Science.gov

Sample records for epigeic earthworm eisenia

  1. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (eisenia fetida) in vermicompost.

    PubMed

    Hong, Sung Wook; Lee, Ju Sam; Chung, Kun Sub

    2011-05-01

    We analyzed the bacterial community structure of the intestines of earthworms and determined the effect of enzyme producing microorganisms on the biomass of earthworms in vermicompost. Fifty-seven bacterial 16S rDNA clones were identified in the intestines of earthworms by using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Entomoplasma somnilux and Bacillus licheniformis were the dominant microorganisms; other strains included Aeromonas, Bacillus, Clostridium, Ferrimonas, and uncultured bacteria. Among these strains, Photobacterium ganghwense, Aeromonas hydrophila, and Paenibacillus motobuensis were enzyme-producing microorganisms. In the mixtures that were inoculated with pure cultures of A. hydrophila WA40 and P. motobuensis WN9, the highest survival rate was 100% and the average number of earthworms, young earthworms, and cocoons were 10, 4.00-4.33, and 3.00-3.33, respectively. In addition, P. motobuensis WN9 increased the growth of earthworms and production of casts in the vermicompost. These results show that earthworms and microorganisms have a symbiotic relationship.

  2. Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida.

    PubMed

    Yang, Guiling; Chen, Chen; Wang, Yanhua; Peng, Qi; Zhao, Huiyu; Guo, Dongmei; Wang, Qiang; Qian, Yongzhong

    2017-04-03

    As commonly used pesticides, chlorpyrifos (CPF), fenobucarb (FEN), clothianidin (CLO) and acetochlor (ACE) are widely applied on crops worldwide. In this study, the combined toxicities of their binary, ternary and quaternary mixtures were evaluated using the earthworm Eisenia fetida as test organism. Mixture toxicities were studied using the combination index (CI) method and visualized by isobolograms, and then data were compared with traditional concentration addition (CA) and independent action (IA) models. Two binary mixtures of CPF+FEN and FEN+ACE, two ternary mixtures of CPF+CLO+FEN and CPF+FEN+ACE, and quaternary mixture of CPF+FEN+ACE+CLO exhibited a clear synergistic effect. The CI method was compared with the classical models of CA and IA, indicating that the CI method could accurately predict the combined toxicities of the chemicals. The results indicated that it was difficult to predict combined effects of these pesticides from mode of action alone because of existence of complicated synergistic and antagonistic responses. More attention should be paid to the potential synergistic effects of chemicals interactions, which might cause serious ecological problems.

  3. Vermicomposting of Taro (Colocasia esculenta) with two epigeic earthworm species.

    PubMed

    Kurien, J; Ramasamy, E V

    2006-07-01

    The bioconversion potential of two epigeic species (Eisenia foetida Sav. and Eudrilus eugeniae Kinberg) of earthworms was assessed in terms of efficiency and sustainability of vermicomposting of Taro (Colocasia esculenta (Linn) Schott in Schott and Endl). In different vermireactors, each run in triplicates with one of the two species of earthworms, and 60 g of 6:1 Colocasia:cowdung as feed, vermicasts were produced with steadily increasing output in all the reactors. E. eugeniae was found to be more efficient producer of vermicasts than E. foetida. In all reactors, the earthworms grew well, increasing their weights and number.

  4. Species-Specific Effects of Epigeic Earthworms on Microbial Community Structure during First Stages of Decomposition of Organic Matter

    PubMed Central

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Background Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. Methodology/Principal Findings To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Conclusions/Significance Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is

