Sample records for epigeic earthworm eisenia

  1. Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya

    2005-06-01

    Investigations were made to explore the potential of an epigeic earthworm Eisenia foetida to transform textile mill sludge spiked with poultry droppings in to value added product, i.e., vermicompost. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 77 days in the laboratory under controlled experimental conditions. The maximum growth was recorded in 100% cow dung (CD). Replacement of poultry droppings by cow dung in feed mixtures and vice versa had little or no effect on worm growth rate and reproduction potential. Worms grew and reproduced favourably in 70% poultry droppings (PD)+30% solid textile mill sludge (STMS) and 60% PD+40% STMS feed mixtures. Greater percentage of STMS in the feed mixture significantly affected the biomass gain and cocoon production. Net weight gain by earthworms in 100% CD was 2.9-18.2 fold higher than different STMS containing feed mixtures. The mean number of cocoon production was between 23.4+/-4.65 (in 100% CD) and 3.6+/-1.04 (in 50% PD+50% STMS) cocoons earthworm(-1) for different feed mixtures tested. Vermicomposting resulted in significant reduction in C:N ratio and increase in nitrogen and phosphorus contents. Total potassium, total calcium and heavy metals (Fe, Zn, Pb and Cd) contents were lower in the final product than initial feed mixtures. Our trials demonstrated vermicomposting as an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm E. foetida if mixed with poultry droppings.

  2. Vermicomposting of sugar industry waste (press mud) mixed with cow dung employing an epigeic earthworm Eisenia fetida.

    PubMed

    Sangwan, P; Kaushik, C P; Garg, V K

    2010-01-01

    In India, millions of tons of press mud (PM) are generated by sugar mills every year. This paper reports the potential of vermitechnology to convert sugar industry waste PM mixed with cow dung (CD) into vermicompost, employing an epigeic earthworm Eisenia fetida. A total of six different reactors were established having different ratios of PM and CD including one control (CD only). The growth and fecundity of E. fetida was monitored for 13 weeks. Maximum growth was recorded in 100% CD, but earthworms grew and reproduced favourably up to 1:1 PM and CD feed composition. However, greater percentages of PM in different reactors significantly affected the growth and fecundity of worms. Vermicomposting resulted in a decrease in carbon concentration and an increase in nitrogen, phosphorus and calcium concentrations of the vermicompost. Investigations indicated that vermicomposting could be an alternative technology for the management of PM into useful fertilizing material, if mixed at maximum 50% with CD.

  3. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Feasibility of utilization of horse dung spiked filter cake in vermicomposters using exotic earthworm Eisenia foetida.

    PubMed

    Sangwan, Pritam; Kaushik, C P; Garg, V K

    2008-05-01

    This contribution reports the potential of vermicomposting technology in the management of horse dung (HD) spiked sugar mill filter cake (SMFC) using an epigeic earthworm Eisenia foetida under laboratory conditions. A total of six vermicomposters filled with different ratios of HD and SMFC were maintained for this study. The growth and fecundity of E. foetida was monitored for 12 weeks. Maximum growth was recorded in 90% HD+10% SMFC feed mixture containing vermicomposter. Earthworms' biomass gain and reproduction was favorably up to 50% HD+50% SMFC feed composition. Maximum cocoons were also recorded in 90% HD+10% SMFC feed mixtures, however increasing proportions of SMFC in different vermicomposters affected the growth and fecundity of worms. A significant decrease in C:N ratio and increase in total kjeldahl nitrogen, total available phosphorus and calcium contents was recorded. The heavy metals content was higher in the vermicompost obtained in all the reactors than initial feed substrates. Based on investigations it is concluded that vermicomposting could be an alternative technology for the management of filter cake if it is mixed in 1:1 ratio with horse dung.

  5. Characterization of two endoglucanases for the classification of the earthworm, Eisenia fetida Waki.

    PubMed

    Akazawa, Shin-ichi; Ikarashi, Yuki; Yarimizu, Jun; Yokoyama, Keisuke; Kobayashi, Tomoya; Nakazawa, Hikaru; Ogasawara, Wataru; Morikawa, Yasushi

    2016-01-01

    Eisenia fetida and Eisenia andrei are vermicomposting species that are used as model animals for testing chemical material toxicology. Eisenia spp. are grown commercially in various fields in Japan. However, these two species have not been classified because it is difficult to distinguish them morphologically; thus, all bred earthworms are called E. fetida. However, it has been proposed that these two species have different expression regulation mechanisms. Here, we classified a sample of earthworms purchased from several farms, confirming that both E. fetida and E. andrei are present in Japanese earthworm breeding programs. We also characterized two highly active endoglucanases (EfEG1 and EfEG2) from the E. fetida Waki strain, which contained strong fibrinolytic enzymes for improving human health. We confirmed that EfEG1 is 1371 bp long and belongs to GHF9. Thus, E. fetida Waki may have commercial application for biomass utilization and as a dietary health supplement.

  6. Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.

    PubMed

    Campos-Herrera, Raquel; Trigo, Dolores; Gutiérrez, Carmen

    2006-05-01

    The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.

  7. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil.

    PubMed

    Omouri, Zohra; Hawari, Jalal; Fournier, Michel; Robidoux, Pierre Yves

    2018-01-01

    The present study describes bioavailability and chronic effects of bismuth to earthworms Eisenia andrei using OECD reproduction test. Adult earthworms were exposed to natural sandy soil contaminated artificially by bismuth citrate. Average total concentrations of bismuth in soil recovered by HNO 3 digestion ranged from 75 to 289mg/kg. Results indicate that bismuth decreased significantly all reproduction parameters of Eisenia andrei at concentrations ≥ 116mg/kg. However, number of hatched cocoons and number of juveniles seem to be more sensitive than total number of cocoons, as determined by IC 50 ; i.e., 182, 123 and > 289mg/kg, respectively. Bismuth did not affect Eisenia andrei growth and survival, and had little effect on phagocytic efficiency of coelomocytes. The low immunotoxicity effect might be explained by the involvement of other mechanisms i.e. bismuth sequestered by metal-binding compounds. After 28 days of exposure bismuth concentrations in earthworms tissue increased with increasing bismuth concentrations in soil reaching a stationary state of 21.37mg/kg dry tissue for 243mg Bi/kg dry soil total content. Data indicate also that after 56 days of incubation the average fractions of bismuth available extracted by KNO 3 aqueous solution in soil without earthworms varied from 0.0051 to 0.0229mg/kg, while in soil with earthworms bismuth concentration ranged between 0.310-1.347mg/kg dry soil. We presume that mucus and chelating agents produced by earthworms and by soil or/and earthworm gut microorganisms could explain this enhancement, as well as the role of dermal and ingestion routes of earthworms uptake to soil contaminant. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    PubMed Central

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  9. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  10. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  11. Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida.

    PubMed

    Qi, Suzhen; Wang, Donghui; Zhu, Lizhen; Teng, Miaomiao; Wang, Chengju; Xue, Xiaofeng; Wu, Liming

    2018-05-01

    Cycloxaprid (CYC) is a novel neonicotinoid insecticide with high activity against resistant pests but is safe for mammals. The toxic effects of CYC on earthworms (Eisenia fetida) were studied in this paper. The 14-day exposure results showed that CYC is potentially toxic to earthworms, with a 14d-LC 50 of 10.21 mg/kg dry soil , and that it induced tissue damage to the epidermis, gut, and neurochord at sublethal doses. During a 21-day exposure, CYC induced oxidative stress in earthworms, and both enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were impacted. In addition, expression of the genes Cat and Sod were down- and upregulated, respectively. The activity of the enzyme acetylcholinesterase (AChE) was increased at day 7 but decreased at day 21 after CYC exposure, while expression of the signal transduction-related genes was significantly regulated. Our study shows for the first time that negative impacts could be induced by CYC on earthworms under both acute and chronic exposure through oxidative stress and gene regulation. The present study provides a database for assessing the environmental risk to non-target organisms resulting from the use of CYC.

  12. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya; Dilbaghi, Neeraj

    2006-11-01

    Vermicomposting is commonly used for the management of organic wastes. We have investigated the potential of an epigeic earthworm, Eisenia foetida, to transform solid textile mill sludge (STMS) spiked with anaerobically digested biogas plant slurry (BPS) into vermicompost to evaluate the feasibility of vermicomposting in industries for waste management. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 15 weeks in laboratory under controlled experimental conditions. E. foetida did not survive in fresh STMS. But worms grew and reproduced in STMS spiked with BPS feed mixtures. A greater percentage of STMS in feed mixture affected biomass gain and cocoon production by earthworms. The maximum growth was recorded in 100% BPS. The net weight gain by E. foetida in 100% BPS was two-four-fold higher than STMS-containing feed mixtures. After 15 weeks, maximum cocoons (78) were counted in 100% BPS and minimum (26) in 60% BPS+40% STMS feed. Vermicomposting resulted in pH shift toward acidic, significant reduction in C:N ratio, and increase in nitrogen, phosphorus, and potassium contents. Microbial activity measured as dehydrogenase activity increased with time up to day 75 but decreased on day 90, indicating the exhaustion of feed and decrease in microbial activity. These experiments demonstrate that vermicomposting can be an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm, E. foetida, if mixed with anaerobically digested BPS in appropriate ratios.

  13. Community-specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest.

    PubMed

    Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J

    2013-12-01

    Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.

  14. Toxic responses of Sox2 gene in the regeneration of the earthworm Eisenia foetida exposed to Retnoic acid.

    PubMed

    Tao, Jing; Rong, Wei; Diao, Xiaoping; Zhou, Hailong

    2018-01-01

    Exogenous retinoic acid delays and disturbs the regeneration of Eisenia foetida. The stem cell pluripotency factor, Sox2, can play a crucial role in cell reprogramming and dedifferentiation. In this study, we compared the regeneration of Eisenia foetida in different segments after amputation and the effects of retinoic acid on the regeneration of different segments. The results showed that the regeneration speed of the head and tail was slightly faster than the middle part, and retinoic acid disrupted and delayed the regeneration of the earthworm. The qRT-PCR and Western blot analysis showed that the expression of the Sox2 gene and Sox2 protein was highest on the seventh day in different segments (p<0.05). After treatment with retinoic acid, the expression level of the Sox2 gene and Sox2 protein was significantly reduced (p<0.05). The results indicated that the regeneration of earthworms and the formation of blastema are related to the expression of the Sox2 gene and protein. Retinoic acid delays and interferes with the regeneration of the earthworm by affecting the expression levels of the Sox2 gene and protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2013-09-01

    The aim of present study was for the vermiremediation of dyeing sludge from textile mill into nutrient-rich vermicompost using earthworm Eisenia fetida. The dyeing sludge was mixed with cattle dung in different ratios, i.e., 0:100 (D0), 25:75 (D25), 50:50 (D50), 75:25 (D75), and 100:0 (D100) with earthworms, and 0:100 (S0), 25:75 (S25), 50:50 (S50), 75:25 (S75), and 100:0 (S100) without earthworms. Minimum mortality and maximum population build-up were observed in a 25:75 mixture. Nitrogen, phosphorus, sodium, and pH increased from the initial to the final products with earthworms, while electrical conductivity, C/N ratio, organic carbon, and potassium declined in all the feed mixtures. Vermicomposting with E. fetida was better for composting to change this sludge into nutrient-rich manure.

  16. Effects of Earthworm (Eisenia fetida) and Wheat (Triticum aestivum) Straw Additions on Selected Properties of Petroleum-Contaminated Soils

    Treesearch

    Mac A. Callaham; Arthur J. Stewart; Clara Alarcon; Sara J. McMillen

    2002-01-01

    Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum...

  17. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida).

    PubMed

    Liu, Tong; Wang, Xiuguo; Chen, Dan; Li, Yiqiang; Wang, Fenglong

    2018-04-15

    Diamide insecticides have become the fourth most commonly used insecticide class in the world. Chlorantraniliprole (CAP) is a first-generation diamide insecticide with broad application potential. In this experiment, the eco-toxicity of CAP in soil at 0.1, 1.0, 5.0 and 10.0mg/kg on earthworms (Eisenia fetida) was evaluated during a 42 d exposure. More specifically, the environmental fate and transport of CAP between soil and earthworms was monitored during the exposure period. The present results indicated that the CAP contents of 0.1, 1.0, 5.0 and 10.0mg/kg treatments decreased to no more than 20% in the soil after 42 d of exposure. The accumulation of CAP in earthworms was 0.03, 0.58, 4.28 and 7.21mg/kg earthworm (FW) at 0.1, 1.0, 5.0 and 10.0mg/kg after 42 d of exposure. At 0.1mg/kg and 1.0mg/kg, CAP had no effect on earthworms during the exposure period. The weight of earthworms was significantly reduced at 5.0 and 10.0mg/kg at 28 and 42 days after CAP application. After the 14th day, CAP induced excess production of reactive oxygen species (ROS) at 5.0 and 10.0mg/kg, resulting in oxidative damage to biomacromolecules. We believe that CAP has a high risk potential for earthworms when used at 5.0 and 10.0mg/kg. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.

    PubMed

    Bigorgne, Emilie; Cossu-Leguille, Carole; Bonnard, Marc; Nahmani, Johanne

    2010-08-01

    The aim of this study was to examine genotoxic effects of nickel (Ni=105 mg kg(-1)), trivalent and hexavalent chromium (Cr=491 mg kg(-1)) on the Eisenia fetida earthworm after 2 and 4d of exposure to two different spiked soils (an artificial (OECD) and a natural one). DNA damages were evaluated on the earthworm's coelomocytes using the comet assay. After an exposure into OECD spiked soils, Ni did not induce genotoxic effect whereas Cr(III) and Cr(VI) revealed to be genotoxic after 2d of exposure. After 4d of exposure, only Cr(VI) still induced significant damages. In natural spiked soils, nickel and Cr(III) revealed to be genotoxic after 2 and 4d of exposure. Concerning Cr(VI) toxicity, all the earthworms died after 1d of exposure. These results underline the importance to take into account the nature and the speciation of metallic pollutants, although the experiment has been performed on spiked soil with higher bioavailibity than in contaminated natural soil. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida.

    PubMed

    Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei

    2014-10-01

    The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures. © 2014 SETAC.

  20. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils.

    PubMed

    Duan, Xiongwei; Xu, Meng; Zhou, Youya; Yan, Zengguang; Du, Yanli; Zhang, Lu; Zhang, Chaoyan; Bai, Liping; Nie, Jing; Chen, Guikui; Li, Fasheng

    2016-02-01

    The bioavailability and toxicity of metals in soil are influenced by a variety of soil properties, and this principle should be recognized in establishing soil environmental quality criteria. In the present study, the uptake and toxicity of Cu to the earthworm Eisenia fetida in 15 Chinese soils with various soil properties were investigated, and regression models for predicting Cu toxicity across soils were developed. The results showed that earthworm survival and body weight change were less sensitive to Cu than earthworm cocoon production. The soil Cu-based median effective concentrations (EC50s) for earthworm cocoon production varied from 27.7 to 383.7 mg kg(-1) among 15 Chinese soils, representing approximately 14-fold variation. Soil cation exchange capacity and organic carbon content were identified as key factors controlling Cu toxicity to earthworm cocoon production, and simple and multiple regression models were developed for predicting Cu toxicity across soils. Tissue Cu-based EC50s for earthworm cocoon production were also calculated and varied from 15.5 to 62.5 mg kg(-1) (4-fold variation). Compared to the soil Cu-based EC50s for cocoon production, the tissue Cu-based EC50s had less variation among soils, indicating that metals in tissue were more relevant to toxicity than metals in soil and hence represented better measurements of bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    PubMed

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  3. Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida.

    PubMed

    Zhang, Liujun; Hu, Changwei; Wang, Weili; Ji, Funian; Cui, Yibin; Li, Mei

    2014-05-01

    Laboratory experiments were undertaken to relate biomarker responses to the toxicities of multi-walled carbon nanotubes (MWCNTs) and sodium pentachlorophenate (PCP-Na), both individually and combined. The acute toxicities of MWCNTs and PCP-Na on earthworm Eisenia fetida were studied through different exposure methods (filter paper contact test, immersion contact test, and artificial soil contact test). Enzyme activity and malondialdehyde (MDA) content in the earthworm E. fetida exposed to MWCNTs and PCP-Na in filter paper contact test, both individually and under combined exposure, were determined. After exposure, PCP-Na induced observable acute toxicity while the MWCNTs induced slight toxicity. Interestingly the earthworms exposed to the mixture of MWCNTs and PCP-Na demonstrated different expression of enzymatic biomarkers from those exposed to MWCNTs or PCP-Na alone. Our results indicated that the toxicity of PCP-Na on E. fetida may be alleviated by the appearance of MWCNTs for all exposure methods except for immersion contact test. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    PubMed

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.).

    PubMed

    Sharma, Kavita; Garg, V K

    2018-02-01

    Present study was undertaken to investigate the vermicomposting of two different organic wastes (rice straw and paper waste) employing, Eisenia fetida. Nine feedstocks were prepared with different ratios of wastes using cow dung as bulking substrate. After pre-composting, worms were allowed to feed on different feedstocks for 105 days under laboratory conditions. The results showed that NPK content was higher in the vermicompost. Heavy metal content was also higher in the vermicomposts. Whereas total organic carbon and C:N ratio were lower after vermicomposting, by 17.38-58.04% and 19-102% respectively. SEM images revealed changes in the morphology of vermicompost. Earthworm growth and reproduction was significant in different feedstocks except one containing 50% rice straw depicting that this ratio is not suitable for the earthworms. Results further demonstrated that proportion of bulking substrate affect the earthworm growth and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of soil properties on the bioaccumulation and effects of arsenic in the earthworm Eisenia andrei.

    PubMed

    Romero-Freire, A; Peinado, F J Martín; Ortiz, M Díez; van Gestel, C A M

    2015-10-01

    This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations in the earthworms (AsE) were greatly different between soils. These two variables were highly correlated and were key factors in earthworm toxicity response. AsW was explained by some soil properties, such as the pH, calcium carbonate content, ionic strength, texture or oxide forms. Toxicity showed a clear variation between soils, in some cases without achieving 50 % adverse effect at the highest As concentration added (600 mg kg(-1)). Nevertheless, soil properties did not show, in general, a high relation with studied toxicity endpoints, although the high correlation with AsW could greatly reduce indirectly As bioavailability and toxicity risk for earthworms. Obtained results suggest that soil properties should be part of the criteria to establishing thresholds for contaminated soils because they will be key in controlling As availability and thus result in different degrees of toxicity.

  7. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica.

    PubMed

    Brami, C; Glover, A R; Butt, K R; Lowe, C N

    2017-07-01

    Increasing commercial application of silver nanoparticles (Ag NP) and subsequent presence in wastewater and sewage sludge has raised concerns regarding their effects in the aquatic and terrestrial environment. Several studies have employed standardised acute and chronic earthworm-based tests to establish the toxicological effects of Ag NP within soil. These studies have relied heavily on the use of epigiec earthworm species which may have limited ecological relevance in mineral soil. This study assessed the influence of Ag NP (uncoated 80nm powder) and AgNO 3 on survival, change in biomass and avoidance behaviour in a soil dwelling (endogiec) species, Allolobophora chlorotica. Earthworms were exposed for 14 days to soils spiked with Ag NP or AgNO 3 at 0, 12.5, 25, 50 and 100mgkg -1 either separately for survival and biomass measurement, or combined within a linear gradient to assess avoidance. Avoidance behaviour was shown to provide the most sensitive endpoint with an observable effect at an Ag NP/AgNO 3 concentration of 12.5mgkg -1 compared with 50mgkg -1 for biomass change and 100mgkg -1 for survival. Greater mortality was observed in AgNO 3 (66.7%) compared with Ag NP-spiked soils (12.5%) at 100mgkg -1 , attributed to increased presence of silver ions. Although comparison of results with studies employing Eisenia fetida and Eisenia andrei suggest that the A. chlorotica response to Ag NP is more sensitive, further research employing both epigeic and endogeic earthworms under similar experimental conditions is required to confirm this observation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems.

    PubMed

    Zhao, Shuyan; Zhu, Lingyan

    2017-01-01

    The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Earthworms and post agricultural succession in the Neotropics

    Treesearch

    Grizelle Gonzalez; C.Y. Huang; S.C. Chang

    2008-01-01

    Earthworms are classified into endogeic, anecic, and epigeic species to represent soil, soil and litter, and litter feeders, respectively (Bouché 1977). Earthworms can alter soil physical properties and biogeochemical processes (e.g., Ewards and Bohlen 1996) according to their functionality. Endogeic earthworms alter soil properties primarily through changing soil...

  10. 1H NMR Metabolic Profiling of Earthworm (Eisenia fetida) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite—Malylglutamate

    PubMed Central

    2017-01-01

    Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance. PMID:28753027

  11. 1H NMR Metabolic Profiling of Earthworm (Eisenia fetida) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite-Malylglutamate.

    PubMed

    Griffith, Corey M; Williams, Preston B; Tinoco, Luzineide W; Dinges, Meredith M; Wang, Yinsheng; Larive, Cynthia K

    2017-09-01

    Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1 H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance.

  12. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    PubMed

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    PubMed

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  14. Effect of the transit through the gut of earthworm (Eisenia fetida) on fractionation of Cu and Zn in pig manure.

    PubMed

    Li, Lingxiangyu; Wu, Jianyang; Tian, Guangming; Xu, Zhenlan

    2009-08-15

    To investigate the effect of the transit through the gut of earthworm (Eisenia fetida) on the fractionation of Cu and Zn in pig manure, earthworms were reared with pig manure in the greenhouse. Both the pig manure and the earthworm casts were subjected to a five-step sequential extraction of Cu and Zn. The content of Cu bound to organic matter in pig manure increased from 60% to 75% after transit through the gut of earthworm, whereas that of Zn decreased from 50% to 25%. It demonstrated that Cu had a strong affinity towards organic matter. The share of Cu and Zn in the exchangeable fraction was reduced by the transit through the gut of earthworm. Based on these changes, Cu was more bioavailable, whereas Zn was less bioavailable. The factors affecting metal fractionation, like pH, organic matter (OM) and total phosphorous (TP) contents, and total metal concentration, were also affected significantly by the transit through the gut of earthworm. Stepwise multiple regression analysis revealed that the fractionation of Cu in the earthworm casts was influenced by OM, TP and the amount of Cu in the earthworm casts. The total Zn concentration in the earthworm casts was the primary factor that explained most of the variation in Zn fractionation. The present study demonstrated that the digestive activity in the gut of E. fetida played an important role in the fraction redistribution of Cu and Zn in pig manure.

  15. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive earthworm reproduction

    Treesearch

    Bruce Snyder; Mac Callaham; Christopher Lowe; Paul Hendrix

    2013-01-01

    The invasive non-native earthworm Amynthas agrestis (Goto and Hatai, 1899) has recently been documented invading forests of the Appalachian Mountains in the southeastern United States. This epigeic earthworm decreases the depth of organic soil horizons, and this may play a role in the decrease of millipede richness and abundance associated with A. agrestis invasion. To...

  16. Nutrient and enzymatic changes of hydrolysed tannery solid waste treated with epigeic earthworm Eudrilus eugeniae and phytotoxicity assessment on selected commercial crops.

    PubMed

    Ravindran, B; Contreras-Ramos, S M; Wong, J W C; Selvam, A; Sekaran, G

    2014-01-01

    Animal fleshing (ANFL) is the predominant proteinaceous solid waste generated during processing of leather and it is confronting disposal problems. The aim of this study was to assess the potential of epigeic earthworm Eudrilus eugeniae to utilize and transform the fermented ANFL in the solid state (SSF) and submerged state (SmF) into a value added product along a low residence period (25 days). A total of six treatment units containing different waste mixture compositions were established. Fifty healthy and non-clitellated earthworms were introduced in three different treatment containers: control, SSF, and SmF (+worm). Another set of treatment mixtures (control, SSF, SmF) was established without earthworms (-worm) to compare the results. The products were characterized for physico-chemical, enzymatic analysis and seedling growth parameters to compare the differences in the process with and without earthworms. The changes observed in the analytical parameters were in the following order: SSF > SmF > control mixtures (p < 0.05). The vermicompost showed a significant reduction in heavy metals, total organic carbon and an increase in total Kjeldhal nitrogen as compared to the product untreated by earthworms. The maximum enzymatic activities were observed after 21 days of vermicomposting. The relative seed germination of vermicompost extracts were in the order of tomato (Lycopersicon esculentum) > green gram (Vigna radiata) > cucumber (Cucumis sativus) > bottle gourd (Lagenaria siceraria (Mol.) Standl.) and showed no phytotoxicity effects. The results indicated that the combination of both ANFL hydrolysis through fermentation and vermicomposting is a good alternative to the management of this kind of waste.

  17. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta.

    PubMed

    Suleiman, Hanine; Rorat, Agnieszka; Grobelak, Anna; Grosser, Anna; Milczarek, Marcin; Płytycz, Barbara; Kacprzak, Małgorzata; Vandenbulcke, Franck

    2017-10-01

    The aim of this study was to assess the effectiveness of vermicomposting process applied on three different sewage sludge (precomposted with grass clippings, sawdust and municipal solid wastes) using three different earthworm species. Selected immune parameters, namely biomarkers of stress and metal body burdens, have been used to biomonitor the vermicomposting process and to assess the impact of contaminants on earthworm's physiology. Biotic and abiotic parameters were also used in order to monitor the process and the quality of the final product. Dendrobaena veneta exhibited much lower resistance in all experimental conditions, as the bodyweight and the total number of circulating immune cells decreased in the most contaminated conditions. All earthworm species accumulated heavy metals as follows Cd>Co>Cu>Zn>Ni>Pb>Cr: Eisenia sp. worms exhibited the highest ability to accumulate several heavy metals. Vermicompost obtained after 45days was acceptable according to agronomic parameters and to compost quality norms in France and Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures.

    PubMed

    Jager, Tjalling; Baerselman, Rob; Dijkman, Ellen; de Groot, Arthur C; Hogendoorn, Elbert A; de Jong, Ad; Kruitbosch, Jantien A W; Peijnenburg, Willie J G M

    2003-04-01

    The bioavailability of polycyclic aromatic hydrocarbons (PAHs) for earthworms (Eisenia andrei) was experimentally determined in seven field-polluted soils and 15 soil-sediment mixtures. The pore-water concentration of most PAHs was higher than predicted. However, most of the compound was associated with dissolved organic carbon (DOC) and not directly available for uptake by earthworms. The apparent sorption could be reasonably predicted on the basis of interactions with DOC; however, the biota-soil accumulation factors (BSAFs) for earthworms were up to two orders of magnitude lower than predicted by equilibrium partitioning. The large variability between sites was not fully explained by differences in sorption. Experimental results indicate that the pool of freely dissolved PAHs in the pore water became partially depleted because of uptake by the earthworms and that bioaccumulation is thus also influenced by the kinetics of PAH desorption and mass transport. A pilot study with Lumbricus rubellus showed that steady-state body residues were well correlated to E. andrei. Current results show that depositing dredge spoil on land may lead to increased bioavailability of the lower-molecular-weight PAHs. However, risk assessment can conservatively rely on equilibrium partitioning, but accurate prediction requires quantification of the kinetics of bioavailability.

  19. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil

    NASA Astrophysics Data System (ADS)

    Domínguez, Anahí; Brown, George Gardner; Sautter, Klaus Dieter; Ribas de Oliveira, Cintia Mara; de Vasconcelos, Eliane Carvalho; Niva, Cintia Carla; Bartz, Marie Luise Carolina; Bedano, José Camilo

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate’s main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxicological methods (ISO). Field-relevant concentrations of AMPA had no significant effects on mortality in acute or chronic assays. Except at the highest concentration tested, a significant biomass loss was observed compared to controls in the chronic assay. The number of juveniles and cocoons increased with higher concentrations of AMPA applied, but their mean weights decreased. This mass loss indicates higher sensitivity of juveniles than adults to AMPA. Our results suggest that earthworms coming from parents grown in contaminated soils may have reduced growth, limiting their beneficial roles in key soil ecosystem functions. Nevertheless, further research is needed to better understand the mechanisms underlying the sublethal effects observed here.

  20. Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny).

    PubMed

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Ponsankar, Athirstam; Thanigaivel, Annamalai; Chellappandian, Muthiah; Edwin, Edward-Sam; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2018-04-01

    Comparative toxicity of two chemical pesticides (temephos and monocrotophos) versus a plant-derived betel leaf oil Piper betle (L.) to earthworm Eudrilus eugeniae (Kinberg) and redworm Eisenia fetida Savigny, historically: Eisenia foetida (Savigny 1826), was evaluated. Mortality rate was more prominent in temephos at 100 μg concentration to both the earthworms in filter paper test (FPT) as well as 10 mg concentration in artificial soil test (AST). In contrast, P. betle does not display much mortality rate to both the earthworms even at 1000 mg of treatment concentrations. The lethal concentration (LC 50 ) value was observed at 3.89 and 5.26 mg/kg for temephos and monocrotophos against E. eugeniae and 3.81 and 5.25 mg/kg to E. fetida, respectively. Whereas, LC 50 value of betel leaf oil was only observed at 3149 and 4081 mg/kg to E. eugeniae and E. fetida, respectively. Correspondingly, the avoidance or attraction assay also displayed that earthworms were more sensitive to the soil containing chemical pesticides. Whereas, the avoidance percentage was decreased in the P. betle oil. Similarly, sublethal concentration of chemical pesticides (5 and 6.5 mg) significantly reduced the earthworm weight and growth rate. However, P. betle oil did not change the developmental rate in the duration of the assay (2, 7 and 14 days) even at 4000 mg treatment concentration. The enzyme ratio of CAT and SOD was also affected significantly after exposure to the chemical pesticides (6.5 mg/kg). Hence, our study implied the risk assessment associated with the chemical pesticides and also recommends plant-derived harmless P. betle oil against beneficial species as an alternative pest control agent.

  1. Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida.

    PubMed

    Paul, Piuly; Ghosh, Upal

    2011-12-01

    In this study we investigated the use of activated carbon (AC) as a soil amendment for reducing bioavailability of polychlorinated biphenyls (PCBs) to the earthworm Eisenia fetida. Artificial soil was contaminated with PCBs and used in bioaccumulation experiments fresh or after aging for 19 months. PCB bioaccumulation in earthworms was reduced by 68% when AC was placed as a layer without mixing and by 94% when AC was manually mixed into the soil. Aging of the same AC mixed soil for 19 months resulted in an overall reduction of 99% in PCB biouptake. AC-treated aged soil also showed two orders of magnitude lower equilibrium aqueous concentrations of PCBs compared to untreated aged soils. The findings from this study indicate that application of engineered sorbents like AC to PCB impacted soils may greatly reduce PCB uptake at the base of the terrestrial food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  3. Perfluoroalkylsulfonic and carboxylic acids in earthworms (Eisenia fetida): Accumulation and effects results from spiked soils at PFAS concentrations bracketing environmental relevance.

    PubMed

    Karnjanapiboonwong, Adcharee; Deb, Sanjit K; Subbiah, Seenivasan; Wang, Degeng; Anderson, Todd A

    2018-05-01

    Effects of perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluoroheptanoic acid (PFHpA) on earthworms (Eisenia fetida) in soils contaminated with these compounds at 0.1, 1, 10, 1,000, and 100,000 μg kg -1 dry weight, covering concentration levels found in background, biosolid-amended, and facility-surrounding soils, were investigated. Earthworms were exposed to spiked soil for 21 days. Concentrations of these compounds in earthworms after 21-d exposure ranged from below detection to 127 mg kg -1 wet weight with the rank order of PFNA > PFHxS > PFHpA > PFBS; no mortality of earthworms was observed in all treatments including controls, except PFBS at 1,000 μg kg -1 and all PFASs at 100,000 μg kg -1 . The highest weight loss (29%) was observed for earthworms exposed to PFNA at 100,000 μg kg -1 , which was significantly different from all other treatments except PFHpA at 100,000 μg kg -1 . These results are expected to fill some data gaps in toxicity of PFASs in terrestrial environments and provide helpful information on the potential for trophic transport of PFASs from soil to higher organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    PubMed

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Killing of intrafamilial leukocytes by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    When Lumbricus and Eisenia coelomocytes are cultured together in intrafamilial xenogeneic combinations, significant cytotoxicity occurs at 24 h but not at 5 nor 72 h, as shown by trypan blue assay. In a 4.5-h assay, measuring 51Cr release, using an effector/target ratio of 25:1, unpooled cells from a single Lumbricus killed Eisenia cells at levels of 6% and 14%. However, Eisenia coelomocyte survival was high and identical in either cell-free xenogeneic (Lumbricus) coelomic fluid or in artificial medium. In this 1-way assay, earthworm (Lumbricus) coelomocytes act as effector cells that kill non-self target cells, even those of other earthworms. Comparisons with previous results reveal greater reliability and consistently repeatable results when the 51Cr release assay is used to measure cytotoxicity regardless of the targets.

  6. Effects of the amendment of biochars and carbon nanotubes on the bioavailability of hexabromocyclododecanes (HBCDs) in soil to ecologically different species of earthworms.

    PubMed

    Li, Bing; Zhu, Hongkai; Sun, Hongwen; Xu, Jiayao

    2017-03-01

    Biochar is a promising material used in soil amendment and carbon nanotubes may enter soil due to its increasing application. These carbonaceous materials may change the bioavailability of pollutants in soil. In this concern, 0.5% w/w multi-walled carbon nanotubes (MWCNTs) and 3 corn-straw biochars acquired at different pyrolyzing temperatures were used in soil amendment and their influences on the bioavailability of hexabromocyclododecanes (HBCDs), a brominated flame retardant, to 2 ecologically different earthworm species were studied. The amendment of 4 carbonaceous materials all reduced the bioaccumulation of HBCDs in earthworms by 18.2%-67.3%, which varied depending on the type of carbonaceous materials and the pyrolyzing temperature of biochars. The reduction in HBCDs uptake by Eisenia fetida (an epigeic species) was greater than by Metaphire guillelmi (an anecic species). The 2 earthworm species both showed bioaccumulative selectivity on certain HBCD diastereoisomer and enantiomer in the amended soils, which was similar to that in the control soil. Moreover, Tenax-assisted HBCDs desorption test was carried out for the simulation of their bioavailability. The rapid desorption fraction (F rap ), total desorption (15 d), and 24 h desorption all correlated well with the uptake of HBCDs in the earthworms, suggesting that the 24 h-desorption, due to its easy availability, can be a good proxy to predict the bioavailability of HBCDs to earthworms in soil. Copyright © 2016. Published by Elsevier Ltd.

  7. Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny).

    PubMed

    Vig, Adarsh Pal; Singh, Jaswinder; Wani, Shahid Hussain; Singh Dhaliwal, Salwinder

    2011-09-01

    The present study revealed the role of earthworm in converting tannery sludge into a valuable product. Tannery sludge was toxic to earthworm, therefore it was mixed with cattle dung in different proportions viz. 0:100 (T(0)), 10:90 (T(10)), 25:75 (T(25)), 50:50 (T(50)) and 75:25 (T(75)) on dry weight basis. The minimum mortality and highest population buildup of worms was in T(0) mixture. Nitrogen, sodium, phosphorus and pH increased from initial in the range of 7.3-66.6%, 16.90-70.58%, 8.57-44.8% and 2.8-13.65%, respectively. On the other hand potassium, organic carbon and electrical conductivity decreased in the range of 4.34-28.5%, 7.54-22.35% and 32.35-53.12%, respectively. C:N ratio decreased from 20.53% to 47.36% in the final products. Transition metals increased significantly from the initial value and within the permissible limit. The result indicated that vermicomposting with Eisenia fetida is better for changing this sludge into nutrient rich manure in a short period of time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    PubMed

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida).

    PubMed

    Zhou, Chui-Fan; Wang, Yu-Jun; Li, Cheng-Cheng; Sun, Rui-Juan; Yu, Yuan-Chun; Zhou, Dong-Mei

    2013-09-01

    Glyphosate (GPS) and copper (Cu) are common pollutants in soils, and commonly co-exist. Due to the chemical structure of GPS, it can form complexes of heavy metals and interface their bioavailability in soil environment. In order to explore the interactions between GPS and Cu, subacute toxicity tests of Cu and GPS on soil invertebrate earthworms (Eisenia fetida) were conducted. The relative weight loss and whole-worm metal burdens increased significantly with the increasing exposure concentration of Cu, while the toxicity of GPS was insignificant. The joint toxicity data showed that the relative weight loss and the uptake of Cu, as well as the superoxide dismutase, catalase and malondialdehyde activities, were significantly alleviated in the present of GPS, which indicated that GPS could reduce the toxicity and bioavailability of Cu in the soil because of its strong chelating effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  11. Enzymatic dynamics into the Eisenia fetida (Savigny, 1826) gut during vermicomposting of coffee husk and market waste in a tropical environment.

    PubMed

    Ordoñez-Arévalo, Berenice; Guillén-Navarro, Karina; Huerta, Esperanza; Cuevas, Raúl; Calixto-Romo, M Angeles

    2018-01-01

    Epigeic worms modify microbial communities through their digestive processes, thereby influencing the decomposition of organic matter in vermicomposting systems. Nevertheless, the enzyme dynamics within the gut of tropically adapted earthworms is unknown, and the enzymes involved have not been simultaneously studied. The activities of 19 hydrolytic enzymes within three different sections of the intestine of Eisenia fetida were determined over a fasting period and at 24 h and 30, 60, and 90 days of vermicomposting, and data were evaluated by multivariate analyses. There were found positive correlations between the maximal activity of glycosyl hydrolases and one esterase with the anterior intestine (coincident with the reduction of hemicellulose in the substrate) and the activity of the protease α-chymotrypsin with posterior intestine. The results suggest that activities of enzymes change in a coordinated manner within each gut section, probably influenced by selective microbial enzyme enrichment and by the availability of nutrients throughout vermicomposting.

  12. Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei.

    PubMed

    Savard, Kathleen; Berthelot, Yann; Auroy, Aurelie; Spear, Philip A; Trottier, Bertin; Robidoux, Pierre Yves

    2007-10-01

    High metal (e.g., Pb) concentrations are typically found in explosive-contaminated soil, and their presence may increase, decrease, or not influence toxicity predicted on the basis of one explosive alone (e.g., HMX). Nevertheless, few data are available in the scientific literature for this type of multiple exposure. Soil organisms, such as earthworms, are one of the first receptors affected by the contamination of soil. Therefore, a reproductive study was conducted using Eisenia andrei in a forest-type soil. Both HMX and Pb decreased reproduction parameters (number of total cocoons, hatched cocoons, and surviving juveniles) individually. Based on the total number of cocoons, HMX was more toxic in a forest soil than Pb, with EC(50) of 31 mg kg(-1), and 1068 mg kg(-1), respectively. The slope of the concentration-response curve was significantly greater in the case of Pb, which is consistent with the possibility that the two compounds do not act on the same target site. The response-addition model was used to predict the response of earthworms and to test for interaction between the two contaminants. The predicted toxicity was not significantly different than the observed toxicity, implying that Pb and HMX were considered noninteractive compounds. The combined action of Pb-HMX may be described, therefore, as dissimilar-noninteractive joint action in a forest soil. The results illustrate the relevance of considering the presence of metals in the risk assessment of explosive-contaminated sites because metals can add their toxicity to explosives. Extension of this study to other types of soil and other metals would improve the understanding of toxicity at these sites.

  13. Responses of Earthworm to Aluminum Toxicity in Latosol

    Treesearch

    Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin Xu

    2012-01-01

    Excess aluminum (Al) in soils due to acid rain leaching is toxic to water resources and harmful to soil organisms and plants. This study investigated adverse impacts of Al levels upon earthworms (Eisenia fetida) from the latosol (acidic red soil). Laboratory experiments were performed to examine the survival and avoidance of earthworms from high Al...

  14. Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point.

    PubMed

    Liang, Ruoyu; Chen, Juan; Shi, Yajuan; Lu, Yonglong; Sarvajayakesavalu, Suriyanarayanan; Xu, Xiangbo; Zheng, Xiaoqi; Khan, Kifayatullah; Su, Chao

    2018-05-15

    Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1 H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1 H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei.

    PubMed

    Romero-Freire, Ana; Lofts, Stephen; Martín Peinado, Francisco J; van Gestel, Cornelis A M

    2017-01-01

    To assess the influence of soil properties and aging on the availability and toxicity of zinc (Zn) applied as nanoparticles (Zn oxide [ZnO]-NPs) or as Zn 2+ ions (Zn chloride [ZnCl 2 ]), 3 natural soils were individually spiked with either ZnO-NPs or ZnCl 2 and incubated for up to 6 mo. Available Zn concentrations in soil were measured by porewater extraction (ZnPW), whereas earthworms (Eisenia andrei) were exposed to study Zn bioavailability. Porewater extraction concentrations were lower when Zn was applied as NPs compared to the ionic form and decreased with increasing soil pH. For both Zn forms and Zn-PW values were affected by aging, but they varied among the tested soils, highlighting the influence of soil properties. Internal Zn concentration in the earthworms (ZnE) was highest for the soil with high organic carbon content (5.4%) and basic pH (7.6) spiked with Zn-NPs, but the same soil spiked with ZnCl 2 showed the lowest increase in ZnE compared to the control. Survival, weight change, and reproduction of the earthworms were affected by both Zn forms; but differences in toxicity could not be explained by soil properties or aging. This shows that ZnO-NPs and ZnCl 2 behave differently in soils depending on soil properties and aging processes, but differences in earthworm toxicity remain unexplained. Environ Toxicol Chem 2017;36:137-146. © 2016 SETAC. © 2016 SETAC.

  16. In vitro Antiproliferative Effect of Earthworm Coelomic Fluid of Eudrilus Eugeniae, Eisenia Foetida, and Perionyx Excavatus on Squamous Cell Carcinoma-9 Cell Line: A Pilot Study.

    PubMed

    Augustine, Dominic; Rao, Roopa S; Anbu, Jayaraman; Chidambara Murthy, K N

    2017-12-01

    The earthworm coelomic fluid (ECF) has shown proven antiproliferative effect against breast, liver, gastrointestinal, and brain cancer, but it is least explored in oral cancer. The present in vitro study is an attempt to investigate the antiproliferative activity of ECF on oral cancer cell line squamous cell carcinoma (SCC)-9. ECF was collected from the species Eudrilus eugeniae (EE), Eisenia foetida (EF), and Perionyx excavatus (PE) stored at -80°C. Percentage inhibition of ECF on squamous cell carcinoma-9 cells in vitro was recorded at 24 h. Protein estimation was done using Bradford protein assay validated by the biuret method. Cytotoxicity was tested at 2.5, 5, 10, 20, 40, and 80 μg/ml concentrations by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in SCC-9 cells in vitro . GraphPad Prism 7.0 software was used to calculate the inhibitory concentration (IC 50 ). Chi-square test was used to analyze the difference between samples. The test samples EE, EF, and PE inhibited the growth of SCC-9 cells significantly in a dose-dependent manner, and the IC 50 values were found to be 4.6, 44.69, and 5.27 μg/ml, respectively. The antiproliferative effect was found to be variable among the three earthworm species with EE showing the most promising effect followed by PE and EF. Establishing the antiproliferative effect of ECF on oral cancer cells could be an initial step toward drug development and future anticancer research. The preliminary investigation has shown that ECF has a promising antiproliferative effect on oral cancer cells in vitro . The present pilot study evaluated the in vitro antiproliferative effect of earthworm coelomic fluid (ECF) of Eudrilus eugeniae (EE), Eisenia foetida (EF), and Perionyx excavatus (PE) on squamous cell carcinoma-9 cell line. The ECF inhibitory activity was promising at inhibitory concentration values of 4.6, 44.69, and 5.27 μg/ml, respectively. Further studies pertaining to antiproliferative mechanism of EE

  17. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris.

    PubMed

    Arnold, R E; Hodson, M E

    2007-07-01

    Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris were exposed to 250, 250 and 350mgkg(-1) Cu respectively in Cu(NO(3))(2(aq)) amended soil for 28 d. Earthworms were then depurated for 24 to 72h, digested and analysed for Cu and Ti or, subsequent to depuration were dissected to remove any remaining soil particles from the alimentary canal and then digested and analysed. This latter treatment proved impossible for E. andrei due to its small size. Regardless of depuration time, soil particles were retained in the alimentary canal of L. rubellus and L. terrestris. Tissue concentration determinations indicate that E. andrei should be depurated for 24h, L. rubellus for 48h and L. terrestris should be dissected. Ti was bioaccumulated and therefore could not be used as an inert tracer to determine mass of retained soil. Calculations indicate that after 28 d earthworms were still absorbing Cu from soil.

  18. Effects of Cry1Ab Transgenic Maize on Lifecycle and Biomarker Responses of the Earthworm, Eisenia Andrei

    PubMed Central

    van der Merwe, Frances; Bezuidenhout, Carlos; van den Berg, Johnnie; Maboeta, Mark

    2012-01-01

    A 28-day study was conducted to determine the effects of the Bacillus thuringiensis Cry1Ab toxin on the earthworm Eisenia andrei. Previously, investigations have been limited to life-cycle level effects of this protein on earthworms, and mostly on E. fetida. In this study several endpoints were compared which included biomass changes, cocoon production, hatching success, a cellular metal-stress biomarker (Neutral Red Retention Time; NRRT) and potential genotoxic effects in terms of Randomly Amplified Polymorphic DNA sequences (RAPDs). NRRT results indicated no differences between treatments (p > 0.36), and NRRT remained the same for both treatments at different times during the experiment (p = 0.18). Likewise, no significant differences were found for cocoon production (p = 0.32) or hatching success (p = 0.29). Conversely, biomass data indicated a significant difference between the control treatment and the Bt treatment from the second week onwards (p < 0.001), with the Bt treatment losing significantly more weight than the isoline treatment. Possible confounding factors were identified that might have affected the differences in weight loss between groups. From the RAPD profiles no conclusive data were obtained that could link observed genetic variation to exposure of E. andrei to Cry1Ab proteins produced by Bt maize. PMID:23235452

  19. The high dosage of earthworm (Eisenia andrei) extract decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus

    PubMed Central

    Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon

    2011-01-01

    Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-immunoreactive cells were easily detected in the subgranular zone of the DG in vehicle (saline)-treated mice. However, BrdU-, Ki-67-, and DCX-immunoreactive cells in the 500 mg/kg EE-treated mice decreased distinctively compared to those in the vehicle-treated mice. In addition, brain-derived neurotrophic factor (BDNF) immunoreactivity and its protein level decreased markedly in the DG of the EE-treated group compared to those in the vehicle-treated group. These results indicate that chronic treatment with high dose EE decreased cell proliferation and neuroblast differentiation, and that BDNF immunoreactivity decreased in the DG of EE-treated mice. PMID:22025974

  20. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  1. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-01-01

    In the present work bagasse (B) i.e waste of the sugar industry, was fed to Eisenia fetida with cattle dung (CD) support as feed material at various ratios (waste: CD) of 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100) on dry weight basis. Co-composting with cattle dung helped to improve their acceptability for E. fetida and also improved physico-chemical characteristics. Best appropriate ratio for survival, maximum growth and population buildup of E. fetida was determined by observing population buildup, growth rate, biomass, mortality and cocoon formation. Minimum mortality and highest population size of worms was observed in 50:50 (B50) ratio. Increasing concentrations of wastes significantly affected the growth and reproduction of worms. Nutrients like nitrogen, phosphorus and sodium increased from pre-vermicompost to post-vermicompost, while organic carbon, and C:N ratio decreased in all the end products of post-vermicomposting. Heavy metals decreased significantly from initial except zinc, iron and manganese which increased significantly. Scanning electron microscopy (SEM) was used to recognize the changes in texture in the pre and post-vermicomposted samples. The post-vermicomposted ratios in the presence of earthworms validate more surface changes that prove to be good manure. The results observed from the present study indicated that the earthworm E. fetida was able to change bagasse waste into nutrient-rich manure and thus play a major role in industrial waste management.

  2. Accumulation and Sublethal Effects of Triclosan and its Transformation Product Methyl-triclosan in the Earthworm Eisenia andrei Exposed to Environmental Concentrations in an Artificial Soil.

