partly leached from permeable parts of the flows and precipitated in voids, now amygdules and veinlets. The REE (excluding Eu) moved coherently in the highly amygdaloidal flow: spilitic domains and amygdules inherited the basaltic REE pattern. Besides being characterized by a positive Eu anomaly, epidotes separated from amygdules have a REE distribution which mimics that of the basalt; the absolute contents range widely, suggesting local and/or temporal REE variations in the metamorphic fluids. Pumpellyite differs by being strongly enriched in heavy REE. Similar ratios of Th, Hf and Ta in samples as contrasting as relict basalt and a geode are consistent with coherent leaching. Coherent mobility, when established for a rock system, can be used to elucidate, for example, whether minerals in cross-cutting veins were formed by local redistribution or from introduced material.
NASA Astrophysics Data System (ADS)
da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri
2016-06-01
Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.
Introduction to the hydrogeochemical investigations within the International Stripa Project
Nordstrom, D. Kirk; Olsson, T.; Carlsson, L.; Fritz, P.
1989-01-01
The International Stripa Project (1980-1990) has sponsored hydrogeochemical investigations at several subsurface drillholes in the granitic portion of an abandoned iron ore mine, central Sweden. The purpose has been to advance our understanding of geochemical processes in crystalline bedrock that may affect the safety assessment of high-level radioactive waste repositories. More than a dozen investigators have collected close to a thousand water and gas samples for chemical and isotopic analyses to develop concepts for the behavior of solutes in a granitic repository environment. The Stripa granite is highly radioactive and has provided an exceptional opportunity to study the behavior of natural radionuclides, especially subsurface production. Extensive microfracturing, low permeability with isolated fracture zones of high permeability, unusual water chemistry, and a typical granitic mineral assemblage with thin veins and fracture coatings of calcite, chlorite, seriate, epidote and quartz characterize the site. Preliminary groundwater flow modeling indicates that the mine has perturbed the flow environment to a depth of about 3 km and may have induced deep groundwaters to flow into the mine. ?? 1989.
ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan
Mars, John C.; Rowan, Lawrence C.
2011-01-01
Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that primarily covers the inside rim of the crater and a small area west of the crater; (4) a crater rim that consists mostly of epidote-chlorite-muscovite–rich metamorphosed argillite and sandstone; and (5) iron (Fe3+) and muscovite-illite–rich rocks and iron-rich eolian sands surrounding the western part of the volcano. The thermal infrared (TIR) rock-type map illustrates laterally extensive carbonatitic and mafic rocks surrounded by quartz-rich eolian and fluvial reworked sediments. In addition, the combination of VNIR, SWIR, and TIR data complement one another in that the TIR data illustrate more laterally extensive rock types and the VNIR-SWIR data distinguish more specific varieties of rocks and mineral mixtures.
NASA Astrophysics Data System (ADS)
Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.
2013-12-01
Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25mT, and between 0 to 625°C. The declination of RM vectors was used to bring pieces to a common anchor orientation calculated through the Geocentric Axial Dipole Model (GAD). The paleomagnetic technique proved to be reliable to reorient the Tol-1 core. Structural analyses along the core show N50-60E-striking preferential vein orientation. In addition, N40-50E- and N60-70W-striking preferential fault orientations were identified. Kinematic analysis of fault-slip data shows a N60E-striking bulk fault plane solution with normal strain regime. The veins and faults orientation show strain axes compatible with published regional stress field (σmax N238E).
NASA Astrophysics Data System (ADS)
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.
NASA Astrophysics Data System (ADS)
Santana, Miriela María Ulloa; Moura, Márcia Abrahão; Olivo, Gema R.; Botelho, Nilson Francisquini; Kyser, T. Kurtis; Bühn, Bernhard
2011-01-01
The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc-alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O-NaCl-(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480-505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical-chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore-related epidote-chlorite alteration can be classified as propylitic and not the classic potassic and/or phyllic alteration. The low copper contents in the prospect could be due to a mineralizing fluid previously saturated in copper, which is indicated by trapped chalcopyrite crystals in high-temperature fluid inclusions. The low-temperature paragenesis, represented by carbonate, zeolite and barite, indicates epithermal overprint. The study shows the potential for other gold porphyry-type deposits in the Cretaceous volcanoplutonic arc of Cuba.
Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado
Larson, P.B.; Cunningham, C.G.; Naeser, C.W.
1994-01-01
The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced. ?? 1994 Springer-Verlag.
The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone
NASA Astrophysics Data System (ADS)
Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.
2013-12-01
Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins. Whole-rock XRF analyses show Al and Ca content decrease with increasing Si, whereas Na increases towards the core. This can be interpreted as compositional changes of plagioclase to albite-rich ones due to chloritic-propylitic alteration. In the damage zone, LOI increases towards the core but decreases inside of it. This is explained by H2O-rich clays and gypsum in the fault core boundary represented as fault gouge zones whereas in the cataclastic core zone, the decrease in LOI is explained by epidote. Our results show the JF had an evolving permeability structure where a cataclasite-rich core is formed at an early stage, and then a gouge-bounded core is developed which acted as a barrier to fluid from east to west of the fault.
Mitigation of non-point source of fluoride on groundwater by dug well recharge
NASA Astrophysics Data System (ADS)
Ganesan, G.; Lakshmanan, E.
2017-12-01
Groundwater used for drinking purpose is affected in many regions due to the presence of excess fluoride. The excess intake of fluoride through drinking water causes fluorosis to human in many states of India, including Tamil Nadu. The present study was carried out with the objective of assessing hydrogeochemistry of groundwater and the feasibility of dug well recharge to reduce the fluoride concentration in Vaniyar river basin, Tamil Nadu, India. The major source for fluoride in groundwater of this area is the epidote hornblende gneissic and charnockite which are the major rocks occurring in this region. As a pilot study a cost effective induced recharge structure was constructed at Papichettipatty village in the study region. The study shows that the groundwater level around the recharge site raised up to 2 m from 14.5 m (bgl) and fluoride concentration has decreased from 3.8 mg/l to 0.9 mg/l due to dilution. The advantage of this induced recharge structure is of its low cost, the ease of implementation, improved groundwater recharge and dilution of fluoride in groundwater. An area of about 1.5 km2 has benefited due to this dug well recharge system.
King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.
2014-01-01
As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.
Modified algorithm for mineral identification in LWIR hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin
2017-05-01
The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.
Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data
NASA Astrophysics Data System (ADS)
Molan, Yusuf Eshqi; Refahi, Davood; Tarashti, Ali Hoseinmardi
2014-04-01
This study applies matched filtering on the HyMap airborne hyperspectral data to obtain the distribution map of alteration minerals in the Maherabad area and uses virtual verification to verify the results. This paper also introduces "moving threshold" which tries to find an appropriate threshold value to convert gray scale images, produced by mapping methods, to target and background pixels. The Maherabad area, located in the eastern part of the Lut block, is a Cu-Au porphyry system in which quartz-sericite-pyrite, argillic and propylitic alteration are most common. Minimum noise fraction transform coupled with a pixel purity index was applied on the HyMap images to extract the endmembers of the alteration minerals, including kaolinite, montmorillonite, sericite (muscovite/illite), calcite, chlorite, epidote, and goethite. Since there was no access to any portable spectrometer and/or lab spectral measurements for the verification of the remote sensing imagery results, virtual verification achieved using the USGS spectral library and showed an agreement of 83.19%. The comparison between the results of the matched filtering and X-ray diffraction (XRD) analyses also showed an agreement of 56.13%.
Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China
NASA Astrophysics Data System (ADS)
Li, Q.; Zhang, B.; Lu, L.; Lin, Q.
2014-03-01
Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.
NASA Astrophysics Data System (ADS)
Crispini, L.; Scambelluri, M.; Capponi, G.
2013-12-01
Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization at ca. 270-300°C, 8-10 km of the original glass. PT show plastic deformations overprinted by shear bands and fracturing. The matrix of cataclastic layers has the same mineral assemblage as PT and clasts of recrystallised PT, to indicate polyphase PSZ formation. In the metasedimentary footwall, the original foliation is deflected parallel to the PSZ and is cut by cm-spaced shear bands parallel to PSZ. Deformation propagates in the footwall through mm-thick injections veins, shear bans, P-shears and veins. Pockets of recrystallized PT occur along the pre-existing mylonitic foliation of metasediments. Worthnote is the presence of mm-thick deformation bands (CDB) that are post-mylonitic foliation and mainly composed of fine grained calcite bounded by dissolution seams or ribbon grains of deformed calcite. CDB are characterised by subrounded embayed and rebsorbed quartz grains rimmed by new Ca-Mg amphibole, K-feldspar (90-93%K), in a dinamic recrystallized calcite 2-10 micron in size and slightly elongated. The features of the CDB suggest that these structures can be considered as diagnostic of localised deformation during coesismic slip in metasedimentary rocks.
The Fortuna gold skarn, Nambija district, Ecuador - A mineralogical and fluid inclusion study
NASA Astrophysics Data System (ADS)
Markowski, A.; Fontboté, L.; Chiaradia, M.
2003-04-01
La Fortuna gold skarn is located in the nothern part of the Nambija gold district, southern Ecuador. As other Nambija deposits (Meinert, 2000) it is an oxidized-calcic gold skarn. The skarn has developed on volcanic rocks belonging to the Triassic Piunza Formation and nearby undated felsic intrusions. Main skarn bodies and Au concentrations occur near major N40°-60°faults. Garnet is the dominant phase at the Fortuna skarn, which displays two types according to garnet color and composition: a brown massive garnet (Ad99-37) skarn and a green garnet (Ad55-13) skarn. Garnets are strongly zoned and compositions out of these ranges exist too. Additionally, the correlation between color and composition is not always clear. Some honey-reddish garnet (Ad97.0-99.5) nodules up to a few centimeters in size occur both within the brown and the green garnet skarns. Because of its position typically at the borders of open space fillings, this garnet is interpreted to reflect the composition of the fluid. Pyroxene is present as a minor phase except in the northern part of the concession and around the presently mined site ("mina 2") where pyroxene and pyroxene-garnet skarns are recognized, respectively. Compositions range from Hd42Di47Jo11 to Hd17Di63Jo20. Increases in Mn (2.5-6 wt%) and, less pronounced, in Fe (7-11 wt%) are recognized from the presently mined site to 1 km to the north. Pyroxene occurs mainly as small subidiomorphic grains, which in part appear to replace garnet (mainly the green variety). In the northern part of the mine, epidote (Epi9.8-17.7) occurs as the main phase, and is a retrograde product of garnet. The small amount of amphibole present at Fortuna is attributed to the original scarcity of pyroxene of which amphibole is the typical retrograde product. Chlorite is also an abundant phase, mainly nearby faults, and reveals variable compositions with a F/FM ranging from 0.87 to 0.38. As pyroxene, chlorite shows an enrichement in Mn (up to 4 wt.%) to the north. Other retrograde minerals are K-feldspar, plagioclase, quartz and calcite. These minerals, together with epidote and chlorite, occur mainly within cm-wide veins (N40E-N60E) and irregular open spaces. Thinner calcite veinlets do not show preferential orientation. Native gold (Ag content: 5.9 to 14.6 wt%, traces of Cu and Hg) occurs with calcite and quartz within garnet fractures or between mineral joints. Hematite seems to appear more frequently than pyrite when gold is present and could indicate a high oxygen fugacity during gold deposition. Quartz inclusions have homogenization temperatures between 350°C and 200°C, low salinities (1.2-6.0 wt% NaCl eq.), and variable liquid/vapor ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.K.
1990-01-01
Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300{degrees}C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surfacemore » reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 {degrees}C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs.« less
Fine-scale structure and micromorphology of the Cricket Flat paleosol, Elgin, Oregon, USA
NASA Astrophysics Data System (ADS)
Murray, K.; Bader, N.
2013-12-01
The Cricket Flat paleosol is located about 9 km east of Elgin, Oregon on Oregon Route 82. The paleosol underlies an olivine basalt of the Powder River Volcanic Field, a sequence of Middle Miocene to Pliocene lavas that overlie the Columbia River Basalt Group in northeastern Oregon. The parent material of the paleosol is a felsic to intermediate lahar that contains leaf and twig fossils as well as tree casts. While some researchers have measured the bulk chemistry and clay mineralogy of this paleosol, no study of its micromorphology has been attempted. In this study we viewed polished thin sections with a petrographic microscope to examine both the parent material and the paleosol. Scanning electron microscopy was used to understand the composition of minerals. Soil texture was analyzed using point counts. Skeleton grains inherited from the parent are mainly plagioclase, orthoclase feldspar, quartz, and volcanic glass. Accessory minerals include titanite, epidote, apatite, and zircon. The paleosol has an argillic horizon with vertic features that are not apparent at the field scale. Diatoms, palynomorphs, and root traces are relatively common in the A horizon of the paleosol. Strong sepic plasmic fabrics and redoximorphic features suggest an environment that was at least seasonally waterlogged and subjected to shrink-swell processes.
Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism
Asmeroma, Y.; Damon, P.; Shafiqullah, M.; Dickinson, W.R.; Zartman, R.E.
1991-01-01
We report a nine-point RbSr whole-rock isochron age of 70??3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ?? 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting. The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism. ?? 1991.
NASA Technical Reports Server (NTRS)
Sadowski, R. M.; Abrams, M. J.
1983-01-01
Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.
Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning
1999-09-01
Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haruna, I. V., E-mail: vela_hi@yahoo.co.uk; Orazulike, D. M.; Ofulume, A. B.
Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis showsmore » that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.« less
NASA Astrophysics Data System (ADS)
Ewerling, Kathrin; Obermüller, Gerrit; Kirst, Frederik; Froitzheim, Nikolaus; Nagel, Thorsten; Sandmann, Sascha
2013-04-01
The Etirol-Levaz slice (ELS) in the western Valtournenche of Italy is a continental fragment trapped between two oceanic units, the eclogite-facies Zermatt-Saas Zone in the footwall and the greenschist-facies Combin Zone in the hanging wall. It has been interpreted as an extensional allochthon derived from the Adriatic continental margin and stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting (Dal Piaz et al., 2001; Beltrando et al., 2010). The slice consists of Variscan high-grade gneisses, micaschists and metabasics overprinted under eclogite-facies conditions during Early Tertiary Alpine subduction. Eclogites generally consist of garnet + omphacite ± epidote ± amphibole ± phengite ± quartz. We investigate their metamorphic history using equilibrium phase diagrams, mineral compositions, and textural relations between prograde, peak, and retrograde phases. In sample FD328, garnets have compositions of Alm52-61 Grs18-41 Prp5-22 Sps0.5-2 and typical growth zoning. Some garnet grains are brittlely fractured, strongly corroded and overgrown by epidote. Amphibole occurs as a major phase in the matrix and shows a progressive evolution from glaucophane in the core to pargasitic hornblende towards the rim. Sample FD329 with a particular Ca-rich bulk composition (18.3 wt% Ca) displays two distinct garnet generations. Perfectly euhedral cores show compositions of Grs42-45 Alm47-51 Prp3-6 Sps2-7 and typical prograde growth zoning. These cores are overgrown by irregularly shaped rims characterised by an initial rise in Mn and the Fe-Mg ratio. Omphacite in this sample with jadeite-contents of 19-28 mol% apparently has been fractured and annealed by jadeite-poor (7-12 mol%) omphacite suggesting brittle behaviour at eclogite-facies conditions or two high-pressure stages with lower metamorphic conditions in between. We discuss whether the ELS experienced the same monocyclic metamorphic history as the Zermatt-Saas Zone or not. Some of our observations suggest that the ELS experienced two independent stages of high-pressure metamorphism during the Alpine orogeny, e.g. as proposed by Rubatto et al. (2011) for the Sesia Nappe. A lower-pressure stage in between might have been associated with brittle fracturing of high-pressure phases like garnet, glaucophane, and omphacite while the second generations of these minerals might indicate a new stage of increasing pressures and/or temperatures. References Beltrando, M., Rubatto, D. & Manatschal, G. (2010): From passive margins to orogens: The link between ocean-continent transition zones and (ultra)high-pressure metamorphism. Geology, 6, 559-562. Dal Piaz, G.V., Cortiana, G., Del Moro, A., Martin, S., Pennacchioni, G. & Tartarotti, P. (2001): Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western Alps. Int. J. Earth Sci., 90, 668-684. Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M. & McAlpine, S.R.B. (2011): Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience, 4, 338-342.
NASA Astrophysics Data System (ADS)
Wang, Hao Y. C.; Wang, Juan; Wang, Guo-Dong; Lu, Jun-Sheng; Chen, Hong-Xu; Peng, Tao; Zhang, Hui C. G.; Zhang, Qian W. L.; Xiao, Wen-Jiao; Hou, Quan-Lin; Yan, Quan-Ren; Zhang, Qing; Wu, Chun-Ming
2017-03-01
Garnet-bearing mafic granulites and amphibolites from the Hongliuxia area of the southern Dunhuang orogenic belt, northwestern China, commonly occur as lenses or boudinages enclosed within metapelite or marble, which represent the block-in-matrix feature typical of orogenic mélange. Three to four generations of metamorphic mineral assemblages are preserved in these rocks. In the high-pressure amphibolites, prograde mineral assemblages (M1) occur as inclusions (hornblende + plagioclase + quartz ± chlorite ± epidote ± ilmenite) preserved within garnet porphyroblasts, and formed at 550-590 °C and 7.7-9.2 kbar based on geothermobarometry. The metamorphic peak mineral assemblages (M2) are composed of garnet + hornblende + plagioclase + quartz + clinopyroxene, as well as titanite + zircon + rutile + apatite as accessory minerals in the matrix, and are estimated to have formed at 640-720 °C and 14.1-16.0 kbar. The first retrograde assemblages (M3) are characterized by "white-eye socket" symplectites (hornblende + plagioclase + quartz ± biotite ± epidote ± magnetite) rimming garnet porphyroblasts, which formed at the expense of the garnet rims and adjacent matrix minerals during the decompression stage under P-T conditions of 610-630 °C and 5.6-11.8 kbar. The second retrograde assemblages (M4) are intergrowths of actinolite and worm-like quartz produced by the breakdown of the matrix hornblendes, and formed under P-T conditions of ∼490 °C and ∼2.8 kbar. For the high-pressure mafic granulites, the prograde assemblages (M1) are represented by plagioclase + quartz preserved within the garnet porphyroblasts. The metamorphic peak assemblages (M2) are garnet + matrix minerals (clinopyroxene + plagioclase + quartz + hornblende + rutile + zircon) and were estimated to have formed at ∼680 °C and ∼15.4 kbar. The retrograde assemblages (M3) are characterized by fine-grained patches of hornblende + plagioclase + quartz rimming the garnet porphyroblasts, as well as hornblende rimming clinopyroxene in the matrix, and were inferred to have formed at ∼620 °C and ∼4.2 kbar. For the metapelitic gneiss, the metamorphic peak assemblages are the garnet porphyroblasts plus the matrix minerals (biotite + plagioclase + quartz + ilmenite + zircon), which were estimated to have formed at ∼630 °C and ∼8.9 kbar. The mafic granulites and amphibolites record fairly similar clockwise P-T paths that include nearly isothermal decompression processes, which suggest that they experienced subduction and subsequent rapid tectonic exhumation. SIMS and LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of hornblende suggest that the metamorphism occurred at ∼430-390 Ma. Field occurrences, different protolith ages of the mafic granulites and amphibolites, and the considerable gap in peak P-T conditions between the amphibolite and mafic granulite boudinages and their country rock may suggest a mélange accumulation process during the Paleozoic caused by the Silurian-Devonian orogeny, which is possibly associated with the closure of the Liuyuan ocean, a branch of the Paleo-Asian ocean near the southern Central Asian Orogenic Belt.
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, Matthias; Klitscher, Nicolai; Halama, Ralf; Wirth, Richard; Morales, Luiz
2017-04-01
At the slab-mantle interface in subdution zones fluids released from the downgoing plate infiltrate into a mechanical mixture of rocks with different chemical compositions, different hydration states and different rheological behaviour resulting in a highly reactive mélange within a steep temperature gradient. Fluid pathways, reaction mechanisms and reaction rates of such fluxes, however, are poorly known, although these parameters are thought to be crucial for several seismic phenomena, such as those commonly referred to as slow earthquakes (e.g., episodic tremor and slip (ETS)). We discovered syn-metamorphic fluid-pathways in the form of interconnected metamorphic porosity in eclogite and blueschist facies mélange rocks from the Franciscan Complex near Jenner, CA. The sampled rocks occur as rigid mafic blocks of different sizes (cm to decametre) in a weak chlorite-serpentine matrix interpreted to be an exhumed slab-mantle interface. Some of these mafic blocks record reactive fluid infiltration that transforms dry eclogite into hydrous blueschist with a sharp reaction front clearly preserved and visible from outcrop- down to µm-scale. We can show that a number of interconnected fluid pathways, such as interconnected metamorphic porosity between reacting omphacite and newly formed sodic amphibole enabled fluid infiltration and interface coupled solution-reprecipitation reactions at blueschist facies conditions. We investigated the different types of fluid pathways with TEM and visualized their interconnectivity with 3D focused ion beam (FIB) sections. The eclogitic parts of the samples preserve porous primary omphacite as a product of amphibole and epidote breakdown during subduction. This primary porosity in omphacite I results from a negative volume change in the solids during amphibole and epidote dehydration. The resulting pores appear as (fluid filled) elongated inclusions the orientations of which are controlled by the omphacite lattice. During decompression of the rocks these inclusions became interconnected by brittle fractures that allowed a first fluid influx and the precipitation of new omphacite (II) within the fracture network and along the rims of the primary omphacite. The (second) metamorphic/metasomatic porosity occurs along the reaction surfaces between omphacite and sodic amphibole as well as within omphacite grains where new omphacite (III) is formed. This interconnected pore network associated with the re-hydration reaction is up to 1µm but mostly between 50 and 200nm wide. Reacting omphacite is preferentially consumed in 00-1 direction and has a rugged, often needle-like surface. In contrast, product surfaces (omphacite III and sodic amphibole) are relatively smooth indicating dissolution of older omphacite (I and II) and re-precipitation of omphacite III as well as the formation of sodic amphibole. Within some of the pores amorphous silica-rich material containing smaller amounts of Al, Ca, Fe and Mg, can be found as worm-like precipitates and as coatings on top of the needle-like omphacite surface. Phase relations, textures as well as overprinting relations clearly show that the porosity is syn-metamorphic under blueschist-facies conditions. Although difficult to constrain in the samples porosity is likely between 1-5 volume%.
NASA Astrophysics Data System (ADS)
Caby, Renaud; Sial, Alcides N.; Ferreira, Valderez P.
2009-02-01
Unusual high-pressure inner thermal aureoles are described from the Minador and Angico Torto epidote-bearing tonalitic plutons that emplaced into greenschist-facies metasedimentary rocks of the Neoproterozoic Cachoeirinha-Salgueiro belt, northeastern Brazil. The foliated pelitic hornfelses display the mineral assemblage garnet, kyanite, staurolite, muscovite, biotite, plagioclase ± quartz. Rare fibrolite is only found very close to the contacts. Hornfelses display steep mineral lineations and steeply-dipping foliations concordant with magmatic contacts. Leucocratic veinlets containing quartz, oligoclase, garnet, kyanite, staurolite, rutile and ilmenite suggest that limited melting conditions were reached very close to magmatic contacts ( T ⩾ 650 °C, P around 8 kbar). These high-pressure hornfelses form a few meters thick, rigid envelopes around the two plutons. Contrary to known examples of kyanite-bearing hornfelses that recorded high-temperature decompression, the nearly isobaric cooling down to ca. 450 °C is constrained by 3.20-3.30 Si contents of retrogressive phengites from both inner hornfelses and ductilely-deformed tonalite at the pluton margins. Isograds and bathograds are, therefore, apparently telescoped due to HP/LT shearing, possibly caused by subsequent differential vertical movements affecting these two solidified plutons. The unusual depth of emplacement of these syn-kinematic calc-alkaline plutons is explained by a tentative geodynamic model involving a pre-620 Ma-subduction setting. Resumen Las aureolas internas que rodean dos plutones tonalíticos emplazados dentro de rocas cajas en facies esquistos verdes del Cinturón-plegado Cachoeirinha-Salgueiro al noreste de Brasil, contienen hornfelses pelíticos foliados con granate, kyanita, estaurolita, muscovita, biotita, plagioclasa ± cuarzo. Fibrolita es rara ó es encontrada solamente cerca de las zonas de contacto. Los hornfelses desarrollaron foliaciones concordantes con buzamiento fuerte cerca de los contactos magmáticos y muestran lineaciones minerales casi verticales. Venillas leucocraticas contienen cuarzo, oligoclasa, granate, kyanita, estaurolita, rutilo e ilmenita sugiriendo que el límite en las condiciones de fusión fueron cercanas a los contactos magmáticos ( T ⩾ 650 °C, P entorno 8 kbar). Estos hornfelses de alta presión forman una cobertura rígida de poco metros entorno a los dos plutones. Contrariamente a lo conocido en diferentes ejemplos de hornfelses con kyanita con registro de descompresión, la isóbara de enfriamiento para cerca de 450 °C está controlada por el contenido de Si 3.20-3.30 de fengitas retrógradas, en los hornfelses internos y en las márgenes de los plutones donde las tonalitas están deformadas ductilmente. Isógradas y batógradas son, por lo tanto, aparentemente telescopadas debido a cizalla de alta presión/baja temperatura, posiblemente causado por subsecuentes movimientos verticales diferenciales afectando estos dos plutones solidificados. El emplazamiento a una profundidad inusual de estos plutones calci-alcalinos syn-cinemáticos es explicado por un modelo geodinámico tentativo que involucra un escenario de subducción pre-620 Ma.
NASA Astrophysics Data System (ADS)
Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew
2015-04-01
The Precambrian granulite facies rocks of Lindås Nappe, Bergen Arcs, Caledonides of W.Norway are partially hydrated at amphibolites and eclogite facies conditions. The Lindås Nappe outcrop over an area of ca 1000 km2 where relict granulite facies lenses make up only ca 10%. At Hillandsvatnet, garnetite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (70%) and clinopyroxene (30%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. This setting allows us to assess the mechanism of fluid transport through an initially low permeability rock and how this induces changes of texture and element transport. The replacement of garnet and clinopyroxene is pseudomorphic so that the grain shapes of the garnet and clinopyroxene are preserved even if when they are completely replaced. This requires that the reactive fluids must pass through the solid crystal grains and this can be achieved by an interface coupled dissolution-precipitation mechanism. Porosity generation is a key feature of this mechanism (Putnis and Austrheim 2012). The porosity is not only a consequence of reduction in solid molar volume but depends on the relative solubilities of parent and product phases in the reactive fluid. Putnis et al. 2007 and Xia et al. 2009 have shown that even in pseudomorphic reactions where the molar volume increases, porosity may still be generated by the reaction. This is fundamental in understanding the element mobility and the mass transfer in a low permeability rock even more when the bulk rock composition of these two rocks stay unchanged; except a gain in water during amphibolitisation. The textural evolution during the replacement of garnet by pargasite, epidote and chlorite and pyroxene by hornblende and quartz in our rock sample conforms to that expected by a coupled dissolution-precipitation mechanism. SEM and Microprobe analysis coupled with the software XMapTools V 1.06.1 .(Lanari et al., 2014) were used to quantify the local mass transfer required during the replacement processes and to identify the importance of fluid in metamorphic reactions. Lanari, P., Vidal, O., Andrade, V. de, Dubacq, B., Lewin, E., Grosch, E.G., and Schwartz, S., 2014, XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. In: Computers & Geosciences, v. 62, p. 227-240. Putnis A, Austrheim H (2012) Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In: Metasomatism and the chemical transformation of rock; the role of fluids in terrestrial and extraterrestrial processes, Springer pp 141-170. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180: 1783-1786. Xia F, Brugger J, Chen G, Ngothai Y, O'Neill B, Putnis A, Pring A (2009) Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite, Geochim Cosmochim Acta 73: 1945-1969. ase fill in your abstract text.
Metal mobilization under alkaline conditions in ash-covered tailings.
Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina
2014-06-15
The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona
2016-02-01
Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems.
NASA Astrophysics Data System (ADS)
Soder, Christian; Ludwig, Thomas; Schwarz, Winfried; Trieloff, Mario
2017-04-01
Crustal xenoliths entrained in post-collisional shoshonitic lamprophyres from the Variscan Odenwald (Mid-German Crystalline Zone, MGCZ) include felsic granulites (garnet, quartz, plagioclase, K-feldspar, biotite, omphacite, rutile) and basaltic eclogites (omphacite, garnet, quartz, kyanite, phengite, epidote, rutile). Classical thermobarometry, Zr-in-rutile thermometry and equilibrium phase diagrams reveal temperatures of 700-800°C and pressures of 1.7-1.8 GPa. Both lithologies record isothermal decompression resulting in partial melting at still elevated pressures (1.3-1.5 kbar) before entrainment into the magma. The development of diverse fine-grained microstructures is linked to the interaction with the rising melt. The eclogitic garnet preserves compositional sector zonation patterns, which indicate rapid crystal growth, shortly followed by overgrowth/recrystallization during decompression. The preservation of these zonation patterns indicates crystallization immediately before the lamprophyre magmatism. These findings are supported by SIMS U-Pb dating of zircon rims, which gave ages of 330±3 Ma for both lithologies, indistinguishable from the published age of lamprophyre emplacement. Therefore, the xenoliths are a unique document of the late Variscan collisional process with marked crustal thickening to 60 km and a subsequent decompression event. Magmatic protolith ages are 430 Ma for the basaltic eclogite and 2.1 Ga for the felsic granulite. Silurian magmatism is well established within the MGCZ while the Paleoproterozoic age represents a hitherto unknown magmatic event.
Spectroscopic study of inclusions in gem corundum from Mercaderes, Cauca, Colombia
NASA Astrophysics Data System (ADS)
Zeug, Manuela; Rodríguez Vargas, Andrés Ignacio; Nasdala, Lutz
2017-03-01
Mineral inclusions in gem corundum from Mercaderes, Cauca, Colombia, were investigated non-destructively using Raman and photoluminescence spectroscopy, with special focus lying on phases containing radioactive elements. Besides abundant rutile, the minerals zircon, apatite, feldspar, and an epidote-group species, most probably allanite-(Ce), were found. The latter is detected easily from its characteristic Nd3+ emission pattern, which may prove useful in future provenance studies. Zircon inclusions range from well crystalline to moderately radiation damaged [FWHM (full width at half band maximum) of the ν 3(SiO4) Raman band 1.8-10.9 cm-1]. Both the zircon inclusions and their neighbouring host corundum are affected by compressive stress, which is assigned to (1) heterogeneous volume expansion of the host-inclusion couple upon pressure release during the uplift following primary growth and (2) volume expansion of the zircon inclusion due to the accumulation of self-irradiation damage. Internal stress of zircon inclusions averages 1.1 GPa. Heat treatment of corundum leads to structural reconstitution of zircon (narrowed zircon Raman bands with FWHMs in the range 1.8-2.7 cm-1) and accompanying stress release in the adjacent corundum (indicated by downshifts of the R 1 emission of Cr3+). The observation of broadened Raman band of zircon inclusions therefore allows one to exclude high-temperature enhancement of the host corundum.
NASA Astrophysics Data System (ADS)
Dehbandi, Reza; Moore, Farid; Keshavarzi, Behnam
2017-05-01
The concentration of fluorine, major, trace and rare earth elements (REEs) were used to estimate the probable sources and provenance of fluorine in the soils of an endemic fluorosis belt in central Iran. Total fluorine (TF) in soils varied from 146 to 406 mg/kg with a mean of 277.5 mg/kg. Calculated enrichment factor (EF) and single factor pollution index (SFPI) revealed that the majority of soil samples were moderately contaminated by fluorine. The very strong positive correlation of TF with weathering indices and soil's fine sized fractions indicated that chemical weathering and alteration of parent rocks/soils are the main controlling factors of fluorine behavior in soils. Fluorine affinity to immobile transition trace elements and REEs suggested the role of heavy minerals as the potential F host phases. Modal mineralogy along with SEM-EDX analysis indicated that apatite, fluorapophyllite, epidote, biotite, muscovite and chlorite, as well as, clay minerals are the main F-bearing minerals in the studied soils. Discriminant, bivariate and ternary diagrams of elemental compositions displayed similar geochemical signature of soils to intermediate-acidic rocks and local shales. Based on the weathering indices, soils were immature and showed a non-steady state weathering trend from upper continental crust (UCC), acidic and intermediate igneous source rocks towards shale composition possibly due to mixing of moderately weathered and un-weathered sources of different primary compositions.
NASA Astrophysics Data System (ADS)
Dill, Harald G.; Weber, Berthold
2013-12-01
The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineralized sites. The various maps were designed based on the "Chessboard classification scheme of mineral deposits" proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin-tungsten, beryllium, lithium, zinc, calcium, boron, fluorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite-andalusite, corundum-spinel - diaspore, diamond, vermiculite-pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the deposition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and link them to gemological databases.
NASA Astrophysics Data System (ADS)
Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.
2017-12-01
The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.
Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Cherkose, Biruk Abera; Mizunaga, Hideki
2018-03-01
Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.
Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran
NASA Astrophysics Data System (ADS)
Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal
2016-04-01
Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal fluids. The high fluorine content of the apatite at Khanlogh may testify to the presence of Ti-fluoride complex in the fluids. Formation of apatite crystals was concurrent with development of titanium lamellae in magnetite. The apatite possesses high REE content which is possibly associated with monazite inclusions. The SEM studies better show these inclusions are occasionally present at the margin of apatite crystals and veins. Based upon field relations, microscopic examinations, and the results of XRD analyses, sodic (albite), propylitic (epidote, chlorite, calcite), and argillic (montmorillonite) alterations are developed in the study area. The principal minerals in these alteration zones are albite, epidote, sericite, chlorite, quartz, calcite, and montmorllonite. Mineralogy, alteration, geochemistry, structure, and texture of the ores at Khanlogh indicate that the magnetite and apatite were chiefly formed by hydrothermal solutions which were enriched in iron mainly transported by F- and Cl- rich fluids. Reference Hou,,T., Zhaochong, Z., Timothy, K., (2011). Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore geology review, 43, 333-346. Purtov, V.K., Kotelnikova, A.L. (1993). Solubility of titanium in chloride and fluoride hydrothermal solution. International Geology Review 35, 274 -287.
Raman counting of heavy minerals in turbidites: Indus Fan, IODP Expedition 355
NASA Astrophysics Data System (ADS)
Andò, Sergio
2017-04-01
Raman spectroscopy is an innovative tool with tremendous potential. Thorny long-standing problems that cannot be solved confidently with a polarizing microscope alone, such as the determination of opaque heavy minerals or of detrital grains as small as a few microns, can finally be addressed. Heavy-mineral species commonly found in sediments convey specific information on the genesis of their source rocks and are therefore crucial in provenance diagnoses and palaeotectonic reconstructions. A high-resolution mineralogical study of Indus Fan turbiditic sediments cored during IODP Expedition 355 (Arabian Sea Monsoon) in the Laxmi Basin was carried out to investigate and quantify the different compositional signatures of sand and silt fractions. Silt and sand in turbidite deposits recovered at IODP Sites U1456 and U1457 were chosen as the best natural archive for this source-to-sink study. An integrated mineralogical dataset was obtained by coupling traditional and innovative single-grain heavy-mineral analyses. Reliable quantitative results even in the medium to fine silt classes, which represent the dominant sediment sizes encountered in the recovered cores, were obtained by point-counting of single grains under the microscope assisted by Micro-Raman spectroscopy. Preliminary data from the studied turbidites document rich and diverse heavy-mineral assemblages in both sand and silty-sand fractions. Multiple varietal studies of amphibole, epidote and garnet varieties, representing the dominant heavy-mineral trial in orogenic detritus derived from collided ranges such as the Himalaya, were performed to highlight the wide unexplored potential of Raman spectroscopy when applied to provenance studies. Discriminating within the isomorphous series of garnets is possible, and diverse pyralspite and ugrandite garnets are distinguished by the position of characteristic peaks found at high frequencies and caused by Si-O stretching modes (873-880 cm-1 in ugrandites, 907-926 cm-1 in pyralspites; Bersani et al., 2009; Andò et al., 2009). Raman discrimination of amphibole varieties is also possible and the diagnostic position and shape of the more intense OH stretching bands (frequencies between 3600 and 3700 cm-1) are particularly helpful (Vezzoli et al., 2016). Raman discrimination of epidote-group minerals was tackled by using a new data set of the characteristic vibrational modes in the high-frequency region to facilitate distinction from other silicates and distinguish different varieties. A protocol to separate heavy minerals from the silt fraction, starting from a few grams of sediments only, was developed at the Laboratory for Provenance Studies of Milano-Bicocca. An appropriate data base of Raman spectra of detrital minerals is essential to apply this method routinely in future provenance studies of deep-sea turbidites. Such a new methodological approach plays a potentially key role to differentiate among the diverse Himalayan versus Indian Peninsular sources of detritus and opens up a new frontier for future studies of the largely unexplored deep-marine sedimentary record. Cited references S. Andò, D. Bersani, P. Vignola, E. Garzanti, 2009. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochimica Acta Part A 73, 3, 450-455. D. Bersani, S. Andò, P. Vignola, G. Moltifiori, I.G. Marino, P.P. Lottici, V. Diella, 2009. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochimica Acta Part A 73, 3, 484-491. G. Vezzoli, E. Garzanti, M. Limonta, S. Andò, S. Yang, 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology 261, 177-192.
NASA Astrophysics Data System (ADS)
Moustaka, Eleni; Soukis, Konstantinos; Huet, Benjamin; Lozios, Stylianos; Magganas, Andreas
2014-05-01
The Attic-Cycladic complex (central Aegean Sea, Greece) experienced profound extension since at least the Oligo-Miocene boundary during which the previously thickened crust was reworked by a series of detachments forming the NE directed North Cycladic Detachment System (NCDS) and the SSW directed West Cycladic Detachment System (WCDS). South Evvia Island is located at the northwestern part of the Attic Cycladic complex linking the highly thinned and polymetamorphosed central part of the complex with mainland Greece. Furthermore, greenschists-facies retrograde metamorphism has only partially overprinted the HP mineral assemblages. Consequently, it is an ideal area to study tectonic processes associated with subduction, HP metamorphism and subsequent exhumation from eclogitic depths to the surface. Geological mapping in 1:2:000 scale revealed that the tectonostratigraphy of Mt. Ochi includes three distinct units all metamorphosed in HP conditions followed by greenschist facies overprint. These units are from top to bottom a) the Ochi Unit, a thick metavolcanosedimentary sequence with some intensely folded cipoline marble intercalations and isolated occurrences of metabasic rocks b) the ophiolitic mélange (metagabbros, metawherlites, peridotites, metabasites within a metasedimentary+serpentinite matrix) and c) the lowermost Styra Unit, a cipoline marble-dominated unit with thin mica schists and rare quartzitic layers often boudinaged. The thrust fault that was responsible for the juxtaposition of these three units acted in an early stage during HP metamorphism and it was isoclinally folded and sheared by the following syn-metamorphic deformation events. Detailed structural study in meso- and microscopic scale combined with petrological and geochemical analyses of the Mt Ochi rocks led to the distinction of at least three syn-metamorphic and two post-metamorphic deformation episodes that affected all units. The oldest structure identified is a relic foliation formed by the mineral assemblage Na-amphibole + lawsonite seen as inclusion in epidote porphyroblasts within the melange. It could represent a structure of the prograde path but it could also have formed during the peak HP event. This is followed by successive folding episodes that are related to axial plane foliations and a ~E-W intersection/stretching lineation formed by typical blueschist- to epidote-blueschist facies mineral assemblages. The main foliation that can be observed in all three units is a greenschist-facies axial plane foliation accompanied by a ~ENE-WSW stretching lineation. The shear sense during the prograde path is constantly towards the WSW. In the greenschists-facies an unambiguous top-to ENE can be observed mostly in mylonitic rocks. The following deformation episodes include semi-brittle to brittle structures (shear bands brittle open folds, crenulation cleavage, and faults with increasingly higher-angle) that are not as penetrative and record the passage of the units through the brittle-ductile transitions and to higher structural levels. The kinematics of these late episodes is also towards the NE. Based on the above, the Mt Ochi HP units exhibit a common tectonometamorphic evolution since at least the early stages of the prograde path. The Ochi Unit/Styra Unit contact is a structure that formed prior to or during peak HP metamorphism and therefore it couldn't have served as the normal fault to an extrusion wedge.
Petrography and Geochemistry of the Zamora Batholith in the south of the sub-Andean zone (Ecuador)
NASA Astrophysics Data System (ADS)
Villares, F. M.
2013-05-01
The Zamora Batholith is an intrusive complex that is located in the extreme south-east of Ecuador. It has dimensions of 200 x 50 km approximately. It is mainly located in the Zamora Chinchipe province from which it takes its name. This study consisted in the petrographic and geochemical characterization of the Zamora Batholith in the area covered by 1: 50,000 geological maps of Centro Shaime, Guayzimi, Paquisha, Los Encuentros and El Pangui. Fieldwork was done by the "Proyecto Mapeo Geológico escala 1:50.000 (zonas prospectivas mineras)" of the Instituto Nacional de Investigación Geológico, Minero, Metalúrgico of Ecuador. This research was performed with 59 thin sections and 10 whole - rock chemical analysis done in the C.I.C of the Granada University. The Zamora Batholith intrudes Triassic to Jurassic volcanic rocks. It is overlaid by sandstones of the Hollin Formation of the Upper Aptian age and shale and limestone from the Napo Formation. Post-cretaceous deposits of ash and lava flows of andesitic to rhyolitic compositions cover the batholith. The petrography of the Zamora Batholith ranges from tonalite to monzogranite with the same qualitative mineralogy. The rocks are composed by different proportions of plagioclase, amphibole, feldspar K, quartz, biotite, opaque, pyroxene and epidote, as accessory minerals has zircon, sphene and apatite. To the south of the Conguime and Guayzimi towns, the dominant petrography is medium to coarse grained amphibole granodiorite with tonalitic and monzogranitic subordinates. To the north monzogranites are dominant rocks and subordinate granodiorites. To the East of Santa Elena the sienogranites are associated with El Hito porphyritic granite that intrudes to Zamora Batholith. Frequently the batholith has propylitic alteration; which produces a primary association of chlorite, epidote, calcite and pyrite. The granitoids have dioritic to granitic compositions (60.09 to 73.6 wt.% SiO2) and are I - type, medium to high-K calc-alkaline. They have affinities slightly peraluminous (ASI = 1,00 to 1,16). CaO is moderate to high (CaO ≈ 3.58), the alkalis have averaged of Na2O≈3,09 and K2O≈3,28. The concentrations of Na2O/K2O are moderate ranging between 0.7 and 1.7, with an average value of 1.04. The contents of Ba and Sr are moderate. The content of Zr is low (61 to 161 ppm). The multi-element diagrams normalized to chondritic values and to primitive mantle show Nb and Ta negative anomaly. Considering the multi-element diagrams, the rocks are slightly enriched in LILE (Large Ion-Lithophile-elements) mainly in Rb, Cs and Ba and slight positive anomalies in K and Sr, other incompatible elements have negative anomalies such as HFSE ( High Field Strength Elements) Ti, Nb, Ta. The values of (Eu/Eu*)N are in the range of 0.54 to 1.03. (Eu* = (SmN*GdN)1/2). Correlations between major element and silica, and relationships between trace elements indicate that fractional crystallization is a dominant process in the magma evolution. Most granitoids are also slightly peraluminous; but we believe this characteristic is due to rock alteration. The Zamora Batolith is a plutonic complex generated within a magmatic arc in normal conditions of maturity.
The generation of HCl in the system CaCl2-H2O: Vapor-liquid relations from 380-500°C
Bischoff, James L.; Rosenbauer, Robert J.; Fournier, Robert O.
1996-01-01
We determined vapor-liquid relations (P-T-x) and derived critical parameters for the system CaCl2-H2O from 380-500??C. Results show that the two-phase region of this system is extremely large and occupies a significant portion of the P-T space to which circulation of fluids in the Earth's crust is constrained. Results also show the system generates significant amounts of HCl (as much as 0.1 mol/kg) in the vapor phase buffered by the liquid at surprisingly high pressures (???230 bars at 380??C, <580 bars at 500??C), presumably by hydrolysis of CaCl2: CaCl2 + 2H2O = Ca(OH)2 + 2HCl. We interpret the abundance of HCl in the vapor as due to its preference for the vapor phase, and by the preference of Ca(OH)2 for either the liquid phase or solid. The recent recognition of the abundance of CaCl2 in deep brines of the Earth's crust and their hydrothermal mobilization makes the hydrolysis of CaCl2 geologically important. The boiling of Ca-rich brines produces abundant HCl buffered by the presence of the liquid at moderate pressures. The resultant Ca(OH)2 generated by this process reacts with silicates to form a variety of alteration products, such as epidote, whereas the vapor produces acid-alteration of rocks through which it ascends.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Age and P-T Conditions of the Gridino eclogite in the Belomorian Province, Russia
NASA Astrophysics Data System (ADS)
Yu, Huanglu; Zhang, Lifei; Guo, Jinghui
2017-04-01
The Russian Belomorian eclogite was once regarded as Archean in age and the oldest eclogite in the world. However, its Archean age is disputed. The Gridino ecogite, the abundant eclogite in Belomorian province, is located in the southwest of the Paleoproterozoic Lapland-Kola collisional orogeny, and occurs as boudins and metamorphosed dykes within the tonalite-trondhjemite-granodiorite (TTG) gneisses. Zircons from these eclogites have magmatic cores and metamorphic rims. Metamorphic rims, which contain typical metamorphic mineral inclusions of omphacite and garnet, and are characterized by low Th/U ratios (< 0.035) and flat HREE patterns, yield a U-Pb age of ca. 1.90 Ga. The δ18O values of 6.23 to 6.80 ‰ of zircon rims are acquired during the eclogite-facies metamorphism. On the contrary, zircon cores display higher Th/U ratios 0.18-0.45, negative Eu anomalies and strong enrichment in HREE and have Neoarchean U-Pb ages of ca. 2.70 Ga. δ18O values of 5.64 to 6.07 ‰ suggest the possibility of crystallization from slightly evolved mantle-derived magmas. A three-stage metamorphic evolution has been recognized in the Gridino eclogite based on phase equilibria modeling: prograde epidote amphibolite facies, peak eclogite facies and retrogressed high-pressure granulite facies. The peak metamorphic P-T conditions (790-815 °C, 21-22 kbar) give an apparent geothermal gradient of 11-12 °C/km for Lapland-Kola collisional orogeny during Paleoproterozoic. The Gridino eclogite is not Archean, but the known oldest Paleoproterozoic eclogite, which may respond to the assembly of Columbia supercontinent.
Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.
1991-01-01
In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.
Fehlhaber, Kristen L.; Bird, Dennis K.
1991-01-01
Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, δ18O of plagioclase varies from +0.3‰ to -5.8‰, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in δ18O, from 5.0‰ to 3.8‰ and values of δ18Opyroxene are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of <500-600°C, altering the gabbros to assemblages of talc + chlorite + actinolite ± epidote ±albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and 18O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.
The mineral resources of the Sierra Nevada de Santa Marta, Columbia (Zone I)
Tschanz, Charles McFarland; Jimeno V., Andres; Cruz, Jaime B.
1970-01-01
The Sierra Nevada de Santa Maria on the north coast of Colombia is an isolated triangular mountain area that reaches altitudes of almost 19,000 feet. The exceedingly complex geology is shown on the 1:200,000 geologic map. Despite five major periods of granitic intrusion, three major periods of metamorphism, and extensive volcanic eruptions, metallic deposits are small and widely scattered. Sulfide deposits of significant economic value appear to be absent. Many small copper deposits, of chalcocite, cuprite, malachite, and azurite are found in epidotized rock in Mesozoic redbeds and intercalated volcanic rocks, but their economic potential is very small. Deposits of other common base metals appear to be absent. The most important metallic deposits may prove to be unusual bimineralic apatite-ilmenite deposits associated with gneissic anorthosite. The known magnetite deposits are too small to be exploited commercially. Primary gold deposits have not been identified and the placer deposits are uneconomic and very small. The largest and most important deposits are nonmetallic. Enormous reserves of limestone are suitable for cement manufacture and some high-purity limestone is suitable for the most exacting chemical uses. Small deposits of talc-tremolite could be exploited locally for ceramic use. The important noncoking bituminous coal deposits in the Cerrej6n area are excluded from this study. Other nonmetallic resources include igneous dimension stone in a variety of colors and textures, and agricultural dolomite. There probably are important undeveloped ground water resources on the slopes of the wide Rancheria and Cesar valleys, which separate the Sierra Nevada from the Serrania de Persia.
NASA Astrophysics Data System (ADS)
Wildgoose, M.; Roeske, S.; Vervoort, J. D.
2011-12-01
Although muscovite is widely accepted as a reliable geochronometer, 40Ar/39Ar dates of K-white mica from blueschist facies rocks have proven difficult to interpret because of chemically mixed populations. We plan to use the in-situ 40Ar/39Ar UV laser ablation technique to address whether single crystals of chemically heterogeneous K-white mica can provide reliable ages of metamorphic events. This in-situ method allows for more detailed study of K-white mica than bulk separates, as individual crystals can be analyzed on a microstructural basis. Zoned K-white mica commonly occurs in blueschist rocks, but can be difficult to link to a P-T-t path as both isothermal decompression and isobaric heating could result in the formation of phengite cores and muscovite rims. Garnet-glaucophane-phengite-epidote blueschists from the Ruby Terrane, west-central Alaska, have zoned amphibole and K-white mica, with the latter containing phengite cores with more muscovitic rims. In-situ 40Ar/39Ar UV laser ablation of single K-white mica crystals from this area, in conjunction with Lu/Hf dating of co-occurring garnets, will allow a delineation of P-T paths by comparing garnet ages, which record the highest temperature on a P-T path, to the ages of the K-white mica cores and rims. Results will be presented at the meeting in December. Results from these dating techniques will be presented at the meeting in December.
Schiffman, P.; Williams, A.E.; Evarts, R.C.
1984-01-01
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.
First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.
2012-06-01
The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.
Holocene deposits in the Mangyshlak Peninsula, North Caspian Sea region
NASA Astrophysics Data System (ADS)
Bezrodnykh, Yu. P.; Deliya, S. V.; Romanyuk, B. F.; Fedorov, V. I.; Sorokin, V. M.; Luksha, V. L.
2014-07-01
Comprehensive analysis of the data of high-precision seismoacoustic profiling, drilling and sampling of deposits using seabed corers, biostratigraphic studies, and radiocarbon age data was performed for the first time for Mangyshlak sediments in several bottom sites of the North Caspian. It was found that the Mangyshlak sediments comprise numerous linearly stretched depressions of 5-10 m in depth (morphologically similar to modern substeppe ilmen areas in the Volga River delta), which are covered by the Novocaspian sedimentary cover, and river incisions (among them the largest Volga River valley). In addition, the Mangyshlak sediments comprise the deltaic alluvial fans of different sizes along the shelf zone of the North Caspian. Analysis of mollusks and biogenic remains indicates that accumulation of the Mangyshlak sediments occurred in freshwater and slightly salty water environments under various hydrodynamic and hydrochemical conditions. According to radiocarbon dating of organic matter, the Mangyshlak sediments formed during sea regression in the range of 10-8 ka (isotopic age) or 11.5-8.5 ka (calendar age). Several types of sediments are distinguished: clayey-carbonate sediments, enriched with organic matter up to the formation of sapropel and peat, accumulated at the lowest sea level; weakly calcareous silty-clayey silts, formed during the subsequent intense filling of paleodepressions with terrigenous material. The features of the mineral composition of sediments are as follows: polymineral composition of clayey material with a high proportion of hydromica and disordered mixed-layered formations, a high content of minerals of the epidote group, amphiboles, and other accessory minerals. All of this indicates a genetic relationship between the Mangyshlak sediments and the Volga terrigenous material.
Kim, J.; Coish, R.; Evans, M.; Dick, G.
2003-01-01
Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.
NASA Astrophysics Data System (ADS)
Salem, S. M.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N. M.; Ahmed, S. E.
2016-05-01
The present study aims at exploration of new gold occurrences in the alteration zones at Dungash district. Processed ASTER images band ratios 7/6 × 4/6 and (7 + 9/8), field geology and mineralogical and geochemical data help characterize three types of alterations in three areas 1 to 3 that may be targeted for Au exploration. Area1 confined to the metavolcanics located in the SE of Dungash gold mine and revealed silicified and sericitized type alterations, composed of quartz, epidote, chlorite, biotite and opaque minerals mainly pyrite and chalcopyrite. Area2 occurs in the gabbro-diorite rocks at Abu Meraiwa area NE of Dungash gold mine, which are rich in kaolinite, illite, sericite, pyrite, arsenopyrite and chalcopyrite that record kaolinitized alteration. Area3 is hosted in carbonaceous listwaenized serpentinite thus indicating the role of listwaenitization type alteration in ore genesis. It is composed of calcite, chromite, pyrite, arsenopyrite, chalcopyrite and Ni-bearing sulphides. Au contents in area 1 range between 0.12 and 14.91 ppm, and between 6.1 and 16.3 ppm in area 2, while gold values in area 3 vary from <0.01 to 0.03 ppm. Dungash district is comprised of Pan-African assemblages of ophiolitic ultramafics thrusted over the island arc metavolcanics of dacitic- andesite composition. Gabbro-diorite rocks are intruded in the ultramafics and the acidic metavolcanics as well as diorite-quartz diorite suite intruded in the intermediate metavolcanics. Several acidic dykes, granitic dykes and quartz veins cut through the different rocks types.