  5. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes

    PubMed Central

    Gómez-Brandón, María; Aira, Manuel; Lores, Marta; Domínguez, Jorge

    2011-01-01

    Background Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei is capable of altering the microbiological properties of fresh organic matter through gut associated processes; and if these direct effects are related to the earthworm diet. Methodology To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (fluorescein diacetate hydrolysis) in the earthworm casts derived from three types of animal manure (cow, horse and pig manure), which differed in microbial composition. Principal Findings The passage of the organic material through the gut of E. andrei reduced the total microbial biomass irrespective of the type of manure, and resulted in a decrease in bacterial biomass in all the manures; whilst leaving the fungi unaffected in the egested materials. However, unlike the microbial biomass, no such reduction was detected in the total microbial activity of cast samples derived from the pig manure. Moreover, no differences were found between cast samples derived from the different types of manure with regards to microbial community structure, which provides strong evidence for a bottleneck effect of worm digestion on microbial populations of the original material consumed. Conclusions/Significance Our data reveal that earthworm gut is a major shaper of microbial communities, thereby favouring the existence of a reduced but more active microbial population in the egested materials, which is of great importance to understand how biotic interactions within the decomposer

  6. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta).

    PubMed

    Suthar, Surindra

    2009-04-15

    Efforts have been made in this study to stabilize the sewage sludge mixed with sugarcane trash in four different proportions: 20% (T(1)); 40% (T(2)); 60% (T(3)) and 80% (T(4)), under laboratory conditions using epigeic earthworm (Oligochaeta) Eisenia fetida. The composting potential of worm was also evaluated in 100% sewage sludge treatment (T(5)). The changes in chemical properties of substrate was measured at the end. The vermicomposted material showed decrease in organic C (4.8-12.7%) and exchangeable K (3.2-15.3%) content, whereas increase in total N (5.9-25.1%) and available P (1.2-10.9%), exchangeable Ca (2.3-10.9%) and exchangeable Mg (4.5-14.0%) contents. Vermicomposting process caused considerable reduction in concentration of diethylene-triaminepentaacetic acid (DTPA) extractable metals: Cu (4.98-30.5%), Fe (5.08-12.64%), Mn (3.31-18.0%), Zn (2.52-15.90%) and Pb (2.38-20.0%). E. fetida showed the better growth performances in first three treatments (T(1)-T(3)) possibly due to higher content of organic matter (supplied by bulking agent, i.e. sugarcane trash). The earthworm mortality was higher in vermibeds those contained more sludge proportions. Study revealed that vermicomposting might be an efficient technology to convert negligible municipal sewage sludge into value-added products. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile might be useful to convert noxious sludge into useful products, at low-input basis.

  7. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use.

  8. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition.

    PubMed

    Manna, M C; Jha, S; Ghosh, P K; Acharya, C L

    2003-07-01

    An experiment was conducted during 1998-1999, in a deciduous forest located in the semi-arid tropics of central India, to evaluate the suitability of different forest litters as food material for the tropical epigeic earthworms i.e. Eisenia fetida (Savigny), Perionyx excavatus (Perrier) and Dicogaster bolaui (michaelsen). The aim was to examine the influence of these earthworms on the decomposition processes of three types of forest litters i.e. Tectona grandis (teak), Madhuca indica (mahua) and Butea monosperma (palas), on the maintenance of quality in a vermicomposting system, and to assess the effect of applications of in situ prepared vermicomposts on the growth of forest trees. The results indicated that T. grandis litter was the most suitable food material for the earthworms possibly because it contained high reserves of mineral nutrients. Comparisons of the survival and reproduction rates of the three epigeic earthworm species indicated that a higher reproduction rate was maintained for E. fetida compared to P. excavatus and D. bolaui in the decomposition of these forest litters. The rates of growth and population increases of E. fetida approximately doubled after 12 weeks of litter decomposition. The litter decomposition process was associated strongly with the quality of the materials and their chemical composition. Irrespective of earthworm inoculations, the levels of available nutrient such as NH(4)-N, NO(3)-N, available P and K increased significantly (pM. indica litter compost>B. monosperma litter compost. The mature decomposed litter had lower C/N ratios (11.3-24.8:1), water-soluble carbon (0.30-0.58%), water-soluble carbohydrates (0.35-0.71%) and larger cation exchange capacity/total organic carbon ratios than the values in the parent forest litter. The lignin content increased with maturation with a concomitant decrease in cellulose resulting in higher lignin/cellulose ratios. Application of all three

  9. Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida).