    PubMed

    Chevillot, Fanny; Guyot, Mélanie; Desrosiers, Mélanie; Cadoret, Nicole; Veilleux, Éloïse; Cabana, Hubert; Bellenger, Jean-Philippe

    2018-04-18

    Municipal biosolids are increasingly used as a low-cost fertilizer in agricultural soil. Biosolids are contaminated by low concentrations (ng g -1 dw range) of a large variety of organic contaminants, such as triclosan (TCS). The effect of exposure to low concentrations of organic contaminants on soil biota remains largely undocumented. We evaluated the sublethal effects of TCS on the earthworm Eisenia andrei using an artificial soil amended with a nominal concentration of TCS of 50 ng g -1 dry weight soil. Using a 56-d reproduction test, we monitored the effect of TCS exposure on adult earthworm survival, growth, and reproduction. The bioaccumulation of TCS in earthworm tissue (adults and juveniles) and degradation of TCS were monitored. The genotoxicity of TCS was evaluated using a comet assay (DNA damage) on adult earthworm coelomocytes. Exposure to a low concentration of TCS had no significant effects on adult earthworm survival and DNA damage, but significantly stimulated growth (P <0.05) by 2-fold compared to controls. It also significantly affected E. andrei reproduction parameters (P <0.05), as evidenced by an increase in the number of cocoons and juveniles, and a decrease in the mean dry weight of juveniles. The bioaccumulation of TCS in earthworms was moderate (bioaccumulation factor ∼ 2). In biosolid-borne trials, the bioaccumulation of methyl-triclosan in earthworm tissues was higher than the parent compound TCS. We conclude that exposure to low concentrations of TCS in artificial soil can significantly affect the growth and reproductive performance of earthworms (i.e., E. andrei). More research is required with natural soils to assess TCS bioavailability for earthworms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  4. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida.

    PubMed

    Rodríguez-Canché, L G; Cardoso Vigueros, L; Maldonado-Montiel, T; Martínez-Sanmiguel, M

    2010-05-01

    This study evaluated the potential of earthworms (Eisenia fetida) to remove pathogens from the sludge from septic tanks. Three earthworm population densities, equivalent to 1, 2, and 2.5kgm(-2), were tested for pathogen removal from sludge. The experimental phase lasted 60days, starting from the initial earthworm inoculation. After 60days, it was found that earthworms reduced concentrations of fecal coliforms, Salmonella spp., and helminth ova to permissible levels (<1000MPN/g, <3MPN/g, and <1viable ova/g on a dry weight basis, respectively) in accordance with Official Mexican Standard of environmental protection (NOM-004-SEMARNAT-2002) (SEMARNAT, 2002). Thus, sludge treatment with earthworms generated Class A biosolids, useful for forest, agricultural, and soil improvement. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Activity of earthworm in Latosol under simulated acid rain stress

    Treesearch

    Jia-En Zhang; Jiayu Yu; Ying Ouyang

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period....

  6. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests.

    PubMed

    Garcia-Velasco, Nerea; Gandariasbeitia, Maite; Irizar, Amaia; Soto, Manuel

    2016-10-01

    Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.

  7. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida.

    PubMed

    Rico, Andreu; Sabater, Consuelo; Castillo, María-Ángeles

    2016-05-01

    The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil.

    PubMed

    Robidoux, P Y; Hawari, J; Bardai, G; Paquet, L; Ampleman, G; Thiboutot, S; Sunahara, G I

    2002-11-01

    Sublethal and chronic toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) on earthworm Eisenia andrei in a sandy forest soil were assessed. Various reproduction parameters of fecundity (total and hatched number of cocoons, number of juveniles, and their biomass) were significantly decreased by TNT (> or = 58.8 +/- 5.1 mg/kg dry soil), RDX (> or = 46.7 +/- 2.6 mg/kg), and HMX (> or = 15.6 +/- 4.6 mg/kg). These effects occurred at much lower concentrations than those reported earlier using artificial soil preparations. Growth of adults was significantly decreased in the TNT-spiked natural soils at 136.2 +/- 25.6 mg/kg dry soil, the highest concentration having no significant mortality. In contrast, survival and growth were not significantly reduced at relatively high measured concentrations of RDX (167.3 mg/kg) and HMX (711.0 mg/kg). Although TNT, RDX, and HMX share a common life-cycle response ( i.e., decreased juvenile counts), a number of differences related to other reproduction parameters (e.g., productivity of cocoons) was observed. These results indicate that the tested explosives do not support a common mechanism of toxicity, at least in the earthworm, probably due to differences in their physical-chemical properties as well as metabolites formed during exposure.

  9. Endocrine disruptors in soil: Effects of bisphenol A on gene expression of the earthworm Eisenia fetida.

    PubMed

    Novo, M; Verdú, I; Trigo, D; Martínez-Guitarte, J L

    2018-04-15

    Xenobiotics such as bisphenol A (BPA), are present in biosolids, which are applied as organic fertilizers in agricultural fields. Their effects on soil life have been poorly assessed, and this is particularly important in the case of earthworms, which represent the main animal biomass in this medium. In the present work we study the impacts of BPA on gene expression of Eisenia fetida, a widely used ecotoxicological model. Chronic soil tests and acute contact tests were performed, and gene expression was analyzed in total tissue and in masculine reproductive organs of the earthworms. The genes studied in this research played a role in endocrine pathways, detoxification mechanisms, stress response, epigenetics, and genotoxicity. Most of the genes were identified for the first time, providing potentially useful biomarkers for future assessments. For chronic exposures, no changes were detected in whole-body tissue; however, masculine reproductive organs showed changes in the expression of genes related to endocrine function (EcR, MAPR, AdipoR), epigenetic mechanisms (DNMTs), genotoxicity (PARP1), and stress responses (HSC70 4). For acute exposures, the expression of one epigenetic-related gene was altered for both whole-body tissues and male reproductive organs (Piwi2). Further changes were detected for whole-body tissues involved in detoxification (Metallothionein), stress (HSC70 4), and genotoxicity (PARP1) mechanisms. Acute exposure effects were also tested in whole-body tissues of juveniles, showing changes in the expression of Metallothionein and Piwi2. The molecular changes found in the analyzed earthworms indicate that exposure to BPA may have negative implications in their populations. Particularly interesting are the alterations related to epigenetic mechanisms, which suggest that future generations may be impacted. This study is the first to evaluate the molecular effects of BPA on soil organisms, and further assays will be necessary to better characterize

  10. Purification and function of two analgesic and anti-inflammatory peptides from coelomic fluid of the earthworm, Eisenia foetida.

    PubMed

    Li, Chunlong; Chen, Mengrou; Li, Xiaojie; Yang, Meifeng; Wang, Ying; Yang, Xinwang

    2017-03-01

    The potential application of anti-inflammatory and analgesic compounds in medication and therapeutic care have become of increasing interest. We purified and characterized two novel analgesic and anti-inflammatory peptides, VQ-5 and AQ-5, from the coelomic fluid of the earthworm (Eisenia foetida). Their primary structures were determined as VSSVQ and AMADQ, respectively. Both peptides, especially AQ-5, exhibited analgesic activity in mouse models of persistent neuropathic pain and inflammation. AQ-5 also inhibited tumor necrosis factor alpha and cyclooxygenase-2 production. The mitogen-activated protein kinase signaling pathway, which is involved in analgesic and anti-inflammatory functions, was inhibited by AQ-5. Thus, the analgesic and anti-inflammatory effects of these peptides, especially AQ-5, demonstrated their potential as candidates for the development of novel analgesic medicines. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils.

    PubMed

    Robidoux, Pierre Yves; Sunahara, Geoffrey I; Savard, Kathleen; Berthelot, Yann; Dodard, Sabine; Martel, Majorie; Gong, Ping; Hawari, Jalal

    2004-04-01

    Monocyclic nitramine explosives such as 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are toxic to a number of ecological receptors, including earthworms. The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is a powerful explosive that may replace RDX and HMX, but its toxicity is not known. In the present study, the lethal and sublethal toxicities of CL-20 to the earthworm (Eisenia andrei) are evaluated. Two natural soils, a natural sandy forest soil (designated RacFor2002) taken in the Montreal area (QC, Canada; 20% organic carbon, pH 7.2) and a Sassafras sandy loam soil (SSL) taken on the property of U.S. Army Aberdeen Proving Ground (Edgewood, MD, USA; 0.33% organic carbon, pH 5.1), were used. Results showed that CL-20 was not lethal at concentrations of 125 mg/kg or less in the RacFor2002 soil but was lethal at concentrations of 90.7 mg/kg or greater in the SSL soil. Effects on the reproduction parameters such as a decrease in the number of juveniles after 56 d of exposure were observed at the initial CL-20 concentration of 1.6 mg/kg or greater in the RacFor2002 soil, compared to 0.2 mg/kg or greater in the SSL soil. Moreover, low concentrations of CL-20 in SSL soil (approximately 0.1 mg/kg; nominal concentration) were found to reduce the fertility of earthworms. Taken together, the present results show that CL-20 is a reproductive toxicant to the earthworm, with lethal effects at higher concentrations. Its toxicity can be decreased in soils favoring CL-20 adsorption (high organic carbon content).

  12. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests.

    PubMed

    Lin, Dasong; Xie, Xiujie; Zhou, Qixing; Liu, Yao

    2012-07-01

    Triclosan (TCS) is a broad-spectrum bactericide that is used for a variety of antimicrobial functions. TCS is frequently detected in the terrestrial environment due to application of sewage sludge to agricultural land. In the present study, 48-h paper contact and 28-day spiked soil tests were conducted to examine the toxic effects of TCS on the antioxidative and genetic indices of earthworms (Eisenia fetida). The activity of antioxidative enzymes (superoxide dismutase, SOD; catalase, CAT) and the content of the lipid peroxidation product (malondialdehyde, MDA) were determined as biomarkers of oxidative stress in E. fetida. Moreover, single cell gel electrophoresis (SCGE) was used as a biomarker of genotoxicity. The results showed that triclosan induced a significant increase (P < 0.05) in antioxidative enzyme activities and MDA content. Of all of the biomarkers examined, CAT activity was most sensitive to TCS, and the CAT activity increased significantly (P < 0.05) at bactericidal concentrations of 7.86 ng cm⁻² in the contact test and 10 mg kg⁻¹ in the spiked soil test. The comet assay showed that TCS treatments significantly induced (P < 0.05) DNA damage in E. fetida, and that 78.6 ng cm⁻² caused significant genotoxic effects in the acute test (48 h). Clear dose-dependent DNA damage to E. fetida was observed both in contact and spiked soil tests. These results imply that TCS may have potential biochemical and genetic toxicity toward earthworms (E. fetida). A battery of biomarkers covering multiple molecular targets of acute toxicity can be combined to better understand the impacts of TCS on E. fetida. Copyright © 2010 Wiley Periodicals, Inc.

  13. Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida

    PubMed Central

    Hama, Kiyoshi

    1959-01-01

    Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa. PMID:13673048

  14. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  15. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Hattab, Sabrine; Boughattas, Iteb; Boussetta, Hamadi; Viarengo, Aldo; Banni, Mohamed; Sforzini, Susanna

    2015-12-01

    This study investigated the stress response of earthworms (Eisenia andrei) to exposure to a commonly used herbicide, 2,4 dichloro-phenoxy-acetic acid (2,4-D). We evaluated both stress biomarkers and the transcriptional expression levels and activity of three enzymes involved in oxidative stress responses. Earthworms were exposed to three sublethal concentration of 2,4-D (3.5, 7, and 14 mg kg(-1)) for 7 and 14 days. Exposure to 7 and 14 mg kg(-1) 2,4-D significantly reduced both worm body weight and lysosomal membrane stability (LMS); the latter is a sensitive stress biomarker in coelomocytes. Exposure to 2,4-D caused a pronounced increase in the accumulation of malonedialdehyde (MDA), a marker of oxidative stress, and significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD),and glutathione-S-transferase (GST). Compared to expression in controls, the expression levels of the sod, cat, and gst genes increased in worms exposed to all three 2,4-D doses for 7 days. However, after 14 days of exposure, only the expression of the gst gene remained higher than controls. These data provide new insights into the cytotoxicity of 2,4-D in the earthworm E. andrei and should be carefully considered in view of the biological effects of herbicides in soils organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  18. Chemosensory cues alter earthworm (Eisenia fetida) avoidance of lead-contaminated soil.

    PubMed

    Syed, Zuby; Alexander, Dana; Ali, Jasmine; Unrine, Jason; Shoults-Wilson, W Aaron

    2017-04-01

    Earthworms were shown to significantly avoid soils spiked with Pb at concentrations lower than or comparable to concentrations that demonstrate significant effects for other endpoints. It was also shown that inclusion of a microorganism-produced volatile compound that attracts earthworms, ethyl valerate, decreased avoidance of spiked soils. These findings suggest that care should be taken when analyzing earthworm avoidance of soils in which microorganism communities are not controlled. Environ Toxicol Chem 2017;36:999-1004. © 2016 SETAC. © 2016 SETAC.

  19. Interaction of plant and earthworm during primary succession in heaps after coal

    NASA Astrophysics Data System (ADS)

    Roubíčková, Alena; Frouz, Jan

    2015-04-01

    These results of field manipulation experiment show that earthworms can remarkably influence vegetation succession on spoil heaps, namely promoting grasses and late succession species. This is in agreement with concurrent appearance of earthworms and some plant species typical for late-succession communities of meadows and forests aren't purely coincidental. On the other hand, facilitation of soil conditions by plant communities during succession is an important factor in earthworm distribution on the spoil heaps; earthworms showed a low survival on sites with sparse vegetation cover and thin litter layer, which means that their occurrence in certain stages of succession isn't determined only by migration abilities or passive dispersal. More field experiments are needed to test if earthworms could be used in directed succession management practices to speed up the natural rate of succession. Preliminary results from an experiment with introduction earthworms to a 20- year old, earthworm-free site indicate that colonization of this site from a single deposition of about 100 specimen of epigeic and 100 endogeic earthworms is slow and not very efficient. Results show that interaction between earthworm and vegetation are important in ecosystem development in post mining sites.

  20. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida.

    PubMed

    Plytycz, Barbara; Bigaj, Janusz; Osikowski, Artur; Hofman, Sebastian; Falniowski, Andrzej; Panz, Tomasz; Grzmil, Pawel; Vandenbulcke, Franck

    2018-01-01

    Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.

  1. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida

    PubMed Central

    Bigaj, Janusz; Osikowski, Artur; Hofman, Sebastian; Falniowski, Andrzej; Panz, Tomasz; Grzmil, Pawel; Vandenbulcke, Franck

    2018-01-01

    Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 –identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either ‘a’ for worms hatched from Ea ova or ‘f’ for worms hatched from Ef ova. 2 –identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either ‘AA’ for Ea, ‘FF’ for Ef, or AF/FA for their hybrids derived either from the ‘aA’ or ‘fF’ ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors. PMID:29370238

  2. Communities of microorganisms and invertebrates in soil-like bodies of soccer fields in Moscow oblast

    NASA Astrophysics Data System (ADS)

    Kutovaya, O. V.; Zamotaev, I. V.; Belobrov, V. P.

    2014-11-01

    Artificially created soil-like technogenic formations (STFs) of soccer fields are developed under combined action of intense technogenic and natural factors and processes, which cannot but affect the structure and biological activity of their microbial communities and mesofauna. The microflora of the STFs is very similar to the microflora of the background soddy-podzolic soils of Moscow oblast with respect to the composition of the physiological groups of microorganisms. However, they are drastically different in their quantitative characteristics. The numbers of all the trophic groups of microorganisms, except for the microscopic fungi, in the STFs are much higher than those in the zonal soils. An increased biological activity of the STFs is due to regular watering, heating, application of sand and mineral fertilizers, and technogenic turbation processes. The mesofauna of the STFs is represented by several ecological groups of earthworms, including soildwelling (endogeic) earthworms ( Aporrectodea caliginosa), epigeic earthworms dwelling at the soil-litter interface ( Lumbricus rubellus), and litter-dwelling earthworms ( Eisenia foetida).

  3. Reduction of clog matter in constructed wetlands by metabolism of Eisenia foetida: Process and modeling.

    PubMed

    Ye, Jianfeng; Xu, Zuxin; Chen, Hao; Wang, Liang; Benoit, Gaboury

    2018-07-01

    Introducing of earthworms to constructed wetlands (CWs) has been considered as a new approach to solve the clogging problems in the long-established systems. Despite its potential advantage, the correlational researches are still in the stage of preliminary observation and speculation. This paper presents a comprehensive and in-depth research about the positive effects of earthworms (Eisenia foetida) on clog matter (CM) reduction through different pathways, including in vivo metabolism and uptake, conversion, transport, and promotion of microorganism quantities. The results showed that the metabolism and uptake by Eisenia foetida could effectively reduce the CM content at an average removal rate of 0.155 mg g -1  d -1 , which was obviously higher than the rate of CM decomposition by microorganisms alone. Through the metabolism of earthworms, the amounts of proteins and polysaccharides in CM were decreased, while the amounts of humin and nucleic acids were increased. Simultaneously, the viscosity of CM was reduced by 0.0082 mPa s g -1 d -1 , and the quantity of microorganisms was increased by 0.0109 mg g -1  d -1 , which finally made the treated CM can be easily washed away and decomposed. Furthermore, earthworms could reduce the CM content in the clogging layer by transporting the metabolic products out. A regression model was further performed for describing the interaction between earthworm and CM. The simulated value of porosity fitted well with the measured one, suggesting that the earthworms can increase the substrate porosity at a rate of 0.33 mL g -1  d -1 . This study quantitively depicted the mechanisms of earthworms on the decrement of CM content in CWs, which is of great benefit for the engineering management of constructed wetlands in the future. We also proposed that the density of introduced earthworms should exceed a certain threshold for effectively increasing the substrate porosity and solving the clogging problems

  4. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    NASA Astrophysics Data System (ADS)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  5. Uptake of hexanitrohexaazaisowurtzitane (CL-20) by the earthworm Eisenia fetida through dermal contact.

    PubMed

    Gong, Ping; Escalon, B Lynn; Hayes, Charolett A; Perkins, Edward J

    2008-02-01

    The explosive compound hexanitrohexaazaisowurtzitane (CL-20) has been shown to cause both lethal and sublethal (reproductive and neurotoxic) effects in exposed oligochaetes. However, whether worms take up CL-20 and how much CL-20 enters worm bodies leading to toxicity (e.g., lethality) remain to be determined. In the present study, we used high performance liquid chromatography (HPLC) and radiolabeled tracer methods to investigate the CL-20 uptake in the whole worm body after contact exposures. Worms (Eisenia fetida) were exposed to filter paper spiked with non-radioactive or [U-(14)C]-labeled CL-20 for 1-3 d. The radiolabeled tracer method allowed us to detect the parent compound and transformation products in worms exposed to as low as 0.04 microg CL-20 cm(-2) of filter paper. The HPLC method without radiolabeled tracer was far less sensitive with a detection limit of 2.17 microg CL-20 cm(-2). Using the radiolabeled tracer, we were able to demonstrate that the worm body concentration linearly correlated to the filter paper concentration < or =0.34 microg cm(-2) (r=0.94) if no breakdown products are assumed. At higher concentrations, the body concentration increased slowly and saturated at around 11 microg g(-1) dry mass resulting in an estimated lethal critical body burden of 10-15 microg CL-20 g(-1) dry mass. These findings demonstrate that CL-20 or potential transformation products are taken into the earthworm body through dermal contact. This information should prove valuable in assessing the bioaccumulation potential and ecological risks of CL-20.

  6. Biodegradation of Garden Waste, Market Waste Using Eisenia fetida and Eudrilus eugenia and Assessment of Manure Quality on Tomato

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2014-06-01

    Comparative study was performed to evaluate the vermicomposting efficiency of two earthworm species Eisenia fetida, Eudrilus eugenia from the garden wastes, vegetable market wastes. Three different experimental works were conducted. For each experiment three plastic vermibins were used. Experiment (1) mentioned for control without earthworms. Experiment (2) bedded with Eudrilus eugenia, Experiment (3) comprised of bedding with Eisenia fetida. Pre composting was allowed for 10 days after that Eudrilus eugenia, Eisenia fetida were added in respective vermibins. The multiplication of earthworms in terms of number was calculated at the end of vermicomposting. The N, P, K value of the manure in each vermibin was estimated before and after the completion of the experiment. High N, P, K value was obtained in Experiment (2) and Experiment (3) compared to control. Among the solid wastes, the vegetable wastes were degraded quickly by Eudrilus eugenia and also it has the best quality of manure. Eudrilus eugenia was found to be efficient for quick degradation of both garden wastes and vegetable wastes. After manure production, field trials were conducted using different fertilizers to assess the manure quality in the growth and yield of tomato plants. Six types of experimental trial pots were prepared where one was kept as control and five others were treated with different category of fertilizers. The treatment pots (P3) showed better growth parameters (leaf numbers, stem diameter, plant height) than the rest of the trial.

  7. Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics

    NASA Astrophysics Data System (ADS)

    Top, Sara; Filley, Timothy

    2010-05-01

    Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and

  8. Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality.

    PubMed

    Nogales, R; Elvira, C; Benítez, E; Thompson, R; Gomez, M

    1999-01-01

    A laboratory study was conducted to examine the feasibility of vermicomposting dairy biosolids (dairy sludge), either alone or with either of the bulking agents-cereal straw or wood shavings, using the epigeic earthworm-Eisinea andrei. Earthworms added directly to these three substrates died within 48 hours. A system was developed to overcome the toxic effect of unprocessed dairy biosolids. The substrates were placed over a layer of vermicomposted sheep manure into which the earthworms were inoculated. Within two weeks, all earthworms were within the upper layer of substrate. Compared to sheep manure which is a favourable substrate for vermicomposting, the three substrates containing dairy biosolids were more effective in supporting earthworm growth and reproduction. The final products obtained after 63 days of vermicomposting had 39-53% less organic carbon than the initial substrates. Organic fractionation indicated that vermicomposting increased the stability of the materials to biological decomposition. The vermicomposts obtained from the three substrates with dairy biosolids had low heavy metal contents and electrical conductivities, and did not inhibit plant growth when compared with a commercial vermicompost in a bioassay.

  9. Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil

    NASA Astrophysics Data System (ADS)

    Filley, Timothy

    2010-05-01

    Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA

  10. NOVEL MODEL DESCRIBING TRACE METAL CONCENTRATIONS IN THE EARTHWORM, EISENIA ANDREI

    EPA Science Inventory

    We developed a novel model describing Eisenia andrei body concentrations for Cd, Cu, Pb, and Zn as a function of pH, metals, and soluble organic carbon (SOC) in soil extracts for potential use in predicting values in contaminated field sites. Data from 17 moderately contaminated ...

  11. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  12. Ontogenetic change in relative performance of allozyme genotypes influences detection of heterosis in the earthworm Eisenia andrei.

    PubMed

    McElroy, T C; Diehl, W J

    2005-02-01

    The effect of ontogeny on relationships between allozyme genotypes and fresh weight was measured weekly throughout the life history of the earthworm Eisenia andrei to test the hypothesis that there is an ontogenetic component to variation in such relationships. Two of six allozyme loci showed a significant increase in apparent heterosis with ontogeny, while one locus showed a significant decrease in apparent heterosis. Three loci showed a significant decrease in the performance of common homozygotes with ontogeny. Patterns of relative genotypic performance varied among loci, but the cumulative effect was an increase in apparent allozyme heterosis later in ontogeny coinciding with a series of positive relationships between multilocus heterozygosity and fresh weight. The results could not be used to determine whether these patterns were caused by selection acting on the loci directly or on loci tightly linked to allozyme loci. However, because the same individuals were used throughout this study and thus allele frequencies and heterozygote deficiency were constant, the presence of both ontogenetic effects and differences in such patterns among loci is not compatible with a general inbreeding effect. Examining relative genotypic performance repetitively using the same individuals through ontogeny or in different environments is a very powerful experimental design for testing the effects of inbreeding or other populational factors.

  13. The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions.

    PubMed

    Garcia, Marcos; Scheffczyk, Adam; Garcia, Terezinha; Römbke, Jörg

    2011-02-01

    Plant Protection Products can affect soil organisms and thus might have negative impacts on soil functions. Little research has been performed on their impact on tropical soils. Therefore, the effects of the insecticide lambda-Cyhalothrin on earthworms were evaluated in acute and chronic laboratory tests modified for tropical conditions, i.e. at selected temperatures (20 and 28°C) and with two strains (temperate and tropical) of the compost worm Eisenia fetida. The insecticide was spiked in two natural soils, in OECD artificial soil and a newly developed tropical artificial soil. The effects of lambda-Cyhalothrin did rarely vary in the same soil at tropical (LC50: 68.5-229 mg a.i./kg dry weight (DW); EC50: 54.2-60.2 mg a.i./kg DW) and temperate (LC50: 99.8-140 mg a.i./kg DW; EC50: 37.4-44.5 mg a.i./kg DW) temperatures. In tests with tropical soils and high temperature, effect values differed by up to a factor of ten. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design.

    PubMed

    Bart, Sylvain; Amossé, Joël; Lowe, Christopher N; Mougin, Christian; Péry, Alexandre R R; Pelosi, Céline

    2018-06-21

    Ecotoxicological tests with earthworms are widely used and are mandatory for the risk assessment of pesticides prior to registration and commercial use. The current model species for standardized tests is Eisenia fetida or Eisenia andrei. However, these species are absent from agricultural soils and often less sensitive to pesticides than other earthworm species found in mineral soils. To move towards a better assessment of pesticide effects on non-target organisms, there is a need to perform a posteriori tests using relevant species. The endogeic species Aporrectodea caliginosa (Savigny, 1826) is representative of cultivated fields in temperate regions and is suggested as a relevant model test species. After providing information on its taxonomy, biology, and ecology, we reviewed current knowledge concerning its sensitivity towards pesticides. Moreover, we highlighted research gaps and promising perspectives. Finally, advice and recommendations are given for the establishment of laboratory cultures and experiments using this soil-dwelling earthworm species.

  15. The effect of the glycolipoprotein extract (G-90) from earthworm Eisenia foetida on the wound healing process in alloxan-induced diabetic rats.

    PubMed

    Goodarzi, Golnaz; Qujeq, Durdi; Elmi, Maryam M; Feizi, Farideh; Fathai, Sadegh

    2016-06-01

    Diabetes is now regarded as a major public health problem. The number of patients is estimated to increase to over 439 million cases by 2030. One of the major health clinical problems in patients with diabetes patients is impaired wound healing. Diabetic foot ulcer is a major complication of diabetes mellitus in 12 to 25% of patients, which increases the risk of damage in the limbs or amputation. The earthworm Eisenia foetida glycolipoprotein (as known G-90) is a blend of macromolecules with some biological properties including mitogenicity, anticoagulation, fibrinolysis, bacteriostatic and antioxidatiaon. Given the biological properties of G-90, this study was conducted to investigate the effect of extract obtained from the homogenate of Eisenia foetida (G-90) on the wound healing process in alloxan-induced diabetic rats. The results of the present study revealed that treatment by using G-90 can speed up the wound healing process, which is exactly similar to the effect of D-panthenol treatment in rats. These findings also demonstrated that G-90 treatment decreases the risk of infection in the wound site compared with D-panthenol treatment. In addition, histological analysis indicated that a better extracellular matrix formation with increased fibroblast proliferation, neovascularization, collagen synthesis and early epithelial layer formation was observed in G-90 treated group. Therefore, the G-90 could be considered as a new wound healing agent introducing promising therapeutic approaches in both human and veterinary medicine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost.

    PubMed

    Gong, Xiaoqiang; Cai, Linlin; Li, Suyan; Chang, Scott X; Sun, Xiangyang; An, Zhengfeng

    2018-07-30

    Vermicomposting is a promising method for reusing urban green waste. However, high lignin content in the green waste could hinder the development of earthworm and microorganisms and the vermicomposting process, resulting in a low-quality vermicompost product. The objective of this study was to evaluate the effect of bamboo biochar addition (at 0%, 3%, and 6% on a dry w/w basis) on the activity of Eisenia fetida and the obtained vermicompost. Biochar addition increased (P < 0.05) earthworm biomass, juvenile and cocoon numbers of Eisenia fetida, as well as the activities of dehydrogenase, cellulase, urease and alkaline phosphatase. Compared to the control, lignin degradation rate was enhanced up to 13.89% by biochar addition. Biochar addition also improved the vermicompost quality in terms of cation exchange capacity (CEC), dissolved organic carbon (DOC) degradation, humification, nitrogen transformation, toxicity to germinating seeds (Brassica rapa L., Chinensis group) and heavy metals concentrations. The 6% bamboo biochar addition rate achieved maturity after 60 days of vermicomposting and resulted in the highest quality vermicompost based on parameters such as CEC, DOC, NH 4 + -N/NO 3 - -N ratio, germination index and heavy metal concentration. We conclude that 6% biochar addition promoted earthworm growth and the vermicomposting of green waste. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Recycling of organic wastes by employing Eisenia fetida.

    PubMed

    Yadav, Anoop; Garg, V K

    2011-02-01

    This paper reports the recycling of nutrients by vermicomposting of cow dung (CD), poultry droppings (PD) and food industry sludge (FIS) employing earthworms (Eisenia fetida). A total of six vermicomposting units were established and dynamics of chemical and biological parameters has been studied for 13 weeks. The waste mixture containing 50% CD+25% PD+25% FIS had better fertilizer value among studied waste combinations. At the end of experiment, vermicomposts showed decrease in pH and organic C, but increase in EC, total Kjeldhal N, total available P and total K contents. The C:N ratio of final vermicomposts also reduced to 10.7-12.7 from 22.8 to 56 in different waste combinations. The earthworms have good biomass gain and cocoon production in all vermicomposting units but CD alone and 50% CD+25% PD+25% FIS were better than other studied combinations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Enantioselective Bioaccumulation and Toxicity of the Neonicotinoid Insecticide Dinotefuran in Earthworms ( Eisenia fetida).

    PubMed

    Liu, Tong; Chen, Dan; Li, Yiqiang; Wang, Xiuguo; Wang, Fenglong

    2018-05-02

    The enantioselective bioaccumulation and toxicity of dinotefuran in earthworms were studied in this study. The results showed that S-dinotefuran accumulated faster than Rac-dinotefuran and R-dinotefuran in earthworms. The acute toxicity of S-dinotefuran was 1.49 and 2.67 times that of the Rac-dinotefuran and R-dinotefuran in artificial soil during 14 days of exposure. At 1.0 mg/kg, the three tested chemicals inhibited the growth and reproduction as well as induced oxidative stress effects in earthworms; however, the toxic effects induced by S-dinotefuran were the most serious. The transcriptome sequencing results showed that S-dinotefuran had stronger interactions to biomacromolecules and influences on the endoplasmic reticulum (ER) than R-dinotefuran, which may be the main reason for enantioselectivities between the two enantiomers. The present results indicated that the risk of S-dinotefuran was higher than that of Rac-dinotefuran and R-dinotefuran in the soil environment to earthworms. Risk assessment of dinotefuran should be evaluated at the enantiomer level.

  19. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Bustos, Víctor; Mondaca, Pedro; Verdejo, José; Sauvé, Sébastien; Gaete, Hernán; Celis-Diez, Juan L; Neaman, Alexander

    2015-12-01

    Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to

  20. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  1. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT).

    PubMed

    Fuchs, Julio; Piola, Lucas; González, Elio Prieto; Oneto, María Luisa; Basack, Silvana; Kesten, Eva; Casabé, Norma

    2011-04-01

    Contamination by 2,4,6-trinitrotoluene (TNT) is a global environmental problem at sites of former explosive production, handling, or storage, and could have deleterious consequences for human and ecological health. We investigated its sublethal effects to Eisenia fetida, using two nonspecific biomarkers. In coelomocytes of earthworms exposed 24, 48, or 72 h, we evaluated DNA damage (comet assay) and neutral red retention time (NRRT), using the filter paper contact test. Both percentage of damage (D%) and calculated damage index showed significant DNA damage at almost all concentrations, at all time points assayed. Along exposure time, two different patterns were observed. At the lower TNT concentrations (0.25-0.5 μg/cm2) an increased DNA migration at 48 h, with a decrease close to initial levels after 72 h exposure, was observed. This decrease could be attributed to activation of the DNA repair system. At higher concentrations (1.0-2.0 μg/cm2), the high DNA damage observed remained constant during the 72 h exposure, suggesting that the rate of DNA repair was not enough to compensate such damage. Analysis of NRRT results showed a significant interaction between time and treatment. After 48 h, a significant decrease was observed at 4.0 μg/cm2. After 72 h, NRRT presented a concentration-dependent decrease, significantly different with respect to control at 0.5, 1.0, 2.0, and 4.0 μg/cm2. The two assayed methods, performed on the same sample, showed clear responses to sublethal TNT exposure in E. fetida, providing sensitive unspecific biomarkers of cell injury and DNA damage.

  2. Combined toxicity of imidacloprid and three insecticides to the earthworm, Eisenia fetida (Annelida, Oligochaeta).

    PubMed

    Cang, Tao; Dai, Dejiang; Yang, Guiling; Yu, Yijun; Lv, Lu; Cai, Leiming; Wang, Qiang; Wang, Yanhua

    2017-03-01

    Although the earthworm Eisenia fetida has been used in many ecotoxicological studies in recent years, most of these studies have only focused on assessing the effects of individual insecticides. In the present study, we aimed to compare the individual and combined toxic effects of imidacloprid and three insecticides (phoxim, chlorpyrifos, and lambda-cyhalothrin) on E. fetida. We showed that imidacloprid had the highest intrinsic toxicity to the worms in filter paper contact test, followed by phoxim and lambda-cyhalothrin, while the least toxicity was found from chlorpyrifos. Moreover, 14-day soil toxicity test revealed that the highest toxicity was still detected for imidacloprid with an LC 50 value of 2.82 (2.61∼3.17) mg a.i. kg -1 dry weight (DW), followed by chlorpyrifos with an LC 50 value of 384.9 (353.5∼440.3) mg a.i. kg -1 DW. Meanwhile, a relatively less toxicity was found for lambda-cyhalothrin with an LC 50 value of 560.3 (475.9∼718.5) mg a.i. kg -1 DW, while the lowest toxicity to E. fetida was observed for phoxim with an LC 50 value of 901.5 (821.3∼1017) mg a.i. kg -1 DW. In addition, significant synergistic responses were found from the ternary mixture of imidacloprid-phoxim-lambda-cyhalothrin and quaternary mixture of imidacloprid-phoxim-chlorpyrifos-lambda-cyhalothrin in both bioassay systems. Therefore, our findings highlighted that the simultaneous presence of several insecticides in the soil environment might lead to increased toxicity, resulting in serious damage to the nontarget organisms compared with individual insecticides.

  3. Earthworms lost from pesticides application in potato crops

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Forrer, Karin; Binder, Claudia R.

    2010-05-01

    Bioturbation from earthworm's activity contributes to soil creep and soil carbon dynamics, and provide enough aeration conditions for agricultural practices all over the world. In developing countries where there is a long term misuse of pesticides for agricultural purposes, lost of these benefits from earthworms activity might already yielded negative effects in the current crop production. Little research has been performed on earthworms avoidance to pesticides in developing countries located in the tropics. Furthermore, the complete avoidance reaction (from attraction to 100% avoidance) from earthworms to most of the pesticides used in potato cultivation in developing countries like Colombia is incomplete as yet. Hence the aim of this study is to assess the lost of earthworm on the soils caused by different concentrations of pesticides and associated agricultural impacts caused by a lost in the soil bioturbation. As a first stage, we have studied earthworm's avoidance to pesticide concentration in a potato agricultural area located in Colombia. Local cultivated Eisenia fetida were exposed to four of the most frequent applied active ingredients in potato crops i.e. carbofuran, mancozeb, methamidophos and chlorpyriphos. Adult earthworm toxicity experiments were carried out in two soils, untreated grasslands under standard (ISO guidelines) and undisturbed conditions, and exposed to six different concentrations of the active ingredients. The results of the avoidance reaction on the standard soils were significant for carbofuran, mancoceb and chlorpyrifos. For each of the three active ingredients, we found i) overuse of pesticide, ii) applied dose of carbofuran, mancoceb and chlorpyrifos by the farmers potentially caused 20%, 11% and 9% of earthworms avoidance on the cultivated soils, respectively.

  4. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    NASA Astrophysics Data System (ADS)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant

  5. Biodegradation of paper waste using Eisenia foetida by vermicomposting Technology

    NASA Astrophysics Data System (ADS)

    Mathivanan, Mahalakshmi; Aravind Vishnu Saravanan, G.; Baji, Aravindh; Manoj kumar, J.

    2017-07-01

    The paper wastes are being a big concern over past decades. The process of reuse of the paper wastes is employed by ‘eisenia foetida’ in Vermiculture. The paper waste in SASTRA is collected around 50kg and organic wastes like vegetable wastes and cow dung wastes are also collected. In the adjacent area of Nirman Vihar, SASTRA, the experimental setup is done in a Geosynthetic polymer bag. The area is divided into three segments and in each segment appropriate amount of paper waste and organic waste were added along with 25 numbers of earthworms. The setup is watered daily and monitored periodically and it is kindled for proper aeration. The soil samples were collected on 20 days, 45 days and 60 days from the day the earthworms were added. After 60 days of the experiment, the paper wastes, compost and earthworms are separated. The quantity of the wastes was compared to the initial amount and the composts are collected. The elemental analysis of the soil used as Vermi-bed is analyzed for improvement of soil nutrients. The vermiwashed water of the setup is analyzed for total protein. The number of earthworm is also compared to initial quantity. Out of all, the loss percentage of the organic waste and paper waste shows the degradation of the paper wastes.

  6. Recycled water sources influence the bioavailability of copper to earthworms.

    PubMed

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.

    PubMed

    Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A

    2010-07-01

    Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Copyright (c) 2010 SETAC.

  8. A brief review and evaluation of earthworm biomarkers in soil pollution assessment.

    PubMed

    Shi, Zhiming; Tang, Zhiwen; Wang, Congying

    2017-05-01

    Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.

  9. Comparison of Heavy Metal Uptake by Eisenia Foetida with That of other Common Earthworms.

    DTIC Science & Technology

    1986-01-01

    the ecotoxicological testing of industrial chemicals. An earthworm bioassay procedure developed at the Waterways Experiment Station (Vicksburg... ecotoxicological testing of industrial S-. chemicals (EEC Directive 79/81, 1984). Earthworms are known to exploit a wide range of ecological niches within...inhabiting, deep burrowing species, (Ude, 1885) ingesting predominantly mineral soil. Colonizing cultivated soil, gardens, pastures and woodland

  10. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    PubMed

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A new earthworm cellulase and its possible role in the innate immunity.

    PubMed

    Park, In Yong; Cha, Ju Roung; Ok, Suk-Mi; Shin, Chuog; Kim, Jin-Se; Kwak, Hee-Jin; Yu, Yun-Sang; Kim, Yu-Kyung; Medina, Brenda; Cho, Sung-Jin; Park, Soon Cheol

    2017-02-01

    A new endogenous cellulase (Ean-EG) from the earthworm, Eisenia andrei and its expression pattern are demonstrated. Based on a deduced amino acid sequence, the open reading frame (ORF) of Ean-EG consisted of 1368 bps corresponding to a polypeptide of 456 amino acid residues in which is contained the conserved region specific to GHF9 that has the essential amino acid residues for enzyme activity. In multiple alignments and phylogenetic analysis, the deduced amino acid sequence of Ean- EG showed the highest sequence similarity (about 79%) to that of an annelid (Pheretima hilgendorfi) and could be clustered together with other GHF9 cellulases, indicating that Ean-EG could be categorized as a member of the GHF9 to which most animal cellulases belong. The histological expression pattern of Ean-EG mRNA using in situ hybridization revealed that the most distinct expression was observed in epithelial cells with positive hybridization signal in epidermis, chloragogen tissue cells, coelomic cell-aggregate, and even blood vessel, which could strongly support the fact that at least in the earthworm, Eisenia andrei, cellulase function must not be limited to digestive process but be possibly extended to the innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exposure to aged crumb rubber reduces survival time during a stress test in earthworms (Eisenia fetida).

    PubMed

    Pochron, Sharon; Nikakis, Jacqueline; Illuzzi, Kyra; Baatz, Andrea; Demirciyan, Loriana; Dhillon, Amritjot; Gaylor, Thomas; Manganaro, Alexa; Maritato, Nicholas; Moawad, Michael; Singh, Rajwinder; Tucker, Clara; Vaughan, Daniel

    2018-04-01

    Solid waste management struggles with the sustainable disposal of used tires. One solution involves shredding used tires into crumb rubber and using the material as infill for artificial turf. However, crumb rubber contains hydrocarbons, organic compounds, and heavy metals, and it travels into the environment. Earthworms living in soil contaminated with virgin crumb rubber gained 14% less body weight than did earthworms living in uncontaminated soil, but the impact of aged crumb rubber on the earthworms is unknown. Since many athletic fields contain aged crumb rubber, we compared the body weight, survivorship, and longevity in heat and light stress for earthworms living in clean topsoil to those living in topsoil contaminated with aged crumb rubber. We also characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published values for soil contaminated with virgin crumb rubber. Consistent with earlier research, we found that contaminated soil did not inhibit microbial respiration rates. Aged crumb rubber, like new crumb rubber, had high levels of zinc. However, while exposure to aged crumb rubber did not reduce earthworm body weight as did exposure to new crumb rubber, exposure to aged crumb rubber reduced earthworm survival time during a stress test by a statistically significant 38 min (16.2%) relative to the survival time for worms that had lived in clean soil. Aged crumb rubber and new crumb rubber appear to pose similar toxic risks to earthworms. This study suggests an environmental cost associated with the current tire-recycling solution.

  13. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination.

    PubMed

    Shi, Yajuan; Zhang, Qiangbin; Huang, Dunqi; Zheng, Xiaoqi; Shi, Yajing

    2016-03-01

    The survival, growth, activity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) of earthworms exposed to the contaminated soils from a former DDT plant and reference soils were investigated, and compared with the corresponding indicators in simulated soil-earthworm system, unpolluted natural soils with spiked-in DDT series, to identify the toxic effects of DDT on earthworms and their cellular defense system in complex soil system. The results indicated that DDT level in the contaminated soils was significantly higher than that in the reference soils with similar level of other pollutants and soil characters. The mortality, growth inhibition rates, GST and CST activities of earthworms exposed to the contaminated soils were significantly higher than that in reference soils. The contribution of historical DDT in contaminated soils to earthworms was confirmed by the DDT spiked tests. DDT spiked in soils at rates of higher than 200 mg·kg(-1) was significantly toxic to both the survival and the growth of earthworms. DDT significantly stimulated GST and CAT activity in earthworms after 14 days. The CAT and GST activities were also stimulated by DDT exposure at rates of 100 mg·kg(-1) after chronic exposure (42 days). The results provide implications for validating the extrapolation from laboratory simulated soils criteria to contaminated soils and for making site risk assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida.

    PubMed

    Gupta, Renuka; Mutiyar, Praveen Kumar; Rawat, Naresh Kumar; Saini, Mahender Singh; Garg, V K

    2007-09-01

    The aim of this work was to investigate the potential of water hyacinth (WH) spiked with cow dung (CD) into vermicompost. Five vermireactors containing WH and CD in different ratios, were run under laboratory conditions for 147 days. The maximum worm growth was recorded in CD alone. Worms grew and reproduced favourably in 25% WH+75% CD feed mixture. Greater proportion of WH in feed mixture significantly affected the biomass gain, hatchling numbers and numbers of cocoons produced during experiments. In all the vermireactors, there was significant decrease in pH, TOC and C:N ratio, but increase in TKN, TK and TAP at the end. The heavy metals content in the vermicomposts was lower than initial feed mixtures. The results indicated that WH could be potentially useful as raw substrate in vermicomposting if mixed with up to 25% in cow dung (on dry weight basis).

  15. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  16. Evaluation of acetamiprid-induced genotoxic and oxidative responses in Eisenia fetida.

    PubMed

    Li, Bing; Xia, Xiaoming; Wang, Jinhua; Zhu, Lusheng; Wang, Jun; Wang, Guangchi

    2018-06-19

    As a novel neonicotinoids insecticide, acetamiprid has been widely used worldwide. In this study, a laboratory test was conducted to expose earthworms (Eisenia fetida) to artificial soil spiked with various concentrations of acetamiprid (0, 0.05, 0.10, 0.25 and 0.50 mg/kg of soil) respectively after 7, 14, 21 and 28 d. Reactive oxygen species (ROS) generation, antioxidant enzymes activity including superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferases (GST), malondialdehyde (MDA) content, and DNA damage were determined in earthworms. The ROS level increased in varying degrees at most exposure concentrations. The SOD activity was not significantly affected. The CAT activity was increased in the beginning, then gradually suppressed and resumed to the control level at the end, with the maximum change (171%) occurred at 14 d for 0.05 mg/kg. The GST activity was induced at 7 d, and then inhibited, with the maximum change (67.6%) occurred at 14 d for 0.50 mg/kg. The MDA content had a tendency that increasing at the first and decreasing at the end. The olive tail moment (OTM) in comet assay reflected a dose-dependent relationship, and DNA damage initially increased and then decreased over time. The results suggest that the sub-chronic exposure of acetamiprid can cause oxidative stress and DNA damage of earthworm and change the activity of the anti-oxidant enzyme. In addition, ROS content and DNA damage can be good indicators for assessing environmental risks of acetamiprid in earthworms. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms.

    PubMed

    Brown, David S; Jarman, Simon N; Symondson, William O C

    2012-03-01

    Little quantitative ecological information exists on the diets of most invertebrate feeding reptiles, particularly nocturnal or elusive species that are difficult to observe. In the UK and elsewhere, reptiles are legally required to be relocated before land development can proceed, but without knowledge of their dietary requirements, the suitability of receptor sites cannot be known. Here, we tested the ability of non-invasive DNA-based molecular diagnostics (454 pyrosequencing) to analyse reptile diets, with the specific aims of determining which earthworm species are exploited by slow worms (the legless lizard Anguis fragilis) and whether they feed on the deeper-living earthworm species that only come to the surface at night. Slow worm faecal samples from four different habitats were analysed using earthworm-specific PCR primers. We found that 86% of slow worms (N=80) had eaten earthworms. In lowland heath and marshy/acid grassland, Lumbricus rubellus, a surface-dwelling epigeic species, dominated slow worm diet. In two other habitats, riverside pasture and calciferous coarse grassland, diet was dominated by deeper-living anecic and endogeic species. We conclude that all species of earthworm are exploited by these reptiles and lack of specialization allows slow worms to thrive in a wide variety of habitats. Pyrosequencing of prey DNA in faeces showed promise as a practical, rapid and relatively inexpensive means of obtaining detailed and valuable ecological information on the diets of reptiles. © 2011 Blackwell Publishing Ltd.

  18. Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions.

    PubMed

    Garcia, Marcos; Römbke, Jörg; de Brito, Marcus Torres; Scheffczyk, Adam

    2008-05-01

    Little research has been performed on the impact of pesticides on earthworms under tropical conditions. Taking into consideration the often-limited resources in tropical countries, simple screening tests are needed. Therefore, it was investigated whether three pesticides relevant for the Brazilian Amazon (benomyl, carbendazim, lambda-cyhalothrin) affect the avoidance behavior of the earthworm Eisenia fetida. The tests were performed for two days according to ISO guideline 17512 but were adapted to tropical conditions (i.e. test substrate, test organism and temperature). The results indicate that this test gives reproducible and reliable results. Toxicity values (NOEC, EC50) are lower than those determined in 14 day-acute mortality tests and are approximately in the same range such as those found in 56 day-chronic reproduction tests with the same earthworm species, which were performed in parallel. Therefore, the use of the earthworm avoidance tests is recommended as a screening tool for the risk assessment of pesticides.

  19. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  20. Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses.