Petrologic Constraints on the Exhumation of the Sierra Blanca Metamorphic Core Complex (AZ)
NASA Astrophysics Data System (ADS)
Koppens, K. M.; Gottardi, R.
2017-12-01
The Sierra Blanca metamorphic core complex (SBMCC), located 90 miles west of Tucson, is part of the southern belt of metamorphic core complexes that stretches across southern Arizona. The SBMCC exposes Jurassic age sedimentary rocks that have been metamorphosed by intruding Late Cretaceous peraluminous granites and pegmatites. Evidence of this magmatic episode includes polysythetic twinning in plagioclase, albite exsolution of potassium feldspar resulting in myrmekitic texture, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary (Miocene?) tectonic fabric, associated with the exhumation of the Sierra Blanca metamorphic core along a low-angle detachment fault, forming the SBMCC. The NW-SE elongated dome of metamorphic rocks forms the footwall of the detachment shear zone, and is separated from the hanging wall, composed of Paleozoic and Mesozoic metasedimentary rocks, by a low-angle detachment shear zone. Foliation is defined by gneissic layering and aligned muscovite, and is generally sub-horizontal, defining the dome. The NNW-SSE mineral stretching lineation is expressed by plagioclase and K-feldspar porphyroclasts, and various shear sense indicators are all consistent with a top-to the-NNW shear sense. Lineation trends in a NNW-SSE orientation; however, plunge changes across the domiform shape of the MCC. Much of the deformation is preserved in the blastomylonitic gneiss derived from the peraluminous granite, including epidote porphyroclasts, grain boundary migration in quartz, lozenged amphiboles, mica fish, and retrograde mineral alterations. Detailed petrologic observation and microstructural analysis presented here provide thermomechanical constraints on the evolution of the SBMCC.
Eclogitic metatrondhjemites from metaophiolites of the Western Alps
NASA Astrophysics Data System (ADS)
Martin, Silvana; Tartarotti, Paola; Meyzen, Chrstine; Benciolini, Luca; Toffolo, Luca
2016-04-01
Eclogitic metatrondhjemites from metaophiolites of the Western Alps Martin S.**, Tartarotti P.*, Meyzen C. **, Benciolini L.***, Toffolo L. ** *Dipartimento di Scienze della Terra, Università degli Studi di Milano ** Dipartimento di Geoscienze, Università di Padova *** Dipartimento di Chimica, Fisica e Ambiente, Università di Udine In the Urtier valley (southern Aosta Valley, Italy), the Piemonte metaophiolites mainly consist of serpentinized peridotites including pods and boudinaged layers of Fe-metagabbro and trondhjemite transposed in the main eclogitic foliation. The contact between serpentinized peridotites and Fe-metagabbro/trondhjemite is locally lined by chloriteschist and rodingite. The high pressure parageneses in the Fe-metagabbro are omphacite-garnet-rutile-glaucophane-phengite, and in the metatrondhjemite plagioclase-quartz-phengite-clinozoisite-epidote-garnet, respectively. Bulk-rock major and trace elements in addition to O isotope analyses were performed in both rock types. Fe-metagabbros are characterized by MgO wt% ranging between 6.11 and 9.63%, ∑REE= 20-101 ppm, (La/Yb)N = 0.22-0.91; trondhjemites have SiO2 43%, Al2O3 ranging between 21 and 24%, CaO ranging between 17 and 20%, ∑REE = 172 - 272 ppm, (La/Yb)N ranging between 7.78 and 13.70. The δ18O is 5.9 ‰ in a Fe-metagabbro sample and 7.4 ‰ in a trondhjemite sample, suggesting that these rocks have been affected by a weak oceanic low temperature alteration. The high CaO content may indicate a metasomatic process which could have occurred during the oceanic stage or at high pressure conditions.
NASA Astrophysics Data System (ADS)
Zhang, Z. M.; Shen, K.; Liou, J. G.; Dong, X.; Wang, W.; Yu, F.; Liu, F.
2011-08-01
Comprehensive review on the characteristics of petrology, oxygen isotope, fluid inclusion and nominally anhydrous minerals (NAMs) for many Dabie-Sulu ultrahigh-pressure (UHP) metamorphic rocks including drill-hole core samples reveals that fluid has played important and multiple roles during complicated fluid-rock interactions attending the subduction and exhumation of supracrustal rocks. We have identified several distinct stages of fluid-rock interactions as follows: (1) The Neoproterozoic supercrustal protoliths of UHP rocks experienced variable degrees of hydration through interactions with cold meteoric water with extremely low oxygen isotope compositions during Neoproterozoic Snow-ball Earth time. (2) A series of dehydration reactions took place during Triassic subduction of the Yangtze plate beneath the Sino-Korean plate; the released fluid entered mainly into volatile-bearing high-pressure (HP) and UHP minerals, such as phengite, zoisite-epidote, talc, lawsonite and magnesite, as well as into UHP NAMs, such as garnet, omphacite and rutile. (3) Silicate-rich supercritical fluid (hydrous melt) existed during the UHP metamorphism at mantle depths >100 km which mobilized many normally fluid-immobile elements and caused unusual element fractionation. (4) The fluid exsolved from the NAMs during the early exhumation of the Dabie-Sulu terrane was the main source for HP hydrate retrogression and generation of HP veins. (5) Local amphibolite-facies retrogression at crustal depths took place by infiltration of aqueous fluid of various salinities possibly derived from an external source. (6) The greenschist-facies overprinting and low-pressure (LP) quartz veins were generated by fluid flow along ductile shear zones and brittle faults during late-stage uplift of the UHP terrane.
Bedrock Geology and Asbestos Deposits of the Upper Missisquoi Valley and Vicinity, Vermont
Cady, Wallace Martin; Albee, Arden Leroy; Chidester, A.H.
1963-01-01
The upper Missisquoi Valley and vicinity as described in this report covers an area of about 250 square miles at the headwaters of the Missisquoi River in north-central Vermont. About 90 percent of the area is forested and the remainder is chiefly farm land. The topography reflects the geologic structure and varied resistance of the bedrock to erosion. Most of the area is on the east limb of the Green Mountain anticlinorium, which is the principal structural feature of Vermont. The bedrock is predominantly sedimentary and volcanic rock that has been regionally metamorphosed. It was intruded before metamorphism by mafic and ultramafic igneous rocks, and after metamorphism by felsic and mafic igneous rocks. The metamorphosed sedimentary and volcanic rocks range in age from Cambrian(?) to Middle Silurian, the intrusive igneous rocks from probably Late Ordovician to probably late Permian. Metamorphism and principal folding in the region occurred in Middle Devonian time. The metamorphosed sedimentary and volcanic rocks make up a section at least 25,000 feet thick and can be divided into nine formations. The Hazens Notch formation of Cambrian(?) and Early Cambrian age is characterized by carbonaceous schist. It is succeeded in western parts of the area by the Jay Peak formation of Early Cambrian age, which is chiefly a schist that is distinguished by the general absence of carbonaceous zones; in central parts of the area the Hazens Notch formation is followed by the Belvidere Mountain amphibolite, probably the youngest of the formations of Early Cambrian age. The Ottauquechee formation, composed of carbonaceous phyllite and quartzite, and phyllitic graywacke, is of Middle Cambrian age. The Stowe formation of Late Cambrian(?) and Early(?) Ordovician age overlies the Ottauquechee and is predominantly noncarbonaceous schist, though it also contains greenstone and carbonaceous schist and phyllite. The Umbrella Hill formation of Middle Ordovician age is characteristically a conglomerate in which the mineral chloritoid is common. The overlying Moretown formation, also of Middle Ordovician age, contains granulite and slate, also greenstone and amphibolite of the Coburn Hill volcanic member. The Shaw Mountain formation, made up of conglomerate, phyllite, and limestone, is the oldest Silurian unit. The Shaw Mountain formation is succeeded by the Northfield slate of Middle Silurian age. The igneous rocks of the region include various ultramafic plutonic rocks, such as dunite, peridotite, and serpentinite, probably of Late Ordovician age; sills and nearly concordant dikes of metagabbro of Late Ordovician age; biotite granite plutons or Middle or Late Devonian age, most notably on Eltey Mountain; and hypabyssallamprophyre, probably of late Permian age. Metamorphic zoning is shown by the distribution of rocks of the epidote-amphibolite facies and the greenschist facies in and near the Green Mountains, and near Coburn Hill and Eltey Mountain. Metasomatism related to regional metamorphism has produced porphyroblasts and quartz segregations in the sedimentary and volcanic rocks, and steatitization and carbonatization of serpentinite. Contact metamorphism has formed rocks of the epidote-amphibolite facies near granite plutons, and probably calc-silicate rock at the contacts of ultramafic plutons. The axial anticline of the Green Mountain anticlinorium and other anticlines and synclines to the east are the major longitudinal structural features of the area. These structures are complicated by transverse folds, particularly a syncline in the vicinity of Tillotson Peak. Early minor cross folds that are best developed in the Hazens Notch formation are believed to be genetically related to the transverse folds. The axial planes of the cross folds are folded about the axes of the later longitudinal folds of the Green Mountain anticlinorium. The longitudinal and transverse fold systems probably formed in the same episode of defor
NASA Astrophysics Data System (ADS)
Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.
1983-10-01
The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.
Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.
2009-01-01
We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite-bearing Zn skarn. Cu-Zn-Pb-Ag-Au showings at the Oscar pros-pect occur in marble-hosted magnetite and pyrrhotite skarn that is spatially related to the stocks, dikes, and sills of the Early Jurassic syenite of Mount Veta. Mineralized rocks at the Eva Creek Ag-Zn-Pb-Cu prospect are within 1.5 km of the Mount Veta pluton, which is epidotized and locally altered along its contact with metamorphosed country rock east of the prospect. We report five new sulfide Pb-isotopic analyses from the LWM, Oscar, and Eva Creek prospects and compare these sulfide Pb-isotopic ratios with those for sulfides from nearby deposits and prospects in the Yukon-Tanana Upland and with feldspar Pb-isotopic ratios for Mesozoic plutons in the region. Disparities between the Pb-isotopic ratios for sulfides and igneous feldspars are consistent with a carbonate-replacement model for both the LWM and Eva Creek prospects. The presence in the Fortymile district of base-metal sulfides within both calc-silicate-rich skarns and the calc-silicate-free carbonate replacement deposits may reflect multistage mineralization by magmatic-hydrothermal systems during the emplacement of two or more magmatically unrelated igneous intrusions. Alternatively, all of the mineralized occurrences could be products of one regionally zoned system that formed during the intrusion of a single pluton. In addition to the likely origin of some of the base-metal occurrences by intrusion-related hydrothermal fluids, proximity of the LWM prospect to the northeast-striking, high-angle Kechumstuk Fault suggests that fluid flow along the fault also played an important role during carbonate-replacement mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyne, C.D.
1987-05-01
Petrologic analysis of 24 medium to coarse-grained sandstone samples, collected from a 2950-m submarine fan complex of late Campanian-early Maestrichtian age exposed within Mono Creek Canyon, reveal commonly calcite cemented, poorly sorted, subangular biotic arkoses. Framework averages 86.0%. Matrix - primarily detrital quartz, feldspar, and lithic fragments finer than 0.03 mm and mechanically and chemically altered phyllosilicates and labile aphanites - averages 8.9%. Calcite cement averages 4.2%. Porosity averages 0.9%. Gazzi-Dickinson point counts of 400 framework grains per slide yield modal averages of Q/sub 37.7/ F/sub 49.8/ L/sub 12.5/; Qm/sub 27.4/ F/sub 49.8/ Lt/sub 22.8/; Qm/sub 35.6/ P/sub 43.7/ K/submore » 20.7/; and Qp/sub 49.4/ Lv/sub 22.1/ Ls/sub 28.5/. P/F averages 0.68, Lv/L averages 0.45, Qp/Q averages 0.27, and detrital phyllosilicate, predominantly biotite, averages 5.7% of total framework. Neither primary nor secondary parameters vary systematically with stratigraphic position. Miscellaneous constituents average 1.3% of framework and include epidote, garnet, amphibole, pyroxene, zircon, and tourmaline as well as carbonaceous blebs, opaque minerals, and unidentifiable lithic fragments. Separate analysis of 100 medium sized quartz grains per slide indicates a mean population of 63.0% non-undulatory monocrystalline quartz, 9.1% undulatory monocrystalline quartz, 10.1% polycrystalline quartz of 2 to 3 crystals, and 17.9% polycrystalline quartz composed of more than 3 crystals. Modal data, plotted upon provenance discrimination diagrams, indicate a plutonic provenance transitional between a dissected magmatic arc and uplifted basement terrane. Paleocurrent data, neglecting possible clockwise rotation, indicate sediment transport from the north.« less
The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran
NASA Astrophysics Data System (ADS)
Nabatian, Ghasem; Li, Xian-Hua; Wan, Bo; Honarmand, Maryam
2017-11-01
The geochemical and isotopic investigations were provided on the Upper Eocene Senj mafic intrusion and Mo-Cu mineralization to better understand the tectono-magmatic evolution and metallogeny of the central part of the Alborz magmatic belt. The Senj mafic intrusion is composed of gabbro to monzodiorite and monzonite in lithology, and intruded as a sill into volcano-sedimentary rocks of the Eocene Karaj Formation. The Karaj Formation consists of volcano-sedimentary rocks, such as altered crystalline to shaly tuffs. The Senj intrusion (39.7 ± 0.4 Ma) shows LILE and LREE enrichment and negative anomaly of Nb, Ta and Ti, the geochemical signatures similar to those from subduction-related mafic magmas. The Hf-O zircon analyses yield ɛHf(t) values of + 4.1 to + 11.1 and δ18O values of + 4.8 to + 6.2‰. The zircon isotopic signatures together with shoshonitic affinity in the Senj mafic samples suggest partial melting of an enriched lithospheric mantle that had already been metasomatized by slab-derived melts and fluids. The Mo-Cu mineralization mainly occurs as veins and veinlets in the volcano-sedimentary rocks of the Karaj Formation and is dominated by molybdenite with minor amounts of chalcopyrite, bornite, pyrite and tetrahedrite-tennantite. The associated gangue minerals are tremolite, actinolite, quartz, calcite, chlorite and epidote. The Senj Mo-Cu deposit formed in volcano-sedimentary rocks following the emplacement of the Late Eocene Senj sill. The source of molybdenite in the Senj deposit is dominantly from crustal materials as it is revealed by Re contents in the molybdenite minerals (0.5 to 0.7 ppm). In fact, the molybdenite occurrence may be a remobilization process related to the emplacement of the Senj mafic magma.
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
NASA Astrophysics Data System (ADS)
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; DePaolo, Donald J.
2017-11-01
Variations in the Mg, Ca, Sr, and SO4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). We present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO4 in modern seawater. At other times during the last 500 million years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ˜0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ˜1.6 over the Phanerozoic, with minima when seawater Mg and SO4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/86Sr changes. For the mid-Cretaceous, the low 87Sr/86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. The model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO4 could help explain low seawater 87Sr/86Sr.
Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.
2013-01-01
This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.
Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt
2012-01-01
Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie
2015-05-01
Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.
NASA Astrophysics Data System (ADS)
Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.
2014-12-01
Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.
Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less
Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, D.L.; Moore, J.N.; Clemente, W.C.
1996-12-31
The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine)more » deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.« less
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; ...
2017-11-06
Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less
Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist
NASA Astrophysics Data System (ADS)
Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; John, Timm; Deldicque, Damien; Ferrand, Thomas; Wang, Yanbin; Renner, Jörg; Morales, Luiz; Schubnel, Alexandre
2017-04-01
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions, using a D-DIA apparatus installed at a synchrotron beamline continuously monitoring stress, strain, phase changes, and acoustic emissions (AEs). Two distinct paths were investigated during which i) lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite-eclogite and the breakdown reaction of lawsonite was only crossed in case of the highest final temperature; ii) lawsonite broke down and the sample successively entered the stability fields of epidote-blueschist and eclogite-amphibolite but not of lawsonite-eclogite. Upon entering the Lws-Ecl stability field, samples exhibited brittle failure, accompanied by the radiation of AEs. In-situ X-ray diffraction and microstructural analysis demonstrate that fractures are topologically related to the formation of omphacite. Amorphous material was detected along the fractures by transmission-electron microscopy without evidence for free-water. Since the newly formed omphacite crystals are small compared to the initial grains, we interpret the observed mechanical instability as a transformation-induced runaway under stress triggered during the transformation from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead we suggest that grain-size reduction (transformational faulting) during the transformation from lawsonite-blueschist to lawsonite-eclogite leads to brittle failure of the deviatorically loaded samples.
Structural and Geophysical Characterization of Oklahoma Basement
NASA Astrophysics Data System (ADS)
Morgan, C.; Johnston, C. S.; Carpenter, B. M.; Reches, Z.
2017-12-01
Oklahoma has experienced a large increase in seismicity since 2009 that has been attributed to wastewater injection. Most earthquakes, including four M5+ earthquakes, nucleated at depths > 4 km, well within the pre-Cambrian crystalline basement, even though wastewater injection occurred almost exclusively in the sedimentary sequence above. To better understand the structural characteristics of the rhyolite and granite that makeup the midcontinent basement, we analyzed a 150 m long core recovered from a basement borehole (Shads 4) in Rogers County, NE Oklahoma. The analysis of the fracture network in the rhyolite core included measurements of fracture inclination, aperture, and density, the examination fracture surface features and fill minerology, as well as x-ray diffraction analysis of secondary mineralization. We also analyzed the highly fractured and faulted segments of the core with a portable gamma-ray detector, magnetometer, and rebound hammer. The preliminary analysis of the fractures within the rhyolite core showed: (1) Fracture density increasing with depth by a factor of 10, from 4 fractures/10m in the upper core segment to 40 fracture/10m at 150 m deeper. (2) The fractures are primarily sub-vertical, inclined 10-20° from the axis of the vertical core. (3) The secondary mineralization is dominated by calcite and epidote. (4) Fracture aperture ranges from 0.35 to 2.35mm based on the thickness of secondary filling. (5) About 8% of the examined fractures display slickenside striations. (6) Increases of elasticity (by rebound hammer) and gamma-ray emissions are systematically correlated with a decrease in magnetic susceptibility in core segments of high fracture density and/or faulting; this observation suggests diagenetic fracture re-mineralization.
Unraveling the history of complex zoned garnets from the North Motagua Mélange (Guatemala)
NASA Astrophysics Data System (ADS)
Barickman, M. H.; Martin, C.; Flores, K. E.; Harlow, G. E.; Bonnet, G.
2016-12-01
The Guatemala Suture Zone (GSZ) is situated in central Guatemala, between the North American and Caribbean plates. Two serpentinite mélanges straddle the Motagua Fault system: the North Motagua Mélange (NMM) and the South Motagua Mélange (SMM). In this study, chemically zoned garnet grains from four eclogite blocks from the NMM were analyzed by EMPA for major elements and LA-ICP-MS for trace elements to unravel the geological history of the eclogites. These eclogites typically consist of euhedral to subhedral garnets, partly retrogressed omphacite grains, and accessory minerals such as phengite and epidote as inclusions in garnet. EBSD was employed to examine apparent garnet inclusions in garnet. The garnet grains in NMM eclogites display complex chemical zonations: all grains roughly show a spessartine-rich core, an almandine-rich core and/or intermediate zone, and a pyrope and grossular-rich rim. Additionally, crystal resorption can be observed between the different zones, and the pyrope-grossular rim can display oscillatory zoning. Finally, grossular-rich zones (crystallographically syntactic) within garnet are present in all studied samples. REE and spider diagrams do not show any significant difference in the patterns of the different zones within the garnet, or indicating that the chemical environment from which each garnet zone grew was broadly the same. The lack of significant variation in LILE content indicates that a fluid influx during garnet growth is unlikely. Consequently, we interpret that garnet grains grew in a largely closed system; however, the presence of the grossular-rich zones, argues for occasional excursions into conditions when either two garnets crystallized or Ca-rich overgrowths that were largely resorbed prior to subsequent continued garnet growth.
NASA Astrophysics Data System (ADS)
Otmane, Khadija; Errami, Ezzoura; Olivier, Philippe; Berger, Julien; Triantafyllou, Antoine; Ennih, Nasser
2018-03-01
Located in the Imiter Inlier (Eastern Saghro, Anti-Atlas, Morocco), Ediacaran volcanic dykes have been studied for their petrofabric using Anisotropy of Magnetic Susceptibility (AMS) technique. Four dykes, namely TF, TD, FF and FE show andesitic compositions and are considered to belong to the same dyke swarm. They are oriented respectively N25E, N40E, N50E, and N10E and have been emplaced during a first tectonic event. The dyke FW, oriented N90E displays a composition of alkali basalt and its emplacement is attributed to a subsequent tectonic event. These rocks are propylitized under greenschist facies conditions forming a secondary paragenesis constituted by calcite, chlorite, epidote and sericite. The dykes TF, TD, FF and FE are sub-volcanic calc-alkaline, typical of post-collisional basalts/andesites, belonging to plate margin andesites. The FW dyke shows a within-plate basalt signature; alkaline affinity reflecting a different petrogenetic process. The thermomagnetic analyses show a dominantly ferromagnetic behaviour in the TF dyke core carried by single domain Ti-poor magnetite, maghemite and pyrrhotite. The dominantly paramagnetic susceptibilities in TF dyke rims and TD, FE, FF and FW dykes are controlled by ilmenite, amphibole, pyroxene and chlorite. The magnetic fabrics of the Imider dykes, determined by our AMS study, allows us to reconstitute the tectonic conditions which prevailed during the emplacement of these two generations of volcanic dykes. The first tectonic event was characterized by a roughly NE-SW compression and the second tectonic event is characterized by an E-W shortening followed by a relaxation recording the end of the Pan-African orogeny in the eastern Anti-Atlas.
Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet
NASA Astrophysics Data System (ADS)
Laskowski, Andrew K.; Kapp, Paul; Ding, Lin; Campbell, Clay; Liu, XiaoHui
2017-01-01
The Lopu Range, located 600 km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n = 1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic mélange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 97 ± 1 Ma) and ophiolitic mélange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion mélange yield U-Pb ages between 49 and 37 Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix mélange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene ( 16 Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15 Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6 Ma tectonic exhumation. Jurassic—Eocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrusting—suggesting that subduction dynamics controlled deformation.
NASA Astrophysics Data System (ADS)
Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu
2012-12-01
Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.
Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China
Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.
2006-01-01
Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.
NASA Astrophysics Data System (ADS)
Liang, Xiao; Wang, Genhou; Yang, Bo; Ran, Hao; Zheng, Yilong; Du, Jinxue; Li, Lingui
2017-04-01
The E-W trending Central Qiangtang metamorphic belt (CQMB) is correlated to the Triassic orogeny of the Paleo-Tethys Ocean prior to Cenozoic growth of the Tibetan Plateau. The well-exposed Lanling high-pressure, low-temperature (HP-LT) metamorphic complex was chosen to decipher the process by which it was exhumed, which thereby provides insights into the origin of the CQMB and Qiangtang terrane. After a detailed petrological and structural mapping, three distinct N-S-trending metamorphic domains were distinguished. Microscopic observations show that core domain garnet (Grt)-bearing blueschist was exhumed in a heating plus depressurization trajectory after peak eclogitic conditions, which is more evident in syntectonic vein form porphyroblastic garnets with zoning typical of a prograde path. Grt-free blueschist of the mantle domain probably underwent an exhumation path of temperature increasing and dehydration, as evidenced by pervasive epidote veins. The compilation of radiometric results of high-pressure mineral separates in Lanling and Central Qiantang, and reassessments on the published phengite data sets of Lanling using Arrhenius plots allow a two-step exhumation model to be formulated. It is suggested that core domain eclogitic rocks were brought onto mantle domain blueschist facies level starting at 244-230 Ma, with exhumation continuing to 227-223.4 Ma, and subsequently were exhumed together starting at 223-220 Ma, reaching lower greenschist facies conditions generally after 222-217 Ma. These new observations indicate that the CQMB formed as a Triassic autochthonous accretionary complex resulting from the northward subdcution of the Paleo-Tethys Ocean and that HP-LT rocks therein were very probably exhumed in an extensional regime.
NASA Astrophysics Data System (ADS)
Ducea, Mihai N.; Negulescu, Elena; Profeta, Lucia; Sǎbǎu, Gavril; Jianu, Denisa; Petrescu, Lucian; Hoffman, Derek
2016-09-01
The Sibişel Shear Zone is a 1-3 km wide, ductile shear zone located in the South Carpathian Mountains, Romania. In the Rășinari area, the ductile shear zone juxtaposes amphibolite facies rocks of the Lotru Metamorphic Suite against greenschist facies rocks of the Râuşorul Cisnădioarei Formation. The first represents the eroded remnants of Peri-Gondwanan arcs formed between the Neoproterozoic-Silurian (650-430 Ma), regionally metamorphosed to amphibolite facies during the Variscan orogeny (350-320 Ma). The second is composed of metasedimentary and metavolcanic Neoproterozoic-Ordovician (700-497 Ma) assemblages of mafic to intermediate bulk composition also resembling an island arc metamorphosed during the Ordovician (prior to 463 Ma). Between these lie the epidote amphibolite facies mylonitic and ultramylonitic rocks of the Sibișel Formation, a tectonic mélange dominated by mafic actinolite schists attenuated into a high strain ductile shear zone. Mineral Rb-Sr isochrons document the time of juxtaposition of the three domains during the Permian to Early Triassic ( 290-240 Ma). Ductile shear sense indicators suggest a right lateral transpressive mechanism of juxtaposition; the Sibişel shear zone is a remnant Permo-Triassic suture between two Early Paleozoic Gondwanan terranes. A zircon and apatite U-Th/He age transect across the shear zone yields Alpine ages (54-90 Ma apatite and 98-122 Ma zircon); these data demonstrate that the exposed rocks were not subjected to Alpine ductile deformation. Our results have significant implications for the assembly of Gondwanan terranes and their docking to Baltica during Pangea's formation. Arc terranes free of Variscan metamorphism existed until the Early Triassic, emphasizing the complex tectonics of terrane amalgamation during the closure of Paleotethys.
Shah, Anjana K.; Harris, M. Scott
2012-01-01
Magnetic field data are traditionally used to analyze igneous and metamorphic rocks, but recent efforts have shown that magnetic sources within sediments may be detectable, suggesting new applications for high-resolution magnetic field surveys. Candidates for sedimentary sources include heavy mineral sand concentrations rich in magnetite or hematite, alteration-induced glauconite, or biogenic magnetite. Magnetic field surveys can be used to map the distributions of such sources with much denser and more widespread coverage than possible by sampling. These data can then provide constraints on the composition history of local sediments. Mapping such sediments requires the sensor to be relatively close to the source, and filtering approaches may be needed to distinguish signals from both system noise and deeper basement features. Marine geophysical surveys conducted in July, 2010, over the Stono and North Edisto River inlets and their riverine inputs south of Charleston, South Carolina, showed 10- to 40-m-wide, 1- to 6-nT magnetic anomalies associated with shallow, sand-covered seabed. These anomalies are distinct from system noise but are too narrow to represent basement features. The anomalies are present mostly in shallow areas where river sediments originating from upland areas enter the inlets. Surface grab samples from the North Edisto River contain trace amounts of heavy mineral sediments including hematite, maghemite, ilmenite, and magnetite, as well as garnet, epidote, zircon, and rutile. Previous stream sediment analyses show enhanced titanium over much of the Atlantic Coastal Plain. The combined data suggest that the anomalies are generated by titanium- and iron-rich heavy mineral sands ultimately originating from the Piedmont and Blue Ridge provinces, which are then reworked and concentrated by tidal currents.
NASA Astrophysics Data System (ADS)
Kirst, Frederik; Leiss, Bernd
2017-01-01
Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.
NASA Astrophysics Data System (ADS)
Zahra Afshooni, Seyedeh; Esmaeily, Dariush
2010-05-01
Kahang ore deposit located in 73 km to the northeast of Isfahan city and 10 km to the east of Zefreh town, covering an area about 18.6 km2. This ore deposit is a part of Uromieh-Dokhtar volcanopolotonic belt. The rocks of the area included Andesite, Porphyritic Andesite, Dacite, Porphyritic, Rhyodacite, Diorite, Quartz Monzonite and Porphyry Micro Granite. In plutons, there is a trend from basic to acid features along with decreasing of age from margin to center of massive. Kahang region is an alteration and breccia zone. The occurrence of alteration zones and iron oxides were confirmed by satellite images processing. Generally, more than 90% of rocks of this region have been affected by hydrothermal fluids. Remote sensing refers to detection and measurement from a distance. For the first time, this exploration area was studied using satellite images processing (TM) and primary results showed that is suitable place for resources of Copper (Cu) and Molybdenum (Mo). Hydrothermal alteration commonly occurs in geothermal areas in association with ore deposits producing alteration assemblages typically dominated by silicates, sulfides, sulfates and carbonates. In the alteration zones studies the subject discussed is the study of existing minerals in such zones and study of chemical specifications of altering fluids. Four alteration zones Based on observations derived from the study of thin sections, XRD analysis and deep remote sensing using TM and Aster satellite images studies could be identified in this area: propylitic alteration zone with chlorite, epidot, calcite; argillic alteration zone with clay minerals; phyllic (qartz-sericite) alteration zone with quartz, sericite and pyrite and silicic alteration zone with abundant quartz.
Livo, K. Eric; Clark, Roger N.
2002-01-01
This preliminary study for the First Quarterly Report has spectrally mapped hydrothermally altered minerals useful in assisting in assessment of water quality of the Red River. Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data was analyzed to characterize mined and unmined ground at Questa, New Mexico. AVIRIS data covers the Red River drainage north of the river, from between the town of Questa on the west, to east of the town of Red River. The data was calibrated and analyzed using U.S. Geological Survey custom software and spectral mineral library. AVIRIS data was tested for spectral features that matched similar features in the spectral mineral library. Goodness-of-fit and band-depth were calculated for each comparison of spectral features and used to identify surface mineralogy. Mineral distribution, mineral associations, and AVIRIS pixel spectra were examined. Mineral maps show the distribution of iron hydroxides, iron sulfates, clays, micas, carbonates, and other minerals. Initial results show a system of alteration suites that overprint each other. Quartz-sericite-pyrite (QSP) alteration grading out to propylitic alteration (epidote and calcite) was identified at the Questa Mine (molybdenum porphyry) and a similar alteration pattern was mapped at the landslide (?scar?) areas. Supergene weathering overprints the altered rock, as shown by jarosite, kaolinite, and gypsum. In the spectral analysis, hydrothermally altered ground appears to be more extensive at the unmined Goat Hill Gulch and the mined ground, than the ?scars? to the east. Though the ?scars? have similar overall altered mineral suites, there are differences between the ?scars? in sericite, kaolinite, jarosite, gypsum, and calcite abundance. Fieldwork has verified the results at the central unmined ?scar? areas.
Can the Metamorphic Basement of Northwestern Guatemala be Correlated with the Chuacús Complex?
NASA Astrophysics Data System (ADS)
Cacao, N.; Martens, U.
2007-05-01
The Chuacús complex constitutes a northward concave metamorphic belt that stretches ca. 150 km south of the Cuilco-Chixoy-Polochic (CCP) fault system in central and central-eastern Guatemala. It represents the basement of the southern edge of the Maya block, being well exposed in the sierra de Chuacús and the sierra de Las Minas. It is composed of high-Al metapelites, amphibolites, quartzofeldspathic gneisses, and migmatites. In central Guatemala the Chuacús complex contains ubiquitous epidote-amphibolite mineral associations, and local relics of eclogite reveal a previous high-pressure metamorphic event. North of the CCP, in the Sierra de Los Cuchumatanes area of western Guatemala, metamorphic rocks have been considered the equivalent of the Chuacús complex and hence been given the name Western Chuacús group, These rocks, which were intruded by granitic rocks and later mylonitized, include chloritic schist and gneiss, biotite-garnet schist, migmatites, and amphibolites. No eclogitic relics have been found within metamorphic rocks in northwestern Guatemala. Petrographic analyses of garnet-biotite schist reveal abundant retrogression and the formation of abundant zeolite-bearing veins associated with intrusion. Although metamorphic conditions in the greenschist and amphibolite facies are similar to those in the sierra de Chuacús, the association with deformed intrusive granites is unique for western Guatemala. Hence a correlation with metasediments intruded by the Rabinal granite in the San Gabriel area of Baja Verapaz seems more feasible than a correlation with the Chuacús complex. This idea is supported by reintegration of the Cenozoic left-lateral displacement along the CCP, which would place the metamorphic basement of western Guatemala north of Baja Verapaz, adjacent to metasediments intruded by granites in the San Gabriel-Rabinal area.
Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.
2005-01-01
The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.
NASA Astrophysics Data System (ADS)
Kadir, Selahattin; Önen-Hall, A. Piril; Aydin, S. Nihal; Yakicier, Cengiz; Akarsu, Nurten; Tuncer, Murat
2008-03-01
The Cretaceous-Eocene volcano-sedimentary units of the Zonguldak region of the western Black Sea consist of subalkaline andesite and tuff, and sandstone dominated by smectite, kaolinite, accessory chlorite, illite, mordenite, and analcime associated with feldspar, quartz, opal-CT, amphibole, and calcite. Kaolinization, chloritization, sericitization, albitization, Fe-Ti-oxidation, and the presence of zeolite, epidote, and illite in andesitic rocks and tuffaceous materials developed as a result of the degradation of a glass shards matrix, enclosed feldspar, and clinopyroxene-type phenocrysts, due to alteration processes. The association of feldspar and glass with smectite and kaolinite, and the suborientation of feldspar-edged, subparallel kaolinite plates to fracture axes may exhibit an authigenic smectite or kaolinite. Increased alteration degree upward in which Al, Fe, and Ti are gained, and Si, Na, K, and Ca are depleted, is due to the alteration following possible diagenesis and hydrothermal activities. Micromorphologically, fibrous mordenite in the altered units and the presence of needle-type chrysotile in the residential buildings in which cancer cases lived were detected. In addition, the segregation pattern of cancer susceptibility in the region strongly suggested an environmental effect and a genetic influence on the increased cancer incidence in the region. The most likely diagnosis was Li-Fraumeni syndrome, which is one of the hereditary cancer predisposition syndromes; however, no mutations were observed in the p53 gene, which is the major cause of Li-Fraumeni syndrome. The micromorphology observed in the altered units in which cancer cases were detected may have a role in the expression of an unidentified gene, but does not explain alone the occurrence of cancer as a primary cause in the region.
NASA Astrophysics Data System (ADS)
Oh, Chang-Whan
2015-04-01
Both UHP and HP eclogites are reported from the Kaghan Valley and Tso Morari Massif in the western part of the Himalayan collision belt (Ghazanfar and Chaudhry, 1987; Thakur, 1983). UHP eclogites in the Kaghan record peak metamorphic conditions of 770 °C and 30 kbar (O'Brien et al., 2001) and was retrograded into the epidote-amphibolite or blueschist (580-610 °C, 10-13 kbar; Lombardo and Rolfo, 2000). Sensitive high-resolution ion microprobe dating of zircon reveals that the UHP eclogite formed at ca. 46 Ma (Kaneko et al., 2003; Parrish et al., 2006). The Tso Morari UHP eclogite had formed at 750 °C, > 39 kbar (Mukheerjee et al., 2003; Bundy, 1980) and underwent amphibolite facies retro-grade metamorphism (580 °C, 11 kbar) during uplift (Guillot et al., 2008). Peak metamorphism of the Tso Morari Massif was dated at ca. 53-55 Ma (Leech et al., 2005). Only HP eclogites have been reported from the mid-eastern part of the Himalayan collision belt (Lombardo and Rolfo, 2000; Corrie et al., 2010). The HP eclogite in the mid-eastern part may have formed at ca. > 780 °C and 20 kbar and was overprinted by high-pressure granulite facies metamorphism (780-750°C, 12-10 kbar) at ca. 30 Ma (Groppo et al. 2007; Corrie et al., 2010). HP granulite (890 °C, 17-18 kbar) is reported from the NBS, at the eastern terminus of the Himalayan collision belt; the granulite was subjected to retrograde metamorphism to produce lower-pressure granulite (875-850°C, 10-5 kbar), representing near-isothermal decompression (Liu and Zhong, 1997). The HP granulite metamorphism may have occurred at ca. 22-25 Ma. Along the Himalayan collision belt, peak metamorphism changes eastward from UHP eclogite facies through HP eclogite facies to high-pressure granulite facies, indicating a progressive eastwards decrease in the depth of subduction of continental crust and an eastwards increase in the geothermal gradient. The peak metamorphic ages also decrease from 53-46 Ma in the west to 22-25 Ma in the east indicating propagation of collision towards east. The following collision model of the Himalayan collision belt is proposed based on data published in previous studies. Collision between the Indian and Asian blocks started in the west before ca. 55 Ma. In the western part, the amount of oceanic slab subducted prior to continent collision was enough to pull the continental crust down to the depths of UHP metamorphism, as a wide ocean existed between the Asian and Indian blocks prior to collision. Following UHP metamorphism, oceanic slab break-off started at ca. 55~46 Ma in the west due to the very strong buoyancy of the deeply subducted continental block. In contrast, the subduction of continental crust continued at this time in the middle and eastern parts of the belt. The zone of break-off migrated eastward, initiating a change from steep- to low-angle subduction. Final break-off may have occurred in the easternmost part of the belt at ca. 22-25 Ma. The depth of slab break-off decreased toward the east due to the westward decrease of the amount of subducted oceanic crust along the Himalayan collision belt, resulting eastwards decrease of an uplifting rate due to a decrease in buoyancy of the continental slab. The slower uplift resulted in a longer period of thermal relaxation and a higher geothermal gradient. In the west, the high rate of uplift resulted the epidote amphibolite facies (580-610°C) retrograde metamorphic overprint on the UHP eclogites, whereas the relatively slow uplift in the mid-eastern part caused high-grade granulites (850°C) retrograde metamorphic overprint on the HP eclogites. The study indicates that the metamorphic pattern along the collision belt is strongly related to the amount of subducted oceanic crust between continents before collision and the depth of slab break-off. Therefore metamorphic pattern can be used to interpret both the disappeared and ongoing tectonic process during continental collision.
Metamorphism and plutonism around the middle and south forks of the Feather River, California
Hietanen, Anna Martta
1976-01-01
The area around the Middle and South Forks of the Feather River provides information on metamorphic and igneous processes that bear on the origin of andesitic and granitic magmas in general and on the variation of their potassium content in particular. In the north, the area joins the Pulga and Bucks Lake quadrangles studied previously. Tectonically, this area is situated in the southern part of an arcuate segment of the Nevadan orogenic belt in the northwestern Sierra Nevada. The oldest rocks are metamorphosed calcalkaline island-arc-type andesite, dacite, and sodarhyolite with interbedded tuff layers (the Franklin Canyon Formation), all probably correlative with Devonian rocks in the Klamath Mountains. Younger rocks form a sequence of volcanic, volcaniclastic, and sedimentary rocks including some limestone (The Horseshoe Bend Formation), probably Permian in age. All the volcanic and sedimentary rocks were folded and recrystallized to the greenschist facies during the Nevadan (Jurassic) orogeny and were invaded by monzotonalitic magmas shortly thereafter. A second lineation and metamorphism to the epidote-amphibolite facies developed in a narrow zone around the plutons. In light of the concept of plate tectonics, it is suggested that the early (Devonian?) island-arc-type andesite, dacite, and sodarhyolite (the Franklin Canyon Formation) were derived from the mantle above a Benioff zone by partial melting of peridotite in hydrous conditions. The water was probably derived from an oceanic plate descending to the mantle. Later (Permian?) magmas were mainly basaltic; some discontinuous layers of potassium-rich rhyolite indicate a change into anhydrous conditions and a deeper level of magma generation. The plutonic magmas that invaded the metamorphic rocks at the end of the Jurassic may contain material from the mantle, the subducted oceanic lithosphere, and the downfolded metamorphic rocks. The ratio of partial melts from these three sources may have changed with time, giving rise to the diversity in composition of magmas.
NASA Astrophysics Data System (ADS)
Seyler, C.; Kirkpatrick, J. D.; Šilerová, D.
2017-12-01
Localization of strain at plate boundaries requires rheological weakening of the lithosphere. The rheology of the subduction plate interface is dictated by the dominant grain-scale deformation mechanisms. However, little is known about the deformation mechanisms within phases commonly found in subduction zones, such as phyllosilicates and amphiboles. We investigate the Leech River Shear Zone on Vancouver Island, British Columbia to explore deformation processes downdip of the seismogenic zone and evaluate the bulk rheology of the plate interface. This shear zone juxtaposes a metamorphosed accretionary prism against a metabasaltic oceanic plateau, representing a paleo-plate interface from the ancient Cascadia subduction zone. Preliminary geothermometry results record a prograde deformation temperature of 573.6±11.2 ˚C in the overriding accretionary wedge, and the hornblende-chlorite-epidote-plagioclase mineral assemblage suggests upper greenschist to lower amphibolite facies metamorphism of the downgoing oceanic crust. Detailed mapping of the plate interface documents a 200 m wide mylonitic shear zone developed across the lithologic contact. Asymmetric shear fabrics, isoclinal folding, boudinage, and a steeply plunging, penetrative stretching lineation are consistent with sinistral-oblique subduction. Numerous discordant quartz veins are variably sheared into sigmoidal shapes as well as isoclinally folded and boudinaged, indicating cyclical synkinematic fracture and vein formation. At the grain-scale, interconnected, anastomosing layers of muscovite, chlorite, and graphite in the accretionary prism rocks likely deformed through kinking and dislocation glide. Framework minerals such as quartz and feldspar deformed by dislocation creep. In the metabasalt, hornblende and chlorite form a continuous S—C fabric in which asymmetric hornblende porphyroclasts deformed by rigid grain rotation and dissolution-precipitation creep. The strength of the subduction plate interface beneath the seismogenic zone was therefore controlled by multiple syn-kinematic mechanisms, with overall strength dominated by the rheology of phyllosilicates and amphibole, generating very low viscosities at the plate interface and enhancing strain localization.
Petrography and geochemistry of precambrian rocks from GT-2 and EE-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, A.W.; Eddy, A.
1977-08-01
During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less
NASA Astrophysics Data System (ADS)
Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei
2015-06-01
The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.
NASA Astrophysics Data System (ADS)
Dill, H. G.; Kaufhold, S.
2018-04-01
The Holocene mud volcano exposed at Totumo (younger than 4150 ± 50 yr BP) lines up together with some other landforms of its kind along the Caribbean Coast in northern Colombia. It currently vents a mud of the silicate-phosphate-bearing sulfur-sodium chloride type. The mud volcanoes evolved in an active continental margin setting of the South American Cordillera with high seismicity and affected by pervasive neotectonic structural disturbances. During the Neogene and Quaternary linear terrigenous shoreline sediments alternating with delta deposits evolved on this mobile crustal segment between the Andes and ancient Precambrian cratons. Meso- to microtidal sedimentary settings during transgression and progradation created meta- to instable sedimentary and petrophysical conditions (e.g. overpressure and gas-bearing bubble sands), favorable for the formation of mud volcanoes, whose lithofacies is subdivided into (1) footwall facies (detritus from metabasic, -pelitic source rocks), (2) mud volcano plus lateral facies (material from deep-seated hydrothermal sources, hydrocarbon plays, and brine reflux from the sea), (3) hanging wall facies, sand characterized by a strong longshore drift. The sedimentary volcanism in the area is characterized by different temperatures of formation: (1) pre-stage (<100 °C) and (2) recent stage (≈25 °C). Heavy (pyroxene, amphibole, epidote-clinozoisite, Fe-Ti silicates and oxides, garnet, alumosilicates, tourmaline, zircon, barite, Fe sulfides and -sulfates), light (Ca sulfates, calcite, quartz, feldspar) and clay minerals (kaolinite, mica, pyrophyllite, chlorite, vermiculite) are efficient tools to determine the source of mud, to subdivide the mud volcano system as to its facies and describe its physical-chemical regime as to the temperature of formation, pH and Eh values. The mud volcano system of Totumo bridges the gap between sedimentary "volcanism" and epithermal hot spring deposits of intermediate to high sulfidation and forms a useful "guide" to hydrocarbon accumulation.
Sand petrology and focused erosion in collision orogens: the Brahmaputra case
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; France-Lanord, Christian; Singh, Sunil K.; Foster, Gavin
2004-03-01
The high-relief and tectonically active Himalayan range, characterized by markedly varying climate but relatively homogeneous geology along strike, is a unique natural laboratory in which to investigate several of the factors controlling the composition of orogenic sediments. Coupling of surface and tectonic processes is most evident in the eastern Namche Barwa syntaxis, where the Tsangpo-Siang-Brahmaputra River, draining a large elevated area in south Tibet, plunges down the deepest gorge on Earth. Here composition of river sands changes drastically from lithic to quartzofeldspathic. After confluence with the Lohit River, draining the Transhimalayan-equivalent Mishmi arc batholiths, sediment composition remains remarkably constant across Assam, indicating subordinate contributions from Himalayan tributaries. Independent calculations based on petrographical, mineralogical, and geochemical data indicate that the syntaxis, representing only ∼4% of total basin area, contributes 35±6% to the total Brahmaputra sediment flux, and ∼20% of total detritus reaching the Bay of Bengal. Such huge anomalies in erosion patterns have major effects on composition of orogenic sediments, which are recorded as far as the Bengal Fan. In the Brahmaputra basin, in spite of very fast erosion and detrital evacuation, chemical weathering is not negligible. Sand-sized carbonate grains are dissolved partially in mountain reaches and completely in monsoon-drenched Assam plains, where clinopyroxenes are selectively altered. Plagioclase, instead, is preferentially weathered only in detritus from the Shillong Plateau, which is markedly enriched in microcline. Most difficult to assess is the effect of hydraulic sorting in Bangladesh, where quartz, garnet and epidote tend to be sequestered in the bedload and trapped on the coastal plain, whereas cleavable feldspars and amphiboles are concentrated in the suspended load and eventually deposited in the deep sea. High-resolution petrographic and dense-mineral studies of fluvial sands provide a basis for calculating sediment budgets, for tracing patterns of erosion in mountain belts, and for better understanding the complex dynamic feedback between surface processes and crustal-scale tectonics.
NASA Astrophysics Data System (ADS)
Aminroayaei Yamini, Maryam; Tutti, Faramarz; Aminoroayaei Yamini, Mohammad Reza; Ahmadian, Jamshid; Wan, Bo
2017-10-01
The chloritization of biotite and stable isotopes of silicate have been studied for the Zafarghand porphyry copper deposit, Ardestan, Iran. The studied area, in the central part of the Urumieh-Dokhtar magmatic belt, contains porphyry-style Cu mineralization and associated hydrothermal alteration within the Miocene (19-26 Ma, Zircon U-Pb age) granodioritc stock and adjacent andesitic to rhyodacitic volcanic rocks (ca. 56 Ma, zircon U-Pb age). The primary and secondary biotite that formed during potassic alteration in this porphyry and these volcanic host rocks are variably chloritized. Chloritization of biotite pseudomorphically is characterized by an increase in MgO, FeOt, and MnO, with decreasing in SiO2, K2O, and TiO2. Based on the Ti-in-biotite geothermometer of Henry et al. (Am Mineral 90:316-328, 2005) and Al-in-chlorite geothermometer of Cathelineau (Clay Miner 23:417-485, 1988), crystallization temperatures of primary biotite representative of magmatic conditions and later chloritization temperature range from 617° to 675 °C ± 24 °C and 177° to 346 °C, respectively. Calculated isotopic compositions of fluids that chloritized primary and secondary biotite display isotopic compositions of 1.1 to 1.7 per mil for δ18O and -19.9 to -20.5 per mil for δD consistent with meteoric water. Sericite, barren, and A-type-quartz veins from phyllic alteration were produced by mixed magmatic and meteoric water with δ18O values from -2.8 to 2.5 and δD values of ˜ -23 per mil; the narrow range of δD values of the propylitic epidote may be due to a meteoric water with δ18O values from 0.8 to 1.6 and δD values from -14.6 to -16.9 per mil.
NASA Astrophysics Data System (ADS)
Jacobson, Carl E.; Dawson, M. Robert
1995-08-01
The Pelona, Orocopia, and Rand Schists (POR schists) of southern California and southwesternmost Arizona are late Mesozoic or early Tertiary subduction complexes that underlie Precambrian to Mesozoic continental basement along the low-angle Vincent-Chocolate Mountains (VCM) fault system. The VCM faults are often considered to be remnants of the original subduction zone, but recent work indicates that many have undergone substantial postsubduction reactivation. In the Orocopia Mountains, for example, the Orocopia Schist exhibits an exceptionally complex structural and metamorphic history due to multiple periods of movement along the Orocopia fault. Structures in the schist include isoclinal folds with axial-planar schistosity, open-to-tight folds that fold schistosity, penetrative stretching lineations, and crenulation lineations, all of which show a nearly 360° range in trend. Folds and lineations that trend approximately NE-SW occur throughout the schist and are thought to be part of an early phase of deformation related to subduction. Folds of this orientation show no consistent vergence. Folds and lineations that trend approximately NW-SE are concentrated near the Orocopia fault and are interpreted to have formed during exhumation of the schist. The NW-SE trending folds, and shear indicators in late-stage mylonite at the top of the schist, consistently verge NE. The exhumation event culminated in emplacement of the schist against brittlely deformed upper plate. Exhumation of the Orocopia Schist was accompanied by retrograde replacement of garnet, biotite, epidote, and calcic amphibole by chlorite, calcite, and sericite. Matrix amphibole has a lower Na/Al ratio than amphibole inclusions in albite, consistent with a late-stage decrease in pressure. As NE vergence in the Orocopia Mountains is associated with exhumation of the schist, the NE movement along other segments of the VCM fault may also be late and therefore have no bearing on the facing direction of the VCM subduction zone, contrary to past interpretations.
Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E
2018-04-30
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3 + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.
NASA Astrophysics Data System (ADS)
Domnick, Urs; Cook, Nigel J.; Bluck, Russel; Brown, Callan; Ciobanu, Cristiana L.
2018-02-01
The Blackbush uranium deposit (JORC Inferred Resource: 12,580 tonnes U), located on the north-eastern Eyre Peninsula, is currently the only sediment-hosted U deposit investigated in detail in the Gawler Craton. Uranium is hosted within Eocene sandstone of the Kanaka Beds, overlying Mesoproterozoic granites of the Samphire pluton, affiliated with the Hiltaba Intrusive Suite ( 1.6 Ga). These are considered the most probable source rocks for uranium mineralisation. By constraining the petrography and mineralogy of the granites, insights into the post-emplacement evolution can be gained, which may provide an exploration indicator for other sediment-hosted uranium systems. Three geochemically distinct granite types were identified in the Samphire Pluton and correspond to domains interpreted from geophysical data. All granites show complex alteration overprints and textures with increasing intensity closer to the deposit, as well as crosscutting veining. Alkali feldspar has been replaced by porous K-feldspar and albite, and plagioclase is overprinted by an assemblage of porous albite + sericite ± calc-silicates (prehnite, pumpellyite and epidote). This style of feldspar alteration is regionally widespread and known from Hiltaba-aged granites associated with iron-oxide copper-gold mineralisation at Olympic Dam and in the Moonta-Wallaroo region. In two granite types biotite is replaced by calcic garnet. Calc-silicates are indicative of Ca-metasomatism, sourced from the anorthite component of altered plagioclase. Minor clay alteration of feldspars is present in all samples. Mineral assemblages in veins include quartz + hematite, hematite + coffinite, fluorite + quartz, and clay minerals. Minor chlorite and sericite are found in all vein types. All granite types are anomalously rich in U (concentrations between 10 and 81 ppm). Highly variable Th/U ratios, as well as hydrothermal U minerals (mostly coffinite) in granites and veins, are clear evidence for U mobility. Uranium may have been preconcentrated in veins in the upper parts of the pluton, and was subsequently leached after deposition of the sediment.
Hubbard, Bernard E.; Rowan1, Lawrence C.; Dusel-Bacon, Cynthia; Eppinger, Robert G.
2007-01-01
On July 8, 2003, ASTER acquired satellite imagery of a 60 km-wide swath of parts of two 1:250,000 Alaska quadrangles, under favorable conditions of minimal cloud- and snow-cover. Rocks from eight different lithotectonic terranes are exposed within the swath of data, several of which define permissive tracts for various mineral deposit types such as: volcanic-hosted massive sulfides (VMS) and porphyry copper and molybdenum. Representative rock samples collected from 13 different lithologic units from the Bonnifield mining district within the Yukon-Tanana terrane (YTT), plus hydrothermally altered VMS material from the Red Mountain prospect, were analyzed to produce a spectral library spanning the VNIR-SWIR (0.4 - 2.5 ?m) through the TIR (8.1 - 11.7 ?m). Comparison of the five-band ASTER TIR emissivity and decorrelation stretch data to available geologic maps indicates that rocks from the YTT display the greatest range and diversity of silica composition of the mapped terranes, ranging from mafic rocks to silicic quartzites. The nine-band ASTER VNIR-SWIR reflectance data and spectral matched-filter processing were used to map several lithologic sequences characterized by distinct suites of minerals that exhibit diagnostic spectral features (e.g. chlorite, epidote, amphibole and other ferrous-iron bearing minerals); other sequences were distinguished by their weathering characteristics and associated hydroxyl- and ferric-iron minerals, such as illite, smectite, and hematite. Smectite, kaolinite, opaline silica, jarosite and/or other ferric iron minerals defined narrow (< 250 m diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation- or snow-cover, or were too small to be resolved.
Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site
NASA Astrophysics Data System (ADS)
Michard, G.; Albarède, F.; Michard, A.; Minster, J.-F.; Charlou, J.-L.; Tan, N.
1984-03-01
Ten samples were recovered by the submersible "Cyana" submersible from two groups of hydrothermal vents located 2600 m deep along the East Pacific Rise at 13°N. The maximum measured temperature was 317°C and minimum pH 3.8. A systematic determination of major and trace elements has been carried out and mixing lines between a high-temperature component (HTC) and seawater are observed. The water chemistry of the HTC slightly differs for several elements at the two sites. This HTC is deprived of SO 4 and Mg and is greatly enriched in most other species. Maximum concentrations are (in units per kg): Cl = 0.72mol; Br = 1.1mmol; Na = 0.55mol; K = 29mmol; Rb = 14 μmol; Ca = 52mmol; Sr = 170 μmol; Mn = 750 μmol; Fe = 1mmol; Al = 15 μmol; Si = 21mmol. For many elements, the magnitude of the anomaly relative to seawater does not compare with the results obtained from the Galapagos or East Pacific Rise 21°N. The enrichment of cations relative to seawater is likely related to the huge Cl excess through charge balance. The Br/Cl ratio is close to that for seawater. However, it is not clear whether the Cl excess is due to gas release or basalt hydration (formation of amphibole chlorite or epidote). P-T dependence of SiO 2 solubility suggests that water-rock interaction last occurred at a depth in excess of 1 km below the sea floor. A mixing line of 87Sr/ 86Sr vs. Mg/Sr demonstrates that the HTCs have a nearly identical 87Sr/ 86Sr ratio of 0.7041 for both sites. A water/rock ratio of about 5 is inferred, which differs from the 1.5 value obtained at 21°N.
NASA Astrophysics Data System (ADS)
Rotman, H.; Mattinson, C. G.
2009-12-01
Fluid movement in accretionary prisms has been linked to the recently discovered episodic tremor and slip (ETS) events along subduction zones. This study focuses on the exhumed accretionary prism of the Cascadia subduction zone, where ETS events are well-documented. The exposed sandstone, shale, siltstone and minor basalt in the study location were buried to 6 - 15 km, within the depth constraints of ETS. This past summer, field work focused on observations of subduction related fluid budget as evidenced by veins, metamorphism, and pore space took place along an east-west transect of the Olympic Peninsula. Approximately 40 representative samples were collected near Obstruction Peak, Hurricane Ridge, Lake Mills (Elwha), and Sore Thumb (Sol Duc). Observations indicate progressively increasing grade of metamorphism from west to east, in agreement with previous studies. Mudrocks show a clear progression from shale to phyllite, while sandstones generally appear equally micaceous across the transect, with the exception of one location. This location is unique in that micas are larger, other metamorphic indicators are visible in hand specimen, and veins make up a significant percent of the outcrop. Epidotes are visible in the rock body and veins, and the veins also contain quartz and calcite, usually as the primary mineral. Veins are oriented perpendicular to bedding and are primarily found in the coarser units. In addition to the veins, water is present in pore spaces and mineral structure. Preliminary observations indicate the veins and pore space decrease to the east, while evidence for fluid movement increases to the east. These observations will be tested and quantified by a variety of laboratory analyses. Thin section examination will determine pore space and mineral assemblages at different locations, and the mechanisms (e.g., blocky or fibrous) of vein growth. Element concentrations from whole rock analysis will determine bulk composition and element mobilization at different temperatures. Oxygen ratios from quartz and calcite, and titanium activity, will constrain temperatures.
NASA Astrophysics Data System (ADS)
Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa
2016-04-01
This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare earth elements geochemistry; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey
NASA Astrophysics Data System (ADS)
Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.
2015-10-01
Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of the Acoculco geothermal system, involving a natural hazard that could affect future geothermal-power infrastructure.
NASA Astrophysics Data System (ADS)
Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.
2014-05-01
The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and Th/Pb ratios.
NASA Astrophysics Data System (ADS)
Alirezaei, Saeed; Einali, Morteza; Jones, Peter; Hassanpour, Shohreh; Arjmandzadeh, Reza
2016-04-01
An Upper Miocene (9.12 ± 0.19 Ma; biotite 40Ar/39Ar) shallow pluton and numerous dykes and sills of felsic-intermediate compositions intruded the Upper Cretaceous, flysch-type sediments in the Mivehrood area, northwest Iran. The intrusions caused extensive thermal metamorphism and metasomatism, leading to the formation of hornfels and skarn. A massive skarn, 1-10 m thick, immediate to the intrusive contact, is bordered by a banded skarn, 100-400 m thick, that grades outward into hornfels and original sediments. The Mivehrood pluton is characterized by steep REE pattern, high Al2O3 (14.64-16.4 wt%) and Sr (380-786 ppm), and low MgO (1.3-3.4 wt%), Y (4.8-10.7 ppm), and Yb (0.35-0.95 ppm), characteristics typical of high-silica adakites. Skarn formation started with thermal metamorphism, followed by anhydrous prograde and hydrous retrograde stages. Prograde and retrograde mineral assemblages are developed in both skarns, represented by garnet-clinopyroxene-wollastonite and epidote-actinolite-scapolite-chlorite, respectively. Granditic F-bearing garnet dominates clinopyroxene in both skarns. The banded skarn contains minor scapolite of marialite composition. The calc-silicate mineral assemblages and the mineral chemistry allow the Mivehrood skarn to be classified as a calcic, oxidized skarn. Mass balance assessments suggest that Fe, Si, and S were significantly enriched, and Na, LILEs, and LREEs were strongly depleted, in the massive skarn. In the banded skarn, Na, K, Si, and S were enriched. Significant dehydration and carbon degassing occurred in both skarns. Stockworks, veins, and replacement bodies of pyrite ± chalcopyrite locally occur in the pluton and the dykes and in the skarns. The δ34SCDT values for the sulfides fall in a narrow range around 0.0 ‰, suggesting a magmatic source for sulfur and possibly the hydrothermal water and solutes involved in the skarn formation.
Study of Hydrothermal Mineralization in 2013 Drill Core from Hawaii Island
NASA Astrophysics Data System (ADS)
Lautze, N. C.; Calvin, W. M.; Moore, J.; Haskins, E.; Thomas, D. M.
2014-12-01
The Humu'ula Groundwater Research Project (HGRP) drilled a continuously-cored hole to nearly 2 km depth near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100 C. A study is underway to characterize hydrothermal (secondary) mineralization in the core at depths below ~ 1 km. Secondary mineralization can indicate the presence, chemistry, and temperature of hydrothermal fluids, therein helping to characterize a present and/or past geothermal system. To date, the study is two pronged. In collaboration with University Nevada Reno (UNR) we used an Analytical Spectral Devices (ASD) FieldSpec instrument to obtain nearly 800 spectra from core depths spanning 3190 to 5785 feet. This device has a 2 cm contact probe that measures from 0.4 to 2.5 mm, and has been used successfully by UNR to identify depth-associated changes in alteration mineralogy and zoning in drill core from other pilot studies. The spectra indicate that rocks above a depth of ~1 km are only weakly altered. At greater depths to the base of the well, chlorite, possibly with some mica, and zeolites are common. The majority of zeolites are spectrally similar to each other at these wavelengths, however analcime and natrolite are uniquely identified in some sections. Epidote was not observed. The secondary mineral assemblages suggest that the alteration was produced by moderate temperature neutral pH fluids. Here, we used the spectral data as a survey tool to help identify and select over 20 sections of core for sampling and more detailed mineralogical analysis using traditional X-Ray Diffraction (XRD) and petrographic techniques, conducted in collaboration with University of Utah. This presentation will include mineral maps with depth and results of the petrographic analyses.
Luepke Bynum, Gretchen
2007-01-01
Modern sediments from representative localities in Willapa Bay, Washington, comprise two principal heavy-mineral suites. One contains approximately equivalent amounts of hornblende, orthopyroxene, and clinopyroxene; this is derived from the Columbia River, which discharges into the Pacific Ocean a short distance south of the bay. The other suite, dominated by clinopyroxene, is restricted to sands of rivers flowing into the bay from the east. The heavy-mineral distributions within the bay suggest that sand discharged from the Columbia River, borne north by longshore transport and carried into the bay by tidal currents, accounts for nearly all of the sand within the interior of Willapa Bay today. Pleistocene deposits on the east side of the bay contain three heavy-mineral assemblages, two of which are identical to the modern assemblages described above. These assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits (100,000–200,000 BP. Amino acid racemization in Quaternary shell deposits at Willapa Bay, Washington. Geochimica et Cosmochimica Acta 43, 1505–1520). They are also consistent with those processes inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. Anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral suites suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay. The third heavy-mineral suite is enriched in epidote and occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in cross-bedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the northeast side of the bay suggests that input from this northerly source may have intermittently dominated Willapa Bay deposition in the past.
NASA Astrophysics Data System (ADS)
Martínez, Juan Cruz; Massonne, Hans-Joachim; Dristas, Jorge Anastasio; Theye, Thomas; Graff, Ailín Ayelén
2016-04-01
We studied high-grade metamorphic rocks of the El Cristo hill area of the Tandilia belt. Mineral analyses and thermodynamic calculations were carried out for two adjacent rock samples: an amphibole-biotite gneiss and a garnet-biotite-bearing migmatite. Peritectic garnets in the migmatite show core compositions of pyr4.5(gro + andr)10spes6alm79.5 changing to pyr3.5(gro + andr)17spes6alm73.5 at their thin rims. Garnet compositions in the gneiss are pyr6.5(gro + andr)26spes12alm55.5 and pyr4.5(gro + andr)34spes12alm49.5 for core and rim, respectively. A P-T path was constructed by calculating pseudosections in the 11-component system Si-Ti-Al-Fe-Mn-Mg-Ca-Na-K-O-H and contouring them by isopleths for garnet components using the PERPLE_X software package. Supra-solidus crystallization of garnet cores in the migmatite began at 5.8 kbar and 660 °C. Garnet rims equilibrated at 7.0 kbar and 640 °C compatible with garnet cores in the amphibole-biotite gneiss (7.6 kbar and 660 °C). The further chemical development of garnet in this rock points to P-T conditions of 11.6 kbar and 620 °C and 12.2 kbar and 595 °C (outermost garnet rim). At this high-pressure stage Ca-amphibole was not stable. Most biotite formed during exhumation whereas the high-pressure accessory minerals, titanite and epidote, persisted. According to the obtained anti-clockwise P-T path the originally partly melted material was tectonically transported from ∼22 km (middle crust) to ∼40 km (lower crust) depths reaching a geothermal gradient as low as 15 °C km-1. This transport probably occurred along a major suture zone, which was active during the Paleoproterozoic (2.25-2.10 Ga), before a terminating collision of terranes near the SW boundary of the Rio de la Plata craton.
Identification of mineral composition and weathering product of tuff using reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Hyun, C.; Park, H.
2009-12-01
Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard spectral reflectance of each constituent. Unmixing of mineral composition and their weathering products of blocks and matrixes in tuff were conducted and the ratio of mineral composition was calculated for each specimen. This study was supported by National Research Institute of Cultural Heritage (project title: Development on Evaluation Technology for Weathering Degree of Stone Cultural Properties, project no.: 09B011Y-00150-2009).
Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea
Gardner, J.V.; Dean, W.E.; Vallier, T.L.
1980-01-01
Present-day sediment dynamics, combined with lowerings of sea level during the Pleistocene, have created a mixture of sediments on the outer continental shelf of the southern Bering Sea that was derived from the Alaskan Mainland, the Aleutian Islands, and the Pribilof ridge. Concentrations of finer-grained, higher-organic sediments in the region of the St. George basin have further modified regional distribution patterns of sediment composition. Q-mode factor analysis of 58 variables related to sediment size and composition - including content of major, minor, and trace elements, heavy and light minerals, and clay minerals - reveals three dominant associations of sediment: 1. (1) The most significant contribution, forming a coarse-grained sediment scattered over most of the shelf consists of felsic sediment derived from the generally quartz-rich rocks of the Alaskan mainland. This sediment contains relatively high concentrations of Si, Ba, Rb, quartz, garnet, epidote, metamorphic rock fragments, potassium feldspar, and illite. 2. (2) The next most important group, superimposed on the felsic group consists of andesitic sediment derived from the Aleutian Islands. This more mafic sediment contains relatively high concentrations of Na, Ca, Ti, Sr, V, Mn, Cu, Fe, Al, Co, Zn, Y, Yb, Ga, volcanic rock fragments, glass, clinopyroxene, smectite, and vermiculite. 3. (3) A local group of basaltic sediment, derived from rocks of the Pribilof Islands, is a subgroup of the Aleutian andesite group. Accumulation of fine-grained sediment in St. George basin has created a sediment group containing relatively high concentrations of C, S, U, Li, B, Zr, Ga, Hg, silt, and clay. Sediment of the Aleutian andesite group exhibits a strong gradient, or "plume", with concentrations decreasing away from Unimak Pass and toward St. George basin. The absence of present-day currents sufficient to move even clay-size material as well as the presence of Bering submarine canyon between the Aleutian Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.
Supracrustal origin of plagiogranite from the Gallieni Fracture Zone, Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Zhu, Jihao; Li, Zhenggang; Chu, Fengyou; Fu, Bin; Dong, Yanhui; Chen, Ling; Liu, Jiqiang
2017-04-01
Small amounts of felsic rocks such as tonalite, trondjhemite and diorite often called oceanic plagiogranites were found at all structure levels of the oceanic crust. They can be formed either by partial melting of hydrated gabbros and/or sheeted dikes, or by late-stage differentiation of parental mid-ocean ridge basalt melts. Here we report a granodiorite sampled in the Gallieni Fracture Zone, Southwest Indian Ridge, shows no ocean crust affinity but the nature of the continental crust. The granodiorite is extremely enriched in K2O (3.72%) and its rare-earth-element distribution pattern is incomparable to any type of oceanic plagiogranites from mid-ocean ridge and ophiolites, but similar to the Upper Continental Crust. Moreover, the in-situ zircon O isotopes (δ18O=5.9-7.5‰) are much higher than the plagiogranites from all the tectonic settings relevant to ocean crust generation, while Hf isotope compositions (ɛHf(0) =-4.0 to -7.9) are much lower than global oceanic basalts. In addition, the granodiorite suffered low-grade metamorphism as reflected by the penetration of late-stage felsic veins and the occurrence of metamorphic minerals such as epidote and chlorite. Secondary vein quartz has negative δ18O values as low as -3.9‰, suggesting the involvement of meteoric water. Zircon U-Pb age (183.7±1.2Ma) shows that the granodiorite was formed contemporarily with Karoo volcanism associating with the breakup of Gondwanaland. We suggest that it may be formed by the anataxis of continental crustal materials by underplated Karoo basaltic magma. Combining our unreported high-grade quartzite with zircon U-Pb ages of more than 500Ma and a Jurassic quartz diorite reported earlier which all sampled in or near the Gallieni Fracture Zone, we propose that a continental block probably from the South Madagascar was split during continental breakup but retained near the ridge segment as a result of repeated ridge jumping and transform migration. Keywords: zircon Hf-O isotopes, U-Pb age, plagiogranites, Gondwanaland, continental block, Southwest Indian Ridge
Overstreet, William C.
1978-01-01
The Tathlith one-degree quadrangle occupies an area of 11,620 sq km in the northeastern Asir region of the Kingdom of Saudi Arabia, in the southeastern part of the Precambrian shield. In the eastern part of the quadrangle the Precambrian rocks are covered by exposures of easterly-dipping sandstone of Cambrian or Ordovician age. A well-developed and highly integrated drainage system trending northward is worn into the Precambrian rocks, but for most of the year the wadis are dry. The Precambrian rocks of the quadrangle consist of an old, non-metamorphosed to variably metamorphosed sequence of volcanic and sedimentary rocks intruded by three main successions of plutonic and hypabyssal igneous rocks. The interlayered volcanic and sedimentary rocks occupy arcuate, north-trending fold belts in which old, rather tight north-trending folds have been refolded at least once by open folds with nearly east-trending axes. Old, north-trending left-lateral faults are associated with the fold belts and are themselves intersected by younger, northwest-trending faults. Motion on both sets of faults has been reactivated several times. The interlayered volcanic and sedimentary rocks are an eugeosynclinal sequence of graywacke and andesite with sparse marble, quartzite, and rhyolite. Andesite is the dominant component of the sequence. Plutonic or hypabyssal equivalents of the andesite intrude the volcanic-sedimentary sequence. In many places these rocks are essentially non-metamorphosed, but elsewhere they are faintly to strongly metamorphosed, or even polymetamorphosed. Dynamothermal metamorphism associated with the northerly folding, and contact metamorphism are the principal kinds of metamorphism. The metamorphic grade is mostly greenschist facies or albite-epidote amphibolite facies. The largest intrusive in the area is a batholith of regional dimension, the east side of which intrudes and divides the fold belts. Granite gneiss and granodiorite gneiss are the main components of the batholith. Biotite granite of calc-alkaline composition, and somewhat younger than the granite gneiss and granodiorite gneiss, forms northerly elongate to subcircular plutons in the gneisses and the rocks of the volcanic-sedimentary sequence.
NASA Astrophysics Data System (ADS)
Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.
2017-12-01
The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement. The results suggest basement and sedimentary rock in the core were altered by multiple fluids, and the pervasive fracturing in the igneous section could provide conduits for fluids to get from the porous Arbuckle Group into the basement.
NASA Astrophysics Data System (ADS)
Lojasiewicz, I.; Hartman, S. M.; Holk, G. J.; Paterson, S. R.
2015-12-01
The Saddlebag Lake Pendant (SLP) is a ~ 100 km2 zone of Ordovician-Cretaceous metasedimentary and metavolcanic rocks just east of the 95-85 Ma Tuolumne Intrusive Complex (TIC) in the Sierra Nevada of central California. Western SLP and adjacent parts of TIC are affected by the Steelhead Lake Shear Zone (SLSZ), with leucogranitic dikes, abundant qz-tm veins, ductile epidote-chlorite alteration, and massive qz veins. While TIC shows uniform stable isotope values, isotope studies of other Sierra Nevada pendants evidence diversity of fluid sources: Jurassic seawater, Cretaceous magmatic fluids, metamorphic fluids, and meteoric-hydrothermal fluids. We conducted a stable isotope study of 49 samples from units across the SLSZ, focusing on the shear zone. Unlike other pendants, both δ18 O and δD values from SLSZ showed great variability, and most samples were not in isotopic equilibrium. Overall, δ18 O mineral values ranged from -1.5‰(plag) to +15.8‰(bt); mineral δD values ranged from -140‰(tm) to -67‰(bt). TIC δ18 O was +7.8 to +10.0 (plag) and +4.8 to +9.2 (tm), normal magmatic values, and δD were -105 to -75. Paleozoic and Triassic metasedimentary units had most qz δ18 O from +11.3 to +15.8, so within metamorphic range, and δD from -100 to -72 (ep and tm). Jurassic metasedimentary units (Sawmill) and Triassic metavolcanics (Koip) had largest isotopic variability: δ18 O qz from +8.1 to +14.8, plag from -1.1 to +11.8, but ep and tm between +1.3 and +9.3 and δD between -108 and -81. All lower (submagmatic) isotopic values were from a wider, possibly transtensional, part of the SLSZ, transected by Sawmill Canyon. Although TIC and many of the Paleozoic units do not show isotopic evidence for alteration, the Koip and Sawmill units were likely infiltrated by later magmatic waters, and then subjected to very localized meteoric water infiltration in the area surrounding Sawmill Canyon.
NASA Astrophysics Data System (ADS)
Dos Santos, Thisiane; Kneller, Benjamin; Morton, Andrew; Armelenti, Garibaldi; Pantopoulos, George; De Ros, Luiz Fernando
2017-04-01
The Rosario Formation forms part of the Peninsular Ranges forearc basin complex, which crops out discontinuously along the Pacific coast of the Baja California Peninsula, Mexico. This study concerns the upper, deep marine part of the Rosario Formation , which includes several slope channel systems, one of these, the San Fernando channel systems consists of five channel complex sets (CCS1 to CCS5), each characterized by three filling stages. Stage I consists of predominantly clast and matrix-supported conglomerates, with subordinate medium to coarse grained sandstones. Stage II consists of units of clast-supported conglomerates with subordinate medium to coarse-grained sandstones, separated by mainly thinly-bedded turbidites (intercalation of thin beds of fine-grained sandstones and mudstones). Stage III consists mainly of hemipelagic mudstones. The main objective of this research is to determine source area and to compare the coarse fraction and finer fraction (fragments <2 cm) from conglomerates of each channel set, combining provenance methodology such as heavy minerals, clast counting, geochemistry, bulk petrography and U/Pb in detrital zircons by LA-ICPMS and SHRIMP. The heavy minerals assembly identified were Ca amphibole, epidote, clinozoisite, titanite, garnet, tourmaline, apatite, rutile and zircon, among them amphiboles are by far the most abundant detrital mineral. Clast counting and petrographic characterization showed that the pebble fraction of the conglomerates is constituted at least 18 different, and the majority being composed by pyroclastic, porphyritic volcanic and sandstone rocks. Bulk quantification indicates that the main provenance tectonic mode of the fine fraction of the conglomerates can be interpreted as dissected magmatic arc, with subordinate uplifted basement and recycled orogenic contributions. The preliminary conclusion is that the sedimentary supply to the Rosario Formation was mostly derived from volcanic and plutonic rocks of the Upper Peninsular Ranges Arc complex known as the Alisitos Arc, which follows the western margin of the Peninsular Ranges batholith, as well as from older magmatic arc, and from recycling of sedimentary/metasedimentary terrains.
NASA Astrophysics Data System (ADS)
Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.
2018-01-01
The Mouriscas Complex is a deformed and metamorphosed predominantly mafic igneous complex of Ediacaran and Ordovician age and crops out at the Ossa-Morena/Central Iberian zone boundary in the Iberian Massif, Central Portugal. It comprises amphibolite with Neoproterozoic protoliths (ca. 544 Ma), protomylonitic felsic dykes derived from younger trondhjemitic protoliths (ca. 483 Ma) and garnet amphibolite derived of even younger dioritic protoliths (ca. 477 Ma). The protoliths of the Neoproterozoic amphibolites are calc-alkaline magmas of basic to intermediate compositions with intraplate and active continental margin affinities and are considered to represent the final phase of the Cadomian arc magmatism. They are interpreted to have originated as coarse-grained intrusions, likely gabbro or diorite and generated from the partial melting of meta-igneous lower crust and mantle. Their emplacement occurred near the Cadomian metamorphic event dated at ca. 540 Ma (P = 7-8 kbar and T = 640-660 °C) which is interpreted to represent a continental collision. During the Late Cambrian-Early Ordovician an extensional episode occurred in the central-southern Iberian Massif and was also observed in other areas of the Variscan Orogen. It led to mantle upwelling and to the development of an aborted intracratonic rift located at the Ossa-Morena/Central Iberian zone boundary and to the opening of the Rheic Ocean to the south of the area studied in present coordinates (i.e., between the Ossa-Morena and South Portuguese Zones). This event has been dated at ca. 477 Ma and was responsible for the melting of deep ancient mafic crust and mantle with formation of bimodal magmatism in an intra-plate setting, as indicated by the protoliths of the protomylonitic felsic dykes with trondhjemitic composition and of the garnet amphibolite. Subsequent Variscan metamorphism took place under amphibolite facies conditions (P = 4-5.5 kbar; T = 600-625 °C) at lower P-T conditions than the Cadomian metamorphic event. It was followed by greenschist retrogression as suggested by the appearance of actinolite rims and formation of chlorite and epidote.
NASA Astrophysics Data System (ADS)
Nabhan, Abdullah I.; Yang, Wan
2018-04-01
The facies and environments along the arid siliciclastic coast of Red Sea in Al Qahmah, Saudi Arabia are studied to establish a depositional model for interpretation of ancient rocks deposited in rift settings. Field and petrographic studies of 151 sediment samples in an area of 20 km2 define seven main facies types: beach, washover fan, tidal channel, dune, sabkha, delta, and wadi (seasonal stream). The wadi and delta facies are composed of poorly to moderately well-sorted, gravelly, medium-to-fine sands. Delta-front sands are redistributed by southward longshore currents to form a beach. Beach facies is composed of well-to-moderately sorted fine sands with minor gravels, which contain high concentrations of magnetite, ilmenite, garnet, pyroxene, amphibole, epidote, titanite, and apatite grains, indicating strong winnowing. Crabs and other burrowers destroy primary sedimentary structures and mix sediments in foreshore and backshore of the beaches. Wind and storm surge rework foreshore and backshore sediments to form washover fans. Sabkha facies occurs extensively in supratidal depressions behind beach, are flooded by rainstorms and spring tide, and capped by a 5-cm-thick crust composed of interlaminated halite, quartz, albite, minor gypsum and biotite, and rarely calcium carbonate. Halite occurs as thin sheets and gypsum as nodules with a chicken-wire structure. Clastic fraction in sabkha sediments ranges from coarse silt to coarse sand with moderate sorting, and is transported by currents and wind. Tidal inlets and tidal creeks assume abandoned wadis and are filled by muddy sand. Sand dunes and sand sheets are 1-7 m high and widely distributed due to variable wind directions. Fine-grained dune sands are moderately well sorted, whereas sheet sands are coarser and poorly sorted due to vegetation baffling. Most eolian sands are sourced from beach deposits. This suite of complex riverine, wave, tidal, wind, chemical, and biological processes form the facies mosaic along the arid Al Qahmah coast, which is strongly affected by climate-driven evaporation and wind action.
Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile
NASA Astrophysics Data System (ADS)
Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.
2017-04-01
The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime probably due to oblique subduction during the Mesozoic. However, the orientations of the stress and strain fields calculated for each structural system suggest a back-and-forth rotation pattern during transition from one structural system to the other—as they change between transtension and transpression—and between alteration/mineralization stages.
Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine
Ayuso, Robert A.; Shank, Stephen G.
1983-01-01
Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be aimed at delineating the area of quartz-molybdenite mineralization, documenting hydrothermal alteration and zonation, determining fracture density, and evaluating the sulfide assemblage.
Modern Sedimentation along the SE Bangladesh Coast Reveal Surprisingly Low Accumulation Rates
NASA Astrophysics Data System (ADS)
McHugh, C.; Mustaque, S.; Mondal, D. R.; Akhter, S. H.; Iqbal, M.
2016-12-01
Recent sediments recovered along the SE coast of Bangladesh, from Teknaf to Cox's Bazar and drainage basin analyses reveal sediment sources and very low sedimentation rates of 1mm/year. These low rates are surprisingly low given that this coast is adjacent to the Ganges-Brahmaputra Delta with a yearly discharge of 1GT. The Teknaf anticline (elevation 200 m), part of the western Burma fold-thrust belt dominates the topography extending across and along the Teknaf peninsula. It is thought to have begun evolving since the Miocene (Alam et al. 2003 & Allen et al. 2008). Presently the anticline foothills on the west are flanked by uplifted terraces, the youngest linked to coseismic displacement during the 1762 earthquake (Mondal et al. 2015), and a narrow beach 60-200 m in width. Petrography, semi-quantitative bulk mineralogy and SEM/EDX analyses were conducted on sediments recovered along the west coast from 1-4 m deep trenches and three 4-8 m deep drill holes. GIS mapping of drainage basins and quartz-feldspar-lithic (QFL) ternary plots based on grain counting show mixing of sediments from multiple sources: Himalayan provenance of metamorphic and igneous origin (garnet-mostly almandine, tourmaline, rutile, kyanite, zircon, sillimanite and clinopyroxene) similar to Uddin et al. (2007); Brahmaputra provenance of igneous and metamorphic origin (amphibole, epidote, plagioclase 40% Na and 60% Ca, apatite, ilmenite, magnetite, Cr-spinel and garnet-mostly grossular,) as indicated by Garzanti et al. (2010) & Rahman et al. (2016) and Burmese sources (cassiterite and wolframite) (Zaw 1990 & Searle et al. 2007). Low sedimentation rates are the result of two main factors: 1. Strong longshore currents from the south-east that interact with high tidal ranges as evidenced by the morphology of sand waves and ridge and runnel landforms along the beach. 2. Streams draining the Teknaf anticline are dry during the winter and during summer monsoon rains, the sediments bypass the narrow beach and are washed out offshore. These sedimentation patterns together with the offshore reversing monsoon circulation are shaping the coast by contributing to erosion, mixing of sediments and transporting minerals from the Burma drainage basin in the south.
New mapping near Iron Creek, Talkeetna Mountains, indicates presence of Nikolai greenstone
Schmidt, Jeanine M.; Werdon, Melanie B.; Wardlaw, Bruce R.
2003-01-01
Detailed geologic mapping in the Iron Creek area, Talkeetna Mountains B-5 Quadrangle, has documented several intrusive bodies and rock units not previously recognized and has extended the geologic history of the area through the Mesozoic and into the Tertiary era. Greenschist-facies metabasalt and metagabbro previously thought to be Paleozoic are intruded by Late Cretaceous to Paleocene dioritic to granitic plutons. The metabasalts are massive to amygdaloidal, commonly contain abundant magnetite, and large areas are patchily altered to epidote ± quartz. They host numerous copper oxide–copper sulfide–quartz–hematite veins and amygdule fillings. These lithologic features, recognized in the field, suggested a correlation of the metamafic rocks with the Late Triassic Nikolai Greenstone, which had not previously been mapped in the Iron Creek area. Thin, discontinuous metalimestones that overlie the metabasalt sequence had previously been assigned a Pennsylvanian(?) and Early Permian age on the basis of correlation with marbles to the north, which yielded Late Paleozoic or Permian macrofossils, or both. Three new samples from the metalimestones near Iron Creek yielded Late Triassic conodonts, which confirms the correlation of the underlying metamafic rocks with Nikolai Greenstone. These new data extend the occurrence of Nikolai Greenstone about 70 km southwest of its previously mapped extent.Five to 10 km north of the conodont sample localities, numerous microgabbro and diabase sills intrude siliceous and locally calcareous metasedimentary rocks of uncertain age. These sills probably represent feeder zones to the Nikolai Greenstone. In the Mt. Hayes quadrangle 150 km to the northeast, large sill-form mafic and ultramafic feeders (for example, the Fish Lake complex) to the Nikolai Greenstone in the Amphitheatre Mountains host magmatic sulfide nickel–copper–platinum-group-element (PGE) mineralization. This new recognition of Nikolai Greenstone and possible magmatic feeders in the Iron Creek area suggests a much greater potential for large PGE, copper, or nickel deposits in the Talkeetna Mountains than previous mineral resource appraisals of the area have suggested, and requires reevaluation of large-scale tectonic models for the area.
Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.
NASA Astrophysics Data System (ADS)
Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.
1980-08-01
This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the cataclasis. It is evident that the gouge development in these primarily igneous crystalline terranes is largely an in situ process with minimal mixing of rock types. Fabric analyses reveal that brecciation (shattering), not shearing, is the major deformational mechanism at these upper crustal levels.
NASA Astrophysics Data System (ADS)
Kim, J.; Jung, H.
2016-12-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation(LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Labratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. For amphibole, P-wave velocity anisotropy was in the range of 15.9 - 20.9% and maximum S-wave anisotropy was in the range of 13.1 - 19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy(AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2-D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications. 6:6586.
NASA Astrophysics Data System (ADS)
Kim, Junha; Jung, Haemyeong
2017-04-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation (LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Laboratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. P-wave velocity anisotropy of amphibole was in the range of 15.9‒20.9% and maximum S-wave anisotropy was in the range of 13.1‒19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy (AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear, Nature Communications, 6:6586.
NASA Astrophysics Data System (ADS)
Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs
2017-07-01
Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We suggest that the observed complicated secondary textures in zircon can be linked to the evolutionary stages of the host rocks such as magmatic crystallization, prograde metamorphism, peak of amphibolite-facies metamorphism, post-peak cooling and exhumation, formation of ductile shear zones and final cooling to 250 °C.
Characterizing Mineral Dust from the Arabian Coast of the Red Sea
NASA Astrophysics Data System (ADS)
Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.
2014-12-01
The Arabian Peninsula is one of the Earth's major sources of atmospheric dust. Along with profound negative effects on human activity and natural processes in this region, dust is an important nutrient source for the oligothrophic northern Red Sea. From preliminary observations it is estimated that some 18-20 major dust storms per year deposit about 6 Mt of mineral dust into the Red Sea. To better understand the optical properties, health, and ecological impacts of dust, we study the mineralogical, chemical and morphological properties of surface soil samples collected at prevbiously identified potential dust sources along the Arabian coast of the Red Sea. Many of these dust sources lie within a narrow coastal region and because of their proximity to the Red Sea, are important contributors to the dust/nutrient balance, during both dusty and fair weather conditions. Bulk samples were collected from the top 10 mm of soils from three sites along the Arabian coast of the Red Sea. The soil samples were sieved to separate the < 38μm particle fractions for chemical and mineralogical analysis. X-ray diffractometry (XRD) was applied to measure the mineral content of the dust. The chemical composition of individual particles was analyzed using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). From the XRD analysis of the sieved samples from An Masayat (23.3322 N, 38.9481 E), Buthna (23.2960 N, 38.9384 E) and Rabugh pipeline Road (23.292 N, 38.91 E), it was found that the dust was composed largely of hematite, goethite, calcite, dolomite, quartz, chlorite, muscovite, amphibole, epidote and plagioclase. Our results are being compared to, and show similarities to those of Engelbrecht et al. , collected at 15 Middle East sites. Both the mineralogical content and chemical composition of samples bear the signatures of the regional geology. Engelbrecht, J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 2: Grab samples and re-suspensions: Inhalation Toxicology, v. 21, p. 327-336.
NASA Astrophysics Data System (ADS)
Lacerda Filho, J. V.; Fuck, R. A.; Ruiz, A. S.; Dantas, E. L.; Scandolara, J. E.; Rodrigues, J. B.; Nascimento, N. D. C.
2016-01-01
New geochemical and geochronological U-Pb and Sm-Nd data from amphibolites of the Alto Tererê Group, which are of Palaeoproterozoic age, are presented. The amphibolites are exposed in the central-eastern portion of the Rio Apa Block, southern Amazonian Craton, Mato Grosso do Sul, Brazil, and are composed of hornblende, plagioclase, quartz, biotite, cummingtonite and epidote. The amphibolites are subdivided into three lithofacies: (i) thinly banded amphibolites (metabasalts), (ii) coarse- and medium-grained amphibolites with relic subophitic texture (metagabbros), and (iii) amphibolites with relic cumulate texture (metapyroxenites). Chemical data also suggest the subdivision of the amphibolites into three different types. These rocks yield a U-Pb zircon age of 1768 ± 6 Ma and are therefore older than rocks of part of the Rio Apa Complex. Their Sm-Nd model ages range between 2.89 and 1.88 Ga, and their εNd (T) values range between -3.40 and + 3.74. Chemical analyses of these rocks indicate SiO2 concentrations between 45.23 and 50.65 wt.%, MgO concentrations between 4.34 and 8.01 wt.%, TiO2 concentrations between 0.91 and 1.74 wt.%, weakly fractionated rare-earth element (REE) patterns with mild depletion in heavy REEs, enrichment in large-ion lithophile elements (LILEs) and high-field-strength element (HFSEs), negative Nb, Ta and Co anomalies, positive Ba and Pb anomalies, low Ce concentrations, high Rb/Y ratios and low Th/La and Hf/Sm ratios. These features reflect metasomatism of the mantle wedge produced by sediments from the subducted plate. Various degrees of melting mark the evolution of the parent basic magmas, although subordinate crustal contamination may also have occurred. The geochemical signature of the amphibolites corresponds to that of tholeiitic basalts generated in an extensional back-arc-basin environment. The deposition in the basin apparently ceased during the first episode of compression and deformation at approximately 1.68 Ga, and the main deformation was most likely related to the San Ignácio Orogeny, which dates to approximately 1.3 Ga.
NASA Astrophysics Data System (ADS)
Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min
2016-09-01
The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.
NASA Astrophysics Data System (ADS)
Mueller, Andreas G.; McNaughton, Neal J.
2018-01-01
The Big Bell deposit (75 t gold) is located in a narrow spur of the Meekatharra greenstone belt, Yilgarn Craton, Western Australia. Two ore bodies are located in a calcic-potassic contact alteration zone overprinting lineated granodiorite dykes and amphibolite: almandine-cummingtonite-hornblende skarn (1-3 g/t Au, 1700 g/t As, 330 g/t W) and the muscovite-microcline gneiss (3-5 g/t Au, 580 g/t Sb, 620 g/t W) of the Main Lode. Genetic models vary from pre- to post-metamorphic replacement. Hornblende-plagioclase pairs in amphibolite constrain peak metamorphic temperature to 670 ± 50 °C. In contrast, garnet-biotite thermometry provides estimates of 578 ± 50 and 608 ± 50 °C for garnet-cordierite-biotite schist bordering the skarn and enveloping the Main Lode. Garnet-cordierite and garnet-hornblende pairs extend the range of fluid temperature to 540 ± 65 °C, well below peak metamorphic temperature. At 540-600 °C, the alteration assemblage andalusite + sillimanite constrains pressure to 300-400 MPa corresponding to 11-14 km crustal depth. Published U-Pb ages indicate that metamorphism took place in the aureole of the southeast granodiorite-tonalite batholith (2740-2700 Ma), followed by gold mineralization at 2662 ± 5 Ma and by the emplacement of biotite granite and Sn-Ta-Nb granite-pegmatite dykes at 2625-2610 Ma. Amphibolite xenoliths in granite northwest of the deposit record the lowest temperature (628 ± 50 °C), suggesting it lacks a metamorphic aureole. The rare metal dykes are spatially associated with epidote-albite and andradite-diopside skarns (≤1.5 g/t Au), mined where enriched in the weathered zone. We analysed hydrothermal zircon intergrown with andradite. Concordant U-Pb ages of 2612 ± 7 and 2609 ± 10 Ma confirm the presence of a second granite-related system. The zircons display oscillatory zoning and have low Th/U ratios (0.05-0.08). Low-Th titanite from an albite granite dyke has a concordant but reset U-Pb age of 2577 ± 7 Ma.
Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist
NASA Astrophysics Data System (ADS)
Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; John, Timm; Deldicque, Damien; Ferrand, Thomas; Wang, Yanbin; Renner, Jörg; Morales, Luiz; Schubnel, Alexandre
2017-02-01
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1.5 < P < 3.5 GPa; 583 K < T < 1121 K), using a D-DIA apparatus installed at a synchrotron beamline continuously monitoring stress, strain, phase changes, and acoustic emissions (AEs). Two distinct paths were investigated: i) heating during deformation at pressures >2.5 GPa to maximum temperatures ranging from 762 to 1073 K, during which lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite-eclogite and the breakdown reaction of lawsonite was only crossed in case of the highest final temperature; ii) heating while deforming at a pressure <2 GPa to a maximum temperature of 1121 K associated with crossing the breakdown reaction of lawsonite and successively entering the stability fields of epidote-blueschist and eclogite-amphibolite but not of lawsonite-eclogite. Upon entering the Lws-Ecl stability field samples exhibited brittle failure, accompanied by the radiation of AEs. In-situ X-ray diffraction and microstructural analysis demonstrate that fractures are topologically related to the formation of omphacite. Amorphous material was detected along the fractures by transmission-electron microscopy without evidence for free-water. Since the newly formed omphacite crystals are small compared to the initial grains, we interpret the observed mechanical instability as a transformation-induced runaway under stress triggered during the transition from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing in samples that experienced the highest quench temperatures of 1073 and 1121 K, although some AEs were detected during an experiment performed at 1.5 GPa. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead we suggest that grain-size reduction (transformational faulting) during the transition from lawsonite-blueschist to lawsonite-eclogite leads to brittle failure of the deviatorically loaded samples.
NASA Astrophysics Data System (ADS)
Zhou, T. Q.; Wu, C.; Zhu, W.
2017-12-01
Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.
Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska
NASA Astrophysics Data System (ADS)
Stelling, P. L.; Tobin, B.; Knapp, P.
2015-12-01
Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure implications of erosional unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. J. of Geochem. Exploration, 78-79, 143-7. Person, M., Bense, V., Cohen, D. and Banerjee, A, (2012). Models of ice-sheet hydrogeologic interactions: a review. Geofluids, 12, 58-78
NASA Astrophysics Data System (ADS)
Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; Andersen, Torgeir B.; Wang, Yanbin; Schubnel, Alexandre
2017-04-01
Field observations from the Bergen Arcs, Norway, demonstrate a network of pseudotachylites quenched under eclogite-facies conditions in mafic granulites. In these nominally anhydrous high-pressure high-temperature (HP/HT) rocks the formation of pseudotachylites, believed to represent fossilized earthquakes, cannot be explained by processes akin to dehydration embrittlement. On the contrary, the transition to eclogite is expected to involve hydration of the initial rock. To experimentally investigate the underlying mechanisms leading to brittle failure in HP/HT rocks, we performed deformation experiments on natural granulite samples from the Bergen Arcs. The experiments were conducted under eclogite-facies conditions (2-3 GPa, 990-1220 K) to trigger the breakdown of plagioclase - the main constituent of granulite. For these experiments, both a D-DIA and a Griggs apparatus were used. The D-DIA press is mounted on a synchrotron beamline, enabling us to monitor strain, stress, and phase changes in-situ while contemporaneously recording acoustic emissions. The Griggs experiments were performed on a new device installed at ENS Paris, in which only stress-strain were recorded, and post-mortem microstructures investigated. The initial material consisted of a fine grain size granulite powder (< 38 µm) composed of mainly plagioclase and minor amount of pyroxene. Hydrous phases are phlogopite and epidote group minerals that make up less than 1 vol. % of the total bulk rock powder plus the adhesion water on grain surfaces. Mechanical data together with XRD observations and the record of acoustic emissions demonstrate a correlation between stress drops, the growth of plagioclase breakdown products and the onset of acoustic emissions during deformation of our specimen within the eclogitic field. Microstructural analysis show remarkable similarities with that of the natural ecoligitic pseudotachylites of the Bergen arcs. The plagioclase decomposition products form narrow conjugated shear bands, along which dissected and displaced crystals are found in the samples. The lack of microstructural evidence for macroscopic brittle failure in our microstructures could be due to plastic overprinting of early brittle structures. Nevertheless, our preliminary experimental results show a strong correlation between strain localization, dynamic fracture propagation (rapid enough to produce AEs) and the eclogitization of granulite.
Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece
NASA Astrophysics Data System (ADS)
Matthews, Alan; Schliestedt, Manfred
1984-11-01
The metamorphism on the island of Sifnos is characterized by the Eocene development of a coherent highpressure blueschist terrane and an early Miocene greenschist facies overprint. This study documents the metamorphic evolution of the blueschist assemblages, still preserved in the northern parts of the island, and their subsequent transformation into greenschists in the central and southern parts. The oxygen isotope geothermometry is based on calibrations for quartz, pyroxenes and magnetite (Matthews et al. 1983a) augmented by revised calibrations for the minerals muscovite ( Δ Qz-Mu=1.55×106 T -2), epidote ( δ Qz-Ep= 1.56+1.92 Δ ps)106 T -2), and rutile ( Δ Qz-Ru=4.54×106 T -2). Oxygen isotope analyses of minerals from the Blueschist unit of northern Sifnos give consistent fractionations which are independent of rock type. An average temperature of 455° C was obtained, although the scatter in temperatures deduced from the various geothermometers suggests that equilibration occurs under slightly changing physicochemical conditions. Analyses of minerals and whole rocks shows that pervasive equilibration in the presence of a common metamorphic fluid has not occurred. The minerals and whole rocks of the greenschists of central Sifnos are systematically enriched in 18O relative to the blueschist assemblages. Chemical data indicate that the greenschist overprint was accompanied by a metasomatic enrichment of Ca2+ and CO2. The petrologic, isotopic and chemical evidence favour a metamorphism governed by the infiltration of 18O-CO2 enriched aqueous solutions. It is reasonable to assume that this is connected with the Miocene magmatic activity observed throughout the Cyclades. The marbles separating the Blueschist from the Greenschist unit probably acted as barriers to fluid infiltration into the blueschists and were responsible for their preservation. The pressure of the blueschist metamorphism is estimated at 14±2 kbar, corresponding to a depth of ca. 50 km. The structural style and stratigraphy of Sifnos are suggestive of the subduction of a continental margin sequence. It is clear that the considerable tectonic depression may be associated with continental collision and underthrusting.
NASA Astrophysics Data System (ADS)
Greenberger, R. N.; Ehlmann, B. L.; Kelemen, P. B.; Manning, C. E.; Teagle, D. A. H.; Harris, M.; Michibayashi, K.; Takazawa, E.
2017-12-01
The Oman Drilling Project provides an unprecedented opportunity to study the formation and alteration of oceanic crust and peridotite. Key to answering the main questions of the project are a characterization of the primary and secondary minerals present within the drill core and their spatial relationships. To that end, we used the Caltech imaging spectrometer system to scan the entire 1.5-km archive half of the core from all four gabbro and listvenite boreholes (GT1A, GT2A, GT3A, and BT1B) at 250 µm/pixel aboard the JAMSTEC Drilling Vessel Chikyu during the ChikyuOman core description campaign. The instrument measures the visible and shortwave infrared reflectance spectra of the rocks as a function of wavelength from 0.4 to 2.6 µm. This wavelength range is sensitive to many mineral groups, including hydrated minerals (phyllosilicates, zeolites, amorphous silica polytypes), carbonates, sulfates, and transition metals, most commonly iron-bearing mineralogies. To complete the measurements, the core was illuminated with a halogen light source and moved below the spectrometer at 1 cm/s by the Chikyu's Geotek track. Data are corrected and processed to reflectance using measurements of dark current and a spectralon calibration panel. The data provide a unique view of the mineralogy at high spatial resolution. Analysis of the images for complete downhole trends is ongoing. Thus far, a variety of minerals have been identified within their petrologic contexts, including but not limited to magnesite, dolomite, calcite, quartz (through an Si-OH absorption due to minor H2O), serpentine, chlorite, epidote, zeolites, mica (fuchsite), kaolinite, prehnite, gypsum, amphibole, and iron oxides. Further analysis will likely identify more minerals. Results include rapidly distinguishing the cations present within carbonate minerals and identifying minerals of volumetrically-low abundance within the matrix and veins of core samples. This technique, for example, accurately identifies mm-thick dolomite or calcite veins among dense sets of magnesite veins in the listvenite, indicating cross-cutting relationships that reflect changing alteration conditions with time. It also highlights key zones for sampling and additional analyses. Further data processing will provide mineralogical maps of the full 1.5 km of core.
NASA Astrophysics Data System (ADS)
LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.
2016-12-01
The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.
Geochemistry and source waters of rock glacier outflow, Colorado Front Range
Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.
2006-01-01
We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.
Fracture Development within the Karaha-Telaga Bodas Geothermal Field, Indonesia
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2002-01-01
Karaha-Telaga Bodas is a partially vapor-dominated geothermal system located in an active volcano in western Java. More than 2 dozen geothermal wells have been drilled to depths of 3 km. Detailed paragenetic and fluid-inclusion studies have defined liquid-dominated, transitional and vapor-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by shallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures were filled with carbonates at shallow depths and by quartz, epidote and actinolite at depths and temperatures over 1km and 300??C. The system underwent numerous local cycles of overpressuring, which are marked by subhorizontal tensile fractures, anastomosing tensile fractures and implosion breccias. The development of the liquid system was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were deposited in fractures having the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapor-dominated conditions were initiated within a vertical chimney over the still hot intrusion. As pressures declined these conditions spread outward. Downward migration of the chimney occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. Condensate that formed at the top of the vapor-dominated zone percolated downward and lowsalinity meteoric water entered the marginal parts of the system. Calcite, anhydrite, and fluorite precipitated in fractures upon heating. A progressive sealing of the fractures occurred, resulting in the downward migration of the cap rock. In response to decreasing pore pressures in the expanding vapor zone, the fracture system within the vapor-dominated reservoir progressively collapsed, leaving only residual permeability, with apertures supported by asperities or propping breccia. In places, the fractures have completely collapsed where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock.
NASA Astrophysics Data System (ADS)
Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.
2017-12-01
In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.
NASA Astrophysics Data System (ADS)
Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa
2016-04-01
The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount of Cu and Mo mineralization having addition of Si and K with removal of Fe, Mg, Ca, and Na. Keywords: Mass balance calculation; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey
Effects of chemical alteration on fracture mechanical properties in hydrothermal systems
NASA Astrophysics Data System (ADS)
Callahan, O. A.; Eichhubl, P.; Olson, J. E.
2015-12-01
Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture initiation and growth in different parts of hydrothermal systems. Contrasting fracture mechanical properties between alteration assemblages may constitute a new mechanism of chemical-mechanical feedback that contributes to the localization of conduits in hydrothermal systems.
NASA Astrophysics Data System (ADS)
Xu, Deru; Kusiak, Monika A.; Wang, Zhilin; Chen, Huayong; Bakun-Czubarow, Nonna; Wu, Chuanjun; Konečný, Patrik; Hollings, Peter
2015-02-01
New monazite chemical U-Th-total-Pb (CHIME) ages, combined with microstructural observations, mineral compositions, and whole-rock geochemistry, indicate that the large-scale, banded iron formation (BIF)-type Shilu Fe-Co-Cu ore district in Hainan Province, South China is a multistage product of sedimentation, metamorphism, and hydrothermal-metasomatic alteration associated with multiple orogenies. Two types of monazite, i.e. "polygenetic" and "metamorphic", were identified. The "polygenetic monazite" comprises a magmatic and/or metamorphic core surrounded by a metamorphic rim, and shows complex zoning. Breakdown corona structure, with a core of monazite surrounded by a mantle of fluorapatite, allanite, and/or epidote as concentric growth rings, is commonly observed. This type of monazite yielded three main CHIME-age peaks at ca. 980 Ma, ca. 880 Ma and ca. 450 Ma. The ages which range up to ca. 880 Ma for detrital cores, record a pre-deformational magmatic and/or metamorphic event(s), and is considered to be the depositional time-interval of the Shilu Group and interbedded BIFs in a marine, back-arc foreland basin likely due to the Grenvillian or South China Sibao orogeny. After deposition, the Shilu district was subjected to an orogenic event, which is recorded by the syndeformational metamorphic monazite with ca. 560-450 Ma population. Probably this event not only caused amphibolite facies metamorphism and associated regional foliation S1 but also enriched the original BIFs, and most likely corresponds to the "Pan-African" and/or the South China Caledonian orogeny. The post-deformational "metamorphic" monazite occurs mostly as inclusions in garnet and shows ca. 260 Ma age. It likely represents the Late Permian post-magmatic hydrothermal and related retrograde event(s) initiated by the Indosinian orogeny due to the closure of the Paleo-Tethys. The breakdown of monazite to secondary coronal mineral phases as well as the Fe-remobilization and associated skarnization of the Shilu BIF ore source rocks might also be induced during this retrograde greenschist-facies metamorphism.
NASA Astrophysics Data System (ADS)
Wang, Yuejun; Fan, Weiming; Sun, Min; Liang, Xinquan; Zhang, Yanhua; Peng, Touping
2007-07-01
The Indosinian granites in the South China Block (SCB) have important tectonic significance for the evolution of East Asia. Samples collected from Hunan Province can be geochemically classified into two groups. Group 1 is strongly peraluminous (A/CNK > 1.1), similar to S-type granites, and Group 2 has A/CNK = 1.0-1.1, with an affinity to I-type granites. Group 1 has lower FeOt, Al 2O 3, MgO, CaO, TiO 2 and ɛNd( t) values but higher K 2O + Na 2O, Rb/Sr, Rb/Ba and 87Sr/ 86Sr( t) than those of Group 2. Samples of both groups have similar LREE enriched pattern, with (Eu/Eu *) = 0.19-0.69, and strongly negative Ba, Sr, Nb, P and Ti anomalies. Geothermobarometry study indicates that the precursor magmas were emplaced at high-level depth with relatively low temperature (734-827 °C). Geochemical data suggest that Group 1 was originated from a source dominated by pelitic composition and Group 2 was from a mixing source of pelitic and basaltic rocks with insignificant addition of newly mantle-derived magma. Eight granitic samples in Hunan Province are dated at the cluster of 243-235 and 218-210 Ma by zircon U-Pb geochronology. Together with recent zircon U-Pb ages for other areas in the SCB, two age-clusters, including 243-228 Ma just after peak-metamorphism (˜ 246-252 Ma) and 220-206 Ma shortly after magma underplating event (˜224 Ma), are observed. It is proposed that in-situ radiogenic heating from the over-thickened crust induced dehydrated reaction of muscovite and epidote/zoisite to form the early Indosinian granites in response to the isostatic readjustments of tectonically thickened crust. Conductive heating from the underplating magma in the postcollisional setting triggered the formation of late Indosinian granites. Such a consideration is supported by the results from FLAC numerical simulation.