    PubMed

    Wang, Kai; Mu, Xiyan; Qi, Suzhen; Chai, Tingting; Pang, Sen; Yang, Yang; Wang, Chengju; Jiang, Jiazhen

    2015-04-01

    Neonicotinoid insecticides are new class of pesticides and it is very meaningful to evaluate the toxicity of guadipyr to earthworm (Eisenia fetida). In the present study, effects of guadipyr on reproduction, growth, catalase(CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE) and DNA damage in earthworm were assessed using an artificial soil medium. Guadipyr showed low toxicity to earthworms and did not elicit an effect on earthworm reproduction or growth in artificial soils at concentrations <100mg/kg. However, after exposure to guadipyr, the activity of SOD and CAT in earthworm increased and then decreased to control level. AChE activity decreased at day 3 at 50 and 100mg/kg and then increased to control level. Our data indicate that guadipyr did not induce DNA damage in earthworms at concentration of <100mg/kg.

  10. Earthworms newly from Mongolia (Oligochaeta, Lumbricidae, Eisenia)

    PubMed Central

    Blakemore, Robert J.

    2013-01-01

    Abstract Two new megadrile earthworms from the steppes, the first species wholly from Outer Mongolia, are ascribed to the partially parthenogenetic Eisenia nordenskioldi (Eisen, 1879) species-complex. Taxonomic justification of sympatric Eisenia nordenskioldi mongol and Eisenia nordenskioldi onon ssp. n. are supported by mtDNA COI barcodes. The unreliability of molecular differentiation based on voucher names compared to definitive types is again demonstrated, as pertains to the ultimate Eisenia andrei Bouché, 1972 synonym of the Eisenia fetida (Savigny, 1826) sibling species-complex composed of more than a dozen prior names. Similar species described from Northeast China [formerly Manchuria] and North Korea are briefly considered, albeit they are intermittently held in synonymy of cosmopolitan Aporrectodea rosea (Savigny, 1826) along with many other taxa including some exotic lumbricids initially found in India. Japanese and North American lumbricids are also mentioned. Distributions are discussed and an annotated checklist of all nine Siberian/sub-arctic Eisenia nordenskioldi ssp. is appended. PMID:23798894

  11. Influence of organic wastes on the biology of epigeic earthworm, Perionyx excavatus during different seasons.

    PubMed

    Biradar, Pulikeshi M; Biradar, Vijaykumar A

    2015-09-01

    Epigeic earthworm, Perionyx excavatus were cultured on a variety of organic wastes amended with cattle manure in different seasons to know the influence of different organic waste-diets and seasonal environmental factors on life activities of epigeic earthworm, Perionyx excavatus. Results showed that growth and reproductive strategies of P. excavatus varied with different organic waste-diets and seasons. Growth, maturity and reproduction of worms in all waste-diets were significantly more during monsoon followed by winter and summer seasons. All agricultural and garden organic wastes served as a source of balanced diet for this worm during all three seasons. Further, mixed organic waste and soft (straw-based) wastes appeared more congenial for overall life activities of this worm than that of hard (pod-based) wastes (P < 0.001, P < 0.05).

  12. Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida.

    PubMed

    Xu, Peng; Wang, Yinghuan; Zhang, Yanfeng; Li, Jianzhong; Wang, Huili

    2014-10-01

    Earthworms represent an important food source for many vertebrates and as a result, predators may encounter toxic effects via the food chain from consumption of contaminated worms. Therefore, including an assessment of xenobiotic to worms in risk assessment procedures is advisable. Here we studied the acute toxicity, bioaccumulation and elimination of ethofumesate enantiomers in earthworm, Eisenia fetida, in a soil. A slight difference in toxicity to earthworm between two enantiomers was found, and the calculated LC50 values for (+)-, rac- and (-)-ethofumesate were 4.51, 5.93 and 7.98 μg/cm(2), respectively, indicating that the acute toxicity of ethofumesate enantiomers was enantioselective. Earthworm can uptake ethofumesate but the bioaccumulation curve did not reach the steady state. In the elimination experiment, the concentrations of ethofumesate in earthworm declined following a first-order decay model with a short half life of 1.8d. The bioaccumulation and elimination of ethofumesate in earthworm were both nonenantioselective. In combination with other studies, a linear relationship between Log BSAFs and Log Kow was observed, and the Log BSAFs increased with increasing Log Kow. But the elimination rate did not show any correlation with the Kow value.