    PubMed

    He, Zeying; Wang, Yuehua; Zhang, Yanwei; Cheng, Haiyan; Liu, Xiaowei

    2018-07-01

    Stereoselective bioaccumulation, elimination, metabolomic and lipidomic responses of earthworm Eisenia fetida exposed to chiral polychlorinated biphenyl (PCB) 91 in an earthworm-soil system were investigated. Preferential bioaccumulation of (-)-PCB 91 and elimination of (+)-PCB 91 were observed following 50 and 500 μg/kg dwt exposures. Enantiomer fraction (EF) values decreased over time during the uptake and elimination periods. Metabolomics and lipidomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) revealed significant changes in 108 metabolites after earthworms exposure to (+)-, (-)-, and (±)-PCB 91, compared to control groups. Forty two of these metabolites were identified as amino acids, nucleosides, fatty acids, dicarboxylic acids, vitamins or others. Lysophospholipids including six lysophosphatidylcholines (LPC), six lysophosphatidylethanolamine (LPE), eight lysophosphatidylinositol (LPI) and five lysophosphatidylserine (LPS) were also differentially expressed between exposure and control groups. Alterations in the levels of metabolites and lipids indicated stereoselective effects of chiral PCB 91 on earthworm amino acid, energy, and nucleotide metabolism, neurodevelopment and gene expression. Overall, the effects of (+)-PCB 91 were more pronounced than that of (-)- and (±)-PCB 91. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. DNA damage in earthworms (Eisenia spp.) as an indicator of environmental stress in the industrial zone of Coatzacoalcos, Veracruz, Mexico.

    PubMed

    Espinosa-Reyes, Guillermo; Ilizaliturri, Cesar A; Gonzalez-Mille, Donaji J; Costilla, Rogelio; Diaz-Barriga, Fernando; Carmen Cuevas, Maria Del; Martinez, Miguel Angel; Mejia-Saavedra, Jesus

    2010-01-01

    Coatzacoalcos, Veracruz is one of the major industrial areas of Mexico. Presently, the Coatzacoalcos River and the areas surrounding the industrial complex are considered by various authors to be some of most polluted sites in Mexico. The objective of this study was to determine if earthworms could be used as indicators of environmental stress in the Coatzacoalcos industrial zone. Often, detritivores and decomposers such as earthworms are the first to be affected when the soil is contaminated. We collected soil samples to be used for persistent organic pollutants (POPs) quantification by gas chromatography. Concentrations of hexachlorobenzene, lindane and total polychlorinated biphenyls (PCBs) in the soil were above the maximum permissible limits of the Canadian Environmental Quality Guidelines (CEQG). Comet assay was conducted in coelomocytes of wild earthworms collected in Coatzacoalcos and compared with the control earthworms. We found DNA damage in earthworms from Coatzacoalcos that was significantly higher (P < 0.05) in comparison to laboratory earthworms. Earthworms are an appropriate organism to use as an indicator of environmental impact in contaminated sites. DNA damage recorded in the earthworms provides clear evidence of environmental impacts by the chemical industry on the wildlife of this region.

  2. Potential negative effects of earthworm prey on damage to turfgrass by omnivorous mole crickets (Orthoptera: Gryllotalpidae).

    PubMed

    Xu, Yao; Held, David W; Hu, Xing Ping

    2012-10-01

    The severity of damage to host plants by omnivorous pests can vary according to the availability of plant and animal prey. Two omnivorous mole crickets, Scapteriscus vicinus Scudder and S. borellii Giglio-Tos, were used to determine if the availability of prey influences damage to hybrid bermudagrass by adult mole crickets. Experiments were conducted in arenas with either grass alone (control), grass plus one mole cricket, grass plus earthworms (Eisenia fetida Savigny), or grass with earthworms and a mole cricket. Root growth variables (e.g., volume, dry weight) after 4 wk and weekly measurements of top growth were compared among the treatments. Surprisingly, bermudagrass infested with either mole cricket species caused no significant reduction in root growth and a minimal reduction on top growth with S. vicinus compared with controls. Survival of earthworms with S. borellii was significantly lower than survival in the earthworm-only treatment suggesting predation. Survival of earthworms with S. vicinus, however, was not different from the earthworm-only treatment. The addition of earthworm prey with mole crickets did not significantly impact bermudagrass root or shoot growth relative to grass with only mole crickets. Despite no negative impacts from earthworms or mole crickets separately, earthworms plus mole crickets negatively impact several root parameters (e.g., length) suggesting an interaction between these two soil-dwelling invertebrates. Increased use of more target-selective insecticides in turfgrass may increase available prey. This work suggests that alternative prey, when present, may result in a negative impact on turfgrass roots from foraging omnivorous mole crickets.

  3. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils.

    PubMed

    Gaylor, Michael O; Harvey, Ellen; Hale, Robert C

    2013-12-03

    Polybrominated diphenyl ether (PBDE) flame retardants have been used in consumer polymers at up to percent levels. While long viewed as biologically inaccessible therein, PBDEs may become bioaccessible following volatilization or polymer deterioration. PBDEs may then enter soils via polymer fragmentation or following land application of sewage sludge-derived biosolids. Studies of direct PBDE uptake from these materials by soil organisms are scarce. We thus exposed earthworms ( Eisenia fetida ) to artificial soil amended with a Class B anaerobically digested biosolid (ADB), an exceptional quality composted biosolid (CB), PBDE-containing polyurethane foam (PUF) microparticles, and Penta-BDE-spiked artificial soil (SAS). Worms accumulated mg/kg (lipid) ∑Penta-PBDE burdens from all substrates. Biota-soil accumulation factors (BSAFs) for worms exposed to ADB- and CB-amended soils were comparable after 28 d. BSAFs generally decreased with increasing congener KOW and substrate dosage. Biosolids-associated PBDE bioavailability was lower than spiked PBDEs. BSAFs for worms exposed to PUF microparticles ranged from 3.9 to 33.4, with ∑Penta-PBDE tissue burdens reaching 3740 mg/kg lipid. Congener accumulation patterns were similar in worms and polyethylene passive sampling devices immersed in ADB-amended soil coincident with exposed worms. However, passive sampler accumulation factors were lower than BSAFs. Our results demonstrate that PBDEs may accumulate in organisms ingesting soils containing biosolids or waste plastics. Such organisms may then transfer their burdens to predators or translocate them from the site of application/disposal.

  5. Ecotoxicity of wastes in avoidance tests with Enchytraeus albidus, Enchytraeus crypticus and Eisenia fetida (Oligochaeta).

    PubMed

    Kobeticová, Klára; Hofman, Jakub; Holoubek, Ivan

    2010-04-01

    Contact bioassays are important for testing the ecotoxicity of solid materials. However, survival and reproduction tests are often not practical due to their duration which may last for several weeks. Avoidance tests with soil invertebrates may offer an alternative or extension to the classic test batteries due to their short duration (days rather than weeks) and due to a sensitive sub-acute endpoint (behavior). (a) to evaluate the effects of three solid industrial wastes (incineration ash, contaminated wood chips and contaminated soil) on three Oligochaeta species (enchytraeids Enchytraeusalbidus, Enchytraeus crypticus and earthworm Eisenia fetida) in avoidance tests; (b) to compare the sensitivity among the species and to compare results of avoidance test to reproduction tests; (c) to elucidate if measuring the weight in the earthworm avoidance test could be reasonable additional endpoint. Avoidance mostly increased with the increasing percent of waste in the mixture showing a dose-response curve. E. fetida was the most sensitive species and E. crypticus the least one. An additional endpoint, (changes in weight after two-day exposure) was not found to be more sensitive than avoidance reaction, but it confirmed that earthworms staying in the highest concentrations of the waste mixture were affected showing apparent weight reduction. Our results indicate that avoidance tests with earthworms and enchytraeids are feasible for waste testing. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Toxicities of TNT and RDX to the Earthworm Eisenia fetida in Five Soils with Contrasting Characteristics

    DTIC Science & Technology

    2013-05-01

    light. Earthworm colonies were fed biweekly with alfalfa food consisting of dehydrated alfalfa pellets (27% fiber, 17% protein, 1.5% fat; Ohio Blenders...of PA; York, PA). Before use, the alfalfa pellets were hydrated, fermented for at least 14 days, air-dried, and ground to a course powder. Earthworm...assays, a 2 g bolus of prepared alfalfa food was added to each jar, moistened with an atomizer, and covered with soil from within the jar. Clear

  7. Vermicomposting of Paper Mill Sludge with Eisenia fetida for its Conversion to Nutrient Using Different Seed Materials

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2017-12-01

    In this study, it was aimed for effective utilization of paper mill sludge through vermicomposting by varying seed proportion with sp. Eisenia fetida. Nine plastic trays were used for the experimental work including control. Different seed proportions of cow dung and cattle dung were tested. The multiplication of earthworms in terms of number was counted at the end of vermicomposting. The N, K, Ca, Na values of the manure in each vermibin were estimated before and after vermicomposting. In this study, it was concluded that tray A2 which has combination of 75% Cow dung (CD) and 25% Paper Mill Sludge (PMS) provided better nitrogen synthesis and lowering C/N ratio, whereas tray A4 (25%CD + 75% PMS) yielded better Calcium recovery. Both the seed materials were found to be suitable for Potassium recovery. From this study, it was inferred that vermicomposting of paper mill sludge with sp. Eisenia fetida along with seed materials can also solve the problem of disposal of this sludge.

  8. Uptake and retention of radio-caesium in earthworms cultured in soil contaminated by the Fukushima nuclear power plant accident.

    PubMed

    Fujiwara, K; Takahashi, T; Nguyen, P; Kubota, Y; Gamou, S; Sakurai, S; Takahashi, S

    2015-01-01

    To understand the effects of radionuclides on non-human biota and the environment, it is essential to study the intake and metabolism of radio-isotopes in earthworms which are among the most important soil organisms, and Eisenia fetida, which were used in this study, are known to be sufficiently sensitive to chemicals and representative of common earthworms. In this study, we assessed the concentration ratios, uptake and retention, absorbed dose rate, and distribution of radio-caesium in earthworms. The concentration ratios of (137)Cs (i.e., the concentrations of radio-caesium in earthworms relative to those in dry soil) were higher early in the culturing period and decreased gradually over the experimental period. (137)Cs taken up by E. fetida was cleared rapidly after the worms were cultured in radio-caesium-free soil, suggesting that the metabolism of radio-caesium in earthworms is very rapid. Autoradiography demonstrated that the concentration of radio-caesium within the digestive tract was as high as that in the soil, while radio-caesium in the body tissue was lower than radio-caesium in the soil and was almost uniformly distributed among earthworm tissues. The highest absorbed dose rate of total exposure to radio-caesium ((137)Cs + (134)Cs) was calculated to be 1.9 × 10(3) (μGy/day) in the earthworms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    PubMed

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Impact of ionophore monensin on performance and Cu uptake in earthworm Eisenia andrei exposed to copper-contaminated soil.

    PubMed

    Zidar, Primož; Kos, Monika; Vogel-Mikuš, Katarina; van Elteren, Johannes Teun; Debeljak, Marta; Žižek, Suzana

    2016-10-01

    Exposure of beneficial soil organisms to chemical mixtures is of great concern and can result in unexpected deleterious consequences. We investigated the effects of concurrent soil contamination with monensin, a veterinary pharmaceutical and feed additive, and copper, on earthworm copper uptake and reproductive success. The animals were exposed for 14 or 28 days to both substances and the results showed that the Cu body burden of earthworms increases in the presence of monensin. The harmful effects of Cu on earthworm cocoon production were considerably higher when monensin was also present in the soil. To localise the copper in earthworm tissues, histological staining was performed using two different dyes (rubeanic acid and 5-4-(p-dimethylaminobenzylidene)-rhodanine). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to quantify the Cu levels in the tissues. Cu was found predominantly in the gut wall. The Cu content in the body wall was at least ten times lower compared to the gut, but was proportional to the level of soil contamination. Concurrent soil contamination with monensin and copper resulted in higher earthworm Cu levels and in decreased reproductive success of these important soil decomposers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Assessment of soil toxicity from an antitank firing range using Lumbricus terrestris and Eisenia andrei in mesocosms and laboratory studies.

    PubMed

    Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I

    2004-08-01

    Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.

  12. Roles of epi-anecic taxa of earthworms in the organic matter recycling

    NASA Astrophysics Data System (ADS)

    Hoeffner, Kevin; Monard, Cécile; Santonja, Mathieu; Pérès, Guénola; Cluzeau, Daniel

    2017-04-01

    Given their impact on soil functioning and their interactions with soil organisms, earthworms contribute to the recycling of organic matter and participate significantly in the numerous ecosystem services provided by soils. Most studies on the role of earthworms in organic matter recycling were conducted at the level of the four functional groups (epigeic, epi-anecic, anecic strict and endogeic), but their effects at taxa level remain largely unknown. Still, within a functional group, anatomic and physiologic earthworm taxa traits are different, which should impact organic matter recycling. This study aims at determining, under controlled conditions, epi-anecic taxa differences in (i) leaf litter mass loss, (ii) assimilation and (iii) impact on microorganisms communities implied in organic matter degradation. In seperate microcosms, we chose 4 epi anecic taxa (Lumbricus rubellus, Lumbricus festivus, Lumbricus centralis and Lumbricus terrestris). Each taxon was exposed separately to leaves of three different plants (Holcus lanatus, Lolium perenne and Corylus avellana). In the same microcosm, leaves of each plant was both placed on the surface and buried 10cm deep. The experiment lasted 10 days for half of the samples and 20 days for the second half. Microorganisms communities were analysed using TRFLP in each earthworm taxon burrow walls at 20 days. We observed differences between epi-anecic taxa depending on species of plant and the duration of the experiment. Results are discussed taking into account physical and chemical properties of these 3 trophic resources (e.g. C/N ratio, phenolic compounds, percentage of lignin and cellulose...).

  13. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    PubMed

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.

  14. The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209).

    PubMed

    Liang, Jun; Xia, Xiaoqian; Yuan, Ling; Zhang, Wei; Lin, Kuangfei; Zhou, Bingsheng; Hu, Shuangqing

    2018-06-01

    Reproductive toxicity of nanoscale zero-valent iron (nZVI) along with coexisting decabromodiphenyl ether (BDE209) to earthworm Eisenia fetida (E. fetida) remains unknown. In the present study, the reproductive responses of E. fetida exposed to 100, 500 and 1000 mg kg -1 of nZVI showed a significant (P < 0.05) decline up to 35.6%, 60.0% and 93.3%, respectively, compared to the controls. Expression levels of annetocin (ANN) gene indicated a remarkable (P < 0.05) down-regulation (59.2%, 58.2% and 95.0%, correspondingly), and it was positively correlated with reproductive rates (R = 0.94). Iron contents in E. fetida were also relevant to reproductive behavior (R = 0.84) and ANN expression (R = 0.75). Additionally, seminal vesicles displayed a progressive degeneration with increasing nZVI levels. The addition of BDE209 to low level of nZVI-polluted group (100 mg kg -1 dw) barely caused clear changes on reproduction, histopathology and ANN, while the coexistence resulted in significant impacts in comparison with high level of single nZVI exposure (1000 mg kg -1 dw). These observations would provide some significant information concerning joint toxicity of the two chemicals in a soil system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Exfoliation of the epidermal cells and defecation by amphibian larvae in response to coelomic fluid and lysenin from the earthworm Eisenia foetida.

    PubMed

    Kobayashi, Hideshi; Suzuki, Hirohumi; Ohta, Naoshi

    2006-08-01

    Coelomic fluid (CF) and lysenin from the earthworm Eisenia foetida induced heavy epidermal exfoliation in the larvae of Bufo japonicus formosus at developmental stages from hatching (stage 22) to operculum completion (stage 34). In experiments with Xenopus laevis, we observed that exfoliated cells were not stained by trypan blue. Thus, it appeared that these cells were still alive. It is likely, therefore, that both CF and lysenin might disrupt the adhesion between epidermal cells of larvae prior to stage 34. Since it is known that lysenin exerts its toxic effects through its specific binding to sphingomyelin (SM), SM might be involved in such adhesion. This hypothesis was supported by the observations that CF and lysenin which had been incubated with SM-liposomes lost their exfoliative activity. In larvae after stage 34, the mechanism of adhesion between epidermal cells seemed to change and the adhesion was no longer disrupted by CF and lysenin. In larvae at around stage 34, a collagen layer started to form beneath the basement membrane of the epidermis. Furthermore, larvae at around this stage started to eat solid food. The developing collagen layer and food intake might be related indirectly to the chemical change in epidermal adhesion. The induction of exfoliation by CF and lysenin was also observed in other amphibian species. In Bufo larvae, defecation was induced both by CF and by lysenin but this effect was independent of exfoliation.

  16. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure.

  17. [Effect of Bt rice straw returning in soil on the growth and reproduction of Eisenia fetida.

    PubMed

    Cheng, Miao Miao; Shu, Ying Hua; Wang, Jian Wu

    2016-11-18

    Bacillus thuringiensis (Bt) protein can enter the soil through Bt crops straw returning to field, which may affect the growth and reproduction of soil animals, such as earthworms. Here, Bt rice (b2B138) and conventional rice (Anfeng A) straw were returned in soil to evaluate the impact of Bt rice on Eisenia fetida. Two varieties of rice straw were added into soil to breed E. fetida at the rates of 2.5%, 5%, 7.5% and 10%. The survival rate, relative growth rate, reproduction of earthworm, the Cry1Ab content in soil-straw mixture and earthworm were detected after 7, 15, 30, 45, 60, 75, 90 d. The results showed that Bt rice straw returning at higher concentrations (7.5% and 10%) inhibited the survival rate of E. fetida. Bt rice straw returning had no adverse effect on relative growth rate (RGR) of E. fetida. Bt rice straw treatment improved the reproduction of earthworms under 5%, 7.5% and 10% straw returning in soil. Enzyme-linked immunosorbent assay (ELISA) results indicated that immunoreactive Cry1Ab was detectable in soil-straw mixture and E. fetida from Bt rice treatments, and a strong decline was observed in soil-straw mixture with the increase of treated time. Therefore, Cry1Ab released from Bt rice straw returning at 2.5% and 5% concentration had no adverse effects on the growth and reproduction of E. fetida.

  18. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    PubMed

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7.

    PubMed

    Wang, Xing; Li, Xiaoqin; Sun, Zhenjun

    2018-05-21

    Soil environment contaminated by Escherichia coli O157:H7 which come from the waste of infected animals. Earthworms can live in the pathogens-polluted soil by their innate immunity. How the proteins of earthworms E. fetida will response to E. coli O157:H7-contaminated-soil still unclear? To identify the defense proteins under E. coli O157:H7 stress, we performed a proteomic analysis of earthworm under E. coli O157:H7 exposure through an iTRAQ technology. In total, we found 283 non-redundant proteins, including fibrinolytic protease 1, lombricine kinase, lysozyme, gelsolin, coelomic cytolytic factor-1, antimicrobial peptide lumbricin-l, lysenin, and et al. The proteins participate in metabolic processes, transcription, defense response to bacterium, translation, response to stress, and transport. The study will contribute to understand why earthworm can live in the pathogens-polluted environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Temporal variation in earthworm abundance and diversity along hedgerow-to-field transects in contrasting agricultural land uses

    NASA Astrophysics Data System (ADS)

    Prendergast-Miller, Miranda T.; Jones, David; Hodson, Mark E.

    2017-04-01

    Earthworms are regarded as ecosystem engineers, integral to soil processes such as aggregation, nutrient cycling, water infiltration, plant growth and microbial function. Earthworm surveys were conducted for one year on hedge-to-field transects in arable and pasture fields (Yorkshire, UK). The transects incorporated hedgerow and field margin habitats and extended 60 m into the arable or pasture field. At defined distances, earthworm abundance and biomass were recorded, and earthworms were identified to species and ecological group. Soil density, moisture and temperature were also measured. Additional transects were surveyed on experimental plots with arable-to-ley conversions in the arable fields (wheat crop to grass-clover ley), and tilled plots in the pasture fields (grass-clover ley to wheat crop). The conversion plots were established to determine the benefit of grass-clover leys on soil function; and the tilled pasture plots were established to compare the impact of conventional or minimum tillage practices on earthworm abundance and diversity. A baseline survey was conducted before establishment of the experimental ley and tillage plots. The results showed differences in earthworm abundance, with greater earthworm numbers in the pasture soils compared to arable soils. In both soils, abundance of ecological group was endogeic > epigeic > anecic, and each group was dominated by the same species: Allolobophora chlorotica, Lumbricus castaneus and Apporectodea longa. After one year of treatment, there was some indication of increased earthworm abundance in the arable-to-ley conversion strips. Conversely, tillage in the pasture plots tended to reduce earthworm abundance, and conventional tillage tended to have the greater impact. However, within these major changes, there was also evidence of spatial (distance along transect; field location) and temporal (seasonal) variation on earthworm abundance. Although conversion to ley or tillage did not alter the pattern of

  1. Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities.

    PubMed

    Jubileus, Mandy T; Theron, Pieter D; van Rensburg, Leon; Maboeta, Mark S

    2013-03-01

    South Africa is an important platinum mining country which results in environmental impacts due to the construction of tailing disposal facilities (TDFs). It is unclear what the effects of ageing are on the ecotoxicity of TDFs and whether it increases or decreases over time. The aim of this study was to determine the ecotoxicity of differently aged TDFs by investigating earthworm (Eisenia andrei) responses viz. growth, reproduction, neutral red retention times (NRRT) and tissue metal concentrations. Further, to evaluate the status of these in terms of a geoaccumulation index (I(geo)), pollution index and integrated pollution index. Results indicated that earthworms showed reduced reproductive success (hatchlings per cocoon) and decreased NRRT in all the sites. Juveniles per cocoon between all of the different treatment groups were; control (2.83 ± 0.54) > site 2 (20 years old; 1.83 ± 0.27) > sites 1 and 3 (40 years old; 1.06 ± 0.15 and 6 years old; 0.88 ± 0.39). This might be ascribed to the elevated levels of Cr (±200 to 1,166 μg g(-1)) and Ni (±100 to 316 μg g(-1)) in all of the sites. Earthworms did not bioaccumulate metals with bioconcentration factors for all the different treatments <0.01. Studies like these could be useful when establishing a ranking of TDFs in the future to provide legislative institutions with an indication of the environmental liabilities of platinum mines.

  2. Vermiconversion of industrial sludge for recycling the nutrients.

    PubMed

    Sangwan, Pritam; Kaushik, C P; Garg, V K

    2008-12-01

    The aim of the present study was to investigate the transformation of sugar mill sludge (PM) amended with biogas plant slurry (BPS) into vermicompost employing an epigeic earthworm Eisenia fetida. To achieve the objectives experiments were conducted for 13 weeks under controlled environmental conditions. In all the waste mixtures, a decrease in pH, TOC, TK and C:N ratio, but increase in TKN and TP was recorded. Maximum worm biomass and growth rate was attained in 20% PM containing waste mixture. It was inferred from the study that addition of 30-50% of PM with BPS had no adverse effect on the fertilizer value of the vermicompost as well as growth of E. fetida. The results indicated that vermicomposting can be an alternate technology for the management and nutrient recovery from press mud if mixed with bulking agent in appropriate quantities.

  3. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  4. Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida.

    PubMed

    Lin, Dasong; Li, Ye; Zhou, Qixing; Xu, Yingming; Wang, Di

    2014-12-01

    Triclosan (TCS) is released into the terrestrial environment via the application of sewage sludge and reclaimed water to agricultural land. More attention has been paid to its effect on non-target soil organisms. In the present study, chronic toxic effects of TCS on earthworms at a wide range of concentrations were investigated. The reproduction, DNA damage, and expression levels of heat shock protein (Hsp70) gene of earthworms were studied as toxicity endpoints. The results showed that the reproduction of earthworms were significantly reduced (p < 0.05) after exposure to the concentrations ranges from 50 to 300 mg kg(-1), with a half-maximal effective concentration (EC50) of 142.11 mg kg(-1). DNA damage, detected by the comet assay, was observed and there was a clear significant (R(2) = 0.941) relationship between TCS concentrations and DNA damage, with the EC50 value of 8.85 mg kg(-1). The expression levels of Hsp70 gene of earthworms were found to be up-regulated under the experimental conditions. The expression level of hsp70 gene increased, up to about 2.28 folds that in the control at 50 mg kg(-1). The EC50 value based on the Hsp70 biomarker was 1.79 mg kg(-1). Thus, among the three toxicity endpoints, the Hsp70 gene was more sensitive to TCS in soil.

  5. The presence of Bacillus thuringiensis (Bt) protein in earthworms Eisenia fetida has no deleterious effects on their growth and reproduction.

    PubMed

    Shu, Yinghua; Ma, Honghui; Du, Yan; Li, Zhixian; Feng, Yuanjiao; Wang, Jianwu

    2011-11-01

    Earthworms Eisenia fetida, bred in substances with stover of two genetically-engineered Bacillus thuringiensis (Bt) corns (5422Bt1 (Event Bt11) and 5422CBCL (MON810)) expressing Cry1Ab and their near-isogenic non-Bt corn (5422), were used to investigate the non-target effects of Bt corn on soil-dwelling organisms. Cry1Ab concentrations in substances, casts and guts of E. fetida were also investigated by Enzyme-linked immunosorbent assay (ELISA). More than 90% individuals of E. fetida survived over a period of 30 d, irrespective of whether they received Bt corn or non-Bt corn. Compared to 5422 treatments, significantly higher relative growth rate and more number of new offspring and cocoons of E. fetida were found in 5422Bt1 and 5422CBCL treatments. These results were unlikely to be directly caused by Cry1Ab released from Bt corns but rather by differences in other factors of plants such as plant components (soluble sugar, total organic carbon, total protein and available phosphorus of Bt corns were more than 5422). ELISA results indicated immunoreactive Cry1Ab was detectable in substances, and the casts, guts of E. fetida from Bt corns treatments, of which the highest levels were detected in substances under the corresponding experimental conditions. With the increase of treated time, a strong decline was observed in Cry1Ab from substances and casts of E. fetida, whereas Cry1Ab in guts of E. fetida from 5422Bt1 treatments gradually increased and that from 5422CBCL treatments increased between 14 and 30 d. Therefore, the presence of Cry1Ab in E. fetida had no deleterious effects on their growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254.

    PubMed

    Roch, P; Cooper, E L

    1991-12-01

    Earthworms, Eisenia fetida andrei and Lumbricus terrestris, exposed to Aroclor 1254, followed by infestation with Aeromonas hydrophila, elicited two types of responses. First, in E. fetida, there was no change in the LD50 nor in the in vitro antibacterial growth capacity of cell-free coelomic fluid. Thus, Aroclor exerts no influence on antibacterial proteins nor on the chloragogue cells responsible for their release. Second, in L. terrestris, both a high LD50 value and no antibacterial activity indicate that A. hydrophila was not pathogenic. The 10(4) times higher sensitivity of exposed L. terrestris suggests that Aroclor inhibits leukocyte activity since E. fetida eliminates nonpathogenic bacteria by a cellular mechanism.

  7. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P

    2011-09-01

    Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2011-06-01

    The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Screening of four species of detritivorous (humus-former) earthworms for sustainable vermicomposting of paper waste.

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2001-06-01

    Four specices of detritivorous (humus-former) earthworms were tested for their ability to vermicompost paper waste blended with cowdung in 6:1 (w/w) ratio. The anecic Lampito mauritii, Kinberg and the epigeic Eudrilus eugeniae, Kinberg were the most effective of the four species employed; 20 animals of each of these species generated castings amounting to about 52% of the feed mass (75 g) per fortnight. The performance of these two species was followed by the anecic Drawida willsi, Michaelsen and the epigeic Perionyx excavatus, Perrier; they achieved approximately 46% vermiconversion in comparable settings. The vermireactors were sustainable as the animals have remained consistently healthy and reproductive over a period of six months, and are continuing to remain so, turning in a steadily rising vermicast output. During this period E. eugeniae have grown to 2.3 times their original weight while the other three species have more than trebled their weights. The studies establish the feasibility of vermicomposting as a viable process for the gainful utilization of paper waste in an environmentally clean manner. They also indicate that all the four species of the worms screened by us are suitable for the process, with L. mauritii and E. eugeniae a shade more efficient than the other two species.

  10. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.

  11. The influence of earthworms on the mobility of microelements in soil and their availability for plants

    NASA Astrophysics Data System (ADS)

    Bityutskii, N. P.; Kaidun, P. I.

    2008-12-01

    The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.

  12. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation.

    PubMed

    Udovic, Metka; Lestan, Domen

    2007-07-01

    The effect of two earthworm species, Lumbricus rubellus and Eisenia fetida, on the fractionation/bioavailability of Pb and Zn before and after soil leaching with EDTA was studied. Four leaching steps with total 12.5 mmol kg(-1) EDTA removed 39.8% and 6.1% of Pb and Zn, respectively. EDTA removed Pb from all soil fractions fairly uniformly (assessed using sequential extractions). Zn was mostly present in the chemically inert residual soil fraction, which explains its poor removal. Analysis of earthworm casts and the remainder of the soil indicated that L. rubellus and E. fetida actively regulated soil pH, but did not significantly change Pb and Zn fractionation in non-remediated and remediated soil. However, the bioavailability of Pb (assessed using Ruby's physiologically based extraction test) in E. fetida casts was significantly higher than in the bulk of the soil. In remediated soil the Pb bioavailability in the simulated stomach phase increased by 5.1 times.

  13. Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida.

    PubMed

    Maboeta, M S; van Rensburg, L

    2003-10-01

    Adult Eisenia fetida were used to vermicompost woodchips (WC) and sewage sludge (SS) that are produced as waste product by platinum mines. The aims of the study were to examine the growth and reproductive success of the worms over 84 days to determine long-term feasibility of large-scale implementation and monitor the bioconcentration of heavy metals and the effects of microorganisms inoculation to quantify possible environmental implications. Results revealed that there were no effects on growth (P>0.05), reproductive success decreased (P<0.05), and aluminum (Al), copper (Cu), and nickel (Ni) were bioconcentrated (P<0.05) in the treatment groups without an inoculate. Earthworms in the treatment group with the microorganism inoculate manifested no effects on growth or reproductive success and did not accumulate Al, Cu, and Ni. It is concluded that the only economically feasible way to bioconvert WC and SS to a potential ameliorant of platinum mine tailings would be with the addition of a microorganism inoculate.

  14. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils.

    PubMed

    Kreitinger, Joseph P; Quiñones-Rivera, Antonio; Neuhauser, Edward F; Alexander, Martin; Hawthorne, Steven B

    2007-09-01

    The toxicity and uptake of polycyclic aromatic hydrocarbons (PAHs) by earthworms were measured in soil samples collected from manufactured-gas plant sites having a wide range in PAH concentrations (170-42,000 mg/kg) and soil characteristics. Samples varied from vegetated soils to pure lampblack soot and had total organic carbon contents ranging from 3 to 87%. The biota-soil accumulation factors (BSAFs) observed for individual PAHs in field-collected earthworms (Aporrectodea caliginosa) were up to 50-fold lower than the BSAFs predicted using equilibrium-partitioning theory. Acute toxicity to the earthworm Eisenia fetida was unrelated to total PAH concentration: Mortality was not observed in some soils having high concentrations of total PAHs (>42,000 mg/kg), whereas 100% mortality was observed in other soils having much lower concentrations of total PAHs (1,520 mg/kg). Instead, toxicity appeared to be related to the rapidly released fraction of PAHs determined by mild supercritical CO2 extraction (SFE). The results demonstrate that soils having approximately 16,000 mg rapidly released total PAH/kg organic carbon can be acutely toxic to earthworms and that the concentration of PAHs in soil that is rapidly released by SFE can estimate toxicity to soil invertebrates.

  15. Effects of soil properties on the uptake of pharmaceuticals into earthworms.

    PubMed

    Carter, Laura J; Ryan, Jim J; Boxall, Alistair B A

    2016-06-01

    Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil.

    PubMed

    El-Temsah, Yehia S; Joner, Erik J

    2012-09-01

    Although nano-sized zero-valent iron (nZVI) has been used for several years for remediation of contaminated soils and aquifers, only a limited number of studies have investigated secondary environmental effects and ecotoxicity of nZVI to soil organisms. In this study we therefore measured the ecotoxicological effects of nZVI coated with carboxymethyl cellulose on two species of earthworms, Eisenia fetida and Lumbricus rubellus, using standard OECD methods with sandy loam and artificial OECD soil. Earthworms were exposed to nZVI concentrations ranging from 0 to 2000 mg nZVI kg soil(-1) added freshly to soil or aged in non-saturated soil for 30 d prior to exposure. Regarding avoidance, weight changes and mortality, both earthworm species were significantly affected by nZVI concentrations ≥500 mg kg(-1)soil. Reproduction was affected also at 100 mg nZVI kg(-1). Toxicity effects of nZVI were reduced after aging with larger differences between soils compared to non-aged soils. We conclude that doses ≥500 mg nZVI kg(-1) are likely to give acute adverse effects on soil organisms, and that effects on reproduction may occur at significantly lower concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multilevel ecotoxicity assessment of environmentally relevant bisphenol A concentrations using the soil invertebrate Eisenia fetida.

    PubMed

    Babić, Sanja; Barišić, Josip; Bielen, Ana; Bošnjak, Ivana; Sauerborn Klobučar, Roberta; Ujević, Ivana; Strunjak-Perović, Ivančica; Topić Popović, Natalija; Čož-Rakovac, Rozelindra

    2016-11-15

    Bisphenol A (BPA) presents a serious threat to soil ecosystems, yet its effects on soil-inhabiting organisms are mostly unexplored. Therefore, the impact of environmentally relevant BPA concentrations on a terrestrial model organism, the earthworm Eisenia fetida, was assessed. Animals were cutaneously exposed to 100nM and 10μM BPA up to 10days (10-d). Next, a battery of biomarkers was used for ecotoxicological evaluation on a cellular, tissue and behavioural level. HPLC analysis showed that after a 10-d exposure, BPA accumulation reached a maximum of 2.50μg BPA per g of wet tissue weight. On the cellular level, up to 3-d BPA exposure caused increased lipid oxidation indicating oxidative stress. Histopathological assessment of cell wall and ovaries after 7- and 10-d BPA exposure showed multiple abnormalities, i.e. hyperplasia of epidermis, increased body wall thickness and ovarian atrophy. Detection of these changes was facilitated by a newly proposed semi-quantitative scoring system. Finally, behavioural changes were detected after only 3days of exposure to 100nM BPA. Altogether, the presented multilevel toxicity evaluation indicates high sensitivity of earthworms to low BPA doses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    PubMed

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (p<0.05) by mediating the soil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (p<0.05). Adding earthworms or AM fungi could increase the maize biomass and N content (p<0.05) in OTC polluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (p<0.05) in the OTC polluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bioaccumulation of CeO2 Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study.

    PubMed

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; De Nolf, Wout; De La Torre-Roche, Roberto; Pagano, Luca; Pignatello, Joseph; Uchimiya, Minori; Gardea-Torresdey, Jorge; White, Jason C

    2018-01-11

    The interactions of nanoparticles (NPs) with biochar and soil components may substantially influence NP availability and toxicity to biota. In the present study, earthworms (Eisenia fetida) were exposed for 28 days to a residential or agricultural soil amended with 0-2000 mg of CeO 2 NP/kg and with biochar (produced by the pyrolysis of pecan shells at 350 and 600 °C) at various application rates [0-5% (w/w)]. After 28 days, earthworms were depurated and analyzed for Ce content, moisture content, and lipid peroxidation. The results showed minimal toxicity to the worms; however, biochar (350 or 600 °C) was the dominant factor, accounting for 94 and 84% of the variance for the moisture content and lipid peroxidation, respectively, in the exposed earthworms. For both soils with 1000 mg of CeO 2 /kg at 600 °C, biochar significantly decreased the accumulation of Ce in the worm tissues. Amendment with 350 °C biochar had mixed responses on Ce uptake. Analysis by micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) was used to evaluate Ce localization, speciation, and persistence in CeO 2 - and biochar-exposed earthworms after depuration for 12, 48, and 72 h. Earthworms from the 500 mg of CeO 2 /kg and 0% biochar treatments eliminated most Ce after a 48 h depuration period. However, in the same treatment and with 5% BC-600 (biochar pyrolysis temperature of 600 °C), ingested biochar fragments (∼50 μm) with Ce adsorbed to the surfaces were retained in the gut after 72 h. Additionally, Ce remained in earthworms from the 2000 mg of CeO 2 /kg and 5% biochar treatments after depuration for 48 h. Analysis by μ-XANES showed that, within the earthworm tissues, Ce remained predominantly as Ce 4+ O 2 , with only few regions (2-3 μm 2 ) where it was found in the reduced form (Ce 3+ ). The present findings highlight that soil and biochar properties have a significant influence in the internalization of CeO 2 NPs in earthworms; such

  20. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine.

    PubMed

    Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia

    2013-02-01

    The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida.

    PubMed

    Cao, Xiufeng; Bi, Ran; Song, Yufang

    2017-10-01

    The dose- and time- dependent responses of cytochrome P450 (CYP) sub-enzyme activities to heavy metals in soil, and the relationships between biomarker responses and metal bioaccumulation in Eisenia fetida were evaluated. Earthworms were exposed to soils spiked with increasing doses of Cd, Cu, Pb or Zn for 21 d. Results demonstrated that EROD and CYP3A4 activities responded significantly with increasing dose and exposure duration. EROD activity significantly (P < 0.05) correlated with CYP3A4 activity exposed to Pb and Cu. The earthworm metal burdens had significant correlation with the total metal concentrations in soil (P < 0.01). The bioaccumulation factor (BAF) decreased with the increasing metal concentration in soil. The order of metal bioavailability to E. fetida was Cd > Zn > Cu > Pb. CYP3A4 activity in Pb-exposed earthworms had a significant correlation with the accumulated metal (P < 0.05). Both EROD and CYP3A4 activities in Cu-exposed worms negatively correlated with BAF (P < 0.05). Based on Discriminant Analysis (DA), CYPs activities were sensitive biomarkers of heavy metals exposure, and we also concluded that different biomarkers with multiple durations could be conducted in the eco-toxicological diagnosis of soil pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida).

    PubMed

    Xia, Xiaoqian; Lin, Siyuan; Zhao, Jun; Zhang, Wei; Lin, Kuangfei; Lu, Qiang; Zhou, Bingsheng

    2018-02-01

    Nickel (Ni)-contamination impairs soil ecosystem, threatening human health. A laboratory simulation of Ni-polluted farmland soil study, in the presence or absence of earthworm, was carried out to investigate the toxic responses of soil microorganisms, including microbial biomass C (MBC), soil basal respiration (SBR), metabolic quotient (qCO 2 ), urease (UA) and dehydrogenase activities (DHA). Additionally, the variations of Ni bioavailability were also explored. Results manifested that MBC and SBR were stimulated at 50 and 100 mg·kg -1 of Ni but inhibited by further increasing Ni level, showing a Hormesis effect. Earthworm input delayed the occurrence of a maximum SBR inhibition rate under the combined double-factors of time and dose. No specific effect of Ni concentration on the qCO 2 was observed. UA was significantly suppressed at 800 mg·kg -1 Ni (P < 0.05 or 0.01), whereas DHA was more sensitive and significantly inhibited throughout all the treatments (P < 0.01), indicating a pronounced dose-response relationship. The addition of earthworm facilitated all the biomarkers above. The time-dependent of dose-effect relationship (TDR) on MBC and SBR inhibition rates suggested that the peak responsiveness of microorganisms to Ni stress were approximate on the 21st day. The bioavailable form of per unit Ni concentration declined with time expanded and concentration increased, and the changeable process of the relative amount of bioavailability was mainly controlled by a physicochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  4. Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?

    PubMed

    Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping

    2017-03-01

    Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM.

    PubMed

    Mrdakovic Popic, Jelena; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ((232)Th and (238)U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ((232)Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the (232)Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ((238)U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for (232)Th and (238)U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 μGy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated (232)Th and (238)U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of radionuclides and metals and to assessment

  6. Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities.

    PubMed

    Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander

    2017-06-01

    Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg -1 , As >19mgkg -1 ) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC 80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg -1 (339 - 528mgkg -1 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  8. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2018-04-30

    Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Molecular phylogeny and systematics of native North American lumbricid earthworms (Clitellata: Megadrili)

    PubMed Central

    Pavlícek, Tomás; Szederjesi, Tímea; Esopi, David; Szlávecz, Katalin

    2017-01-01

    The family Lumbricidae is arguably the most well-known and well-studied earthworm group due to its dominance in the European earthworm fauna and its invasion in temperate regions worldwide. However, its North American members, especially the genus Bimastos Moore, 1893, are poorly understood. We revised the systematics of the genus Bimastos and tested the hypothesis of the monophyly of North American lumbricids using morphological characters and eight molecular markers. Phylogenetic analyses based on our extensive sampling of Bimastos and inclusion of Dendrodrilus and Allolobophoridella indicated a well-supported clade containing Bimastos and Eisenoides Gates, 1969, and provided the first evidence supporting that North American lumbricids are monophyletic. Assuming the available divergence time estimations and dating of land bridges are correct, it would suggest that the ancestor of this clade arrived North America through Beringia or the De Geer route during Late Cretaceous, and since then the clade has diverged from its Eurasian sister group, Eisenia. The peregrine genera Dendrodrilus and Allolobophoridella are nested within the Bimastos clade; we propose to treat them as junior synonyms of the genus Bimastos, and, contradictory to the commonly held belief of being European, they are indeed part of the indigenous North American earthworm fauna. Morphological characters, such as red-violet pigmentation, proclinate U-shaped nephridial bladders and calciferous diverticula in segment 10 further support this placement. The East Mediterranean–Levantine Spermophorodrilus Bouché, 1975 and Healyella Omodeo & Rota, 1989 are nested within the Dendrobaena sensu lato clade; therefore their close relationship with the North American Bimastos is refuted. Species fit the revised diagnosis of Bimastos are reviewed and keyed, and a new species, Bimastos schwerti sp. nov., is described. PMID:28792948

  10. Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems.

    PubMed

    Leslie, T W; Hoheisel, G A; Biddinger, D J; Rohr, J R; Fleischer, S J

    2007-02-01

    Many ecological studies have focused on the effects of transgenes in field crops, but few have considered multiple transgenes in diversified vegetable systems. We compared the epigeal, or soil surface-dwelling, communities of Coleoptera and Formicidae between transgenic and isoline vegetable systems consisting of sweet corn, potato, and acorn squash, with transgenic cultivars expressing Cry1(A)b, Cry3, or viral coat proteins. Vegetables were grown in replicated split plots over 2 yr with integrated pest management (IPM) standards defining insecticide use patterns. More than 77.6% of 11,925 insects from 1,512 pitfall traps were identified to species, and activity density was used to compare dominance distribution, species richness, and community composition. Measures of epigeal biodiversity were always equal in transgenic vegetables, which required fewer insecticide applications than their near isolines. There were no differences in species richness between transgenic and isoline treatments at the farm system and individual crop level. Dominance distributions were also similar between transgenic and isoline farming systems. Crop type, and not genotype, had a significant influence on Carabidae and Staphylinidae community composition in the first year, but there were no treatment effects in the second year, possibly because of homogenizing effects of crop rotations. Communities were more influenced by crop type, and possibly crop rotation, than by genotype. The heterogeneity of crops and rotations in diversified vegetable farms seems to aid in preserving epigeal biodiversity, which may be supplemented by reductions in insecticide use associated with transgenic cultivars.

  11. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.

    PubMed

    Unuofin, F O; Mnkeni, P N S

    2014-11-01

    Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.

  12. Influence of invasive earthworm activity on carbon dynamics in soils from the Aspen Free Air CO2 Enrichment Experiment

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Top, S. M.; Hopkins, F. M.

    2010-12-01

    The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm

  13. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  14. Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry.

    PubMed

    Singh, J; Kaur, A; Vig, A P; Rup, P J

    2010-03-01

    Beverage industry bio sludge proved to be toxic when given alone to earthworms even after stabilization for 15 days, therefore, it was mixed in various proportions with cattle dung. Best suitable mixture for highest survival, maximum growth and highest population buildup of Eisenia fetida was determined by observing mortality, growth rate, rate of cocoon production, population buildup and time taken for decomposition of waste. Minimum mortality and maximum population buildup were observed in 50:50 mixture of bio sludge and cattle dung. Nitrogen, phosphorous, sodium and pH increased in all the feed mixtures, while electrical conductivity, organic carbon and potassium declined in all the samples in comparison to traditional compost (without worms). Degradation of 50:50 mixture could be achieved in 75 days when worms were inoculated at 25 g/kg feed mixture. But the best-quality product was obtained after 105-110 days with 7.5 g worms/kg feed mixture. (c) 2009 Elsevier Inc. All rights reserved.

  15. Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

    USGS Publications Warehouse

    Kinney, Chad A.; Campbell, Bryan R.; Thompson, Regina; Furlong, Edward T.; Kolpin, Dana W.; Burkhardt, Mark R.; Zaugg, Steven D.; Werner, Stephen L.; Hay, Anthony G.

    2012-01-01

    Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids–amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids–soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil–biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids–soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤ 19 AWI). The earthworms exposed to the 8-week aged biosolids–soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large

  16. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues.

    PubMed

    Kaushik, Priya; Garg, V K

    2004-09-01

    In India, thousands of tons of textile mill sludge are produced every year. We studied the ability of epigeic earthworm Eisenia foetida to transform textile mill sludge mixed with cow dung and/or agricultural residues into value added product, i.e., vermicompost. The growth, maturation, mortality, cocoon production, hatching success and the number of hatchlings were monitored in a range of different feed mixtures for 11 weeks in the laboratory under controlled environmental conditions. The maximum growth and reproduction was obtained in 100% cow dung, but worms grew and reproduced favorably in 80% cow dung + 20% solid textile mill sludge and 70% cow dung + 30% solid textile mill sludge also. Addition of agricultural residues had adverse effects on growth and reproduction of worms. Vermicomposting resulted in significant reduction in C:N ratio and increase in TKN, TP, TK and TCa after 77 days of worm activity in all the feeds. Vermicomposting can be an alternate technology for the management of textile mill sludge if mixed with cow dung in appropriate quantities. Copyright 2003 Elsevier Ltd.

  17. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    NASA Astrophysics Data System (ADS)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  18. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus.

    PubMed

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  19. Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability.

    PubMed

    Mirmonsef, Hassan; Hornum, Hanne D; Jensen, John; Holmstrup, Martin

    2017-01-01

    Contaminated soil is a problem throughout the industrialized world, and a significant proportion of these sites are polluted with heavy metals such as copper. Ecological risk assessment of contaminated sites requires ecotoxicological studies with spiked soils as well as in-situ ecological observations. Here, we report laboratory and field assessment of copper toxicity for earthworms at a Danish site (Hygum) exclusively contaminated with an increasing gradient in copper from background to highly toxic levels (>1000mgkg -1 dry soil). More specifically, we report effects on field populations, body contents of copper, hatching of earthworm cocoons and reproduction of the common species Aporrectodea tuberculata. Abundance of earthworms and cocoons decreased significantly from about 400-150m -2 along the gradient as the soil copper concentration increased from ca. 50 to ca. 1000mgkg -1 . At lower concentrations, the population was dominated by endogeic species, whereas at high concentrations the population was dominated by epigeic species. At high copper contents the internal concentration of copper was in the range 100-160mgkg -1 dry tissue. Despite the high internal copper contents, hatchability of field collected cocoons was not impaired in any species. The EC50 reproduction value of A. tuberculata was about 220mg copper kg -1 dry soil in the first two exposure periods, but nearly doubled in the third period suggesting that an acclimation response had occurred. Also in the laboratory reproduction test, cocoon hatchability was not reduced, but rather slightly stimulated by copper. Based on these results we discuss the possibility that acute exposure in laboratory experiments is more detrimental than exposure in a field situation, perhaps because increased tolerance may be acquired through natural selection and genetic adaptation through increased use of defense mechanisms such as metallothioneins. Further, we discuss that the rather high tissue copper level of

  20. Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncaví Valley, Chile.

    PubMed

    Neaman, Alexander; Huerta, Soledad; Sauvé, Sébastien

    2012-06-01

    The Puchuncaví Valley in central Chile has been exposed to atmospheric depositions from a copper smelter. Nowadays, soils in the surrounding area are acidic and contaminated with Cu and As. The objective of this study was to determine the effectiveness of lime and compost for in situ immobilization of trace elements in the soils of the Puchuncaví Valley by using earthworms as bioindicators of toxicity. The lime and compost treatments significantly increased soil pH and decreased the soluble and exchangeable Zn, exchangeable Cu, and free Cu(2+) activity. However, the compost treatment increased soluble Cu, and soluble and exchangeable As. Lime application had no effect on earthworm reproduction in comparison with the unamended control, whereas the application of compost increased cocoon and juvenile production. There was a spatial variability of soil properties within treatments in the field plots. This allowed the identification of which soil properties were actually having an impact on earthworm reproduction. For both cocoon and juvenile production, soil organic matter (SOM) was a positive factor, i.e., more SOM increased cocoon or juvenile production. The toxicity (negative) factor was total soil As. However, total Cu and total As were well correlated (R(2)=0.80, p<0.001), hence some of the trends could have been masked. In summary, compost treatment was effective in improving the quality of soils of Puchuncaví Valley, increasing earthworm reproduction. Future Chilean legislation on maximum permissible concentrations of trace elements in soils should consider SOM content due to its effect on trace element solubility and bioavailability. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Lethal and sub-lethal evaluation of Indigo Carmine dye and byproducts after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms.