The magmatism and metamorphism at the Malayer area, Western Iran
NASA Astrophysics Data System (ADS)
Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.
2009-04-01
The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and local feldspatisation. Hornfels has surrounded the Malayer intrusive body in its southern, eastern and to some extent northeastern parts. It shows a rather sharp contact with the granodiorite. According to field and microscopic investigations, an original clay-sandstone has been converted into hornfels due to contact metamorphism. Some small highly altered granitic patches are seen in the hornfels unit, especially close to its contact with the Malayer intrusive body.
Thermodynamic modeling of phase relations and metasomatism in shear zones
NASA Astrophysics Data System (ADS)
Goncalves, P.; Oliot, E.; Marquer, D.
2009-04-01
Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel granodiorite (Swiss Alps). Fourteen samples have been taken along a 80 meter-wide strain gradient from the undeformed granodiorite protolith to the ultramylonitic zone. The metastable magmatic assemblage consists of oligoclase (50 vol%), quartz ( 20 vol%), K-feldspar (17 vol%), and biotite (13 %). With increasing strain, K-feldspar and oligoclase rapidly disappear to produce albite and epidote porphyroblast (up to 45 and 5 vol% respectively) with phengite in shear planes (15 vol%). In the mylonite and ultramylonite, magmatic phases have been completely recrystallized and the metamorphic albite volume decreases down to 25 vol% whereas phengite constitutes up to 30 vol% of the rock. Epidote is absent in the ultramylonite. In localized shear bands, the metamorphic assemblage consists of phengite, chlorite, biotite and quartz. Mass balance calculations show that the ultramylonite is enriched in MgO (up to 130%) while CaO and Na2O are remove (80% and 45% respectively). However, mass transfer is even stronger in the chlorite-bearing shear bands, where CaO and Na2O have been completely leached out. Chemical potential pseudosections are constructed using the bulk composition of the unaltered granodiorite, with K2O, FeO, Al2O3 and SiO2 content remaining constant. Deformation occurred under water-saturated conditions at 6 kbar and 450°C. MgO, CaO and Na2O are considered as "perfectly mobile" components and therefore their chemical potentials, which is fixed by the externally-derived fluid, control the stability of the phases. μMgO vs μCaO and μMgO vs μNa2O diagrams, show that the breakdown of a Kf-ab-ep assemblage into phengite and the subsequent crystallization of chlorite require the introduction of a fluid with a μCaO and μNa2O significantly lower than in the unaltered metamorphic assemblage (Kf-ab-ep-Kf-Bio-q). Equalizing the chemical potential gradient of CaO and Na2O, established between the fluid and the metamorphic assemblage, is achieved by the complete removal of CaO and Na2O. The most striking result is that chemical potential diagram predicts that the loss of CaO and Na2O and the crystallization of chlorite-bearing assemblage at the expense of Kf-ep-ab imply a gain of MgO to reach equilibrium: "Mg-metasomatism" is therefore controlled and induced by the metamorphic assemblage. Finally fluid-rock interactions and mass transfer result in an increase in phyllosilicates in the shear zone from 13 to 32 vol%, which should strongly enhance the strain localization process. To conclude, our approach allows to predict and to quantify the mineralogical changes induced by fluid-rock interactions in a shear zone for any bulk composition or P-T composition.
NASA Astrophysics Data System (ADS)
Fagan, C. J.; Wilson, C. J.; Spinks, K. D.; Browne, P. R.; Simmons, S. F.
2006-12-01
A major part of the ca. 1.6 Myr history of the Taupo Volcanic Zone (TVZ) is represented by buried and hydrothermally altered rocks penetrated by geothermal exploration wells. The geothermal field at Mangakino is sited in the oldest TVZ caldera on the western edge of the TVZ. Four exploration wells into the field reveal a thick sequence of flat-lying ignimbrites. Basement Mesozoic greywacke metasediments were not reached by the deepest well, MA2 (3192 m), implying the presence of a thick caldera infill. Ignimbrites exposed at the surface nearby have distinct mineralogies and crystal contents, which enable correlation with down-hole lithologies. Five ignimbrites are identified in the wells: the 0.32 Ma Whakamaru, 0.93 Ma Marshall, 1.0 Ma Rocky Hill, 1.18 Ma Ahuroa and 1.25 Ma Ongatiti ignimbrites, two of which are >800m thick. The Whakamaru and Marshall units are separated by a thick sequence of lacustrine and volcaniclastic deposits related to infilling of the Mangakino caldera. The ignimbrite sequence is continuous between all wells, with no fault offset, and only well MA3 intersects two rhyolite intrusions at 1190 m and 1850 m that are thought to be feeder dikes to post-0.32 Ma rhyolite domes to the east of Mangakino. Alteration assemblages include epidote and wairakite in MA2 below 2200 m. Adularia occurs in MA2 and MA3 where it replaces, wholly or in part, primary andesine. Adularia is also locally replaced by illite, indicating a shift in hydrothermal conditions. Other minerals present are chlorite, quartz, calcite, titanite and pyrite. Secondary quartz and calcite veins are seen in thin section, with a first appearance in the lacustrine sediments at 550 m in both MA2 and MA3. Fluid inclusions in secondary calcite show high temperatures (300 and 315 °C) while inclusions in primary quartz show ca. 165 °C (the current temperature at the sampled depth), recording current conditions. The modern maximum temperature is 250 °C at 3000 m in MA2. Evidence for two different temperatures in the fluid inclusion data and a shift in alteration mineralogy may reflect an earlier thermal event, possibly related to dike intrusion nearby.
NASA Astrophysics Data System (ADS)
Johnston, E. C.; Pollock, M.; Cathcart, E. M.; AlBashaireh, A.; O'shea, B. M.
2016-12-01
The Santiago Peak Volcanics (SPV) of Southern CA and Northern Baja CA, Mexico are remnants of a Cretaceous subaerial volcanic arc system that underwent greenschist facies metamorphism contemporaneous with volcanism. Observed SPV exposed at the surface of Black Mountain Open Space Park (San Diego, CA) exhibit anomalous arsenic (As) enrichment (100 - 480,000 ppm) up to five orders of magnitude greater than average for igneous rocks (1.5 ppm). We hypothesize that these rocks underwent localized syn-volcanic hydrothermal alteration along a highly fractured zone that today trends between N10°W and N20°W, leading to anomalous As enrichment on the spatial scale of tens of meters. We suspect that such As has been further mobilized by modern water-rock interactions. Using standard geochemical techniques (e.g. XRD, XRF, EDX) and mass balance analyses, we aim to (1) summarize the extent of As enrichment in altered SPV, and (2) present an integrated view of the interactions between ancient hydrothermal volcanic arc processes, surficial weathering, and observed As anomalies. Alteration textures of samples range from partially altered phenocrysts (i.e. minimally altered) to massive hydrothermal replacement, in which virtually all primary phases are altered to new hydrothermal minerals such as epidote, Fe-rich chlorite, and sericite (i.e. highly altered). Highly altered rocks contain average As concentrations (mean = 37,680 +/- 15,396 ppm, n = 23) >10,000 times that of minimally altered SPV (mean = 26 +/- 6 ppm As, n = 19). In some rocks, As-rich iron oxide and gypsum containing up to 900 ppm As are present as surficial rinds, suggesting modern day remobilization of As from hydrothermal host minerals, like arsenopyrite. These findings indicate that such As is highly soluble and, therefore, may be further mobilized by physical and chemical weathering. No other trace metals (e.g. Pb, Cu, Ag, Au) are consistently enriched above upper-crustal averages, and As does not always occur with sulfur. The results of this study could aid in pinpointing other regions at risk for anomalous As, particularly in ancient volcanic arc systems, in addition to informing future research on subsequent impacts to ecosystem and public health.
NASA Astrophysics Data System (ADS)
Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.
2017-12-01
The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of the Qimen Tagh Range. The intense tectonic activity is the far-feld effect of the full collision that occurred between the Indian-Eurasian plates.This work was financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX05008-001).
Landslide: Mineralogical and Physical Investigation
NASA Astrophysics Data System (ADS)
Tudor, Viluș; Grozav, Adia; Rogobete, Gheorghe
2017-10-01
In order to construct a road bed foundation, if land has moved, on an area with old landslides, there is a high chance of it moving again. The investigation was made in a region with hilly relief, in which the parent materials of soils are argillaceous marls of Pliocene age. Because the slope is scarped and the versant has been cut, the soil mass slide favoured of the particle-size distribution dominated by heavy clay. With a reiteratedly percolative moisture regime, the soil material is saturated in water fora long period (700-800 mm precipitation/year), and that can increase the slope mass, thereby increasing the driving forces. In a soil profile situated on the top of the hill, with landslide for about 40 m length of the road, disturbed and undisturbed soil samples were analysed physic-chemical and mineralogical. For the heavy and light minerals from the sand fraction a polarized light analyser is used, and for clay minerals X-ray, differential thermal and infrared absorption method are used. The particle-size distribution in the soil profile is dominated by the clay fraction, which reached 53.2% in the ABt horizon and 63.0% in the Bt horizon (67-93 cm depth). The structure of the light minerals, consists of quartz (41-58%); feldspar (10.16-18.10%); muscovite (14.10-26.04). The heavy minerals are oxides (2.61-15.26%), hornblende (0.58-2.87%) and biotite (0.51-2.68%). It must be mentioned the presence of the metamorphic minerals, with the source of the Poiana Rusca mountains. These minerals are epidote (1.01-1.86%), disthene (0.70-1.86%), staurolite (0.73-2.46%) and sillimanite (0.35-0.45%). The clay minerals, inherited from the parent material or formed during the soil-forming process are dominated by smectite, which represent (71-85%) from the total clay minerals, illite 10-21%, and Kaolinite, 4-12%. Rheological properties, like plastic index (53.8%), activity index (1.01%) and consistency index (0.99-1.00%) show that the shrinkage - swelling processes are active, and provoke landslide. We propose some technical measures for decreasing the driving force and increasing the resisting forces on the slope, such as: drainage net with track ditch and inspection chamber, driven pile a 10 m depth, and so on.
NASA Astrophysics Data System (ADS)
Cao, Yi; Gao, Fuping; Du, Yangsong; Du, Yilun; Pang, Zhenshan
2017-03-01
Stratabound deposits are the most abundant and economically significant ore type in the Middle-Lower Yangtze River Valley, one of the most important metallogenic belts in China. The Datuanshan deposit is one of the largest and most representative stratabound Cu(-Mo) deposits in the Tongling district of the Middle-Lower Yangtze River metallogenic belt. All the orebodies of the Datuanshan deposit occur around Mesozoic quartz monzodiorite and are tabular or semi-tabular bodies along bedding-parallel faults within upper Permian to Lower Triassic strata. However, discordant and crosscutting relationships (e.g., the host rocks crosscut by skarn- and quartz-sulfide veins, with alteration halos around the veins) have also been found, especially along the skarn-host contact and orebody-host contact, indicating that skarnitization and mineralization postdated the deposition of the host sediments. The skarn consists mainly of prograde garnet and pyroxene and retrograde alteration assemblages of amphibole, epidote, and chlorite, as well as quartz and sulfides. Electron microprobe analyses show that the garnets and pyroxenes are grossular-andradite and hedenbergite-diopside series, respectively, and all samples plot in the field of typical skarn copper deposits worldwide. Molybdenite samples from stratiform copper ores yield Re-Os model ages of 138.2-139.9 Ma with a weighted mean age of 139.2 ± 0.9 Ma. This is reasonably consistent with the ages of the stratiform Mo ores (138.0-140.8 Ma) and genetically related quartz monzodiorite (135.2-139.3 Ma) in the Datuanshan deposit, indicating that the stratiform Cu and Mo mineralization was contemporaneous with emplacement of the quartz monzodiorite magmas in the Early Cretaceous. Fifteen δ34S values for sulfides range from -1.8 to +4.7 ‰, with a mean of 0.5 ‰, indicating that the sulfur was derived mainly from a magmatic source. Moreover, the sulfur isotope values of the ores are consistent with those of Mesozoic intermediate-acid intrusions but are different from those of sediments in the Shizishan orefield. Based on these lines of evidence, we conclude that the Datuanshan stratabound Cu(-Mo) deposit is the result of replacement related to Mesozoic magmatic rocks and is not a product of submarine exhalative sedimentary processes.
Gibson, R.L.; Townsend, G.N.; Horton, J. Wright; Reimold, W.U.
2009-01-01
Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere they are affected by high-temperature mylonitic shear deformation, suggesting a late-D1 intrusive timing close to the metamorphic peak. The D1 event is tentatively interpreted as a thrusting event associated with westward-verging collision between Gondwana and Laurentia before or during the Permian-Carboniferous Alleghanian orogeny. It is unclear whether subsequent brittle deformation, described here as D2, could be part of regional dextral Alleghanian strike-slip faulting or younger Mesozoic normal faulting. ?? 2009 The Geological Society of America.
Bald Friar Metabasalt and Kennett Square Amphibolite: Two Iapetan Ocean Floor Basalts
Smith, R.C.
2006-01-01
The Bald Friar Metabasalt (BFM) and Kennett Square Amphibolite (KSA) are basaltic units found in the Piedmont of southeastern Pennsylvania. The BFM is also recognized in northern Maryland. Both are believed to represent fragments of the floor of the Iapetus Ocean, but are not known occur in direct association with one another. The BFM typically occurs as small fragments having typical stratigraphic thicknesses of 2.5 m, and composed of greenish, fine-grained chlorite-epidote-actinolite-albite metabasalt in ophiolite me??lange. One bed of pillow basalt has been found at the type locality, Bald Friar, Cecil County, Maryland. Even though outcrops of BFM are highly discontinuous, they have a remarkable chemical uniformity over a strike length of 143 km and appear to be equivalent to the Caldwell Group 1b metabasalt of the Thetford, Quebec, area. The BFM is typically associated with ultramafic fragments and may be affiliated with the Baltimore Mafic Complex (BMC), from which a baddeleyite date of 442 +/- 7 Ma (Silurian) has been obtained. The BFM is probably a back arc basin basalt (BABB). Pod and schlieren chromite compositions suggest an island arc environment for the BMC itself. The poorly defined, informal "Conowingo Creek metabasalt" of Lancaster County, Pennsylvania, occurs on the north margin of the BMC and appears to be a fore arc boninite. The BFM and associated ultramafic fragments serve as a field-mappable marker for the structural equivalent of the Baie Verte-Brompton line in southeastern Pennsylvania and northern Maryland. Steatization of the associated ultramafic fragments has produced zones of extremely low competence that facilitated and localized thrusts of presumed Silurian age and later Alleghanian folding. The KSA typically occurs as much larger bodies having lengths of 3 km and composed of dark, medium-grained hornblende-plagioclase-clinopyroxene gneiss. No ultramafic rocks or me??lange have been recognized with the KSA. In Pennsylvania, the KSA appears to be restricted to a single belt on the south side of the Brandywine massifs. The KSA is transitional from N-OFB (Normal-Ocean Floor Basalt, which can be generated in a variety of oceanic spreading center environments) on the east to P=E-OFB (Plume=Enriched Ocean Floor Basalt, also generated in spreading centers) on the west, suggesting an evolving tectonomagmatic environment. It may be affiliated with the Wilmington Complex.
NASA Astrophysics Data System (ADS)
Wang, S.; Wang, L.; Brown, M.
2016-12-01
Although fluid plays a key role in element transport and rock strength during subduction to and exhumation from ultrahigh pressure (UHP) metamorphic conditions, the source of supercritical fluid at P above the second critical endpoints (SCE) and the subsequent evolution are not well constrained. To provide insight into the evolution of supercritical fluid in continental subduction zones, we undertook an integrated study of composite granite-quartz veins in retrogressed and migmatitic UHP eclogite at General's Hill, N of Qingdao, in the central Sulu belt. The composite veins are irregularly distributed in the eclogite, which occurs as blocks within gneiss. The granite component is enriched in large ion lithophile elements and light rare earth elements but depleted in high field strength elements and heavy rare earth elements, indicating crystallization from a melt phase of crustal origin. Additionally, the granite contains high modal phengite (22-30 vol%) and clinozoisite/epidote (3-10 vol%), implying precipitation from a H2O-rich silicate melt. By contrast, the quartz component is dominated by SiO2 (99.10 wt%), and contains low total rare earth elements (ΣREE = 0.46 ppm), indicating precipitation from an aqueous fluid. The crystallization age of the composite veins is 221 ± 2 Ma, which is younger than the UHP metamorphism in the Sulu belt at ca 230 Ma, consistent with formation during exhumation. Initial 176Hf/177Hf ratios and δ18O values of metamorphic zircons from the composite veins, and Sr-Nd isotope compositions of the granites all lie between values for eclogite and gneiss, indicating a mixed source. Accordingly, we propose that a supercritical fluid generated from the gneiss and the included blocks of eclogite at P-T conditions above the SCE for both compositions became trapped in the eclogite during exhumation. At P below the SCE for the hydrous granite system, the mixed supercritical fluid separated into immiscible aqueous melt and aqueous fluid and crystallized as the composite veins. Thus, these vein systems provide information critical to understanding the evolution of supercritical fluid during exhumation and the partitioning of elements between hydrous granite and aqueous fluid. These data inform our understanding of crust-mantle interactions in continental subduction zones.
Vulnerability of soils towards mining operations in gold-bearing sands in Chile
NASA Astrophysics Data System (ADS)
Jordán, Manuel Miguel; González, Irma; Bech, Jaume; Sanfeliu, Teófilo; Pardo, Francisco
2015-04-01
The contamination levels in handicraft mining, despite less production and processing less equipment, have high repercussions upon the environment in many cases. High-grade ore extraction, flotation, gravity concentration, acid leaching cementation and mercury amalgamation are the main metallurgical technologies employed. Gold recovery involving milling and amalgamation appears to the most contamination source of mercury. This research work is only a starting point for carrying out a risk probability mapping of pollutants of the gold bearing sands. In southern Chile, with a mild and rainy climate, high levels of pollutants have been detected in some gold placer deposits. The handicraft gold-bearing sands studied are located in X Region of "Los Lagos" in southern Chile. A great quantity of existing secondary deposits in the X Region is located in the coastal mountain range. The lithological units that are found in this range correspond with metamorphic rocks of a Paleozoic crystalline base that present an auriferous content liberated from the successive erosive processes suffered. Metasedimentary and metavolcanic rocks also make up part of this range, but their auriferous load is much smaller. The methodology used in the characterization of the associated mineralization consists of testing samples with a grain size distribution, statistical parameter analysis and mineralogical analysis using a petrographic microscope, XRD and SEM/EDX. The chemical composition was determined by means of XRF and micro-chemical analysis. The major concentrations of heavy minerals are located in areas of dynamic river energy. In the studied samples, more the 75 % of the heavy minerals were distributed among grain sizes corresponding to thin sand (0.25-0.05 mm) with good grain selection. The main minerals present in the selected analysed samples were gold, zircon, olivine, ilmenite, hornblende, hematite, garnet, choromite, augite, epidote, etc. The main heavy metals found were mercury, lead, cadmium, crome, zinc, cobalt, cooper, platinum, gold, indium, tellurium, etc., and as well some traces of cerium, praseodymium, gadolinium, neodymium, samarium and lanthanum. The recurring presence of Pb, sulphur and Hg, among others, in mineral species like galena and cinnabar reveal accumulation indices, a product of the contaminating action of human beings. This is notable since no records exist of natural deposits of these minerals that can justify their presence, and records were utilized from semi-industrial exploitations for the extaction of gold where Hg is utilized in the amalgamation processes.
NASA Astrophysics Data System (ADS)
Li, H.; Jahn, B.; Wang, D.; Yu, H.; Liu, Z.; Hou, G.
2013-12-01
As the largest coesite-bearing mafic-ultramafic body in the Dabie-Sulu orogen, the Bixiling Complex is composed of meta-ultramafic rocks, MgAl-rich eclogites and FeTi-rich eclogites. The FeTi-rich eclogites are further divided into low-Si-high-Fe type (Type I) and high-Si-low-Fe type (Type II) according to their mineral assemblages and bulk chemical composition. Field, petrographic, petrological and geochemical characteristics of these rocks, although suffered an ultra-high pressure metamorphism, still show a magmatic differentiation process among the protoliths of the meta-ultramafic rocks, MgAl-rich eclogites and Type I FeTi-rich eclogites. A small degree of lower crustal contamination occurred during their magma chamber process. Amphibolite is widespread in the periphery of the complex. Non-foliation and fine-grained texture are their obvious characteristics. Geochemical and isotopic affinities suggest that the amphibolites represent a product of complete retrogression from type II FeTi-rich eclogites. The UHP complex is enclosed in granitic gneisses, which variably include two-mica plagioclase gneiss, epidote two-mica plagioclase gneiss, or white-mica plagioclase gneiss. They all show TTG, especially trondjhemitic composition. A migmatite outcrop was found near the northeastern end of the complex. The migmatites consist of dark colored, non-foliated amphibolites and light-colored, fine-grained trondhjemitic gneisses. Field occurrences, microstructures observed under optical microscope and SEM, Sr-Nd isotopic data suggest an origin of partial melting. Chemical composition of two stages of amphiboles occurred in both the amphibolites and the trondhjemitic gneisses also imply a partial melting process occurred. Trace element, Sr-Nd isotope and SHRIMP zircon U-Pb dating of MgAl-rich eclogite, amphibolites and trondhjemite suggest that the migmatites represent a partial melting of crustal materials at about 780Ma, possibly accompanied by the coeval emplacement of a differentiated mafic intrusive body. These rocks were deeply subducted into a mantle depth during the Triassic continental collision between the Yangtze Craton and North China Craton, and thereafter were exhumed to the surface. Their residual geochemical characteristics and spatial / temporal relationship could impose constraints on the tectonic evolution of the Dabieshan UHP terrane.
NASA Astrophysics Data System (ADS)
Gasco, Ivano; Gattiglio, Marco; Borghi, Alessandro
2013-01-01
Detailed geological mapping combined with micro-structural and petrological investigation allowed to clarify the tectono-metamorphic relationships between continental and oceanic units transition in the Penninic domain of the Western Alps. The three study areas (Gressoney, Orco and Susa sections) take into consideration the same structural level across the axial metamorphic belt of the Western Italian Alps, i.e., a geological section across the Internal Crystalline Massifs vs Piedmont Zone boundary. The units outcropping in these areas can be grouped into two Tectonic Elements according to their tectono-metamorphic evolution. The Lower Tectonic Element (LTE) consists of the Internal Crystalline Massifs and the Lower Piedmont Zone (Zermatt-Saas like units), both showing well preserved eclogite facies relics. Instead, the Upper Tectonic Element (UTE) consists of the Upper Piedmont Zone (Combin like units) lacking evidence of eclogite facies relics. In the Lower Tectonic Element two main Alpine tectono-metamorphic stages were identified: M1/D1 developed under eclogite facies conditions and M2/D2 is related to the development of the regional foliation under greenschist to epidote-albite amphibolite facies conditions. In the Upper Tectonic Element the metamorphic stage M1/D1 developed under bluschist to greenschist facies conditions and M2/D2 stage under greenschist facies conditions. These two Tectonic Elements are separated by a tectonic contact of regional importance generally developed along the boundary between the Lower and the Upper Piedmont zone under greenschist facies conditions. PT data compared to geochronology indicate that the first exhumation of ICM can be explained by buoyancy forces acting along the subduction channel that occurred during the tectonic coupling between the continental and oceanic eclogite units. These buoyancy forces vanished at the base of the crust where the density difference between the subducted crustal units and the surroundings rocks is too low. A stage where compression prevails on the previous exhumation followed, which leads to the development of the regional foliation under greenschist to amphibolite facies metamorphic conditions. Further exhumation occurred after the M2/D2 stage at shallower crustal levels along conjugated shear zones leading to the development of a composite axial dome consisting of eclogite-bearing continental-oceanic units (ICM and Zermatt-Saas Zones) beneath greenschist ones (Combin Zone).
Geological applications of synchrotron radiation
NASA Astrophysics Data System (ADS)
Henderson, C. M. B.; Cressey, G.; Redfern, S. A. T.
1995-03-01
Synchrotron-based, Earth sciences research carried out over the last 5 years is reviewed with special attention being given to X-ray absorption studies; X-ray diffraction and X-ray fluorescence microprobe applications are considered more briefly. A comprehensive bibliography is included. The main part of the paper summarizes recent work carried out at the Daresbury SRS. K-edge XAS studies of glasses as models for silicate melts provide information on the local structural environments of Si, Fe 2+ and Fe 3+. By analogy with synthetic "leucites" which contain Fe 2+ and Fe 3+ in tetrahedral framework sites, it seems that many model glasses also contain both oxidation states of Fe in the network, rather than as network modifiers. The structural sites occupied by the minor elements Mn, Zn and Ti in staurolite have been identified using XAFS; Mn and Zn substitute for Fe 2+ in the tetrahedral T2 site, while Ti occupies the distorted M2 octahedral site. L-edge spectroscopy is used to identify the valencies and electronic structures of Mn and Fe in minerals and the Fe 2+:Fe 3+ ratio in a natural spinel is determined. The polarized nature of the synchrotron beam is exploited in determining the Fe X-ray absorption anisotropy in single crystal tourmaline and epidote. XRD powder studies include Rietveld-refinement structure determination and compressibility studies. Synthetic "leucites" having the stoichiometry K 2MgSi 5O 12 have distinctly different structures. The dry-synthesized form is cubic Ia3d with Si and Mg fully disordered on tetrahedral framework sites, while the hydrothermally-synthesized polymorph is monoclinic P2 1/c with Si and Mg fully disordered on, respectively, 10 and 2 tetrahedral sites. The reversible tetragonal to orthorhombic phase transition in gillespite (BaFeSi 4O 10) has been studied in a diamond anvil cell using ED detection and found to occur at 1.2 ± 0.1 GPa. The anomalous compressibility observed has been interpreted in terms of ferroelastic and coelastic phenomena and the related order parameters analysed using Landau theory. The compressibility of MgCO 3, determined up to 20 GPa, has been combined with thermochemical data to obtain an "equation to state" for magnesite and it is found that magnesite is likely to be the main host for carbon in the Earth's lower mantle.
NASA Astrophysics Data System (ADS)
Senyah, Gloria A.; Dampare, Samuel B.; Asiedu, Daniel K.
2016-10-01
Major and trace elements, including rare earth elements (REEs) data are presented for metavolcanic rocks of the Paleoproterozoic Birimian Sefwi belt to determine the geochemical characteristics as well as the possible tectonic setting of emplacement of these rocks. In order to accomplish the aim of the study, the petrographical characteristics of the rocks were examined coupled with analysis of the rocks for their whole-rock major and trace elements contents by ICP-AES and ICP-MS methods respectively. The rocks have been classified as basalt/basaltic andesites and dolerites based on their textural and mineralogical compositions. It is observed that the rocks have suffered various degrees of alteration evident in the overprinting of primary minerals such as pyroxenes and plagioclase by chlorite, epidote, sericite and others. Generally, the rocks are moderately deformed and may have experienced at least greenschist metamorphism. The basalt/basaltic andesites are derivative magmas [Mg# (20-51), Cr (10-220 ppm) and Ni (5-137 ppm)], and show flat REE to fractionated REE patterns with (La/Sm)N = 1.36-3.90, (La/Yb)N = 1.17-5.32 and strong negative to non-existent Eu anomalies (Eu/Eu* = 0.51-1.03). N-MORB-normalised multi-element diagrams show that the rocks have geochemical patterns characterised by enrichment in LILE relative to HFSE and in LREE relative to HREE. The basalt/basaltic andesites exhibit characteristics of subduction zone-related magmas, such as pronounced negative Nb-Ta anomalies, slightly negative Hf and variable negative Ti anomalies. The dolerites do not vary much from the basalts and basaltic andesites. The MgO and Fe2O3 values of the dolerite range from 2.97 to 6.93 and 5.98 to 14.35 wt.% respectively, corresponding to Mg#s of 38-62. LREEs enrichment over HREEs with (La/Sm)N ranging from 0.61 to 4.61 and (Gd/Yb)N ranging from 0.99 to 2.91 is also typical of these rocks. The dolerites also exhibit quite invariable Eu anomalies (Eu/Eu* = 0.81-1.00) and display a pronounced Nb-Ta trough and a minor negative Ti anomaly, suggesting arc characteristics. The metavolcanic rocks from the study area generally exhibit subduction-related setting characteristics with evidence of a sub-lithospheric contamination.
NASA Astrophysics Data System (ADS)
Fornash, Katherine F.; Cosca, Michael A.; Whitney, Donna L.
2016-07-01
Geochronologic studies of high-pressure/low-temperature rocks can be used to determine the timing and rates of burial and exhumation in subduction zones by dating different stages of the pressure-temperature history. In this study, we present new in situ UV laser ablation 40Ar/39Ar phengite ages from a suite of lawsonite blueschist- and eclogite-facies rocks representing different protoliths (metabasalt, metasediment), different structural levels (within and outside of a high-strain zone), and different textural positions (eclogite pod core vs. margin) to understand the timing of these events in an exhumed Neo-Tethyan subduction zone (Sivrihisar Massif, Tavşanlı Zone, Turkey). Weighted mean in situ 40Ar/39Ar ages of phengite from the cores of lawsonite eclogite pods (90-93 Ma) are distinctly older than phengite from retrogressed, epidote eclogite (82 ± 2 Ma). These ages are interpreted as the age of peak and retrograde metamorphism, respectively. Eclogite records the narrowest range of ages (10-14 m.y.) of any rock type analyzed. Transitional eclogite- and blueschist-facies assemblages and glaucophane-rimmed lawsonite + garnet + phengite veins from eclogite pod margins record a much wider age range of 40Ar/39Ar ages (~20 m.y.) with weighted mean ages of ~91 Ma. Blueschists and quartzites record more variable 40Ar/39Ar ages that may in part be related to structural position: samples within a high-strain zone at the tectonic contact of the HP rocks with a meta-ultramafic unit have in situ UV laser ablation 40Ar/39Ar ages of 84.0 ± 1.3-103.7 ± 3.1 Ma, whereas samples outside this zone range to older ages (84.6 ± 2.4-116.7 ± 2.7 Ma) and record a greater age range (22-38 m.y.). The phengite ages can be correlated with the preservation of HP mineral assemblages and fabrics as well as the effects of deformation. Collectively, these results show that high-spatial resolution UV laser ablation 40Ar/39Ar phengite data, when considered in a petrologic and structural context, may document prograde (burial) and retrograde (exhumation) stages of subduction metamorphism.
NASA Astrophysics Data System (ADS)
Dill, Harald G.; Dohrmann, R.; Kaufhold, S.; Techmer, A.
2014-08-01
Multi-type duricrusts, composed of silcretes, calcretes, halcretes and sulcretes developed during the Holocene at the northern rim of the Sua Salt Pan, NE Botswana. They were investigated for their light (quartz/chalcedony, feldspar, analcime, clinoptilolite, calcite, kaolinite/halloysite, illite-smectite mixed-layers, halite) and heavy minerals (baryte, clinozoisite-epidote s.s.s., amphibole, corundum, tourmaline, ilmenite, rutile, sphene, kyanite, andalusite, staurolite, garnet, zircon, apatite, monazite, cassiterite, garnet, biotite) using petrographic microscopy, X-ray fluorescence and diffraction analyses, radio-carbon dating, scanning electron microscopy equipped with an EDX-system, cation exchange capacity and infrared spectroscopy. Detrital minerals predominantly derived from the erosion of rocks belonging to the Archaean Basement Complex, the Stormberg Volcanites and the Kalahari sediments. Of particular interest to exploration geologists, geikielite-enriched ilmenite fragments are a hint to kimberlitic pipes. Biodetritus was derived from invertebrates and from vertebrates (fish bones?). A man-made impact on the heavy mineral suite has to be invoked from small fragments of cassiterite fragments that derived from processing of sulfidic and pegmatitic Sn-bearing ore. In the salt-pan-derived duricrusts mainly the aeolian and to a lesser degree fluvial inputs were responsible for the concentration of clasts in these multi-type duricrusts. Moreover, their variegated mineralogy enables us to constrain the physical-chemical regime, prevalently as to the pH and the chemical composition of the major constituents. All duricrusts developed in a self-sufficient chemically closed system where quartz and feldspar provided the elements Si, Na, K, Ca, and Ba to produce the encrustations. The spatial and temporal trend in the Sua Salt Pan rim encrustations may be described as follows: (1) sulcrete-silcretes, (2) silcretes with kaolinite-group minerals towards more recent stages at the rim and smectite-illite mixed-layers and clinoptilolite towards the basin center, (3) calcretes with analcite towards the basin center, (4) halcretes (and soda ash at a more central position). In the sulcrete-silcrete facies the pH decreases from pH 14 down to 4. In the calcretes and halcretes it increases from pH 8 to pH > 13. marking a chemical hiatus between stages 1 plus 2 and stages 3 plus 4. Mineral assemblages forming more basinward tend to have derived from more alkaline fluids than those near the edge of the salt pan.
X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU
NASA Astrophysics Data System (ADS)
Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.
2017-12-01
The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical information can be used to infer temporal changes in parental magma compositions. Secondary sulfide mineralization and epidote-rich hydrothermal alteration zones in sheeted dikes and gabbros are clearly highlighted on element maps of S, Fe, Ca, Al, and Zn.
NASA Astrophysics Data System (ADS)
Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III
2017-12-01
Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is deformed in faults with asymmetries consistent with normal senses of shear, suggestive of formation near the ridge, or at least before obduction. Gypsum is also present in both holes, but is clearly late stage and cuts across all earlier vein sets and deformation features. Notably, anhydrite was not observed in core from Hole GT3, in the dike-gabbro transition.
Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem A.; Akawy, Ahmed
2010-06-01
Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.
NASA Astrophysics Data System (ADS)
Somarin, A. Karimzadeh; Mumin, A. Hamid
2014-02-01
The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.
NASA Astrophysics Data System (ADS)
Zakharov, D. O.; Bindeman, I. N.
2015-12-01
The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2.4 Ga. The results of our studies can be used as an initial point for meteoric water distillation models of the Paleoproterozoic hydrosphere that was involved in the global Snowball Earth glaciations.
NASA Astrophysics Data System (ADS)
Maghfouri, Sajjad; Rastad, Ebrahim; Mousivand, Fardin; Lin, Ye; Zaw, Khin
2016-08-01
The southwest Sabzevar basin is placed in the southwestern part of a crustal domain known as the Sabzevar zone, at the north of Central Iranian microcontinent. This basin hosts abundant mineral deposits; particularly of the Mn exhalative and Cu-Zn volcanogenic massive sulfide (VMS) types. The evolution of this basin is governed by the Neo-tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc (Sanandaj-Sirjan) and back-arc (Sabzevar-Naien). This evolution followed two major sequences: (I) Lower Late Cretaceous Volcano-Sedimentary Sequence (LLCVSS), which is indicated by fine-grained siliciclastic sediments, gray basic coarse-grained different pyroclastic rocks and bimodal volcanism. During this stage, tuff-hosted stratiform, exhalative Mn deposits (Nudeh, Benesbourd, Ferizy and Goft), oxide Cu deposits (Garab and Ferizy) and Cu-Zn VMS (Nudeh, Chun and Lala) deposits formed. (II) Upper Late Cretaceous Sedimentary Dominated Sequence (ULCSS), including pelagic limestone, marly tuff, silty limestone and marl with minor andesitic tuff rocks. The economically most important Mn (Zakeri and Cheshmeh-sefid) deposits of Sabzevar zone occur within the marly tuff of this sequence. The Nudeh Cu-Zn volcanogenic massive sulfide (VMS) deposit is situated in the LLCVSS. The host-rock of deposits consists of alkali olivine basalt flow and tuffaceous silty sandstone. Mineralization occurs as stratiform blanket-like and tabular orebodies. Based on ore body structure, mineralogy, and ore fabric, we recognize three different ore facies in the Nudeh deposit: (1) a stringer zone, consisting of a discordant mineralization of sulfides forming a stockwork of sulfide-bearing quartz veins cutting the footwall volcano-sedimentary rocks; (2) a massive ore, consisting of massive replacement pyrite, chalcopyrite, sphalerite and Friedrichite with magnetite; (3) bedded ore, with laminated to disseminated pyrite, and chalcopyrite. Chloritization, silicification, sericitization and epidotization are the main wall-rock alterations; alteration intensity increases towards the stringer zone. The δ34S composition of the sulfides ranges from -1.5‰ to +3.69‰ with a general increase of δ34S ratios of massive ore facies to stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones. Sulfur isotopes, along with sedimentological, textural, petrological, mineralogical, and geochemical evidences, suggest that this deposit should be classified as a Besshi-type VMS ore deposit.
Progressive Extensional Exhumation of the Ultrahigh-Pressure Tso Morari Terrain, NW Indian Himalaya
NASA Astrophysics Data System (ADS)
Hodges, K.; Clark, R.; Monteleone, B.; Sachan, H.; Mukherjee, B. K.; Ahmad, T.
2011-12-01
The core of the Tso Morari dome in the Ladakh region of NW India (roughly 33 °10'N; 78°10'E) is one of only two known ultrahigh-pressure (UHP) terrains in the Himalayan-Tibetan orogenic system. The quartzofeldspathic Puga Orthogneiss from the structurally deepest portions of the terrain does not contain UHP mineralogy but surrounds dismembered lenses of mafic eclogite with accessory coesite, confirming that at least the eclogite lenses experienced UHP metamorphic conditions (Mukherjee et al., 2003, International Geology Review; Sachan et al., 2004, European Journal of Mineralogy). U-Pb zircon dates from the Puga orthogneiss (53.3 ± 0.7 Ma: Leech et al., 2007, International Geology Review) provide what appear to be the most precise available constraints on the age of UHP metamorphism at Tso Morari provided we presume that the UHP assemblages in the eclogite lenses developed at the same time as the 53.3 ± 0.7 Ma metamorphic zircon in the orthogneiss. However, other components of the zircon population studied by Leech and co-workers, as well as the results obtained using other thermochronometers and geochronometers (de Sigoyer et al., 2004, Tectonics), demonstrate that a series of lower pressure metamorphic events also affected the Tso Morari terrain between ca. 53 Ma and ca. 45 Ma, implying rapid decompression at elevated temperatures (ca. 800 - 350°C). Our 1:50000-scale geologic mapping at Tso Morari provides evidence that this exhumation was largely accommodated by two previously unrecognized low-angle ductile detachments that separate the terrain into three tectonostratigraphic units with distinctive metamorphic histories. The structurally lowest shear zone (Karla detachment) separates the Puga Orthogneiss from overlying lower amphibolite facies metasedimentary rocks of the Zoboshisha Unit, which contains no UHP assemblages. Structurally higher and demonstrably younger detachments separate the Zoboshisha Unit and the Puga Orthogneiss from greenschist to epidote-amphibolite facies metasedimentary (and possibly metavolcanic) units of the Taglang La formation. The role of nested detachments in the early, rapid exhumation of UHP rocks at Tso Morari support a geodynamic model such as that of Chemenda and co-workers (1996, Earth and Planetary Science Letters) that involve extrusion of UHP terrains beneath rooted detachment systems. We suggest that synconvergence detachment systems can involve multiple generations of detachments that result in the progressive exhumation of UHP rocks over a brief period of time, a concept similar to that promoted by Johnston et al. (2007, Tectonics) for much slower, postconvergence exhumation of Norwegian UHP rocks.
Exploration and geology of the Karangahake and Rahu epithermal Au-Ag deposits, Hauraki Goldfield
Simpson, Mark P.; Stevens, Murray R; Mauk, Jeffrey L.; Harris, Matthew C; Stuart, Alistair G J
2016-01-01
Karangahake was the third largest gold producer in the Hauraki goldfield. In 2009, New Talisman Gold mines was granted a mining permit, and plans are underway to commence underground mine development of the Maria vein, which has a maiden Ore Reserve (consistent with the 2012 JORC Code) of 28 800 oz Au and 127 800 oz Ag. Exploration drilling at Rahu, located 2 km north of Karangahake has identified polymictic hydrothermal breccias and quartz veins that are strongly gold anomalous. Some quartz vein clasts within the breccia have up to 8.7 g/t Au, suggesting the presence of higher grade quartz vein(s) either below or directly adjacent to the breccias. A controlled source audio-frequency magnetotelluric (CSAMT) survey at Rahu revealed that strongly resistive zones extend below the Barbara and Eunice anomalies to at least 300 m depth and likely correspond to areas of increased silicification, breccias and/or veins. Future drilling will focus on these targets. Detailed geophysical, alteration and fluid inclusion studies have been undertaken at Karangahake, Rahu and Ascot (c 1 km NW of Rahu). Karangahake and Rahu both occur within a broad demagnetised zone, c 4.2 × 2.7 km, in which magnetite has been destroyed by strong hydrothermal alteration. At Karangahake, andesite and overlying minor rhyolite are replaced by adularia, chlorite, illite, pyrite, plus minor albite, epidote and calcite, which have formed from upwelling chloride waters that at depth were hotter than 280°C. At Rahu, localised adularia coupled with complex distributions of illite and interstratified illite-smectite, suggest cooler (c 180° to 240°C) and more focused fluid flow, as well as inferred cool groundwater influx. Fluid inclusion data suggest veins at Karangahake, Rahu and Ascot formed beneath palaeowater tables at 920 m, 440 m and 430 m relative to current sea level (asl), respectively. At Ascot, the presence of silica sinter at 135 m asl, which formed at the palaeosurface, is shallower compared to the fluid inclusion depth estimate and suggests that the palaeowater table here rose some 300 m during hydrothermal activity due to burial, resulting in overprinting. This overprint may also have occurred at Karangahake and Rahu, but the evidence is inconclusive; although burial during hydrothermal activity could explain the exceptional 700 m vertical range of mineralisation at Karangahake and raises the possibility of concealed mineralisation at depth elsewhere within the Karangahake alteration envelope.
Horton, J. Wright
2006-01-01
This geologic map of the Kings Mountain and Grover 7.5-minute quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist, and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacksburg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metadiorite and metagabbro (Paleozoic), and High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by Toluca Granite (Ordovician?), Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply-dipping layers, foliations, and folds on the southeast to gently- and moderately-dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite on the east side of the map to greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwest part of the map. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in their richness and variety of mineral deposits, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron. (Abstract from pamphlet.)
Horton, J. Wright
2008-01-01
This geologic map of the Kings Mountain and Grover 7.5-min quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacks-burg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metagabbro and metadiorite (Paleozoic?), and the High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by the Toluca Granite (Ordovician?), the Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply dipping layers, foliations, and folds on the southeast to gently and moderately dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite in the eastern side of the map area to upper greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwestern part of the map area. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in the richness and variety of the mineral deposits that they contain, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron.
Characterization of the Fault Core and Damage Zone of the Borrego Fault, 2010 M7.2 Rupture
NASA Astrophysics Data System (ADS)
Dorsey, M. T.; Rockwell, T. K.; Girty, G.; Ostermeijer, G.; Mitchell, T. M.; Fletcher, J. M.
2017-12-01
We collected a continuous sample of the fault core and 23 samples of the damage zone out to 52 m across the rupture trace of the 2010 M7.2 El Mayor-Cucapa earthquake to characterize the physical damage and chemical transformations associated with this active seismic source. In addition to quantifying fracture intensity from macroscopic analysis, we cut a continuous thin section through the fault core and from various samples in the damage zone, and ran each sample for XRD analyses for clay mineralogy, XRF for bulk geochemical analyses, and bulk and grain density from which porosity and volumetric strain were derived. The parent rock is a hydrothermally-altered biotite tonalite, with biotite partially altered to chlorite. The presence of epidote with chlorite suggests that these rocks were subjected to relatively high temperatures of 300-400° C. Adjacent to the outermost damage zone is a chaotic breccia zone with distinct chemical and physical characteristics, indicating possible connection to an ancestral fault to the southwest. The damage zone consists of an outer zone of protocataclasite, which grades inward towards mesocataclasite with seams of ultracataclasite. The fault core is anomalous in that it is largely composed of a sliver of marble that has been translated along the fault, so direct comparison with the damage zone is impaired. From collected data, we observe that chloritization increases into the breccia and damage zones, as does the presence of illite. Porosity reaches maximum values in the damage zone adjacent to the core, and closely follows trends in fracture intensity. Statistically significant gains in Mg, Na, K, Mn, and total bulk mass occurred within the inner damage zone, with losses of Ca and P mass, which led to the formation of chlorite and albite. The outer damage zone displays gains in Mg and Na mass with losses in Ca and P mass. The breccia zone shows gains in mass of Mg and Mn and loss in total bulk mass. A gain in LOI in both the breccia and damage zones is attributed to formation of clay. Volumetric strain tracks porosity, as expected, and increases towards the core. Notably, damage appears to be superposed on chemical alterations, which supports the idea that much of the hydrothermal alteration occurred at depth followed by brecciation and cataclasis once the fault zone rocks were exhumed closer to the surface.
Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)
NASA Astrophysics Data System (ADS)
Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo
2015-04-01
We present a regional provenance study of the compositional variability and long distance multicyclic transport of terrigenous sediments along the convergent and transform plate boundaries of Central America, from the northern termination of the Andes to the Lesser Antilles arc-trench system. We focus on high-resolution bulk-petrography and heavy-mineral analyses of modern beach and fluvial sediments and Cenozoic sandstones of Barbados island, one of the places in the world where an active accretionary prism is subaerially exposed (Speed et al., 2012). The main source of siliciclastic sediment in the Barbados accretionary prism is off-scraped quartzose to feldspatho-litho-quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio-deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy-mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green-brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash-fall tephra erupted from andesitic (St. Lucia) and basaltic (St. Vincent) volcanic centers in the Lesser Antilles arc transported by the prevailing anti-trade winds in the upper troposphere. Modern sediments on Barbados island and those shed by other accretionary prisms such as the Indo- Burman Ranges and Andaman-Nicobar Ridge (Garzanti et al., 2013) define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled dominantly from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus may be locally prominent. Quantitative provenance analysis is a basic tool in paleogeographic reconstructions when multicyclic sediment dispersal along and across convergent plate margins occur. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions. REFERENCES Garzanti, E., Limonta, M., Resentini, A., Bandopadhyay, P.C., Najman, Y., Andò, S., Vezzoli, G., 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth Sci. Rev., 123, 113-132. Speed, C. and Sedlock, R. 2012. Geology and geomorphology of Barbados. Geol. Soc. Am. Spec. Pap., 491, 63 p.
NASA Astrophysics Data System (ADS)
Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca
2015-04-01
The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).
A Developed Spectral Identification Tree for Mineral Mapping using Hyperspectral Data
NASA Astrophysics Data System (ADS)
Gan, Fuping; Wang, Runsheng; Yan, Bokun; Shang, Kun
2016-04-01
The relationship between the spectral features and the composition of minerals are the basis of mineral identification using hyperspectral data. The reflectance spectrum of minerals results from the systematic combination of several modes of interaction between electromagnetic energy and mineral particles in the form of reflection and absorption. Minerals tend to have absorbing features at specific wavelengths with a characteristic shape, which can be used as diagnostic indicators for identification. The spectral identification tree (SIT) method for mineral identification is developed in our research to map minerals accurately and applied in some typical mineral deposits in China. The SIT method is based on the diagnostic absorption features of minerals through comparing and statistically analyzing characteristic spectral data of minerals. We establish several levels of identification rules for the type, group and species of minerals using IF-THEN rule according to the spectral identification criteria so that the developed SIT can be further used to map minerals at different levels of detail from mineral type to mineral species. Identifiable minerals can be grouped into six types: Fe2+-bearing, Fe3+-bearing, Mn2+-bearing, Al-OH-bearing, Mg-OH-bearing and carbonate minerals. Each type can be further divided into several mineral groups. Each group contains several mineral species or specific minerals. A mineral spectral series, therefore, can be constructed as "type-group-species-specific mineral (mineral variety)" for mineral spectral identification. It is noted that the mineral classification is based mainly on spectral reflectance characteristics of minerals which may not be consistent with the classification in mineralogy. We applied the developed SIT method to the datasets acquired at the Eastern Tianshan Mountains of Xinjiang (HyMap data) and the Qulong district of Xizang (Hyperion data). In Xinjiang, the two major classes of Al-OH and Mg-OH minerals were mapped firstly. Then montmorillonite, kaolinite and muscovite were identified in the area of the Al-OH bearing minerals, and chlorite and epidote were identified in the area of the Mg-OH bearing minerals. Muscovite of rich Al and poor Al were further identified in the area of muscovite. In Xizang, Al-rich and Al-poor muscovite, kaolinite, chlorite and malachite were identified using SIT method. In all, the developed SIT method can further reduce the effect of other materials and focus on targeted minerals. In particular, the discrimination accuracy will be improved when the most diagnostic absorption spectral features are used in the developed SIT method.
Trace elements in garnet reveal multiple fluid pulses in eclogite, Ring Mountain, CA
NASA Astrophysics Data System (ADS)
Cruz-Uribe, A. M.; Page, F. Z.; Lozier, E.; Feineman, M. D.; Zack, T.; Mertz-Kraus, R.
2017-12-01
Garnetite veins in a hornblende-eclogite block from Ring Mountain, CA, offer a unique opportunity to investigate the chemical composition of fluid interactions during mélange formation in subduction zones. Garnet occurs as matrix porphyroblasts (2-5 mm) and in 1-5 cm garnetite veins that are laterally continuous up to 10 m across the outcrop. Garnet at the vein edges is slightly larger (300-600 µm) than within the veins (5-50 µm), and records a protracted history of vein garnet growth. Major and trace element concentrations in garnet were determined using EPMA and LA-ICP-MS, respectively. Detailed rim-to-rim trace element traverses were performed using 12 µm spots at 15 µm spacing across one matrix garnet (2 mm) and three vein edge garnet grains (375-570 µm). Zoning in Mn, Ca, and rare earth elements (REE) reveal 5 distinct garnet growth zones. Zone 1, found only in matrix garnet cores, is characterized by decreasing Mn and increasing Ca and is interpreted to reflect prograde zoning. Zones 2-5 are found in the mantles and rims of matrix garnet, and comprise the entirety of vein garnet. Garnet growth in Zones 2-5 is likely heavily influenced by internally- and externally-derived fluids, based on texture and chemistry. One key fluid-related texture of Zones 2-5 is oscillatory birefringence zoning, likely the result of incorporation of small amounts of water into the garnet structure (i.e., hydrogrossular). Zones 2 and 3 are characterized by progressive enrichment in heavy to middle REE from Zone 2 outward into Zone 3. We attribute this to diffusion-limited uptake of REE, wherein the heaviest REE are incorporated first, followed by progressively lighter REE. Zone 3 is also characterized by a high-Mn annulus that appears decoupled from the trace elements. Zone 4 is characterized by a sudden drop in Ca and enrichment in MREE, particularly Dy and Tb, possibly due to epidote breakdown. Zone 5 is characterized by strong enrichment in Mn+REE, with high-HREE and high-MREE oscillatory zones. Oxygen isotope values (δ18O, VSMOW) in Zone 1 (matrix cores) and Zones 2-4 are consistently 10 ‰, indicating that the fluid source for Zones 2-4 is likely internally-derived, or derived from mélange of similar bulk composition. δ18O values for Zone 5 cluster at 7 ‰, which indicates the addition of an externally-derived fluid with low δ18O and high Mn+REE.
NASA Astrophysics Data System (ADS)
Ota, T.; Terabayashi, M.; Kaneko, Y.; Yamamoto, H.; Okamoto, K.; Katayama, I.; Komiya, T.
2001-12-01
It is well-known that the Pacific superplume has been episodically active to form a number of oceanic Lips in the Pacific. During the middle Cretaceous time, it has formed Ontong-Jawa, Caribbean plateau, Mid-Pacific seamount chains and others. Moreover, several accreted fragments of those equivalents have been recently recognized as accreted fragments in accretionary orogens around the Pacific rims. Here, we list up a possible candidate which appears as a small piece now but it must have been a huge one equivalent to Ontong-Java size. The Cretaceous Sanbagawa belt in SW Japan is an accretionary complex metamorphosed at high-P/T conditions from 300-900° C and 0.5-2.6 GPa. We have recently completed a new lithotectonic map at 1:5000 scale for the highest grade areas, central Shikoku, with special attention on duplex structure and protolith occurrences. The mapped area consists of pelitic, basic and quartz schists with epidote-amphibolite facies grade, which enclose the Iratsu- and Higashi-Akaishi eclogite-peridotite masses. The eclogite-peridotite masses are composed of ultramafic rocks, eclogitic metabasites with basalt and gabbro origin, metacarbonate, metachert and pelitic gneiss (trench turbidite) in ascending order, and are divided into 4 horses consisting of those lithologies. These are separated on the top by the roof thrust and on the bottom by the floor thrust, indicating duplex. Based on duplex occurrences of oceanic materials within trench turbidite and reconstructed oceanic plate stratigraphy, we reconstruct the subduction polarity as always northwards, and directional change with time. The reconstructed oceanic plate stratigraphy suggests their origin of oceanic plateau covered by pelagic limestone with minor cherts on their flank before the arrival time at trench. The petrological thickness of plateau may exceed 30km, because high-pressure granulite facies assemblage remained in metagabbro in the Iratsu eclogite mass (Yokoyama, 1980), indicating huge oceanic plateau in origin. Moreover, the relative convergence motion of plate was estimated to be changed from NW to NE during the accretion of huge oceanic plateau. The Cretaceous paleogeography in the Pacific Ocean, based on paleo-plate reconstruction and the accreted oceanic crusts and plateaus around the circum-Pacific orogenic belts, has drawn the huge composite volcanoes formed at South Pacific Superplume around the earliest Cretaceous, named 'Gossira continent' (Suzuki et al., 2000, AGU abstract). Our reconstructed oceanic plateau would have constituted a part of the Gossira continent. >http://www.geo.titech.ac.jp/maruyamalab/f_maruyamalab.e.html a>
NASA Astrophysics Data System (ADS)
GE, M.; Zhang, J.; Liu, K.; Ling, Y.; Wang, M.; Wang, J.