  13. Verminephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida (Savigny).

    PubMed

    Pinel, Nicolás; Davidson, Seana K; Stahl, David A

    2008-09-01

    A Gram-negative, flagellated, heterotrophic, catalase-negative, rod-shaped bacterium previously identified as an earthworm symbiont was isolated from nephridia of the earthworm Eisenia foetida. Comparisons of 16S rRNA gene sequences indicated its relatedness to the betaproteobacterial genus Acidovorax and the novel isolates shared 92-94% sequence similarity with recognized species of this genus. Gene sequence phylogenies revealed that the group of earthworm symbionts formed a cohesive and independent clade. The DNA G+C content was 67.0+/-0.2 mol%. Major fatty acids were C(16:0), C(16:1)omega7c and C(17:0) cyclo. While capable of growing in fully aerated media, all isolates favoured low oxygen concentrations and all required biotin or a mix of amino acids in order to grow on defined mineral media. Based on phylogenies inferred from three housekeeping gene sequences (gap, recA and rpoC), DNA-DNA hybridization values, the unique ecology and the distinct physiology of the novel strains, the new genus Verminephrobacter gen. nov. is proposed for the earthworm nephridial symbionts. The name Verminephrobacter eiseniae sp. nov. is proposed for the type species with strain EF01-2(T) (=ATCC BAA-1489(T)=DSM 19286(T)) as the type strain of the type species.

  14. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  15. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    PubMed

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Silerová, Marcela; Roubalová, Radka; Skanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.

  16. Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth.

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2001-02-01

    The potential of two epigeic species (Eudrilus eugeniae Kinberg, and Perionyx excavatus Perrier) and two anecic species (Lampito mauritii Kinberg and Drawida willsi Michaelson) of earthworms was assessed in terms of efficiency and sustainability of vermicomposting water hyacinth (Eichhornia crassipes, Mart. Solm.). In different vermireactors, each run in duplicate with one of the four species of earthworms, and 75 g of 6:1 water hyacinth:cowdung as feed, vermicasts were produced with steadily increasing output in all the reactors. E. eugeniae was by far the most efficient producer of vermicasts, followed by the other epigeic P. excavatus. The two anecics came next, with D. willsi being the least effective which could generate only about half the quantity of vermicasts achieved in a corresponding time by E. eugeniae. In all the reactors, the earthworms grew well, increasing their weights by more than 250%. The maximum net gain of weight (average 30.7 g) was by E. eugeniae, followed by P. excavatus, L. mauritii and D. willsi. This trend, which followed the efficiency of vermicast production, was also shown in terms of reproductive ability as measured by the number of offspring produced by the four species.

  17. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  18. Accumulation of heavy metals in the earthworm Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Collier, J.