    PubMed

    Genázio Pereira, Patrícia Christina; Reimão, Roberta Valoura; Pavesi, Thelma; Saggioro, Enrico Mendes; Moreira, Josino Costa; Veríssimo Correia, Fábio

    2017-09-01

    The Indigo carmine (IC) dye has been widely used in textile industries, even though it has been considered toxic for rats, pigs and humans. Owing to its toxicity, wastes containing this compound should be treated to minimize or eliminate their toxic effects on the biota. As an alternative to wastewater treatment, advanced oxidative processes (AOPs) have been highlighted due to their high capacity to destruct organic molecules. In this context, this study aimed to evaluate Indigo Carmine toxicity to soil organisms using the earthworm Eisenia andrei as a model-organism and also verify the efficiency of AOP in reducing its toxicity to these organisms. To this end, lethal (mortality) and sub-lethal (loss or gain of biomass, reproduction, behavior, morphological changes and immune system cells) effects caused by this substance and its degradation products in these annelids were evaluated. Morphological changes were observed even in organisms exposed to low concentrations, while mortality was the major effect observed in individuals exposed to high levels of indigo carmine dye. The organisms exposed to the IC during the contact test showed mortality after 72h of exposure (LC 50 = 75.79mgcm - 2 ), while those exposed to photoproducts showed mortality after 48h (LC 50 = 243min). In the chronic study, the organisms displayed a mortality rate of 14%, while those exposed to the photoproduct reached up to 32.7%. A negative influence of the dye on the reproduction rate was observed, while by-products affected juvenile survival. A loss of viability and alterations in the cellular proportion was verified during the chronic test. However, the compounds did not alter the behavior of the annelids in the leak test (RL ranged from 20% to 30%). Although photocatalysis has been presented as an alternative technology for the treatment of waste containing the indigo carmine dye, this process produced byproducts even more toxic than the original compounds to E. andrei. Copyright © 2017

  2. Effect of volatile hydrocarbon fractions on mobility and earthworm uptake of polycyclic aromatic hydrocarbons from soils and soil/lampblack mixtures.

    PubMed

    Bogan, Bill W; Beardsley, Kate E; Sullivan, Wendy R; Hayes, Thomas D; Soni, Bhupendra K

    2005-01-01

    Studies were conducted to examine the mobility and bioavailability to earthworms (Eisenia fetida) of priority pollutant polycyclic aromatic hydrocarbons (PAH) in a suite of 11 soils and soil/lampblack mixtures obtained from former manufactured-gas plant sites. Contaminant mobility was assessed using XAD4 resins encapsulated in dialysis tubing, which were exposed to slurried soils for 15 d. These experiments showed that mobility of PAH in the different soils strongly correlated to the levels of volatile hydrocarbons (namely, gasoline- and diesel-range organics [GRO and DRO]) that existed in the soils as co-contaminants. Actual PAH bioavailability (as measured by earthworm PAH concentrations) also appeared to depend on GRO + DRO levels, although this was most evident at high levels of these contaminants. These findings are discussed in view of the effects of dieselrange organics on oil viscosity, assuming that the hydrocarbon contaminants in these soils exist in the form of distinct adsorbed oil phases. This study, therefore, extends correlations between carrier-oil viscosity and dissolved solute bioavailability, previously observed in a number of other in vitro and whole-organism tests (and in bacterial mutagenicity studies in soil), to multicellular organisms inhabiting contaminated-soil systems.

  3. Teacher's Guide for Earthworms.

    ERIC Educational Resources Information Center

    Bruno, Merle S.; And Others

    This teacher's guide on earthworms includes four major sections: (1) introduction, (2) caring for earthworms in the classroom, (3) classroom activities, and (4) the appendix. The introduction includes information concerning grade level, scheduling, materials, obtaining earthworms, field study, classroom clean-up, and records. Caring for earthworms…

  4. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging.

    PubMed

    Vlčková, Klára; Hofman, Jakub

    2012-01-01

    The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm.

    PubMed

    Yang, Yang; Xiao, Yao; Chang, Yeqian; Cui, Yibin; Klobučar, Göran; Li, Mei

    2018-08-30

    Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity. Hameatoxylin and eosin (H&E) demonstrated that intestinal cells suffered serious damage, and the observed up-regulation of chitinase and cathepsin L in mRNA levels confirmed it. Both TCEP and TCP significantly increased the DNA damage when the concentrations exceeded 1 mg/kg (p < 0.01), and a dose-response relationship was observed. In addition, TCEP and TCP also changed the acetylcholinesterase (AChE) activity and expression of genes associated with neurotoxic effects in earthworms even under exposure to low OPEs concentration (0.1 mg/kg). Moreover, genes associated with nicotinic acetylcholine receptors (nAChR) and carrier protein further demonstrated that highest concentration of TCEP (10 mg/kg) may have an overloading impact on the cholinergic system of E. fetida. Integrated Biological Response index (IBRv2) showed that TCEP exerted stronger toxicity than TCP under the same concentrations. We deduced that the observed intestinal damage, oxidative stress and neurotoxic effect might be the primary mechanisms of TCEP and TCP toxicity. This study provides insight into the toxicological effects of OPEs on earthworm model, and may be useful for risk assessment of OPEs on soil ecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    PubMed Central

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  7. Avoidance behaviour of Eisenia fetida to carbofuran, chlorpyrifos, mancozeb and metamidophos in natural soils from the highlands of Colombia.

    PubMed

    García-Santos, Glenda; Keller-Forrer, Karin

    2011-07-01

    Earthworm avoidance behaviour test is an important screening tool in soil eco-toxicology. This test has been developed and validated under North American and European conditions. However, little research has been performed on the avoidance test in the tropics. This work demonstrates the potential suitability of the avoidance behaviour test as screening method in the highlands of Colombia using Eisenia fetida as the bio-indicator species on contaminated soils with carbofuran and chlorpyrifos. Though for the two active ingredients 100% avoidance was not reached, a curve with six meaningful concentrations is provided. No significant avoidance behaviour trend was found for mancozeb and methamidophos. Tests were conducted in the field yielded similar results to the tests carried out in the laboratory for chlorpyrifos and mancozeb. However, for the case of carbofuran and methamidophos, differences of more than double in avoidance were obtained. Divergence might be explained by soil and temperature conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida.

    PubMed

    Gupta, Renuka; Garg, V K

    2009-02-15

    With the industrial growth, changing life style and consumeristic attitude paper consumption has increased significantly in yesteryears. The authors have observed that waste paper obtained from consumable items and used paper products are disposed in open by the consumers as these are not accepted by the salvaging industry. In the present study, an attempt has been made to vermicompost non-recyclable post-consumer paper waste (PW) amended with cow dung (CD) employing Eisenia fetida earthworm in order to transform it into a value added product, i.e., vermicompost. Vermicomposting of paper waste resulted in net reduction in ash content and total organic carbon (42.5-56.8%) but increment in total Kjeldhal nitrogen (2.0-2.4-fold), total potassium (2.0-fold), and total phosphorous (1.4-1.8-fold) was achieved after 91 days of worms' activity. The C:N ratio decreased with time in all the worm-worked vermireactors in the range of 71.9-82.0%, depicting advanced degree of organic matter stabilization. The FT-IR spectroscopy of the vermicomposts showed reduction in aliphatic compounds during the vermicomposting process. The results also demonstrated the worm growth and reproduction are not significantly affected if PW content is upto 30% in the vermireactor.

  9. Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Treesearch

    P.F. Hendrix; G.H. Baker; M.A. Jr. Callaham; G.A. Damoff; C. Fragoso; G. Gonzalez; S.W. James; S.L. Lachnicht; T. Winsome; X. Zou

    2006-01-01

    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...

  10. Earthworm Effects without Earthworms: Inoculation of Raw Organic Matter with Worm-Worked Substrates Alters Microbial Community Functioning

    PubMed Central

    Aira, Manuel; Domínguez, Jorge

    2011-01-01

    Background Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects). Methodology/Principal Findings To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered. Conclusion/Significance Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity. PMID:21298016

  11. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  12. Analysis of chromium status in the revegetated flora of a tannery waste site and microcosm studies using earthworm E. fetida.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Subramanian, Avudainayagam; Thavamani, Palanisami; Ramadass, Kavitha; Aryal, Rupak; Saint, Christopher

    2018-02-01

    Chromium from tannery waste dump site causes significant environmental pollution affecting surrounding flora and fauna. The primary aims of this study were to survey vegetation, investigate the degree of soil pollution occurring near tannery waste dump site and make a systematic evaluation of soil contamination based on the chromium levels found in plants and earthworms from the impacted areas. This paper presents the pollution load of toxic heavy metals, and especially chromium, in 10 soil samples and 12 species of plants. Soil samples were analysed for heavy metals by using ICP-MS/ICP-OES method. Results indicated that Cr in soils exceeded soil quality guideline limits (SQGL). The total chromium present in the above ground parts of plants ranged from 1.7 mg kg -1 in Casuarina sp. to 1007 mg kg -1 in Sonchus asper. The Cr bioaccumulation in Eisenia fetida from tannery waste soil ranged from 5 to 194 mg kg -1 . The high enrichment factor of Cr in S. asper and bioaccumulation factor in earthworms indicate that there is a steady increase of toxic chromium risk in this area, which could be correlated with the past dumping activity. Emphasis needs to be put on control measures of pollution and remediation techniques in such areas to achieve an ecologically sustainable industrialisation.

  13. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less

  14. Accumulation of chlorinated benzenes in earthworms

    USGS Publications Warehouse

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p < 0.05), the decrease was minor. Hexachlorobenzene in earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p < 0.05). Concentrations of both trichlorobenzene and hexachlorobenzene in earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  15. Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid delta13C values determined by gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Dungait, Jennifer A J; Briones, Maria J I; Bol, Roland; Evershed, Richard P

    2008-06-01

    Litter-dwelling (epigeic) Lumbricus rubellus and soil-dwelling (endogeic) Allolobophora chlorotica earthworms were observed aggregating under C(3) (delta(13)C = -31.3 per thousand; delta(15)N = 10.7 per thousand) and C(4) (delta(13)C = -12.6 per thousand; delta(15)N = 7.5 per thousand) synthetic dung pats applied to a temperate grassland (delta(13)C = -30.3 per thousand; delta(15)N = 5.7 per thousand) in an experiment carried out for 372 days. Bulk delta(13)C values of earthworms collected from beneath either C(3) or C(4) dung after 28, 56, 112 and 372 days demonstrated that (i) L. rubellus beneath C(4) dung were significantly (13)C-enriched after 56 days (delta(13)C = -23.8 per thousand) and 112 days (delta(13)C = -22.4 per thousand) compared with those from C(3) dung treatments (56 days, delta(13)C = -26.5 per thousand; 112 days, delta(13)C = -27.0 per thousand), and (ii) A. chlorotica were 2.1 per thousand (13)C-enriched (delta(13)C = -24.2 per thousand) relative to those from C(3) dung (delta(13)C = -26.3 per thousand) treatments after 372 days. Bulk delta(15)N values did not suggest significant uptake of dung N by either species beneath C(3) or C(4) dung, but showed that the endogeic species (total mean delta(15)N = 3.3 per thousand) had higher delta(15)N values than the epigeic species (total mean delta(15)N = 5.4 per thousand). Although the two species exhibited similar fatty acid profiles, individual fatty acid delta(13)C values revealed extensive routing of dietary C into body tissue of L. rubellus, but minor incorporation into A. chlorotica. In particular, the direct incorporation of microbial biomarker fatty acids (iC(17:0), aC(17:0)) from (13)C-labelled dung in situ, the routing of dung C into de novo synthesised compounds (iC(20:4)(omega)(6),C(20:5)(omega)(3), and the assimilation of essential fatty acids ((C(18:1)(omega)(9), C(18:1)(omega(7), C(18:2)(omega(6), C(18:3)(omega)(3)) derived from dung, were determined. John Wiley & Sons, Ltd

  16. Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2014-01-01

    Genotoxicity of pressmud (PM) to Allium cepa was investigated to assess its toxic potential and to elucidate the effect of vermicomposting to reduce its toxicity. The PM produced as a waste by product of the sugar cane industry was mixed with cow dung (CD) at different ratios of 0:100 (V₀), 25:75 (V₂₅), 50:50 (V₅₀), 75:25 (V₇₅) and 100:0 (V100) (PM:CD) on a dry weight basis for vermicomposting with Eisenia fetida. Different concentrations of 100% PM sludge extract (10%, 20%, 40%, 60%, 80% and 100%) and negative control (distilled water) and positive control (maleic hydrazide) were analyzed with A. cepa assay to evaluate frequency of chromosomal aberrations before and after vermicomposting. Percent aberration was greatest (30.8%) after exposure to 100% PM extract after 6 h but was reduced to 20.3% after vermicomposting. Exposure to the extract induced c-mitosis, delayed anaphase, laggards, stickiness and vagrant aberrations. Microscopic examination of root meristem exposed to PM sludge extract showed significant inhibition of mitotic index. Also, the mitotic index decreased with increase in concentration of PM sludge extract. After vermicomposting the mitotic index was increased. However, increasing percentages of PM significantly affected the growth and fecundity of the worms and maximum population size was reached in the 25:75 (PM:CD) feed mixture. Nitrogen, phosphorus, sodium, electrical conductivity (EC) and pH increased from initial feed mixture to the final products (i.e., vermicompost), while organic carbon, C/N ratio and potassium declined in all products of vermicomposting. Scanning electron microscopy (SEM) was recorded to identify the changes in texture with numerous surface irregularities and high porosity that proves to be good vermicompost manure. It could be concluded that vermicomposting could be an important tool to reduce the toxicity of PM as evidenced by the results of genotoxicity.

  17. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions.

    PubMed

    Piola, Lucas; Fuchs, Julio; Oneto, María Luisa; Basack, Silvana; Kesten, Eva; Casabé, Norma

    2013-04-01

    Glyphosate-based products are the leading post-emergent agricultural herbicides in the world, particularly in association with glyphosate tolerant crops. However, studies on the effects of glyphosate-based formulations on terrestrial receptors are scarce. This study was conducted to evaluate the comparative toxicity of two glyphosate-based products: Roundup FG (monoammonium salt, 72% acid equivalent, glyphosate-A) and Mon 8750 (monoammonium salt, 85.4% acid equivalent, glyphosate-B), towards the earthworm Eisenia andrei. Median lethal concentration (LC50) showed that glyphosate-A was 4.5-fold more toxic than glyphosate-B. Sublethal concentrations caused a concentration-dependent weight loss, consistent with the reported effect of glyphosate as uncoupler of oxidative phosphorylation. Glyphosate-A showed deleterious effects on DNA and lysosomal damage at concentrations close to the applied environmental concentrations (14.4 μg ae cm(-2)). With glyphosate-B toxic effects were observed at higher doses, close to its LC50, suggesting that the higher toxicity of formulate A could be attributed to the effects of some of the so-called "inert ingredients", either due to a direct intrinsic toxicity, or to an enhancement in the bioavailability and/or bioaccumulation of the active ingredient. Our results highlight the importance of ecotoxicological assessment not only of the active ingredients, but also of the different formulations usually employed in agricultural practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Earthworm in the 21st century

    NASA Astrophysics Data System (ADS)

    Friberg, Paul; Lisowski, Stefan; Dricker, Ilya; Hellman, Sidney

    2010-05-01

    Earthworm (Johnson et al., 1995) is a fully open-source earthquake data acquisition and processing package that is in widespread use through out the world. Earthworm includes basic seismic data acquistion for the majority of the dataloggers currently available and provides network transport mechanisms and common formats as output for data transferral. In addition, it comes with network seismology tools to compute network detections, perform automated arrival picking, and automated hypocentral and magnitude estimations. More importantly it is an open and free framework in the C-programming language that can be used to create new modules that process waveform and earthquake data in near real time. The number of Earthworm installations is growing annually as are the number of contributions to the system. Furthermore its growth into other areas of waveform data acquistion (namely Geomagnetic observatories and Infrasound arrays) show its adaptability to other waveform technologies and processing strategies. In this presentation we discuss the coming challenges to growing Earthworm and new developments in its use; namely the open source add-ons that have become interfaces to Earthworm's core. These add-ons include GlowWorm, MagWorm, Hydra, SWARM, Winston, EarlyBird, Iworm, and most importantly, AQMS (formerly known as CHEETAH). The AQMS, ANSS Quake Monitoring System, is the Earthworm system created in California which has now been installed in the majority of Regional Seismic Networks (RSNs) in the United States. AQMS allows additional real-time and post-processing of Earthworm generated data to be stored and manipulated in a database using numerous database oriented tools. The use of a relational database for persistence provides users with the ability to implement configuration control and research capabilities not available in earlier Earthworm add-ons. By centralizing on AQMS, the RSNs will be able to leverage new developments by easily sharing Earthworm and AQMS

  19. Microplastic transport in soil by earthworms.

    PubMed

    Rillig, Matthias C; Ziersch, Lisa; Hempel, Stefan

    2017-05-02

    Despite great general benefits derived from plastic use, accumulation of plastic material in ecosystems, and especially microplastic, is becoming an increasing environmental concern. Microplastic has been extensively studied in aquatic environments, with very few studies focusing on soils. We here tested the idea that microplastic particles (polyethylene beads) could be transported from the soil surface down the soil profile via earthworms. We used Lumbricus terrestris L., an anecic earthworm species, in a factorial greenhouse experiment with four different microplastic sizes. Presence of earthworms greatly increased the presence of microplastic particles at depth (we examined 3 soil layers, each 3.5 cm deep), with smaller PE microbeads having been transported downward to a greater extent. Our study clearly shows that earthworms can be significant transport agents of microplastics in soils, incorporating this material into soil, likely via casts, burrows (affecting soil hydraulics), egestion and adherence to the earthworm exterior. This movement has potential consequences for exposure of other soil biota to microplastics, for the residence times of microplastic at greater depth, and for the possible eventual arrival of microplastics in the groundwater.

  20. Mode of action of Cr(VI) in immunocytes of earthworms: Implications for animal health.

    PubMed

    Sforzini, Susanna; Moore, Michael N; Mou, Zhuofan; Boeri, Marta; Banni, Mohamed; Viarengo, Aldo

    2017-04-01

    Chromium (Cr) is one of the major and most detrimental pollutant, widely present in the environment as a result of several anthropogenic activities. In mammalian cells, Cr(VI) is known to enhance reactive oxygen species (ROS) production and to cause toxic and genotoxic effects. Less commonly investigated are the effects and mode of action of this contaminant in invertebrates, particularly in soil organisms. In this work, earthworms of the species Eisenia andrei were exposed for 1 and 3 days to various sublethal concentrations of Cr(VI) (2, 15, 30µgmL -1 ) using the paper contact toxicity test. In amoeboid leukocytes we investigated intracellular ROS and lipoperoxide production, oxidative DNA damage, and the effects on different cell functions. The analysis of the results shows that Cr(VI) triggered severe adverse reactions; the first events were an increase of intracellular ROS levels, generating in the cells oxidative stress conditions leading to membrane lipid peroxidation and oxidative DNA damage. Lysosomes showed relevant changes such as a strong membrane destabilization, which was accompanied by an increased catabolism of cytoplasmic proteins and accumulation of lipofuscin. With an increase in the dose and/or time of exposure, the physiological status of intracellular organelles (such as lysosomes, nucleus and mitochondria) showed further impairment and amoebocyte immune functions were adversely affected, as shown by the decrease of the phagocytic activity. By mapping the responses of the different parameters evaluated, diagnostic of (oxidative) stress events, against lysosomal membrane stability, a "health status" indicator (able to describe the stress syndrome from its early phase to pathology), we have shown that this biomarker is suitable as a prognostic test for health of earthworms. This is viewed as a crucial step toward the derivation of explanatory frameworks for prediction of pollutant impact on animal health. Copyright © 2017. Published by

  1. For Better Soil, Let Earthworms Toil.

    ERIC Educational Resources Information Center

    Swinehart, Rebecca, Ed.

    1995-01-01

    This activity involves elementary students in investigating how earthworms affect soil fertility. An introduction discusses topsoil loss and the connections between soil and earthworm ecology. Materials needed and step-by-step procedure are provided. (LZ)

  2. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    PubMed

    Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian

  3. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders

    PubMed Central

    Ziemba, Julie L.

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from “non-invaded” and “pheretimoid invaded” sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance

  4. Biochemical diversity of betaines in earthworms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebeke, Manuel; Bundy, Jacob G., E-mail: j.bundy@imperial.ac.uk

    2013-01-25

    Highlights: ► We develop a method for rapid untargetted analysis of betaines. ► We profile betaines in a comparative study of ten earthworm species. ► Earthworms contain a surprisingly high number of different betaine metabolites. ► Earthworms contain betaines normally seen only in plants or marine animals. -- Abstract: The ability to accumulate osmoprotectant compounds, such as betaines, is an important evolutionary feature in many organisms. This is particularly the case for organisms that live in variable environments, which may have fluctuations in moisture and salinity levels. There is, surprisingly, very little known about betaines in soil invertebrates in general,more » and there is almost no information about earthworms – a group that are important ‘ecosystem engineers’ and key indicators of soil health. Here, we describe a fast and reliable {sup 1}H–{sup 13}C heteronuclear single quantum coherence (HSQC) 2D NMR approach for the metabolic profiling of a series of betaines and related metabolites in tissue extracts, and list {sup 1}H and {sup 13}C chemical shifts for the trimethylammonium signal for 23 such compounds. The analysis of ten different species from three different families (Lumbricidae, Megascolecidae and Glossoscolecidae) showed an unexpected diversity of betaines present in earthworms. In total ten betaines were identified, including hydroxyproline-betaine, proline-betaine, taurine-betaine, GABA-betaine and histidine-betaine, and a further eleven as-yet unassigned putative betaine metabolites detected. The findings clearly indicate a hitherto-unappreciated important role for betaine metabolism in earthworms.« less

  5. Genotoxicity reduction in bagasse waste of sugar industry by earthworm technology.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2016-01-01

    The aim of the present study was to assess the genotoxicity reduction in post vermicompost feed mixtures of bagasse (B) waste using earthworm Eisenia fetida. The genotoxicity of bagasse waste was determined by using Allium cepa root chromosomal aberration assay. Bagasse was amended with cattle dung in different proportions [0:100 (B0) 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100)] on dry weight basis. Genotoxic effects of initial and post vermicompost bagasse extracts were analysed on the root tips cells of Allium cepa. Root length and mitotic index (MI) was found to be increased in post vermicompost extracts when compared to initial bagasse waste. The maximum percent increase of root length was observed in the B50 bagasse extract (96.60 %) and the maximum MI was observed in B100 mixture (14.20 ± 0.60) 6 h treatment which was similar to the control. Genotoxicity analysis of post vermicompost extracts of bagasse revealed a 21-44 % decline in the aberration frequencies and the maximum reduction was found in B75 extract (44.50 %). The increase in root length and mitotic index, as well as decrease in chromosomal aberrations indicates that E. fetida has the ability to reduce the genotoxicity of the bagasse waste.

  6. Biomarkers in earthworms.

    PubMed

    Scott-Fordsmand, J J; Weeks, J M

    2000-01-01

    Earthworms are believed to be so-called key species within ecosystems and are often exposed to a wide range of anthropogenic compounds released to the terrestrial environment. As a consequence, they may suffer from the toxicity of these compounds. For these and other reasons, earthworms have been used extensively in ecotoxicological studies. In recent years the use of other biological responses (biomarkers) to estimate either exposure or resultant effects of chemicals has received increased attention. Biomarkers address the question of bioavailability by only responding to the bioactive fraction. They may incorporate effects following exposure to a mixture of chemicals. Biomarkers may also reduce extrapolation of results from the laboratory to the field, as they may be applicable under both conditions. The present review has drawn together current knowledge on potential biomarkers in earthworms and appraised them in relation to basic requirements needed for supplying information relevant to devising satisfactory risk assessment. A wide range of potential biomarkers have been measured in earthworms, including DNA alteration, induction of metal-binding proteins (MTs and MBP), depression of ChE activity and other enzymatic responses, energy reserve responses, responses in neural impulse conductivity, lysosomal membrane stability, immunological responses, changes in sperm numbers, histopathological changes, and behavioral changes. Both organic and inorganic compounds have been included; however, for each biomarker the main emphasis historically has been placed on only a few chemicals. Dose-response relationships were in some cases observed. Little information is available on the linkage of the biomarker response to effects at population or community levels. The influence of other factors, biotic and abiotic, on the biomarker responses and their temporal duration have been only sporadically reported.

  7. Bisphenol A in artificial soil: Effects on growth, reproduction and immunity in earthworms.

    PubMed

    Verdú, I; Trigo, D; Martínez-Guitarte, J L; Novo, M

    2018-01-01

    The application of biosolids in agricultural fields is increasing annually. They contain not only nutrients but also xenobiotics, such as Bisphenol A (BPA). These compounds are not regulated in the use of biosolids in agriculture, which highlights the need to assess their effects on soil life, of which earthworms are most abundant of the animal representatives. In this study the effect of BPA on life-history parameters, such as mortality, growth and reproduction, and on immunity, is evaluated for Dendrobaena veneta and Eisenia fetida. Sublethal concentrations were evaluated by a modified OECD artificial soil test. Decline in growth with increasing concentration of BPA was detected during the first two weeks and the opposite effect for the next two, although these differences were only significant at the highest concentration. Reproduction traits were only significantly different for E. fetida, for which the number of juveniles decreased at higher concentrations, thus showing different sensitivity in both species. By using a contact test, the potentially harmful effect of direct contact with BPA was shown to be much higher than in soil (resembling natural) conditions. Finally, results indicate that BPA may not affect the immune system of these animals, at least in terms of coelomocyte viability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  9. Removal of an invasive shrub (Chinese privet: Ligustrum sinense Lour) reduces exotic earthworm abundance and promotes recovery of native North American earthworms

    Treesearch

    Joshua W. Lobe; Mac A. Callaham Jr.; Paul F. Hendrix; James L Hanula

    2014-01-01

    This study investigated the possibility of a facilitative relationship between Chinese privet (Ligustrum sinense) and exotic earthworms, in the southeastern region of the USA. Earthworms and selected soil properties were sampled five years after experimental removal of privet from flood plain forests of the Georgia Piedmont region. The earthworm...

  10. Origami-based earthworm-like locomotion robots.

    PubMed

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  11. Can earthworms survive fire retardants?

    USGS Publications Warehouse

    Beyer, W.N.; Olson, A.

    1996-01-01

    Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.

  12. Effects of Different Ratios of Sewage Sludge and Cattle Manure on Growth and Propagation of Eisenia Fetida

    PubMed Central

    Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan

    2016-01-01

    Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0–28, day 29–56, and day 57–91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid—rapidest—slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17–0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way. PMID:27257977

  13. Effects of Different Ratios of Sewage Sludge and Cattle Manure on Growth and Propagation of Eisenia Fetida.

    PubMed

    Li, Yukui; Liu, Qingchuan; Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan

    2016-01-01

    Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0-28, day 29-56, and day 57-91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid-rapidest-slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17-0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way.

  14. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels

    PubMed Central

    Chen, Li’ke; Wu, Longhua; Christie, Peter; Zhang, Haibo; Luo, Yongming

    2017-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester (PAE) that has aroused public concern due to its resistance to degradation and its toxicity as an endocrine-disrupting compound. Effects of different concentrations of DEHP on Eisenia fetida in spiked natural soil have been studied in the body of the earthworm by means of soil cultivation tests 7, 14, 21 and 28 days after exposure. The results indicated that, in general, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, metallothionein (MT) content, the expression of heat shock protein 70 (HSP 70) and all the tested geno-toxicity parameters are promoted as time elapses and with increasing concentration of DEHP. However, peroxidase (POD) activity, neutral red retention time (NRRT) and mitochondrial membrane potential difference values were found to decrease even at a low concentration of DEHP of 1 mg kg-1 soil (p<0.05). Clear toxic effects of DEHP on E. fetida have been generally recognized by means of the disturbance of antioxidant enzyme activity/content and critical proteins, cell membrane and organelle disorder and DNA damage estimated by length of tail, tail DNA ratio, and tail moment parameters. A concentration of DEHP of 3 mg kg-1 may be recommended as a precaution against the potential risk of PAEs in soils and for indicating suitable threshold values for other soil animals and soil micro-organisms. PMID:28319143

  15. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels.

    PubMed

    Ma, Tingting; Zhou, Wei; Chen, Li'ke; Wu, Longhua; Christie, Peter; Zhang, Haibo; Luo, Yongming

    2017-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester (PAE) that has aroused public concern due to its resistance to degradation and its toxicity as an endocrine-disrupting compound. Effects of different concentrations of DEHP on Eisenia fetida in spiked natural soil have been studied in the body of the earthworm by means of soil cultivation tests 7, 14, 21 and 28 days after exposure. The results indicated that, in general, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, metallothionein (MT) content, the expression of heat shock protein 70 (HSP 70) and all the tested geno-toxicity parameters are promoted as time elapses and with increasing concentration of DEHP. However, peroxidase (POD) activity, neutral red retention time (NRRT) and mitochondrial membrane potential difference values were found to decrease even at a low concentration of DEHP of 1 mg kg-1 soil (p<0.05). Clear toxic effects of DEHP on E. fetida have been generally recognized by means of the disturbance of antioxidant enzyme activity/content and critical proteins, cell membrane and organelle disorder and DNA damage estimated by length of tail, tail DNA ratio, and tail moment parameters. A concentration of DEHP of 3 mg kg-1 may be recommended as a precaution against the potential risk of PAEs in soils and for indicating suitable threshold values for other soil animals and soil micro-organisms.

  16. Earthworms, Dirt, and Rotten Leaves: An Exploration in Ecology.

    ERIC Educational Resources Information Center

    McLaughlin, Molly

    1994-01-01

    This article provides a model for inviting children to "an exploration in ecology" by observing earthworms. It gives reasons to explore earthworms and guides the investigator through a detailed examination of the worms to answer 21 observation questions. Explores the ways in which earthworms interact with their environment. (LZ)

  17. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  18. Influence of earthworm Eisenia fetida on Iris pseudacorus's photosynthetic characteristics, evapotranspiration losses and purifying capacity in constructed wetland systems.

    PubMed

    Xu, Defu; Li, Yingxue; Fan, Xiaolong; Guan, Yidong; Fang, Hua; Zhao, Xiaoli

    2013-01-01

    Four constructed wetland systems were studied to investigate the effects of adding Eisenia fetida on the purifying capacity of constructed wetlands. Addition of E. fetida increased the photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll meter value of leaves of Iris pseudacorus L. in the constructed wetlands by 16, 35 and 7%, respectively. Compared with the substrate only system, evapotranspiration losses were increased by 8, 48 and 56% for the wetland systems with substrate and E. fetida, with substrate and I. pseudacorus, and with substrate, I. pseudacorus and E. fetida, respectively. Addition of E. fetida to the substrate only and substrate and plant wetland systems decreased the substrate bulk density by 3 and 6%, respectively. The addition of E. fetida to the system with substrate and plants increased the removal efficiency of chemical oxygen demand (CODMn), total nitrogen (TN) and total phosphorus by 5, 7 and 22%, respectively. Evapotranspiration losses were significantly positively correlated with the removal efficiency of CODMn (P < 0.01). The significantly negative correlation between the removal efficiency TN and bulk density was found (P < 0.05). Therefore, E. fetida could stimulate I. pseudacorus growth and improve the substrate bulk density in the constructed wetland, resulting in enhanced purifying capacity.

  19. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  20. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida.

    PubMed

    Coelho, C; Foret, C; Bazin, C; Leduc, L; Hammada, M; Inácio, M; Bedell, J P

    2018-09-01

    Soils and sediments are susceptible to anthropogenic contamination with Metallic Trace Elements (MTEs) and it can present some risks to ecosystems and human health. The levels of Cd, Cu, Fe, Ni, Pb and Zn were assessed in soils (C, G, K, L) from Estarreja (Portugal) and sediments from a stormwater basin in Lyon (DJG), a harbour (LDB) and a Rhône river site (TRS) (France). An ecotoxicological study was performed with Eisenia fetida (E. fetida) to infer about potential transfer risks to the soil invertebrates. To assess risks associated with MTEs contamination, it is important to know their total concentrations, fractionation and the potential available fractions. CaCl 2 , DTPA and NaOAc extractions were performed to assess the extractable and available MTEs fractions. The studied sediments were much more contaminated than the soils for all the MTEs analysed. The trace elements fraction linked with DTPA extraction shows higher values when compared with the NaOAc and the CaCl 2 pools. Low mortality effects were recorded in the tests with E. fetida. The MTEs levels in soils and sediments and the concentrations bioaccumulated in adult earthworms contributed to a reduction in the number of juveniles produced. E. fetida adults and juveniles accumulated ETMs as follows: Cd > Cu = Zn > Ni > Pb > Fe. Determined BAFs were mostly lower than 1 with some higher values for Cd, Cu and Zn. Calculated SET and ERITME indexes allowed to classify the samples from the most to the less toxic for E. fetida as: LDB > DJG > L > G > C > K > TRS. Despite this order of toxicity, the earthworms exposed to the sediment TRS presented the lowest reproduction rate. The combination of "chemical" measurements with the calculation of BAFs, but especially SET and ERITME indexes can be a useful tool in risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Milled cereal straw accelerates earthworm (Lumbricus terrestris) growth more than selected organic amendments.

    PubMed

    Sizmur, Tom; Martin, Elodie; Wagner, Kevin; Parmentier, Emilie; Watts, Chris; Whitmore, Andrew P

    2017-05-01

    Earthworms benefit agriculture by providing several ecosystem services. Therefore, strategies to increase earthworm abundance and activity in agricultural soils should be identified, and encouraged. Lumbricus terrestris earthworms primarily feed on organic inputs to soils but it is not known which organic amendments are the most effective for increasing earthworm populations. We conducted earthworm surveys in the field and carried out experiments in single-earthworm microcosms to determine the optimum food source for increasing earthworm biomass using a selection of crop residues and organic wastes available to agriculture. We found that although farmyard manure increased earthworm populations more than cereal straw in the field, straw increased earthworm biomass more than manures when milled and applied to microcosms. Earthworm growth rates were positively correlated with the calorific value of the amendment and straw had a much higher calorific value than farmyard manure, greenwaste compost, or anaerobic digestate. Reducing the particle size of straw by milling to <3 mm made the energy in the straw more accessible to earthworms. The benefits and barriers to applying milled straw to arable soils in the field are discussed.

  2. Predicting exotic earthworm distribution in the northern Great Lakes region

    Treesearch

    Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer

    2013-01-01

    Identifying influences of earthworm invasion and distribution in the northern Great Lakes is an important step in predicting the potential extent and impact of earthworms across the region. The occurrence of earthworm signs, indicating presence in general, and middens, indicating presence of Lumbricus terrestris exclusively, in the Huron Mountains...

  3. What's in our soil?: how soil pollution affects earthworm movement patterns

    NASA Astrophysics Data System (ADS)

    Whitmore, T.

    2017-12-01

    Earthworms are an important member of many ecosystems because they contribute to soil quality and are a major food source for many organisms. In this project, we assessed the impacts soil pollution has on the burrowing patterns of earthworms. In each experiment, we introduced 10 earthworms to a unique pollutant and let them equilibrate for up to a week. The results indicated that earthworms migrate towards the introduced liquid regardless of its impact on them. The liquid pollutants introduced seemed to attract the earthworms. This can have harmful consequences, especially in the case of the motor oil, which killed multiple worms.

  4. Earthworms and nutrient availability: the ecosystem engineer as (bio)chemical engineer

    NASA Astrophysics Data System (ADS)

    van Groenigen, Jan Willem; Ros, Mart; Vos, Hannah; De Deyn, Gerlinde; Hiemstra, Tjisse; Oenema, Oene; Koopmans, Gerwin

    2017-04-01

    The ability of earthworms to increase plant production has long been recognized. However, the pathways through which they do so, and the magnitude of this effect, have not been conclusively addressed. In two studies we address these issues for nitrogen (N) and phosphorus (P) availability to plants. In the first study, a meta-analysis, we concluded that earthworm presence increases crop yield on average with 26% and aboveground biomass with 24%. The positive effects of earthworms increase when more residue is returned to the soil, but disappear when soil N availability is high. This suggests that earthworms stimulate plant growth predominantly through N mineralization from soil organic matter or crop residue. In a second study, we tested the effect of earthworms on plant P uptake from inorganic sources. In a greenhouse experiment on a soil with low P availability we showed that presence of the anecic earthworm Lumbricus terrestris resulted in increased aboveground biomass (from 164 to 188 g dry matter m-2) and P uptake (from 0.21 to 0.27 g m-2). Concentrations of total dissolved P and dissolved inorganic P in water extractions of earthworm casts were 7-9 times higher than in those of bulk soil. Using advanced surface complexation modelling, we showed that these effects were primarily related to desorption of inorganic P due to competition with organic carbon for binding sites. We conclude that earthworms can alter nutrient cycling and increase N and P uptake by plants through a combination of biochemical and chemical pathways. Earthworms are most likely to stimulate N uptake in organic farming systems and tropical subsistence farming, which largely rely on nutrient mineralization. Additional benefits of earthworms might be expected in conventional farming systems with low levels of available P.

  5. Avoidance, biomass and survival response of soil dwelling (endogeic) earthworms to OECD artificial soil: potential implications for earthworm ecotoxicology.

    PubMed

    Brami, C; Glover, A R; Butt, K R; Lowe, C N

    2017-05-01

    Soil dwelling earthworms are now adopted more widely in ecotoxicology, so it is vital to establish if standardised test parameters remain applicable. The main aim of this study was to determine the influence of OECD artificial soil on selected soil-dwelling, endogeic earthworm species. In an initial experiment, biomass change in mature Allolobophora chlorotica was recorded in Standard OECD Artificial Soil (AS) and also in Kettering Loam (KL). In a second experiment, avoidance behaviour was recorded in a linear gradient with varying proportions of AS and KL (100% AS, 75% AS + 25% KL, 50% KS + 50% KL, 25% AS + 75% KL, 100% KL) with either A. chlorotica or Octolasion cyaneum. Results showed a significant decrease in A. chlorotica biomass in AS relative to KL, and in the linear gradient, both earthworm species preferentially occupied sections containing higher proportions of KL over AS. Soil texture and specifically % composition and particle size of sand are proposed as key factors that influenced observed results. This research suggests that more suitable substrates are required for ecotoxicology tests with soil dwelling earthworms.

  6. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system.

    PubMed

    Suthar, Surindra; Pandey, Bhawna; Gusain, Rita; Gaur, Rubia Zahid; Kumar, Kapil

    2017-01-01

    This paper reports the results of vermicomposting of water lettuce biomass (WL) spiked with cow dung at ratios of 20, 40, 60, and 80 % employing Eisenia fetida. A total of four treatments were established and changes in chemical properties of mixtures were observed. Vermicomposting caused a decrease in pH, TOC, volatile solids, and C/N ratio by 1.01-1.08-fold, 0.85-0.92-fold, 0.94-0.96-fold, 0.56-0.70-fold, respectively, but increase in EC, tot N, tot P, tot K, tot Ca, tot Zn, tot Fe, and tot Cu, by 1.19-1.42-fold, 1.33-1.68-fold, 1.38-1.69-fold, 1.13-1.24-fold, 1.04-1.11-fold, 1.16-1.37-fold, 1.05-1.113-fold, 1.10-1.27-fold, respectively. Overall, the treatment with 60-80 % of WL showed the maximum decomposition and mineralization rates. The earthworm showed the growth and reproduction rate in considerable ranges in all treatment setups but setups with 60-80 % WL proportion exhibited the optimum results. Results reveal that biomass of water lettuce can be utilized effectively for production of valuable manure through vermicomposting system.

  7. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO₃) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils.

    PubMed

    Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A M; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J

    2015-08-01

    This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    NASA Astrophysics Data System (ADS)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  9. Earthworms, pesticides and sustainable agriculture: a review.

    PubMed

    Datta, Shivika; Singh, Joginder; Singh, Sharanpreet; Singh, Jaswinder

    2016-05-01

    The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.

  10. Darwin, Earthworms & Circadian Rhythms: A Fertile Field for Science Fair Experiments

    ERIC Educational Resources Information Center

    Burns, John T.; Scurti, Paul J.; Furda, Amy M.

    2009-01-01

    This article discusses why the study of earthworms has fascinated many scientists, and why earthworms make ideal experimental animals for students to test in the laboratory. Although earthworms may appear to be primitive, they are governed by both circadian and seasonal rhythms, just as more advanced organisms are. They possess an intelligence…

  11. Structure and earthworms

    USDA-ARS?s Scientific Manuscript database

    Earthworms are an important part of the soil ecosystem and an indicator of soil quality. Sometimes referred to as ecosystem engineers, they play a pivotal role in maintaining soil productivity. Their burrowing, feeding, and casting activities alter the physical, chemical, and biological properties o...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, G.L.; Scroggins, R.

    Environment Canada has embarked on a five year program to develop, standardize, and validate a battery of soil toxicity tests which can be used to assess the relative toxicity of contaminants in soils to terrestrial organisms. These tests must be applicable to soil conditions typically found in Canadian environments and the test species must be representative of the species of soil invertebrates or plants inhabiting soil ecosystems in Canada. One of the toxicity tests being developed is designed to assess the toxicity of contaminated soils to earthworms. Five of the potential test species belong to the Lumbricidae family and includemore » the Canadian worm (Allobophora calignosa/Aporrectodea tuberculate), the European bark worm (Dendrodtilus rubidus (rubida)), the pink soil worm (Eisenia rosea), the red marsh worm (Lumbricus rubellus), and the Canadian night crawler or dew worm (Lumbricus terrestris). The sixth species, the white pot worm (Enchytraeus albidus), belongs to the Enchytraeidae family. Further assessment reduced the number of representative species to three. Most earthworm test methods have been developed to assess the toxicity of chemically-spiked artificial soils to Eisenia fetida or E. andrei. Test methods have also been developed to assess the relative toxicity of contaminated soils from hazardous waste sites. Comparative acute toxicity data for three species of earthworm exposed to a hydrocarbon contamination will be presented. Comparative toxicity data for the same three species of earthworm will also be presented using test procedures and conditions that have been modified to accommodate biological differences among the species of earthworm. Recommendations regarding test design, methods, and conditions optimal for each test species will be summarized and discussed with respect to the precision of test results.« less

  13. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    NASA Astrophysics Data System (ADS)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  14. Enhanced bioremoval of lead by earthworm-Lumbricus terrestris co-cultivated with bacteria-Klebsiella variicola.

    PubMed

    Das, Anamika; Osborne, Jabez W

    2017-10-01

    Lead is a toxic heavy metal having devastating effects on the environment. The current study was focussed on bioremoval of lead using earthworm and lead resistant bacteria. Earthworms were subjected to various concentrations of lead in the soil bioaugmented with lead resistant bacteria (VITMVCJ1) to enhance the uptake of lead from the contaminated soil. Significant increase was observed in the length and body weight of the earthworms supplemented with lead resistant bacteria. Similarly, there was a substantial increase in the locomotion rate of the earthworms treated with lead resistant bacteria in comparison with the control. The gut micro flora of bacterial treated earthworms had increased number of bacterial cells than the untreated earthworms. The histopathological studies revealed the toxic effects of lead on the gut of earthworms indicating severe damage in lead resistant bacteria untreated worms, whereas the cells were intact in lead resistant bacteria treated worms. COMET assay showed increased DNA damage with higher tail DNA percent in the untreated earthworms. Further, the colonisation of the bacteria supplemented, onto the gut region of earthworms was observed by scanning electron microscopy. Atomic absorption spectrophotometry indicated a fair 50% uptake of lead within the biomass of earthworm treated with lead resistant bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nutrition Studies with Earthworms.

    ERIC Educational Resources Information Center

    Tobaga, Leandro

    1980-01-01

    Describes experiments which demonstrate how different diets affect the growth rate of earthworms. Procedures for feeding baby worms are outlined, the analysis of results are discussed, and various modifications of the exercise are provided. (CS)

  16. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  17. An earthworm-like robot using origami-ball structures

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Zhang, Yetong; Wang, K. W.

    2017-04-01

    Earthworms possess extraordinary on-ground and underground mobility, which inspired researchers to mimic their morphology characteristics and locomotion mechanisms to develop crawling robots. One of the bottlenecks that constrain the development and wide-spread application of earthworm-like robots is the process of design, fabrication and assembly of the robot frameworks. Here we present a new earthworm-like robot design and prototype by exploring and utilizing origami ball structures. The origami ball is able to antagonistically output both axial and radial deformations, similar as an earthworm's body segment. The origami folding techniques also introduce many advantages to the robot development, including precise and low cost fabrication and high customizability. Starting from a flat polymer film, we adopt laser machining technique to engrave the crease pattern and manually fold the patterned flat film into an origami ball. Coupling the ball with a servomotor-driven linkage yields a robot segment. Connecting six segments in series, we obtain an earthworm-like origami robot prototype. The prototype is tested in a tube to evaluate its locomotion performance. It shows that the robot could crawl effectively in the tube, manifesting the feasibility of the origami-based design. In addition, test results indicate that the robot's locomotion could be tailored by employing different peristalsis-wave based gaits. The robot design and prototype reported in this paper could foster a new breed of crawling robots with simply design, fabrication, and assemble processes, and improved locomotion performance.

  18. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  19. DISPERSION OF RADIOACTIVE ISOTOPES IN THE SOIL BY EARTHWORMS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peredel'skii, A.A.; Shain, S.S.; Karavyanskii, N.S.

    1960-11-01

    The effects of earthworms on the distribution and migration of radioisotopes in contaminated earth were investigated. Data on the mean Ca/sup 45/ and Sr/sup 90/ activity of a single worm and its coprolith in contaminated soil are tabulated. It is shown that the specific radioactivity in the earthworm quickly reaches a maximum and remains unchanged during further inhabitance in the contuminated soil. The specific activity of the earthworm can reach that of the soil; however, after leaving the contuminated area, the activity is rapidly reduced in the worm. The specific activity of the earthworm coprolith is close to that ofmore » the body; sometimes it exceeds the activity of both the body and the soil due to uptake of organic material of higher radioactivity. The experiment shows that the influence of earthworms on dissemination of shont-lifs isotopes is negligible but that with long-life isotopes it may be more noticeable. (R.V.J.)« less

  20. Metal content of earthworms in sludge-amended soils: uptake and loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.F.; Malecki, M.R.; Cukic, Z.V.

    1985-11-01

    The widespread practice of landspreading of sludge has raised concern about increasing concentrations of potentially toxic metals in soils, with the possibility of these metals adversely impacting terrestrial and aquatic ecosystems. Earthworms, as one of the largest components of the soil biota, are useful indicators of potentially toxic soil metal concentrations. The study describes the metal content of five metals (Cd, Cu, Ni, Pb, and Zn) in one earthworm species, Allolobophora tuberculata, as a function of varying soil metal concentrations in the same soil type and the ability of the earthworms to bioconcentrate the five metals. The rate of uptakemore » of the five metals in earthworms with initially low concentrations of metals placed in a soil with high metal concentrations was evaluated for a 112 day period. The rate of loss of the five metals in earthworms with initially high metal concentrations placed in soil with low metal concentrations was also examined.« less

  1. Impacts of urbanization and landscape patterns on the earthworm communities in residential areas in Beijing.

    PubMed

    Xie, Tian; Wang, Meie; Chen, Weiping; Uwizeyimana, Herman

    2018-06-01

    Earthworms play an important role in soil processes and functions. However, few studies have focused on their community patterns in perturbed systems, especially in an urban environment with a high turnover rate of land cover. In this study, we collected and identified the earthworms in the residential areas in metropolitan Beijing. We further investigated the effects of urban soil properties, urbanization and landscape patterns on the earthworm communities. The results showed that both the abundance and biomass of earthworms in residential areas in metropolitan was relatively low. The abundance of earthworms was negatively correlated with soil organic carbon (SOC) in this study. Soil moisture and pH could be considered as the most important edaphic variables that affected earthworm communities. The construction age of residential areas significantly influenced the earthworm abundance. Moreover, the earthworm community composition responded differently to urban landscape features at different scales. The percentage of impervious and green space surface, the amount of landscape cover types, patch density and landscape fragment significantly affected the earthworm assemblages. Our result discovered that the edaphic properties, urbanization as well as landscape patterns might be the potential factors that influenced the earthworm community patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Intensified Weathering Control of Carbon Cycle along an Earthworm Invasion Chronosequence: Preliminary Data

    NASA Astrophysics Data System (ADS)

    Fernandez, C.; Yoo, K.; Aufdenkampe, A. K.; Hale, C.