2016-12-01
The Paleozoic to early Mesozoic tectonic framework of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this contribution, geochemical, geochronological and isotopic analyses were carried out on the basalts in the Heilongjiang complex to address these issues. The Heilongjiang complex defines the suture belt between the Jiamusi block and the Songliao block in Northeast China, and the blueschist is a major composition for this complex, coexisting with ultramafic rocks, amphibolite, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the geochemical results present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive ɛNd (t) values of + 3.7 to +9.0, and relative enrichment in Nb and Ta show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 - 288 Ma, interpreted as its protolithic age. The amphibolite from Xiachengzi area has a zircon U-Pb age of 248 ± 4 Ma, interpreted as its protolith age and has N-MORB affinities, supported by (La/Yb)N ratios of 0.60-0.89 and (La/Sm)N of 0.62-0.84, and high ɛNd (t) values ranging from + 7.8 to + 9.5, deriving from a depleted mantle source. A new 40Ar/39Ar amphibole plateau age of 195 ± 3 Ma and a youngest age of 200 Ma of the detrital zircons from Heilongjiang complex are reported to constrain the metamorphic age of the Heilongjiang complex. In addition, a huge north-south trending granitic belt generated from 174 Ma - 200 Ma has been identified in the Zhangguangcai Range and was proposed to be related to an arc setting. Therefore, combined with previous studies, we provide that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the Heilongjiang complex was formed since early Jurassic by the subduction of this ocean, following a collision after 141 Ma.
de, Vivo B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L.
1989-01-01
A fluid inclusion study of core from the Mofete 1, Mofete 2, Mofete 5, San Vito 1, and San Vito 3 geothermal wells (Campi Flegrei, Campania, Italy) indicates that the hydrothermal minerals were precipitated from aqueous fluids (??CO2) that were moderately saline (3-4 wt.% NaCl equiv.) to hypersaline (> 26 wt.% NaCl equiv.) and at least in part, boiling. Three types of primary fluid inclusions were found in authigenic K-feldspar, quartz, calcite, and epidote: (A) two-phase [liquid (L) + vapor (V)], liquid-rich inclusions with a range of salinity; (B) two-phase (L + V), vaporrich inclusions with low salinity; and (C) three-phase [L + V + crystals (NaCL)], liquid-rich inclusions with hypersalinity. Results of microthermometric and crushing studies are reported for twenty drill core samples taken from the lower portions of the five vertical wells. Data presented for selected core samples reveal a general decrease in porosity and increase in bulk density with increasing depth and temperature. Hydrothermal minerals commonly fill fractures and pore-spaces and define a zonation pattern, similar in all five wells studied, in response to increasing depth (pressure) and temperature. A greenschist facies assemblage, defined by albite + actinolite, gives way to an amphibolite facies, defined by plagioclase (andesine) + hornblende, in the San Vito 1 well at about 380??C. The fluid inclusion salinity values mimic the saline and hypersaline fluids found by drilling. Fluid inclusion V/L homogenization temperatures increase with depth and generally correspond to the extrapolated down-hole temperatures. However, fluid inclusion data for Mofete 5 and mineral assemblage data for San Vito 3, indicate fossil, higher-temperature regimes. A limited 87Sr/86Sr study of leachate (carbonate) and the leached cores shows that for most samples (except San Vito 3) the carbonate deposition has been from slightly 87Sr-enriched fluids and that Sr isotopic exchange has been incomplete. However, San Vito 3 cores show an approach to fluid/rock Sr equilibrium with a fluid similar to modern ocean water in 87Sr/86Sr ratio. The Campi Flegrei volcanic system has evolved undersaturated products, mostly trachyte, and defines a large (??? 12 km) caldera. The hydrothermal system developed in this location can be used as an analog for fossil systems in similar trachytic environments. The potential for ore mineralization is expressed by the recognition, from fluid inclusion and drilling data, of ore-forming environments such as boiling and brine stratification. ?? 1989.
Subduction / exhumation dynamics: Petrochronology in the Glacier-Rafray slice (Western Alps, Italy)
NASA Astrophysics Data System (ADS)
Burn, Marco; Lanari, Pierre; Engi, Martin
2014-05-01
Petrochronology is the combination of in situ age-dating, geothermobarometry and structural geology and aims to unravel Pressure-Temperature-deformation-time (P-T-ɛ-t) paths. To link P-T conditions to deformation stages is daily business for metamorphic petrologists, but recent micro-mapping techniques (XMapTools program) provide an additional tool to achieve this goal. Absolute age is often difficult to assess in metamorphic rocks, as it is challenging to link specific P-T conditions to most of the mineral chronometers. Allanite is a common accessory phase in high-P metamorphic rocks and is a potential target to determine Th(-U)/Pb ages. Allanite from a leucocratic gneiss of the Glacier-Rafray slice in the western Alps consists of several chemically different zones: one major zone can be linked to a first high-P phengite generation. To determine the age of this high-P growth zone we used La-ICP-MS in situ techniques, which allowed us to date an appropriate growth rim per grain. Even so particular care was required when evaluating the isotope signals laser ablation leads to the excavation of a volume, which potentially can be chemically and/or age-zoned. We have developed a new method to track changes in the plasma during the ablation. This method aims to identify discrete age zones. La-ICP-MS spectra have been modeled so as to reproduce the shape of the spectra measured. These results indicate that high-P allanite first grew in equilibrium with phengite at 84 ± 4 Ma, whereas a second growth event occurred at ~40 Ma. A final epidotic rim grew at greenschist facies conditions, but this stage could not be dated. These findings have implications for our interpretation of several units in the Western Alps: In the Sesia Zone (former Adriatic margin), the earliest high-P metamorphism occurred at 85 Ma (Regis et al., 2014), precisely as the first high-P peak we discovered in the Glacier-Rafray slice. Austroalpine klippen such as this are commonly seen as extensional allochthons; one would expect these to have entered the subduction zone together with the Piemonte oceanic units. Yet all high-P ages reported for the Piemonte oceanic units are around 40 Ma. We propose that the Glacier-Rafray slice experienced subduction together with Sesia units and may have been juxtaposed on the Piemont-Ligurian-Ocean units during Eocene exhumation. Strain associated with this juxtaposition may have triggered growth of the second allanite. Joint exhumation of the oceanic units and the Glacier-Rafray klippe followed at retrograde T.
Flohr, M.J.K.; Huebner, J.S.
1992-01-01
Laminated to massive rhodochrosite, hausmannite, and Mn-silicates from the Smith prospect and Manga-Chrome mine, Sierra Nevada, California were deposited as ocean floor sediments associated with chert and shale. The principal lithologies at Smith are chert, argillite, rhodochrosite-, hausmannite- and chlorite-rich layers, and relatively uncommon layers of jacobsite. The Manga-Chrome mine also contains layers rich in manganoan calcite and caryopilite. Tephroite, rhodonite, spessartine, and accessory alleghanyite and sonolite formed during metamorphism. Volcaniclastic components are present at Manga-Chrome as metavolcanic clasts and as Mn-poor, red, garnet- and hematite-rich layers. There is no evidence, such as relict lithologies, that Mn was introduced into Mn-poor lithologies such as chert, limestone or mudstone. Replacement of Mn-poor phases by Mn-rich phases is observed only in the groundmass of volcanic clasts that appear to have fallen into soft Mn-rich mud. Manganiferous samples from the Smith prospect and Manga-Chrome mine have high Mn Fe and low concentrations of Ni, Cu, Zn, Co, U, Th and the rare-earth elements that are similar to concentrations reported from other ancient Mn deposits found in chert-greenstone complexes and from manganiferous sediments and crusts that are forming near modern sea floor vents. The Sierra Nevada deposits formed as precipitates of Mn-rich sediments on the sea floor, probably from mixtures of circulating hydrothermal fluids and seawater. The composition of a metabasalt from the Smith prospect is consistent with those of island-arc tholeiites. Metavolcanic clasts from the Manga-Chrome mine are compositionally distinct from the Smith metabasalt and have alkaline to calc-alkaline affinities. A back-arc basin is considered to be the most likely paleoenvironment for the formation of the Mn-rich lenses at the Manga-Chrome mine and, by association, the Smith prospect. Layers of rhodochrosite, hausmannite and chert preserve the composition and some textures of the sedimentary protoliths at both Sierra Nevada deposits. Jacobsite-rich layers probably represent a Fe-rich protolith. Caryopilite and manganoan calcite represent additional protoliths at the Manga-Chrome mine. The metamorphic assemblage prehnite-chlorite-epidote-calcite in a metabasalt from the Smith prospect constrains regional metamorphic conditions to a maximum temperature of 325??C and a pressure of 2 kbar. Slightly higher temperatures are indicated by the presence of actinolite in another metabasalt. Compositions of Mn-rich minerals in Smith samples are consistent with these metamorphic conditions. ?? 1992.
Unusual Rocks of the Yap Ridge - Metamorphosed Basal Cumulates of an Arc ?
NASA Astrophysics Data System (ADS)
Hawkins, J. W.; Castillo, P. R.; Batiza, R.
2002-12-01
The 8 to 9 km deep Yap trench, and adjacent Yap Ridge, extend from the southwest end of the Mariana Trench near 11o N, to near 7o 15' N where the trench swings west to intersect the Palau Trench. Unlike other western Pacific subduction systems, the Yap Ridge rises directly from the trench, it has no forearc, neither a remnant nor active volcanic arc, and no inclined seismic zone. The few seismic events recorded are mainly < 70 km depth. Yap Ridge crest depths range from 2.5 km to emergent; there are no emergent volcanoes. Rocks from the islands Yap and Map, are mainly strongly schistose, amphibole-rich, mafic and ultramafic rocks. Metamorphic lineations, and meter-sized mullions having lenticular cross-sections, define inclined (15o southerly dip) tectonic transport. Yap and Map schists are in greenschist facies (actinolite - chlorite - Na-plagioclase, rare titanite and epidote). Talc - tremolite schists, serpentinite, and chlorite-pyroxenite are less common. Small areas of altered andesite are present; quartz diorite and hornblende-rich gabbro occur as clasts in breccias, bomb craters yielded fragments of basalt and diabase. Scattered blankets of laterite several meters thick, and jungle, obscure many details. Deeper crustal rocks exposed on inner wall of Yap Trench, (5 - 2.5 km depths) include amphibolite (Al-hornblende-andesine-titanite) interlayered with calcite- diopside - grossularite marble, and calc-silicate gneisses. Rocks dredged from Yap Ridge include metabasite similar toYap schists, island arc tholeiite series basalt, basaltic andesite, and 2-PX gabbro. These have late Miocene ages (Beccaluva et al., AGU Mon. 23, 1980). Assuming isochemical behavior for immobile elements, protolith for mafic and ultramafic schists had high Mg# (52-83), CaO/Al2O3 0.7-6, Cr 288-1490, Ni 64-609, Zr 13-145, Y 3-28 (ppm).These data suggest picrite, high-Mg basalt, boninite, or OL-PX rich ultramafic cumulates as parents. REE data, e.g. negative slope and (La/Sm)N 0.9-1.9 indicate sub-arc PX-rich cumulates as a likely protolith (from late-Oligocene to late Miocene West Mariana Ridge ?). Basalt, andesite and gabbro have arc-like depleted HFSE and REE patterns. Yap Ridge crust probably formed in a subduction setting; the inactive trench is preserved but subduction has ended. Thick crust of the Caroline Ridge, lying outboard of the Yap Trench, may inhibit subduction. Yap Ridge schists may represent ultramafic cumulates metamorphosed when thrust over arc or forearc crust.
NASA Astrophysics Data System (ADS)
Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre
2016-04-01
Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).
Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece)
NASA Astrophysics Data System (ADS)
Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella
2010-04-01
In this work, we investigated the water-rock interaction processes taking place in the hydrothermal reservoir of Nisyros through both: (1) a review of the hydrothermal mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving hydrothermal mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These hydrothermal minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. Hydrothermal assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the hydrothermal reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the hydrothermal-magmatic system of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the acidity of these reservoir liquids at values of 4.72-4.85 and 4.88-5.23, respectively. Many of these pH values are lower than those expected for the full-equilibrium condition, although they are close to those of the reservoir liquids of Nisyros-1, 5.16, and Nisyros-2, 4.87. It is likely that this excess of acidity-producing species, chiefly CO 2, promotes release of Fe(II) and Fe(III) to the reservoir liquids through rock dissolution, permitting the attainment of redox equilibrium with the (FeO)/(FeO 1.5) rock buffer, as already suggested by the late Werner Giggenbach.
2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)
NASA Astrophysics Data System (ADS)
Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel
2014-09-01
The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of geochemical mass balances suggests that the water-rock ratio during the propylitic alteration event was weak. On the contrary, it was much higher during the overprinted illitization which is characterized by an intense leaching of Na, Ca, Mg, Sr, REE and an enrichment in K, Rb,Cs. Neither the petrographic features nor the geochemical data militate for an Archean weathering event (paleosol). In the present case, diagenetic fluids have percolated from the unconformity into the basement where they overprinted the illitization processes upon the previously propylitized rocks. These fluids were probably oxidant as they are also responsible of the U mobilization which led to the formation of the ore deposits close to the FA-FB interface.
Fornash, Katherine F.; Cosca, Michael A.; Whitney, Donna L.
2016-01-01
Geochronologic studies of high-pressure/low-temperature rocks can be used to determine the timing and rates of burial and exhumation in subduction zones by dating different stages of the pressure–temperature history. In this study, we present new in situ UV laser ablation 40Ar/39Ar phengite ages from a suite of lawsonite blueschist- and eclogite-facies rocks representing different protoliths (metabasalt, metasediment), different structural levels (within and outside of a high-strain zone), and different textural positions (eclogite pod core vs. margin) to understand the timing of these events in an exhumed Neo-Tethyan subduction zone (Sivrihisar Massif, Tavşanlı Zone, Turkey). Weighted mean in situ 40Ar/39Ar ages of phengite from the cores of lawsonite eclogite pods (90–93 Ma) are distinctly older than phengite from retrogressed, epidote eclogite (82 ± 2 Ma). These ages are interpreted as the age of peak and retrograde metamorphism, respectively. Eclogite records the narrowest range of ages (10–14 m.y.) of any rock type analyzed. Transitional eclogite- and blueschist-facies assemblages and glaucophane-rimmed lawsonite + garnet + phengite veins from eclogite pod margins record a much wider age range of 40Ar/39Ar ages (~20 m.y.) with weighted mean ages of ~91 Ma. Blueschists and quartzites record more variable 40Ar/39Ar ages that may in part be related to structural position: samples within a high-strain zone at the tectonic contact of the HP rocks with a meta-ultramafic unit have in situ UV laser ablation 40Ar/39Ar ages of 84.0 ± 1.3–103.7 ± 3.1 Ma, whereas samples outside this zone range to older ages (84.6 ± 2.4–116.7 ± 2.7 Ma) and record a greater age range (22–38 m.y.). The phengite ages can be correlated with the preservation of HP mineral assemblages and fabrics as well as the effects of deformation. Collectively, these results show that high-spatial resolution UV laser ablation 40Ar/39Ar phengite data, when considered in a petrologic and structural context, may document prograde (burial) and retrograde (exhumation) stages of subduction metamorphism.
NASA Astrophysics Data System (ADS)
Topuz, Gültekin; Okay, Aral I.; Schwarz, Winfried H.; Sunal, Gürsel; Altherr, Rainer; Kylander-Clark, Andrew R. C.
2018-02-01
The Eastern Mediterranean region within the Tethyan belt is characterised by two main pulses of suprasubduction-zone ophiolite formation during the Early-Middle Jurassic and Late Cretaceous. Despite vast exposures of the Permo-Triassic accretionary complexes, related suprasubduction-zone ophiolites and the timing of subduction initiation leading to the formation of Permo-Triassic accretionary complexes are unknown so far. Here we report on a 40 km long and 0.3 to 1.8 km wide metaophiolite fragment within transitional greenschist- to blueschist-facies oceanic rocks from NW Turkey. The metaophiolite fragment is made up mainly of serpentinite and minor dykes or stocks of strongly sheared metagabbro with mineral assemblages involving actinolite/winchite, chlorite, epidote, albite, titanite and phengite. The metagabbro displays (i) variable CaO and MgO contents, (ii) anomalously high Mg# (= 100 ∗ molar MgO/(MgO + FeOtot)) of 75-88, and (iii) positive Eu anomalies, together with low contents of incompatible elements such as Ti, P and Zr, suggesting derivation from former plagioclase cumulates. The serpentinites comprise serpentine, ± chlorite, ± talc, ± calcite and relict Cr-Al spinel surrounded by ferrichromite to magnetite. Relict Cr-Al spinels are characterised by (i) Cr/(Cr + Al) ratios of 0.45-0.56 and Mg/(Mg + Fe2 +) ratio of 0.76-0.22, (ii) variable contents of ZnO and MnO, and (iii) extremely low TiO2 contents. Zn and Mn contents are probably introduced into Cr-Al spinels during greenschist- to blueschist metamorphism. Compositional features of the serpentinite such as (i) Ca- and Al-depleted bulk compositions, (ii) concave U-shaped, chondrite-normalised rare earth element patterns (REE) with enrichment of light and heavy REEs, imply that serpentinites were probably derived from depleted peridotites which were refertilised by light rare earth element enriched melts in a suprasubduction-zone mantle wedge. U-Pb dating on igneous zircons from three metagabbro samples indicates igneous crystallisation at 262 Ma (middle Permian). Timing of the metamorphism is constrained by incremental 40Ar/39Ar dating on phengitic white mica at 201 Ma (latest Triassic). We conclude that the metaophiolite represents a fragment of middle Permian suprasubduction-zone oceanic lithosphere, involved in a latest Triassic subduction zone. These data, together with several reports in literature, indicate that the middle Permian was a time of suprasubduction-zone ophiolite formation in the Tethyan belt.
Metallogeny of The Sierra de Guanajuato Range, Central México
NASA Astrophysics Data System (ADS)
Pedro F., Z. D.
2004-12-01
The Sierra de Guanajuato Range (SGR), trending N315° at Central México, is an orographic feature extending over a distance of 80 km. SGR comprises three well defined lithostratigraphic units: (1) a cretaceous basement including an arc-derived terrane named Guanajuato Arc (GA) made of gabbro, diorite and basaltic pillowed lava, and volcano-sedimentary rocks belonging to Arperos fore-arc basin which are geochemically anomalous in Au (0.15 ppm), Ag (3 ppm), Cu (40 ppm), Pb (50 ppm) and Zn (15 ppm); (2) Early Tertiary intrusive rocks, e.g., Comanja Granite which is affected by the presence of tourmalinized (schörl) aplito-pegmatite dykes mineralized with rare earths elements, and (3) Eocene redbeds (1,500-2000 m) and Oligocene-Miocene volcanics cover. The metallogeny of the SGR shows a multiple origin in time and space: volcano-sedimentary, granitic and volcanic, being possible to define three metallogenic epochs: cretaceous, paleocene and oligocene. Cretaceous epoch includes: (a) volcanogenic massive sulphide deposits (VMS) of bimodal-siliclastic type belonging to León-Guanajuato district; wallrock of VMS is made of felsic-internediate volcanics and black argillite; at Los Gavilanes deposit paragenesis is next: chalcopyrite > sphalerite > galena, pyrite > pyrrhotite > marcasite; grade is as follows: Au: .02-.07 g/t; Ag: 157-18.5 g/t; Cu: 2.24-0.81%, Pb: 4.16-0.03%; Zn: 10.35-3.02 %; (b) lens-shaped stratiform bodies of massive pyrite (i. ex., San Ignacio prospect; ˜ 4,000 ton) of exhalative-sedimentary origin with chalcopyrite and sphalerite microveins. Paleocene epoch includes both quartz-cordierite-sanidine veins and replacement bodies of hydrothermal metamorphic filliation (W +Se-Bi, Pb, Zn, Cu), and pyrometasomatic bodies [Cu, Pb, Zn (Ag), W] which genetically are linked to Comanja Granite emplacement. The wallrock at El Maguey mine (35,000 ton; 0.6% WO3) is made of hornfel and the vein (1.8-3.2m width) has a banding structure made of : \\{quartz & K-feldspar\\}, \\{(schörl) & specular hematite\\} and epidote alternating bands; ore minerals are scheelite and tetradymite. Oligocene epoch includes quartz-calcite-adulaire epithermal veins (Ag-Au) of geothermal-volcanic filliation. At Guanajuato mining District; ore minerals are: Au, electrum, acanthite, aguilarite, naumannite, polybasite, proustite, fischesserite (?); chalcopyrite, sphalerite and galena. Ore grade at Las Torres mine are: Ag 300 g/t, Au 2 g/t. At El Cubo mine because of the presence of rhyolitic domes gold grade reaches 100 g/t. Since Early Cretaceous Epoch, metallogenic concepts of heritage and permanence are valid in SG ore deposits.
Rodingite in Layered Gabbro of the Leka Ophiolite Complex, North-Central Caledonides of Norway
NASA Astrophysics Data System (ADS)
Prestvik, T.; Austrheim, H.
2006-12-01
Both the ultramafic (mantle) and the layered ultramafic to gabbroic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are characterized by extensive serpentinization. Rodingite, containing grossular garnet, clinopyroxene, clinozoisite, prehnite, chlorite and preiswerkite, which has been found in the lowermost plagioclase-rich layers of the gabbro sequence seems to represent an unusual (new?) mode of rodingite occurrence compared to the more common rodingitized basaltic dikes described from many ultramafic complexes worldwide. The 5 to 15 cm wide rodingitized plagioclase layers, that alternate with less altered layers of wehrlite, clinopyroxenite, and websterite, are located c. 10 m away from a 10 m wide layer of serpentinized dunite. The whole sequence is cut by numerous fractures oriented almost perpendicular to the layering, and rodingite occurs where the fractures transect the plagioclase layers. In the adjacent lithologies, the fractures can be followed as thin veins filled with grossular, clinopyroxene, amphibole, epidote, and chlorite. These fractures were most likely channelways for the rodingite-forming fluids. Gresen analysis, assuming constant volume, shows that the rodingite formed from the plagioclase-rich layers by addition of c. 22 g of CaO, 6 g of FeO and SiO2 and removal of 10 g of Al2O3 and all (2 g) of Na2O per 100 g of protolith. Microtextures show chlorite and serpentine pseudomorphs after primary clinopyroxene, demonstrating that the alteration took place at constant volume. This reaction is the most likely Ca source for the rodingitization, possibly in addition to the serpentinization of olivine in the dunite layers. Furthermore, Ca-enriched and Al2O3- depleted clinopyroxene of the rodingite - compared to the primary clinopyroxene of the layered sequence - attest to the mobil nature of these elements. While both the protolith and the rodingite are almost K2O-free, one of the plagioclase-rich layers has K2O in the 1.1 to 1.4% range for several meters along strike and has abundant secondary phlogopite. The source for K is not easily accounted for and may suggest large scale transport. LA-ICP-MS analysis of trace elements in grossular garnet shows a strongly LREE depleted pattern with a considerable (10x) positive Eu anomaly. We interpret this as evidence for reduced conditions during formation of the rodingite (or that the garnet inherited the Eu anomaly from primary plagioclase). This first description of rodingite at Leka indicates that serpentinization and rodingitization were related and most likely took place as part of a large scale Cambrian hydrothermal system associated with an oceanic rift. It further implies that the hydrothermal alteration affected rocks at sub-Moho level.
Archaeological jade mystery solved using a 119-year-old rock collection specimen
NASA Astrophysics Data System (ADS)
Harlow, G. E.; Davies, H. L.; Summerhayes, G. R.; Matisoo-Smith, E.
2012-12-01
In a recent publication (Harlow et al. 2012), a ~3200-year old small stone artefact from an archaeological excavation on Emirau Island, Bismarck Archipelago, Papua New Guinea was described and determined to be a piece of jadeite jade (jadeitite). True jadeitite from any part of New Guinea was not previously known, either in an archaeological or geological context, so this object was of considerable interest with respect to its geological source and what that would mean about trade between this source and Emirau Island. Fortuitously, the artefact, presumably a wood-carving gouge, is very unusual with respect to both pyroxene composition and minor mineral constituents. Pyroxene compositions lie essentially along the jadeite-aegirine join: Jd94Ae6 to Jd63Ae36, and without any coexisting omphacite. This contrasts with Jd-Di or Jd-Aug compositional trends commonly observed in jadeitites worldwide. Paragonite and albite occur in veins and cavities with minor titanite, epidote-allanite, and zircon, an assemblage seen in a few jadeitites. Surprisingly, some titanite contains up to 6 wt% Nb2O5 with only trace Ta and a single grain of a Y-Nb phase (interpreted as fergusonite) is present; these are unique for jadeitite. In a historical tribute to C.E.A. Wichmann, a German geologist who taught at Utrecht University, the Netherlands, a previously unpublished description of chlormelanite from the Torare River in extreme northeast Papua, Indonesia was given. The bulk composition essentially matches the pyroxene composition of the jade, so this sample was hypothesized as coming from the source. We were able to arrange a loan from the petrology collection at Utrecht University of the specimen acquired by Wichmann in 1893. In addition we borrowed stone axes from the Natural History Museum - Naturalis in Leiden obtained from natives near what is now Jayapura in eastern-most Papua. Petrography and microprobe analysis of sections of these samples clearly show that (1) Wichmann's 1893 Torare River "chloromelanite" is an extremely close match texturally and mineralogically with the jadeitite jade gouge, including Nb-rich titanite—thus a match, but that (2) the axes are omphacitites that have a geologically similar origin (high pressure/low-temperature subduction channel) but do not share the jadeite+aegerine-rich pyroxene or Nb-Y rich accessory phases. This research clearly shows that natural history collections are important archives that contain samples of potentially important value for science and cultural research. Moreover, research like this that connects geology, archaeology, history and preserved collections can yield a story that makes science and collections tangible and interesting to a popular audience. References: Harlow et al. 2012, Eur. J. Mineral. 24, 391-399.
Using Garnet to Reconstruct Subduction Zone Dehydration Flux
NASA Astrophysics Data System (ADS)
Baxter, E. F.; Dragovic, B.; Samanta, L. M.; Selverstone, J.; Caddick, M. J.
2011-12-01
Coupled geodynamic-thermodynamic models make predictions about the progressive dehydration flux from subducted lithologies. However, it has been difficult to test or confirm these predictions through direct petrologic assessment of natural systems. We have developed a method that may be used to reconstruct the rate, timing, and flux of dehydration from diverse lithologies within subduction zones. Here, we summarize the fundamentals of the method and highlight data from two blueschist facies lithologies from the island of Sifnos, Greece. The data indicate that garnet growth and related dehydration from individual lithologies can be focused into relatively brief (100,000s of years) pulses. In general, most garnet forming reactions (in initially hydrous lithologies) also involve the consumption of hydrous minerals (including chlorite, biotite, chloritoid, amphibole, epidote, lawsonite) and the consequent liberation of water. Depending on the exact reaction and on the pressure and temperature vector over which the reaction occurs, the stoichiometric (i.e. molar) ratio between garnet produced and water produced can vary. If this stoichiometry can be constrained via thermodynamic and textural reaction analysis, then garnet may be used as a direct monitor of the progressive dehydration of the rock for the P-T-t span over which garnet grew. To a first order, rocks with greater modal proportion of garnet have released greater amounts of water. Modern techniques are available to directly date the span of garnet growth from single crystals larger than about 5mm diameter. Sm-Nd geochronology of chemically contoured microsampled prograde garnet growth zones from single crystals can produce constraints on garnet growth duration at better than 1 million year resolution. Integration of zoned garnet geochronology and thermodynamic reaction analysis permits reconstruction of the dehydration rate and duration from individual samples. Recent studies of contrasting lithologies on Sifnos demonstrate the utility of the method for unlocking information about natural dehydration timescales within subduction zones. A mafic blueschist sample contains large garnet crystals (up to 1.5cm) whose growth occurred very rapidly, in only hundreds of thousands of years. A quartzofeldspathic rock containing larger (up to 5cm) garnets reveals rapidly accelerating garnet growth, most of which also occurred within just a few hundred thousand years. Both samples provide evidence for rapid dehydration associated with garnet-forming reactions over brief timespans. Observed garnet modal abundances and thermodynamically modeled garnet:water production ratios indicate that approximately 0.5 to 1.0 wt% water - a significant amount - was liberated from these lithologies during the brief time spans recorded by garnet growth. Whether these dehydration pulses require a kinetic-triggering explanation or whether they can be explained either geodynamically by rapid P-T shifts or thermodynamically by passage through narrowly spaced garnet reaction isopleths remains a question for further study.
Monazite in Atlantic shore-line features
Dryden, Lincoln; Miller, Glen A.
1954-01-01
This report is a survey of present and potential production of monazite from part of the Maryland-Florida section of the Atlantic Coastal Plain. The part of the Coastal Plain covered here is the outer (shore-ward) half. In this area, all the large heavy-mineral placers so far discovered occur in sand bodies that, by their shape, size, orientation, and lithology, appear to be ancient beaches, spits, bars, or dunes. Smaller placers have produced from recent shore-line features. The inner part of the Coastal Plain, to be treated in another report, is underlain generally by older rocks, ranging in age from Cretaceous to older Pleistocene. Only two large heavy-mineral placers are now in production at Trail Ridge, and near Jacksonville, both in Florida. Production is planned for the near future near Yulee, Fla.: in Folkston, Ga.: and at one or two localities in eastern North Carolina. Each of these three will produce monazite as a byproduct; the total new reserve for the three placers is about 33,000 tons of monazite. In large heavy-mineral placers of this type, monazite has not been found to run more than about 1 percent of total heavy minerals. In some large placers, notably Trail Ridge, it is almost or completely lacking. No reason for its sporadic occurrence has been found in this investigation. Two placers of potential economic value have been found by this project in Virginia, one west and one east of Chesapeake Bay. Neither is of promise for monazite production, but if they serve to open up exploration or production in the area, there is a chance for monazite as a byproduct from other placers. A discovery of considerable scientific interest has to do with the occurrence of two different suites of heavy minerals in the Coastal Plain, at least south of Virginia. One, an “older” suite, lacks epidote, hornblende, and garnet; this suite occurs in all older formations and in Pleistocene deposits lying above about 50 or 60 feet above sea level. The other, “younger” suite contains these three minerals: it is restricted to recent beaches and streams, and to Pleistocene deposits at low altitudes. Monazite may occur with either of these suites. The percentage of titania (TiO2) in illmenite is of both scientific and economic interest. Illmenite is by far the most sought-for mineral in present exploration, and whether it contains the “normal” 53 percent of titania or, as it commonly does in Florida, 60 percent, is often of decisive importance in its exploitation. The nature, time, and place of this “enrichment” in titania has not been worked out. The heavy-mineral industry of the area seems to give promise of considerable expansion in the near future, and a greater monazite production seems assured.
Tucker, R.D.; Osberg, P.H.; Berry, H.N.
2001-01-01
The zone of Acadian collision between the Medial New England and Composite Avalon terranes is well preserved in Maine. A transect from northwest (Rome) to southeast (Camden) crosses the eastern part of Medial New England comprising the Central Maine basin, Liberty-Orrington thrust sheet, and Fredericton trough, and the western part of Composite Avalon, including the Graham Lake, Clarry Hill, and Clam Cove thrust sheets. U-Pb geochronology of events before, during, and after the Acadian orogeny helps elucidate the nature and distribution of tectonostrati& graphic belts in this zone and the timing of some Acadian events in the Northern Appalachians. The Central Maine basin consists of sedimentary and volcanic rocks of Middle Ordovician (???470 to ???460 Ma) age overlain with probable conformity by latest Ordovician(?) through earliest Devonian marine rift and flysch sedimentary rocks; these are intruded by weakly to undeformed plutonic rocks of Early and Middle Devonian age (???399??378 Ma). The Fredericton trough consists of Early Silurian gray pelite and sandstone to earliest Late Silurian calcareous turbidite, deformed and variably metamorphosed prior to the emplacement of Late Silurian (???422 Ma) and Early to Late Devonian (???418 to ???368 Ma) plutons. The Liberty-Orrington thrust sheet consists of Cambrian(?)-Ordovician (>???474 to ???469 Ma and younger) clastic sedimentary and volcanic rocks intruded by highly deformed Late Silurian (???424 to ???422 Ma) and Devonian (???418 to ???389 Ma) plutons, possibly metamorphosed in Late Silurian time (prior to ???417 Ma), and metamorphosed to amphibolite facies in Early to Middle Devonian time (???400 to ???381 Ma). The Graham Lake thrust sheet contains possible Precambrian rocks, Cambrian sedimentary rocks with a volcanic unit dated at ???503 Ma, and Ordovician rocks with possible Caradocian Old World fossils, metamor& phosed and deformed in Silurian time and intruded by mildly to undeformed Late Silurian (???421 Ma) and Late Devonian (???371 to ???368 Ma) plutons. The Clarry Hill thrust sheet consists of poorly studied, highly metamorphosed Cambrian(?) rocks. The Clam Cove thrust sheet contains highly deformed Precambrian limestone, shale, sandstone, and conglomerate, metamorphosed to epidote amphibolite facies and intruded by a mildly deformed pluton dated at ???421 Ma. Metamorphism, deformation, and voluminous intrusive igneous activity of Silu& rian age are common to both the most southeastern parts of Medial New England and the thrust sheets of Composite Avalon. In contrast to Medial New England, the thrust sheets of Composite Avalon show only modest effects of Devonian deformation and metamorphism. Regional stratigraphic relations, paleontologic findings, and U-Pb geochronology suggest that the Graham Lake, Clarry Hill, and Clam Cove thrust sheets are far-traveled allochthons that were widely separated from Medial New England in the Silurian.
NASA Astrophysics Data System (ADS)
Smith-Duque, C.; Teagle, D. A.; Alt, J. C.; Cooper, M. J.
2008-12-01
Anhydrite is potentially a useful mineral for recording the evolution of seawater-derived fluids during mid- ocean ridge hydrothermal circulation because it exhibits retrograde solubility, and hence may precipitate due to the heating of seawater or the sub-surface mixing of seawater with black smoker-like fluids. Here we provide new insights into the chemical and thermal evolution of seawater during hydrothermal circulation through analyses of anhydrite recovered from ODP Hole 1256D, the first complete penetration of intact upper oceanic crust down to gabbros. Previously, crustal anhydrite has been recovered only from Hole 504B. Measurements of 87Sr/86Sr, major element ratios, Rare Earth Elements and δ18O in anhydrite constrain the changing composition of fluids as they chemically interact with basalt. Anhydrite fills veins and pore-space in the lower lava sequences from ~530 to ~1000 meters sub- basement (msb), but is concentrated in the lava-dike transition (754 to 811 msb) and uppermost sheeted dikes. Although present in greater quantities than in Hole 504B, the amount of anhydrite recovered from the Site 1256 crust is low compared to that predicted by models of hydrothermal circulation (e.g., Sleep, 1991). Two distinct populations of anhydrite are indicated by measurements of 87Sr/86Sr suggesting different fluid evolution paths within Site 1256. One group of anhydrites have 87Sr/86Sr of 0.7070 to 0.7085, close to that of 15 Ma seawater (0.70878), suggesting that some fluids penetrate through the lavas and into the sheeted dikes with only minimal Sr-exchange with the host basalts. A second group, with low 87Sr/86Sr between 0.7048 and 0.7052, indicates precipitation from a fluid that has undergone far greater interaction with basalt. This range is close to that estimated from Sr-isotopic analyses of epidote for the Hole 1256D hydrothermal fluids (87Sr/86Sr ~0.705). Sr/Ca and 87Sr/86Sr indicate a similar relationship to that seen at ODP Hole 504B suggesting that Sr/Ca ratios reduce greatly during recharge before there is significant Sr exchange with the host basalts. δ18O measurements display an irregular trend with depth from +17‰ in the lower volcanics to +10‰ in the sheeted dikes suggesting an increase in precipitation temperatures from 105 to 211°C. One sample, from a chalcopyrite mineralized dike margin has a very light δ18O of +2.2‰ suggesting a temperature of ~408°, perhaps indicating that fluid was superheated following direct contact with the hot intrusive body. This sample also records low 87Sr/86Sr and high total REE.
NASA Astrophysics Data System (ADS)
Piercey, Stephen J.; Squires, Gerry; Brace, Terry
2018-02-01
Pyrite- and pyrrhotite-rich mudstones are spatially associated with Cambrian ( 512-509 Ma) volcanogenic massive sulfide (VMS) deposits throughout the Tally Pond group, central Newfoundland, Canada. At the Duck Pond mine, sulfide-rich mudstones are hosted within a weakly mineralized upper block that structurally overlies the deposit but is older ( 513 versus 509 Ma). The mudstones are laminated, 10-30-cm thick, and pyrite- and pyrrhotite-rich and occur along pillow lava selvages, or in between pillow lavas, rhyolite flows, and volcaniclastic rocks. The mudstones are laterally extensive and proximal to the mudstone host rocks are hydrothermally altered to epidote-quartz-chlorite (basalt host) and sericite-quartz (rhyolite host). Lithogeochemical data for the sulfide-rich mudstones reflect the varying contributions of elements from sedimentary detritus, hydrothermal discharge, and hydrogenous scavenging from middle Cambrian seawater. The mudstones have minor detrital element abundances and significant hydrothermal element enrichments (i.e., elevated Fe2O3, S, Pb, Zn, Cu, and Ba concentrations, high Fe/Al ratios). The hydrothermal mudstones are also enriched in oxyanions (i.e., P2O5, U, V, Cr, Ni, Co, and Hg), interpreted to have been enriched via oxidative scavenging from seawater by Fe-oxide/oxyhydroxide particles. The mudstones also have REE-Y signatures similar to modern oxygenated seawater with high Y/Ho and negative Ce anomalies (Ce/Ce* = 0.40-0.86; average = 0.58), which correlate with adsorbed oxyanion concentrations. The low Eu/Eu* (1.02-1.86; average = 1.22) in the mudstones suggest that they were deposited from low-temperature (< 250 °C), Fe-rich hydrothermal fluids that likely formed a buoyant plume into an oxygenated water column. The REE-Y-oxyanion signatures suggest that the particles within the hydrothermal plume had sufficient residence time to scavenge oxyanions from seawater and inherit a middle Cambrian seawater signature. The predominant seawater REE-Y-oxyanion signature in the Duck Pond upper block sulfide-rich mudstones suggests that they are distal hydrothermal sedimentary rocks that could have formed up to 10 km from their original vent sources. Correspondingly, to utilize hydrothermal mudstones as vectors to mineralization in the Tally Pond belt, and similar belts globally, it is critical to identify vent-proximal samples that have hydrothermal signatures (i.e., high Fe/Al, base metals, Ba, S), with subdued seawater and adsorption signatures (i.e., chondritic Y/Ho, low P2O5, Ni, U, Co, Cr, V, and Hg), indicating minimal residence time in the water column and deposition proximal to the vent.
Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer
Zachara, John M.; Kukkadapu, Ravi K.; Glassman, Paul L.; Dohnalkova, Alice; Fredrickson, Jim K.; Anderson, Todd
2004-01-01
The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens-like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy.All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments.
An internally consistent inverse model to calculate ridge-axis hydrothermal fluxes
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Dosso, S.
2010-12-01
Fluid and chemical fluxes from high-temperature, on-axis, hydrothermal systems at mid-ocean ridges have been estimated in a number of ways. These generally use simple mass balances based on either vent fluid compositions or the compositions of altered sheeted dikes. Here we combine these approaches in an internally consistent model. Seawater is assumed to enter the crust and react with the sheeted dike complex at high temperatures. Major element fluxes for both the rock and fluid are calculated from balanced stoichiometric reactions. These reactions include end-member components of the minerals plagioclase, pyroxene, amphibole, chlorite and epidote along with pure anhydrite, quartz, pyrite, pyrrhotite, titanite, magnetite, ilmenite and ulvospinel and the fluid species H2O, Mg2+, Ca2+, Fe2+, Na+, Si4+, H2S, H+ and H2. Trace element abundances (Li, B, K, Rb, Cs, Sr, Ba, U, Tl, Mn, Cu, Zn, Co, Ni, Pb and Os) and isotopic ratios (Li, B, O, Sr, Tl, Os) are calculated from simple mass balance of a fluid-rock reaction. A fraction of the Cu, Zn, Pb, Co, Ni, Os and Mn in the fluid after fluid-rock reaction is allowed to precipitate during discharge before the fluid reaches the seafloor. S-isotopes are tied to mineralogical reactions involving S-bearing phases. The free parameters in the model are the amounts of each mineralogical reaction that occurs, the amounts of the metals precipitated during discharge, and the water-to-rock ratio. These model parameters, and their uncertainties, are constrained by: (i) mineral abundances and mineral major element compositions in altered dikes from ODP Hole 504B and the Pito and Hess Deep tectonic windows (EPR crust); (ii) changes in dike bulk-rock trace element and isotopic compositions from these locations relative to fresh MORB glass compositions; and (iii) published vent fluid compositions from basalt-hosted high-temperature ridge axis hydrothermal systems. Using a numerical inversion algorithm, the probability density of different model parameter sets has been computed and thus the probability of different fluid and chemical fluxes. Most data can be fit by the model within their uncertainty. The entire dataset is best-fit with a water-to-rock mass ratio between 1.3 and 2.1 (~1 to 1.5 x10**13 kg yr-1) implying a substantial fraction of the magmatic (latent) heat available to drive the axial hydrothermal system is extracted by these systems. Many element fluxes are better constrained than in previous studies (e.g., Sr: 2 to 7 x10**8 moles yr-1; Ca: 2 to 7 x10**11 moles yr-1). Future developments will use experimental data to further constrain the model.
NASA Astrophysics Data System (ADS)
Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan
2018-04-01
The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.
NASA Astrophysics Data System (ADS)
Ghignone, Stefano; Borghi, Alessandro; Balestro, Gianni; Gattiglio, Marco
2017-04-01
In the inner Western Alps, meta-ophiolite units (i.e., the Piemonte Zone) show different stages of the tectono-metamorphic evolution, since the early phases of subduction to the latest exhumation steps. Tectono-metamorphic data collected through the meta-ophiolite units of the Piemonte Zone along the middle Susa Valley allowed to infer new ideas about the exhumation processes that developed in the (U)HP units. In this area, Zermatt-Saas-like meta-ophiolite unit (i.e., the eclogite-facies Internal Piemonte Zone, IPZ) are tectonically overlain by Combin-like ones (i.e., the blueschist-facies External Piemonte Zone, EPZ), through a thick shear zone (i.e., the Susa Shear Zone, SSZ). Metamorphic history was achieved by analyzing basic rocks (metabasalt and Fe-Ti metagabbro) and sedimentary rocks derived from reworking basic rocks in oceanic environment (basic sandstones and conglomerates, and ophiolitic breccia). Different P-T paths were inferred for IPZ and EPZ, according with mineral assemblages and realizations of pseudosections. In the IPZ, four tectono-metamorphic events, developed under variables metamorphic conditions, were recognized. The first (peak-P) event shows (U)HP conditions, defined by the occurrence of relic mineral assemblage (Grt I+ Omp I + Rt). The paragenesis is completed by Zo + Pg pseudomorphs, implying that Lws-eclogite facies were reached. The discovery in Grt (and Rt) relics inclusions of black euhedral pseudomorphs of disordered graphite, suggesting to be derived from original microdiamonds, agree with other petrologic constrains. The second event, marked by the Grt II + Omp II + Ph + Gln + Zo assemblage, developed under epidote-eclogite facies conditions. Following a retrograde and decompressional trajectory, the IPZ was then re-equilibrated under greenschist-facies conditions and a new assemblage (Ab + Chl + Mu + Czo + Ttn + Act) overprinted HP paragenesis. The last event is marked by a weak heating, with crystallization of Bt + Ep + Olig + Hbl (Prg) + Ms. The EPZ shows a different metamorphic evolution, where only two events were recognized. The first event developed under blueschist-facies conditions, with relics of mineral assemblages consisting of Gln + Rt + Ph. Then, a retrograde trajectory re-equilibrated EPZ under greenschist-facies conditions and a new stable mineral assemblage (Ab + Chl + Mu + Ttn + Act + Czo) grew. The inferred P-T path suggests, for the IPZ, a first isothermal exhumation stage, likely driven by buoyancy forces from the base of the orogenic wedge. In the EPZ, HP peak occurs at the same gradient of the second event in the IPZ, suggesting that, during exhumation of the IPZ, the EPZ was still subducted. The strong re-equilibration under greenschist-facies conditions suggests a stage of slow exhumation rate, which can be related to the coupling between IPZ and EPZ.
NASA Astrophysics Data System (ADS)
Vidal, Conrado Permuy; Guido, Diego M.; Jovic, Sebastián M.; Bodnar, Robert J.; Moncada, Daniel; Melgarejo, Joan Carles; Hames, Willis
2016-08-01
The Cerro Negro district, within the Argentinian Deseado Massif province, has become one of the most significant recent epithermal discoveries, with estimated reserves plus resources of ˜6.7 Moz Au equivalent. The Marianas-San Marcos vein system contains about 70 % of the Au-Ag resources in the district. Mineralization consists of Upper Jurassic (155 Ma) epithermal Au- and Ag-rich veins of low to intermediate sulfidation style, hosted in and genetically related to Jurassic intermediate composition volcanic rocks (159-156 Ma). Veins have a complex infill history, represented by ten stages with clear crosscutting relationships that can be summarized in four main episodes: a low volume, metal-rich initial episode (E1), an extended banded quartz episode with minor mineralization (E2), a barren waning stage episode (E3), and a silver-rich late tectonic-hydrothermal episode (E4). The first three episodes are interpreted to have formed at the same time and probably from fluids of similar composition: a 290-230 °C fluid dominated by meteoric and volcanic waters (-3‰ to -0‰ δ18Owater), with <3 % NaCl equivalent salinity and with a magmatic source of sulfur (-1 to -2 ‰ δ34Swater). Metal was mainly precipitated at the beginning of vein formation (episode 1) due to a combination of boiling at ˜600 to 800 m below the paleowater table, and associated mixing/cooling processes, as evidenced by sulfide-rich bands showing crustiform-colloform quartz, adularia, and chlorite-smectite banding. During episodes 2 and 3, metal contents progressively decrease during continuing boiling conditions, and veins were filled by quartz and calcite during waning stages of the hydrothermal system, and the influx of bicarbonate waters (-6 to -8.5 ‰ δ18Owater). Hydrothermal alteration is characterized by proximal illite, adularia, and silica zone with chlorite and minor epidote, intermediate interlayered illite-smectite and a distal chlorite halo. This assemblage is in agreement with measured fluid inclusion temperatures. A striking aspect of the Marianas-San Marcos vein system is that the high-grade/high-temperature veins are partially covered by breccia and volcaniclastic deposits of acidic composition, and are spatially associated with hot spring-related deposits and an advanced argillic alteration blanket. A telescoped model is therefore proposed for the Marianas-San Marcos area, where deeper veins were uplifted and eroded, and then partially covered by non-explosive, post-mineral rhyolitic domes and reworked volcaniclastic deposits, together with shallow geothermal features. The last tectonic-hydrothermal mineralization episode (E4), interpreted to have formed at lower temperatures, could be related to this late tectonic and hydrothermal activity.
NASA Astrophysics Data System (ADS)
Kretzschmar, R.; Kiczka, M.; Wiederhold, J. G.; Voegelin, A.; Kraemer, S.; Bourdon, B.
2010-12-01
Iron (Fe) is not only an essential element for almost all organisms, but is also involved in many biogeochemical processes including silicate weathering and soil formation. The aim of this study was to gain a better understanding of Fe isotope fractionation during initial silicate weathering and soil formation processes. Therefore, we investigated changes in Fe speciation and Fe isotope signatures in total soils and selected Fe pools along a weathering chronosequence within an Alpine glacier forefield on granite. The sampling sites along the dated chronosequence were deglaciated since up to 150 years, and we included two additional sites which were ice-free since several thousands of years. Changes in Fe speciation were investigated using Fe K-edge X-ray absorption spectroscopy (XAS) and also qualitatively documented by optical microscopy of soil thin sections. Iron in the unweathered rock was mainly present as structural Fe in biotite, with smaller amounts in chlorite, epidote, and magnetite. Within 150 years of deglaciation, the fraction of Fe(III) relative to total Fe increased from 34 to 53%, clearly documenting oxidation of Fe(II) in primary phyllosilicates. After 100 years of deglaciation, secondary Fe(III)-oxyhydroxides were detected by XAS and were also clearly evident in soil thin sections. Elemental analysis and Fe isotope analysis of particle size fractions by MC-ICP-MS showed that the clay fractions were significantly enriched in Fe and their δ56Fe signatures were up to 0.35‰ lower than those of the bulk soils (<2 mm). In addition, the hydroxylamine-hydrochloride extractable Fe pool (1 M HA-HCl in 25% acetic acid, pH 1.5), representing mainly poorly-crystalline Fe(III)-oxyhydroxides, increased with time of deglaciation and also had a significantly (by up to 0.7‰) lighter δ56Fe signature than the respective bulk soils. Thus, our data show that weathering of primary silicates, mainly biotite and chlorite, preferentially releases light Fe isotopes during oxidative weathering, which are subsequently enriched in secondary Fe(III)-oxyhydroxides with a rather constant isotopic offset of -0.7‰ in δ56Fe relative to the bulk soils. These findings are consistent with previous laboratory experiments on silicate weathering by proton- and ligand-promoted dissolution. The data suggest a kinetic isotope effect during Fe release from primary silicates, combined with quantitative oxidation and precipitation of Fe(III) as poorly-crystalline oxyhydroxides. Analysis of plants collected along the chronosequence revealed additional fractionation towards light Fe isotopes, but the plant contribution to total Fe cycling in this young ecosystem was still minor.
Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.
1976-01-01
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite 'Permian temperatures' implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant. The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite 'stewed in its own juices'. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures. ?? 1976 Springer-Verlag.
Slack, J.F.; Aleinikoff, J.N.; Belkin, H.E.; Fanning, C.M.; Ransom, P.W.
2008-01-01
Small polycrase-titanite veins 0.1-2 mm thick cut the tourmalinite feeder zone in the deep footwall of the Sullivan Pb-Zn-Ag deposit, southeastern British Columbia. Unaltered, euhedral crystals of polycrase and titanite 50-100 ??m in diameter are variably replaced by a finer-grained alteration-induced assemblage composed of anhedral polycrase and titanite with local calcite, albite, epidote, allanite, and thorite or uranothorite (or both). Average compositions of the unaltered and altered polycrase, as determined by electron-microprobe analysis, are (Y0.38 REE0.49 Th0.10 Ca0.04 Pb0.03 Fe0.01U0.01) (Ti1.48 Nb0.54 W0.04 Ta0.02)O6 and (Y0.42 REE0.32 Th0.15 U0.06 Ca0.04 Pb0.01 Fe0.01) (Ti1.57 Nb0.44 W0.04 Ta0.02)O6, respectively. The unaltered titanite has, in some areas, appreciable F (to 0.15 apfu), Y (to 0.40 apfu), and Nb (to 0.13 apfu). SHRIMP U-Pb geochronology of eight grains of unaltered polycrase yields a weighted 207Pb/206Pb age of 1413 ?? 4 Ma (2??) that is interpreted to be the age of vein formation. This age is 50-60 m.y. younger than the ca. 1470 Ma age of synsedimentary Pb-Zn-Ag mineralization in the Sullivan deposit, which is based on combined geological and geochronological data. SHRIMP ages for altered polycrase and titanite suggest later growth of minerals during the ???1370-1320 Ma East Kootenay and ???1150-1050 Ma Grenvillian orogenies. The 1413 ?? 4 Ma age for the unaltered polycrase in the veins records a previously unrecognized post-ore (1370 Ma) mineralizing event in the Sullivan deposit and vicinity. The SHRIMP U-Pb age of the polycrase and high concentrations of REE, Y, Ti, Nb, and Th in the veins, together with elevated F in titanite and the absence of associated sulfides, suggest transport of these high-field-strength elements (HFSE) by F-rich and S-poor hydrothermal fluids unrelated to the fluids that formed the older Fe-Pb-Zn-Ag sulfide ores of the Sullivan deposit. Fluids containing abundant REE, HFSE, and F may have been derived from a geochemically specialized magma such as those that form alkaline granites, pegmatites, or carbonatites. In an alternative model. preferred here, these fluids were associated with a rift-related, crustal metasomatic event in the region. Determination of a Mesoproterozoic age for the polycrase-titanite veins establishes the first known occurrence of pre-Grenvillian REE-rich mineralization in the Belt-Purcell basin.