    1980-01-01

    Conversion of waste-activated sludge into egesta by the earthworm Eisenia foetida resulted in neither an increase nor decrease of 0.1 N HCl-extractable cadmium, copper, nickel, lead, or zinc. The addition of 2500 ppM copper as copper sulfate to activated sludge caused 100% mortality whthin 1 week, though feeding upon nonamended activated sludges with up to 1500 ppM copper over several months was innocuous. Amendment of sludge with 10, 50, and 100 ppM Cd as CdSO/sub 4/ resulted in 3.90-, 2.04-, and 1.44-fold concentrations in the earthworm over the quantities present in the sludge, with a range of 118 to 170 ppM being found on exposure to the highest level for periods of 1 to 5 weeks at 25/sup 0/C. In field trials with nonamended sludge, however, containing 12 to 27 ppM Cd, biweekly sampling for 28 weeks revealed accumulations in E. foetida ranging from 8 to 46 ppM; control earthworms not exposed to culture media with easily measurable Cd levels contained 0.3 to 2 ppM Cd. Upwards to about 50 ppM Ni, 325 ppM Pb, and 250 ppM Zn accumulated from sludges amended with ionic soluble forms of these metals. In the field, where these metals ranged from 2 to 46, 1 to 53, and 68 to 210 ppM, respectively, an upper concentration of about 50 ppM Ni, 55 ppM Pb, and 250 ppM Zn were found in the earthworm. Distinctions were made between accumulable and concentratable and a discussion is provided to show that each of the most problematic heavy metals, Cd, Zn, Ni, Pb, and Cu, may accumulate or concentrate in the earthworm.

  19. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides.

    PubMed

    Wang, Kai; Pang, Sen; Mu, Xiyan; Qi, Suzhen; Li, Dongzhi; Cui, Feng; Wang, Chengju

    2015-08-01

    Earthworms (Eisenia fetida) are one of the most abundant terrestrial species, and play an important role in maintaining the ecological function of soil. Neonicotinoids are some of the most widely used insecticides applied to crops. Studies on the effect of neonicotinoids on E. fetida are limited. In the present work, we evaluated the effects of five neonicotinoid insecticides on reproduction, cellulase activity and the tissues of E. fetida. The results showed that, the LC50 of imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid was 3.05, 2.69, 4.34, 0.93 and 2.68mgkg(-1), respectively. They also could seriously affect the reproduction of E. fetida, reducing the fecundity by 84.0%, 39.5%, 54.3%, 45.7% and 39.5% at the sub-lethal concentrations of 2.0, 1.5, 0.80, 2.0 and 1.5mgkg(-1), respectively. The cellulase activity of E. fetida was most sensitive to clothianidin. Significant disruption of the epidermal and midgut tissue was observed after 14d exposure. In summary, we demonstrate that imidacloprid, acetamiprid, nitenpyram, clothianidin and thiacloprid have high toxic to earthworm, and can significantly inhibited fecundity and cellulase activity of E. fetida, and they also damage the epidermal and midgut cells of earthworm.

  20. Accumulation of methylmercury in the earthworm, Eisenia foetida, and its effect on regeneration

    SciTech Connect

    Beyer, W.N.; Cromartie, E.; Moment, G.B.

    1985-08-01

    Earthworms provide an appropriate model for evaluating the environmental hazards of metals in soil, and they are also excellent organisms for studying the process of regeneration. Two studies have found that concentrations of mercury in earthworms were higher than those in the soil where they lived. This study investigates the accumulation of methylmercury in the earthworm, Eisenia foetida (Savigny), and its effect on regeneration after excision of the caudal end.

  1. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT.

    PubMed

    Lin, Zhong; Li, Xiao-min; Li, Yong-tao; Huang, De-yin; Dong, Jun; Li, Fang-bai

    2012-05-01

    Effects of two ecological earthworm species (epigeic Eisenia foetida and endogeic Amynthas robustus E. Perrier) with different densities (15 and 30 individuals per kg of soil) on the removal of soil 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) with two pollution levels (2 and 4 mg kg(-1)) were investigated. Concentrations of DDT and its metabolites, including 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU), were monitored after 60, 180, and 360 days of incubation. The results obtained showed that both earthworm species can significantly enhance degradation of soil DDT to its metabolites. For E. foetida, the higher earthworm density showed significantly higher rate of DDT degradation than the lower one. Anaerobic reductive dechlorination was the main degradation pathway over 180 days of incubation, while the aerobic dechlorination process was promoted between 180 and 360 days of incubation. Some earthworm amended treatments showed significantly higher microbial biomass carbon and nitrogen than the control, which suggested that earthworms might enhance the microbial degradation of DDT. Both earthworm species would have the potential to be applied to enhance the remediation of agricultural lands polluted by DDT.