    2009-12-01

    Though earthworms may appear ubiquitous and native where they are found, this is not true in the Glaciated areas of North America. After the glacial retreat, earthworms were not able to catch up with the northward expansion of forests. Subsequently, these forests in the glaciated areas have developed without native earthworm species over the past six to ten thousand years. With the arrival of agriculture, fishing villages, and expansion of unpaved roads, exotic earthworm species began to invade the adjacent forests. We focus on a well studied earthworm invasion chronosequence in the Chippewa National Forest in Minnesota. The chronosequence is ~100 meter long, which represents several decades of invasion history. In general, O horizon dwelling species form the pioneering population and remove the litter layer. Subsequently, shallow soil mixers are followed by deep burrowing species. As the invasion front advances, O horizons disappear, A horizons become thicker, underlying sandy aeolian blankets are incorporated into the A horizons, and there is an increasingly frequent signs of earthworm burrows in the clay rich Bt horizons. Our preliminary data was from two end members of the chronosequence. Earthworm-driven soil mixing created more vertically homogeneous profiles of elemental compositions. Probably reflecting the upward incorporation of clay and iron-oxide rich Bt horizon materials by earthworms. A horizons in the invaded site were more enriched not only in total Fe and Al but also in crystalline and amorphous forms of iron and aluminum oxides than in the non-invaded soil. Particularly, sodium pyrophosphate extracted pools of Fe and Al, which represent the organically complexed Fe and Al oxides, were significantly greater in the invaded A horizon. This suggests that the iron and aluminum oxides translocated upward by earthworms may help complexing and thus stabilizing organic carbon. Therefore underground invasion of earthworms may significantly intensify the

  3. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  4. Organochlorine insecticide residues in soil and earthworms in the Delhi area, India, August-October 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, D.V.; Mittal, P.K.; Agarwal, H.C.

    1981-09-01

    DDT residues in soil and earthworms from 50 sites in Delhi were monitored. DDT was detected in all but two samples each of soil and earthworms. Among DDT residues, p,p'-DDE was most common and was found in 48 samples each of soil and earthworms; p,p'-DDT was detected in only 43 soil samples and 46 earthworm samples. p,p'-TDE and o,p'-DDT were also present in smaller concentrations in 29 and 15 soil samples and in 43 and 25 earthworm samples, respectively. Maximum total DDT concentration of 2.6 ppm was detected in the soil from Durga Nagar in the vicinity of a DDTmore » factory. The highest concentration of 37.7 ppm total DDT in earthworms was also obtained from the same site. The maximum concentration factor found in the earthworms was 551. The total DDT concentration in the earthworms and soil showed significant correlation.« less

  5. Ecological and geochemical impacts of exotic earthworm dispersal in forest ecosystems of Eastern Canada

    NASA Astrophysics Data System (ADS)

    Drouin, Melanie; Fugere, Martine; Lapointe, Line; Vellend, Mark; Bradley, Robert L.

    2016-04-01

    In Eastern Canada, native earthworm species did not survive the Wisconsin glaciation, which ended over 11,000 years ago. Accordingly, the 17 known Lumbricidae species in the province of Québec were introduced in recent centuries by European settlers. Given that natural migration rates are no more than 5-10 m yr-1, exotic earthworm dispersal across the landscape is presumed to be mediated by human activities, although this assertion needs further validation. In agroecosystems, earthworms have traditionally been considered beneficial soil organisms that facilitate litter decomposition, increase nutrient availability and improve soil structure. However, earthworm activities could also increase soil nutrient leaching and CO2 emissions. Furthermore, in natural forest ecosystems, exotic earthworms may reduce organic forest floors provoking changes in watershed hydrology and loss of habitat for some faunal species. Over the past decade, studies have also suggested a negative effect of exotic earthworms on understory plant diversity, but the underlying mechanisms remain elusive. Finally, there are no studies to our knowledge that have tested the effects of Lumbricidae species on the production of N2O (an important greenhouse gas) in forest ecosystems. We report on a series of field, greenhouse and laboratory studies on the human activities responsible for the dispersal of exotic earthworms, and on their ecological / geochemical impacts in natural forest ecosystems. Our results show: (1) Car tire treads and bait discarded by fishermen are important human vectors driving the dispersal of earthworms into northern temperate forests; (2) Exotic earthworms significantly modify soil physicochemical properties, nutrient cycling, microbial community structure and biomass; (3) Earthworm abundances in the field correlate with a decrease in understory plant diversity; (4) Lumbricus terrestris, an anecic earthworm species and favorite bait of fishermen, reduces seed germination and

  6. Potential effects of earthworm activity on C and N dynamics in tropical paddy soil

    NASA Astrophysics Data System (ADS)

    John, Katharina; Zaitsev, Andrey S.; Wolters, Volkmar

    2016-04-01

    Earthworms are involved in key ecosystem processes and are generally considered important for sustainable crop production. However, their provision of essential ecosystem services and contribution to tropical soil carbon and nitrogen balance in rice-based agroecosystems are not yet completely understood. We carried out two microcosm experiments to quantify the impact of a tropical earthworm Pheretima sp. from the Philippines on C and N turnover in rice paddy soils. First one was conducted to understand the modulation impact of soil water saturation level and nitrogen fertilizer input intensity on C and N cycles. The second one focused on the importance of additional organic matter (rice straw) amendment on the earthworm modulation of mineralization in non-flooded conditions. We measured CO2, CH4 (Experiments 1 and 2) and N2O evolution (Experiment 2) from rice paddy soil collected at the fields of the International Rice Research Institute (Philippines). Further we analysed changes in soil C and N content as well as nutrient loss via leaching induced by earthworms (Experiment 2). Addition of earthworms resulted in the strong increase of CH4 release under flooded conditions as well as after rice straw amendment. Compared to flooded conditions, earthworms suppressed the distinct CO2 respiration maximum at intermediate soil water saturation levels. In the first few days after the experiment establishment (Experiment 1) intensive nitrogen application resulted in the suppression of CO2 emission by earthworms at non-flooded soil conditions. However, at the longer term perspective addressed in the second experiment (30 days) earthworm activity rather increased average soil respiration under intensive fertilization or rice straw amendment. The lowest N2O release rates were revealed in the microcosms with earthworm and straw treatments. The combined effect of N fertilizer and straw addition to microcosms resulted in the increased leachate volume due to earthworm bioturbation

  7. Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed Central

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Background Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance Our

  8. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: insight into the mechanism of smooth muscle contraction.

    PubMed

    Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej

    2008-05-01

    Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.

  9. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes.

    PubMed

    Muangphra, Ptumporn; Kwankua, Wimon; Gooneratne, Ravi

    2014-06-01

    The potential genotoxicity (nuclear anomalies, damage to single-strand DNA) and pinocytic adherence activity of two (glyphosate-based and paraquat-based) commercial herbicides to earthworm coelomocytes (immune cells in the coelomic cavity) were assessed. Coelomocytes were extracted from earthworms (Pheretima peguana) exposed to concentrations earthworms exposed to glyphosate at 25 × 10(-1) (10(-3) LC50) and paraquat at 39 × 10(-5) (10(-4) LC50) μg cm(-2) filter paper. In earthworms exposed to glyphosate, no differences in tail DNA%, tail length, and tail moment of coelomocytes were detected. In contrast, for paraquat at 10(-1) LC50 concentration, there were significant (P < 0.05) differences between tail DNA % and tail length, and at LC50 concentration, tail moment was also significantly different when compared with controls. A decline in pinocytic adherence activity in coelomocytes occurred on exposure to glyphosate or paraquat at 10(-3) LC50 concentration. This study showed that, at concentrations well below field application rates, paraquat induces both clastogenic and aneugenic effects on earthworm coelomocytes whereas glyphosate causes only aneugenic effects and therefore does not pose a risk of gene mutation in this earthworm. Copyright © 2012 Wiley Periodicals, Inc.

  10. Earthworm responses to different reclamation processes in post opencast mining lands during succession.

    PubMed

    Hlava, Jakub; Hlavová, Anna; Hakl, Josef; Fér, Miroslav

    2015-01-01

    This study provides earthworm population data obtained from localities with a substantial anthropogenic impact spoils. The spoil heaps were reclaimed at the end of an opencast brown coal mining period. We studied spoils reclaimed by the two most commonly used reclamation processes: forestry and agricultural. The results show the significance of the locality age and the utilized reclamation process and treatment and their effect on earthworm communities. Our data indicate that apart from soil physical and chemical properties, the reclamation process itself may also induce viability and distribution of earthworm communities. Under standardized soil properties, the changes in earthworm populations during the succession were larger within the agricultural reclamation process as opposed to the forestry reclamation process for earthworm ecological groups and individual species.

  11. Relating results from earthworm toxicity tests to agricultural soil

    USGS Publications Warehouse

    Beyer, W.N.; Greig-Smith, P.W.

    1992-01-01

    The artificial soil tests of the European Economic Community and of the Organization for Economic Cooperation produce data relating earthworm mortality to pesticide concentrations in soil under laboratory conditions. To apply these results to agricultural soils it is necessary to relate these concentrations to amounts of pesticide applied per area. This paper reviews the relevant published literature and suggests a simple relation for regulatory use. Hazards to earthworms from pesticides are suggested to be greatest soon after application, when the pesticides may be concentrated in a soil layer a few millimeters thick. For estimating exposure of earthworms, however, a thicker soil layer should be considered, to account for their movement through soil. During favorable weather conditions, earthworms belonging to species appropriate to the artificial soil test have been reported to confine their activity to a layer about 5 cm. If a 5-cm layer is accepted as relevant for regulatory purposes, then an application of 1 kg/ha would be equivalent to 1-67 ppm (dry) in the artificial soil test.

  12. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity

    PubMed Central

    Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem

    2015-01-01

    Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488

  13. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Worms: Cultivate Our Curriculum: A Long-Term, Theme-Based Unit

    ERIC Educational Resources Information Center

    Melear, Claudia T.; Lunsford, Eddie

    2007-01-01

    This article provides basic information on how a common species of earthworm, "Eisenia fetida," can be used in the biology classroom as well as a discussion of how to establish and care for a vermicompost bin. We discuss ideas for inquiry activities with the organism and provide a sample-guided inquiry that demonstrates how a long-term,…

  15. Partitioning of habitable pore space in earthworm burrows.

    PubMed

    Gorres, Josef H; Amador, Jose A

    2010-03-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.

  16. Partitioning of habitable pore space in earthworm burrows

    PubMed Central

    Amador, Jose A.

    2010-01-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839

  17. Disentangling the influence of earthworms in sugarcane rhizosphere

    PubMed Central

    Braga, Lucas P. P.; Yoshiura, Caio A.; Borges, Clovis D.; Horn, Marcus A.; Brown, George G.; Drake, Harold L.; Tsai, Siu M.

    2016-01-01

    For the last 150 years many studies have shown the importance of earthworms for plant growth, but the exact mechanisms involved in the process are still poorly understood. Many important functions required for plant growth can be performed by soil microbes in the rhizosphere. To investigate earthworm influence on the rhizosphere microbial community, we performed a macrocosm experiment with and without Pontoscolex corethrurus (EW+ and EW−, respectively) and followed various soil and rhizosphere processes for 217 days with sugarcane. In EW+ treatments, N2O concentrations belowground (15 cm depth) and relative abundances of nitrous oxide genes (nosZ) were higher in bulk soil and rhizosphere, suggesting that soil microbes were able to consume earthworm-induced N2O. Shotgun sequencing (total DNA) revealed that around 70 microbial functions in bulk soil and rhizosphere differed between EW+ and EW− treatments. Overall, genes indicative of biosynthetic pathways and cell proliferation processes were enriched in EW+ treatments, suggesting a positive influence of worms. In EW+ rhizosphere, functions associated with plant-microbe symbiosis were enriched relative to EW− rhizosphere. Ecological networks inferred from the datasets revealed decreased niche diversification and increased keystone functions as an earthworm-derived effect. Plant biomass was improved in EW+ and worm population proliferated. PMID:27976685

  18. The earthworm gastrointestinal effect on the release of organic bound residues in soils

    NASA Astrophysics Data System (ADS)

    Du, J. H.

    2018-03-01

    Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.

  19. Avoidance behavior of Eisenia fetida in oxytetracycline- and heavy metal-contaminated soils.

    PubMed

    Gao, Minling; Lv, Mengting; Han, Meng; Song, Wenhua; Wang, Dong

    2016-10-01

    To determine the behavior of oxytetracycline (OTC) and heavy metals in soil, this study assessed the pollutant-induced avoidance behavior of earthworms (E. fetida) exposed to zinc (Zn 2+ ), lead (Pb 2+ ), and OTC in soil. The results showed a clear avoidance response within 48h of exposure to the highest concentrations of pollutants. Moreover, E. fetida was shown to be more sensitive to Zn 2+ than to Pb 2+ and OTC. Compared with OTC alone, the net response of earthworms increased in the OTC-Zn 2+ and OTC-Pb 2+ combined treatments, indicating a synergistic effect. Moreover, the net response (NR) of the earthworms was higher for OTC-Zn 2+ than it was for OTC-Pb 2+ , possibly reflecting the differences in essential characteristics of Zn and Pb. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  1. A new drilling method—Earthworm-like vibration drilling

    PubMed Central

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  2. A new drilling method-Earthworm-like vibration drilling.

    PubMed

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  3. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  4. Urban soil biomonitoring by beetle and earthworm populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janossy, L.; Bitto, A.

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roadsmore » are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.« less

  5. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  6. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico.

    Treesearch

    Jennifer Dechainea; Honghua Ruanb; Yaniria Sanchez-de Leon; Xiaoming Zou

    2005-01-01

    Earthworms are recognized to play an important role in the decomposition of organic materials. To test the use of earthworms as an indicator of plant litter decomposition, we examined the abundance and biomass of earthworms in relation to plant litter decomposition in a tropical wet forest of Puerto Rico. We collected earthworms at 0–0.1m and 0.1–0.25m soil depths from...

  7. Fate and sublethal effects of isoproturon on mature earthworm (Lumbricus terrestris L.).

    PubMed

    Mosleh, Y Y; Paris-Palacios, S; Couderchet, M; Vernet, G

    2002-01-01

    This study was conducted to investigate the effects of isoproturon in mature earthworm (Lumbricus terrestris L.) under laboratory condition. Earthworms were exposed to soils contaminated with different concentrations for various duration. Residues were monitored in soil and earthworms after 7, 15, 30, 45, and 60 days of exposure to different isoproturon concentrations. Acute toxicity of isoproturon was determined together with growth rate and total soluble protein content of worms. These parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the highest concentration tested (1.4 g/kg soil) after 60 days after treatment. Residues of isoproturon have caused a significant reduction of the growth rate. Additionally a reduction of total soluble protein was observed in all treated worms. Decrease of isoproturon concentration in soil was slow and depended on herbicide initial concentration. In the worms, it increased during the first 15 days and decreased thereafter. This study is suggesting the use of the growth rate of earthworms as biomarker of exposure to isoproturon.

  8. Towards an integrative soil health assessment strategy: a three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution.

    PubMed

    Asensio, Vega; Rodríguez-Ruiz, Amaia; Garmendia, Larraitz; Andre, Jane; Kille, Peter; Morgan, Andrew John; Soto, Manu; Marigómez, Ionan

    2013-01-01

    This is a pilot study for assessing soil ecosystem health in chronically polluted sites on the basis of a 3-tier approach (screening+scoring+understanding) designed to be cost-effective and scientifically based, and to provide straightforward advice and support to managers and stakeholders involved in environmental protection. For the initial screening (Tier 1), the use of a highly sensitive, low-cost biomarker such as neutral red uptake (NRU) in earthworm coelomocytes is proposed. In sites where an alteration in NRU has been established, the stress level may be further assessed by utilising a suite of low-cost and rapid biomarkers of effect integrated in an integrative biological response (IBR) index to obtain an objective (scored) assessment of the induced stress syndrome (Tier 2). The IBR/n index is based on the integration of biomarkers at different levels of biological organisation. Acyl-CoA oxidase activity (AOX), catalase activity (CAT), lipofuscin optical density (LOD%), NRU and the mean epithelial thickness (MET) have been used to calculate the IBR/n index. Biomarkers are determined in earthworms, Eisenia fetida, exposed ex situ to real soils (three mining sites and a reference) for 3, 10 and 17d. The 3d NRU (Tier 1) provided signal of stress. After 3d, PCA, based on the suite of biomarkers (Tier 2), discriminated reference and polluted sites according to toxicity profiles and at 17d, the most polluted site is segregated from less polluted and reference sites. Soils were classified as harmful, unhealthy (not apparently toxic) or healthy. Soils were investigated by microarray transcriptomics (Tier 3), to understand the causes (aetiology) and consequences (prognosis) of health impairment. Tier 3 discriminates, according to stress syndrome traits, soils that did not fall into the category of highly stressed and revealed the main agent causing toxicity at each site by identifying the toxicity mechanisms and biological responses. Copyright © 2012 Elsevier B

  9. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Treesearch

    Sam James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  10. Spatial distribution of earthworms in an east Texas forest ecosystem

    Treesearch

    Melissa A. Bozarth; Kenneth W. Farrish; George A. Damoff; James VanKley; J. Leon Young

    2016-01-01

    Earthworms were collected and identified in different ecological habitats of the Stephen F. Austin Experimental Forest (SFAEF) in the Piney Woods Ecoregion (PWE) of Texas. Earthworm spatial distribution data were collected over four distinct ecological habitats with a range of soil conditions and vegetative cover. A total of 128 sampling plots were surveyed in two...

  11. Anomalous bioaccumulation of lead in the earthworm Eisenoides lonnbergi (Michaelsen)

    USGS Publications Warehouse

    Beyer, W. Nelson; Codling, Eton E.; Rutzke, Michael A.

    2018-01-01

    Lead concentrations in soil organisms are usually well below those in the associated soil and tend to decrease with each higher trophic level in a food chain. Earthworms of the species Eisenoides lonnbergi provide an exception to this observation, accumulating very high concentrations of lead from acidic soils. Earthworms belonging to this species were collected from strongly to extremely acidic soils at 16 sites on a wildlife refuge in Maryland, USA. A lead concentration as high as 766 mg/kg, dry weight, was detected in depurated E. lonnbergi collected from soil containing only 17 mg/kg of lead. Concentration factors (ratio of lead concentration in earthworms to lead concentration in soil, dry wt) were highly variable at the sites, from 1.0 to 83. As suggested previously, lead absorption by earthworms is enhanced in low-calcium soils. The anomalously high concentrations of lead found in E. lonnbergi are more closely correlated with the uptake of calcium from acidic soils than with bioaccessibility of soil lead. 

  12. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    NASA Astrophysics Data System (ADS)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  13. Invasive and exotic earthworms: an unaccounted change to mercury cycling in northeastern US forest soils

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.; Görres, J. H.; Renock, D. J.; Jackson, B. P.

    2014-12-01

    Invasive and exotic earthworms are now present in many forested areas of the northeastern US with currently unquantified consequences to abiotic and biotic Hg cycling. To quantify these effects, we measured Hg concentrations (mg kg-1) and amounts (μg m-2) in earthworms and soil horizons at 45 soil pits from 9 sites in northern New England. Seven earthworm species were observed in varying assemblages. Most earthworm species attained concentrations of Hg potentially hazardous to wildlife that may ingest them, with highest concentrations found in shallow-burrowing, litter-feeders. Specifically, Aporrectodea rosea and Amynthas agrestis had the greatest Hg concentrations (0.9 ± 0.1) and Hg amounts (8 ± 2) μg m-2. Aporrectodea rosea and Amynthas agrestis were found to inhabit the forest floor and the top 5 cm of the mineral horizons in high abundance, potentially making it a readily accessible prey species. Bioaccumulation of Hg by invasive and exotic earthworms may be an important mechanism that transfers Hg to ground foraging predators, such as thrushes, red-backed salamanders and foxes, which is generally unaccounted for in terrestrial food chains. Earthworm Hg concentrations were poorly correlated with their respective soil Hg concentrations, suggesting a species dependence for Hg bioaccumulation rather than site effects. We observed that forest floor Hg concentrations and amounts were 23% and 57% lower, respectively, at soil pits with earthworms compared to those without. Moreover, Hg amounts in forest floor-feeding earthworms exceeded the remaining forest floor Hg pools. Mercury concentrations and pools in the mineral soil were 21% and 33% lower, respectively, for soil pits with earthworms compared to those without. We hypothesize that enhanced decomposition, horizon disturbance and bioaccumulation by earthworms has decreased Hg amounts in the forest floor and mineral soil. Our results suggest that earthworms are decreasing Hg storage in forest soils with

  14. Automated analysis of two-dimensional positions and body lengths of earthworms (Oligochaeta); MimizuTrack.

    PubMed

    Kodama, Naomi; Kimura, Toshifumi; Yonemura, Seiichiro; Kaneda, Satoshi; Ohashi, Mizue; Ikeno, Hidetoshi

    2014-01-01

    Earthworms are important soil macrofauna inhabiting almost all ecosystems. Their biomass is large and their burrowing and ingestion of soils alters soil physicochemical properties. Because of their large biomass, earthworms are regarded as an indicator of "soil heath". However, primarily because the difficulties in quantifying their behavior, the extent of their impact on soil material flow dynamics and soil health is poorly understood. Image data, with the aid of image processing tools, are a powerful tool in quantifying the movements of objects. Image data sets are often very large and time-consuming to analyze, especially when continuously recorded and manually processed. We aimed to develop a system to quantify earthworm movement from video recordings. Our newly developed program successfully tracked the two-dimensional positions of three separate parts of the earthworm and simultaneously output the change in its body length. From the output data, we calculated the velocity of the earthworm's movement. Our program processed the image data three times faster than the manual tracking system. To date, there are no existing systems to quantify earthworm activity from continuously recorded image data. The system developed in this study will reduce input time by a factor of three compared with manual data entry and will reduce errors involved in quantifying large data sets. Furthermore, it will provide more reliable measured values, although the program is still a prototype that needs further testing and improvement. Combined with other techniques, such as measuring metabolic gas emissions from earthworm bodies, this program could provide continuous observations of earthworm behavior in response to environmental variables under laboratory conditions. In the future, this standardized method will be applied to other animals, and the quantified earthworm movement will be incorporated into models of soil material flow dynamics or behavior in response to chemical

  15. Native and introduced earthworms from selected chaparral, woodland, and riparian zones in southern California

    Treesearch

    Hulton B. Wood; Samuel W. James

    1993-01-01

    Relatively little is known about the earthworm fauna of southern California. Some 20 different species of earthworms were collected and identified in a survey of various southern California wildland habitats. The ecology and biology of earthworms are outlined, and the results of the survey are documented. Introduced species belonging to the Lumbricidae family were...

  16. Trophic dynamics in a simple experimental ecosystem: Interactions among centipedes, Collembola and introduced earthworms

    Treesearch

    Meixiang Gao; Melanie K. Taylor; Mac A. Callaham

    2017-01-01

    Invasive earthworms in North America are known to have dramatic influences on soil ecosystems, including negative effects on other soil fauna. In general, studies examining this phenomenon have focused on invasive earthworm impacts on organisms at the same or lower trophic level as the earthworms themselves (i.e., detritivores and decomposers). In contrast, there have...

  17. The Impact of Invasive Earthworm Activity on Biopolymer Character of ýDecayed Litter ý

    NASA Astrophysics Data System (ADS)

    Filley, T.; Crow, S.; Johnston, C.; McCormick, M.; Szlavecz, K.

    2007-12-01

    Over the last 400-500 years invasive European earthworm populations have ýmoved steadily into North American forests either previously devoid of ýearthworms or that contained their own native populations. This has profound ýimpacts upon litter decay and soil organic matter dynamics. To determine the ýimpact of earthworm activity on the biopolymer and stable isotope chemistry of ýlitter residues and the nature of organic carbon moved to the soil profile we ýanalyzed tulip poplar leaves from a multi-year addition experiment in open ýsurface decay litter and litter bag decay experiments, as well as the associated ýsoils among forest plots that varied in non-native earthworm density and ýbiomass. The chemical alteration of biopolymers was tracked with FTIR ýspectroscopy, 13C-TMAH thermochemolysis, alkaline CuO extraction, and stable ýisotope mass spectrometry. Earthworm activity resulted in residues and soil ýparticulate organic matter depleted in cuticular aliphatic components and ýpolyphenols but highly enriched in ether-linked lignin with respect to initial litter ýmaterial. Decay in low earthworm abundance plots, as well as all experiments ýwith earthworm-excluding litter bags, resulted in enrichment in cutin aliphatics ýand only minor increases in ether linked lignin phenols which was also reflected ýin the soils below the amendments. Additionally, the stable carbon and nitrogen ýisotope composition of tulip poplar residues became isotopically distinct. The ýresults from litter bag decays were only reflective of the chemistry at sites with ývery low earthworm abundances. ý

  18. The Re-colonization Ability of a Native Earthworm, Estherella spp., in Forests and Pastures in Puerto Rico

    Treesearch

    Ching-Yu Huang; Grizelle Gonzalez; Paul F. Hendrix

    2006-01-01

    Populations of some native earthworm species are decreasing or disappearing due to human activities like habitat disturbance and introduction of exotic earthworms. Habitat disturbance can cause changes in soil physical structure and nutrient cycling, which may reduce native earthworm populations prior to the invasion of exotic earthworms. Our purpose was 1) to...

  19. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  20. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Predatory beetles facilitate plant growth by driving earthworms to lower soil layers.

    PubMed

    Zhao, Chuan; Griffin, John N; Wu, Xinwei; Sun, Shucun

    2013-07-01

    Theory suggests that predators of soil-improving, plant-facilitating detritivores (e.g. earthworms) should suppress plant growth via a negative tri-trophic cascade, but the empirical evidence is still largely lacking. We tested this prediction in an alpine meadow on the Tibetan Plateau by manipulating predatory beetles (presence/absence) and quantifying (i) direct effects on the density and behaviour of earthworms; and (ii) indirect effects on soil properties and above-ground plant biomass. In the absence of predators, earthworms improved soil properties, but did not significantly affect plant biomass. Surprisingly, the presence of predators strengthened the positive effect of earthworms on soil properties leading to the emergence of a positive indirect effect of predators on plant biomass. We attribute this counterintuitive result to: (i) the inability of predators to suppress overall earthworm density; and (ii) the predator-induced earthworm habitat shift from the upper to lower soil layer that enhanced their soil-modifying, plant-facilitating, effects. Our results reveal that plant-level consequences of predators as transmitted through detritivores can hinge on behaviour-mediated indirect interactions that have the potential to overturn predictions based solely on trophic interactions. This work calls for a closer examination of the effects of predators in detritus food webs and the development of spatially explicit theory capable of predicting the occurrence and consequences of predator-induced detritivore behavioural shifts. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  2. Residues effects of isoproturon in mature earthworm (Aporrectodea caliginosa) under laboratory conditions.

    PubMed

    Youssef, Yahia; Mosleh, Ismaili

    2007-01-01

    This study was conducted to investigate the residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin in soil and mature earthworms under laboratory conditions. Mature earthworms (Aporrectodea caliginosa) were exposed for various durations (7, 15, 30, and 60 days) to soils contaminated with isoproturon concentrations (2, 4, 6, 8, and 10 mg.kg(-1) soil). The decrease in isoproturon concentration in the soil depended on initial concentration it was slower at higher concentrations. The isoproturon and its metabolites accumulated in earthworms it increased during the first 15 days and decreased thereafter. Acute toxicity of isoproturon was determined together with total soluble protein content and glycogen of worms. These parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the concentration 1000 mg.kg(-1) soil after 60 days of exposure. A reduction of total soluble protein was observed in all treated worms (maximum 59.54%). This study is suggesting the use of the total soluble protein content and glycogen of earthworms as biomarker of exposure to isoproturon.

  3. Nanomaterials: Earthworms lit with quantum dots

    NASA Astrophysics Data System (ADS)

    Tilley, Richard D.; Cheong, Soshan

    2013-01-01

    Yeast, bacteria and fungi have been used to synthesize a variety of nanocrystals. Now, the metal detoxification process in the gut of an earthworm is exploited to produce biocompatible cadmium telluride quantum dots.

  4. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA.

    PubMed

    Richardson, J B; Görres, J H; Friedland, A J

    2017-10-01

    Exotic earthworms are present in the forests of northeastern USA, yet few studies have documented their effects on pollutant metals in soil. The objective of this study was to identify if Cd, Hg, and Pb strong-acid extractable concentrations and pools (bulk inventories) in forest soils decreased with the presence of exotic earthworms. We compared 'Low Earthworm Abundance' (LEA) sites (≤10 g m -2 earthworms, n = 13) and 'High Earthworm Abundance' (HEA) (>10 g m -2 earthworms, n = 17) sites at five watersheds across Vermont and New Hampshire. Organic horizon Cd, Hg, and Pb concentrations were lower at HEA than LEA sites. Organic horizon and total soil pools of Cd and Hg were negatively correlated with earthworm biomass. Soil profile Cd and Hg concentrations were lower at HEA than LEA sites. Our results suggest earthworms are decreasing accumulation of Cd, Hg, and Pb in forest soils, potentially via greater mobilization through organic matter disruption or bioaccumulation.

  5. When citizens and scientists work together : a french collaborative science network on earthworms communities distribution

    NASA Astrophysics Data System (ADS)

    Guernion, Muriel; Hoeffner, Kevin; Guillocheau, Sarah; Hotte, Hoël; Cylly, Daniel; Piron, Denis; Cluzeau, Daniel; Hervé, Morgane; Nicolai, Annegret; Pérès, Guénola

    2017-04-01

    Scientists have become more and more interested in earthworms because of their impact on soil functioning and their importance in provision of many ecosystem services. To improve the knowledge on soil biodiversity and integrate earthworms in soil quality diagnostics, it appeared necessary to gain a large amount of data on their distribution. The University of Rennes 1 developed since 2011 a collaborative science project called Observatoire Participatif des Vers de Terre (OPVT, participative earthworm observatory). It has several purposes : i) to offer a simple tool for soil biodiversity evaluation in natural and anthropic soils through earthworm assessment, ii) to offer trainings to farmers, territory managers, gardeners, pupils on soil ecology, iii) to build a database of reference values on earthworms in different habitats, iv) to propose a website (https://ecobiosoil.univ-rennes1.fr/OPVT_accueil.php) providing for example general scientific background (earthworm ecology and impacts of soil management), sampling protocols and online visualization of results (data processing and earthworms mapping). Up to now, more than 5000 plots have been prospected since the opening of the project in 2011., Initially available to anyone on a voluntary basis, this project is also used by the French Ministry of Agriculture to carry out a scientific survey throughout the French territory.

  6. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  7. Impact of Parthenium weeds on earthworms (Eudrilus eugeniae) during vermicomposting.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Rajendran, Venckatesh

    2014-11-01

    The aim of this work is to evaluate the effect of Parthenium-mediated compost on Eudrilus eugeniae during the process of vermicomposting. Nine different concentrations of Parthenium hysterophorus and cow dung mixtures were used to assess toxicity. The earthworms' growth, fecundity and antioxidant enzyme levels were analysed every 15 days. The antioxidant activities of enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], considered as biomarkers, indicate the biochemical and oxidative stresses due to the toxin from Parthenium weeds. The earthworms' growth, biomass gain, cocoon production and antioxidant enzymes were in a low level in a high concentration of P. hysterophorus (without cow dung). The results clearly indicated that appropriate mixing of P. hysterophorus quantity is an essential factor for the survival of earthworms without causing any harm.

  8. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.

    PubMed

    Fonte, Steven J; Six, Johan

    2010-06-01

    The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have

  9. A Fluorescent Marking and Re-count Technique Using the Invasive Earthworm, Pontoscolex corethrurus (Annelida: Oligochaeta)

    Treesearch

    Grizelle Gonzalez; Elianid Espinoza; Zhigang Liu; Xiaoming Zou

    2006-01-01

    We used a fluorescence technique to mark and re-count the invasive earthworm, Pontoscolex corethrurus from PVC tubes established in a forest and a recently abandoned pasture in Puerto Rico to test the effects of the labeling treatment on earthworm population survival over time. A fluorescent marker was injected into the earthworms in the middle third section of the...

  10. The second wave of earthworm invasion: soil organic matter dynamics from the stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Chang, C.; Szlavecz, K. A.; Bernard, M.; Pitz, S.

    2013-12-01

    Through transformation of plant litter into soil organic matter (SOM) and translocation of ingested organic material among different soil depths, soil organisms, especially earthworms, are one of the major factors affecting SOM dynamics. In North America temperate soil, historical human activity has lead to invasion of European earthworms into habitats that were previously earthworm-free or inhabited only by native species. By consuming leaf litter and SOM, burrowing, and casting, invasive earthworms have been known for reducing the understory vegetation and leaf litter layer while increasing the thickness of organic soil, causing changes in the soil habitat and the distribution of SOM. Recently, another group of invasive earthworm, namely Amynthas from Asia, has been reported invading habitats already dominated by European species, causing a 'second wave of invasion' where the soil ecosystem, already modified by European species, is going through another transition. The mechanisms through which these functionally (ecologically) different species affect C and N transformation could be better understood by tracing the carbon and nitrogen derived from 13C- and 15N-labeled leaf litter into earthworm tissues and SOM. The objective of this study is to understand how earthworm species that differ ecologically, including the Asian Amynthas, interact with each other and how these interactions affect SOM dynamics. We hypothesized that 1) species feeding on different food resources will have different isotopic signature and their tissue 13C and 15N values will change due to facilitation or interspecific competition on food resources, and 2) the short-term fate of litter-derived carbon differs depending on the presence or absence of different earthworm species. These hypotheses were tested by field sampling and lab mesocosm experiments using 13C and 15N double-enriched Tulip Poplar leaf litter (mean 13C = 124‰, mean 15N = 1667‰) produced from tree saplings growing in an

  11. An enkephalin-like molecule in earthworm coelomic fluid modifies leukocyte behavior.

    PubMed

    Cooper, E L; Leung, M K; Suzuki, M M; Vick, K; Cadet, P; Stefano, G B

    1993-01-01

    Substances that were immunoreactive in an RIA specific for met-enkephalin were detected following HPLC fractionation of earthworm coelomic fluid. Earthworm coelomocytes and human granulocytes were analyzed for changes in conformation based on measurements of cellular area and perimeter and expressed mathematically by using the Form Factor (FF). For coelomocytes the FF decreased following exposure to DAMA, a synthetic enkephalin analogue (D-Ala2, Met5-enkephalinamide). DAMA stimulated migration whereas untreated cells and those exposed to the specific opiate blocker naloxone did not move. The enkephalin-like molecule when exposed to human granulocytes stimulated an increased number of activated cells. Our results suggest a relationship between the immune and nervous systems of earthworms.

  12. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Treesearch

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  13. Predicting macropores in space and time by earthworms and abiotic controls

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias Ludwig; Schneider, Anne-Kathrin; Zangerlé, Anne; Reck, Arne; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Macropore flow increases infiltration and solute leaching. The macropore density and connectivity, and thereby the hydrological effectiveness, vary in space and time due to earthworms' burrowing activity and their ability to refill their burrows in order to survive drought periods. The aim of our study was to predict the spatiotemporal variability of macropore distributions by a set of potentially controlling abiotic variables and abundances of different earthworm species. We measured earthworm abundances and effective macropore distributions using tracer rainfall infiltration experiments in six measurement campaigns during one year at six field sites in Luxembourg. Hydrologically effective macropores were counted in three soil depths (3, 10, 30 cm) and distinguished into three diameter classes (<2, 2-6, >6 mm). Earthworms were sampled and determined to species-level. In a generalized linear modelling framework, we related macropores to potential spatial and temporal controlling factors. Earthworm species such as Lumbricus terrestris and Aporrectodea longa, local abiotic site conditions (land use, TWI, slope), temporally varying weather conditions (temperature, humidity, precipitation) and soil moisture affected the number of effective macropores. Main controlling factors and explanatory power of the models (uncertainty and model performance) varied depending on the depth and diameter class of macropores. We present spatiotemporal predictions of macropore density by daily-resolved, one year time series of macropore numbers and maps of macropore distributions at specific dates in a small-scale catchment with 5 m resolution.

  14. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing

  15. Recombinant protein production of earthworm lumbrokinase for potential antithrombotic application.

    PubMed

    Wang, Kevin Yueju; Tull, Lauren; Cooper, Edwin; Wang, Nan; Liu, Dehu

    2013-01-01

    Earthworms have been used as a traditional medicine in China, Japan, and other Far East countries for thousands of years. Oral administration of dry earthworm powder is considered as a potent and effective supplement for supporting healthy blood circulation. Lumbrokinases are a group of enzymes that were isolated and purified from different species of earthworms. These enzymes are recognized as fibrinolytic agents that can be used to treat various conditions associated with thrombosis. Many lumbrokinase (LK) genes have been cloned and characterized. Advances in genetic technology have provided the ability to produce recombinant LK and have made it feasible to purify a single lumbrokinase enzyme for potential antithrombotic application. In this review, we focus on expression systems that can be used for lumbrokinase production. In particular, the advantages of using a transgenic plant system to produce edible lumbrokinase are described.

  16. Using of ants and earthworm to modify of soil biological quality and its effect on cocoa seedlings growth

    NASA Astrophysics Data System (ADS)

    Kilowasid, Laode Muhammad Harjoni; Budianto, Wayan; Syaf, Hasbullah; Tufaila, Muhammad; Safuan, La Ode

    2015-09-01

    Ant and earthworm can act as soil ecosystem engineers. Ant and earthworm are very dominant in smallholder cocoa plantation. The first experiment aimed to study the effect of the abundance of ants and earthworms on soil microbial activity and microfauna, and the second experiment to analyse the effect of soil modified by ants and earthworms on the cocoa seedlings growth. Ant (Ponera sp.) and earthworm (Pontoscolex sp.) collected from smallholder cocoa plantation, and kept in a container up to applied. In the first experiment, nine combinations of the abundance of ants and earthworms applied to each pot containing 3 kg of soil from smallholder cocoa plantation, and each combination of the abundance was repeated five times in a completely randomized design. After the soil was incubated for thirty days, ants and earthworms removed from the soil using hand sorting techniques. Soil from each pot was analysed for soil microbial activity, abundance of flagellates and nematodes. In the second experiment, the soil in each pot was planted with cocoa seedlings and maintained up to ninety days. The results showed the FDA hydrolytic activity of microbes, the abundance of flagellates and nematodes between the combination of the abundance of ants and earthworms have been significantly different. Dry weight of root, shoot and seedling cacao have been significantly different between the combination of the abundance of ants and earthworms. It was concluded that the combination of the abundance of ants and earthworms can be used in ecological engineering to improve soil quality.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gestel, C.A.; Ma, W.C.

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in themore » latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.« less

  18. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  19. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus.

    PubMed

    Ekperusi, O A; Aigbodion, F I

    2015-12-01

    A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

  20. Can Earthworm "mix up" Soil Carbon Budgets in Temperate Forests Under Elevated Carbon Dioxide?

    NASA Astrophysics Data System (ADS)

    Sánchez-de León, Y.; González-Meler, M.; Sturchio, N. C.; Wise, D. H.; Norby, R. J.

    2008-12-01

    The effects of global change on earthworms and their associated feedbacks on soil and ecosystem processes have been largely overlooked. We studied how the responses of a temperate deciduous forest to elevated carbon dioxide atmospheric concentrations (e[CO2]) influence earthworms and the soil processes affected by them. Our objectives were to: i) identify soil layers of active soil mixing under e[CO2] and current carbon dioxide atmospheric concentrations (c[CO2]) using fallout cesium (137Cs), ii) study how e[CO2] affects earthworm populations, iii) understand the relationship between soil mixing and earthworms at our study site, and iv) identify the implications of earthworm-mediated soil mixing for the carbon budget of a temperate forest. To study soil mixing, we measured vertical 137Cs activity in soil cores (0-24 cm depth) collected in replicated e[CO2] and c[CO2] sweetgum (Liquidambar styraciflua) plots (n = 2) in a Free Air CO2 Enrichment (FACE) ecosystem experiment at Oak Ridge National Laboratory. We measured earthworm density and fresh weight in the plots in areas adjacent to where soil cores were taken. Preliminary results on the vertical distribution of 137Cs in the c[CO2] treatments showed that higher 137Cs activity was located from 8-16 cm depth and no 137Cs activity was measured below 20 cm. In contrast, in the e[CO2] treatment, peak 137Cs activity was slightly deeper (10-18 cm), and 137Cs activity was still measured below 22 cm. Mean earthworm density was higher in e[CO2] than c[CO2] treatments (168 m-2 and 87 m-2, respectively; p = 0.046); earthworm fresh weights, however, did not differ significantly between treatments (32 g m-2 and 18 g m-2, respectively; p = 0.182). The 137Cs vertical distribution suggest that soil mixing occurs deeper in e[CO2] than in c[CO2] treatments, which is consistent with higher earthworm densities in e[CO2] than in c[CO2] treatments. Mixing deeper low carbon content soil with shallower high carbon soil may result in a

  1. Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.

    2011-12-01

    Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were

  2. Earthworms and priming of soil organic matter - The impact of food sources, food preferences and fauna - microbiota interactions

    NASA Astrophysics Data System (ADS)

    Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg

    2016-04-01

    Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.

  3. Elemental and mineralogical changes in soils due to bioturbation along an earthworm invasion chronosequence in northern Minnesota

    Treesearch

    Kathryn Resner; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Alex Blum; Stephen Sebestyen

    2011-01-01

    Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests' sustainability. However, the impacts of earthworm invasion on geochemical processes in...

  4. Earthworms as ecosystem engineers and the most important detritivors in forest soils.

    PubMed

    Kooch, Yahya; Jalilvand, Hamid

    2008-03-15

    Earthworms are considered as soil engineers because of their effects on soil properties and their influence on the availability of resources for other organisms, including microorganisms and plants. However, the links between their impacts on the soil environment and the resulting modification of natural selection pressures on engineer as well as on other organisms have received little attention. Earthworms are known to have a positive influence on the soil fabric and on the decomposition and mineralization of litter by breaking down organic matter and producing large amounts of fasces, thereby mixing litter with the mineral soil. Therefore, they play an important part in changes from one humus from to another according to forest succession patterns. Consequently, they are also expected to be good bio-indicators for forest site quality and are thus useful when planning forest production improvement. Earthworm's populations are as indicator that in exploited regions is destruction indicator and reclamation plans is nature return indicator. In this study we summarized the current knowledge in relation to earthworm's ecology in forest soils as ecosystem engineers.

  5. Effects of heavy metals on the litter consumption by the earthworm Lumbricus rubellus in field soils

    USGS Publications Warehouse

    Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.

    2006-01-01

    Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the "Brabantsche Biesbosch", the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations. ?? 2005 Elsevier GmbH. All rights reserved.

  6. Nutrient and pollutant metals within earthworm residues are immobilized in soil during decomposition

    PubMed Central

    Richardson, J.B; Renock, D.J; Görres, J.H; Jackson, B.P; Webb, S.M; Friedland, A.J

    2016-01-01

    Earthworms are known to bioaccumulate metals, making them a potential vector for metal transport in soils. However, the fate of metals within soil upon death of earthworms has not been characterized. We compared the fate of nutrient (Ca, Mg, Mn) and potentially toxic (Cu, Zn, Pb) metals during decomposition of Amynthas agrestis and Lumbricus rubellus in soil columns. Cumulative leachate pools, exchangeable pools (0.1 M KCl + 0.01 M acetic acid extracted), and stable pools (16 M HNO3 + 12 M HCl extracted) were quantified in the soil columns after 7, 21, and 60 days of decomposition. Soil columns containing A. agrestis and L. rubellus had significantly higher cumulative leachate pools of Ca, Mn, Cu, and Pb than Control soil columns. Exchangeable and stable pools of Cu, Pb, and Zn were greater for A. agrestis and L. rubellus soil columns than Control soil columns. However, we estimated that > 98 % of metals from earthworm residues were immobilized in the soil in an exchangeable or stable form over the 60 days using a mass balance approach. Micro-XRF images of longitudinal thin sections of soil columns after 60 days containing A. agrestis confirm metals immobilization in earthworm residues. Our research demonstrates that nutrient and toxic metals are stabilized in soil within earthworm residues. PMID:28163331

  7. Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex

    PubMed Central

    Zhang, Liangliang; Sechi, Pierfrancesco; Yuan, Minglong; Jiang, Jibao; Dong, Yan; Qiu, Jiangping

    2016-01-01

    The Pheretima complex within the Megascolecidae family is a major earthworm group. Recently, the systematic status of the Pheretima complex based on morphology was challenged by molecular studies. In this study, we carry out the first comparative mitogenomic study in oligochaetes. The mitogenomes of 15 earthworm species were sequenced and compared with other 9 available earthworm mitogenomes, with the main aim to explore their phylogenetic relationships and test different analytical approaches on phylogeny reconstruction. The general earthworm mitogenomic features revealed to be conservative: all genes encoded on the same strand, all the protein coding loci shared the same initiation codon (ATG), and tRNA genes showed conserved structures. The Drawida japonica mitogenome displayed the highest A + T content, reversed AT/GC-skews and the highest genetic diversity. Genetic distances among protein coding genes displayed their maximum and minimum interspecific values in the ATP8 and CO1 genes, respectively. The 22 tRNAs showed variable substitution patterns between the considered earthworm mitogenomes. The inclusion of rRNAs positively increased phylogenetic support. Furthermore, we tested different trimming tools for alignment improvement. Our analyses rejected reciprocal monophyly among Amynthas and Metaphire and indicated that the two genera should be systematically classified into one. PMID:26833286

  8. The effect of earthworms (Lumbricus rubellus) in feed formulation on growth and retention of eel (Anguilla bicolor)

    NASA Astrophysics Data System (ADS)

    Jatmiko, P. C.; Madinah, N. A.; Agustono; Nurhajati, T.

    2018-04-01

    Earthworms (Lumbricus rubellus) has high protein content. The addition of earthworms in formulation feed not only can increase the appetite of eel but also increase the nutritional content in feed. The purpose of this research was to know the potention of earthworms L. rubellus in feed formulation that can gives increase on the growth and retention. Research’s method was using Complete Randomized Design (CRD) consisted of five treatments and four replication. Treatments in this research ware the different addition of earthworms L. rubellus in feed formulation which were 0 %, 25 %, 50 %, 75 % and 100 %. The result showed that there were significantly different on the growth and retention of eel during maintenance for 21 days. the best result was on the 100% of earthworms L.rubellus addition.