New geological data of New Siberian Archipelago
NASA Astrophysics Data System (ADS)
Sobolev, Nikolay; Petrov, Evgeniy
2014-05-01
The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.
NASA Astrophysics Data System (ADS)
Prante, M. R.; Evans, J. P.
2012-12-01
Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.
NASA Astrophysics Data System (ADS)
Villares, Fabián; Eguez, Arturo; Yanez, Ernesto
2014-05-01
Formely, the subandean zone in the southeastern Ecuador involved large volcanic and magmatic rocks included in the Misahualli Formation and Zamora batholith, both as expression of the Jurassic cal-alcaline volcanic arc. The aim of the project carried out by the INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) was discriminate the volcanic products including a continuous set going from basalts to ryolithes and volcanoclastic rocks. Geochemical characterization was done using representative 16 whole - rock chemical analysis. The oldest rocks of the investigated area called Pachicutza Unit, include greenish to black, massive basalts and basaltic andesites, locally showing pillows structures. The texture is aphanitic to microporphyritic with slight crystal growth of plagioclase and pyroxenes. The Unit include also local pyroclastic breccias and tuffs showing variable skarnification related to the intrusion of the jurassic Zamora Batholith. Two samples of basalts show tholeiitic affinity, corresponding to an N- MORB, probably representing an early stage in opening of a regional Triassic rift reported since Colombia to Peru in the Andes. These geochemical characteristics are similar to the amphibolites of Monte Olivo Unit in the Real Cordillera. The Jurassic large volcanic assembly of the Misahualli Formation was also differenciated. Basal volcanics include green, subporphyritic andesites and volcanic breccias possibly generated at an early stage of the volcanic arc, caused by a change of extensive to compressive regime. Continental volcano sedimentary and sedimentary rock were discriminate as Nueva Esperanza and Suarez Units, respectively. The volcanosedimentary sequence include massive to laminate tuffs and tuffites of intermediate composition. The sediments of the Suarez Unit include dominant conglomerats and sandstones of fluvial domain. The regional volcanic sequence is completed by the Las Peñas Unit that includes aphanitic to porphyritic andesites and coarse volcanic breccias. Three geochemical analysis of the lavas show andesitic composition, have medium to high-K calc-alkaline and represent the products of a subduction zone. All intrusions in the area were mapped as Zamora Batholith. Nevetheless, the field observations confirm a large Jurassic batholith but also other significant minor intrusion that intrudes the cretaceous sedimentary formations of the area. Thus, magmatic rocks in the area are named as Zamora batholithic complex. Petrography of the Zamora Batholith ranges from tonalite to monzo-granite with the same qualitative mineralogy. Rocks are composed by different proportions of plagioclase, amphibole, K-feldspar, quartz, biotite, opaques and epidote, as accessory minerals has zircon, sphene and apatite. Zamora Granitoids ranged from dioritic to granitic compositions ( 60.09 - . 73.6 wt % SiO2). The Zamora Granitoids have medium to high-K calc-alkaline and represent the products of a subduction zone. Products are generated within a magmatic arc in normal conditions of maturity. The Zamora Granitoids are I - type intrusions.
NASA Astrophysics Data System (ADS)
Ilídio Mário, Rui; Mendes, Maria Helena; Francisco Santos, Jose; Ribeiro, Sara
2017-04-01
The dolerite samples studied in this work are part of drilling cores, obtained during exploration campaigns by the Ncondezi Coal Company, in the prospect area 805L, located at NE of Moatize, Tete Province, Mozambique. The dolerite bodies are intrusive into sedimentary formations of the Karoo Supergroup. The intrusions have a probable Jurassic age, around 180 Ma, based on a geochronological information (GTK Consortium, 2006) from a similar body cropping out in another area of the Tete Province. The studied rocks were affected by hydrothermal alteration, testified by the pervasive occurrence of the assemblage serpentine + chlorite + sericite + sphene + calcite ± epidote ± tremolite-actinolite, and by filling of vesicles and fractures by calcite, pyrite or calcite + pyrite ± quartz. However, the selected samples preserve igneous intergranular textures. Petrographic evidence suggests that the primary mineral associations included plagioclase, titanaugite, olivine, apatite, opaques, biotite and hornblende. These assemblages are variably preserved and, in the samples most intensely altered, the igneous minerals were almost totally replaced. Whole-rock major and trace element data, with particular emphasis on immobile elements, indicate that the analysed samples are basic and that they can be seen as cogenetic, belonging to the alkaline series and showing compositions similar to present-day intraplate basalts. The Rb-Sr and Sm-Nd data seem to confirm the cogenetic nature of the studied dolerites. In fact, in the least altered samples, both [87Sr/86Sr]180Ma and ɛNd180Ma define relatively small ranges: +0.7050 ≥ [87Sr/86Sr]180Ma ≥ 0.7038 +10 ≥ ɛSr180Ma ≥ -7 and +3.6 ≥ ɛNd180Ma ≥ +1.7. In addition, this clearly indicates that parental melts were generated in a mantle source and that magmas did not undergo significant crustal contamination during their ascent and emplacement. The described isotopic compositions, besides plotting in an area common to OIB, are similar to those found in igneous rocks related to the rifting process in Tanzania and Kenya. Samples that were more intensely affected by hydrothermal alteration display similar ɛNd180Ma values, but show more radiogenic Sr signatures (up to [87Sr/86Sr]180Ma = 0.7063). This indicates a significant crustal contribution in the aqueous fluids responsible for the hydrothermal processes. The whole set of obtained data is in agreement with a magmatic event related with the activity of a mantle plume which caused not only a thermal effect but also geochemical enrichment in the mantle source of the parental magmas of the studied rocks. Reference: GTK Consortium (2006). Map Explanation; Volume 1: Sheets 2032 - 2632. Direcção Nacional de Geologia de Moçambique, Maputo, 341 pp. Acknowledgments: Ncondezy Coal Company, for providing the samples; FCT (Portugal), through project GeoBioTec (UID/GEO/04035/2013), for the financial support.
NASA Astrophysics Data System (ADS)
Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.
2011-12-01
The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure mechanics of brittle faults and jointing related to the LOFZ. The basal failure plane closely followed an older (epidote chlorite facies) thrust fault. Later fracture patterns suggest the thrust relaxed under gravitational stress following rock column uplift. Failure probably utilized a combination of these structures. Digital geomorphic models allowed establishing a sequence of events during failure which together make up the complex rock avalanche deposit. The volume of each individual slide could be more accurately determined. These and ongoing studies will allow a unique characterization of earthquake-induced slope failures in fjord coastal environments, providing new tools for landslide, seismic and tsunami hazard assessment in Patagonia and similar geomorphological settings around the world. This work was funded by Fondecyt project 11070107, the International Center for Geohazards, the Millenium Nucleus 'International Earthquake Research Center Montessus de Ballore', FNDR-Project 'Geological-Mining Environmental Research in Aysen' of the Chilean Government and the Andean Geothermal Center of Excellence.
The evolution of fabric with displacement in natural brittle faults
NASA Astrophysics Data System (ADS)
Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.
2011-12-01
In experiments performed at room temperature on gouges, a characteristic clast size distribution (CSD) is produced with increasing strain, and shear localization is documented to begin after few millimetres of sliding. But in natural faults active at depth in the crust, mechanical processes are associated with fluid-rock interactions, which might control the deformation and strength recovery. We aim to investigate the microstructural, geochemical and mineralogical evolution of low-displacement faults with increasing shear strain. The faults (cataclasite- and pseudotachylyte-bearing) are hosted in tonalite and were active at 9-11 km and 250-300°C. The samples were collected on a large glacier-polished outcrop, where major faults (accommodating up to 4300 mm of displacement) exploit pre-existing magmatic joints and are connected by a network of secondary fractures and faults (accommodating up to 500 mm of displacement) breaking intact tonalite. We performed optical and cathodoluminescence (CL) microscope, Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Rietveld X-Ray Powder Diffraction and microprobe chemical analysis in deformation zones of secondary faults with various offsets in order to evaluate the transfer of chemical species between dissolution zones and protected zones. Image analysis techniques were applied on SEM-BSE and optical microscope images to compute the CSD in samples, which experienced an increasing amount of strain. The secondary fractures are up to 5 mm thick. Within the first 20 mm of displacement, shear localizes along Y and R1 surfaces and a cataclastic foliation develops. The CSD evolves from a fractal dimension D of 1.3 in fractures without visible displacement to values above 2 after the first 500 mm of displacement. Chemical maps and CL images indicate that the foliation in cataclasite results from the rotation and fragmentation of clasts, with dissolution of quartz and passive concentration of Ti oxides and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.
Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,
2009-01-01
Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached solution from mine waste used in the kinetic reaction vessel test. This finding suggests that mine waste and not ANC rock may generate the majority of leachable metals in a field scenario.
The organic carbon content of naturally reclaimed soils derived from weathering of propylitically-altered andesite was determined in catchments where ANC studies were initiated. Soils were found to have total carbon concentrations (TOC) that exceed global average soil TOC abundances by as much as 1.5 – 5 times. These data support an environmental management system involving use of ANC rocks as part of life-cycle mine planning to reduce post-mine closure acid mitigation measures. Carbon contents of undisturbed soils in mined catchments can possibly be used to validate post-reclamation success and help quantify carbon sequestration for CO2 emission offset trading as carbon markets mature.
Lithofacies variability in the Lower Khvalynian sediments of the North Caspian Sea region.
NASA Astrophysics Data System (ADS)
Makshaev, Radik; Svitoch, Aleksandr
2016-04-01
The Early Khvalynian period (~15 500-12 500 cal years B.P.) is characterized by continuous dynamic changes in North Caspian Sea region environment, which has been confirmed by numerous data obtained during the lithofacies analysis of its key sections. Lithofacies complex of the North Caspian Sea region contains four subfacies - clayey, laminated, sandy-clayey and aleurite-clayey. Clayey facie is characterized by absolutely clayey structure with massive nonlamellated or subfissile dark-brown clays and rarely contains thin aleurite layers. This subfacie is one of the most widespread in the North Caspian Sea region. Clayey facies are typical for the most of the key sections in the Middle Volga (Bykovo, Torgun, Rovnoe, Novoprivolnoe, Chapaevka), Lower Volga (Svetly Yar) and on the left side of the Volga River valley (Verkhny Baskunchak, Krivaya Loshchina, Bolshoy Liman). Deep paleodepressions of the Lower Volga and the left side of the Volga River valley are also characterized by the maximum of the average clays thickness, which can reach up to 10 m. Sandy-clayey subfacie is characterized by stratified structure with horizontal and lenticular lamination of clays with sandy-aleuritic interlayers. The average thickness of sand layers is 2-5 cm. At most of the key sections thickness of clay layers is up to twice larger than the sands layers and only on depressions' periphery can be exceeded by some terrigenous interlayers. Sandy-aleuritic parts of clays have different mineral structure. Light suite is dominated by quartz and feldspar with some debris of heavy minerals, glauconite and calcite. Fraction of the heavy minerals contains titano ferrite, epidote, granite, zircon, amphibole, rutile, disthene, tourmaline, sillimanite. Layered subfacie is the most abundant among the chocolate clays and is widespread in the Lower Volga River region and the Ural River valley, but sporadic in Kalmykia and the Volga Delta. Sandy-clayey and aleurit-clayey subfacies have rare distribution. Sandy-clayey subfacie (Raigorog section) contains two patches of clays, that are interbedded by thick sandy layer with khvalynian mollusks shells. Aleurite-clayey subfacie is typical for the upper part of the Volgian estuary (Chapaevka, Torgun). During the Early Khvalynian transgression only clayey-aleuritic deposits, which represent the Early Khvalynian period, accumulated in flooded territory of the Volga river valley. On the most part of investigated territory facies are presented by clays (chocolate clays), which are predominantly located in the middle part of the Early Khvalynian sections and constrained by sands with mollusk shells on its bottom and top. These facies are very common in the bottom part of the sections in the Lower Volga region, while in the Middle Volga region clays are dominated in all segments of the Khvalynian strata. But these clays can't be classified into an individual stratigraphic layer as they don't contain index mollusks and have different stratigraphic location. This work is supported by the RFBR (Project 14-05-00227) and the RSCF (Project 16-17-10103).
NASA Astrophysics Data System (ADS)
Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea
2016-04-01
A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate them with respect to biotite. In higher resolution images this could be performed using circularity and size thresholds, however this could not be easily implemented in an automated procedure since the thresholds must be varied by the interpreter almost for each image. In 1 x 1 m images the resolution is generally too low to distinguish cataclasite and pseudotachylyte, so most of the time fault rocks were treated together. For this analysis we developed a fully automated workflow that, after applying noise correction, classification and skeletonization algorithms, returns labeled edge images of fault segments together with vector polylines associated to edge properties. Vector and edge properties represent a useful format to perform further quantitative analysis, for instance for classifying fault segments based on structural criteria, detect continuous fault traces, and detect the kind of termination of faults/fractures. This approach allows to collect statistically relevant datasets useful for further quantitative structural analysis.
NASA Astrophysics Data System (ADS)
Balcı, Uǧur; Sayıt, Kaan
2017-04-01
The Izmir-Ankara-Erzincan Suture Belt preserves oceanic and continental fragments originated from the closure of the northern branch of Neotethys. In the Bogazkale area (Central Anatolia), the pieces of the Neotethyan oceanic lithosphere exist in a chaotic manner, forming an ophiolitic mélange. Within the mélange, diabase dykes occur, which are found to cut various types of oceanic lithospheric rocks, including pillow basalts, gabbros and serpentinized ultramafics. We here present the preliminary geochemical results obtained from the diabase dykes and put some constraints on their petrogenesis. The investigated diabase dykes are chiefly composed of plagioclase and a mafic phase, which is clinopyroxene and/or hornblende. A detailed examination reveals two petrographic types on the basis of predominating mafic mineral phase, namely clinopyroxene-dominated Type 1, and hornblende-dominated Type 2. Ophitic to sub-ophitic textures, where lath-shaped plagioclase crystals are enclosed by clinopyroxene, can be observed in almost all Type 1 dykes. In Type 2 samples, altered mafic phases can be seen enclosed within plagioclase crystals, forming poikilitic texture. Polysynthetic twinning is common in plagioclase. Hornblende occasionally displays simple twinning. Both types appear to have been variably affected by low-grade hydrothermal alteration as reflected by the presence of secondary mineral phases, such as chlorite, epidote, prehnite, and actinolite. The whole-rock geochemistry appear to be consistent with the petrographical grouping, revealing distinct immobile trace element systematics for the two types. Both types have basaltic composition with sub-alkaline characteristics (Nb/Y=0.2-0.3 for Type 1; Nb/Y=0.02-0.08 for Type 2). The relatively low MgO contents of the dykes suggest that they do not represent primary magmas, but evolved through fractionation of mafic phases. In the N-MORB normalized diagrams, Type 2 diabases exhibit marked negative Nb anomalies, with HFSE abundances around or slightly more enriched than N-MORB. Type 1 diabases, on the other hand, do not possess any negative Nb anomalies and display enrichment in highly incompatible elements. In the chondrite-normalized diagrams, Type 1 diabases display slight LREE enrichment relative to HREE, whereas Type 2 diabases show flat to slightly LREE-depleted patterns. The N-MORB-like Nb contents of Type 2 dykes suggest that they have been derived from depleted asthenopheric mantle source. The marked enrichment of Th and La over Nb indicates that their source has been metasomatized by slab-derived fluids/melts. However, the enrichment in highly incompatible elements in Type 1 dykes implies their derivation from a relatively enriched source region and/or small degrees of partial melting. Trace element systematics suggest that Type 2 diabases may have formed in an oceanic back-arc basin environment, whereas Type 1 diabases have been generated in a mid-ocean ridge or alternatively in an oceanic back-arc basin.
Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.
2013-01-01
The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.
NASA Astrophysics Data System (ADS)
Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.
2009-12-01
The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may represent an old and if undisturbed, stable carbon pool (500 -5,440 ± 40 yrs B.P). Undisturbed and reclaimed soils derived from propylitic bedrocks also exhibit high TOSC (13.5 - 25.6 wt%), C: N (27), arylsulfatase (338). This is consistent with earlier studies in which propylitic bedrocks were identified as having a high acid-neutralizing capacity (ANC). Observations at natural reclamation sites suggest “bio-geo-mimicry” techniques that use ANC rock plus other soil amendments (biochar, nutrients, mycorrhizea, seeding) may aid reclamation measures and support carbon sequestration. The data demonstrate that volcanic-hosted watersheds may exhibit both high TOSC and low DOC. This is attributed to: host rock-weathering release of nutrients important for soil productivity, ANC, formation of secondary mineral carbonates; development of intermediate soil aggregates and adsorption-enhancing clays that stabilize C and N, environmental factors such as climate, moisture retention, and land use. Future work will explore the potential of DOC flux as a proxy for NTS potential.
Thermobarometric and fluid expulsion history of subduction zones
NASA Astrophysics Data System (ADS)
Ernst, W. G.
1990-06-01
Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite → prehnite-pumpellyite → glaucophane schist → eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogues at depth within narrow subduction zones while the hanging wall lithosphere is still hot. Protracted underflow drains heat from the nonsubducted plate and, even at profound depths, generates very low-T/high-P parageneses. Inclusion studies suggest that two-phase immiscible volatiles (liquid H2O, and gaseous high-hydrocarbons, CH4 and CO2) are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses, such as those of the internal Western Alps, have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Alpine-type postblueschist metamorphic paths involved fairly rapid, nearly adiabatic decompression; some terranes even underwent modest continued heating and fluid evolution during early stages of ascent. Uplift probably occurred as a consequence of the underthrusting of low-density island arc or microcontinental crust along the convergent plate junction, resulting in marked deceleration or cessation of lithospheric underflow, decoupling, and nearly isothermal rise of the recrystallized subduction complex. Other, less common blueschist terranes, such as the eastern Franciscan belt of western California, preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression approximately retraced the prograde path or, for early formed high-grade blocks, reflect somewhat higher pressures and lower temperatures. Subducted sections constituting portions of the Franciscan-type of metamorphic belt evidently moved slowly back up the inclined lithospheric plate junction during continued convergence and sustained refrigeration. Upward motion due to isostatic forces was produced by tectonic imbrication of fault suces, laminar return flow in melange zones, and lateral extension of the underplated accretionary prism. The ease with which volatiles are expelled from a subduction complex and migrate upward along the plate junction zone is roughly proportional to the sandstone/shale ratio: low-permeability mudstones tend to maintain fluid values approaching lithostatic, lose strength, and deform chaotically (forming melange belts), whereas permeable sandstone-rich sections retain structural/stratigraphic coherence and fail brittlely (forming coherent terranes). Because of substantial updip expulsion of volatiles during prograde recrystallization, only small amounts of H2O and CO2 are available to support hydration and carbonation of the accretionary complex during its return toward the surface; thus limited back reaction takes place and occurs at low Pfluid/Plithostatic ratios, unless an abundance of volatiles is introduced during uplift.
NASA Astrophysics Data System (ADS)
Ciortescu, Catalina; Iancu, Ovidiu Gabriel; Bulgariu, Dumitru; Popa, Ciprian
2014-05-01
The present work focuses on the analyses of a selection of heavy mineral assemblages sampled from the Neagra Şarului River's alluvia, in order to determine their provenance and distribution, using their geochemical and physical characteristics. The study focused on a mountain river of about 30 km long, located in the north-western part of the Eastern Carpathians, an important tributary of the Bistria River. The bedrocks in the river drainage basin are constituted mainly by igneous rocks from Călimani Volcanic Complex in the west, and secondarily by a small area of low to medium grade metamorphic rocks, part of Crystalline-Mesozoic Zone, in the east. In order to trace the source of each individual mineral species, we prepared our samples via field separation and subsequent laboratory sieving using 8 different size fractions. An electromagnetic separator (Frantz Isodynamic) was used to separate and classify each heavy minerals species, depending on their magnetic susceptibility. Thus prepared, more than 500 grains per samples (from the 0.5-1 mm size fraction) were mounted on thin sections and analyzed using a Cambridge Microscan M9 with EDS system. These analyses served for mineral identification and relative abundance determination. The classification of the minerals and the nature of their inclusions are derived from the major element compositions computed from SEM-EDX analysis. We also used a stereo microscope in order to determine complementary properties of the grains, such as: color, degree of roundness and degree of alteration. In order of abundance, the main heavy minerals are magnetite, hematite, pyroxene, pyrite, manganese oxides, garnet, apatite, titanium oxides (ilmenite, titanite and rutile/anatase), chlorite, olivine, epidote, biotite and rhodochrosite. A particularity of the studied area is the presence of an altered magnetite caused first by the hydrothermal alteration and strong weathering of the source rocks and second by the river's acid water. Manganese oxides are present only in grain fractions greater than 0.25 mm due to higher susceptibility to weathering and dissolution of the Mn aggregates in the river bed. Despite low distribution of the metamorphic units in the river's studied basin, the garnets almandine (Alm 13-88%) and spessartine (Sps 0.5-87%), specific to the medium grade metamorphic rocks, have a relative high frequency. In this study, heavy mineral assemblages generally reflect the composition of primary (augite, almandine) and accessory minerals present in source rocks. The last ones are both primary (apatite) and secondary, which are mainly derived from hydrothermal deposition (e. g. pyrite) and from supergene alterations (e. g. manganese, iron oxides/ hydroxides, and other altered product of magnetite). Therefore, the mineral analyses were not limited to only tracking the source of each mineral species, but they also revealed the characteristics of their parent rocks.
Taylor, B.E.; O'Neil, J.R.
1977-01-01
Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids. Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ?? C, and that the metasomatic fluid had an {Mathematical expression} ??? 0.035 in the massive skarns, and ??? 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had {Mathematical expression} ??? 0.15. The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was ??18O =+9.0, ??D= -30 to -45. Oxygen isotope temperatures of greater than 620 ?? C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 ??m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( {Mathematical expression} ??? 0.01) than present with grossularite-rich garnet ( {Mathematical expression}??? 0.035). Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480-550 ?? C), as indicated by 18O fractionations between quartz and amphibole. Meteoric water comprised 20 to 50% of the metasomatic fluid during Stage II. Calcite was formed along with pyrite, minor pyrrhotite, and chalcopyrite during Stage III, although the crystallization of pyrite and calcite had begun earlier, during Stages I and II, respectively. Carbon and sulfur isotope compositions of calcite and pyrite indicate a magmatic source for most of the C and S in the metasomatic fluids of Stage III. By the end of Stage III, meteoric water constituted as much as 100% of the metasomatic fluid. Minerals from grandiorite and skarn do not show large depletions in 18O because the oxygen isotope composition of the metasomatic fluid was buffered by the calcareous wall rocks and the grandiorite. Meteoric water in the vicinity of the Osgood Mountains during the Late Crectaceous (??18Ocale. ??? -14.0, ??D = - 107) was slightly enriched in 18O and D relative to present-day meteoric water (??18O = 15.9, ??D = - 117) ?? 1977 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Morelli, M.; Pandeli, E.; Principi, G.
2003-04-01
Introduction In this work we present new structural and petrographic data collected in the thermo-metamorphic aureole of Monte Capanne (western Elba Island) and its metamorphic evolution. In the western Elba Island the Monte Capanne monzogranitic body (ca. 7 Ma) and its thermo-metamorphic aureole crop out. At least two different tectonic units can be distinguished: the Punta Le Tombe Unit, weak re-crystallized, and the Punta Nera Unit. In the latter one the re-crystallization is strong and a pre-intrusion tectono-metamorphic framework is evident (Morelli et al., 2002). The latter is mainly constituted by thermo-metamorphosed meta-ophiolites and meta-sedimentary successions previously correlated by Barberi et al. (1969) with the un-metamorphic ones (Complex IV and V of Trevisan, 1950) cropping out in the central-eastern Elba. According to Perrin (1975) and Reutter &Spohn (1982) a pre-intrusion tectono-metamorphic framework was recognized into such rocks. As suggested by Daniel &Jolivet (1995) complex relationships between metamorphic evolution and magmatic events are also recognizable. Geological Data The Punta Nera Unit crops out all around the Monte Capanne magmatic body and the primary contact with the underlying granitoid is somewhere preserved. This unit, strongly re-crystallized and locally crosscut by aplitic and porphyritic dikes, is represented by (Coli &Pandeli, 1997; Morelli, 2000) tectonized meta-serpentinites, meta-gabbros with rodingitic dikes, rare meta-basalts and meta-ophicalcites, meta-cherts, marbles, cherty meta-limestones, phyllites and meta-limestones with rare meta-arenites intercalations. A "pre-magmatic" tectono-metamorphic framework of this unit is well evident only in its meta-sedimentary portion. The meta-sediments are deformed by syn-metamorphic isoclinal folds caractherized by N-S trending axes, west dipping axial planes and easternward vergence. A later folding and flattening event clearly post-dated the above said folds and associated main foliation. Both at the meso- and micro-scale few generations of syn-/inter-kinematic and static thermo-metamorphic blasteses (e.g. biotite, wollastonite, garnet, epidote etc.) are evident. Finally weak local folding and faulting affected the Monte Capanne thermo-metamorphic aureole during the uplift of the cooled pluton. Along the coast of Spartaia (north-eastern side of Monte Capanne) the meta-sedimentary upper portion of the Punta Nera Unit crops out and it is represented by alternating marbles and phyllites with rare meta-arenites. Here, the relationships between tectono-metamorphic and thermo-metamorphic structures, and intrusive magmatic bodies are particularly evident. D_1M_1: is recognizable at the meso-scale only as rare relics of intrafolial isoclinal rootless hinges and locally as a transposed foliation (S1). At the microscope a relic fine-spaced foliation, locally preserved by the following re-crystallization and parallel to the original lithological partitions, is evident. The original mineral associations is often replaced by HT/LP mimetic and syn-kinematic or static blasteses. D_2M_2 is the most evident structural fabric pre-dating the thermo-metamorphic events. It is represented by tight to isoclinal folds with N-S trending axes and easternward vergence. At the microscope the S2 foliation deformed the previously S1 and at the fold hinges a variously penetrative discrete crenulation cleavage (S2) is recognizable. M_3 is the first thermo-metamorphic event. It is associated to the intrusions of the Capo Bianco, San Martino and Portoferraio laccoliths (between ca. 8 and 7.2 Ma, Rocchi et alii, 2002) along pre-existing tectonic and lithological discontinuity. The laccoliths clearly crosscut the tectono-metamorphic fabric of the Punta Nera Unit. At this first magmatic event is associated a HT/LP blastesis of static garnet, wollastonite and epidote. Close to the contact between the magmatic intrusive bodies the country rocks are strongly re-crystallized and the original structure is oblitered. D_3M_4: is linked to the intrusion of the Monte Capanne pluton (6.9 Ma). Because of the flattening of the country rocks a penetrative foliation, sub-parallel to the surface of the plutonic body, developed during its intrusion and the uplift. Fluidal structures and discharge folding also developed. This structures affected both the country rocks and the laccoliths intruded in. At the meso-scale are also evident fractures, filled by calcite, cutting the garnet/wollastonite aggregate and later flattened and-or partially transposed. Late felsic products associated with the Monte Capanne pluton partly are deformed by the flattening and partly cut the flattening structures. The contact between the pluton and the country rocks itself is locally deformed by flattening structures. At the microscope the growth of HT/LP minerals, mimetic on the previous associations, or syn-kinematic or static, is evident. M_5: finally, during the last intrusive event (Orano porphyries, 6.8 Ma) a static thermo-metamorphic blastesis locally occurs post-dating the structures previously described. Only gentle folding, veins and fractures formation, and faulting processes followed the tectono-metamorphic and thermo-metamorphic deformation events. Conclusions The Punta Nera Unit represents another important element to understand the relationships between Alps and Apennines. In fact, the evidences of a pre-granitoid polyphased tectono-metamorphic framework in this metamorphic oceanic unit allow to correlate it to the Schistes Lustrés of the Alpine Corsica (e.g. Inzecca Massif, Duran Delga, 1984) and of the Northern Tyrrhenian area (e.g. the outcrops of oceanic metamorphic units in the Gorgona Island, Giglio Island and eastern Elba Island: Bortolotti et al., 2001; Pandeli et alii, 2001; Rossetti et al., 2001; Orti et al., 2002). References Barberi et al. (1969). F.126. Isola d'Elba. Note Ill. Carta Geol. It., 1:100.000. Ser. Geol. d'It. Bortolotti V. et al. (2001), Ofioliti, 26, 2001. Coli &Pandeli, (2001), Ofioliti, 26, 2001. Daniel &Jolivet, (1995), Bull. Soc. Geol. France, 166(4), 341--354. Durand-Delga M. (1984), Mem. Soc. Geol. It., 28, 285--329. Morelli M. et alii, (2002), Proceedings of Eurogranites 2002, 15th--21th Sept. 2002. Orti et alii, (2002), Ofioliti, 27, 2002. Pandeli et alii, (2001), Ofioliti, 26, 2001. Perrin M. (1975), Boll. Soc. Geol. It., 94, pp.1929--1955. Reutter K.J. and Spohn A., (1982), Ofioliti, 7, 467--478. Rocchi et alii, (2002), in Eurogranites 2002 Field Meeting Guide. 15th--21th Sept. 2002 Rossetti et al., (2001), Ofioliti, 26, 2001. Trevisan L., (1950), Mem. Ist. Geol. Univ. Padova, 16, 2--39.
NASA Astrophysics Data System (ADS)
Borghi, Alessandro; Castelli, Daniele; Corbetta, Elio; Antonella Dino, Giovanna
2015-04-01
Alpine marbles have been widely used in the past for celebrated, both indoor and outdoor, applications. Among them, the Candoglia Marble, a worldwide known and appreciated georesource, and its "bastard brother" from the nearby Ornavasso area were and are exploited in the Verbano-Cusio-Ossola quarry basin of Northwestern Italian Alps. They crop out as lenses (up to 30 m in thickness) interlayered within high-grade paragneisses of the Ivrea Zone, a section of deep continental crust that experienced amphibolite- to granulite-facies metamorphism of Palaeozoic age. The Candoglia and Ornavasso Marbles are pinkish to greyish, coarse-grained (> 3 mm), calcitic marbles with frequent, cm-thick, dark-greenish silicate layers containing diopside and tremolite; minor minerals include quartz, epidote, sulphides, Ba-feldspar, barite and, occasionally, phlogopite. First record of quarrying activities in the area arises to the Roman age (Ornavasso quarrying area). Both the Ornavasso and Candoglia Marbles were widely employed in local construction (San Nicola Church and Torre della Guardia at Ornavasso, Madonna di Campagna Church at Verbania, San Giovanni in Montorfano Church), but they became famous thanks to their application for the "Duomo di Milano" since the fourteenth century. At the beginning, the building stones employed for the construction of the Gothic style, Duomo di Milano were quarried in the Ornavasso area, but in a short time, the Candoglia quarry (property of the so-called "Veneranda Fabbrica del Duomo" that incessantly takes care of the Cathedral Church from 1387 A.D.) became the main quarry for the construction and maintenance of the Cathedral. The Candoglia quarry developed during the centuries, from open pit small quarries to a unique underground quarry, characterised by a very peculiar quarrying activities (subvertical bench characterized by strong lateral forces, which have to be contrasted and monitored). The Candoglia Marble was preferred to Carrara marbles also because of the more direct transport way from quarries to the construction yard: the transport were acted on big barges, from River Toce, across the Maggiore Lake and its emissary, the Ticino River, and then along the Naviglio Grande, up to the Milano Cathedral yard. The first saws driven by water wheels started to be employed in Candoglia to product slabs from stone blocks. Nowadays the working activities are both at Candoglia (block squaring activities and mason stone cutter laboratory) and in Milano (working plant). The peculiarity of the Candoglia Marble present exploitation is that all the quarried materials are used: as blocks (to produce the parts and sculptures for the Milano Cathedral maintenance), as armour stones (the irregular or not aesthetically suitable blocks) and as ornaments, furnishing, and jewels (the small pieces), so that everyone can potentially wear a "piece of history". The Candoglia Marble, for its petrological characteristics, its history, including the evolution of quarrying techniques and working activities, and its use in the construction and maintenance of the Milano Cathedral, represents an "unicum" that would deserve designation as Global Heritage Stone Resource.
P-T paths of ophiolite-related metamorphic rocks from the Dinaride ophiolite zone in Bosnia
NASA Astrophysics Data System (ADS)
Balen, Dražen; Massonne, Hans-Joachim; Koller, Friedrich; Theye, Thomas; Opitz, Joachim; Hrvatović, Hazim; Premužak, Lucija
2017-04-01
The Dinarides, an Alpine mountain chain in south-eastern Europe, is characterized by complex fold, thrust, and imbricate structures. Partially dismembered ophiolites, a regular part of the Inner Dinarides, are considered as separate ultramafic massifs. The large Krivaja-Konjuh ultramafic massif (KKUM) within the Dinaride Ophiolite Zone (DOZ), composed of tectonic spinel lherzolite, occurs as NE-dipping thrust sheet underlain by gradually decreasing, up to 1200 m thick, high- to medium-grade metamorphic rocks. The metamorphic rocks geochemically resemble MORB-like rocks with tholeiitic signature. Such metamorphic rocks, which originated from cumulate gabbro and/or troctolite, are mainly represented by granulite and amphibolite varieties (subordinate eclogite and epidote-amphibolite facies metamafic rocks are also present) with various proportions of amphibole, plagioclase, pyroxenes (diopside and hypersthene), garnet, corundum, sapphirine, spinel and quartz. These rocks vary in textures (granoblastic, porphyroblastic and nematoblastic) and grain size (coarse- to fine-grain varieties). Conventional thermobarometry of garnet- and clinopyroxene-bearing amphibolites directly beneath the contact to the overlying peridotite resulted in peak pressure (P) - temperature (T) conditions of 10-12 kbar (depth of ca. 35-40 km) and 745-830°C. Those amphibolites without clinopyroxene but with garnet experienced peak conditions of 7 kbar and 630°C. Amphibole + plagioclase amphibolite gave temperatures of 670-730 °C and lowermost-grade amphibolites yielded peak temperatures of 550°C. These estimates are thought to reflect the metamorphic conditions during the Late Jurassic obduction of the hot upper mantle part of the KKUM onto the ophiolite mélange. The hot obducted ultramafic fragments acted as a heat source for metamorphism that transformed cumulate gabbroic protolith into high- to medium-grade amphibolites and granulites. P-T pseudosections constructed for various metamorphic rock types in the MnNCFMASHTO system, contoured by mineral isopleths and modes, combined with chemical zonation of garnet (elucidated by X-ray mapping), succession of accessory Ti-minerals (ilmenite -> rutile -> titanite) and textural features (particularly occurrence of complex kelyphite textures around garnet and clinopyroxene) gave us important clues for P-T paths (re)constructions. The petrographic details and mineral chemistry point to composite clockwise P-T paths characterized by high-temperature high-pressure conditions (ca. 20 kbar, 700 °C for garnet- and amphibole-bearing metaperidotite), followed by significant pressure decrease to medium-pressure values accompanied by temperature increase to > 830 °C. Such a composite P-T path can be interpreted in the frame of Late Jurassic to Early Cretaceous regional geodynamic processes that involve collision at the edge of the Adriatic microplate, intra-oceanic NE-dipping subduction and underplating of mafic cumulate rocks under the hot upper mantle part of the KKUM and subsequent erosional events. Processes of the final emplacement of the KKUM metamorphic rocks must have been terminated in Early Cretaceous times as indicated by amphibolite fragments in the adjacent Pogari Formation overlying the ophiolite mélange. Support by the Croatian Science Foundation (IP-2014-09-9541) is acknowledged.
NASA Astrophysics Data System (ADS)
Giuntoli, Francesco; Menegon, Luca; Warren, Clare
2017-04-01
The thermo-mechanical properties of the middle and lower crust exert a fundamental control on the structure of orogenic belts, and on the amount and style of shortening during continental collision. By virtue of the deep erosional level, the internal parts of the Scandinavian Caledonides expose middle and lower crustal sections involved in subduction-exhumation history and nappe stacking. In this study we analysed the development of a mylonitic microstructure and the associated deformation mechanisms in amphibolites from the middle portion (1.5-2.2 km of depth) of the COSC-1 drill core, central Sweden. Mylonitic amphibolites are common in the drill core. They are composed of hornblende, plagioclase, chlorite, quartz, epidote, carbonate and ilmenite. The plagioclase displays two generations: (1) fractured millimetric porphyroclast cores (Plag1; Ab 99), which are wrapped by the foliation and are dark in the SEM-cathodoluminescence images, and (2) rims (Plag2; Ab 80-90), some tens of microns in size, are bright in the cathodoluminescence images, heal the fractures and overgrow the cores of Plag1. Plag2 grows syn-deformationally, as it is commonly found in strain shadows around Plag1 porphyroclasts. The hornblende preserves corroded cores (Amp1) with higher Mg number compared to the rims (Amp2). The Amp2 is lengthened as the foliation and shows intergrowths with Plag2 and chlorite in strain shadows. Amphibole crystals are commonly boudinaged parallel to the foliation, with chlorite filling the boudin necks. Preliminary pressure and temperature estimates, using Amp2 and Plag2 pairs, constrain their growth at 600°C and 1GPa. EBSD analysis indicates a homogeneous orientation of the porphyroclastic Plag1 without the development of low-angle boundaries, suggesting that Plag1 crystals are strain free. Furthermore, the fractures are sealed by the Plag2 with the same crystallographic orientation as the plagioclase core. The Plag2 grains have their [100] axes oriented subparallel to the stretching lineation, but they are also internally strain free. Thus, we interpret the CPO of Plag2 as a result of oriented grain growth during dissolution-precipitation creep. The enrichment of Ca in Plag2 could reflect either a difference in the PT conditions compared to the growth of Plag1 or a possible metasomatic event characterized by an influx of a Ca-rich fluid, as suggested by the presence of intergranular calcite crystals as well as discrete calcite veins. The X-ray chemical maps and the EBSD maps suggest that (micro)cracking and dissolution- precipitation creep were responsible for the development of the mylonitic amphibolites, and that crystal plasticity was not a dominant deformation mechanism, although deformation occurred at pressure and temperature conditions at which plagioclase is expected to deform by dislocation creep. In conclusion, in middle crustal levels the presence of water at the grain boundaries enhances chemical reaction and is responsible for deformation through dissolution and precipitation processes that create a strong preferred crystallographic orientation in the newly grown minerals.
NASA Astrophysics Data System (ADS)
Gilberto Costa, Antônio
2013-04-01
In Brazil, European natural stones, such as marble and limestone, were used as building material at historically important buildings and monuments, mainly in coastal cities, as well as in contemporary urban centers. However, in the country's central region, these Italian and Portuguese marbles and limestones were scarcely used. Instead, they were substituted for soapstone and several types of schist. As of 1755, the former was employed because of the ease with which it can be worked, essentially in the sculptural art and in the production of ornamental elements. Characterized by the presence of talc, steatite can feature other minerals such as serpentine, chlorite, carbonate, amphiboles, oxides like hematite and magnetite, and sulfites like pyrite, all in broadly variable amounts, which can result in modification of its technological properties (Volumetric Weight, Porosity, Water Absorption, Uniaxial Compression, Abrasion Resistance, Thermal Expansion etc.). In such rocks, talc content will be a decisive factor in their coloration. The higher its talc content is the clearer and softer the stone type will be, which ends up being known as talc stone. In such cases, the rock can display different hues of green, blue and gray. When compared to other rocks, texture patterns containing talc crystals, chlorite and carbonate contribute to low absorption and porosity for steatites. Schists were equally used at historical buildings in the Brazilian inland, especially in constructions in Minas Gerais towns, both in the production of structural elements such as bases, corners, pillars and foundations and in the creation of ornaments. Featuring different compositions, such rocks - which almost always occur interlayered with other ones such as quartzite - display coloration ranging from hues of gray to green to blue. They can be quartz-sericite-albite-chlorite schists featuring great or no amounts of carbonate, magnetite, epidote and tourmaline, sometimes with garnet, such as in some of Caeté's monuments. They can range from silverfish to light green, such as the quartz-sericite schist from Diamantina, some of which contain variable amounts of kyanite, chlorite, or even chloritoid, as well as the presence of whitish bands rich with carbonate and quartz crystals, such as in Caeté and Sabará. They can be serpentine schist and chlorite schist, from quarries around Caraça Ridge and employed in historical buildings in Brumal and Catas Altas do Mato Dentro, to name but a few. They can as well be kyanite-garnet-mica schists, with coloration ranging from green to bluish green, outcropping on Itacolomy Ridge, near Passagem de Mariana, or, simply, sericite schist from Santo Antônio Hill, in the same region. They can also be muscovite-chlorite-quartz schists with magnetite either dispersed or concentrated in thin bands, extracted around Ouro Preto and locally applied, or those used in buildings in São João d'El Rey and Tiradentes which were extracted from old quarries situated in the Candoga region, between Santa Cruz and Tiradentes, or from quarries in the Mangue region.
NASA Astrophysics Data System (ADS)
Rowan, L. C.; Mars, J. C.
2001-05-01
Initial analysis of ASTER data of selected areas in the Western United States shows that many important lithologic units can be mapped on the basis of spectral reflectance and spectral emittance. ASTER's most important attributes are 9 bands which record reflected-solar energy with 15 meter- and 30 meter-resolution; 5 bands of emitted energy at 90 meter- resolution; 15 meter-resolution stereoscopic images; and repetitive coverage. Particularly useful 'on-demand' ASTER data products include surface reflectance and surface emissivity images, and digital elevation models (DEM). In the solar-reflected wavelength region (0.4 to 2.5 micrometers), clays, carbonates, hydrous sulphate, and iron-oxide minerals exhibit diagnostic absorption features, whereas the emitted wavelength region (8 to 14 micrometers) provides critical information about anhydrous rock-forming minerals, such as quartz and feldspars, which lack diagnostic absorption features in the solar-reflected region. The Mountain Pass, Calf., Goldfield, Nev., and Virginia Range, Nev. study areas comprise a wide range of lithologic types for evaluating ASTER data. Calibration of the 3 bands recorded in the 0.52 to 0.86 micrometer wavelength region and the 6 bands in the 1.60 to 2.43 micrometer region was improved beyond the 'on-demand' surface reflectance standard product by using in situ spectral reflectance measurements of homogeneous field sites. Validation of this calibration was based on comparisons with spectra from calibrated AVIRIS data, and with additional field measurements. Lithologic mapping based on ASTER bands 1-9 was conducted by using endmember spectra from the image as reference spectra in matched-filter processing. The results were thresholded to display the pixels with the best match for each endmember. The results in these study areas show that Muscovite Group minerals (muscovite, illite, kaolinite) can be mapped over broad reasonably well exposed areas, and that the most intense absorption features occur in hydrothermally altered rocks. In the Mountain Pass area a few exposures containing Fe-muscovite were distinguished from the more extensive Al-mucovite-bearing rocks and soils. Advanced-argillic alteration minerals (alunite, dickite) were detected in the Goldfield mining district and in the Virginia Range. Carbonate Group minerals (calcite, dolomite) were mapped in extensive exposures in the thrust belt of the Mountain Pass area, and well exposed dolomite was distinguished from limestone in several areas. Although skarn deposits consist mainly of calcite and dolomite, their spectral shape in ASTER bands 1-9 is significantly different than typical limestone and dolomite spectra because of the presence of epidote, garnet and chrysotile in the skarn deposits. Mg-OH-bearing minerals (chlorite, biotite, hornblende) proved to be more difficult to map, although generally they were not confused with minerals of the Carbonate Group. Ferric-iron Group minerals were mapped by using a band2/band1 ratio image. Analysis of the surface emissivity standard image products relied on identification of endmember-image spectra by using the pixel-purity index procedure in the ENVI software package, and matched-filter processing. Silica-rich rocks and silica-poor rocks were recognized readily in decorrelation-stretch images, as well as matched-filter endmember images, and 2 intermediate categories were distinguished in most areas.
Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology
NASA Astrophysics Data System (ADS)
King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.
2007-12-01
Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two categories based upon inclusion reaction history (5). In "best case" scenarios, zircon will be quasi-co-genetic with garnet formation and all phases will reflect the same Hf pool available during metamorphism. In this case, these "garnet" fractions may retain age information, but will yield underestimated Lu/Hf ratios that severely degrade isochron precision. However, "worst case" scenarios for these mixed-phase analyses will occur when zircon is inherited from prior events, such that garnet analyses represent two, unequilibrated Hf pools. Here, Lu/Hf isotopic analyses do not yield accurate age information on garnet growth as individual isotopic analyses reflect several, unrelated petrologic events. To avoid systematic introduction of errors of this type due to improper digestion procedures, garnet dissolutions should occur via low-pressure, hot-plate style digestion in Teflon beakers. Here, chemical conditions are unlikely to incorporate significant zircon-derived Hf within final solutions, ensuring that Lu/Hf ratios primarily reflect garnet compositions. 1. King et al., 2004, Geochem. Geophys. Geosys. 10.1029/ 2004GC000746; 2.Corrie and Kohn, 2008, J. Metam. Geol. in press; 3.Skora et al., 2006, Contr. Min. Pet. 152, 703-720; 4.Carlson, 2002, Amer.Mineral. 87, 185-204; 3. 5.Scherer et al., 2000, Geochim. Cosmochim. Acta 64, 3413-3432.
Detailed thermal fingerprinting of obduction-related processes: insights from Northern New Caledonia
NASA Astrophysics Data System (ADS)
Vitale Brovarone, A.; Agard, P.; Monié, P.; Chauvet, A.
2012-04-01
Northern New Caledonia comprises large and continuous units of high-pressure metamorphic rocks formed in response to the Eocene subduction of a continental margin, classically viewed as a northern extension of the Norfolk ridge, below an oceanic island-arc system (well-exposed in southern New Caledonia) [1, 2]. Metamorphic conditions increase gradually towards the east, providing a continuous window on prograde metamorphism from low-grade, lawsonite-bearing assemblages to epidote-bearing eclogite [3, 4, 5]. Unfortunately, available P-T constraints are mostly restricted to metamafics, but are almost completely lacking in metasediments, which represent the dominant lithology in these mainly continental-derived units. This is due both to the lack of diagnostic mineral assemblages in the metasedimentary lower grade units and to the intense late retrogression affecting the higher-grade metasediments. We herein present an extensive thermometric dataset (encompassing the area from Hienghene to the south and from Koumac to Pouébo) obtained via Raman Spectroscopy of Carbonaceous Material (RSCM), which provides quantitative estimates of the peak metamorphic temperature of CM-bearing metasediments in the range ~200-650°C [6, 7]. Metamorphic conditions vary from about 200 °C in the lower-grade units and progressively increase toward the east to about 550 °C in the eclogite facies unit. Sharp metamorphic gaps are nevertheless found across some major tectonic boundaries (such as the Gendarmerie fault zone). Importantly, the main metamorphic units defined by means of our dataset do not always match with previous studies. This dataset also provides useful insights on the architecture of the high-pressure belt in Northern New Caledonia, where structures are poorly exposed due to thick vegetation. [1] Cluzel, D., Aitchison, J.C., Picard, C., 2001. Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic forearc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340 (1-2), 23-59. [2] Ulrich, M., Picard C., Guillot S., Chauvel C., Cluzel D., Meffre S. (2010) The New Caledonia Ophiolite : multiple Stage of melting and refertilisation process as indicators of ridge to subduction formation. Lithos. doi 10.1016/j.lithos.2009.12.011. [3] Brothers, R. N. & Blake, M. C., 1972. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia. Tectonophysics, 17, 359-391. [4] Fitzherbert, J. A., Clarke, G. L. & Powell, R., 2003. Lawsonite- omphacite bearing metabasites of the Pam Peninsula, NE New Caledonia: Evidence for disrupted blueschist to eclogite facies conditions. Journal of Petrology, 44, 1805-1831. [5] Spandler, C., & Hermann, J., 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89 (1-2). pp. 135-153. ISSN 1872-6143 [6] Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J.N., 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20, 859-871. [7] Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C. & Goffé, B., 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22: 354-360. doi: 10.1111/j.1365-3121.2010.00956.x
Axial Belt Provenance: modern river sands from the core of collision orogens
NASA Astrophysics Data System (ADS)
Resentini, A.; Vezzoli, G.; Paparella, P.; Padoan, M.; Andò, S.; Malusà, M.; Garzanti, E.
2009-04-01
Collision orogens have a complex structure, including diverse rock units assembled in various ways by geodynamic processes. Consequently, orogenic detritus embraces a varied range of signatures, and unravelling provenance of clastic wedges accumulated in adjacent foreland basins, foredeeps, or remnant-ocean basins is an arduous task. Dickinson and Suczek (1979) and Dickinson (1985) recognized the intrinsically composite nature of orogenic detritus, but did not attempt to establish clear conceptual and operational distinctions within their broad "Recycled Orogenic Provenance". In the Alpine and Himalayan belts, the bulk of the detritus is produced by focused erosion of the central backbone of the orogen, characterized by high topography and exhumation rates (Garzanti et al., 2004; Najman, 2006). Detritus derived from such axial nappe pile, including slivers of thinned continental-margin lithosphere metamorphosed at depth during early collisional stages, has diagnostic general features, which allows us to define an "Axial Belt Provenance" (Garzanti et al., 2007). In detail, "Axial Belt" detrital signatures are influenced by metamorphic grade of source rocks and relative abundance of continental versus oceanic protoliths, typifying distinct subprovenances. Metasedimentary cover nappes shed lithic to quartzolithic detritus, including metapelite, metapsammite, and metacarbonate grains of various ranks; only amphibolite-facies metasediments supply abundant heavy minerals (e.g., almandine garnet, staurolite, kyanite, sillimanite, diopsidic clinopyroxene). Continental-basement nappes shed hornblende-rich quartzofeldspathic detritus. Largely retrogressed blueschist to eclogite-facies metaophiolites supply albite, metabasite and foliated antigorite-serpentinite grains, along with abundant heavy minerals (epidote, zoisite, clinozoisite, lawsonite, actinolitic to barroisitic amphiboles, glaucophane, omphacitic clinopyroxene). Increasing metamorphic grade and deeper tectonostratigraphic level of source rocks are reflected by: a) increasing rank of metamorphic rock fragments (as indicated by progressive development of schistosity and growth of micas and other index minerals; MI index of Garzanti and Vezzoli, 2003); b) increasing feldspars; c) increasing heavy-mineral concentration (HMC index); d) increasing hornblende, changing progressively in color from blue/green to green/brown (HCI index); e) successive appearance of chloritoid, staurolite, kyanite, fibrolitic and prismatic sillimanite (MMI index; Garzanti and Andò, 2007). Dickinson W.R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G.G. (ed.), Reidel, NATO ASI Series 148: 333-361. Dickinson W.R. and C.A. Suczek. 1979. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 63: 2164-2172. Garzanti E. and S. Andò. 2007, Plate tectonics and heavy-mineral suites of modern sands. In: Mange M. and D. Wright (eds.), Elsevier, Developments in Sedimentology Series 58: 741-763. Garzanti E. and G. Vezzoli. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sedimentary Res. 73: 830-837. Garzanti E., C. Doglioni, G. Vezzoli and S. Andò. 2007. Orogenic Belts and Orogenic Sediment Provenances. J. Geology 115: 315-334. Garzanti E., G. Vezzoli, S. Andó, C. France-Lanord, S.K. Singh and G. Foster. 2004. Sediment composition and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett. 220: 157-174. Najman Y. 2006. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 74: 1-72.
Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.
1997-01-01
Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of the block and other analyzed blocks. Phengite carries essentially all of the LILE in otherwise mafic eclogite, amphibolite, and garnet blueschist blocks that are enriched in these elements compared with MORE. It evidently tracks a distinctive type of LILE metasomatism that attends both high-T and retrograde subduction zone metamorphism. An obvious source for the LILE is a fluid in equilibrium with metasedimentary rocks. High-grade semipelitic schists from subduction complexes and subductable sediment display LILE values that resemble those seen in the most LILE-rich blocks. Modeling of Ba and Ti suggests that 1-40 wt % of phengite added to MORB can produce their observed LILE enrichment. Thus, the release of LILE from such rocks to fluids or melts in very high-T and -P parts of subduction zones probably depends critically on the stability and solubility relations of phengite, which is thought to be stable at pressures as high as 95-110 kbar at T= 750-1050??C.
NASA Astrophysics Data System (ADS)
Yager, D. B.; Burchell, A.; Johnson, R. H.