  2. Characterization of two endoglucanases for the classification of the earthworm, Eisenia fetida Waki.

    PubMed

    Akazawa, Shin-ichi; Ikarashi, Yuki; Yarimizu, Jun; Yokoyama, Keisuke; Kobayashi, Tomoya; Nakazawa, Hikaru; Ogasawara, Wataru; Morikawa, Yasushi

    2015-01-01

    Eisenia fetida and Eisenia andrei are vermicomposting species that are used as model animals for testing chemical material toxicology. Eisenia spp. are grown commercially in various fields in Japan. However, these two species have not been classified because it is difficult to distinguish them morphologically; thus, all bred earthworms are called E. fetida. However, it has been proposed that these two species have different expression regulation mechanisms. Here, we classified a sample of earthworms purchased from several farms, confirming that both E. fetida and E. andrei are present in Japanese earthworm breeding programs. We also characterized two highly active endoglucanases (EfEG1 and EfEG2) from the E. fetida Waki strain, which contained strong fibrinolytic enzymes for improving human health. We confirmed that EfEG1 is 1371 bp long and belongs to GHF9. Thus, E. fetida Waki may have commercial application for biomass utilization and as a dietary health supplement.

  3. Protein extraction from the earthworm Eisenia fetida for 2-DE.

    PubMed

    Wang, Xing; Chang, Li; Wang, Gaochan; Sun, Zhenjun; Ma, Hongbo; Sun, Qian; Li, Jing

    2010-03-01

    We identified an efficient protocol for extracting proteins from whole earthworm, Eisenia fetida, for 2-DE. Sample preparation is a critical step in a 2-DE proteome approach and is absolutely essential for obtaining good results. Six protein extraction protocols based on different protein precipitation agents were tested and evaluated using 2-DE. The methods generated remarkably different 2-DE protein spot patterns. We conclude that trichloroacetic acid (TCA)-A eliminates interfering compounds, thus allowing for the efficient resolubilization of proteins. TCA-A gives good distinction, more bands in 1-DE gels, and the most number of protein spots in 2-DE gels. It is also rapid, provides the higher protein yield, and has the less number of steps. To demonstrate the quality of the extracted proteins, we cut several protein spots that were common to four methods from 2-DE gels, analyzed them using MALDI-TOF/TOF MS, and tentatively identified them. The classic TCA-A method proved to be most useful as a standard method of extracting proteins from E. fetida.

  4. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species.

    PubMed

    Rorat, Agnieszka; Suleiman, Hanine; Grobelak, Anna; Grosser, Anna; Kacprzak, Małgorzata; Płytycz, Barbara; Vandenbulcke, Franck

    2016-02-01

    Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.

  5. First evidence for the presence of efflux pump in the earthworm Eisenia andrei.

    PubMed

    Hackenberger, Branimir K; Velki, Mirna; Stepić, Sandra; Hackenberger, Davorka K

    2012-01-01

    Efflux pumps are transport proteins involved in the extrusion of toxic substrates from cells to the external environment. Activities of efflux pumps have been found in many organisms, however such activity has not been evidenced in earthworms. Adult Eisenia andrei earthworms were exposed to efflux modulators - verapamil (a known inhibitor of efflux pump protein) and dexamethasone (a known inducer of efflux activity) - and the amount of absorbed fluorescent dye rhodamine B was measured. The results showed that verapamil inhibited efflux activity and decreased removal of rhodamine B, whereas dexamethasone induced efflux activity and increased removal of rhodamine B. This is the first evidence of the presence of efflux pump in earthworm Eisenia andrei. Since earthworms are often used as test organisms due to their sensitive reactions towards environmental influences, the discovery of efflux pump activity can contribute to the better understanding of toxicity of certain pollutants.