  9. Protein- and RNA-Enhanced Fermentation by Gut Microbiota of the Earthworm Lumbricus terrestris.

    PubMed

    Zeibich, Lydia; Schmidt, Oliver; Drake, Harold L

    2018-06-01

    Earthworms are a dominant macrofauna in soil ecosystems and have determinative effects on soil fertility and plant growth. These invertebrates feed on ingested material, and gizzard-linked disruption of ingested fungal and bacterial cells is conceived to provide diverse biopolymers in the anoxic alimentary canals of earthworms. Fermentation in the gut is likely important to the utilization of ingested biopolymer-derived compounds by the earthworm. This study therefore examined the fermentative responses of gut content-associated microbes of the model earthworm Lumbricus terrestris to (i) microbial cell lysate (to simulate gizzard-disrupted cells) and (ii) dominant biopolymers of such biomass, protein, and RNA. The microbial cell lysate augmented the production of H 2 , CO 2 , and diverse fatty acids (e.g., formate, acetate, propionate, succinate, and butyrate) in anoxic gut content microcosms, indicating that the cell lysate triggered diverse fermentations. Protein and RNA also augmented diverse fermentations in anoxic microcosms of gut contents, each yielding a distinct product profile (e.g., RNA yielded H 2 and succinate, whereas protein did not). The combined product profile of protein and RNA treatments was similar to that of cell lysate treatments, and 16S rRNA-based analyses indicated that many taxa that responded to cell lysate were similar to taxa that responded to protein or RNA. In particular, protein stimulated Peptostreptococcaceae , Clostridiaceae , and Fusobacteriaceae , whereas RNA stimulated Aeromonadaceae These findings demonstrate the capacity of gut-associated obligate anaerobes and facultative aerobes to catalyze biopolymer-driven fermentations and highlight the potential importance of protein and RNA as substrates linked to the overall turnover dynamics of organic carbon in the alimentary canal of the earthworm. IMPORTANCE The subsurface lifestyle of earthworms makes them an unnoticed component of the terrestrial biosphere. However, the

  10. Earthworm invasions in the tropics

    Treesearch

    Grizelle Gonzalez; Ching Yu Huang; Xiaoming Zou; Carlos Rodriguez

    2006-01-01

    The effects and implications of invasive species in belowground terrestrial ecosystems are not well known in comparison with aboveground terrestrial and marine environments. The study of earthworm invasions in the tropics is limited by a lack of taxonomic knowledge and the potential for loss of species in native habitats due to anthropogenic land use change. Alteration...

  11. Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of (14)C-catechol in an agricultural soil.

    PubMed

    Shan, Jun; Wang, Yongfeng; Gu, Jianqiang; Zhou, Wenqiang; Ji, Rong; Yan, Xiaoyuan

    2014-07-01

    Both biochar and earthworms can exert influence on behaviors of soil-borne monomeric phenols in soil; however, little was known about the combined effects of biochar and earthworm activities on fate of these chemicals in soil. Using (14)C-catechol as a representative, the mineralization, transformation and residue distribution of phenolic humus monomer in soil amended with different amounts of biochar (0%, 0.05%, 0.5%, and 5%) without/with the geophagous earthworm Metaphire guillelmi were investigated. The results showed biochar at amendment rate <0.5% did not affect (14)C-catechol mineralization, whereas 5% biochar amendment significantly inhibited the mineralization. Earthworms did not affect the mineralization of (14)C-catechol in soil amended with <0.5% biochar, but significantly enhanced the mineralization in 5% biochar amended soil when they were present in soil for 9 d. When earthworms were removed from the soil, the mineralization of (14)C-catechol was significantly lower than that of in earthworm-free soil indicating that (14)C-catecholic residues were stabilized during their passage through earthworm gut. The assimilation of (14)C by earthworms was low (1.2%), and was significantly enhanced by biochar amendment, which was attributed to the release of biochar-associated (14)C-catecholic residues during gut passage of earthworm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Earthworms Dilong: Ancient, Inexpensive, Noncontroversial Models May Help Clarify Approaches to Integrated Medicine Emphasizing Neuroimmune Systems

    PubMed Central

    Cooper, Edwin L.; Balamurugan, Mariappan; Huang, Chih-Yang; Tsao, Clara R.; Heredia, Jesus; Tommaseo-Ponzetta, Mila; Paoletti, Maurizio G.

    2012-01-01

    Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties. PMID:22888362

  13. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance

    NASA Astrophysics Data System (ADS)

    Filley, Timothy R.; McCormick, Melissa K.; Crow, Susan E.; Szlavecz, Katalin; Whigham, Dennis F.; Johnston, Cliff T.; van den Heuvel, Ronald N.

    2008-03-01

    To investigate the control of earthworm populations on leaf litter biopolymer decay dynamics, we analyzed the residues of Liriodendron tulipifera L. (tulip poplar) leaves after six months of decay, comparing open surface litter and litter bag experiments among forests with different native and invasive earthworm abundances. Six plots were established in successional tulip poplar forests where sites varied in earthworm density and biomass, roughly 4-10 fold, of nonnative lumbricid species. Analysis of residues by diffuse reflectance Fourier transform infrared spectroscopy and alkaline CuO extraction indicated that open decay in sites with abundant earthworms resulted in residues depleted in cuticular aliphatic and polysaccharide components and enriched in ether-linked lignin relative to open decay in low earthworm abundance plots. Decay within earthworm-excluding litter bags resulted in an increase in aliphatic components relative to initial amendment and similar chemical trajectory to low earthworm open decay experiments. All litter exhibited a decline in cinnamyl-based lignin and an increase in nitrogen content. The influence of earthworm density on the chemical trajectory of litter decay was primarily a manifestation of the physical separation and concentration of lignin-rich and cutin-poor petioles with additional changes promoted by either microorganisms and/or mesofauna resulting in nitrogen addition and polysaccharide loss. These results illustrate how projected increases in invasive earthworm activity in northern North American forests could alter the chemical composition of organic matter in litter residues and potentially organic matter reaching the soil which may result in shifts in the aromatic and aliphatic composition of soils in different systems.

  14. Managing Earthworm Castings (Oligochaeta: Lumbricidae) in Turfgrass using a Natural By-Product of Tea Oil (Camellia sp.) Manufacture

    USDA-ARS?s Scientific Manuscript database

    Earthworm casts are a problem on golf courses and sport fields when they disrupt the playability, aesthetics, and maintenance of playing surfaces. Abundant earthworms alongside airport runways can increase bird strike risk. Currently no pesticides are labeled for earthworms in the United States. W...

  15. Main controlling factors and forecasting models of lead accumulation in earthworms based on low-level lead-contaminated soils.

    PubMed

    Tang, Ronggui; Ding, Changfeng; Ma, Yibing; Wan, Mengxue; Zhang, Taolin; Wang, Xingxiang

    2018-06-02

    To explore the main controlling factors in soil and build a predictive model between the lead concentrations in earthworms (Pb earthworm ) and the soil physicochemical parameters, 13 soils with low level of lead contamination were used to conduct toxicity experiments using earthworms. The results indicated that a relatively high bioaccumulation factor appeared in the soils with low pH values. The lead concentrations between earthworms and soils after log transformation had a significantly positive correlation (R 2  = 0.46, P < 0.0001, n = 39). Stepwise multiple linear regression analysis derived a fitting empirical model between Pb earthworm and the soil physicochemical properties: log(Pb earthworm ) = 0.96log(Pb soil ) - 0.74log(OC) - 0.22pH + 0.95, (R 2  = 0.66, n = 39). Furthermore, path analysis confirmed that the Pb concentrations in the soil (Pb soil ), soil pH, and soil organic carbon (OC) were the primary controlling factors of Pb earthworm with high pathway parameters (0.71, - 0.51, and - 0.49, respectively). The predictive model based on Pb earthworm in a nationwide range of soils with low-level lead contamination could provide a reference for the establishment of safety thresholds in Pb-contaminated soils from the perspective of soil-animal systems.

  16. Rapid determination of soil quality and earthworm impacts on soil microbial communities using fluorescence-based respirometry

    NASA Astrophysics Data System (ADS)

    Prendergast-Miller, Miranda T.; Thurston, Josh; Taylor, Joe; Helgason, Thorunn; Ashauer, Roman; Hodson, Mark E.

    2017-04-01

    We applied a fluorescence-based respirometry method currently devised for aquatic ecotoxicology studies to rapidly measure soil microbial oxygen consumption as a function of soil quality. In this study, soil was collected from an arable wheat field and the field margin. These two soil habitats are known to differ in their soil quality due to differences in their use and management as well as plant, microbial and earthworm community. The earthworm Lumbricus terrestris was incubated in arable or margin soil for three weeks. After this initial phase, a transfer experiment was then conducted to test the hypothesis that earthworm 'migration' alters soil microbial community function and diversity. In this transfer experiment, earthworms incubated in margin soil were transferred to arable soil. The converse transfer (i.e. earthworms incubated in arable soil) was also conducted. Soils of each type with no earthworms were also incubated as controls. After a further four week incubation, the impact of earthworm migration on the soil microbial community was tested by measuring oxygen consumption. Replicated soil slurry subsamples were aliquoted into individual respirometer wells (600 μl volume) on a glass 24-well microplate (Loligo Systems, Denmark) fitted with non-invasive, reusable oxygen sensor spots. The sealed microplate was then attached to an oxygen fluorescence sensor (SDR SensorDish Reader, PreSens, Germany). Oxygen consumption was measured in real-time over a 2 hr period following standard operating procedures. Soil microbial activity was measured with and without an added carbon source (glucose or cellulose, 50 mg C L-1). Using this system, we were able to differentiate between soil type, earthworm treatment and C source. Earthworm-driven impacts on soil microbial oxygen consumption were also supported by changes in soil microbial community structure and diversity revealed using DNA-based sequencing techniques. This method provides a simple and rapid system for

  17. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest

    Treesearch

    Kit Resner; Kyungsoo Yoo; Stephen D. Sebestyen; Anthony Aufdenkampe; Cindy Hale; Amy Lyttle; Alex Blum

    2015-01-01

    Hardwood forests of the Great Lakes Region have evolved without earthworms since the Last Glacial Maximum, but are now being invaded by exotic earthworms introduced through agriculture, fishing, and logging. These exotic earthworms are known to increase soil mixing, affect soil carbon storage, and dramatically alter soil morphology. Here we show, using an active...

  18. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    PubMed

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  19. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    PubMed

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  20. Emission of Methane by Eudrilus eugeniae and Other Earthworms from Brazil

    PubMed Central

    Depkat-Jakob, Peter S.; Hunger, Sindy; Schulz, Kristin; Brown, George G.; Tsai, Siu M.

    2012-01-01

    Earthworms emit denitrification-derived nitrous oxide and fermentation-derived molecular hydrogen. The present study demonstrated that the earthworm Eudrilus eugeniae, obtained in Brazil, emitted methane. Other worms displayed a lesser or no capacity to emit methane. Gene and transcript analyses of mcrA (encoding the alpha subunit of methyl-CoM reductase) in gut contents of E. eugeniae suggested that Methanosarcinaceae, Methanobacteriaceae, and Methanomicrobiaceae might be associated with this emission. PMID:22344639

  1. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    PubMed

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  2. Avoidance behaviour response and esterase inhibition in the earthworm, Lumbricus terrestris, after exposure to chlorpyrifos.

    PubMed

    Martínez Morcillo, S; Yela, J L; Capowiez, Y; Mazzia, C; Rault, M; Sanchez-Hernandez, Juan C

    2013-05-01

    The avoidance response of earthworms to polluted soils has been standardised using a simple and low-cost test, which facilitates soil toxicity screening. In this study, the avoidance response of Lumbricus terrestris was quantified in chlorpyrifos-spiked soils, depending on the pesticide concentration and exposure duration. The inhibition of acetylcholinesterase (AChE) and carboxylesterase (CbE) activities was also determined as indirect measures of pesticide bioavailability. The effects of different chlorpyrifos concentrations were examined in a standardised test (two-chamber system) with 0.6, 3 and 15 mg/kg chlorpyrifos. A modification of the test involved a pre-exposure step (24, 48 or 72 h) in soils spiked with 15 mg/kg. In both protocols, earthworms were unable to avoid the contaminated soils. However, the esterase activities showed that all earthworms were exposed to chlorpyrifos. Acetylcholinesterase activity did not change in earthworms in the standardised behavioural test (0.58 ± 0.20 U/mg protein, mean ± SD; n = 72), whereas the CbE activity was significantly inhibited (62-87 % inhibition) in earthworms exposed to 3 and 15 mg/kg. In the modified test, earthworms had greatly inhibited AChE activity (0.088 ± 0.034 U/mg protein, n = 72), which was supported by reactivation of the inhibited enzyme activity in the presence of pralidoxime (2-PAM). Similarly, the CbE activity was significantly inhibited in earthworms with all treatments. This study suggests that the avoidance behaviour test for organophosphorus-contaminated soils could be supported by specific biomarkers to facilitate a better understanding of pesticide exposure and toxicity during this test.

  3. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    NASA Astrophysics Data System (ADS)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil

  4. Phylogenomic analyses of Crassiclitellata support major Northern and Southern Hemisphere clades and a Pangaean origin for earthworms.

    PubMed

    Anderson, Frank E; Williams, Bronwyn W; Horn, Kevin M; Erséus, Christer; Halanych, Kenneth M; Santos, Scott R; James, Samuel W

    2017-05-30

    Earthworms (Crassiclitellata) are a diverse group of annelids of substantial ecological and economic importance. Earthworms are primarily terrestrial infaunal animals, and as such are probably rather poor natural dispersers. Therefore, the near global distribution of earthworms reflects an old and likely complex evolutionary history. Despite a long-standing interest in Crassiclitellata, relationships among and within major clades remain unresolved. In this study, we evaluate crassiclitellate phylogenetic relationships using 38 new transcriptomes in combination with publicly available transcriptome data. Our data include representatives of nearly all extant earthworm families and a representative of Moniligastridae, another terrestrial annelid group thought to be closely related to Crassiclitellata. We use a series of differentially filtered data matrices and analyses to examine the effects of data partitioning, missing data, compositional and branch-length heterogeneity, and outgroup inclusion. We recover a consistent, strongly supported ingroup topology irrespective of differences in methodology. The topology supports two major earthworm clades, each of which consists of a Northern Hemisphere subclade and a Southern Hemisphere subclade. Divergence time analysis results are concordant with the hypothesis that these north-south splits are the result of the breakup of the supercontinent Pangaea. These results support several recently proposed revisions to the classical understanding of earthworm phylogeny, reveal two major clades that seem to reflect Pangaean distributions, and raise new questions about earthworm evolutionary relationships.

  5. Vermicomposting of winery wastes: a laboratory study.

    PubMed

    Nogales, Rogelio; Cifuentes, Celia; Benítez, Emilio

    2005-01-01

    In Mediterranean countries, millions of tons of wastes from viticulture and winery industries are produced every year. This study describes the ability of the earthworm Eisenia andrei to compost different winery wastes (spent grape marc, vinasse biosolids, lees cakes, and vine shoots) into valuable agricultural products. The evolution of earthworm biomass and enzyme activities was tracked for 16 weeks of vermicomposting, on a laboratory scale. Increases in earthworm biomass for all winery wastes proved lower than in manure. Changes in hydrolytic enzymes and overall microbial activities during the vermicomposting process indicated the biodegradation of the winery wastes. Vermicomposting improved the agronomic value of the winery wastes by reducing the C:N ratio, conductivity and phytotoxicity, while increasing the humic materials, nutrient contents, and pH in all cases. Thus, winery wastes show potential as raw substrates in vermicomposting, although further research is needed to evaluate the feasibility of such wastes in large-scale vermicomposting systems.

  6. The potential acute and chronic toxicity of cyfluthrin on the soil model organism, Eisenia fetida.

    PubMed

    Li, Lingling; Yang, Da; Song, Yufang; Shi, Yi; Huang, Bin; Bitsch, Annette; Yan, Jun

    2017-10-01

    In this study, the acute (72h and 14 d) and chronic (28 d and 8 weeks) effects of cyfluthrin on earthworms were evaluated across different endpoints, which are mortality, growth, reproduction and enzyme activities. Cyfluthrin was rated as moderately toxic in 72-h filter paper test and low toxic in 14-day soil test. The exposure of earthworms to cyfluthrin-polluted soil for 8 weeks showed that growth of earthworms was inhibited by cyfluthrin, cocoon production and hatching were inhibited by 20-60mg/kg cyfluthrin. Moreover, 28-day soil test on the responses of enzymes associated with antioxidation and detoxification showed that the activities of catalase (CAT) and glutathione S- transferase (GST) were initially increased by cyfluthrin at 5-20mg/kg, but reduced at 30-60mg/kg, peroxidase (POD) was increased by 26-102% by cyfluthrin in the early period, except 5mg/kg on day 7, and ethoxyresorufin-O-deethylase (EROD) was increased by 29-335% by cyfluthrin after 3 days. Cyfluthrin degraded with a half-life of 24.8-34.8 d, showing the inconsistency between the continuous toxic responses of earthworms and degradation of cyfluthrin in soil. The variable responses of these indexes indicated that different level endpoints should be jointly considered for better evaluation of the environmental risk of contaminants in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer.

    PubMed

    Hussain, Naseer; Abbasi, Tasneem; Abbasi, S A

    2016-09-15

    Vermicompost, which had been derived solely by the action of the epigeic earthworm Eisenia fetida on parthenium (Parthenium hysterophorus), was tested for its impact on the germination and early growth of green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). Seedlings were germinated and grown in soil amended with 0 (control), 0.75, 1.5, 2, 4, 8, 20 and 40% (by weight) parthenium vermicompost. Even though parthenium is known to possess strong negative allelopathy, as also plant/animal toxicity in other forms, its vermicompost (VC) manifested none of these attributes. Rather the VC enhanced germination success, introduced plant-friendly physical features in the container media, increased biomass carbon, and was seen to promote early growth as reflected in several morphological and biochemical characteristics in plants which had received parthenium VC in comparison to those which had not. All these effects were statistically significant. Fourier Transform Infrared (FTIR) Spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the negative allelopathic impact of parthenium were largely destroyed in the course of vermicomposting. FTIR spectra also indicated that lignin content of parthenium was reduced during its vermicomposting. The findings open up the possibility that several other invasives known for their negative allelopathy and toxicity may also produce vermicompost which may be plant-friendly and soil-friendly. It also makes it appear possible that the huge quantities of phytomass that is generated annually by parthenium can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby providing a means of exercising some control over parthenium's rampant growth and invasion. Copyright © 2016. Published by Elsevier Ltd.

  8. Recalibration of the earthworm tier 1 risk assessment of plant protection products.

    PubMed

    Christl, Heino; Bendall, Julie; Bergtold, Matthias; Coulson, Mike; Dinter, Axel; Garlej, Barbara; Hammel, Klaus; Kabouw, Patrick; Sharples, Amanda; von Mérey, Georg; Vrbka, Silvie; Ernst, Gregor

    2016-10-01

    In the first step of earthworm risk assessment for plant protection products (PPPs), the risk is assessed by comparing the no-observed effect levels (NOELs) from laboratory reproduction tests with the predicted exposure of the PPP in soil, while applying a trigger value (assessment factor [AF]) to cover uncertainties. If this step indicates a potential risk, field studies are conducted. However, the predicted environmental concentration in soil, which can be calculated, for example, for different soil layers (ranging from 0-1 cm to 0-20 cm), and the AF determine the conservatism that is applied in this first step. In this review paper, the tier 1 earthworm risk assessment for PPPs is calibrated by comparing the NOEL in earthworm reproduction tests with effect levels on earthworm populations under realistic field conditions. A data set of 54 pairs of studies conducted in the laboratory and in the field with the same PPP was compiled, allowing a direct comparison of relevant endpoints. The results indicate that a tier 1 AF of 5 combined with a regulatory relevant soil layer of 0 to 5 cm provides a conservative tier 1 risk assessment. A risk was identified by the tier 1 risk assessment in the majority of the cases at application rates that were of low risk for natural earthworm populations under field conditions. Increasing the conservatism in the tier 1 risk assessment by reducing the depth of the regulatory relevant soil layer or by increasing the tier 1 AF would increase the number of false positives and trigger a large number of additional field studies. This increased conservatism, however, would not increase the margin of safety for earthworm populations. The analysis revealed that the risk assessment is conservative if an AF of 5 and a regulatory relevant soil layer of 0 to 5 cm is used. Integr Environ Assess Manag 2016;12:643-650. © 2015 SETAC. © 2015 SETAC.

  9. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.C.; Goven, A.J.; Muratti-Ortiz, J.F.

    Earthworms are ideal soil organisms for use in terrestrial ecotoxicology. As such, several earthworm protocols have been developed for testing toxic potential of chemicals and contaminated soils. Of these, the 48-h filter paper contact (FP) and the 14-d artificial soil exposure (AS) protocols, using mortality (LC50) as the toxic endpoint and Eisenia fetida as the test species, have received the most attention, with the latter being adopted by both OECD and EEC in Europe and the Environmental Protection Agency (USEPA) in the United States. Although the FP technique, adopted by EEC, provides for inexpensive reproducible toxicity screening for chemicals (i.e.more » establishing relative toxicities), it has been criticized for lacking the ecotoxicological relevance of the AS protocol. Choice of earthworm species for laboratory testing also has been controversial. The manure worm, E. fetida, is criticized for not being sufficiently sensitive to chemicals or representative of {open_quotes}typical{close_quotes} earthworms. Lumbricus terrestris and Apporectodea caliginosa have been suggested as more sensitive and ecologically relevant earthworms by Dean-Ross and Martin, respectively. This paper compares the AS and FP protocols in assessing toxicity of cadminum to L. terrestris and E. fetida using LC50s and LC50s. 19 refs., 2 tabs.« less

  11. [Resistance of earthworms Lumbricus terrestris and Allolobophora turgida to the fungicide captan 50 W.P].

    PubMed

    Léger, R G; Millette, G J

    1977-12-01

    Two species of earthworms were kept in Muck, Chicot and Ste-Sophie soils treated with captan 50 W.P. solutions of 700, 1 400 and 2 800 ppm. After a 42-day treatment period, L. terrestris had a 95% survival and A. turgida 100% survival. Using a gas chromatograph method, no captan was detected in tissue extracts of exposed earthworms. Based on the survival rate and the undetected presence of captan in earthworm tissues, we concluded that soil residues of this product are unlikely to be harmful to the animal's ecology.

  12. Off to the (Earthworm) Races: A Quick and Flexible Lab Experiment for Introductory Zoology Courses.

    ERIC Educational Resources Information Center

    Switzer, Paul V.; Fritz, Ann H.

    2001-01-01

    Presents a hands-on, investigative lab activity for use in an introductory zoology course. Tests the behavioral hypothesis that substrate texture affects earthworm locomotor ability. Provides background information on earthworm locomotion followed by details of the lab exercise. (NB)

  13. A Standardized Soil Ecotoxicological Test Using Red Worms (Eisenia fetida).

    ERIC Educational Resources Information Center

    Paradise, Christopher J.

    2001-01-01

    Describes a simple, inexpensive test for soil contamination that can be used in a variety of courses to examine the effects of soil toxicity, to practice standardized laboratory procedures, to study experimental design and data analysis, or to investigate earthworm ecology. Presents background information along with details regarding equipment,…

  14. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils

    Treesearch

    Ching-Yu Huang; Grizelle Gonzalez; Paul F. Hendrix

    2016-01-01

    Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (...

  15. Interactions between earthworms and arsenic in the soil environment: a review.

    PubMed

    Langdon, Caroline J; Piearce, Trevor G; Meharg, Andrew A; Semple, Kirk T

    2003-01-01

    Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes.

  16. Metals and terrestrial earthworms (Annelida: Oligochaeta)

    USGS Publications Warehouse

    Beyer, W.N.

    1981-01-01

    The toxicity of metals to earthworms and the residues of metals found in earthworms are reviewed. Meta 1 concentrations are rarely high enough to be toxic to worms, but copper may reduce populations in orchards heavily treated with fungicides and in soil contaminated with pig wastes. The metals in some industrial sewage sludges may interfere with using sludge in vermiculture. Storage ratios (the concentration of a metal in worms divided by the concentration in soil) tend to be highest in infertile soil and lowest in media rich in organic matter, such as sewage sludge. Cadmium, gold, and selenium are highly concentrated by worms. Lead concentrations in worms may be very high, but are generally lower than concentrations in soil. Body burdens of both copper and zinc seem to be regulated by worms. Because worms are part of the food webs of many wildlife species, and also because they are potentially valuable feed supplements for domestic animals, the possible toxic effects of cadmium and other metals should be studied. Worms can make metals more available to food webs and can redistribute them in soil.

  17. Biaccumulation and tolerance of heavy metals on the tropical earthworm, Allobophora sp. after exposed to contaminated soil from oil mine waste

    NASA Astrophysics Data System (ADS)

    Suhendrayatna; Darusman; Raihannah; Nurmala, D.

    2018-04-01

    In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.

  18. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Cao, Dongdong; Wang, Xiao; Luo, Xianxiang; Liu, Guocheng; Zheng, Hao

    2017-04-01

    Microplastics (MPs) pollution is widespread in the environment, while the effects of MPs on the soil organisms are poorly understood. In this study, we investigated the fitness of earthworms (E. Foetida) exposed to MPs (Polystyrene, 58 μm) in soils at the concentrations of 0, 0.25, 0.5, 1 and 2% (w/w). The results showed that MPs had little effects on the fitness of earthworms under low exposure concentrations (≤ 0.5 % (w/w)), while MPs exposure with high concentrations (i.e., 1% and 2%) significantly inhibited the growth and increased the mortality of earthworms. The results indicated that the MPs pollution in soils have an adverse effect on the fitness of soil organisms, and implied the ecological risk of MPs in terrestrial ecosystems.

  19. Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control

    USDA-ARS?s Scientific Manuscript database

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypothesized that ear...

  20. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  1. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    NASA Astrophysics Data System (ADS)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  2. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.

    2008-01-01

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors

  3. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest.

    PubMed

    Fahey, Timothy J; Yavitt, Joseph B; Sherman, Ruth E; Maerz, John C; Groffman, Peter M; Fisk, Melany C; Bohlen, Patrick J

    2013-07-01

    To examine the mechanisms of earthworm effects on forest soil C and N, we double-labeled leaf litter with 13C and 15N, applied it to sugar maple forest plots with and without earthworms, and traced isotopes into soil pools. The experimental design included forest plots with different earthworm community composition (dominated by Lumbricus terrestris or L. rubellus). Soil carbon pools were 37% lower in earthworm-invaded plots largely because of the elimination of the forest floor horizons, and mineral soil C:N was lower in earthworm plots despite the mixing of high C:N organic matter into soil by earthworms. Litter disappearance over the first winter-spring was highest in the L. terrestris (T) plots, but during the warm season, rapid loss of litter was observed in both L. rubellus (R) and T plots. After two years, 22.0% +/- 5.4% of 13C released from litter was recovered in soil with no significant differences among plots. Total recovery of added 13C (decaying litter plus soil) was much higher in no-worm (NW) plots (61-68%) than in R and T plots (20-29%) as much of the litter remained in the former whereas it had disappeared in the latter. Much higher percentage recovery of 15N than 13C was observed, with significantly lower values for T than R and NW plots. Higher overwinter earthworm activity in T plots contributed to lower soil N recovery. In earthworm-invaded plots isotope enrichment was highest in macroaggregates and microaggregates whereas in NW plots silt plus clay fractions were most enriched. The net effect of litter mixing and priming of recalcitrant soil organic matter (SOM), stabilization of SOM in soil aggregates, and alteration of the soil microbial community by earthworm activity results in loss of SOM and lowering of the C:N ratio. We suggest that earthworm stoichiometry plays a fundamental role in regulating C and N dynamics of forest SOM.

  4. Study of analgesic effect of earthworm extract

    PubMed Central

    Luo, Wei; Deng, Zhen-han; Li, Rui; Cheng, Guo; Kotian, Ronak Naveenchandra

    2017-01-01

    Pain represents a major clinical problem and one which has exercised generations of healthcare professionals. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, the analgesic effects of earthworm extract (EE) are seldom studied. Hence, we evaluated the analgesic effects of EE in mice. The obtained data showed that EE increased pain threshold and exhibited peripheral but not central analgesic effects in mice; evidenced by increased inhibition ratio in acetic acid writhing test and formalin test, whereas only slight increase in inhibition ratio in hot plate test and tail immersion test. In addition, EE decreased serum norepinephrine (NE), 5-hydroxytryptamine (5-HT), and nitric oxide (NO) synthase (NOS) concentration, similar to other analgesic drugs like morphine and aspirin. In a nutshell, the obtained data have demonstrated that EE has peripheral analgesic properties and could be used as a promising analgesic drug. PMID:29273677

  5. Degradation of Potassium Rock by Earthworms and Responses of Bacterial Communities in Its Gut and Surrounding Substrates after Being Fed with Mineral

    PubMed Central

    Liu, Dianfeng; Lian, Bin; Wang, Bin; Jiang, Guofang

    2011-01-01

    Background Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. Methodology/Principal Findings In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. Conclusions/Significance Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals. PMID:22174903

  6. Tires, Worms and Weathering: Investigating the Role of Earthworm Processes in Urban Soils Receiving Roadway Derived Contaminants

    NASA Astrophysics Data System (ADS)

    Carroll, W.; Lev, S. M.; Szlavecz, K.; Landa, E. R.; Casey, R.; Snodgrass, J. W.

    2006-05-01

    Increased development around urban centers has altered the biogeochemistry of near surface systems. One major impact of development has been an increase in the availability of potentially toxic trace metals in soils and surface waters. A primary source of trace metals to near surface environments in urban systems is roadway runoff and dust. The potential hazard that roadway runoff and dust pose to biota is not well understood and is an area of extensive investigation in the multi-disciplinary field of environmental biogeochemistry. Because earthworms ingest, transport, process and excrete large amounts of soil on a daily basis, earthworms can have a profound impact on soil chemistry and the bioavailability of potentially toxic trace metals. Therefore, it is important to investigate how earthworms are affecting the distribution and bioavailability of potentially toxic metals in the soils that they re-work. Results from a set of mesocosm experiments using the native endogeic earthworm species Eisenoides loennbergi and soils from the Red Run watershed in Baltimore County, MD, exhibit evidence of the physical and chemical earthworm weathering processes over time periods as short as 3 week. The target element for this experiment was Zn which is highly enriched in roadway dust. In this study, 200 g of soil was amended with roadway dust. The total mass of Zn introduced was 20 mg making the target concentration 159 ppm. Six replicates were prepared with leaf litter added as a food source. Ten earthworms were then introduced into the soils. Two duplicate batches were then held at constant moisture (70%) and temperature (16 degrees C) for three weeks. An additional four were let run for six weeks. Control samples for both time periods show no change in either total Zn or extractable (1 M MgCl2) Zn concentration. The amended samples however, display evidence of extensive mixing and an increase in the extractable Zn that can be attributed to earthworm weathering processes. The

  7. Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Ablain, F.; Cluzeau, D.

    2002-12-01

    The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus

  8. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the

  9. Earthworms are associated with subpopulations of Gammaproteobacteria irrespective of the total soil microbiota composition and stability.

    PubMed

    Fjøsne, Trine; Myromslien, Frøydis D; Wilson, Robert C; Rudi, Knut

    2018-05-01

    Soil represents one of the most complex microbial ecosystems on earth. It is well-known that invertebrates such as earthworms have a major impact on transformations of organic material in soil, while their effect on the soil microbiota remains largely unknown. The aim of our work was therefore to investigate the association of earthworms with temporal stability, composition and diversity in two soil microbiota experimental series. We found that earthworms were consistently associated with an increase in subgroups of Gammaproteobacteria, despite major differences in microbiota composition and temporal stability across the experimental series. Our results therefore suggest that earthworms can affect subpopulation dynamics in the soil microbiota, irrespective of the total microbiota composition. If the soil microbiota is comprised of independent microbiota components, this can contribute to our general understanding of the complexity of the soil microbiota.

  10. Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) in temperate grasslands

    PubMed Central

    Ortiz-Gamino, Diana; Pérez-Rodríguez, Paulino

    2016-01-01

    The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) presents a broad distribution (e.g., 56 countries from four continents). It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures) where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland) were established at each of four sites along an altitudinal gradient: Laguna Verde (LV), La Concepción (LC), Naolinco (NA) and Acatlán (AC) at 11–55, 992–1,025, 1,550–1,619 y 1,772–1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic) were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae). Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity) with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC) and temperate sites (NA) along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate) can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients. PMID:27761348

  11. Effects of a constructed Technosol on mortality, survival and reproduction of earthworms

    NASA Astrophysics Data System (ADS)

    Pey, Benjamin; Cortet, Jerome; Capowiez, Yvan; Mignot, Lenaic; Nahmani, Johanne; Watteau, Francoise; Schwartz, Christophe

    2010-05-01

    Soils, whose properties and pedogenesis are dominated by artificial materials or transported materials, are classified as Technosols. Some of these Technosols are used in soil engineering, which is the voluntary action to combine technical materials in a given objective to restore an ecosystem. Primary by products that are used to build these Technosols need to be assessed on an ecotoxicological point of view. The following study aims to assess the effects of a constructed Technosol made from different primary by-products on the mortality, survival and reproductions of two earthworm species. The model of Technosol used here is a combination of green-waste compost (GWC) and papermill sludge (PS) mixed with thermally treated industrial soil (TIS). OECD soil is used as a control soil. Three different experiments have been managed: i) the first, to assess the potential toxicity effect on Eisenia foetida biomass (28 days) and reproduction (56 days), ii) the second to assess the short-term effect (7 days) on Lumbricus terrestris biomass, iii) and the third to assess the medium-term effect (30 days) on L. terrestris biomass. Reproduction of E. foetida is enhanced with high proportions of GWC. For biomass, GWC seems to improve body mass contrary to other materials which lead to losses of body mass. Thus, for E. foetida, GWC seems to be a high-quality and long-term source of food. Body mass of L. terrestris decreased with GWC and OECD. At short-term only, TIS/PS leads to a gain of body mass. Only equilibrium of 25% GWC - 75% TIS/PS allows a gain of body mass at medium term. TIS/PS appears to be a low-quality and short-term food resource but an excellent water tank. It can be concluded that the constructed Technosol is not toxic for fauna but some differences appear between different tested material combinations, depending on nature, proportion and trophic properties of materials.

  12. Oxidative stress and genotoxicity of an organic and an inorganic nanomaterial to Eisenia andrei: SDS/DDAB nano-vesicles and titanium silicon oxide.

    PubMed

    Correia, Bruno; Lourenço, Joana; Marques, Sérgio; Nogueira, Verónica; Gavina, Ana; da Graça Rasteiro, Maria; Antunes, Filipe; Mendo, Sónia; Pereira, Ruth

    2017-06-01

    In the past few years the number of studies on the toxic effects of nanomaterials (NMs) in the environment increased significantly. Nonetheless, the data is still scarce, since there is a large number of NMs and new ones are being developed each day. Soils are extremely important for life, and are easily exposed to the released NMs, thus enhanced efforts are needed to study the impacts on soil biota. The objective of the present work was to determine if different concentrations of two NMs, one inorganic (TiSiO 4 ) and other organic (nano-vesicles of sodium sodecyl sulfate/ didodecyl dimethylammonium bromide - SDS/DDAB), are genotoxic to soil invertebrates. Additionally, it was intended to understand whether, in the event of occurring, genotoxicity was caused by the incapability of the cells to deal with the oxidative stress caused by these NMs. With that purpose, Eisenia andrei were exposed for 30 days to the artificial OECD soil contaminated with different concentrations of the NMs being tested. After the exposure, coelomocytes were extracted from earthworms and DNA damage was measured by the comet assay. The activity of antioxidant enzymes (e.g. glutathione peroxidase, glutathione reductase and glutathione-S-Transferase) and lipid peroxidation were also assessed. The results showed that both NMs were genotoxic, particularly TiSiO 4 for which significant DNA damages were recorded for concentrations above 444mg of TiSiO 4 -NM/kg of soil dw . Since no statistically significant differences were found in the tested antioxidant enzymes and in lipid peroxidation, the mechanism of genotoxicity of these NMs seemed to be unrelated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Population dynamics of earthworms in relation to soil physico-chemical parameters in agroforestry systems of Mizoram, India.

    PubMed

    Lalthanzara, H; Ramanujam, S N; Jha, L K

    2011-09-01

    Earthworm population dynamics was studied in two agroforestry systems in the tropical hilly terrain of Mizoram, north-east India, over a period of 24 months, from July 2002 to June 2004. Two sites of agroforestry situated at Sakawrtuichhun (SKT) and Pachhunga University College (PUC) campus, Aizawl, having pineapple as the main crop, were selected for detail studies on population dynamics. Five of the total twelve species of earthworm reported from the state were recorded in the study sites. The density of earthworm ranged from 6 to 243 ind.m(-2) and biomass from 3.2 - 677.64 g.m(-2) in SKT. Comparatively the density and biomass in PUC, which is at relatively higher altitude were lowerwith a range of 0 to 176 ind.m(-2) and biomass from 0 - 391.36 g.m(-2) respectively. Population dynamics of earthworm was significantly correlated with rainfall and physical characters of the soil. Earthworm biomass was significantly affected by rainfall and moisture content of the soil. The influence of chemical factors was relatively less.

  14. Balkanized research in ecological engineering revealed by a bibliometric analysis of earthworms and ecosystem services.

    PubMed

    Blouin, Manuel; Sery, Nicolas; Cluzeau, Daniel; Brun, Jean-Jacques; Bédécarrats, Alain

    2013-08-01

    Energy crisis, climate changes, and biodiversity losses have reinforced the drive for more ecologically-based approaches for environmental management. Such approaches are characterized by the use of organisms rather than energy-consuming technologies. Although earthworms are believed to be potentially useful organisms for managing ecosystem services, there is actually no quantification of such a trend in literature. This bibliometric analysis aimed to measure the evolution of the association of "earthworms" and other terms such as ecosystem services (primary production, nutrient cycling, carbon sequestration, soil structure, and pollution remediation), "ecological engineering" or "biodiversity," to assess their convergence or divergence through time. In this aim, we calculated the similarity index, an indicator of the paradigmatic proximity defined in applied epistemology, for each year between 1900 and 2009. We documented the scientific fields and the geographical origins of the studies, as well as the land uses, and compare these characteristics with a 25 years old review on earthworm management. The association of earthworm related keywords with ecosystem services related keywords was increasing with time, reflecting the growing interest in earthworm use in biodiversity and ecosystem services management. Conversely, no significant increase in the association between earthworms and disciplines such as ecological engineering or restoration ecology was observed. This demonstrated that general ecologically-based approaches have yet to emerge and that there is little exchange of knowledge, methods or concepts among balkanized application realms. Nevertheless, there is a strong need for crossing the frontiers between fields of application and for developing an umbrella discipline to provide a framework for the use of organisms to manage ecosystem services.

  15. Earthworm impacts on organo-mineral interactions and soil carbon inventories in Fennoscandian boreal and sub-arctic landscapes

    NASA Astrophysics Data System (ADS)

    Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan

    2017-04-01

    Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better

  16. Global W`o'rming and Darwin Revisited: Quantifying Soil Mixing Rates by Non-native Earthworms in Fennoscandian Boreal and Arctic Ecosystems

    NASA Astrophysics Data System (ADS)

    Wackett, A. A.; Yoo, K.; Cameron, E. K.; Olid, C.; Klaminder, J.

    2017-12-01

    Fennoscandian boreal and arctic ecosystems represent some of the most pristine environments in Europe and store sizeable quantities of soil carbon. Both ecosystems may have evolved without native earthworms since the last glaciation, but are now increasingly subject to arrivals of novel geoengineering earthworm species due to human activities. As a result, invaded areas are devoid of the typical thick organic horizon present in earthworm free forest soils and instead contain carbon-rich mineral (A-horizon) soils at the surface. How rapidly this transition occurs and how it affects the fate of soil organic carbon (SOC) pools is not well known. In this study, we quantify the rates at which earthworm-mediated mixing of forest soils proceeds in these formerly glaciated landscapes. We infer soil mass fluxes using the vertical distribution of 210Pb in soils from Fennoscandia (N=4) and North America (N=1) and quantify annual mixing velocities as well as vertical fluxes of organic and mineral matter throughout the upper soil profiles. Across the sites, mixing velocities generally increase with increasing earthworm biomass and functional group diversity, and our annual mixing rates closely align with those predicted by Darwin for earthworm-engineered ecosystems in the UK 130 years earlier. Reduction of the O-horizon is concomitant with a decrease in surface SOC contents. However, we observe minimal changes to SOC inventories with earthworm invasion across the sites, reflecting the upward translocation of mineral soil and accompanying increase in soil bulk densities. Thus, the reduction or depletion of organic horizon by exotic earthworms does not necessarily involve loss of SOC via earthworm-accelerated decomposition, but is rather compensated for by physical mixing of organic matter and minerals, which may facilitate stabilizing organo-mineral interactions. This work constitutes an important step to elucidate how non-native earthworms impact SOC inventories and potentially

  17. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  18. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    PubMed

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R 2 =0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil. Copyright © 2017. Published by Elsevier Inc.

  19. Species-specific effects of Asian and European earthworms on microbial communities in Mid-Atlantic deciduous forests

    USDA-ARS?s Scientific Manuscript database

    Earthworm species with different feeding, burrowing, and/or casting behaviors can lead to distinct microbial communities through complex direct and indirect processes. European earthworm invasion into temperate deciduous forests in North America has been shown to alter microbial biomass in the soil ...

  20. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Sharanpreet; Singh, Jaswinder; Kumar, Sunil; Bhawana; Vig, Adarsh Pal

    2018-03-01

    Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Reforestation Effects on Carbon Stocks in the Northeast USA: Interactions among Earthworms, Land-Use History and Soil Properties

    NASA Astrophysics Data System (ADS)

    Ross, D. S.; Görres, J. H.; Knowles, M.; Cogbill, C. V.

    2017-12-01

    Reforestation has occurred in many areas of the northeastern USA that were cleared for agriculture in the 1700s and 1800s. Net gains in carbon have occurred but these gains may be affected by earthworm invasions. All earthworm species common to New England were introduced from either Europe or, more recently, Asia. We have been monitoring 18 managed forest stands in Vermont to be able to determine long-term changes in carbon stores. In addition to measuring carbon with depth into the C horizon, we have documented land use history dating back to colonial times, determined earthworm species and density, measured tree species and site metrics, and measured a suite of soil chemical parameters. We also determined carbon distribution in soil microaggregates in a subset of sites. Prior land use in the 18 monitored plots included cultivation, pasture, farm woodlot and possibly iron mining. Higher earthworm species diversity correlated with reduced forest floor depth, higher mineral soil carbon, and greater stability (microaggregate-protected) of that carbon. Sites with the highest worm density and species richness had a history of more intense agricultural land use (although not all former agricultural sites had earthworms). There were also positive interactions between exchangeable calcium pools and earthworm density, and between elevation and carbon in the forest floor. With only 18 sites, it is difficult to establish statistically robust relationships. The effect of reforestation on present-day carbon stores appears to be a complex interaction of land-use history, site location, earthworm history and soil chemistry.

  2. Effect of soil compaction and organic matter removal on two earthworm populations and some soil properties in a hardwood forest

    Treesearch

    D. Jordan; V. C. Hubbard; F., Jr. Ponder; E. C. Berry

    1999-01-01

    Earthworms can alter the physical, chemical, and biological properties of a forest ecosystem. Any physical manipulation to the soil ecosystem may, in turn, affect the activities and ecology of earthworms. The effects of organic matter removal (logs and forest floor) and soil compaction on earthworm activities were measured in a central hardwood region (oakhickory)...

  3. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Treesearch

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  4. Easy Extraction of Roundworms from Earthworm Hosts.

    ERIC Educational Resources Information Center

    Eyster, Linda S.; Fried, Bernard

    2000-01-01

    Describes the inexpensive and safe method of using roundworms in the classroom or laboratories. Because parasitic infections are so common, students should learn about worms. Provides statistics on just how many people have a worm infection in the world. Explains how to study living nematodes, and obtain and use earthworms. (Contains 13…

  5. Identifying the metabolic perturbations in earthworm induced by cypermethrin using gas chromatography-mass spectrometry based metabolomics

    PubMed Central

    Ch, Ratnasekhar; Singh, Amit Kumar; Pandey, Pathya; Saxena, Prem Narain; Reddy Mudiam, Mohana Krishna

    2015-01-01

    Globally, cypermethrin is one of the most widely used synthetic pyrethroid for agricultural and domestic purposes. Most part of the pesticides used in the agriculture ends up as residues in the soil, making soil dwelling organisms, especially earthworms more susceptible to pesticide intoxication. Cypermethrin is known to be a neurotoxicant to many model organisms, including mammals and insects, but such type of toxicity evidence is not available for invertebrate systems like earthworms. In the present work, metabolomics based approach was utilized to identify the toxic mechanism of action of cypermethrin on earthworm (Metaphire posthuma) and these were exposed to sub-lethal concentrations of cypermethrin such as 2.5 mg/kg, 5 mg/kg, 10 mg/kg and 20 mg/kg (1/40th, 1/20th, 1/10th and 1/5th of LC50, respectively) for fourteen days. The results revealed that 22 metabolites (mainly fatty acids, sugars and amino acids) were shown significant responses in the exposed earthworms and these responses are dose dependent. It is proposed that mainly carbohydrate and fatty acids in neural system metabolism was disturbed. Overall, the results provided that metabolomics can be an effective tool to understand the effects of cypermethrin on the metabolic responses of earthworm Metaphire posthuma. PMID:26514086

  6. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris.

    PubMed

    Quillin, K J

    2000-09-01

    In hydrostatic skeletons, it is the internal fluid under pressure surrounded by a body wall in tension (rather than a rigid lever) that enables the stiffening of the organism, the antagonism of muscles and the transmission of force from the muscles to the environment. This study examined the ontogenetic effects of body size on force production by an organism supported with a hydrostatic skeleton. The earthworm Lumbricus terrestris burrows by forcefully enlarging crevices in the soil. I built a force-measuring apparatus that measured the radial forces as earthworms of different sizes crawled through and enlarged pre-formed soil burrows. I also built an apparatus that measured the radial and axial forces as earthworms of different sizes attempted to elongate a dead-end burrow. Earthworms ranging in body mass m(b) from hatchlings (0.012 g) to adults (8.9 g) exerted maximum forces (F, in N) during active radial expansion of their burrows (F=0.32 m(b)(0.43)) and comparable forces during axial elongation of the burrow (F=0.26 m(b)(0.47)). Both these forces were almost an order of magnitude greater than the radial anchoring forces during normal peristalsis within burrows (F=0.04 m(b)(0.45)). All radial and axial forces scaled as body mass raised to the 2/5 power rather than to the 2/3 power expected by geometric similarity, indicating that large worms exert greater forces than small worms on an absolute scale, but the difference was less than predicted by scaling considerations. When forces were normalized by body weight, hatchlings could push 500 times their own body weight, while large adults could push only 10 times their own body weight.

  7. Impacts of leaves, roots, and earthworms on soil organic matter composition and distribution in sycamore maple stands

    NASA Astrophysics Data System (ADS)

    Rivera, N.; Mueller, K. E.; Mueller, C. W.; Oleksyn, J.; Hale, C.; Freeman, K. H.; Eissenstat, D.

    2009-12-01

    The relative contributions of leaf and root material to soil organic matter (SOM) are poorly understood despite the importance of constraining SOM sources to conceptual and numeric models of SOM dynamics. Selective ingestion and bioturbation of litter and soil by earthworms can alter the fate and spatial distribution of OM in soils, including stabilization pathways of leaf and root litter. However, studies on the contributions of leaves, roots, and earthworms to SOM dynamics are rare. In 3 stands of sycamore maple (Acer pseudoplatanus) with minimal O horizon development and high earthworm activity, we sampled surface litter (> 2 mm) from the Oi horizon, fine roots (< 2 mm), bulk mineral soils (0-20 cm depth), and earthworm casts from Lumbricus terrestris middens. The chemical composition of these samples was estimated by wet-chemical degradation followed by GC-MS analysis. In addition, elemental analyses (C and N) were performed on bulk soils and earthworm casts, before and after physical fractionation by means of particle size and density. Relative to bulk soils, earthworm casts were highly enriched in organic matter, dominated by large particulate OM, and had lower acid to aldehyde ratios among lignin monomers (a proxy for extent of decomposition), confirming that L. terrestris casts stabilize recent plant litter inputs. Maple fine roots and surface litter were distinguished by different profiles of carboxylic acids estimated by GC-MS, facilitating interpretation of OM sources in bulk soil and earthworm casts. Earthworm casts were characterized by a distribution of carboxylic acids similar to that of surface litter while bulk soils had a carboxylic acid profile much closer to that of roots. These results confirm that L. terrestris is primarily a surface, leaf feeder and suggest that OM in the bulk soil may be dominated by root inputs. In bulk soils, the ratio of lignin to hydroxy- and diacids derived from suberin and cutin was low relative to plant litter

  8. Environmental assessment of depleted uranium used in military armor-piercing rounds in terrestrial systems.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Brasfield, Sandra M; Bednar, Anthony J; Ang, Choo Y

    2014-06-01

    Depleted uranium (DU) from the military testing and use of armor-piercing kinetic energy penetrators has been shown to accumulate in soils; however, little is known about the toxicity of DU geochemical species created through corrosion or weathering. The purpose of the present study was to assess the toxic effects and bioaccumulation potential of field-collected DU oxides to the model terrestrial invertebrates Eisenia fetida (earthworm) and Porcellio scaber (isopod). Earthworm studies were acute (72 h) dermal exposures or 28-d spiked soil exposures that used noncontaminated field-collected soils from the US Army's Yuma and Aberdeen Proving Grounds. Endpoints assessed in earthworm testing included bioaccumulation, growth, reproduction, behavior (soil avoidance), and cellular stress (neutral red uptake in coelomocytes). Isopod testing used spiked food, and endpoints assessed included bioaccumulation, survival, and feeding behavior. Concentration-dependent bioaccumulation of DU in earthworms was observed with a maximum bioaccumulation factor of 0.35; however, no significant reductions in survival or impacts to cellular stress were observed. Reproduction lowest-observed-effect concentrations (LOEC) of 158 mg/kg and 96 mg/kg were observed in Yuma Proving Ground and a Mississippi reference soil (Karnac Ferry), respectively. Earthworm avoidance of contaminated soils was not observed in 48-h soil avoidance studies; however, isopods were shown to avoid food spiked with 12.7% by weight DU oxides through digital tracking studies. © 2014 SETAC.