2008-12-01
The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0.01 to 0.78 Wt. %), C:N (2.4 to 6.5), and arylsulfatase (0 to 41). However, reclaimed and undisturbed mined-lands soils derived from propylitized andesite have high C (13.5 - 25.6 Wt. %), C:N (27), arylsulfatase (338). In our previous studies, propylitic bedrock were also found to have a high acid neutralizing capacity (ANC) characterized by epidote-chlorite-calcite. Radiocarbon dates on charcoal collected from paleo-burn horizons (found in high C, N soils) indicate an old carbon pool (840-5,440 ]pm40 yrs B.P). High-flow dissolved organic carbon (DOC) concentrations are low (ave. 1.9 ppm) in both surface water and ground-water samples collected in subalpine catchments underlain by intermediate to mafic igneous bedrocks. The low DOC concentrations are consistent with these soils sequestering carbon. This is likely related to high specific surface area and high adsorption-enhancing Ca-Mg-Fe clays. Observations at naturally-reclaimed mine sites indicate the use of ANC rock plus other soil amendments (biochar, soil nutrients, bioactive teas, native vegetation seeding) can aid more traditional reclamation measures that use limestone and compost hauled from long distances by reducing both the cost and carbon footprint of reclamation projects.
NASA Astrophysics Data System (ADS)
Uǧurcan, Okşan Gökçen; Oyman, Tolga
2016-11-01
The Eğrigöz pluton is located in the northern portion of the Menderes Massif, which is the largest known metamorphic core complex that is also characterized by large-scale extension. Kalkan and Karaağıl skarn deposits are located on the southern border of the Eğrigöz Pluton, whereas Katrandağ mineralization developed along the roof pendant. Skarnization in these three areas is associated with the peraluminous, I-type, calc-alkaline, high-K calc-alkaline Eğrigöz Pluton. Geochemical characteristics of the pluton indicate that it was generated in a continental arc setting. Kalkan, Karaağıl, and Katrandağ skarns are hosted in marble bands in two-mica gneiss of the Kalkan Formation, a locally dolomitic and clay-bearing limestone of the Arıkaya Formation and locally dolomitised limestone of the Balıkbaşı Formation, respectively. Skarn development occurred sequentially in two stages, prograde and retrograde. In Kalkan skarn, prograde stage is characterized by clinopyroxene (Di56-73 Hd26-43 Joh1-2), garnet (Adr45-69 Grs30-52 Alm0-1.4 Sps0.7-2.3), amphibole, and magnetite, whereas retrograde stage is dominated by epidote, amphibole, chlorite, quartz, and calcite. In Karaağıl, both calcic and magnesian skarn association occurred as a result of local variations in dolomite content in Arıkaya Formation. The prograde assemblage of magnesian skarn is composed chiefly of spinel, amphibole and olivine. These mineral assemblages were, partially or fully, altered to serpentine, talc, and chlorite during retrograde alteration. Mesh textures of the serpentine indicates that the serpentine was altered from olivine. Olivine was completely destroyed during retrograde alteration without relict grains remaining. Calcic skarn paragenesis include garnet (Grs36-80Adr20-62Alm0-2.2Sps0.2-2.6), clinopyroxene (Di81-92 Hd7-19 Jo0-1), and plagioclase, that belongs to the earlier stage, and amphibole of the retrograde stage. High grossular end member of the garnet probably reflects host rock composition. The Katrandağ area differs from Kalkan and Karaağıl deposits in terms of initial metal content and gossan alteration due to the supergene alteration of galena dominated mineralization. In the Katrandağ, skarn that associated with iron and lead mineralization, both contain clinopyroxene and garnet. In the Kalkan skarn, fluid inclusion assemblages of prograde skarn association yield homogenization temperatures from 379 °C to over 600 °C, whereas those of retrograde minerals vary between 235 °C and 412 °C. Salinity values of the inclusions which obtained from prograde and retrograde assemblages are 9.2-22.4 and 6.4-20.1 wt%NaCl eq., respectively. Homogenization temperatures and salinity values of inclusions in clinopyroxene of Karaağıl calcic skarn are 420 to over 600 °C and 21-30 wt%NaCl eq., respectively.
Chromium-rich lawsonite in high-Cr eclogites from the Făgăras Massif (South Carpathians)
NASA Astrophysics Data System (ADS)
Negulescu, E.; Săbău, G.
2012-12-01
Lawsonite is a relatively rare phase in natural rocks, because of its thermal decomposition during exhumation, and Cr-bearing lawsonite being restricted to only a few occurrences worldwide. Here we report Cr-lawsonite in eclogites hosted in a medium-grade metamorphic complex. Several high-Cr eclogite lenses occur in the Topolog Complex (Făgăras Massif) of dominantly gneissic-amphibolitic composition. High Cr contents are the result of emerald-green mm-sized nodules containing Cr-rich minerals, embedded in a gray-green matrix of kyanite, clinopyroxene, garnet, amphibole, zoisite, and rutile. Garnets occur as porphyroblasts or in coronas around clinopyroxene aggregates probably replacing former magmatic pyroxene. Relict gabbroic textures (sometimes pegmatoid) and whole rock geochemistry indicate a gabbroic cumulate origin. The REE pattern, displaying a slight positive Eu anomaly and a tea spoon-shaped LREE depletion is also indicative of a cumulate origin, as also noted by Pe Piper & Piper (2002) for the Othrys gabbro (as well as others in the Vourinos and Pindos ophiolitic suites) with the same unusual REE-pattern. The emerald-green Cr-rich nodules are unevenly distributed in the rock, and always enclosed in Cr-rich clinopyroxenes (up to 5.46% Cr2O3) which may exhibit Cr-diffusion haloes towards normal Cr-free matrix pyroxene. The nodules consist of diablastic chromite, rutile and Cr-rich kyanite of up to 15.67 wt% Cr2O3, Cr-bearing epidote, to which Cr-rich staurolite (up to 10.45% Cr2O3; XMg up to 0.68) and Cr-rich lawsonite (up to 9.17% Cr2O3) may exceptionally associate. Cr concentrations in kyanite and lawsonite are, to our knowledge, the highest reported so far. Cr-lawsonite was identified in a single sample, as small single phase inclusions armoured in Cr-kyanite. Equilibrium PT-conditions of 2.6 GPa and 610o C were derived from the garnet-mantled clinopyroxene aggregates using multi-equilibria calculation with the PTGIBBS routine of Brandelik & Massonne (2004). These conditions fall still inside the stability field of lawsonite, below the thermal breakdown of this phase (Pawley, 1994), and consistent with its metastable persistence as armoured relics, during a near-isobaric late stage heating episode recorded in eclogites from the same structural setting (Săbău & Negulescu, 2006). Acknowledgements Financial support by grant PN-II-ID-PCE-2011-3-0030 Romanian Executive Unit for Financing Higher Education, Research, Development and Innovation. Prof. Hans-Joachim Masonne kindly provided access to the analytical facilities at Institut für Mineralogie und Kristallchemie in Stuttgart. References Brandelik, A., Massonne, H.-J. (2004). PTGIBBS - an Excel™ Visual Basic program for computing and visualizing thermodynamic functions and equilibria of rock-forming minerals. Computers and Geosciences 30, 909-923. Pawley, A. (1994) The pressure and temperature stability limits of lawsonite: Implication for H2O recycling in subduction zones. Contrib. Mineral. Petrol. 118, 99-108. Săbău, G., Negulescu, E. (2006) Metamorphic forming and evolution conditions of the eclogites in the Topolog Complex, Făgăras Mountains. Romanian Journal of Petrology 78, 39-46.
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2004-01-01
Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low-salinity meteoric water entered the marginal parts of the system. Calcite, anhydrite and fluorite precipitated in fractures on heating. Progressive sealing of the fractures resulted in the downward migration of the cap rock. In response to decreased pore pressure in the expanding vapour zone, walls of the fracture system within the vapour-dominated reservoir progressively collapsed. It left only residual permeability in the remaining fracture volume, with apertures supported only by asperities or propping breccia. In places where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock, the fractures have completely collapsed. Fractures within the present-day cap rock include strike- and oblique-slip faults, normal faults and tensile fractures, all controlled by a strike-slip stress regime. The reservoir is characterized by normal faults and tensile fractures controlled by a normal-fault stress regime. The fractures show no evidence that the orientation of the stress field has changed since fracture propagation began. Fluid migration in the lava and pyroclastic flows is controlled by fractures. Matrix permeability controls fluid flow in the sedimentary sections of the reservoir. Productive fractures are typically roughly perpendicular to the minimum compressive stress, ??3, and are prone to slip and dilation within the modern stress regime. ?? The Geological Society of London 2004.
NASA Astrophysics Data System (ADS)
Dietrich, Andreas; Gutierrez, Ronald; Nelson, Eric P.; Layer, Paul W.
2012-03-01
The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag-Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyroclastic rocks of the Chon Aike Formation. New 40Ar/39Ar constraints on the age of host rocks and mineralization define Late Jurassic ages of 151.3 ± 0.7 Ma to 144.7 ± 0.1 Ma for volcanic rocks of the Bajo Pobre Formation and of 147.6 ± 1.1 Ma for the Chon Aike Formation. Illite ages of the Huevos Verdes vein system of 140.8 ± 0.2 and 140.5 ± 0.3 Ma are 4 m.y. younger than the volcanic host rock unit. These age dates are among the youngest reported for Jurassic volcanism in the Deseado massif and correlate well with the regional context of magmatic and hydrothermal activity. The Huevos Verdes vein system has a strike length of 2,000 m, with several ore shoots along strike. The vein consists of a pre-ore stage and three main ore stages. Early barren quartz and chalcedony are followed by a mottled quartz stage of coarse saccharoidal quartz with irregular streaks and discontinuous bands of sulfide-rich material. The banded quartz-sulfide stage consists of sulfide-rich bands alternating with bands of quartz and bands of chlorite ± illite. Late-stage sulfide-rich veinlets are associated with kaolinite gangue. Ore minerals are argentite and electrum, together with pyrite, sphalerite, galena, chalcopyrite, minor bornite, covellite, and ruby silver. Wall rock alteration is characterized by narrow (< 3 m) halos of illite and illite/smectite next to veins, grading outward into propylitic alteration. Gangue minerals are dominantly massive quartz intergrown with minor to accessory adularia. Epidote, illite, illite/smectite, and, preferentially at deeper levels, Fe-chlorite gangue indicate near-neutral pH hydrothermal fluids at temperatures of >220°C. Kaolinite occurring with the late sulfide-rich veinlet stage indicates pH < 4 and a temperature of <200°C. The Huevos Verdes system has an overall strike of 325°, dipping on average 65° NE. The orientations of individual ore shoots are controlled by vein strike and intersecting north-northwest-striking faults. We propose a structural model for the time of mineralization of the San José district, consisting of a conjugate shear pair of sinistral north-northwest- and dextral west-northwest-striking faults that correspond to R and R' in the Riedel shear model and that are related to master faults (M) of north-northeast-strike. Veins of 315° strike can be interpreted as nearly pure extensional fractures (T). Variations in vein strike predict an induced sinistral shear component for strike directions of >315°, whereas strike directions of <315° are predicted with an induced dextral strike-slip movement. The components of the structural model appear to be present on a regional scale and are not restricted to the San José district.
Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes
NASA Astrophysics Data System (ADS)
Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling
2017-10-01
Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values, whereas high Pb* and 87Sr/86Sr eclogites have mantle-like δ26Mg values, suggesting that the two fluid components have diverse influences on the Mg isotopic systematics of these eclogites. The LILE-rich fluid component, possibly derived from mica-group minerals, contains a considerable amount of isotopically heavy Mg that has shifted the δ26Mg of the eclogites towards higher values. By contrast, the 87Sr/86Sr- and Pb-rich fluid component, most likely released from epidote-group minerals in metasediments, has little Mg so as not to modify the Mg isotopic composition of the eclogites. In addition, the influence of talc-derived fluid might be evident in a very few eclogites that have low Rb/Sr and Ba/Pb but slightly heavier Mg isotopic compositions. These findings represent an important step toward a broad understanding of the Mg isotope geochemistry in subduction zones, and contributing to understanding why island arc basalts have averagely heavier Mg isotopic compositions than the normal mantle.
Applications of UThPb isotope systematics to the problems of radioactive waste disposal
Stuckless, J.S.
1986-01-01
Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.
NASA Astrophysics Data System (ADS)
Li, Botao; Massonne, Hans-Joachim
2017-04-01
The orogenic belt of the Betic Cordillera in southern Spain resulted from the collision of the African plate with the southwestern edge of the Eurasian plate in Alpine times. This belt can be considered as a large nappe stack with the Nevado-Filabride Complex in the eastern Betic Cordillera representing the lowest nappe, in which high-pressure (HP > 10 kbar) rocks such as eclogites occur. We have studied two metapelites from the Ragua (former Veleta) unit, which is the lowest unit of the Nevado-Filabride Complex. These rocks were sampled at Cerro de los Machos (sample 23085) and c. 3 km east of this locality at the Laguna de la Caldera (sample 23098) and contain quartz, potassic white-mica, paragonite, chlorite, garnet, biotite, tourmaline, epidote, rutile, ilmenite, apatite, zircon and monazite and titanite (23085) or calcite and albite (23098). Garnet in both rocks is similarly zoned. An inclusion-rich core shows a prograde metamorphic zonation with high and low Mn contents in the center (e.g. for 23085: Alm64.5Grs27Py2.5Sps6) and at the rim (Alm84Grs8Py6Sps2), respectively, of the core domain. After corrosion of this domain a garnet mantle formed with an inner zone being again relatively rich in Mn and an outermost rim being poor in Mn. This mantle is significantly richer in Mg and poorer in Ca compared to the core domain. Potassic white-mica in the samples also shows a considerable compositional spread (Si = 3.05-3.20 in 23085 and 3.13-3.33 in 23098) with the highest Si contents in the core of potassic white-mica grains. To elucidate the metamorphic evolution of the rocks we calculated various P-T pseudosections for different H2O-CO2 contents and Fe3+/Fe2+ ratios with PERPLE_X. On the basis of the compositions of the garnet inner core and the highest Si content in potassic white mica contrasting peak pressures at c. 535˚ C resulted for the rocks (23085: 12.8 kbar, 23098: 18.3 kbar). A subsequent pressure release to about 8 (23085) or 5 kbar (23098) at slightly enhanced temperatures followed. A second P-T loop was derived from the garnet mantle compositions reaching peak temperatures close to 600˚ C, supported by Zr-in-rutile thermometry, at pressures of about 10 kbar. Nearly 100 electron microprobe analyses of small relics of corroded monazite yielded ages between 50 and 11 Ma. Y2O3 contents in monazite were between 0 and 1 wt.%. Monazite relics included in the garnet mantle gave an average age of 24.2 ± 3.2 Ma. We suppose that the peak pressures in the HP range of the early metamorphic loop were attained already in Eocene times, whereas the rocks experienced peak temperatures in the Late Oligocene. The exhumation of the rocks in the Eocene might have happened in an exhumation channel being located between the colliding continental plates. The material in the exhumation channel consisted mainly of previously subducted oceanic crust (eclogite) and sediments deposited at the margin of the plates. The Late Oligocene event is related to nappe stacking forming the Betic Cordillera.
NASA Astrophysics Data System (ADS)
Michalski, Krzysztof; Nejbert, Krzysztof; Domańska-Siuda, Justyna; Manby, Geoffrey
2014-05-01
A group of 42 independently oriented palaeomagnetic samples from 7 sites located in central part of the West Spitsbergen Thrust and Fault Belt has been investigated. The samples were collected from 5 distinct metadolerite sheets intruded into the Proterozoic - Lower Paleozoic metamorphic complex of Western Oscar II Land (Western Svalbard Caledonian Terrane - Harland, 1997 division). All analyzed metadolerite samples were metamorphosed under greenschist facies metamorphism. The metamorphic assemblage consist of hornblende, biotite, actinolite, chlorite, epidote, stilpnomelane, titanite, albite, and quartz. Calcite, associated with pyrrhotite, pyrite chalcopyrite, sphalerite, and covellite, that occurs as irregular intergrowths or thin veins, document high activity of H2O-CO2-rich fluids during metamorphism. Primary magmatic phases represented by clinopyroxene occur rarely, and only in thick metadolerite dykes. Accessory oxides change their mineralogical and chemical composition during metamorphism. In all examined samples primary Ti-magnetite and oxy-exsolved hematite break-down completely into titanite or have been dissolved. The ilmenite are also replaced by titanite, but in metadolerites at contact with host metapelites, slightly altered ilmenite grains with preserved hematite exsolution were documented. Basing on mineralogical observations it should be expected that metamorphic processes have almost completely reset the paleomagnetic data record from the time of dolerite crystallization. This stage can document only rare hematite oxy-exsolution preserved within ilmenite, and presumably small inclusion of magnetite still preserved within unaltered clinopyroxene. The paleomagnetic record of metamorphic stage is probably recorded by pyrrhotite, hematite, goethite, and late Ti-free magnetite that can grow during breakdown of pyrrhotite to pyrite (Ramdohr. 1980). The NRM (Natural Remanent Magnetisation) intensities of the palaeomagnetic samples exceed the minimum 10 mA/m. The first AF/thermal demagnetizations have revealed a stable NRM structure. ChRM (Characteristic Remanent Magnetisation) components can be extracted precisely from Zijderveld diagrams (precision parameter - ASD max. 10º). The following magnetic procedures have been applied to identify the ferromagnetic carriers of the samples: SIRM (saturation isothermal remanent magnetization) decay curves (procedure after Kadziałko-Hofmokl & Kruczyk, 1976) and the three-component IRM (isothermal remanent magnetization) procedure described by Lowrie (1990). Experimental work has revealed the dominance of pyrrhotite and magnetite phases as carriers with soft-medium coercivity (samples are saturated in 0.2-0.4 T) and distinct unblocking temperatures around 320-350 ºC and 575-600 ºC respectively. Presented study is the part of PALMAG project 2012-2015: "Integration of palaeomagnetic, isotopic and structural data to understand Svalbard Caledonian Terranes assemblage" (see also Michalski et al. 2012), funded by Polish National Science Centre. References: HARLAND,W.B. 1997. The Geology of Svalbard. Geological Society of London, Memoir 17, 521 pp. KĄDZIOŁKO-HOFMOKL,M. & KRUCZYK,J. 1976. Complete and partial self-reversal of natural remanent magnetization of basaltic rocks from Lower Silesia, Poland. Pure and Applied Geophysics 110, 2031-40. LOWRIE,W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159-62. MICHALSKI,K., LEWANDOWSKI,M., MANBY,G.M. 2012. New palaeomagnetic, petrographic and 40Ar/39Ar data to test palaeogeographic reconstructions of Caledonide Svalbard. Cambridge University Press. Geological Magazine 149 (4), 696-721. RAMDOHR,P. 1980. The ore minerals and their intergrowths. Pergamon Press, Oxford.
NASA Astrophysics Data System (ADS)
Cavallo, Alessandro
2015-04-01
The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose-feldspathic rocks (i.e. Serizzo and Beola), are potential sources of secondary raw materials for the ceramic industry. To assess the feasibility of a reuse of these waste materials, an extensive sampling was performed on the main quarry dumps. The waste rocks were characterized by polarized light optical microscopy (OM) on thin sections, scanning electron microscopy (SEM), quantitative X-ray powder diffraction (XRD-QPA with the Rietveld method), electron microprobe (WDS and EDS) and whole-rock geochemistry (ICP-AES, ICP-MS and LECO®). The performed analyzes show a marked mineralogical and chemical heterogeneity (e.g. highly variable content of phyllosilicates, FeOtot content between 0.39 and 6.99 wt.%), as well as important textural and granulometric differences. On the other hand, the composition of feldspars is quite homogeneous, with the plagioclase ranging from almost pure albite to oligoclase (An 25 - 30%). Some varieties of Serizzo and Beola (Serizzo Sempione, Serizzo Formazza and Beola Bianca) are preferable because of their relatively low FeOtot content, but granulometric and textural factors should never be overlooked, as they have an important feedback in the efficiency and feasibility of the industrial treatments (e.g. magnetic separation). Specifically, some Beola varieties with particularly fine grain size and mylonitic texture, are poorly-suited to industrial ore treatments. On the contrary, the Serizzo varieties, although with a generally higher FeOtot content, have a coarser and homogeneous (and therefore preferable) grain size. Waste materials with different composition could be mixed properly until reaching the desired "ideal" compositions for the following industrial treatments. In any case, an accurate characterization of the waste materials from each of quarry dump is of fundamental importance.
Characteristics and 40Ar/39Ar geochronology of the Erdenet Cu-Mo deposit, Mongolia
Kavalieris, Imants; Khashgerel, Bat-Erdene; Morgan, Leah; Undrakhtamir, Alexander; Borohul, Adiya
2017-01-01
The Early to Middle Triassic Erdenet porphyry Cu-Mo deposit, in northern Mongolia, developed in a continent-continent arc collision zone, within the Central Asian orogenic belt. The porphyry system is related to multiple intrusions of crystal-crowded biotite granodiorite porphyry, which formed a composite stock about 900 m in diameter, with multiple porphyritic microgranodiorite dikes. Wall rocks are Late Permian to Early Triassic, medium-grained granodiorite, with similar whole-rock geochemistry, mineralogy, and composition to the granodiorite porphyry. Whole-rock analysis of the granodiorite porphyry and wall rocks shows that these rocks cannot be discriminated, but both have depleted middle heavy rare earth elements and Y, typical of fertile porphyry magmatic suites.At the current pit level (1,250 m elev), early porphyry-style quartz veins (A and B type) are locally infilled by pyrite-chalcopyrite, with subordinate bornite, but most of the chalcopyrite occurs in D veins that constitute more than 50% of the Cu grade (~0.5 wt % Cu). The 0.3 wt % Cu shell resembles a molar tooth, enveloping the granodiorite porphyry, with deeper roots extending down the wal-rock contacts. Molybdenite occurs in monomineralic veins, and in finely laminated to massive quartz-molybdenite veins.The most important alteration is quartz-muscovite, which occurs as relatively coarse (100–500 μm) alteration selvages (1–5 cm) that envelop D veins. The D veins cut illite ± kaolinite-smectite (or intermediate argillic) alteration. Intermediate argillic alteration, together with abundant pink anhydrite (commonly hydrated to gypsum), extends from at least 1,300- to 900-m elevation in the deepest drill holes, and has overprinted early potassic alteration, or relatively unaltered red granodiorite. Meter-wide zones of kaolinite cut the anhydrite-gypsum at all levels. There is an abrupt transition outward from the intermediate argillic alteration to chlorite-epidote (propylitic) alteration, at 50 to 200 m from the granodiorite porphyry contact, although D veins (and chalcopyrite) extend outward to the propylitic zone.The Erdenet porphyry system, was overprinted by advanced argillic alteration, which outcrops 2 km northwest of the pit, and forms a lithocap that extends over 10 × 2.5 km. It is characterized by residual quartz, andalusite, Na-Ca and K-alunite, diaspore, pyrophyllite, zunyite, topaz, dickite, and kaolinite. The upper part of the porphyry Cu-Mo deposit (removed by mining), comprised a bornite-chalcocite enriched zone up to 300 m thick with an average grade of 0.7 wt % Cu and up to 5 wt % Cu locally. Based on hypogene bornite-chalcocite mineral textures and high-sulfidation state mineralogy, the enriched zone is inferred to be of hypogene origin, but modified by supergene processes. Consequently, it may be related to formation of the lithocap.Previous Re-Os dates of 240.4 and 240.7 ± 0.8 Ma for molybdenite in quartz veins are comparable to new 40Ar/39Ar dates of 239.7 ± 1.6 and 240 ± 2 Ma for muscovite that envelops D veins. One 40Ar/39Ar date on K-alunite from the lithocap of 223.5 ± 1.9 Ma suggests that it may be about 16 m.y. younger than Erdenet, but this result needs to be verified by further dating.
Rockwell, Barnaby W.
2004-01-01
Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.
Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia
NASA Astrophysics Data System (ADS)
Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.
2006-05-01
The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement of orthogneiss was concurrent with S2 deformation of the amphibolite gneiss. Tectonic strains calculated by the Rf-φ method using mafic enclaves in the orthogneiss vary from 4 to 10 within an area <1 km2, suggesting strong strain gradients during D2. S3 foliations strike WNW-ESE to E-W and dip shallowly to the south, suggesting NNE-SSW to N-S shortening. L3 lineations plunge shallowly to the SW and SE, and are associated low-angle shear bands with greenschist facies mineral assemblages which overprint higher temperature assemblages. Deformation phase D4 is characterized by low temperature, brittle deformation as shown by discrete fault surfaces with abundant chlorite. The following tectonic history can be determined based on structural observations. Amphibolite and immature sedimentary material formed from supracrustal (e.g. basalt flows?) and intrusive protoliths. These units were then intruded by the gabbro- diorite, which was deformed by right and left lateral shear zones sometime after crystallization. Both the amphibolite and gabbro-diorite were intruded by the orthogneiss, which was emplaced as sills during right and left lateral shearing and F2 folding. This geologic history is similar to that preserved in other parts of the Coast Plutonic Complex where dextral transpression and sinistral transtension are documented. The localization of low angle normal shear zones with greenschist facies mineral assemblages suggests extension occurred during cooling of the arc.
Koski, Randolph A.
1979-01-01
The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an
Origin Of Pyroxenites From San Jorge And Santa Isabel (Solomon Islands).
NASA Astrophysics Data System (ADS)
Berly, T.
2001-12-01
The Solomon Islands are a NW to SE-trending double chain of islands, the older basement of which was formed by SW-directed subduction of the Pacific Plate beneath the Indo-Australian Plate, between the Eocene and Early Miocene. At 10 Ma, the Ontong Java Plateau (OJP) collided with the Solomon arc, and in response to this collision, a polarity reversal of subduction occurred; NE-directed subduction beneath the Solomon arc began. Consequent to this collision, thin fault slices of peridotites, pyroxenites, gabbros, and basalts, some of which are demonstrably obducted OJP, are now exposed in SE Santa Isabel and neighbouring San Jorge. The pyroxenites are associated with harzburgites, dunites and sometimes incorporated into serpentine massifs (NW San Jorge). These fresh, coarse-grained rocks contain variable proportions of orthopyroxene (70
NASA Astrophysics Data System (ADS)
Dolejš, David; Wagner, Thomas
2008-01-01
We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.
NASA Astrophysics Data System (ADS)
Karkalis, Christos; Magganas, Andreas; Koutsovitis, Petros
2014-05-01
The island of Skyros is located in the Sporades-Aegean region. It includes an ophiolitic mélange sequence consisting of serpentinites, gabbroic and doleritic rocks, and also lavas which mostly appear in massive form, but in rare cases as deformed pillows. The ophiolitic mélange sequence also includes rodingites, ophicalcites, as well as radiolarites. This formation belongs to the Eohellenic tectonic nappe, which encompasses marbles, sandstones and schists and was emplaced onto the Pelagonian Zone during Early Cretaceous [1, 2]. Serpentinites were most likely formed after serpentinization of harzburgitic protoliths and consist of serpentine, bastite, spinel and magnetite. The chemistry of spinels (TiO2=0.14-0.25 wt.%, Al2O3=35.1-35.21 wt.%, Cr#=37.38-38.87), shows that the harzburgitic protoliths plausibly resemble back-arc basin peridotites [3]. Gabbros and dolerites present mostly subophitic textures, between the hornblende/clinopyroxene and plagioclase grains. Based upon their petrography and on their mineral chemistry hornblendes have been distinguished into magmatic and metamorphic hornblendes, with the first occurring mostly in gabbroic rocks. Magmatic hornblendes exhibit relatively high TiO2 (1.42-1.62 wt.%), Al2O3 (5.11-5.86 wt.%) and Na2O (1.01-1.09 wt.%) contents, with their presence implying that the magma was at least to some degree hydrous. Lavas are tholeiitic basalts with relatively high FeOt≡12 wt.% and low K2O and Th contents, consisting mostly albite, altered clinopyroxene and devitrified glass. Tectonomagmatic discrimination diagrams [4, 5] illustrate that the studied gabbros and lavas of Skyros are most likely associated with SSZ processes. Gabbroic rocks, subvolcanic dolerites and lavas have been subjected to greenschist/subgreenschist metamorphic processes, as confirmed by the presence of secondary amphiboles (metamorphic hornblende, actinolite/tremolite), epidote, pumpellyite and chlorite in all of the studied samples. On the other hand, the occurrence of rodingites and ophicalcites clearly point to interaction of the gabbroic rocks and serpentinites with hydrothermal fluids, which most probably took place during the stage of exhumation and tectonic emplacement. Ophicalcites contain serpentine, calcite, magnetite, as well as rare pyroxene and spinel. Rodingites on their behalf include hydroandradite (Alm0.00Adr61.33-67.43Grs28.25-35.18Prp0.10-2.49Sps0.00-0.33Uv0.41-2.75), vesuvianite (MgO=2.78-3.33 wt.%; TiO2=0.02-0.59 wt.%) diopside neoblasts (En48.53-49.89Wo47.56-48.10Fs2.32-3.33; Mg#=93.96-96.28), chlorite and also accessory prehnite. Some small-sized Cr-bearing hydrogarnet crystals (Cr2O3=10.34 wt.%) were most likely formed at the expense of spinel. The types of hydrogarnet and vesuvianite crystals are highly indicative for the involvement of subduction-related fluids during the formation of the rodingites [6]. References: [1] Jacobshagen & Wallbrecher 1984: Geol. Soc., London, Sp. Pub. 17, 591-602, [2] Pe-Piper 1991: Ofioliti, 16, 111 - 120, [3] Kamenetsky Sobolev, Joron & Semet 2001: J Petrol 42, 655-671, [4] Agrawal, Guevara & Verma 2008: Intern. Geol. Rev. 50, 1057-1079, [5] Pearce & Cann 1973: Earth Plan. Sci. Lett. 19, 290-300, [6] Koutsovitis, Magganas, Pomonis & Ntaflos 2013. Lithos 172-173, 139-157.
NASA Astrophysics Data System (ADS)
Majka, Jarosław; Mazur, Stanisław; Kośmińska, Karolina; Dudek, Krzysztof
2015-04-01
Blueschists are tracers of sutures, thus marking fossil subduction zones at convergent plate boundaries and providing important constraints on plate tectonic reconstructions. Their occurrences are scarce in the Variscan belt owing to a strong collisional overprint but just because of that each locality deserves particular attention. The Variscan blueschists must have formed during the early stage of the Variscan Orogeny and may represent a vestige of missing marginal basins fringing the Rheic Ocean at the onset of subduction. The studied rocks from the Kopina Mt. consist mainly of garnet, glaucophane, clinozoisite-epidote, chlorite-I, titanite, hematite and quartz. The original high-pressure assemblage is overprinted by later, lower pressure paragenesis, which comprises mostly Ca-amphiboles, chlorite-II, albite and K-feldspar. The latter occurs in polymineral inclusions in other phases together with albite and chlorite that are interpreted as phengite breakdown products. Garnet shows chemical compositional variation from Alm54Prp3Grs30Sps13 in the cores to Alm66Prp4Grs29Sps1 in the rims. The almandine zoning is bowl-shaped, whereas spessartine profiles show bell-shaped trends. The grossular and pyrope contents are generally constant throughout the grain. Rather gradual changes in the chemical zoning suggest a progressive, one-step garnet growth pattern. Glaucophane, although commonly well preserved, in some cases disintegrates to the albite-chlorite assemblage. The pressure-temperature (P-T) conditions were estimated using the phase equilibrium modelling in the NCKFMMnASHTO system using the PerpleX software. The compositional isopleths cross cut in the stability field of Grt+Gln+Ep+Chl+Pheng+Ttn+Hem+Q. P-T estimates indicate that the peak conditions occur at c. 14-17 kbar and 470-500°C, which corresponds to quite a low geothermal gradient in the range of 8-10°C/km. The P-T conditions estimated lie on a low temperature geotherm that is typical for a relatively cool subduction of the oceanic crust. Therefore, the origin of the studied rocks dates back to the time preceding accretion of the eastern Variscides and defines one of the key tectonic boundaries in the Bohemian Massif. A mechanism for syn-collisional emplacement and exhumation of the Kopina blueschists can be tentatively explained through activation of the double subduction system operating towards the east. First subduction commenced already in the Early Devonian and operated beneath an island arc located in proximity to the Saxothuringian margin, within the Rheic Ocean. After the mid-Devonian exhumation of the Central Sudetes allochthon, another subduction system was initiated along the eastern margin of the Rheic Ocean, beneath the Brunia microplate. Subducted oceanic crust of the Rheic Ocean (including the Kopina Mt. blueschists) reached peak metamorphic conditions in the Late Devonian, the event pronounced by a continental arc volcanism along the Brunian margin. Exhumation of the subducted oceanic crust was accommodated by the slab roll-back, which is inferred from the bimodal age and spatial distribution of the volcanic activity within the Brunian active margin. Shortly after the Kopina Mt. blueschists exhumation this eastern subduction system became probably inactive. In contrast, the western one involving the Saxothuringian margin was still operating leading to the subsequent collision with Brunia in the Early Carboniferous that produced a widespread high temperature overprint mostly wiping up the earlier metamorphic history.
NASA Astrophysics Data System (ADS)
Giuntoli, Francesco; Lanari, Pierre; Engi, Martin
2015-04-01
The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at the expense of earlier Alpine rims. In the same samples that show porphyroclastic garnet, atoll garnet occurs, filled with quartz, and the same Alpine overgrowth zones are observed in both types of garnet. Similar features of garnet zoning are present in various lithotypes, allowing the evolution of this continental domain during subduction to be traced. Modeling the different garnet growth zones is challenging, each growth step demanding an estimate the effective bulk composition. According to the XRF analyses of the bulk sample, the core is found to have formed at 900°C, 0.9 GPa. Based on effective bulk compositions, the successive Alpine rims are found to reflect an increase from 600°C, 1.55-1.60 GPa for rim 1 to 630-640°C, 1.9-2.0 GPa for rim 2. Allanite crystals contain inclusions of Alpine garnet; in situ geochronology (U-Th-Pb by LA-ICP-MS) on allanite yields a (minimum) age of ~69 Ma for the main growth of garnet. In summary, the textures and mineral compositions clearly reflect reactive interaction of major amounts of hydrous fluids with dry protoliths. The source of these fluids responsible for converting granulites back to micaschists at eclogite facies conditions within the Sesia subduction channel is being investigated.
NASA Astrophysics Data System (ADS)
Oguz, Simge; Aydin, Faruk; Baser, Rasim
2015-04-01
In this study, we have reported for lithological, petrographical and geochemical features of late Cretaceous volcanic rocks from the Çanakçı and the Karabörk areas in the south-eastern part of Görele (Giresun, NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent volcano-stratigraphic studies, the late Cretaceous time in the study area is characterized by an intensive volcanic activity that occurred in two different periods. The first period of the late Cretaceous volcanism (Cenomanian-Santonian; 100-85 My), conformably overlain by Upper Jurassic-Lower Cretaceous massive carbonates (Berdiga Formation), is represented by bimodal units consisting of mainly mafic rock series (basaltic-andesitic lavas and hyaloclastites, dikes and sills) in the lower part (Çatak Formation), and felsic rock series (dacitic lavas and hyaloclastites, crystal- and pyrite-bearing tuffs) in the upper part (Kızılkaya Formation). The second period of the late Cretaceous volcanism (Santonian-Late Campanian; 85-75 Ma) is also represented by bimodal character and again begins with mafic rock suites (basaltic-basaltic andesitic lavas and hyaloclastites) in the lower part (Çağlayan Formation), and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas, ignimbrites and hyaloclastites) through the upper part (Tirebolu Formation). These bimodal units are intercalated with volcanic conglomerates-sandstones, claystones, marl and red pelagic limestones throughout the volcanic sequence, and the felsic rock series have a special important due to hosting of volcanogenic massive sulfide deposits in the region. All volcano-sedimentary units are covered by Tonya Formation (Late Campanian-Paleocene) containing calciturbidites, biomicrites and clayey limestones. The mafic rocks in the two volcanic periods generally include basalt, basaltic andesite and minor andesite, whereas felsic volcanics of the first period mainly consists of dacite but those of the second period have biotite-bearing rhyolite. The basalts and basaltic andesites exhibit subaphyric to porphyritic texture with phenocrysts of calcic plagioclase and augite in a fine-grained to microcrystalline groundmass, consisting of plag+cpx+mag. Andesite samples display a porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx±amph+mag. Zircon and magnetite are common accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the dacitic and rhyolitic rocks commonly show a porphyritic texture with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals include zircon, apatite and magnetite. Typical alteration minerals include late-formed sericite, albite and clay minerals. Late Cretaceous mafic and felsic volcanic rocks have a largely sub-alkaline character with typical arc geochemical signatures. N-MORB-normalised multi-element patterns show that all rock samples are enriched in LILEs (e.g. Rb, Ba, Th) but depleted in Nb and Ti. The chondrite-normalized REE patterns are concave shapes with low to medium enrichment, suggesting a common mantle source for the studied bimodal rock series. All geochemical data reflecting typical characteristics of subduction-related magmas are commonly attributed to a depleted mantle source, which has been previously enriched by fluids or sediments. Acknowledgments This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, grant 112Y365)
Stable Isotopes of Tilted Ignimbrite Calderas in Nevada
NASA Astrophysics Data System (ADS)
John, D. A.; Watts, K. E.; Hofstra, A. H.; Colgan, J. P.; Henry, C.; Bindeman, I. N.
2013-12-01
Mid-Tertiary calderas are exceptionally well exposed in tilted fault blocks of the northern Great Basin, facilitating detailed evolutionary models of their magmatic-hydrothermal systems. The 29.4 Ma Job Canyon caldera, the oldest of 3 overlapping calderas in the Stillwater Range, west-central Nevada, is tilted ~90° exposing a 10-km-thick section of the crust. Large parts of the >7 km-diameter caldera system, including >2 km thickness of intracaldera rhyolitic tuff, lower parts of an ~2 km thick sequence of post-caldera intermediate lavas, and the upper 500 m of the resurgent granodioritic IXL pluton, were pervasively altered to propylitic, argillic, and sericitic assemblages. Sparse quartz×calcite veins cut the tuff. δ18O values of altered whole rock samples range from +4.8 to -9.1‰ but are mostly -6 to -9‰ at paleodepths >2 km. Calculated magmatic δ18O and δD values range from +6.4 to 8.2‰ and ~-70‰, respectively. Calculated fluid compositions using temperatures from fluid inclusions and mineral assemblages are δ18OH2O=-9.5 to -15‰ and δDH2O=-125 to -135‰ (chlorite) and -70 to -80‰ (epidote). Chlorite-whole rock data suggest fluids that were derived from moderately 18O-exchanged meteoric water. Fault blocks in north-central Nevada expose a >5 km upper crustal cross section through the 12-17 x 20 km, 34 Ma Caetano caldera, including >3 km thickness intracaldera rhyolitic Caetano Tuff. Asymmetric caldera subsidence left a depression >1 km deep partly filled with a lake. Magma resurgence and emplacement of shallow granite porphyry plutons drove a hydrothermal system that altered >120 km2 of the caldera to depths >1.5 km. Alteration was focused in an early granite porphyry intrusion and surrounding upper Caetano Tuff and lacustrine sediments. Early pervasive quartz-kaolinite-pyrite alteration grades outward and downward into more restricted quartz-illite/smectite-pyrite alteration. Hematite, quartz, and barite veins and hydrothermal breccias cut early alteration. Whole rock δ18O values of kaolinite-altered tuff and intrusions are +1.7 to +4.7‰. Magmatic δ18O values of Caetano rocks calculated from zircon and major phenocrysts range narrowly from +10.0 to +10.5‰. Calculated fluid compositions from kaolinite are δ18OH2O=-3 to -7‰ and δDH2O=-148 to -160‰, and from quartz and barite veins are δ18OH2O=-4 to -11‰, indicating that hydrothermal fluids also were dominantly 18O-exchanged meteoric water. Compared to the Job Canyon caldera, δDH2O values for Caetano hydrothermal fluids are ~25‰ lower, suggesting that Caetano formed at an elevation about 1 km higher than Job Canyon along the crest of the Nevadaplano. Both calderas hosted vigorous hydrothermal systems driven by heat from magma resurgence that pervasively altered and exchanged 18O and D with 10s to 100s km3 of rock. However, significant assimilation of low-18O hydrothermally altered rocks is not apparent by the exclusively normal-δ18O values of Job Canyon, Caetano, and adjacent younger magmas. Neither caldera is strongly mineralized, probably in part due to low sulfur contents of the hydrothermal fluids. More acidic fluids at Caetano suggest a larger magmatic gas (HCl) input likely resulting from degassing of shallow resurgent magma into the caldera lake.
NASA Astrophysics Data System (ADS)
Wendt, Anke S.; D'Arco, Philippe; Goffé, Bruno; Oberhänsli, Roland
1993-02-01
Radiating tensional cracks around α-quartz inclusions in almandine have been observed in metapelite samples from the southeastern Saih Hatat tectonic window, northeastern Oman Mountains. These almandines show an inclusion-rich (glaucophane + epidote) and strongly deformed core with inclusions of different mineral phases. The rim of the same almandines is inclusion-poor and shows only quartz, apatite, zircon, rutile and Ba sbnd Al phosphates as inclusions. Quartz and apatite inclusions in the rim are single crystals often surrounded by radial cracks. These radial cracks developed during uplift by the dilation of α-quartz (4-5 vol%) without a phase transformation. Subsequently, these cracks were filled with kaolinite, phengite (Si content 3.4 per formula unit, p.f.u.), chlorite and Fe oxides. We calculated the appearance of radial cracks without phase transformation using the mathematical procedure of Van der Molen and Van Roermund [1]. This calculation involves terms for thermal expansion, isothermal compressibility and shear modulus for the example of α-quartz and almandine for the same P and T interval during a retrograde path. Published geothermobarometric estimates give pressures of between 1.0 and 2.0 GPa and temperatures of between 450 and 600°C for the peak conditions for these rocks of the Saih Hatat tectonic window. On the basis of these P-T data we calculated different retrograde P-T paths in the α-quartz domain. Initiation of garnet fracturing is dependent on the P-T starting conditions and the component of isothermal compression of the retrograde path. The calculations yield a set of smooth monotonic curves whose exact position on the P-T plane between 0.1 and 0.6 GPa and 40 and 500°C depends on the initial P-T conditions and the component of isothermal compressibility of the retrograde P-T paths. This model can be used in general terms to estimate pressure and temperature for the following cases: (1) If independent evidence (such as petrological data) allow the determination of the final pressure at which radial cracks appeared, the initial inclusion pressure can be recalculated. (2) If the initial inclusion pressure is known (e.g. from petrological data), the conditions of radial cracking can be calculated, and the pair initial pressure-final pressure leads to an estimate of the shape of the retrograde P-T path as a function of its component of isothermal decompression. In the example from the northeastern Saih Hatat tectonic window the late syntectonic growth of albite + phengite + kaolinite suggests that the final pressure for fracturing ranged between 0.4 GPa and 0.5 GPa at temperatures of 300°C. These values correspond to high initial pressures of at least 2.0 GPa at a temperature of 550°C. The following geodynamic model is suggested: A regionally extended metamorphism led to the growth of inclusion-rich garnets in the rocks from the northeastern Saih Hatat tectonic window at depths of about 30 km ( < 0.1 GPa, about 450°C). Continuing prograde metamorphism at a depth of more than 60 km with P < 2.0 GPa and T ≈ 550°C affected a metapelite unit that is only exposed immediately south of As Sifah village. In this area, clear rims of almandine grew around the older garnets and entrapped mainly quartz and apatite. During uplift along a retrograde P-T path with a large component of isothermal decompression radial cracks around α-quartz inclusions developed in the rims of almandines at a depth of about 12 km (0.4-0.5 GPa, ⩾ 300°C).
Reconnaissance geology of the Jabal Bitran quadrangle, Kingdom of Saudi Arabia
Kahr, Viktor P.; Overstreet, W.C.; Whitlow, J.W.; Ankary, A.O.
1972-01-01
The Jabal Bitten quadrangle covers an area of 2833 sq km in the eastern part of the Precambrian Shield in Saudi Arabia. The rocks in the quadrangle are divided geographically alone arcuate north-trending lines into an eastern area of granite intruded by a swarm of dikes of rhyolite and andesite, and a western area of dominantly pelitic chlorite-sericite schist, separated by the narrow central complex of the Idsas Range. This complex is composed of pyroclastic rocks, lava, conglomerate, marble, and plutonic mafic rocks that have been intricately modified by episodes of metamorphism, igneous intrusion, and faulting. The Idsas Range contains ancient gold and copper mines, and deposits of magnetite, copper, asbestos, and chromite. The rocks in the Jabal Bitten quadrangle are here interpreted to consist of three major sedimentary and volcanic groups, the lowermost of which was deposited unconformably on hornblende-biotite granite gneiss, and all of which are intruded by granite dikes and plutons. From oldest to youngest the layered rocks are called Halaban Group, Bi'r Khountina Group, and Murdama Group, A biotite-hornblende granite is older than uppermost Bi'r Khountina, and peralkalic granite is younger than Murdama. The layered rocks of these groups are generally metamorphosed to the greenschist facies. The metamorphic grade rises abruptly at the Idsas Range to the albite-epidote-amphibolite facies and lower subfacies of the amphibolite facies in parts of the Halaban Group; some skarn east of the range may be in the upper part of the amphibolite facies. Characteristically, the Halaban Group has the highest grade and the greatest range in metamorphic grade, and the Murdama Group has the lowest but most uniformly developed metamorphic grade. The metamorphism of the rocks was caused by three successive pulses of regional dynamothermal metamorphism plus contact metamorphism around the younger bodies of plutonic igneous rocks. Four major structural elements of the quadrangle are reflected in the geography and geologic units. These are a mantled gneiss dome on the east separated from a north-plunging synclinorium in rocks of the Murdama and Bi?r Khountina Groups on the west by a narrow dejective zone of the Halaban and lower Bi?r Khountina. The dejective zone is much modified by impricate overthrusts and accompanying tear faults. These major faults have pushed elements of the Halaban and Bi?r Khountina westward over Bi?r Khountina and Murdama, with the result that very complex fault patterns have evolved. Open geochemical reconnaissance of the area disclosed one positive anomaly for nickel and 40 threshold indications of several elements, principally nickel, chromium, copper, and tungsten. Heavy-mineral and radiometric reconnaissance showed 18 areas containing scheelite and/or powellite and four areas of anomalous radioactivity. Most of these features are in the dejective zone, as are five of the nine ancient workings, the massive and disseminated magnetite, most of the secondary copper minerals, and the traces of asbestos, magnesite, and chromite known in the quadrangle. The mantled gneiss dome and a complex of gabbro and amphibolite on its southwestern flank are the next most mineralized areas. Scant evidence of mineralization is present in the Murdama Group west of the dejective zone. Magnetite deposits at Jabal Idsas have the greatest potential of the mineral deposits in the Jabal Bitran quadrangle. Further study of gold at Fawara and Selib mines is recommended, as is investigation of a positive nickel anomaly that shows threshold cobalt and above background radioactivity. The garnetiferous skarn in the east-central part of the quadrangle should be examined for composition and abrasive character of the garnet and for the remote possibility of tungsten in scheelite and beryllium in helvite.
Geology of the Anlauf and Drain Quadrangles, Douglas and Lane Counties, Oregon
Hoover, Linn
1963-01-01
The Anlauf and Drain quadrangles, Oregon, lie about 20 miles south of the city of Eugene, in Douglas and Lane Counties. They constitute an area of about 435 square miles that includes parts of both the Cascade Range and Coast Range physiographic provinces. A sequence of lower Tertiary sedimentary and volcanic rocks with a maximum thickness of about 20,000 feet is exposed in the area. The oldest part of this sequence is the Umpqua formation of early Eocene age consisting of a lower member of vesicular and amygdaloidal olivine basalt flows, a middle member of water-laid vitric and lapilli crystal tuff, and an upper member of interbedded fissile siltstone and basaltic sandstone which contains a 300-foot tongue of massive to thick-bedded basaltic sandstone near its top. These rocks are predominantly of marine origin, although the general absence of pillow structures which are common in basaltic lavas of equivalent age elsewhere in the Coast Ranges suggests that some of the flows were poured out subaerially. The overlying tuff member, however, contains Foraminifera and in places has a lime content slightly in excess of 10 percent. Mollusca and Foraminifera indicate that the Umpqua formation is of early Eocene age and is a correlative of the Capay formation of California. The Tyee formation of middle Eocene age overlies the Umpqua formation and consists of more than 5,000 feet of rhythmically deposited sandstone and siltstone in beds 2 to 30 feet thick. The basal part of each bed consists of medium- to coarse-grained sandstone that grades upward into fine-grained sand- stone and siltstone. The principal constituents of the sandstone are quartz, partly a1tered feldspar, mica, clay, and fragments of basalt, fine-grained argillaceous rocks, and mica schist. Other detrital minerals include epidote, garnet, blue-green hornblende, tourmaline, and zoisite. The depositional environment of the Tyee formation is poorly known, although the rhythmic-graded bedding suggests turbidity currents. About 500 feet of sandstone and siltstone assigned to the Spencer formation of late Eocene age unconformably overlies the Tyee formation. The Spencer formation, better exposed in the east-central part of the Coast Ranges, contains marine fossils but also has thin impure coal beds, indicative of strand-line accumulation. The sandstone in the Spencer formation is very similar to that in the Tyee formation, from which it was probably derived. The Fisher formation contains about 5,500 feet of nonmarine pyroclastic and volcanic rocks that are related to the volcanic rock sequences of the western Cascade Range. The formation is characterized by a wide variety of rock types, including conglomerate, tuffaceous sandstone and siltstone, vitric and crystal tuff, waterlaid and mudflow breccia, and andesitic lava flows. These rocks gen- erally occur in lenticular beds that have little stratigraphic significance. The rocks apparently accumulated on a plain slightly above sea level that was subjected alternately to fiooding by running water and to desiccation. Fossil leaves from the lowermost part of the Fisher formation are of late Eocene age; the upper part of the formation is of early, and possibly niiddle, Oligocene age. A few exposures of olivine basalt were mapped in the extreme northern part of the Anlauf quadrangle. The flows, more extensively exposed to the north, overlie the Fisher formation, and, therefore, are tentatively considered to be post-Oligocene in age. All these stratigraphic units, but principally the Fisher formation, are cut by dikes, sills, and stocklike bodies of 'porphyritic basalt, diabase, and norite. Contemporaneously with the emplacement of most of these rocks, in late Miocene (?) time, hydrothermal solutions locailly altered the sedimentary and extrusive igneous racks and deposited cinnabar and other sulfide minerals, carbonates, and silica. Three parallel nartheastward-trending
Geologic Setting of the Hamme Tungsten District, North Carolina and Virginia
Parker, John Mason
1963-01-01
The Hamme tungsten district is in the eastern part of the Piedmont province, mainly in Vance County, North Carolina, but it extends a few miles into Virginia. The district is underlain by a central lenticular pluton of albite granodiorite that trends north-northeastward and is flanked on both sides by metamorphic rocks of low and medium grade that dip steeply westward. The relative ages of the metamorphic rocks are uncertain. The oldest rocks are likely to be the biotite gneisses in the eastern part of the district; successively younger units expose westward across the district are sericite-chlorite phyllites, greenstone, metafelsites, and metabasalts. The biotite gneisses and minor intercalated hornblende gneiss, which have a total thickness of many thousand feet, were derived from sediments. Some of the gneiss grades into phyllites and as probably formed by metasomatic alteration of the phyllites. Sericite-chlorite phyllite, epidote-quartz meta siltstone, quartzite, and conglomeratic phyllite occur principally in a wide belt on the west side of the central albite granodiorite. This unit is some 10,000 feet thick and originally consisted mainly of sediments of the graywacke suite. Greenstone totaling about 500 feet in thickness lies west of the phyllite and was derived from maflc lava flows and andesitic tuff. Metamorphosed massive aphanitic and porphyritic flows and dikes that range in composition from dacite to rhyolite, and phyllitic metatuffs and tuffaceous breccia are exposed west of the greenstone. These total at least 3,000 feet in thickness. Massive metabasalt that resembles greenstone but is less altered is common in the area between the Hamme district and the Virgilina district to the west. The thickness of the metabasalt is about 600 to 6,000 feet. The metamorphic rocks of the Hamme and Virgilina districts are parts of the Carolina slate belt, but map units cannot be directly correlated. Rocks in the Hamme district are thought by the writer to have been derived mainly from graywackes and volcanic flows, and subordinately from pyroclastic materials, whereas the rocks of the Virgilina district were interpreted by earlier workers as being mainly volcanic with much pyroclastic material but little sediment. Igneous, and perhaps pseudo igneous, rocks in the district include hornblende gabbro, albite granodiorite, aplite, and pegmatite--all of which are probably middle Paleozoic in age--and diabase and hypersthene tonalite of Late Triassic age. The gabbro forms three lenticular to subcircular bodies up to 2% miles in width in the western part of the area. Albite granodiorite forms a pluton with a maximum width of 7 miles which occupies the center of the area. At its northeastern end the pluton narrows abruptly to a point. Phyllite forms the wall rocks on all sides of the albite granodiorite. The contact is gradational and conformable in most places, but on the northwest side it cuts across wall structure for about 3 miles. Near its western edge the albite granodiorite includes a northeast-trending zone of schistose wall rock in and near which are localized the tungsten deposits. The origin of the albite granodiorite is uncertain, but it may have formed by the metasomatic replacement of the wallrocks, during which albite porphyroblasts developed first and were followed by microcline and quartz. Diabase and hypersthene tonalite occur as dikes and sills along four northward-trending belts. The dikes are a few feet to more than 300 feet thick, and several extend along strike for more than 10 miles. The Hamme district Is in the eastern part of the Carolina slate belt, and the Virg1l1na district lies along the western side of the belt. Rocks in the Hamme district dip mostly westward and in the Vifg1lina district dip mainly eastward into a syncline. This syncline, here named the Spewmarrow syncline, may be a structure of regional significance. Tungsten in the Hamme district occurs mainly
NASA Astrophysics Data System (ADS)
da Silva, Luciano Ribeiro; de Oliveira, Davis Carvalho; dos Santos, Maria Nattânia Sampaio
2018-03-01
This study investigates the diversity, origin and tectonic significance of the Ourilândia do Norte Mesoarchean granitoids, emplaced near Rio Maria-Carajás domains boundary, southeastern Amazonian Craton (Brazil). In this area, previous works has identified sanukitoids (∼2.87 Ga), (quartz) diorites of BADR affinity and undifferentiated leucogranites, with charnockites cross-cutting the other granitoids. New geological mapping data allowed to differentiate three new groups of granitoids: (i) biotite monzogranites (BMzG); (ii) epidote-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). Thus, this paper aims to define their classification, nature, formation processes and deformation aspects, and discuss the relations between plutonism and deformation for the Ourilandia do Norte granitoids. The petrographic data showed that each one of these groups can be subdivided into two facies. The BMzG is differentiated into equigranular (eBMzG) and heterogranular (hBMzG) and the EBGd into heterogranular (hEBGd) and sparsely porphyritic (spTEBGd). These granitoids constitute two batholiths separated by a rock strip of sanukitoid and BADR affinities. Both are largely dominated by BMzG rocks, with less abundant EBGd lenses. The pGrt is individualized in porphyritic granodiorites (pBHGd) and trondhjemites (pEBTd), which occur as smaller bodies. Structurally, the central portions these plutons represent lower strain domains, while their borders are marked by large-scale shear zones, where occur submagmatic and mylonitic fabrics of ENE-WSW main direction and subvertical dip, respectively. The meso- and microstructural data indicate that the rocks studied are syn-to late-tectonic and were affected by high temperature deformation (>500 °C) and low differential stress, in a sinistral transpression regime, indicating that both fabrics are related to the a same deformational event. Geochemically, except the pEBTd facies that has sodic affinity, the Ourilândia do Norte granitoids can be grouped into two suites: (i) Fe-K suite formed by BMzG and spTEBGd; and (ii) Mg-K suite composed of sanukitoids (including hEBGd and pBHGd) and (quartz) diorites of BADR affinity. The origin of the eBMzG is attributed to anatexis of a 2.92-2.98 Ga old TTG crust. The hEBGd has sanukitoid affinity and was produced by intense fractionation of hornblende ± clinopyroxene from the Rio Maria Granodiorite. The granitoids of spTEBGd, hBMzG, pBHGd and pEBTd facies show mingling evidence between contrasting magmas, indicating that their origins require interaction between metassomatized mantle- and crustal derived magmas. Geochemical data and modeling were used to identify their different formation processes: (i) spTEBGd is enriched in HFSE (Ti, Zr and Y) and LILE (Ba and Sr) and it was interpreted as product of the partial melting of an enriched mantle source, with participation of crustal liquids; (ii) hBMzG is generated by the interaction between spTEBGd (60%) and eBMzG (40%) magmas; (iii) pBHGd by hybridization between sanukitoid (80%) and eBMzG (20%); and (iv) pEBTd by mixture between trondhjemitic (70-80%) and BARD-affinity (20-30%) liquids. Therefore, at ∼2.87-2.86 Ga a significant crustal growth and reworking occurred in the final stages of stabilization of the first geotectonic cycle of Carajás province, where all the Ourilândia do Norte Mesoarchean granitoids were emplacement during the second stage of a tectono-magmatic two-stage (subduction-collision) model: (i) first stage (2.98-2.92 Ga) - low-angle subduction with emplacement of slab-melt and mantle wedge metasomatism; (ii) second stage (∼2.87-2.86 Ga) - collisional environment, where shear zones conditioned the rise and emplacement of the Ourilândia do Norte magmas.
Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.
2004-01-01
Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,
Cater, Fred W.
1982-01-01
The core of the northern Cascade Range in Washington consists of Precambrian and upper Paleozoic metamorphic rocks cut by numerous plutons, ranging in age from early Triassic to Miocene. The older plutons have been eroded to catazonal depths, whereas subvolcanic rocks are exposed in the youngest plutons. The Holden and Lucerne quadrangles span a -sizeable and representative part of this core. The oldest of the formations mapped in these quadrangles is the Swakane Biotite Gneiss, which was shown on the quadrangle maps as Cretaceous and older in age. The Swakane has yielded a middle Paleozoic metamorphic age, and also contains evidence of zircon inherited from some parent material more than 1,650 m.y. old. In this report, the Swakane is assigned an early Paleozoic or older age. It consists mostly of biotite gneiss, but interlayered with it are scattered layers and lenses of hornblende schist and gneiss, clinozoisite-epidote gneiss, and quartzite. Thickness of the Swakane is many thousands of meters, and the base is not exposed. The biotite gneiss is probably derived from a pile of siliceous volcanic rocks containing scattered sedimentary beds and basalt flows. Overlying the Swakane is a thick sequence of eugeosynclinal upper Paleozoic rocks metamorphosed to amphibolite grade. The sequence includes quartzite and thin layers of marble, hornblende schist and gneiss, graphitic schist, and smaller amounts of schist and gneiss of widely varying compositions. The layers have been tightly and complexly folded, and, in places, probably had been thrust over the overlying Swakane prior to metamorphism. Youngest of the supracrustal rocks in the area are shale, arkosic sandstone, and conglomerate of the Paleocene Swauk Formation. These rocks are preserved in the Chiwaukum graben, a major structural element of the region. Of uncertain age, but possibly as old as any of the intrusive rocks in the area, are small masses of ultramafic rocks, now almost completely altered to serpentine. These occur either as included irregular masses in later intrusives or as tectonically emplaced lenses in metamorphic rocks. Also of uncertain age but probably much younger, perhaps as young as Eocene, are larger masses of hornblendite and hornblende periodotite that grade into hornblende gabbro. These are exposed on the surface and in the underground workings of the Holden mine. Oldest of the granitoid intrusives are the narrow, nearly concordant Dumbell Mountain plutons, having a radiometric age of about 220 m.y. They consist of gneissic hornblende-quartz diorite and quartz diorite gneiss. Most contacts consist of lit-par-lit zones, but some are gradational or more rarely sharp. The plutons are typically catazonal. Closely resembling the Dumbell Mountain plutons in outcrop appearance, but differing considerably in composition, are the Bearcat Ridge plutons. These consist of gneissic quartz diorite and granodiorite. The Bearcat Ridge plutons are not in contact with older dated plutons, but because their textural and structural characteristics so closely resemble those of the Dumbell Mountain plutons, they are considered to be the same age. Their composition, however, is suggestive of a much younger age. Cutting the Dumbell Mountain plutons is the Leroy Creek pluton, consisting of gneissic biotite-quartz diorite and trondjhemite. The gneissic foliation in the Leroy Creek is characterized by a strong and pervasive swirling. Cutting both the Dumbell Mountain and Leroy Creek plutons are the almost dikelike Seven-fingered Jack plutons. These range in composition from gabbro to quartz diorite; associated with them are contact complexes of highly varied rocks characterized by gabbro and coarse-grained hornblendite. Most of the rocks are gneissic, but some are massive and structureless. Radiometric ages by various methods range from 100 to 193 m.y. Dikes, sills, small stocks, and irregular clots of leucocratic quartz diorite and granodiorite are abundant in t
Research Drilling on the Mid-Atlantic Ridge: IDDP Wells of Opportunity at Reykjanes, Iceland
NASA Astrophysics Data System (ADS)
Fridleifsson, G. O.; Franzson, H.; Thorhallsson, S.; Elders, W. A.
2005-12-01
There are some 10 new geothermal wells at Reykjanes, in SW-Iceland, being considered by the Iceland Deep Drilling Project (IDDP) as potential candidate wells of opportunity to explore for deep (4-5 km) supercritical fluids. The drill field is located where the Mid-Atlantic Ridge emerges from the Atlantic ocean at the tip of the Reykjanes Peninsula. The site is an ideal locality for a combined study on the evolution of a rifted oceanic crust and an active black smoker-type geothermal system. However, the oceanic pillow basaltic crust at Reykjanes is some 2-3 times thicker than normal ocean floor crust, which undoubtedly relates to it being part of the Icelandic Large Igneous Province. The deepest of the geothermal wells at Reykjanes is Drillhole RN-17, that was completed to 3082 m depth in February 2005. It is currently the prime candidate for deepening by the IDDP. The plan is to deepen it to 4 km in 2006, and to 5 km depth in 2007, with funding coming from Icelandic energy companies (Hitaveita Sudurnesja, Landsvirkjun and Orkuveita Reykjavikur), the Government of Iceland, the International Scientific Continental Drilling Program (ICDP) and the US National Science Foundation (NSF). The well RN-17 was drilled as a conventional production well with a 12 ¼ inch drillbit to 3082 m depth, and left barefoot, with a 13 3/8 inch production casing cemented down to 900 m. It will be flow tested this autumn. If the RN-17 well is selected by the IDDP for deepening, a 9 5/8 inch in casing will be cemented to 3081 m and drilling will be continued with an 8 ½ inch tricone bit to 4 km in the autumn of 2006. The ICDP and NSF will fund spot coring for scientific studies in this depth interval and a second flow test would be performed in winter 2007. The following autumn, a 7 inch casing would be cemented to 4 km depth and then a 5 inch retrievable liner would be inserted to support a hybrid coring system to continuously core down to 5 km depth, retrieving HQ sized core. A third flow test would be carried out in 2008-2009. In RN-17 high-grade hydrothermal alteration occurs at shallower depth than in any other well at Reykjanes. This is revealed by the presence of widespread epidote, starting at only 312 m depth, that formed at temperature of ~ 250°C. Near the bottom of the well, lower greenschist facies rock replacement of pillow basalts is locally complete, indicating alteration temperatures in the 300°C to 350°C range. On-going studies on hydrothermal minerals such as amphiboles, and on fluid inclusions, are adding details to these estimates. Direct temperature logging of the borehole has so far been hampered by an obstruction at 2100 m, a problem that is currently being dealt with. In the next few months, studies of the other wells on the Reykjanes Peninsula will be concluded and the candidate best suited for deepening will be selected. The operating company, Hitaveita Sudurnesja, is contracted to deliver some 100 MWe of new electric power to the market by mid-year 2006, a situation of primary concern at the moment. Three new production wells will be drilled at Reykjanes this autumn and early winter, adding 3 new potential wells of opportunity for IDDP to consider. As all the production wells at Reykjanes are of identical design, the technical planning for deepening a borehole to 4 km autumn 2006 is more or less independent of which of the available wells is selected for deepening. http://www.icdp-online.org/sites/iceland/news/
NASA Astrophysics Data System (ADS)
Diener, J.; Stevens, G.; Kisters, A.; Poujol, M.
2004-05-01
The Paleo- to Mesoarchaean Barberton granite-greenstone terrain in South Africa consists of two main components: a southern high-grade metamorphic granite-gneiss terrain and the low-grade metamorphic supracrustal sequence of the Barberton greenstone belt in the north. The gneiss terrain records peak metamorphic conditions of 8 - 11 kbar and 650 - 700 °C, attained at 3229 ± 9 Ma (Dziggel et al., 2002), coinciding with the main phase of collisional tectonics in the greenstone belt (De Ronde and De Wit, 1994). Conversely, estimates of 2.6 ± 0.6 kbar and 360 ± 50 °C reflect metamorphic conditions in the low-grade supracrustal at this time (Cloete, 1999). The boundary of the two different domains corresponds to the Theespruit Formation, a highly tectonized mélange of metabasites, felsic volcanics and rare, aluminous clastic sediments. The metamorphic and structural evolution of the Theespruit Formation was investigated in the Tjakastad Schist Belt in order to constrain the tectonometamorphic history and the significance of this basal mélange for the juxtaposition of these two crustal domains. The pretectonic peak metamorphic assemblage Ky-St-Bt-Ms-Pl-Q quartz occurs in aluminous horizons within the metasediments. These horizons are intercalated with more Fe-Mg-rich sediments that record the peak metamorphic assemblage Grt-St-Bt-Chl-Pl-Q. THERMOCALC estimates from the garnet-bearing metasediments constrain peak P-T conditions at 7.7 ± 0.9 kbar and 560 ± 15 °C. Associated metabasites display peak assemblages consisting of garnet + hornblende + epidote + plagioclase + quartz, which yields a P-T estimate of 7.0 ± 1.6 kbar and 560 ± 60 °C. Retrograde estimates of 3.8 ± 1.3 kbar and 543 ± 20 °C, as well as sillimanite overgrowths on kyanite, indicate that retrogression involved close to isothermal decompression of ca. 4 kbar prior to cooling into the greenschist facies. The age of amphibolite facies metamorphism has been determined by in situ LA-ICP-MS analysis of sphene in metabasite and is constrained at 3229 ± 25 Ma. The timing of peak metamorphic conditions in the Theespruit Formation and granite-gneiss terrain are identical and both localities exhibit a similar style of high-P low-T metamorphism with remarkably low apparent geothermal gradients of 18 - 20 °C/km. Thus, rocks of both the Theespruit Formation and the gneiss terrain record burial metamorphism to mid- and lower crustal levels during the main collisional event at 3230 Ma. P-T estimates from the Onverwacht Group some 4 km north of the study area indicate that a metamorphic break of at least 5 kbar, corresponding to a crustal column of ~18 km, exists between these two localities. This investigation has revealed that the metamorphic history of the Theespruit Formation is very similar to that experienced by the granite-gneiss terrain and differs radically from that experienced by the greenstone sequence. This high-grade terrain is allochtonous to the greenstone belt and represents a tectonically exhumed and underplated terrain. The depths of burial and extremely low geothermal gradients recorded in this terrain are only possible in cool and rigid crustal environments, indicating that a modern continental crustal thermal regime must have been established in the Barberton terrain as early as 3230 Ma. Cloete, M. (1999), Mem. Geol. Survey S. Africa, 84, 232pp De Ronde, C.E.J., De Wit, M.J. (1994), Tectonics, 13, 983 - 1005 Dziggel, A., Stevens, G., Poujol, M., Anhaeusser, C.R., Armstrong, R.A. (2002), Precambrian Res., 114, 221 - 247
Moore, J.N.; Allis, R.G.; Nemcok, M.; Powell, T.S.; Bruton, C.J.; Wannamaker, P.E.; Raharjo, I.B.; Norman, D.I.
2008-01-01
Temperature and pressure surveys, fluid samples, and petrologic analyses of rock samples from deep drill holes at the Karaha - Telaga Bodas geothermal field on the volcanic ridge extending northward from Galunggung Volcano, West Java, have provided a unique opportunity to characterize the evolution of an active volcano-hosted geothermal system. Wells up to 3 km in depth have encountered temperatures as high as 353??C and a weakly altered granodiorite that intruded to within 2 to 3 km of the surface. The intrusion is shallowest beneath the southern end of the field where an acid lake overlies a nearly vertical low resistivity structure (<10 ohm-m) defined by magnetotelluric measurements. This structure is interpreted to represent a vapor-dominated chimney that provides a pathway to the surface for magmatic gases. Four distinct hydrothermal mineral assemblages document the evolution of the geothermal system and the transition from liquid- to vapor-dominated conditions. The earliest assemblage represents the initial liquid-dominated system generated during emplacement of the granodiorite between 5910 ?? 76 and 4200 ?? 150 y BP. Tourmaline, biotite, actinolite, epidote and clay minerals were deposited contemporaneously at progressively greater distances from the intrusive contact (assemblage 1). At 4200 ?? 150 y BP, flank collapse and the formation of the volcano's crater, Kawah Galunggung, resulted in catastrophic decompression and boiling of the hydrothermal fluids. This event initiated development of the modern vapor-dominated regime. Chalcedony and then quartz were deposited as the early low salinity liquids boiled (assemblage 2). Both vapor- and liquid-rich fluid inclusions were trapped in the quartz crystals. Liquid-rich fluid inclusions from the southern part of the field record salinities ranging from 0 to 26 weight percent NaCl- CaCl2 equivalent and locally contain fluorite daughter crystals. We suggest, based on temperature-salinity relationships and evidence of boiling, that these fluids were progressively concentrated as steam was lost from the system. However, mixing with fluids derived from the underlying intrusion or generated during the formation of acid SO4 water on the vapor-dominated chimney margins could have contributed to the observed salinities. As pressures declined, CO2- and SO4-rich steam-heated water drained downward, depositing anhydrite and calcite (assemblage 3) in the fractures, limiting further recharge. Fluid inclusions with salinities up to 31 weight percent NaCl equivalent were trapped in these minerals as the descending water vaporized. The final assemblage is represented by precipitates of NaCl, KCl and FeClx deposited on rock surfaces in portions of the vapor-dominated zone that boiled dry. Vapor-dominated conditions extend over a distance of at least 10 km and to depths below sea level. Deep wells drilled into the underlying liquid-dominated reservoir in the northern and central part of the volcanic ridge produce low salinity fluids representing recent recharge of meteoric and steam-heated water. The evolution of volcanic-hosted vapor-dominated geothermal systems can be described by a five stage model. Stage 1 involves the formation of an over-pressured liquid-dominated geothermal system soon after magmatic intrusion. In Stages 2 and 3, pressures progressively decrease, and a curtain of steam-heated water surrounding a magmatic vapor-dominated chimney at 350??C and 14 ?? 2 MPa develops. The relatively low pressure near the base of the chimney causes liquid inflow adjacent to the intrusion and the development of a secondary marginal vapor-dominated zone. In Stage 4, the magmatic vapor discharge from the intrusion becomes small, vapor pressure declines, and the secondary vapor-dominated zone expands above the intrusion. In Stage 5, the vapor-dominated zone floods because heat from the intrusion is insufficient to boil all liquid inflow. A more common, liquid-dominated volcanic-hosted system the
Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.
2008-01-01
This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan Formation, west and northwest of the Silverton caldera, and (b) the Picayune Megabreccia Member of Sapinero Mesa Tuff along the western San Juan caldera margin. Sultan Mountain stock, composed of granitoid intrusive rocks, was shown to have low ANC and moderate NAP. Sequential leachate analyses on a suite of whole-rock samples from the current and a previous study indicate that host rock composition and mineralogy control leachate compositions. The most mafic volcanic samples had high leachate concentrations for Mg, Fe, and Ca, whereas silicic volcanic samples had lower ferromagnesiun compositions. Samples with high chlorite abundance also had high leachable Mg concentrations. Trace-element substitution, such as Sr for Ca in plagioclase, controls high Sr concentrations in those samples with high plagioclase abundance. High Ti abundance in leachate was observed in those samples with high magnetite concentrations. This is likely due to samples containing intergrown magnetite-ilmenite. Whole rocks having high trace-element concentrations have relatively high leachate trace-element abundances. Some lavas of the San Juan Formation and Burns Member of the Silverton Volcanics had elevated Zn-, Cd-, and Pb-leachate concentrations. Manganese was also elevated in one San Juan Formation sample. Other San Juan Formation and Burns Member lavas had low to moderate trace-element abundances. One sample of the pyroxene andesite member of the Silverton Volcanics had elevated concentrations for As and Mo. Most other pyroxene andesite member samples had low leachate trace-element abundances. Mine-waste-leachate analyses indicated that one mine-waste sample had elevated concentrations of Cu (1.5 orders of magnitude), Zn (1 order of magnitude), As (1 order of magnitude), Mo (1.5 to 2 orders of magnitude), Cd (1 to 2 orders of magnitude), and Pb (2 to 3 orders of magnitude) compared to whole rocks. These data indicate the importance of whole-rock geochemistry or leachate analys
NASA Astrophysics Data System (ADS)
Mohammadi, Ali; Burg, Jean-Pierre; Winkler, Wilfried; Ruh, Jonas
2014-05-01
The Makran, located in Southeast Iran and South Pakistan, is one of the largest accretionary wedges on Earth. In Iran it comprises turbiditic sediments ranging in age from Late Cretaceous to Holocene. We present a provenance analysis on sandstones, which is aimed at reconstructing the assemblages of source rocks and the tectonic setting from which the clastic material was derived. Sandstone samples collected from different units span the regional stratigraphy from Late Cretaceous to Miocene. Laser ablation ICP-MS resulted in ca 2800 new U-Pb ages of individual detrital zircons from 18 samples collected in onshore Makran. 101 detrital zircons from a Late Cretaceous fine grained sandstone range from 180 to 160 Ma (Middle Jurassic). 478 detrital zircons from mid- to late Eocene sandstones allow differentiating a NE and NW sector of the Makran Basin. Zircon grains in the NE basin belong to two populations peaking at 180 to 160 Ma (late Early to Middle Jurassic) and 50 to 40 Ma (Mid-Eocene), with the noticeable absence of Cretaceous grains. In the NW basin, detrital zircons are 120 to 40 Ma (late Early Cretaceous to Lutetian, Eocene). 587 detrital zircon grains from fine to medium grained Oligocene sandstones collected over the whole area also range from 120 to 40 Ma (late Early Cretaceous to Eocene, Lutetian). 1611 detrital zircons from early Miocene sandstones show again distinctly different ages in the eastern and western parts of the basin. They range from 120 to 40 Ma (late Early Cretaceous to Eocene) in the eastern and from 80 to 40 Ma (Late Cretaceous to Eocene) in the western basin. Hf isotopes analyses were performed on 120 zircon grains from 6 samples. Negative values (-2 to -15) in Middle Jurassic and late Early Cretaceous zircons indicate minor or no influence of mantle reservoirs which implies a rifting setting during crystallization of the zircons. Low negative to positive (-5 to +10) values in Late Cretaceous and Eocene zircons indicate mixed crustal and juvenile magma sources, which are common in continental arc environments. Point counts of 32 sandstone thin sections were performed following the Gazzi-Dikinson method. 300-400 points were counted in each thin section. The sandstones are feldspathic litharenites and litharenites. Feldspar is dominantly plagioclase (> 90%) with minor amounts of K-feldspar. Most of the quartz grains (75%) are mono-crystalline but poly-crystalline ones (maximum 25%) also occur. Rock fragments are represented by sedimentary, volcanic and metamorphic grains. Volcanic rock-fragments mostly are andesites and volcanic chert. Sedimentary lithic grains comprise mostly sandstone, siltstone, limestone and dolomite. Metamorphic lithic grains generally are low-grade schists and phyllites. In various compositional ternary diagrams, the sources of the sandstones plot in the transitional to dissected arc and recycled orogenic fields. We selected 26 samples for heavy mineral study. 200-300 grain were identified and counted in each sample. Heavy mineral suites show a highly variable composition including (1) a group of ultra-stable minerals (zircon, monazite, tourmaline, rutile, brookite, anatase and sphene) derived from a granitic continental crust sources, (2) metastable minerals delivered from variable metamorphic-grade source rocks (epidote group, garnet, staurolite, chloritoid, kyanite, andalusite, glaucophane), (3) chromian spinel from ultrabasic rocks, (4) common hornblende either supplied from metamorphic or basic igneous series, and (5) a local pyroxene-rich source in the pyroclastic sandstone formation overlying pillow lavas. Glaucophane (5-20%) occurs in several samples, which indicates high-pressure/low-temperature metamorphic rocks in the detrital source areas for Eocene and Miocene sandstones. Earlier work in the Pakistani Makran suggested that pre-Miocene sediments were supplied from the Himalaya, whereas Miocene to Recent deposits were reworked older sediments of the accretionary wedge. Our data do not support this conclusion. Instead, we identified rifting-related detrital sources from Middle Jurassic to late Early Cretaceous (175 - 100 Ma) and the establishment of a continental volcanic arc from Late Cretaceous to Eocene (80 to 40 Ma). In addition, paleocurrent directions in Makran sandstone show general sediment transport from North to South; Cr-spinel as well as high-P/low-T heavy minerals most likely have been derived from the blueschist-bearing Makran ophiolitic and igneous belt to the North.
NASA Astrophysics Data System (ADS)
Dreher, Ana M.; Xavier, Roberto P.; Taylor, Bruce E.; Martini, Sérgio L.
2008-02-01
The Igarapé Bahia Cu-Au deposit in the Carajás Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarapé Bahia Group. This group consists of a low greenschist grade unit of the Archean (˜2,750 Ma) Itacaiúnas Supergroup, in which other important Cu-Au and iron ore deposits of the Carajás region are also hosted. The orebody at Igarapé Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30-250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarapé Bahia is represented by late quartz-chalcopyrite-calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from -6.7 to -13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from -1.1 to 5.6 per mil with an outlier at -10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited contribution of reduced and oxydized sulfur is also evident. Oxygen isotopic ratios in magnetite, quartz, and siderite yield calculated temperatures of ˜400°C and δ18O-enriched compositions (5 to 16.5 per mil) for the ore-forming fluids that suggest a magmatic input and/or an interaction with 18O-rich, probably sedimentary rocks. The late veins of the Igarapé Bahia deposit area were formed from saline aqueous fluids (2 to 60 wt% NaCl + CaCl2 equiv) with δ18Ofluid compositions around 0 per mil that indicate contribution from meteoric fluids. With respect to geological features, Igarapé Bahia bears similarity with syngenetic, volcanic-hosted massive sulfide (VHMS)-type deposits, as indicated by the volcano-sedimentary geological context, stratabound character, and association with submarine volcanic flows, hyaloclastite, and exhalative beds such as BIF and chert. On the other hand, the highly saline ore fluids and the mineral assemblage, dominated by magnetite and chalcopyrite, with associated gold, U- and LREE-minerals and scarce pyrite, indicate that Igarapé Bahia belongs to the Fe oxide Cu-Au (IOCG) group of deposits. The available geochronologic data used to attest syngenetic or epigenetic origins for the mineralization are either imprecise or may not represent the main mineralization episode but a later, superimposed event. The C, S, and O isotopic results obtained in this study do not clearly discriminate between fluid sources. However, recent B isotope data obtained on tourmaline from the matrix of the fragmental rock ore unit (Xavier, Wiedenbeck, Dreher, Rhede, Monteiro, Araújo, Chemical and boron isotopic composition of tourmaline from Archean and Paleoproterozoic Cu-Au deposits in the Carajás Mineral Province, 1° Simpósio Brasileiro de Metalogenia, Gramado, Brazil, extended abstracts, CD-ROM, 2005) provide strong evidence of the involvement of a marine evaporitic source in the hydrothermal system of Igarapé Bahia. Evaporite-derived fluids may explain the high salinities and the low reduced sulfur mineral paragenesis observed in the deposit. Evaporite-derived fluids also exclude a significant participation of magmatic or mantle-derived fluids, reinforcing the role of nonmagmatic brines in the genesis of Igarapé Bahia. Considering this aspect and the geological features, the possibility that the deposit was generated by a hydrothermal submarine system whose elevated salinity was acquired by leaching of ancient evaporite beds should be evaluated.
Raman spectroscopy of detrital garnet from the (U)HP terrane of eastern Papua New Guinea
NASA Astrophysics Data System (ADS)
Andò, Sergio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Malusà, Marco G.; Aliatis, Irene; Vezzoli, Giovanni; Garzanti, Eduardo
2013-04-01
Garnet is one of the most widespread heavy minerals in sediments derived from orogenic systems. Its chemical composition varies systematically with temperature and pressure conditions, and thus provides information on the metamorphic evolution of source areas that is crucial in tectonic and geodynamic reconstructions. Garnet is easily identified in mineral grain mounts and is relatively stable during burial diagenesis. Raman spectroscopy allows rapid determination of garnet compositions in grain mounts or thin sections of sand and sandstone samples, and can be used to assess their density and chemical composition quite accurately ("MIRAGEM" method of Bersani et al., 2009; Andò et al., 2009). In the D'Entrecastreaux Islands of southeastern Papua New Guinea, the world's youngest (U)HP rocks are exposed. There, mafic rocks and their felsic host gneisses were metamorphosed under eclogite facies conditions from late Miocene to Pliocene, before being exhumed from depths of ~90 km (Baldwin et al., 2004, 2008). The eclogite preserves a peak assemblage of garnet, omphacite, rutile, phengite and Si02 (Hill and Baldwin, 1993). A coesite-eclogite has been found in one small island outcrop. In order to sample garnet populations representative of a larger geographical area, we sampled and studied a heavy-mineral-dominated placer sand (HMC 80) from a beach from SE Goodenough Island. Garnet grains in beach sand are associated with blue-green to subordinately green-brown amphibole and minor epidote, omphacitic clinopyroxene, titanite, apatite and rutile. The subordinate low-density fraction is feldspatho-quartzose with high-rank metamorphic rock fragments and biotite (Q62 F35 Lm2; MI 360). Detrital garnets are mostly classified as almandine with relatively high Mg and Ca and lacking Mn, typical of the eclogite facies (Win et al., 2007; type Ci garnets of Mange and Morton 2007; Andò et al., 2013). In well-described stratigraphic sequences within syn-and post-tectonic basins adjacent to orogenic systems, Raman-assisted heavy-mineral studies allow us to detect the first arrival of eclogitic garnet, and thus to assess the minimum age of exhumation and final unroofing of high-pressure rocks (Malusà et al., 2011; Malusà and Garzanti, 2012). However, in the (U)HP terrane of southeastern Papua New Guinea, sediments derived from the actively exhuming D'Entrecasteaux Island core complexes are still being deposited offshore, are rarely preserved sub-aerially, and as such stratigraphic constraints are limited. Raman analysis of detrital garnets from placer sand thus provides invaluable constraints to compare with mineral assemblages preserved in exhumed eclogites. REFERENCES Andò S., Bersani D., Vignola P., Garzanti E. 2009. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: Examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochim. Acta A73:450-455. Andò S., Morton A., Garzanti E. 2013. Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. Geol. Soc. London Spec. Publ. Sediment Provenance Studies in Hydrocarbon Exploration & Production. Baldwin S.L., Monteleone B., Webb L.E., Fitzgerald P.G., Grove M., Hill E.J. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431:263-267. Baldwin S.L., Webb L.E., Monteleone B.D. 2008. Late Miocene coesite-eclogite exhumed in the Woodlark Rift. Geology 36:735-738 Bersani D., Andò S., Vignola P., Moltifiori G., Marino I.G., Lottici P.P., Diella V., 2009. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim. Acta A73:484-491. Hill E.J., Baldwin S.L. 1993. Exhumation of high-pressure metamorphic rocks during crustal extension in the D'Entrecasteaux region, Papua New Guinea. J. Metam. Geol. 11:261-277. Malusà M.G., Faccenna C., Garzanti E., Polino R. 2011. Divergence in subduction zones and exhumation of high-pressure rocks (Eocene Western Alps). Earth Pl. Sci. Lett. 310:21-32. Malusà M.G., Garzanti E. 2012. Actualistic snapshot of the early Oligocene Alps: the Alps-Apennines knot detangled. Terra Nova 24:1-6. Mange M.A., Morton A.C. 2007. Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T. (Eds) Heavy Minerals in Use, Developments in Sedimentology 58:345-391. Win K.S., Takeuchi M., Tokiwa T. 2007. Changes in detrital garnet assemblages related to transpressive uplifting associated with strike-slip faulting: an example from the Cretaceous System in Kii Peninsula, southwest Japan. Sedim. Geol. 201:412-431.
Intermediate-depth earthquake generation: what hydrous minerals can tell us
NASA Astrophysics Data System (ADS)
Deseta, N.; Ashwal, L.; Andersen, T. B.
2012-04-01
Subduction zone seismicity has commonly been causally related to the dehydration of minerals within the subducting slab(Hacker et al. 2004, Jung et al. (2004), Dobson et al. 2002, Rondenay et al. 2008). Other models for release of intermediate- and deep earthquakes include spontaneous reaction(s) affecting large rock-bodies along overstepped phase boundaries ( e.g. Green and Houston, 1995) and various shear heating-localization models (e.g. Kelemen and Hirth 2007, John et al. 2009). These concepts are principally reliant on seismic and thermo-petrological modeling; both of which are indirect methods of analysis. Recent discoveries of pseudotachylytes (PST) formed under high pressure conditions (Ivrea-Verbano Zone, Italy, Western Gneiss Region, Norway and Corsica) provide the first tangible opportunity to evaluate these models (Austrheim and Andersen, 2004, Lund and Austrheim, 2003, Obata and Karato, 1995, Jin et al., 1998). This case study focuses on observations based on ultramafic and mafic PST within the Ligurian Ophiolite of the high pressure-low temperature metamorphic (HP-LT) 'Shistes Lustres' complex in Cima di Gratera, Corsica (Andersen et al. 2008). These PST have been preserved in pristine lenses of peridotite and gabbro surrounded by schistose serpentinites. The PST range in thickness from 1mm to 25 cm (Andersen and Austrheim, 2006). Petrography and geochemistry on PST from the peridotite and gabbro samples indicates that total/near-total fusion of the local host rock mineral assemblage occurred; bringing up the temperature of shear zone from 350° C to 1400 - 1700° C; depending on the host rock (Andersen and Austrheim, 2006). The composition of the PST is highly variable, even at the thin section scale and this has been attributed to the coarse-grained nature of the host rock, its small scale inhomogeneity and poor mixing of the fusion melt. Almost all the bulk analyses of the PST are hydrous; the peridotitic PST is always hydrous (H2O content from 3.8 to 14 wt %) but the gabbro is not (H2O content from 0 to 2.6 wt%). The hydrous nature of the PST is due to the preferential melting of hydrous minerals (chlorite and serpentine - peridotite, glaucophane, epidote, Mg-hornblende - gabbro) in the host rock, rather than later hydration associated with exhumation (greenschist facies metamorphism and later alteration). However, in the case of the gabbro, the melt can be hydrous, but is not always. Anhydrous, glassy PST is formed in association with hydrous PST in the gabbro host rock. The gabbroic PST nucleate at the boundary between a coarse-grained pegmatoidal gabbro and a fine-grained gabbro, whereas the exclusively hydrous peridotite-hosted PST only nucleate along pre-existing hydrated fractures. These facts are significant when considering the mechanism of formation of the pseudotachylyte; which is commonly thought to be associated with the preferential melting of hydrous minerals. An anhydrous melt in proximity to other hydrous melts formed contemporaneously must have formed by the same mechanism; one which can exploit more than just one rheological characteristic in the rock vis. hydrous mineralogy AND grain size changes. Furthermore the presence of anhydrous PST suggests that little or no fluid ingress occurred prior to or during PST generation. Hydrous crystallisation products in the gabbro such as glaucophane and edenite indicate that whole-sale melting of the wallrock amphiboles (glaucophane, edenite, actinolite) took place to produce a melt with dissolved H2O, out of which such blue amphiboles were able to crystallise. It is important to note that in order for amphiboles to crystallise out of a melt, H2O is required but necessarily to an under-saturated degree. i.e. it cannot be 'free' water occurring as a separate phase in the melt (Carmen and Gilbert, 1983 and Koons, 1982). It is unlikely therefore that the water in the gabbro-derived fusion melt was the result of solid-state dehydration of the wallrock amphiboles. Microtextural observations of sheared out, kinked, twinned, prolate wallrock grains millimetres from vein boundaries and thermally rounded clasts, similarly deformed, entrained into the melt suggest that the process initiating fusion melting and seismic failure is spatially and temporally related to a high temperature ductile process rather than a brittle one. Together, the microtextural and geochemical observations provide ample support for a ductile thermal run-away process to initiate high pressure PST development and seismic failure and preclude dehydration embrittlement.
Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.
2011-01-01
The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals in ore breccias and relatively low S and Pb isotope values (δ34S values vary from 0–~4‰; 206Pb/204Pb <18.5). Copper ± precious metal-PGE deposits (Cu, Co, Ag, Au, Pd, and Pt) consist of Cu carbonate minerals (after chalcocite and chalcopyrite) and fine-grained quartz that have replaced breccia clasts and margins of fissures in Paleozoic limestones and dolomites near porphyritic intrusions. Gold ± silver deposits occur along contacts and within small-volume stocks and dikes of feldspar porphyry, one textural variety of porphyritic intrusions. Lead isotope compositions of copper ± precious metal-PGE, gold ± silver, and lead-dominant carbonate replacement deposits are similar to those of Mojave crust plutons, indicating derivation of Pb from 1.7 Ga crystalline basement or from Late Proterozoic siliciclastic sedimentary rocks derived from 1.7 Ga crystalline basement.Four texturally and modally distinctive porphyritic intrusions are exposed largely in the central part of the district: feldspar quartz porphyry, plagioclase quartz porphyry, feldspar biotite quartz porphyry, and feldspar porphyry. Intrusions consist of 64 to 70 percent SiO2 and variable K2O/Na2O (0.14–5.33) that reflect proportions of K-feldspar and albite phenocrysts and megacrysts as well as partial alteration to K-mica; quartz and biotite phenocrysts are present in several subtypes. Albite may have formed during emplacement of magma in brine-saturated basinal strata, whereas hydrothermal alteration of matrix, phenocrystic, and megacrystic feldspar and biotite to K-mica, pyrite, and other hydrothermal minerals occurred during and after intrusion emplacement. Small volumes of garnet-diopside-quartz and retrograde epidote-mica-amphibole skarn have replaced carbonate rocks adjacent to one intrusion subtype (feldspar-quartz porphyry), but alteration of carbonate rocks at intrusion contacts elsewhere is inconspicuous.Uranium-lead ages of igneous zircons vary inconsistently from ~ 180 to 230 Ma and are too imprecise to distinguish age differences among intrusion subtypes; most ages are 210 to 225 Ma, yielding a mean of 217 ± 1 Ma. K-Ar and 40Ar/39Ar ages of magmatic (plagioclase, biotite) and hydrothermal (K-mica) minerals span a similar range (183–227 Ma), demonstrating broadly contemporaneous intrusion emplacement and hydrothermal alteration but allowing for multiple Late Triassic magmatic-hydrothermal events. Imprecision and range of isotopic ages may have resulted from burial beneath Mesozoic and Tertiary strata and multiple intrusion of magmas, causing thermal disturbance to Ar systems and Pb loss from zircons in intrusions.Separate late Paleozoic (zinc-dominant carbonate replacement deposits) and Late Triassic (all other deposits) mineralizing events are supported by form, distribution, and host rocks of metal deposits, by hydrothermal mineral assemblages, isotope compositions, metal abundances, and metal diversity, and by small intrusion volumes. These characteristics collectively distinguish the Goodsprings district from larger intrusion related carbonate replacement districts in the western United States. They can be used to evaluate proximity to unexposed porphyritic intrusions associated with PGE and gold ± silver mineralization.
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Fu, Bin; Gong, Bing; Li, Long
2003-07-01
Discovery of coesite, diamond, and extreme 18O-depletion in eclogites from the Dabie-Sulu orogen in central-east China has contributed much to our understanding of subduction of continental crust to mantle depths and its subsequent exhumation. Hydrogen, oxygen, and carbon isotope distributions were systematically investigated in the past 8 years for ultrahigh pressure (UHP) eclogites, gneisses, granulites, marbles, and peridotites from this exciting region. The available data show the following characteristic features: (1) variable δ18O values of -11‰ to +10‰ for the eclogites and gneisses, with both equilibrium and disequilibrium fractionations of oxygen isotopes among minerals; (2) disequilibrium fractionation of hydrogen isotopes between mica and epidote from both eclogites and gneisses, with low δD values up to -127‰ to -100‰ for phengite; (3) negative δ13C values of -28‰ to -21‰ for apatite as well as host-eclogites and gneisses; (4) positive δ13C values of +1‰ to +6‰ for coesite-bearing marble associated with eclogites; (5) zircons from metamorphic rocks of different grades show a large variation in δ18O from -11‰ to +9‰, with U-Pb ages of 700 to 800 Ma for the timing of low- δ18O magma crystallization. It appears that the UHP metamorphic rocks exhibit ranges of δ18O values that are typical of potential precursor protolith rocks. Preservation of the oxygen isotope equilibrium fractionations among the minerals of the UHP eclogites and gneisses suggests that these rocks acquired the low δ18O values by meteoric-hydrothermal alteration before the UHP metamorphism. Thus, the UHP metamorphic rocks largely reflect the δ18O values of their premetamorphic igneous or sedimentary precursors. The stable isotope data demonstrate that basaltic, granitic, and sedimentary protoliths of the eclogites, orthogneiss, and paragneiss in the orogen were at or near the earth's surface, and subjected to varying degrees of water-rock interaction at some time before plate subduction. The low- δ18O rocks were isolated from water-rock interactions during their descent to and return from mantle depths. It appears that the oxygen, hydrogen, and carbon on the earth's surface were recycled into the mantle at depths of >200 km by the continental subduction. A fried ice cream model is advanced as an analogy to the rapid processes of both plate subduction and exhumation, with a short residence time of the UHP slab at mantle depths. The entire cycle of subduction, UHP metamorphism, and exhumation is estimated to take place in about 10 to 20 Ma. The 18O-depleted zircons and other minerals acquired their oxygen isotope compositions from low- δ18O magmas that incorporated the isotopic signatures of meteoric water in rifting tectonic zones prior to solidification. The U-Pb discordia dating for the 18O-depleted zircons revealed that the meteoric water-rock interaction occurred at Neoproterozoic, a time being much earlier than the UHP metamorphism at Triassic, but correlated with the Rodinian breakup, positive carbon isotope anomaly in carbonates, and the snowball earth event. The unusually low δ18O values can be acquired from either the meteoric water of cold paleoclimates or the melt water of glacial ice or snow. Neoproterozoic rift magmatism along the northern margin of the Yangtze craton may have provided sufficient heat source to trigger the meteoric-hydrothermal circulation. It is possible that the unusual 18O-depletion in the meta-igneous rocks occurs at some time prior to the snowball earth event, when there is a transition from a very cold earth with continental glaciers to a widely glaciated earth where bulk of the earth is covered by sea ice as defined for the snowball earth. The heterogeneity of oxygen isotope compositions at outcrop scales demonstrates the absence of pervasive fluid infiltration during prograde, peak UHP, and retrograde metamorphism; most rocks appear to have recrystallized under virtually closed system conditions characterized by widespread lack of an aqueous fluid phase. Volatiles may not escape from the rock series during the rapid subduction of the continental crust, resulting in a general lack of syn-collisional arc-magmatism in this orogen. Big differences in pressure and time from the peak UHP stage to the retrograde HP eclogite-facies stage cause significant release of aqueous fluid by dehydration from decompressing slabs during exhumation. As a result, fluid flow occurred in a channellized way on small scales subsequent to the UHP metamorphism, with very limited mobility of fluid at peak UHP conditions. The fluid for retrograde reactions was internally buffered in stable isotope compositions. While some fluids were locally derived from the surrounding gneisses, more fluid was probably derived from internal dehydration of the rock units in question. In addition to the breakdown of hydroxyl-bearing minerals, exsolution of structural hydroxyl dissolved in nominally anhydrous minerals due to abrupt decrease in pressure may have been an important source for the retrograde fluid.
NASA Astrophysics Data System (ADS)
Kimura, N.; Iwashita, N.; Masuda, T.
2009-04-01
1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.
NASA Astrophysics Data System (ADS)
Bertle, R. J.; Götzinger, M. A.; Koller, F.
2003-04-01
Fluid inclusions studies in metamorphic rocks allow to reconstruct not only the chemistry of the fluids enabling and/or supporting metamorphic reactions but also the late metamorphic evolution of orogenesis. Therefore late, discordant quarz-calcite veins were investigated using FI-techniques. The Engadine Window which is exposed at the Swiss-Austrian-border exposes the penninic units of the Western Alps as a tectonic window within the Austroalpine nappes of the Eastern Alps. The nappes of the Engadine window underwent metamorphism and deformation during Tertiary times (THÖNI 1981, BERTLE 2000). The highest unit (Fimber unit) and the core of the window (= Zone of Pfunds) suffered HP-LT-metamorphism. P-T-conditions for parts of the Zone of Pfunds at the region of Piz Mundin are at 13-15 kbar at 380^oC (BOUSQUET et al. 2002) indicated by the occurrence of carpholite and glaucophane. The late metamorphic history is not very well constrained. There exist only a few FI-data published in an abstract by STÖCKHERT et al. 1990 and some unpublished data in RING 1989. During the ongoing mapping campaign of the first author samples from the Fimber unit and the Zone of Pfunds were collected and investigated using a LINKHAM freezing-cooling-stage. The investigated veins are discordant in respect to the main-foliation of the rocks and show nice cristalls of quarz, calcite and sometimes feldspar (adularia). Structural data implie that the investigated veins correspond to a set of ac-joints that correlate to the late updoming of the large "Engadiner Gewölbe" (Engadin anticlinal structure, MATTMÜLLER 1996). All investigated veins (from all tectonic units) show the same relationship to the anticlinal structure. FI-investigations show, that a large amount of the primary FI are decrepitated, however it was possible to find enough to provide a serious statistical data set. FI from Piz Mundin in the core of the Engadine window exhibit at the base of the vein quarz at the contact to the host rock (blueschist) epidote-clinozoisite cristalls. Futheron amphibole is visible. It is common at the base of the vein quarz and decreases towards the middle of the vein. FI are H2O-rich and indicate high pressure of trapping. Quarzes from the upper most part of the Zone of Pfunds from S of Zeblasjoch (W of Samnaun Dorf) show two main groups of primary FI which could be differentiated at room temperature: homogenous FI and such with a bubble. All FI were frozen at max. temperatures of ca. -56 ^oC. Bigger FI show cracking due to cristallisation pressure (build up of "wings"), the cracks however closed again during heating, so that the FI remained closed. Initial melting started between -20 ^oC (first recristallisation signs) and -9 ^oC, final melting was observable at -1 ^oC to 0 ^oC. Then the FI was a.) homogenous or b.) showed a bubble. Homogenisation Temp. of the inclusions with bubble were in the range of 70 to 150 ^oC , most of them between 70 and 80 ^oC and 110 - 125 ^oC. The data indicate a more or less pure H_2O-system for the FI under high pressure. Assuming a cristallisation temperature of the cristalls of about 200 to 250 ^oC and a density of the FI between 0,97 and 1,0 g/cm^3 pressures of 2,5 to 4,5 Kbar are indicated. The same P-T-conditions (same chemistry and melting & homog. Temp.) could be derived from FI in quarz from the Salaaser Kopf (Idalpe) for the late metamorphic evolution of the Fimber unit, indicating that the late metamorphic history of both units is the same. It is concluded that opening of the veins and first cristallisation of vein quarz corresponds to the first signs of updoming of the Engadine anticlinal structure. Updoming of the anticline started when the whole nappe stack was covered by the Austroalpine nappes. Therefore FI show such high pressures for trapping of the fluid. Acknowledgements: Data partly result from FWF-project P. 15278 "Bündnerschieferakkretion in the westlichen Ostalpen". Financal support is greatly acknowledged. References: BERTLE, R. J. 2000: Zur Geologie und Geochronologie um Alp Trida (Samnaun/Schweiz) einschließlich ingenieurgeologischer Fragen der Gebirgsauflösung und des Permafrosts. - Unpubl. Msc-Thesis. Univ. Wien, 395 S. BOUSQUET, R., GOFFÉ, B., VIDAL, O., OBERHÄNSLI, R. & PATRIAT, M. 2002: The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: new constraints on the evolution of the Alps. - Geol. Soc. America Bull., 114/2, S. 207-225. KÜSTER, M. &STÖCKHERT, B. 1997: Density changes of fluid inclusions in high-pressure low-temperature metamorphic rocks from Crete: A thermobarometric approach based on the creep strength of the host minerals. Lithos, 41, S. 151-167. MATTMÜLLER, C. R. 1996: Geometrische Untersuchung des Inntalgewölbes. - Jahrb. Geol. B.-A., 139/1, S. 45-69, Wien 1996. RING, U. 1989: Tectonogenesis of the Penninic/Austroalpine Boundary Zone: The Arosa Zone (Grisons Rätikon area, Swiss-Austrian Alps). - Unpubl. Phd.-Thesis., 177 p., Tübingen. STOECKHERT, B., RÖSSNER, G., KÜSTER, M., HEIDER, M., GUNDLACH, K. &RICHTER, D.K. 1990: High-Pressure Metamorphism of the Mesozoic Sediments in the Lower Engadine Window, Eastern Alps. - Terra Abstracts, 2, S. 34, 1990. THÖNI, M. 1981: Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. - Jahrb. Geol. B.-A., 124/1, S. 111-174, Wien 1981.
NASA Astrophysics Data System (ADS)
Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.
2009-04-01
The storage capacity of fractured hard rocks is lower than porous media and karst formations, though they can yield groundwater of sufficiently good quality for drinking purposes and may host important water resources, even if they are often of low permeability. In particular, for countries like Greece, where water needs for the local population and the tourist industry are excessive and waterfall limited, these reservoirs are of strategic importance. The mountain Range in Eastern Thessaly comprises an extensive nappe of metamorphic rocks, consisting of schists, gneisses, involving partly some ophiolithic rocks and marble intercalations. The thickness of the nappe exceeds 600 m in Ossa, whereas in the area of Pelion is estimated up to 3.000 m. This nappe rests on top of the Autochthonous Olympus- Ossa unit, which forms a massive Mesozoic carbonate sequence. Extensive fieldwork data supported by the analysis of the physical and chemical properties of a large number of springs and combined by the study of the geological structure both local and regional, resulted in important outcomes regarding the fissured rocks permeability, water flow and springs distribution. Schists are characterized by heterogeneity regarding their permeability features. They are divided into hard-rocks where quartz, epidote and amphiboles prevail, displaying higher permeability and soft-rocks where clay minerals prevail, exhibiting low permeability features, because the presence of clay blocks the fissures and prevent any infiltration process. The marbles are of high permeability, but are of limited extent. A few springs are located in marbles, but the vast majority of the springs are associated to the hard-rock schists, are scattered and characterized by high seasonal discharges. In the area of Ossa in particular, the most important reservoirs exist at the bordering zones of the metamorphic and the post-alpine formations due to the enrichment of the sedimentary post-alpine formations. In the area of NE Pelion, 93 springs were recorded and 47 have been analyzed regarding their hydrochemical properties, whereas in the area of Ossa 126 springs have been recorded and 49 have been sampled. The large number of springs implies that water recharge and percolation occurs mainly via the fracture network, forming preferential flow paths. Tectonic deformation has proved to have a fundamental role in the hydrogeological pattern in both localities, because water flow either follows or is severely influenced by the major tectonic structures, such as mega-anticlines and faults. It is interesting to note that this fracturing pattern does vary spatially and in all scales, involving the microscopic (foliation, lineation), the mesoscopic (fractures) and the macroscopic scale (faults). In the microscopic scale the clay/platy minerals in the schists recrystalized perpendicular to the applied stresses, forming foliation features towards the NE, promoting flow parallel to foliation. In the mesoscopic scale, two main set of fractures were observed. The intrabedded longintudinal NE-SW fractures and the transverse NW-SE trending fractures, which are highly penetrative. In the macroscopic scale, faults are several km in length and dominate the groundwater flow, forming preferential pathways. Springs are aligned to the faults and in the area of Pelion, three dominant sets of faults are observed. Two of them are NE-SW trending (N 030o ± 10o and N 050o ± 10o), forming a 20o angle of tectonic wedge, whereas the third set is NW-SE trending (N 320o ± 5o). The geometry of faults in the area of Ossa (striking at N 035o ± 25o and N 325o ± 5o) is similar to the area of Pelion and exerts a similar influence to the distribution of springs. This should be the case in other domains of the Hellenic region with similar lithology that experienced the same deformation phase and features. In the area of Pelion the low conductivity values (90% of the springs display less than 300 µS/cm) and the substantial variability in the discharge rates throughout the year are attributed to a decrease in fracture connectivity with depth, indicating that the aquifers are surficial, of limited capacity and have short residence times. Water physical properties also show that as elevation decreases, conductivity and water temperature values gradually increase. Water in lower altitudes is getting warmer as it flows from higher elevations so that is enriched by the constant input of warmer surficial waters. Moreover, it follows a longer path within the metamorphic rocks, obtaining also higher number of dissolved solids, increasing its conductivity values. Moreover, springs in higher elevations experience a significantly higher drop in the discharge rates during summer, compared to springs in lower elevations, suggesting that there is a time delay mechanism, so that springs in higher elevations recharge the ones in lower elevations. PH values range from slightly acid 6.7 up to alkaline 8.8. The relatively high values of Na+ (0.01 up to 3.94 meq) and Cl- (0.3 to 1.00meq) indicate the influence from sea aerosols. Hydrochemical analysis has also revealed the host rocks. Two hydrochemical types are extracted in Pelion, the Mg-Ca-HCO3 (indicating schists and gneisses influence) and Ca-HCO3 (Marbles influence), and three types in Ossa, Mg-Ca- HCO3 (Schists), Ca-Mg-HCO3 (Marbles) and Mg-HCO3 (mainly peridotites). In conclusion, the thickness, the hydraulic gradient, the physical and chemical properties and the overall pattern of these heterogeneous aquifers change spatially over short distances not only due to lithology, but also due to the tectonic deformation.
Geology of the Lake Mary quadrangle, Iron County, Michigan
Bayley, Richard W.
1959-01-01
The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.