  9. Vermicomposting of source-separated human faeces for nutrient recycling.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2010-01-01

    The present study examined the suitability of vermicomposting technology for processing source-separated human faeces. Since the earthworm species Eisenia fetida could not survive in fresh faeces, modification in the physical characteristics of faeces was necessary before earthworms could be introduced to faeces. A preliminary study with six different combinations of faeces, soil and bulking material (vermicompost) in different layers was conducted to find out the best condition for biomass growth and reproduction of earthworms. The results indicated that SVFV combination (soil, vermicompost, faeces and vermicompost - bottom to top layers) was the best for earthworm biomass growth indicating the positive role of soil layer in earthworm biomass growth. Further studies with SVFV and VFV combinations, however, showed that soil layer did not enhance vermicompost production rate. Year-long study conducted with VFV combination to assess the quality and quantity of vermicompost produced showed an average vermicompost production rate of 0.30kg-cast/kg-worm/day. The vermicompost produced was mature as indicated by low dissolved organic carbon (2.4+/-0.43mg/g) and low oxygen uptake rate (0.15+/-0.09mg O(2)/g VS/h). Complete inactivation of total coliforms was noted during the study, which is one of the important objectives of human faeces processing. Results of the study thus indicated the potential of vermicomposting for processing of source-separated human faeces.

  10. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil.

    PubMed

    Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle

    2017-05-01

    Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.

  11. Perspectives for studying glyphosate and AMPA impact on soil ecosystem engineering in farming soils from Argentina.

    NASA Astrophysics Data System (ADS)

    Domínguez, Anahí; Pía Rodríguez, María; Ortiz, Carolina Elizabeth; Camilo Bedano, José

    2017-04-01

    Ecosystem engineers are organisms that modulate the availability of resources to other species by causing physical state changes in biotic or abiotic materials. In the agricultural soils of the Pampa region of Argentina, earthworms are undoubtedly the key soil ecosystem engineers. Indeed, earthworms are involved in building and maintenance of porosity through bioturbation and burrowing; comminution, selection and or activation of microflora activities and in soil formation, by bioturbation, cast deposition and particle selection. Attending to the importance of such processes to preserve the soil capacity to sustain crop productivity, the promotion of suitable habitats for earthworm communities, has become a main goal for sustainable agriculture. However, in Argentine Pampas, the impact of the huge amount of pesticides currently spread on farming soils, on the earthworm biology and ecology, is scarcely considered when agricultural managements practices are selected. In fact, more than 250 million liters of glyphosate-based herbicides are spread by year in the farming soils of Argentina. Glyphosate has a relative short half-life, but one of the major breakdown products, the aminomethylphosphonic acid (AMPA), is persistent in soils. We tested its toxicity1 on the earthworm Eisenia andrei, and we found no mortality but growth and reproductive disorders. However, E. andrei is seldom found in agricultural lands. Indeed, for the last 8 years, we have sampled an important variety of agricultural soils, representing the most important farming systems used in Argentina, and we never found Eisenia spp. but 13 earthworm species: 8 exotic from Lumbricidae and 5 natives from Acanthodrilidae, Glossoscolecidae and Ocnerodrilidae families. However, the ecotoxicological effect of glyphosate has been detailed studied only in three of the mentioned exotic species, and only in four studies2,3,4,5. Such a few studies and a few species indicates a real lack of accurate knowledge about

  12. Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20.

    PubMed

    Gong, Ping; Basu, Niladri; Scheuhammer, Anton M; Perkins, Edward J

    2010-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is a relatively new energetic compound sharing some degree of structural similarity with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a known neurotoxic compound. Previously, we demonstrated using a noninvasive electrophysiological technique that CL-20 was a more potent neurotoxicant than RDX to the earthworm Eisenia fetida. In the present study, we investigated the effect of CL-20 exposure and subsequent recovery on muscarinic acetylcholine receptors (mAChRs) to further define the mechanism of reversible neurotoxicity of CL-20 in E. fetida. We used a noninvasive electrophysiological technique to evaluate neurotoxicity in CL-20-treated worms, and then measured how such exposures altered levels of whole-body mAChR in the same animals. A good correlation exists between these two types of endpoints. Effect on mAChR levels was most prominent at day 6 of exposure. After 7 days of recovery, both conduction velocity and mAChR were significantly restored. Our results show that sublethal concentrations of CL-20 significantly reduced mAChR levels in a concentration- and duration-dependent manner, which was accompanied with significant decreases in the conduction velocity of the medial and lateral giant nerve fibers. After 7-day post exposure recovery, worms restored both neurochemical (mAChR) and neurophysiological (conduction velocity) endpoints that were reduced during 6-day exposures to CL-20 concentrations from 0.02 to 0.22 microg/cm(2). Our findings support the idea that CL-20 induced neurotoxic effects are reversible, and suggest that CL-20 neurotoxicity may be mediated through the cholinergic system. Future studies will investigate other neurotransmission systems such as GABA, glutamate, and monoamine. Ion channels in the nerve membrane should be examined to further define the precise mechanisms underlying CL-20 neurotoxicity.

  13. Application of lime (CaCO3) to promote forest recovery from severe acidification increases potential for earthworm invasion

    USGS Publications Warehouse

    Homan, Caitlin; Beirer, Colin M; McCay, Timothy S; Lawrence, Gregory B.

    2016-01-01

    The application of lime (calcium carbonate) may be a cost-effective strategy to promote forest ecosystem recovery from acid impairment, under contemporary low levels of acidic deposition. However, liming acidified soils may create more suitable habitat for invasive earthworms that cause significant damage to forest floor communities and may disrupt ecosystem processes. We investigated the potential effects of liming in acidified soils where earthworms are rare in conjunction with a whole-ecosystem liming experiment in the chronically acidified forests of the western Adirondacks (USA). Using a microcosm experiment that replicated the whole-ecosystem treatment, we evaluated effects of soil liming on Lumbricus terrestris survivorship and biomass growth. We found that a moderate lime application (raising pH from 3.1 to 3.7) dramatically increased survival and biomass of L. terrestris, likely via increases in soil pH and associated reductions in inorganic aluminum, a known toxin. Very few L. terrestris individuals survived in unlimed soils, whereas earthworms in limed soils survived, grew, and rapidly consumed leaf litter. We supplemented this experiment with field surveys of extant earthworm communities along a gradient of soil pH in Adirondack hardwood forests, ranging from severely acidified (pH < 3) to well-buffered (pH > 5). In the field, no earthworms were observed where soil pH < 3.6. Abundance and species richness of earthworms was greatest in areas where soil pH > 4.4 and human dispersal vectors, including proximity to roads and public fishing access, were most prevalent. Overall our results suggest that moderate lime additions can be sufficient to increase earthworm invasion risk where dispersal vectors are present.

  14. Sampling of resident earthworms using mustard expellant to evaluate ecological risk at a mixed hazardous and radioactive waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, D.M. Jr.; Keller, L.J.; Hensel, T.W.

    1994-12-31

    As residents of contaminated soils and as prey for many species of wildlife, earthworms can serve as integrative biomonitors of soil contamination, which is biologically available to the terrestrial food chain. The assessment of contaminants within earthworm tissue provides a more realistic measurement of the potential biological hazards and ecological risks than physical and chemical measurements of soil. A unique sampling procedure using a mixture of ground mustard powder and water was implemented for cost-effectively collecting earthworms without digging; the procedure minimized occupational exposure to soil contaminants and reduced the quantity of investigation-derived wastes. The study site is located atmore » a closed burial ground for low-level radioactive waste and transuranic waste that lies within the Valley and Ridge Physiographic Province of East Tennessee. Earthworms were maintained in the laboratory for four days to allow passage of the contents of the digestive tract. Earthworm body burdens, castings, and soil were analyzed for gamma-emitting radioisotopes (potassium 40, cobalt 60, cesium 137), strontium 90, trace metals (arsenic, cadmium, chromium, mercury, lead, and selenium), and polychlorinated biphenyls (PCBs). Ecological effects of soil contamination on the earthworms were also assessed through analysis of weight, abundance, and reproductive success.« less

  15. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA

    Treesearch

    B.A. Snyder; M.A. Jr. Callaham; P.F. Hendrix

    2010-01-01

    European and Asian earthworm invasions are widespread in North America. European earthworms especially are well-known to cause dramatic changes in ecosystems in northern, formerly glaciated portions of the continent, but less is known about the impacts of earthworm invasions in unglaciated areas inhabited by indigenous earthworms. We monitored fluctuations in the...

  16. Cell adhesion and the immune system: a case study using earthworms.

    PubMed

    Cooper, E L; Cossarizza, A; Kauschke, E; Franceschi, C

    1999-02-15

    In the earthworm's immune system, cell adhesion, which occurs by putative receptors on leukocytes, is essential after recognition of self vs. non-self. Confrontation with foreign antigens is a normal event in the environment, replete with microbial pathogens that pose a threat to survival. To better understand what happens when an effector cell first recognizes a foreign target followed by its adhesion to it, isolated leukocytes, in sufficient quantities to be subjected to various analyses, have been extremely beneficial. In vitro approaches when accompanied by biochemical, immunological, and molecular technologies, have opened up new vistas concerning the immune response of earthworms and other invertebrates. The most recent discovery includes the preliminary identification of cell differentiation (CD) markers that play vital roles in recognitive and adhesive events. Certain leukocyte effectors show characteristics of natural killer (NK) cells that may act differently depending upon their source, whether autogeneic, allogeneic, xenogeneic, or expressed under normal or varying environmental conditions including exposure to xenobiotics. At the level of earthworm evolution, there is apparently a dissociation of phagocytosis from the process of killing by NK-like effectors. There are at least three future challenges. First, it is essential to determine the precise nature of the CD markers with respect to their molecular structure. Second, once their molecular and biochemical characteristics have been defined, the role of these markers in cellular and humoral mechanisms must be clarified in order to define effector cell products and resulting immune responses. Third, there is a need to differentiate between the several lytic factors that have been found in earthworms with respect to molecular structure, and biochemical and functional characterization.

  17. eqMAXEL: A new automatic earthquake location algorithm implementation for Earthworm

    NASA Astrophysics Data System (ADS)

    Lisowski, S.; Friberg, P. A.; Sheen, D. H.

    2017-12-01

    A common problem with automated earthquake location systems for a local to regional scale seismic network is false triggering and false locations inside the network caused by larger regional to teleseismic distance earthquakes. This false location issue also presents a problem for earthquake early warning systems where societal impacts of false alarms can be very expensive. Towards solving this issue, Sheen et al. (2016) implemented a robust maximum-likelihood earthquake location algorithm known as MAXEL. It was shown with both synthetics and real-data for a small number of arrivals, that large regional events were easily identifiable through metrics in the MAXEL algorithm. In the summer of 2017, we collaboratively implemented the MAXEL algorithm into a fully functional Earthworm module and tested it in regions of the USA where false detections and alarming are observed. We show robust improvement in the ability of the Earthworm system to filter out regional and teleseismic events that would have falsely located inside the network using the traditional Earthworm hypoinverse solution. We also explore using different grid sizes in the implementation of the MAXEL algorithm, which was originally designed with South Korea as the target network size.

  18. Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed soils of the southern Appalachian Mountains, USA

    Treesearch

    Mac. A. Callaham; Paul F. Hendrix; Ross J. Phillips

    2003-01-01

    This study documents the occurrence of an aggressive invasive earthworm species in undisturbed forest soils of the southern Appalachian Mountains of northern Georgia, USA. Earthworms were sorted from samples collected in pitfall traps that had been set in mature, mesic oak-hickory forests in remote, high elevation, locations across northern Georgia. Specimens were...

  19. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  20. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    PubMed Central

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-01-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting. PMID:27456167

  1. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  2. Factors affecting the distribution and abundance of exotic earthworms in the Huron Mountain Club, Upper Peninsula, Michigan

    Treesearch

    Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer; Lynette R. Potvin; Karl J. Romanowicz

    2011-01-01

    Exotic earthworms are becoming established in previously earthworm-free areas of the Great Lakes region with the potential to alter forest ecosystems. Understanding the factors controlling their distribution and abundance across the landscape will aid in efforts to determine their consequences and potential forest management solutions.

  3. Earthworm Biomass Measurement: A Science Activity for Middle School.

    ERIC Educational Resources Information Center

    Haskett, Jonathan; Levine, Elissa; Carey, Pauline B.; Niepold III, Frank

    2000-01-01

    Describes an activity on biomass measurement which, in this case, is the weight of a group of living things in a given area. The earthworm activity gives students a greater understanding of ecology, practical math applications, and the scientific method. (ASK)

  4. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species.

    PubMed

    Raphael, Kurian; Velmourougane, K

    2011-06-01

    Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).

  5. Carbon-mineral interactions along an earthworm ivasion gradient at a sugar maple forest in northern Minnesota

    Treesearch

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen Sebestyen

    2011-01-01

    The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not...

  6. Epigeal fauna of a degraded soil treated with mineral fertilizer and compound cellulose cultivated of tree species

    NASA Astrophysics Data System (ADS)

    Giácomo, R. G.; de Arruda, O. G.; Souto Filho, S. N.; Alves, M. C.; Pereira, M. G.; Frigério, G. C.

    2012-04-01

    The aim of this study was to investigate the behavior of the epigeal fauna in a degraded soil in the recovery process after one year of cultivated with tree species. The experiment was established in February 2010 in Mato Grosso do Sul, Brazil. The experimental design was randomized blocks in split plots with five treatments and four replications. In the main plots, pure cultivation of Eucalyptus urograndis (exotic species - hybrids) and Mabea fistulifera Mart. (native species) and the subplot treatments: Control; D0 - without fertilization; DM - mineral fertilizer according to crop need; DC - with compost manure according to crop need (10 t ha-1); D15 - 15 t ha-1 and D20 - 20 t ha-1 of the compound. In February of the years 2010 and 2011 were installed in the central region of each treatment two traps "pitt fall" which remained for seven days in the field. We calculated Shannon diversity and Pielou evenness indices, and richness of wildlife activity groups. The results were analyzed by ANOVA and Scott Knott test at 5% significance level. In 2010, the area with M. fistulifera, was captured a total of 2697 organisms distributed mainly in: Hymenoptera with 45.83% of the total collected, Collembola (36.93%), Hemiptera Heteroptera (6.56%). In the area with E. urograndis, 1938 organisms were captured, being 50.67% of the order Hymenoptera, Collembola 26.83%, 7.59% Hemiptera Heteroptera. It was found that there was no significant difference between treatments and between species for all variables. Collected in 2011 were 4970 organisms in 56.22% of the order Hymenoptera, Collembola 18.49% and 7.12% beetle in the area of M. fistulifera. In the area of E. urograndis were 4200 organisms, 55.29% (Hymenoptera), 23.79% (Collembola) and 5.86% (Coleoptera). It appears that the activity values and richness of the fauna groups were significantly higher in treatments with organic fertilization in both cultive. It is concluded that after one year there was a variation of the dominant

  7. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms.

    PubMed

    Horn, Marcus A; Schramm, Andreas; Drake, Harold L

    2003-03-01

    The in vivo production of nitrous oxide (N(2)O) by earthworms is due to their gut microbiota, and it is hypothesized that the microenvironment of the gut activates ingested N(2)O-producing soil bacteria. In situ measurement of N(2)O and O(2) with microsensors demonstrated that the earthworm gut is anoxic and the site of N(2)O production. The gut had a pH of 6.9 and an average water content of approximately 50%. The water content within the gut decreased from the anterior end to the posterior end. In contrast, the concentration of N(2)O increased from the anterior end to the mid-gut region and then decreased along the posterior part of the gut. Compared to the soil in which worms lived and fed, the gut of the earthworm was highly enriched in total carbon, organic carbon, and total nitrogen and had a C/N ratio of 7 (compared to a C/N ratio of 12 in soil). The aqueous phase of gut contents contained up to 80 mM glucose and numerous compounds that were indicative of anaerobic metabolism, including up to 9 mM formate, 8 mM acetate, 3 mM lactate, and 2 mM succinate. Compared to the soil contents, nitrite and ammonium were enriched in the gut up to 10- and 100-fold, respectively. The production of N(2)O by soil was induced when the gut environment was simulated in anoxic microcosms for 24 h (the approximate time for passage of soil through the earthworm). Anoxia, high osmolarity, nitrite, and nitrate were the dominant factors that stimulated the production of N(2)O. Supplemental organic carbon had a very minimal stimulatory effect on the production of N(2)O, and addition of buffer or ammonium had essentially no effect on the initial N(2)O production rates. However, a combination of supplements yielded rates greater than that obtained mathematically for single supplements, suggesting that the maximum rates observed were due to synergistic effects of supplements. Collectively, these results indicate that the special microenvironment of the earthworm gut is ideally suited

  8. Determining the influence of rainfall patterns and carbendazim on the surface activity of the earthworm Lumbricus terrestris.

    PubMed

    Ellis, Sian R; Hodson, Mark E; Wege, Phil

    2010-08-01

    Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols. Copyright 2010 SETAC

  9. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

    Treesearch

    J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic

    2002-01-01

    Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  10. Effects of tree leaf litter, deer fecal pellets, and soil properties on growth of an introduced earthworm (Lumbricus terrestris): Implications for invasion dynamics

    Treesearch

    Kassidy N. Yatso; Erik A. Lilleskov

    2016-01-01

    Invasive earthworm communities are expanding into previously earthworm-free forests of North America, producing profound ecosystem changes. Lumbricus terrestris is an invasive anecic earthworm that consumes a large portion of the detritus on the soil surface, eliminating forest floor organic horizons and reducing soil organic matter. Two mesocosm...

  11. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the

  13. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris).

    PubMed

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-08-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Zhou, Dongmei

    2016-02-01

    Mercury uptake dynamics in the earthworm Pheretima guillemi, including the dissolved uptake rate constant (ku) from pore-water and assimilation efficiencies (AEs) from mercury-contaminated soil, was quantified in this study. Dissolved uptake rate constants were 0.087 and 0.553 L g(-1) d(-1) for inorganic mercury (IHg) and methylmercury (MeHg), respectively. Assimilation efficiency of IHg in field-contaminated soil was 7.2%, lower than 15.4% of spiked soil. In contrast, MeHg exhibited comparable AEs for both field-contaminated and spiked soil (82.4-87.2%). Within the framework of biodynamic model, we further modelled the exposure pathways (dissolved exposure vs soil ingestion) to source the accumulated mercury in Pheretima guillemi. The model showed that the relative importance of soil ingestion to mercury bioaccumulation depended largely on mercury partitioning coefficients (K(d)), and was also influenced by soil ingestion rate of earthworms. In the examined field-contaminated soil, almost (>99%) accumulated IHg and MeHg was predicted to derive from soil ingestion. Therefore, soil ingestion should be carefully considered when assessing mercury exposure risk to earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The bioavailability of chemicals in soil for earthworms

    USGS Publications Warehouse

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  16. Determination of As concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Allegretta, Ignazio; Porfido, Carlo; Panzarino, Onofrio; Fontanella, Maria Chiara; Beone, Gian Maria; Spagnuolo, Matteo; Terzano, Roberto

    2017-04-01

    Earthworms are often used as sentinel organisms to study As bioavailability in polluted soils. Arsenic in earthworms is mainly sequestrated in the coelomic fluids whose As content can therefore be used to asses As bioavalability. In this work, a method for determining As concentration in coelomic fluid extracts using total-reflection X-ray fluorescence spectrometry (TXRF) is presented. For this purpose coelomic fluid extracts from earthworms living in three polluted soils and one non-polluted (control) soil have been collected and analysed. A very simple sample preparation was implemented, consisting of a dilution of the extracts with polyvinyl alcohol (PVA) using a 1:8 ratio and dropwise deposition of the sample on the reflector. A detection limit of 0.2 μg/l and quantification limit of 0.6 μg/l was obtained in the diluted samples, corresponding to 2 μg/l and 6 μg/l in the coelomic fluid extracts, respectively. This allowed to quantify As concentration in coelomic fluids extracted from earthworms living in soils polluted with As at concentrations higher than 20 mg/kg (considered as a pollution threshold for agricultural soils). The TXRF method has been validated by comparison with As concentrations in standards and by analysing the same samples by ICP-MS, after acid digestion of the sample. The low limit of detection, the proven reliability of the method and the little sample preparation make TXRF a suitable, cost-efficient and "green" technique for the analysis of As in earthworm coelomic fluid extracts for bioavailability studies.

  17. Assessment of trace element accumulation by earthworms in an orchard soil remediation study using soil amendments

    USGS Publications Warehouse

    Centofantia, Tiziana; Chaney, Rufus L.; Beyer, W. Nelson; McConnell, Laura L.; Davis, A. P.; Jackson, Dana

    2016-01-01

    This study assessed potential bioaccumulation of various trace elements in grasses and earthworms as a consequence of soil incorporation of organic amendments for in situ remediation of an orchard field soil contaminated with organochlorine and Pb pesticide residues. In this experiment, four organic amendments of differing total organic carbon content and quality (two types of composted manure, composted biosolids, and biochar) were added to a contaminated orchard field soil, planted with two types of grasses, and tested for their ability to reduce bioaccumulation of organochlorine pesticides and metals in earthworms. The experiment was carried out in 4-L soil microcosms in a controlled environment for 90 days. After 45 days of orchardgrass or perennial ryegrass growth, Lumbricus terrestris L. were introduced to the microcosms and exposed to the experimental soils for 45 days before the experiment was ended. Total trace element concentrations in the added organic amendments were below recommended safe levels and their phytoavailablity and earthworm availability remained low during a 90-day bioremediation study. At the end of the experiment, total tissue concentrations of Cu, Cd, Mn, Pb, and Zn in earthworms and grasses were below recommended safe levels. Total concentrations of Pb in test soil were similar to maximum background levels of Pb recorded in soils in the Eastern USA (100 mg kg−1 d.w.) because of previous application of orchard pesticides. Addition of aged dairy manure compost and presence of grasses was effective in reducing the accumulation of soil-derived Pb in earthworms, thus reducing the risk of soil Pb entry into wildlife food chains.

  18. Earthworms as Invasive Species in Latin America — the 2nd Latin American Meeting on Oligochaeta (Earthworm) Ecology and Taxonomy

    Treesearch

    Grizelle Gonzalez

    2006-01-01

    This special issue is based on scientific contributions presented at the 2nd Latin American Symposium of Earthworm Ecology and Taxonomy (ELAETAO, for its Spanish acronym) held in San Juan, Puerto Rico November 14-18, 2005. The first of these symposia was organized by George G. Brown and Klaus D. Sautter and held at Londrina, Brazil from December 1-3, 2003.The objective...

  19. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems.

    PubMed

    Álvarez, C Rodríguez; Jiménez-Moreno, M; Bernardo, F J Guzmán; Martín-Doimeadios, R C Rodríguez; Nevado, J J Berzas

    2018-01-01

    The fate of mercury (Hg) in the soil-earthworm system is still far from being fully understood, especially regarding recurrent and challenging questions about the importance of the reactivity of exogenous Hg species. Thus, to predict the potential effect of Hg inputs in terrestrial ecosystems, it is necessary to evaluate separately the reactivity of the endogenous and exogenous Hg species and, for this purpose, the use of enriched stable isotope tracers is a promising tool. In the present work, earthworms (Lumbricus terrestris) were exposed to historically Hg contaminated soils from the Almadén mining district, Spain. The soils were either non-spiked, which contain only endogenous or native Hg naturally occurring in the soil, or spiked with isotopically enriched inorganic Hg ( 199 IHg), representing exogenous or spiked Hg apart from the native one. The differential reactivity of endogenous and exogenous Hg in the soil conditioned the processes of methylation, mobilization, and assimilation of inorganic Hg by earthworms. Both endogenous and exogenous Hg species also behave distinctly regarding their bioaccumulation in earthworms, as suggested by the bioaccumulation factors, being the endogenous methylmercury (MeHg) the species more readily bioaccumulated by earthworms and in a higher extent. To the best of our knowledge, this work demonstrates for the first time the potential of enriched stable isotopes to study the effects of fresh Hg inputs in soil-earthworm systems. The findings of this work can be taken as a case study on the dynamics of Hg species in complex terrestrial systems and open a new door for future experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Impacts of invasive earthworms on soil mercury cycling: Two mass balance approaches to an earthworm invasion in a northern Minnesota forest

    Treesearch

    Sona Psarska; Edward A. Nater; Randy Kolka

    2016-01-01

    Invasive earthworms perturb natural forest ecosystems that initially developed without them, mainly by consuming the forest floor (an organic rich surficial soil horizon) and by mixing the upper parts of the soil. The fate of mercury (Hg) formerly contained in the forest floor is largely unknown. We used two mass balance approaches (simple mass balance and geochemical...

  1. Molecular and Isotopic Analysis of Earthworm Fecal Matter as a Tool for Determining Carbon Cycling Dynamics in two Great Lakes Region Forests

    NASA Astrophysics Data System (ADS)

    Top, S. M.; Filley, T. R.; Zurn-Birkhimer, S.

    2009-12-01

    Earthworms are frequently referred to as soil ecosystem engineers, reflecting their role as a potential major factor in controlling the dynamics of litter and soil organic matter transformations. Their significance is magnified when considering they are exotic in northern North American forests, humans acting as the main vector with transport of soil and recreational fishing. As a result of earthworm activity, forests can undergo significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter. The impact of earthworms on overall soil carbon stabilization/destabilization is largely unknown but likely a function of both species composition and edaphic soil properties. We are investigating the impacts of exotic earthworms on soils within two Great Lakes region forests; the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, and forests in Red Lake Indian Reservation, MN. Aspen FACE provides an opportunity to document the changes that occur to forest chemistry and earthworm activity are a result of increased CO2, while the sites on the Red Lake Reservation are significant because of they contain a gradient of earthworm influence. At both sites earthworm populations were amassed from small pits and isolated to collect gut contents for isotopic and plant biopolymer chemistry analysis. Analysis are ongoing and will eventually include alkaline CuO extraction and isotopic analyses on the fecal matter, leaf litter, and soil to determine how plant biopolymers are vertically transported and mixed with soil from deeper horizons.

  2. Effect of earthworm (Lumbricus rubellus) in feed formulation to improve fatty acids profile in eel (Anguilla bicolor) meat

    NASA Astrophysics Data System (ADS)

    Farah, K.; Gunawan, I. R.; Putra, G. B.; Agustono; Lokapirnasari, W. P.; Lamid, M.; Masithah, E. D.; Nurhajati, T.; Rozi

    2018-04-01

    Eel requires unsaturated fatty acids of linolenic acid for growth. Which can be supplied from earthworms. In this study, addition of earthworm in formulation feed aimsed to improve the fatty acid profile eel meat. This research used experimental method and randomized complete design method with five treatments. Each treatment was repeated four times. The use of earthworms in feeding treatment formulation was done for 21 days with different level i.e: 0 % (P0), 25 % (P1), 50 % (P2), 75 % (P3) and 100 % (P4). The result showed that the addition of eartworm significantly influenced the omega 3 contents (EPA & DHA) of eel meat.

  3. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38

    PubMed Central

    Chang, Yung-Ming; Shih, Ying-Ting; Chen, Yueh-Sheng; Liu, Chien-Liang; Fang, Wen-Kuei; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Lai, Tung-Yuan; Huang, Chih-Yang

    2011-01-01

    The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration. PMID:19808845

  4. Effects of Nitramine Explosive CL-20 on the Soil Microinvertebrate Community in a Sandy Loam Soil

    DTIC Science & Technology

    2013-09-01

    with soil invertebrates using the earthworm Eisenia fetida (ISO,1998a), potworm E. crypticus (ISO, 2004), and collembolan Folsomia candida (ISO,1998b...survival of microarthropods and nematodes, compared with reproduction toxicity data for E. fetida, E. andrei, E. crypticus, E. albidus, and F. candida ...fetida >500 0.1 95% CI ND 0.07–0.13 Enchytraeus crypticus 18 0.3 95% CI 2.6–34 0.2–0.4 Folsomia candida 32 0.7 95% CI 9–55 0.36–1.06 Notes

  5. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland.

    PubMed

    Zangerlé, Anne; Renard, Delphine; Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940's, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5-5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form 'towers' above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development.

  6. The Surales, Self-Organized Earth-Mound Landscapes Made by Earthworms in a Seasonal Tropical Wetland

    PubMed Central

    Iriarte, José; Suarez Jimenez, Luz Elena; Adame Montoya, Kisay Lorena; Juilleret, Jérôme; McKey, Doyle

    2016-01-01

    The formation, functioning and emergent properties of patterned landscapes have recently drawn increased attention, notably in semi-arid ecosystems. We describe and analyze a set of similarly spectacular landforms in seasonal tropical wetlands. Surales landscapes, comprised of densely packed, regularly spaced mounds, cover large areas of the Orinoco Llanos. Although descriptions of surales date back to the 1940’s, their ecology is virtually unknown. From data on soil physical and chemical properties, soil macrofauna, vegetation and aerial imagery, we provide evidence of the spatial extent of surales and how they form and develop. Mounds are largely comprised of earthworm casts. Recognizable, recently produced casts account for up to one-half of total soil mass. Locally, mounds are relatively constant in size, but vary greatly across sites in diameter (0.5–5 m) and height (from 0.3 m to over 2 m). This variation appears to reflect a chronosequence of surales formation and growth. Mound shape (round to labyrinth) varies across elevational gradients. Mounds are initiated when large earthworms feed in shallowly flooded soils, depositing casts that form ‘towers’ above water level. Using permanent galleries, each earthworm returns repeatedly to the same spot to deposit casts and to respire. Over time, the tower becomes a mound. Because each earthworm has a restricted foraging radius, there is net movement of soil to the mound from the surrounding area. As the mound grows, its basin thus becomes deeper, making initiation of a new mound nearby more difficult. When mounds already initiated are situated close together, the basin between them is filled and mounds coalesce to form larger composite mounds. Over time, this process produces mounds up to 5 m in diameter and 2 m tall. Our results suggest that one earthworm species drives self-organizing processes that produce keystone structures determining ecosystem functioning and development. PMID:27168157

  7. A filter circuit board for the Earthworm Seismic Data Acquisition System

    USGS Publications Warehouse

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  8. Using next-generation sequencing to analyse the diet of a highly endangered land snail (Powelliphanta augusta) feeding on endemic earthworms.

    PubMed

    Boyer, Stéphane; Wratten, Stephen D; Holyoake, Andrew; Abdelkrim, Jawad; Cruickshank, Robert H

    2013-01-01

    Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The assessment of such species' diet can be conducted using molecular methods that target prey DNA remaining in predators' guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphantaaugusta, a carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses. Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-based diet of P. augusta. Predated species appear to be earthworms that live in the leaf litter or earthworms that come to the soil surface at night to feed on the leaf litter. This indicates that P. augusta may not be selective and probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful and non-disturbing for the studied animals, it is also applicable to any species of conservation interest.

  9. Using Next-Generation Sequencing to Analyse the Diet of a Highly Endangered Land Snail (Powelliphanta augusta) Feeding on Endemic Earthworms

    PubMed Central

    Boyer, Stéphane; Wratten, Stephen D.; Holyoake, Andrew; Abdelkrim, Jawad; Cruickshank, Robert H.

    2013-01-01

    Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The assessment of such species’ diet can be conducted using molecular methods that target prey DNA remaining in predators’ guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphantaaugusta , a carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses. Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-based diet of P . augusta . Predated species appear to be earthworms that live in the leaf litter or earthworms that come to the soil surface at night to feed on the leaf litter. This indicates that P . augusta may not be selective and probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful and non-disturbing for the studied animals, it is also applicable to any species of conservation interest. PMID:24086671

  10. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    PubMed

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and

  11. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.

    PubMed

    Ravindran, B; Mnkeni, P N S

    2016-09-01

    The main objective of the present study was to determine the optimum C/N ratio for converting waste paper and chicken manure to nutrient-rich manure with minimum toxicity. Six treatments of C/N ratio 20, 30, 40, 50, 60, and 70 (T1, T2, T3, T4, T5, and T6, respectively) achieved by mixing chicken manure with shredded paper were used. The study involved a composting stage for 20 days followed by vermicomposting with Eisenia fetida for 7 weeks. The results revealed that 20 days of composting considerably degraded the organic waste mixtures from all treatments and a further 7 weeks of vermiculture significantly improved the bioconversion and nutrient value of all treatments. The C/N ratio of 40 (T3) resulted in the best quality vermicompost compared to the other treatments. Earthworm biomass was highest at T3 and T4 possibly due to a greater reduction of toxic substances in these waste mixtures. The total N, total P, and total K concentrations increased with time while total carbon, C/N ratio, electrical conductivity (EC), and heavy metal content gradually decreased with time during the vermicomposting process. Scanning electron microscopy (SEM) revealed the intrastructural degradation of the chicken manure and shredded paper matrix which confirmed the extent of biodegradation of treatment mixtures as result of the composting and vermicomposting processes. Phytotoxicity evaluation of final vermicomposts using tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota), and onion (Allium cepa) as test crops showed the non-phytotoxicity of the vermicomposts to be in the order T3 > T4 > T2 > T1 > T5 > T6. Generally, the results indicated that the combination of composting and vermicomposting processes is a good strategy for the management of chicken manure/paper waste mixtures and that the ideal C/N ratio of the waste mixture is 40 (T3).

  12. Comparative toxicology of laboratory organisms for assessing hazardous waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.E.; Peterson, S.A.; Greene, J.C.

    1985-01-01

    Multi-media/multi-trophic level bioassays have been proposed to determine the extent and severity of environmental contamination at hazardous waste sites. Comparative toxicological profiles for algae (Selenastrum capricornutum), daphnia (Daphnia magna), earthworms (Eisenia foetida), microbes (Photobacterium fisherii, mixed sewage microorganisms) and plants; wheat Stephens, (Triticum aestivum), lettuce, butter crunch, (Lactuca sativa L.) radish, Cherry Belle, (Raphanus sativa L.), red clover, Kenland, (Trifolium pratense L.) and cucumber, Spartan Valor, (Cucumis sativa L.) are presented for selected heavy metals, herbicides and insecticides. Specific chemical EC/sub 50/ values are presented for each test organism. Differences in standard deviations were compared between each individual test organism,more » as well as for the chemical subgroup assayed. Algae and daphnia are the most sensitive test organisms to heavy metals and insecticides followed in order of decreasing sensitivity by Microtox (Photobacterium fisherii), DO depletion rate, seed germination and earthworms. Higher plants were most sensitive to 2,4-D, (2,4-Dichlorophenoxy acetic acid) followed by algae, Microtox, daphnia and earthworms. Differences in toxicity of 2,4-D chemical formulations and commercial sources of insecticides were observed with algae and daphia tests.« less

  13. Sine systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography.

    PubMed

    Fernández, Rosa; Kvist, Sebastian; Lenihan, Jennifer; Giribet, Gonzalo; Ziegler, Alexander

    2014-01-01

    In spite of the high relevance of lumbricid earthworms ('Oligochaeta': Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates.

  14. Sine Systemate Chaos? A Versatile Tool for Earthworm Taxonomy: Non-Destructive Imaging of Freshly Fixed and Museum Specimens Using Micro-Computed Tomography

    PubMed Central

    Fernández, Rosa; Kvist, Sebastian; Lenihan, Jennifer; Giribet, Gonzalo; Ziegler, Alexander

    2014-01-01

    In spite of the high relevance of lumbricid earthworms (‘Oligochaeta’: Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates. PMID:24837238

  15. Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae.

    PubMed

    Gopi Daisy, Nino; Subramanian, Elaiya Raja; Selvan Christyraj, Jackson Durairaj; Sudalai Mani, Dinesh Kumar; Selvan Christyraj, Johnson Retnaraj Samuel; Ramamoorthy, Kalidas; Arumugaswami, Vaithilingaraja; Sivasubramaniam, Sudhakar

    2016-09-01

    Earthworms are segmented invertebrates that belong to the phylum Annelida. The segments can be divided into the anterior, clitellar and posterior parts. If the anterior part of the earthworm, which includes the brain, is amputated, the worm would essentially survive even in the absence of the brain. In these brain amputee-derived worms, the nerve cord serves as the primary control center for neurological function. In this current work, we studied changes in the expression levels of anti-acetylated tubulin and serotonin as the indicators of neuro-regenerative processes. The data reveal that the blastemal tissues express the acetylated tubulin and serotonin from day four and that the worm amputated at the 7th segment takes 30 days to complete the regeneration of brain. The ability of self-assemblage is one of the specific functions of the earthworm's brain. The brain amputee restored the ability of self-assemblage on the eighth day.

  16. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta.

    PubMed

    Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara

    2015-10-01

    Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Belowground eco-restoration of a suburban waste-storage landscape: Earthworm dynamics in grassland and in a succession of woody vegetation covers☆

    PubMed Central

    Morales, Pamela K.; Yunusa, Isa A.M.; Lugg, Glenys; Li, Zheng; Gribben, Paul; Eamus, Derek

    2013-01-01

    Restoration of belowground ecology is seldom a priority in designing revegetation strategies for disturbed landscapes. We determined earthworm abundance and diversity in a 16-year old grass sward (grassland), a 6-year old (Plantation-04) and a 4-year old (Plantation-06) plantation, both of mixed woody species, on a reclaimed waste disposal site, and in nearby remnant woodland, in suburban Sydney, Australia. While no catches were made in autumn, more earthworms were found in spring (21 ± 8.6 m–2) than in winter (10.2 ± 5.9 m–2) or summer (14.4 ± 5.5 m–2). Earthworm abundance in spring was in the order grassland ≈ Plantation-04 (35.2 m–2) > woodland (12.8 m–2) > Plantation-06 (0.8 m–2). None of the revegetated covers had restored earthworm diversity to levels found in the woodland. Exotic species, mostly Microscolex dubius, dominated in the four vegetation covers at any time; the only two native species (Heteroporodrilus sp. and Megascoleceides sp.) found were in the woodland. We also assessed how quality of the evolving soils from the three revegetated covers, compared with that from the woodland, impacted viability of common exotic earthworm species. Both weight gain and cocoon production by the exotic earthworms were higher in the soil from Plantation-04 than in soils from the other vegetation covers, including the woodland; the two variables were positively correlated with the pH and mineral nutrient content (as indicated by electrical conductivity that was in turn correlated with clay content) of the soil. Age of vegetation rather than its composition explained differences in the level of earthworm recovery observed. PMID:25550677

  18. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants.

    PubMed

    Jakob, Lena; Hartnik, Thomas; Henriksen, Thomas; Elmquist, Marie; Brändli, Rahel C; Hale, Sarah E; Cornelissen, Gerard

    2012-07-01

    A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 ± 44% and the PAC amendment reduced them by 72 ± 19%. For the investigated plants the BSAFs were reduced by 46 ± 36% and 53 ± 22% by the GAC and PAC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Gas Chromatography- Mass Spectrometry Based Metabolomic Approach for Optimization and Toxicity Evaluation of Earthworm Sub-Lethal Responses to Carbofuran

    PubMed Central

    Saxena, Prem Narain

    2013-01-01

    Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies. PMID:24324663

  20. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region

    USGS Publications Warehouse

    Beyer, W.N.; Stafford, C.

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.

  1. Numerical results on the contribution of an earthworm hole to infiltration

    NASA Astrophysics Data System (ADS)

    Pezzotti, Dario; Barontini, Stefano; Casali, Federico; Comincini, Mattia; Peli, Marco; Ranzi, Roberto; Rizzo, Gabriele; Tomirotti, Massimo; Vitale, Paolo

    2017-04-01

    On 9 March 2016 the WormEx I experiment was launched at the experimental site of Cividate Camuno (274ma.s.l., Oglio river basin, Central Italian Alps), aiming at contributing to understand how the soil-fauna digging activity affects soil-water flow. Particularly the experiment investigates the effects of earthworms holes on the soil-water constitutive laws, in the uppermost layers of a shallow anthropized soil. In this framework a set of simulations of the water flow in presence of an earthworm hole was preliminarily performed. The FV-FD numerical code AdHydra was used to solve the Richards equation in an axis-symmetric 2D domain around a vertical earthworm hole. The hole was represented both as a void cylinder and as a virtual porous domain with typical constitutive laws of a Δ-soil. The hypothesis of Poiseuille flow and the Jourin-Borelli law applied to determine its conductivity and soil-water retention relationship. Different scenarios of hole depth and infiltration rate were explored. As a result a meaningful change in the downflow condition was observed when burrows intersect a layered soil, both in saturated and partially unsaturated soils, in case a perched water table onsets at the interface between an upper and more conductive soil layer and a lower and less conductive one. These results may contribute to a better understanding of the streamflow generation processes and soil-water movement in shallow layered soils.

  2. Persistence and changes in bioavailability of dieldrin, DDE and heptachlor epoxide in earthworms over 45 years

    USGS Publications Warehouse

    Beyer, W. Nelson; Gale, Robert W.

    2013-01-01

    The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3-5.7) years, DDE 5.3 (4.7-6.1) years, and heptachlor epoxide 4.3 (3.8-4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.

  3. Anomalous bioaccumulation of lead in the earthworm Eisenoides lonnbergi (Michaelsen)

    USDA-ARS?s Scientific Manuscript database

    Lead concentrations in soil organisms are usually well below those in the associated soil and they tend to decrease with each higher trophic level in a food chain. Earthworms of the species Eisenoides lonnbergi provide an exception to this observation, accumulating very high concentrations of lead f...

  4. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris

    PubMed

    Quillin

    1999-03-01

    This study examined the relationship between ontogenetic increase in body size and the kinematics of peristaltic locomotion by the earthworm Lumbricus terrestris, a soft-bodied organism supported by a hydrostatic skeleton. Whereas the motions of most vertebrates and arthropods are based primarily on the changes in the joint angles between rigid body segments, the motions of soft-bodied organisms with hydrostatic skeletons are based primarily on the changes in dimensions of the deformable body segments themselves. The overall kinematics of peristaltic crawling and the dynamic shape changes of individual earthworm segments were measured for individuals ranging in body mass (mb) by almost three orders of magnitude (0.012-8.5 g). Preferred crawling speed varied both within and among individuals: earthworms crawled faster primarily by taking longer strides, but also by taking more strides per unit time and by decreasing duty factor. On average, larger worms crawled at a greater absolute speed than smaller worms (U p2finity mb0.33) and did so by taking slightly longer strides (l p2finity mb0.41, where l is stride length) than expected by geometric similarity, using slightly lower stride frequencies (f p2finity mb-0.07) and the same duty factor (df p2finity mb-0.03). Circumferential and longitudinal body wall strains were generally independent of body mass, while strain rates changed little as a function of body mass. Given the extent of kinematic variation within and among earthworms, the crawling of earthworms of different sizes can be considered to show kinematic similarity when the kinematic variables are normalized by body length. Since the motions of peristaltic organisms are based primarily on changes in the dimensions of the deformable body wall, the scaling of the material properties of the body wall is probably an especially important determinant of the scaling of the kinematics of locomotion.

  5. Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil.

    PubMed

    Ma, Wai K; Smith, Ben A; Stephenson, Gladys L; Siciliano, Steven D

    2009-07-01

    Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrial invertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants.

  6. In Vivo Tes of Dicofol on Cocoon Production and Viability of Earthworm Pontoscolex corethrurus Fr. Mull

    NASA Astrophysics Data System (ADS)

    Sumarmin, R.; Huda, N. K.; Yuniarti, E.

    2018-04-01

    The uncontrol using of pesticides, harmful to the environment, health, and it would have impact to non-target animal as earthworm. This study describes the effect of the Dicofol to cocoon production and viability of earthworm Pontoscolex corethrurus Fr. Mull., has been done in-July - Augustus 2016 at the zoology laboratory of Biology Department of Universitas Negeri Padang. The experiment used the Completely Randomized Design (4 treatments 6 replications). The treatments are with 0 g / l (P1), 0.002 g / L (P2), 0.004 g / L (P3), and 0.006 g / L (P4) and 0.008 g / L of Dicofol that diluted to water. The Data of production and viability of earthworm cocoons Pontoscolex corethrurus Fr. Mull collected during 30 days in alternate day. Data analyzed by ANOVA and Duncan New Multiple Range Test at p <0.05. The results Showed that the average number of cocoons production at P1 30 cocoons (the highest), 16 cocoons P2, P3 7 cocoons, and the P4 and P5 0 cocoons (the Lowest). The average percentage of cocoons viability were highest in P1, and P2 (100%); P3 (10%) and the cancel at P4 and P5 (0%). It can conclude that the pesticide Dicofol decreased the production and viability of the earthworm cocoons Pontoscolex corethrurus Fr. Mull.

  7. Different behavioral patterns of the earthworms Octolasion tyrtaeum and Diplocardia spp. in tallgrass prairie soils: potential influences on plant growth

    Treesearch

    Mac A. Callaham; John M. Blair

    2001-01-01

    This study addressed differences between Diplocardia spp. (a native North American earthworm) and Octolasion tyrtaeum (an introduced European species), with respect to behavior, influence on soil microbial biomass, and plant uptake of N in tallgrass prairie soils. We manipulated earthworms in PVC-encased soil cores (20 cm diameter...

  8. Methodological Considerations in the Study of Earthworms in Forest Ecosystems

    Treesearch

    Dylan Rhea-Fournier; Grizelle Gonzalez

    2017-01-01

    Decades of studies have shown that soil macrofauna, especially earthworms, play dominant engineering roles in soils, affecting physical, chemical, and biological components of ecosystems. Quantifying these effects would allow crucial improvement in biogeochemical budgets and modeling, predicting response of land use and disturbance, and could be applied to...

  9. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    PubMed

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  10. Allogeneic killing by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    We observed spontaneous allogeneic cytotoxicity by coelomocytes (Lumbricus terrestris) using three assays: trypan blue, lactate dehydrogenase release and chromium-51 release. Cell-cell contact may not be essential to effect cytotoxicity, since killing of allogeneic cells occurred in pooled allogeneic coelomic fluid derived from worms raised in two different geographic locales. We observed no significant spontaneous cytotoxicity against autogeneic target coelomocytes haptenated with 2,4,6-trinitrobenzene sulfonic acid; however, coelomocytes effected significant spontaneous cytotoxicity against haptenated allogeneic targets. These results support the view that earthworm coelomocytes can act as effector cells that can specifically kill nonself target cells.

  11. Policy and management responses to earthworm invasions in North America

    Treesearch

    Mac A. Callaham; Grizelle Gonzalez; Cynthia M Hale; Liam Henegham; Sharon L. Lachnicht; Xiaoming Zou

    2006-01-01

    The introduction, establishment and spread of non-native earthworm species in North America have been ongoing for centuries. These introductions have occurred across the continent and in some ecosystems have resulted in considerable modifications to ecosystem processes and functions associated with above- and belowground foodwebs. However, many areas of North America...

  12. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.

    PubMed

    Maboeta, M S; Oladipo, O G; Botha, S M

    2018-05-01

    Earthworms are bioindicators of soil pollution. The ecotoxicity of tailings from selected gold mines in South Africa was investigated utilizing Eisenia andrei bioassays and biomarkers. Samples were obtained from unrehabilitated, rehabilitated and naturally vegetated sites. Biomass, neutral red retention time (NRRT), survival and reproduction were assessed using standardized protocols. Earthworm biomass, NRRT and reproductive success in rehabilitated tailings (comparable to naturally vegetated site) were significantly higher (p < 0.05) than in unrehabilitated tailings. In addition, significantly lower (p < 0.05) body tissue concentrations of As, Cd, Co, Cu and Ni contents were found in the rehabilitated tailings compared to the unrehabilitated. Further, significantly lower (p < 0.05) soil Mn and Zn concentrations were obtained in unrehabilitated tailings than the rehabilitated and naturally vegetated sites. Overall, reduced ecotoxicity effects were confirmed in rehabilitated compared to unrehabilitated tailings. This suggests that rehabilitation as a post-mining restorative strategy has strong positive influence on mine tailings.

  13. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    PubMed

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  14. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    PubMed

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat ( Triticum aestivum L. var. Capo ) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  15. Earthworm communities along an elevation gradient in Northeastern Puerto Rico.

    Treesearch

    Grizelle Gonzalez; Emerita Garcia; Veronica Cruz; Sonia Borges; Marcela Zalamea; Maria M. Rivera

    2007-01-01

    In this study, we describe earthworm communities along an elevation gradient of eight forest types in Northeastern Puerto Rico, and determine whether their abundance, biomass and/or diversity is related to climatic, soil physical/chemical and/or biotic characteristics. We found that the density, biomass, and diversity of worms varied significantly among forest types....

  16. Use of Amynthas gracilis (Oligochaeta, Megascolecidae) and Bougainvillea litter for rehabilitation of overexploited soils, in Campeche, Yucatan Peninsula, Mexico.

    NASA Astrophysics Data System (ADS)

    Huerta, Esperanza; Alonso Gongora, Erick

    2014-05-01

    Yucatan peninsula is one of the recent emerged lands in Mexico; where more of the soils have low organic matter content, and/or the organic horizon is thin (2-5cm). The industry of material extraction for construction purposes is well developed in Yucatan Peninsula, due to the fact of the calcareous material that can be obtained by the maternal rock. Therefore, the material extraction promotes the desertification of the areas, and soil erosion. Bougainvillea sp is a tropical and subtropical woody, evergreen, shrubby vine (Kobayashi et al. 2007), it has a wide range of distribution and it roots are superficial, what allows the plant to inhabit soils with a thin layer of soil organic matter. Earthworms as ecosystem engineers (Jones et al. 1994) can modify their environment, forming borrows and incorporation organic matter into the soil. The aim of this study was to rehabilitate soils without organic matter horizon by the use of earthworms and Bougainvillea litter. The study was developed at mesocosmos level in the laboratory of soils at El Colegio de la Frontera Sur, Unidad Campeche, Mexico. Individual of anecic earthworms were collected and reproduced previously, anecic worms can better incorporate organic matter in to the soil than epigeics or endogeics worms, in Mexican tropical terrestrial ecosystems, anecic worms are almost absent or scarce. In this study we used the exotic earthworm Amynthas gracilis (native in Taiwan),that used to inhabit banana plantations with low technology in southeast Mexico, as exotic has a wide range of tolerance to different amounts of soil organic matter and pH. Four treatments with 4 replicas were established: a) calcareous soil without organic matter horizon+earthworms+litter, b) calcareous soil with organic matter horizon+ earthworms+litter, c) calcareous soil without organic matter horizon+litter, d) calcareous soil with organic matter horizon+litter. After 60 days of study, we observed how earthworms developed successfully in

  17. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology.

    PubMed

    Tejada, Manuel; Gómez, Isidoro; Del Toro, Marina

    2011-10-01

    The sorption capacity of both an organic municipal solid waste by-product (MSW) and a cow manure (CM) in a soil polluted with chlorpyrifos, as well as its effect on soil microbial activity, and weight, reproductive parameters and glutathione-S-transferase activity of two earthworm species (Eisenia fetida and Lumbricus terrestris) were studied. Chlorpyrifos was added at the recommended application rate (5 L ha(-1); 768 mg chlorpyrifos kg(-1)) and treated with MSW at a rate of 10% and CM at a rate of 5.8% in order to apply the same amount of organic matter to the soil. An unamended polluted soil was used as control. Earthworm cocoon number, average weight of cocoon, and number of juveniles per cocoon were measured after 30 days of incubation, whereas soil enzymatic activities, earthworm weight, and glutathione-S-transferase activity of earthworms were measured after 3, 45 and 90 days. Soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms decreased in polluted soil. The inhibition percentage of soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms was lower in MSW-amended soil than for CM-amended soil. The toxic effect of chlorpyrifos on E. fetida was lowest compared to L. terrestris. This suggested that the addition of organic wastes with higher humic than fulvic acid concentration is more beneficial for remediation of soils polluted with chlorpyrifos. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  19. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration.

    PubMed

    Huerta Lwanga, Esperanza; Thapa, Binita; Yang, Xiaomei; Gertsen, Henny; Salánki, Tamás; Geissen, Violette; Garbeva, Paolina

    2018-05-15

    Low-density polyethylene (LDPE) is the most abundant source of microplastic pollution worldwide. A recent study found that LDPE decay was increased and the size of the plastic was decreased after passing through the gut of the earthworm Lumbricus terrestris (Oligochaeta). Here, we investigated the involvement of earthworm gut bacteria in the microplastic decay. The bacteria isolated from the earthworm's gut were Gram-positive, belonging to phylum Actinobacteria and Firmicutes. These bacteria were used in a short-term microcosm experiment performed with gamma-sterilized soil with or without LDPE microplastics (MP). We observed that the LDPE-MP particle size was significantly reduced in the presence of bacteria. In addition, the volatile profiles of the treatments were compared and clear differences were detected. Several volatile compounds such as octadecane, eicosane, docosane and tricosane were measured only in the treatments containing both bacteria and LDPE-MP, indicating that these long-chain alkanes are byproducts of bacterial LDPE-MP decay. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    PubMed

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  1. Long-term toxic effects of deltamethrin and fenvalerante in soil.

    PubMed

    Song, Yufang; Kai, Jianrong; Song, Xueying; Zhang, Wei; Li, Lingling

    2015-05-30

    In this study, the long-term toxic effects of pyrethroids on the earthworm Eisenia fetida were evaluated. Earthworms were exposed to moist filter paper and soil for 14 days to evaluate the survival, exposed to soil for 56 days to assess the reproductive success and for 28 days to identify the cytotoxicity. Results showed that the earthworm survival rate decreased with increasing the concentration of either deltamethrin or fenvalerate in both filter paper test and soil test. No worms survived at 602.15 μg cm(-2) of deltamethrin and 0.86 μg cm(-2) of fenvalerate in the filter paper test, however 100-125 mg kg(-1) of both chemicals resulted in the maximum mortality of 90% in the soil test. The CYP3A4 enzyme activity responded significantly to deltamethrin and fenvalerante in soil at low concentration levels, however, the toxicity response of worms under the long-term exposure conflicted with the degradation of deltamethrin and fenvalerate in soil, indicating the possible formation of more toxic pyrethroid metabolites. This study gave an insight into the toxicological effects profile of pyrethroids for a better risk assessment of pyrethroids deltamethrin and fenvalerante in soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    USGS Publications Warehouse

    Veltman, K.; Huijbregts, M.A.J.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.; van Vliet, P.C.J.; Jan, Hendriks A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. ?? 2006 Elsevier Ltd. All rights reserved.

  3. Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3).

    PubMed

    Garcia-Velasco, N; Peña-Cearra, A; Bilbao, E; Zaldibar, B; Soto, M

    2017-08-01

    There is a potential risk to increase the release of silver nanoparticles (Ag NPs) into the environment: For instance. in soils receiving sludge models estimate 0.007 mg Ag NPs kg -1 that will annually increase due to sludge or sludge incineration residues land-disposal. Thus, the concern about the hazards of nanosilver to soils and soil invertebrates is growing. Studies performed up to now have been focused in traditional endpoints, used limit range concentrations and employed different soil types that differ in physico-chemical characteristics. Presently, effects of Ag NPs have been measured at different levels of biological complexity in Eisenia fetida, exposed for 3 and 14 d to high but sublethal (50 mg Ag NPs kg -1 ) and close to modeled environmental concentrations (0.05 mg Ag NPs kg -1 ). Since characteristics of the exposure matrix may limit the response of the organisms to these concentrations, experiments were carried out in OECD and LUFA soils, the most used standard soils. High concentrations of Ag NPs increased catalase activity and DNA damage in OECD soils after 14 d while in LUFA 2.3 soils produced earlier effects (weight loss, decrease in cell viability and increase in catalase activity at day 3). At day 14, LUFA 2.3 (low clay and organic matter-OM-) could have provoked starvation of earthworms, masking Ag NPs toxicity. The concentration close to modeled environmental concentrations produced effects uniquely in LUFA 2.3 soil. Accurate physico-chemical characteristics of the standard soils are crucial to assess the toxicity exerted by Ag NPs in E. fetida since low clay and OM contents can be considered toxicity enhancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils.

    PubMed

    Matthies, C; Griesshammer, A; Schmittroth, M; Drake, H L

    1999-08-01

    Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N(2)O)-emitting garden soils emitted 0.14 to 0.87 nmol of N(2)O h(-1) g (fresh weight)(-1) under in vivo conditions. L. rubellus obtained from N(2)O-emitting forest soil also emitted N(2)O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878-1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N(2)O; however, such worms emitted N(2)O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N(2)O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N(2)O emission by earthworms accounted for approximately 33% of the N(2)O emitted by garden soils. In vivo emission of N(2)O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N(2)O. In the presence of nitrate, acetylene increased the N(2)O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N(2)O. In vivo emission of N(2)O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N(2)O emission of dissected earthworm gut sections were substantially higher than the rates of N(2)O emission of dissected worms lacking gut sections, indicating that N(2)O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N(2)O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N(2)O-emitting earthworms produced N(2)O only under anoxic conditions. Collectively, these results indicate that gut

  5. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    PubMed

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. EVALUATION OF ALTERNATIVE REFERENCE TOXICANTS FOR USE IN THE EARTHWORM TOXICITY TEST

    EPA Science Inventory

    The use of the 14-d earthworm toxicity test to aid in the evaluation of the ecological impact of contaminated soils is becoming increasingly widespread. However,the method is in need of further standardization. As part of this continuing process, the choice of reference toxicants...

  7. Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris

    PubMed

    Quillin

    1998-05-21

    Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and in the comparison of species. Therefore, body size is an important consideration in an examination of the mechanical function of hydrostatic skeletons. The scaling of hydrostatic skeletons cannot be inferred from existing studies of the lever-like skeletons of vertebrates and arthropods because the two skeleton types function by different mechanisms. Hydrostats are constructed of an extensible body wall in tension surrounding a fluid or deformable tissue under compression. It is the pressurized internal fluid (rather than the rigid levers of vertebrates and arthropods) that enables the maintenance of posture, antagonism of muscles and transfer of muscle forces to the environment. The objectives of the present study were (1) to define the geometric, static stress and dynamic stress similarity scaling hypotheses for hydrostatic skeletons on the basis of their generalized form and function, and (2) to apply these similarity hypotheses in a study of the ontogenetic scaling of earthworms, Lumbricus terrestris, to determine which parameters of skeletal function are conserved or changed as a function of body mass during growth (from 0.01 to 8 g). Morphometric measurements on anesthetized earthworms revealed that the earthworms grew isometrically; the external proportions and number of segments were constant as a function of body size. Calculations of static stresses (forces per cross-sectional area in the body wall) during rest and dynamic stresses during peristaltic crawling (calculated from measurements of internal pressure and body wall geometry) revealed that the earthworms also maintained static and dynamic stress similarity, despite a slight increase in body wall thickness in segment 50 (but not in segment 15). In summary, the hydrostatic skeletons of earthworms differ fundamentally from the rigid, lever-like skeletons of their terrestrial

  8. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  9. The effect of tributyltin-oxide on earthworms, springtails, and plants in artificial and natural soils.

    PubMed

    Römbke, J; Jänsch, S; Junker, T; Pohl, B; Scheffczyk, A; Schallnass, H-J

    2007-05-01

    Chemical bioavailability in Organisation for Economic Co-operation and Development (OECD) artificial soil can contrast with bioavailability in natural soils and produce ecotoxicologic benchmarks that are not representative of species' exposure conditions in the field. Initially, reproduction and growth of earthworm and Collembolan species, and early seedling growth of a dicotyledonous plant species, in nine natural soils (with a wide range of physicochemical properties) and in OECD soil were evaluated. Soils that supported reproduction and growth of the test species were then used to investigate the toxicity of tributyltin-oxide (TBT-O). Natural soils caused greater toxicity of TBT-O to earthworms (EC(50) values varied from 0.5 to 4.7 mg/kg soil dry weight [dw]) compared with toxicity in OECD soil (EC(50) = 13.4 mg/kg dw). Collembolans were less sensitive to TBT-O than earthworms in natural soils, with EC(50) values ranging from 23.4 to 177.8 mg/kg dw. In contrast, the toxicity of TBT-O to collembolans in OECD soil (EC(50) = 104.0 mg/kg dw) was within the range of EC(50) values in natural soils. Phytotoxicity tests revealed even greater difference between the effects in natural soils (EC(50) values ranged from 10.7 to 189.2 mg/kg dw) and in OECD soil (EC(50) = 535.5 mg/kg dw) compared with results of the earthworm tests. Studies also showed that EC(50) values were a more robust end point compared with EC(10) values based on comparisons of coefficients of variation. These results show that toxicity testing should include studies with natural soils in addition to OECD soil to better reflect exposure conditions in the field.

  10. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    PubMed

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  11. An oasis of fertility on a barren island: earthworms at Papadil, Isle of Rum

    Treesearch

    K.R. Butt; C.N.  Lowe; Mac Callaham; V.  Nuutinen

    2016-01-01

    The Isle of Rum, Inner Hebrides, has an impoverished earthworm fauna as the soils are generally acidic and nutrient-poor. Species associated with human habitation are found around deserted crofting settlements subjected to

  12. Plant-facilitated effects of exotic earthworm Pontoscolex corethrurus on the soil carbon and nitrogen dynamics and soil microbial community in a subtropical field ecosystem.

    PubMed

    Wu, Jianping; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2017-11-01

    Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus ) and plants (living plants [native tree species Evodia lepta ] and artificial plants) to investigate their combined effects on soil microorganisms, soil nutrients, and soil respiration in a subtropical forest. The manipulation of artificial plants aimed to simulate the physical effects of plants (e.g., shading and interception of water) such that the biological effects of plants could be evaluated separately. We found that relative to the controls, living plants but not artificial plants significantly increased the ratio of fungal to bacterial phospholipid fatty acids (PLFAs) and fungal PLFAs. Furthermore, earthworms plus living plants significantly increased the soil respiration and decreased the soil NH 4 + -N, which indicates that the earthworm effects on the associated carbon, and nitrogen processes were greatly affected by living plants. The permutational multivariate analysis of variance results also indicated that living plants but not earthworms or artificial plants significantly changed the soil microbial community. Our results suggest that the effects of plants on soil microbes and associated soil properties in this study were largely explained by their biological rather than their physical effects.

  13. Earthworms from Bursa Uludağ Mountain, with first record of Octolasion cyaneum (Savigny, 1826) from Turkey.

    PubMed

    MisirlioĞlu, İbrahİm Mete

    2018-03-12

    Uludağ is the highest mountain (2.543 m) of the Marmara region in Bursa Province, western Turkey. The Uludağ National Park has rich biodiversity in terms of fauna and flora. Habitats of the park range from maquis on the lower slopes, through deciduous woodland and beech and fir forest to alpine meadows at the highest elevations. The first earthworm records from the Uludağ Mountain were done by Zicsi (1973). His work was continued by Omodeo and Rota (1989, 1991). Species records in these works were based on limited sampling. The current study is the first comprehensive study of earthworms in the Uludağ Mountain area.

  14. Cytogenetic description of the earthworm Drawida ghilarovi Gates, 1969 (Oligochaeta, Moniligastridae) from the southern Russian Far East

    PubMed Central

    Anisimov, Alim P.; Roslik, Galina V.; Ganin, Gennady N.

    2015-01-01

    Abstract Sixty-six specimens of the earthworm Drawida ghilarovi Gates, 1969 (Oligochaeta, Moniligastridae) from 15 localities of the southern Russian Far East were studied cytogenetically. We examined chromosome sets during mitosis and diakinesis as well as DNA content in the spermatogenous and somatic cell nuclei. The populations and morphs displayed no differences in karyotype and ploidy levels estimated in terms of both chromosome number and DNA mass index: n = 10, 2n = 20; c = 1.1 pg, 2c = 2.2 pg. We conclude that polyploidy as a species- or race-forming factor is not typical of these earthworms. PMID:26753075

  15. Biomarker responses in the earthworm, Dichogaster curgensis exposed to fly ash polluted soils.

    PubMed

    Markad, Vijaykumar L; Gaupale, Tekchand C; Bhargava, Shobha; Kodam, Kisan M; Ghole, Vikram S

    2015-08-01

    Earthworms are globally accepted as a model organism in terrestrial ecotoxicology for assessment of environmental pollution. This study evaluated and compared effects of fly ash polluted soils collected from two geographically different thermal power plants on biomarker responses in the earthworm, Dichogaster curgensis. To evaluate relationship between distance sampling and biomarker responses in the earthworm D. curgensis, soil samples at 0.5, 1 and 3km from thermal plant were analyzed for physico-chemical properties and metal concentrations. Biochemical alterations, lysosomal membrane stability, genotoxic effects, and histological changes were examined on 1, 7, and 14 d of exposure to fly ash contaminated soils collected from different thermal power plants. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were significantly increased, while glutathione reductase (GR) activity was found to be decreased in treated animals. Catalase (CAT) and glutathione-S- transferase (GST) activities were found to be increased initially up to 7d exposure and further decreased on 14d exposure. D. curgensis exposed to fly ash contaminated soils showed significant lysosomal membrane destabilization and DNA damage. Extensive histopathological changes were observed in the tissues of the body wall and intestinal tract of the exposed D. curgensis along with accumulation of heavy metals. These results demonstrate that soil pollution around thermal power plants has adverse biological effects of on the indicator organism D. curgensis and no correlation was found between distance and extent of biological biochemical responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of earthworms and plants on the soil structure, the physical stabilization of soil organic matter and the microbial abundance and diversity in soil aggregates in a long term study

    NASA Astrophysics Data System (ADS)

    Zangerlé, Anne; Hissler, Christophe; Lavelle, Patrick

    2014-05-01

    Earthworms and plant roots, as ecosystem engineers, have large effects on biotic and abiotic properties of the soil system. They create biogenic soil macroaggregates (i.e. earthworm casts and root macroaggregates) with specific physical, chemical and microbiological properties. Research to date has mainly considered their impacts in isolation thereby ignoring potential interactions between these organisms. On the other hand, most of the existing studies focused on short to midterm time scale. We propose in this study to consider effect of earthworms and plants on aggregate dynamics at long time scale. A 24 months macrocosm experiment, under semi-controlled conditions, was conducted to assess the impacts of corn and endogeic plus anecic earthworms (Apporectodea caliginosa and Lumbricus terrestris) on soil structure, C stabilization and microbial abundance and biodiversity. Aggregate stability was assessed by wet-sieving. Macroaggregates (>2 mm) were also visually separated according to their biological origin (e.g., earthworms, roots). Total C and N contents were measured in aggregates of all size classes and origins. Natural abundances of 13C of corn, a C4 plant, were used as a supplemental marker of OM incorporation in aggregates. The genetic structure and the abundance of the bacterial and fungal communities were characterized by using respectively the B- and F-ARISA fingerprinting approach and quantitative PCR bacteria (341F/515R) and fungi (FF330/FR1). They significantly impacted the soil physical properties in comparison to the other treatments: lower bulk density in the first 10cm of the soil with 0.95 g/cm3 in absence of corn plants and 0.88 g/cm3 in presence of corn plants compared to control soil (1.21g/cm3). The presence of earthworms increased aggregate stability (mean weight diameter) by 7.6 %, while plants alone had no simple impacts on aggregation. A significant interaction revealed that earthworms increased aggregate stability in the presence of

  17. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

    EPA Science Inventory

    A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chana, L.W.; Smith, K.

    Soil from a site contaminated with heavy metals (predominantly lead) was treated using the TERRAMET{reg_sign} lead extraction process. Earthworm acute toxicity and plant seed germination/root elongation (SG/RE) bioassays were used to evaluate the toxicity of the soil before treatment (BT), after treatment (AT) and after treatment, followed by rinsing with water, intended to simulate exposure to rainfall (RT). The results showed BT and RT were not toxic to earthworms in a 14-day exposure while AT showed significant toxicity. The LC{sub 50} values for Eisenia and Lumbricus were 44.04 and 28.83 (as % AT soil/test soil mixture), respectively. The phytotoxicity datamore » indicated that all 3 test soils significantly inhibited lettuce SG/RE in a dose-related manner, with AT being the most phytotoxic. In oats, RT had no effect on SG/RE and AT was more toxic than BT. For the two local-site grass seeds tested (blue grama and sideoat grama), the AT soil was the most phytotoxic followed by BT and RT. The results suggest that the soil after this remediation process exerts significant toxicity on both plant and earthworm, but after a rain-simulating rinse, the toxicity is the same as, or less than, the toxicity before treatment. Further studies are in progress to confirm the assumption that the high salt concentrations generated by acidification during the leaching process, followed by neutralization are responsible for the increased toxicity of unrinsed soil in both plant and earthworm.« less

  19. Towards understanding the effects of additives on the vermicomposting of sewage sludge.

    PubMed

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

    2015-03-01

    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  20. Measuring ecosystem functioning of soil mega-aggregates produced by soil/litter mix-feeding animals

    NASA Astrophysics Data System (ADS)

    Kaneko, N.

    2009-04-01

    Some soil animals are soil/litter mix-feeders. They are known to produce long-lasting soil structures (e.g. casts and molting chamber), and these structures will modify resource availability and environmental conditions for plants and soil organisms. Good examples are epigeic Megascolecid earthworms (Uchida et al., 2004) and Xystodesmid millipeds (Toyota et al., 2006), both found in Japan. In this study we examined chemical, physical and biological properties of soil focusing on multi-functioning of aggregates made by these animals. Since 2003, we manipulated densities of epigeic earthworms in a field encloser (35 m2) (three replications) at a cool temperate forest in Japan. At a no-worm (NW) treatment, all the worms have been collected every year by hand. At the same place, we prepared a control treatment in an encloser (Closed control; CC) and outside the encloser (Open control; OC). We examined surface soil and plant growth after 5-years field manipulation of oak dominated forest. Growth of two Liliaceae forest floor herbs; Smilacina japonica and Polygonatum odoratum, and oak (Quercus crispula) seedlings and canopy oak trees were recorded. Reduction of aggregates after elimination of earthworms was observed in a field condition. The manipulation site showed decreased soil pH, Ca, Mg, and P concentration and total carbon storage was also reduced. There was a negative significant correlation between casts abundance and soil NH4-N, and a positive significance was observed between casts abundance and growth of S. japonica, and oak seedlings. Radial growth of canopy oak trees was decreased at NW treatment compared to CC and OC. Leaf N contents of oak seedling at NW were significantly lower in NW, but canopy oak trees did not show any difference in leaf-N. Although S. japonica and P. odoratum were both found in a same forest floor, S. japonica is known as nutrient limited plants in spring, whereas P. odoratum is light limited. Oak seedlings are depending early growth

  1. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    PubMed

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (p<0.05) microbial biomass and all the microbial groups (Gram+bacteria, Gram-bacteria, and fungi) in both substrates. The enzymatic activities (cellulase, β-glucosidase and acid phosphatase) behaved in a significantly distinctive manner (p<0.05) depending on the treatment. Microbial communities had significant correlations (p<0.05) with hydrolytic activities during static maturation of pre-composted manure. This indicates a direct effect of microbiota evolution on the degradative processes; however, complex earthworm-microbiota interactions were established in the presence of E. andrei. After earthworms' removal from vermicompost of fresh substrate at 70day, an increase in Gram + (4.4 times), Gram - (3.8 times) and fungi (2.8 times) were observed and, although the vermicompost achieved quality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Depleted uranium mobility across a weapons testing site: isotopic investigation of porewater, earthworms, and soils.

    PubMed

    Oliver, Ian W; Graham, Margaret C; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G

    2008-12-15

    The mobility and bioavailability of depleted uranium (DU) in soils at a UK Ministry of Defence (UK MoD) weapons testing range were investigated. Soil and vegetation were collected near a test-firing position and at eight points along a transect line extending approximately 200 m down-slope, perpendicular to the firing line, toward a small stream. Earthworms and porewaters were subsequently separated from the soils and both total filtered porewater (<0.2 microm) and discrete size fractions (0.2 microm-100 kDa, 100-30 kDa, 30-3 kDa, and <3 kDa)obtainedvia centrifugal ultrafiltration were examined. Uranium concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for soils and ICP-mass spectrometry (MS) for earthworms and porewaters, while 235U:238U atom ratios were determined by multicollector (MC)-ICP-MS. Comparison of the porewater and earthworm isotopic values with those of the soil solids indicated that DU released into the environment during weapons test-firing operations was more labile and more bioavailable than naturally occurring U in the soils at the testing range. Importantly, DU was shown to be present in soil porewater even at a distance of approximately 185 m from the test-firing position and, along the extent of the transect was apparently associated with organic colloids.

  3. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT.

    PubMed

    Kowald, Gregory R; Stürzenbaum, Stephen R; Blindauer, Claudia A

    2016-01-05

    Earthworms express, as most animals, metallothioneins (MTs)-small, cysteine-rich proteins that bind d(10) metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd₇wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by ¹H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  4. The capacities of earthworms to heal wounds and to destroy allografts are modified by polychlorinated biphenyls (PCB).

    PubMed

    Cooper, E L; Roch, P

    1992-07-01

    Earthworms (Lumbricus terrestris) were maintained at 15 degrees C and exposed on filter paper to 10 micrograms/cm2 of the polychlorinated biphenyl (PCB) Aroclor 1254 for 5 days prior to surgical treatments which consisted of wounds, autografts, and allografts. At 1 day after surgery, we observed a higher percentage of healing defects and a significantly greater number of early signs of allograft rejection in exposed worms. Observations for 25 days post-transplantation revealed no response to autografts, but an acceleration of the allograft rejection process in exposed earthworms. We postulate that Aroclor modified host coelomocytes and/or their interactions associated with antigen recognition and inflammation.

  5. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, J.R.; Chang, L.W.; Meckes, M.C.

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below themore » remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.« less

  7. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN).

    PubMed

    Dodard, Sabine G; Sarrazin, Manon; Hawari, Jalal; Paquet, Louise; Ampleman, Guy; Thiboutot, Sonia; Sunahara, Geoffrey I

    2013-11-15

    The high explosive nitroaromatic 2,4-dinitroanisole (DNAN) is less shock sensitive than 2,4,6-trinitrotoluene (TNT), and is proposed as a TNT replacement for melt-cast formulations. Before using DNAN in munitions and potentially leading to environmental impact, the present study examines the ecotoxicity of DNAN using selected organisms. In water, DNAN decreased green algae Pseudokirchneriella subcapitata growth (EC50 = 4.0mg/L), and bacteria Vibrio fischeri bioluminescence (Microtox, EC50 = 60.3mg/L). In soil, DNAN decreased perennial ryegrass Lolium perenne growth (EC50 =7 mg/kg), and is lethal to earthworms Eisenia andrei (LC50 = 47 mg/kg). At sub-lethal concentrations, DNAN caused an avoidance response (EC50 = 31 mg/kg) by earthworms. The presence of DNAN and 2-amino-4-nitroanisole in earthworms and plants suggested a role of these compounds in DNAN toxicity. Toxicity of DNAN was compared to TNT, tested under the same experimental conditions. These analyses showed that DNAN was equally, or even less deleterious to organism health than TNT, depending on the species and toxicity test. The present studies provide baseline toxicity data to increase the understanding of the environmental impact of DNAN, and assist science-based decision makers for improved management of potential DNAN contaminated sites. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Bioavailability of butachlor and myclobutanil residues in soil to earthworms.

    PubMed

    Yu, Y L; Wu, X M; Li, S N; Fang, H; Tan, Y J; Yu, J Q

    2005-05-01

    To establish chemical extraction procedures for predicting bioavailability of butachlor and myclobutanil in soil, several solvent systems, including methanol, methanol-water (9:1), methanol-water (1:1), acetone-water (5:3), petroleum ether and water, were assessed for their feasibility in determining extractability of the target compounds from soil samples. Experimental data showed that the extractability of butachlor and myclobutanil by the solvents was well linearly correlated with their bioavailability to Eisenia foetida and Allolobophora caliginosa, indicating that these extraction procedures may be efficient for predicting bioavailability of the two pesticides. The concentrations of the pesticides accumulated in E. foetida and A. caliginosa varied with species, suggesting that the availability of the soil-sequestered pesticide is a species-dependent process.

  9. Some Guides to Discovery About Elm Trees, Owls, Cockroaches, Earthworms, Cement and Concrete.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    The introduction emphasizes the need for environmental and conservation education, and advocates an inquiry approach. Outdoor resources available to every school are listed. Detailed suggestions are made for investigating cement and concrete, cockroaches, earthworms, elm trees, and owls. In each case general background information and a list of…

  10. Detrimental Influence of Invasive Earthworms on North American Cold-Temperate Forest Soils

    ERIC Educational Resources Information Center

    Enerson, Isabel

    2012-01-01

    The topic of invasive earthworms is a timely concern that goes against many preconceived notions regarding the positive benefits of all worms. In the cold-temperate forests of North America invasive worms are threatening forest ecosystems, due to the changes they create in the soil, including decreases in C:N ratios and leaf litter, disruption of…

  11. APPLICATION OF PLANT AND EARTHWORM BIOASSAYS TO EVALUATE REMEDIATION OF A LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    Earthworm acute toxicity, plant seed germination/root elongation (SG/RE) and plant genotoxicity bioassays were employed to evaluate the remediation of a lead-contaminated soil. The remediation involved removal of heavy metals by a soil washing/soil leaching treatment process. A p...

  12. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    PubMed Central

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  13. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment.

    PubMed

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot-1 (equivalent to the recommended field rate of 150 kg ha-1) to 0.44 g pot-1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk.

  14. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment

    PubMed Central

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot–1 (equivalent to the recommended field rate of 150 kg ha–1) to 0.44 g pot–1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk. PMID:27880837

  15. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    PubMed

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  16. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.)

    PubMed Central

    Xiang, Huimin; Guo, Lei; Zhao, Benliang

    2016-01-01

    The aim of this study was to compare the effects of four fertilizer applications—control (C), chemical fertilizer (F), compost (O), and in situ earthworm breeding (E)—on the growth, quality and yield of papaya (Carica papaya L.). In this study, 5 g plant−1 urea (CH4N2O, %N = 46.3%) and 100 g plant−1 microelement fertilizer was applied to each treatment. The fertilizer applications of these four treatments are different from each other. The results showed that the E treatment had the highest growth parameters over the whole growth period. At 127 days after transplantation, the order of plant heights from greatest to smallest was E > F > O > C, and the stem diameters were E > F > O > C, with significant differences between all treatments. Soluble-solid, sugar, vitamin C, and protein content significantly increased in the E treatment. In addition, the total acid and the electrical conductivity of the fruit significantly decreased in the E treatment. Fruit firmness clearly increased in the O treatment, and decreased in the F treatment. The fresh individual fruit weights, fruit numbers, and total yields were greatly improved in the F and E treatments, and the total yield of the E treatment was higher than that in the F treatment. In conclusion, the in situ earthworm breeding treatment performed better than conventional compost and chemical fertilizer treatments. Furthermore, in situ earthworm breeding may be a potential organic fertilizer application in orchards because it not only improves the fruit quality and yield but also reduces the amount of organic wastes from agriculture as a result of the activities of earthworms. PMID:27994969

  17. The mechanics and energetics of soil bioturbation by earthworms and plant roots - Impacts on soil structure generation and maintenance

    NASA Astrophysics Data System (ADS)

    Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus

    2015-04-01

    Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.

  18. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida.

    PubMed

    Singh, Akanksha; Jain, Akansha; Sarma, Birinchi K; Abhilash, P C; Singh, Harikesh B

    2013-05-01

    Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC-water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC-soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2013-03-01

    Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Blade motion and nutrient flux to the kelp, Eisenia arborea.

    PubMed

    Denny, Mark; Roberson, Loretta

    2002-08-01

    Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.

  1. Evidence for ongoing introduction of non-native earthworms in the Washington, DC metropolitan area

    Treesearch

    Mac A. Callaham; Bruce A. Snyder; Samuel W. James; Erik T. Oberg

    2016-01-01

    Earthworm introductions and invasions are ongoing, with significant consequences for ecological characteristics and function where populations of invasive species reach high densities. In North America the influx of people, goods and materials to coastal cities has long been recognized to be related to introduction and establishment of...

  2. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].

    PubMed

    David, O F

    1978-01-01

    Studies have been made on the electrical activity of the segmentary nerves and connectives of the abdominal nervous chain in the earthworm and leech. It was shown that the electrical activity of the isolated piece of the abdominal chain of the leech is manifested of periodic outbursts of impulsation. Presumably this central periodicity accounts for the discharge-like pattern of muscle rhythmic activity which was revealed in our earlier investigations. The electrical activity in the central nervous system of the earthworm depends on afferent influences which pass to the ganglia from the peripheral sensory nervous cells. Stimulation of the abdominal nervous chain did not result in extra discharges of muscle activity, but only affected some of the parameters of the latter.

  3. Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil.

    PubMed

    Segat, Julia Corá; Alves, Paulo Roger Lopes; Baretta, Dilmar; Cardoso, Elke Jurandy Bran Nogueira

    2015-12-01

    Swine production in Brazil results in a great volume of manure that normally is disposed of as agricultural fertilizer. However, this form of soil disposal, generally on small farms, causes the accumulation of large amounts of manure and this results in contaminated soil and water tables. To evaluate the effects of increasing concentrations of swine manure on earthworms, several ecotoxicological tests were performed using Eisenia andrei as test organism in different tropical soils, classified respectively as Ultisol, Oxisol, and Entisol, as well as Tropical Artificial Soil (TAS). The survival, reproduction and behavior of the earthworms were evaluated in experiments using a completely randomized design, with five replications. In the Ultisol, Oxisol and TAS the swine manure showed no lethality, but in the Entisol it caused earthworm mortality (LOEC=45 m(3)ha(-1)). In the Entisol, the waste reduced the reproductive rate and caused avoidance behavior in E. andrei (LOEC=30 m(3)ha(-1)) even in lower concentrations. The Entisol is extremely sandy, with low cation exchange capacity (CEC), and this may be the reason for the higher toxicity on soil fauna, with the soil not being able to hold large amounts of pollutants (e.g. toxic metals), but leaving them in bioavailable forms. These results should be a warning of the necessity to consider soil parameters (e.g. texture and CEC) when evaluating soil contamination by means of ecotoxicological assays, as there still are no standards for natural soils in tropical regions. E. andrei earthworms act as indicators for a soil to support disposal of swine manure without generating harm to agriculture and ecosystems. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils.

    PubMed

    Alves, Paulo Roger L; Natal-da-Luz, Tiago; Sousa, José Paulo; Cardoso, Elke J B N

    2015-09-01

    The impact of sugarcane vinasse on soil invertebrates was assessed through ecotoxicological assays. Increasing concentrations of two vinasses from different distillery plants (VA and VB), and a vinasse from a laboratory production (VC), were amended on two natural tropical Oxisols (LV and LVA) and a tropical artificial soil (TAS) to characterize the effects of the vinasses on earthworms (Eisenia andrei), enchytraeids (Enchytraeus crypticus), mites (Hypoaspis aculeifer) and collembolans (Folsomia candida). The highest concentrations of VA and VB were avoided by earthworms in all soils and by collembolans especially in the natural soils. The presence of VC in all of the tested soils did not cause avoidance behavior in these species. The reproduction of earthworms, enchytraeids and collembolans was decreased in the highest concentrations of VA and VB in the natural soils. In TAS, VB reduced the reproduction of all test species, whereas VA was toxic exclusively to E. andrei and E. crypticus. The vinasse VC only reduced the number of earthworms in TAS and enchytraeids in LVA. The reproduction of mites was reduced by VB in TAS. Vinasses from distillery plants were more toxic than the vinasse produced in laboratory. The vinasse toxicities were influenced by soil type, although this result was most likely because of the way the organisms are exposed to the contaminants in the soils. Toxicity was attributed to the vinasses' high salt content and especially the high potassium concentrations. Data obtained in this study highlights the potential risk of vinasse disposal on tropical soils to soil biota. The toxic values estimated are even more relevant when considering the usual continuous use of vinasses in crop productions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Impact of reduced tillage and organic inputs on aggregate stability and earthworm community in a Breton context in France

    NASA Astrophysics Data System (ADS)

    Paillat, Louise; Menasseri, Safya; Busnot, Sylvain; Roucaute, Marc; Benard, Yannick; Morvan, Thierry; Pérès, Guénola

    2017-04-01

    Soil aggregate stability, which refers to the ability of soil aggregates to resist breakdown when disruptive forces are applied (water, wind), is a good indicator of the sensitivity of soil to crusting and erosion and is a relevant indicator for soil stability. Within soil parameters which affect soil stability, organic matter is one of the main important by functioning as bonding agent between mineral soil particles, but soil organisms such as microorganisms and earthworms are also recognized as efficient agents. However the relationship between earthworms, fungal hyphae and aggregation is still unclear. In order to assess the influence of these biological agents on aggregate dynamics, we have combined a field study and a laboratory experiment. On a long term experiment trial in Brittany, SOERE PRO-EFELE, we have studied the effect of reduced tillage (vs. conventional tillage) combined to organic inputs (vs. mineral inputs) on earthworm community and soil stability. Aggregate stability was measured at different perturbations intensities: fast wetting (FW), slow wetting (SW) and mechanical breakdown (MB). This study showed that after 4 years of experiments, reduced tillage and organic inputs enhanced aggregate stability. Earthworms modulated aggregation process: endogeics reduced FW stability (mechanical binding by hyphae) and anecics increased SW stability (aggregate interparticular cohesion and hydrophobicity). Some precisions were provided by the laboratory experiment, using microcosms, which compared casts of the endogeic Aporectodea c. caliginosa (NCCT) and the anecic Lumbricus terrestris (LT). The presumed hyphae fragmentation by endogeics could not be highlight in NCCT casts. Nevertheless, hyphae were more abundant and C content and aggregate stability were higher in LT casts corroborating the positive contribution of anecics to aggregate stability.

  6. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    PubMed

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p < 0.01). The addition of earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  7. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory

    PubMed Central

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students. PMID:24585472

  8. Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate.

    PubMed

    Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A

    Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high

  9. Rhabditis pellio Schneider (nematoda) from the earthworm, Aporrectodea trapezoides Duges (Annelida).

    PubMed

    Poinar, G O; Thomas, G M

    1975-10-01

    Studies were conducted on the behavior of the nematode, Rhabditis pellio, in the earthworm, Aporrectodea trapezoides, from southern California. Juvenile and adult nematodes were found in the bladders and tubules of the metanephridia of the host. Similar nematodes that entered the coelom were encapsulated and incorporated into multiple capsules ("brown bodies"). It was demonstrated that this host response is an effective defense reaction since dead and dying nematodes, as well as living forms, were found in the capsules.

  10. Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands

    Treesearch

    Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant...

  11. Ecotoxicity hazard assessment of styrene.

    PubMed

    Cushman, J R; Rausina, G A; Cruzan, G; Gilbert, J; Williams, E; Harrass, M C; Sousa, J V; Putt, A E; Garvey, N A; St Laurent, J P; Hoberg, J R; Machado, M W

    1997-07-01

    The ecotoxicity of styrene was evaluated in acute toxicity studies of fathead minnows (Pimephales promelas), daphnids (Daphnia magna), amphipods (Hyalella azteca), and freshwater green algae (Selenastrum capricornutum), and a subacute toxicity study of earthworms (Eisenia fostida). Stable exposure levels were maintained in the studies with fathead minnows, daphnids, and amphipods using sealed, flowthrough, serial dilution systems and test vessels. The algae were evaluated in a sealed, static system. The earthworms were exposed in artificial soil which was renewed after 7 days. Styrene concentrations in water and soil were analyzed by gas chromatography with flame ionization detection following extraction into hexane. Test results are based on measured concentrations. Styrene was moderately toxic to fathead minnows, daphnids, and amphipods: fathead minnow: LC50 (96 hr), 10 mg/liter, and NOEC, 4.0 mg/liter; daphnids: EC50 (48 hr), 4.7 mg/liter, and NOEC, 1.9 mg/liter; amphipods: LC50 (96 hr), 9.5 mg/liter, and NOEC, 4.1 mg/liter. Styrene was highly toxic to green algae: EC50 (96 hr), 0.72 mg/liter, and NOEC, 0.063 mg/liter; these effects were found to be algistatic rather than algicidal. Styrene was slightly toxic to earthworms: LC50 (14 days), 120 mg/kg, and NOEC, 44 mg/kg. There was no indication of a concern for chronic toxicity based on these studies. Styrene's potential impact on aquatic and soil environments is significantly mitigated by its volatility and biodegradability.

  12. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland.

    PubMed

    Lehtinen, Taru; Mikkonen, Anu; Sigfusson, Bergur; Ólafsdóttir, Kristín; Ragnarsdóttir, Kristín Vala; Guicharnaud, Rannveig

    2014-02-01

    Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.

  13. CHANGES IN EARTHWORM DENSITY AND COMMUNITY STRUCTURE DURING SECONDARY SUCCESSION IN ABANDONED TROPICAL PASTURES

    Treesearch

    Xiaoming Zou; Grizelle Gonzalez

    1997-01-01

    Plant community succession alters the quantity and chemistry of organic inputs to soils. These differences in organic input may trigger changes in soil fertility and fauna1 activity. We examined earthworm density and community structure along a successional sequence of plant communities in abandoned tropical pastures in Puerto Rico. The chronological sequence of these...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, M.P.M.; Glastra, P.; Lembrechts, J.F.M.M.

    The uptake processes of {sup 134}Cs in two earthworm species were investigated as well as the effect of temperature on these processes. The results show that equilibrium concentrations in the two species differ by 1.5- to fivefold. Equilibrium concentrations range from 367 to 963 Bq g{sup {minus}1} in Lumbricus rubellus and from 920 to 1,893 g{sup {minus}1} in Eisenia foetida; biological half-lives range from 56 to 119 h and 52 to 64 h, respectively. Assimilation was two to four times higher in E. foetida and elimination rate one to two times higher in E. foetida than in L. rubellus. Further,more » the results show that temperature may affect the {sup 134}Cs concentration in these earthworms by a factor of 1.4 to 2.1 between 10 and 20 C, depending on the species. The maximum difference found within one species was a factor of 2.6. Their results show no clear effect of temperature on the assimilation, but a small negative effect on elimination, resulting in an increasing biological half-life and concentration factor with higher temperatures.« less

  15. Earthworms (Oligochaeta: Acanthodrilidae and Lumbricidae) associated with Hornsby Bend Biosolids Management Plant, Travis County, Texas, USA

    USDA-ARS?s Scientific Manuscript database

    Earthworm populations were surveyed in soils from a variety of habitats associated with the Hornsby Bend Biosolids Management Plant, Austin, Texas, from November 2009 through March 2010. Seven species of terrestrial Oligochaeta, including one species new to science, are reported from two families, ...

  16. Immobilization of Cu2+ and Cd2+ by earthworm manure derived biochar in acidic circumstance.

    PubMed

    Wang, Zhanghong; Shen, Fei; Shen, Dekui; Jiang, Yahui; Xiao, Rui

    2017-03-01

    Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700°C and biochar treated by HCl (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu 2+ and Cd 2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCl treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl CO, aromatic CC and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu 2+ and Cd 2+ adsorption on UBC were 36.56 and 29.31mg/g, respectively, which were higher than that of WBC (8.64 and 12.81mg/g, respectively), indicating that HCl treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl CO and aromatic CC). Copyright © 2016. Published by Elsevier B.V.

  17. In vitro agglutinin production by earthworm leukocytes.

    PubMed

    Stein, E A; Cooper, E L

    1988-01-01

    Leukocytes of the earthworm, Lumbricus terrestris, secrete agglutinins in vitro, as shown by measuring agglutinin titers of the culture medium and by observing secretory rosette formation by leukocytes with erythrocytes. Leukocytes form the highest percentages of secretory rosettes with rabbit erythrocytes (RBC) and with other RBC species in the order: rat, guinea pig, mouse, calf, sheep, horse, goat. Leukocytes displayed allotypic specificity by forming rosettes selectively with erythrocytes from different individual rabbits. Eight sugars inhibited rosette formation, along with the polysaccharide mannan and the glycoproteins thyroglobulin and bovine submaxillary mucin. Cyclohexamide did not affect rosette formation, suggesting that agglutinins may be preformed and stored in leukocytes prior to secretion. Leukocytes also formed E-type rosettes with erythrocytes, but apparently utilized different receptors from those of secretory rosettes since they were not inhibited by the same sugars.

  18. Development of a method for the simultaneous determination of multi-class pesticides in earthworms by liquid chromatography coupled to tandem electrospray mass spectrometry.

    PubMed

    Daniele, Gaëlle; Lafay, Florent; Pelosi, Céline; Fritsch, Clémentine; Vulliet, Emmanuelle

    2018-06-04

    Agricultural intensification, and in particular the use of pesticides, leads over the years to a loss of biodiversity and a decline of ecosystem services in cultivated zones and agricultural landscapes. Among the animal communities involved in the functioning of agro-ecosystems, earthworms are ubiquitous and recognized as indicators of land uses and cultural practices. However, little data is available on the levels of pesticides in such organisms in natura, which would allow estimating their actual exposure and the potentially resulting impacts. Thus, the objective of this study was to develop a sensitive analytical methodology to detect and quantify 27 currently used pesticides in earthworms (Allolobophora chlorotica). A modified QuEChERS extraction was implemented on individual earthworms. This step was followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The whole analytical method was validated on spiked earthworm blank samples, with regard to linearity (from 1 to 100 method limit of quantification, r 2  > 0.95), intra-day precision (relative standard deviation (RSD) < 15%), inter-day precision (RSD < 20%), recoveries (mainly in the range 70-110%), and limits of detection and of quantification (inferior to 5 ng/g for most of the pesticides). The developed method was successfully applied to determine the concentrations of pesticides in nine individuals collected in natura. Up to five of the selected pesticides have been detected in one individual. Graphical abstract.

  19. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida.

    PubMed

    Garg, V K; Gupta, Renuka

    2011-01-01

    This paper reports the optimization of cow dung (CD) spiked pre-consumer processing vegetable waste (PPVW) for vermicomposting using Eisenia fetida in a laboratory scale study. Vermicomposting process decreased carbon and organic matter concentration and increased N, P and K content in the vermicompost. The C:N ratio was decreased by 45-69% in different vermireactors indicating stabilization of the waste. The heavy metal content was within permissible limits of their application in agricultural soils. It has been concluded from the results that addition of PPVW up to 40% with CD can produce a good quality vermicompost. Whereas, growth and fecundity of E. fetida was best when reared in 20% PPVW+80% CD feed mixture. However, higher percentages of PPVW in different vermireactors significantly affected the growth and fecundity of worms. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Survival, Reproduction, Avoidance Behavior and Oxidative Stress Biomarkers in the Earthworm Octolasion cyaneum Exposed to Glyphosate.

    PubMed

    Salvio, Carla; Menone, Mirta L; Rafael, Sergio; Iturburu, Fernando G; Manetti, Pablo L

    2016-03-01

    The massive use of glyphosate (GLY) in several countries has increased the interest in investigating its potential adverse effects in non-target organisms. The aim of the present study was to assess the potential effects in survival and reproduction; avoidance behavior and oxidative stress under short-term (48 h) and subchronic exposures (28 days) to GLY in the earthworm Octolasion cyaneum. After 48 h no significant changes in the behavior was observed. In addition, a lower catalase activity at 498 μg GLY kg(-1) dry soil section relative to earthworms from the control section was obtained. After 28 days of exposure inhibition of glutathione S-transferase activity was observed at 535 μg GLY kg(-1) dry soil while no changes in the other endpoints were detected. These results indicate that environmentally relevant concentrations of GLY (up to 996 µg GLY kg(-1) dry soil) did not exert a toxic effect to O. cyaneum.