  6. Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within host egg capsules using type IV pili

    PubMed Central

    Davidson, Seana K.; Dulla, Glenn F.; Go, Ruth A.; Stahl, David A.; Pinel, Nicolás

    2014-01-01

    The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer through described mechanisms of DNA exchange including natural transformation (NT). However, studies of the significance of NT have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by NT in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP) apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system. PMID:25400622

  7. Radiocesium concentrations in epigeic earthworms at various distances from the Fukushima Nuclear Power Plant 6 months after the 2011 accident.

    PubMed

    Hasegawa, Motohiro; Ito, Masamichi T; Kaneko, Shinji; Kiyono, Yoshiyuki; Ikeda, Shigeto; Makino, Shun'ichi

    2013-12-01

    We investigated the concentrations of radiocesium in epigeic earthworms, litter, and soil samples collected from forests in Fukushima Prefecture 6 months after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Radiocesium concentrations in litter accumulated on the forest floor were higher than those in the soil (0-5 cm depth). The highest average (134+137)Cs concentrations in earthworms (approximately 19 Bq g(-1) of wet weight with gut contents and 108 Bq g(-1) of dry weight without gut contents) were recorded from a plot that experienced an air dose rate of 3.1 μSv h(-1), and earthworm concentrations were found to increase with litter and/or soil concentrations. Average (134)Cs and (137)Cs concentrations (with or without gut contents) were intermediate between accumulated litter and soil. Different species in the same ecological groups on the same plots had similar concentrations because of their use of the same habitats or their similar physiological characteristics. The contribution of global fallout (137)Cs to earthworms with gut contents was calculated to be very low, and most (137)Cs in earthworms was derived from the Fukushima accident. Transfer factors from accumulated litter to earthworms, based on their dry weights, ranged from 0.21 to 0.35, in agreement with previous field studies.

  8. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida.

    PubMed

    Wani, K A; Mamta; Rao, R J

    2013-04-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste.

  9. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    PubMed Central

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  10. Localization and characterization of sulfated glycosaminoglycans in the body of the earthworm Eisenia andrei (Oligochaeta, Annelida).

    PubMed

    Amaral, Hanna B F; Mateus, Samuel H; Ferreira, Laina C; Ribeiro, Cristiane C; Palumbo-Junior, Antonio; Domingos, Maria-Aparecida O; Cinelli, Leonardo P; Costa-Filho, Adilson; Nasciutti, Luiz E; Silva, Luiz-Claudio F

    2011-07-01

    The aim of this study was to characterize the compartmental distribution of sulfated glycosaminoglycans (S-GAGs) in adults and their occurrence during the development of the earthworm Eisenia andrei. S-GAGs were extracted from the body of earthworms to identify their composition and the time of their appearance and disappearance in embryonic, newborn, juvenile, and adult earthworms. S-GAGs were also analyzed in earthworm tissue using histochemical metachromatic staining. Purified S-GAGs obtained from the whole body of adult earthworms were composed of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, an unknown, highly sulfated polysaccharide (HSP) was detected. In order to characterize specifically the S-GAG composition in the integument, earthworms were dissected and as much as possible of their viscera was removed. HS and CS were the predominant sulfated polysaccharides in the dissected integument, whereas in viscera, CS, HS and the HSP were found in proportions similar to those identified in the body. The qualitative S-GAG composition in juveniles was similar to that obtained from adult earthworms. CS was the predominant S-GAG in newborn earthworms, accompanied by lesser amounts of HS and by tiny amounts of the HSP. This study provides a detailed descriptive account of the pattern of S-GAG synthesis during development, and also the characterization of the tissue distribution of these compounds in the body of earthworms.

  11. New methodology for determining chronic effects on the earthworm, Eisenia foetida

    SciTech Connect

    Garvey, N.A.

    1994-12-31

    The study design incorporates the exposure of two generations of earthworms, Eisenia foetida, and includes the sensitive developmental stage following emergence from the cocoon. Adult earthworms (F{sub 0} generation) were exposed to nominal concentrations of 16, 31, 63, 125 and 250 mg A.I. copper sulfate/kg in composted cattle manure for 14 days. Cocoons were collected six times throughout the F{sub 0} generation exposure. Upon collection, individual cocoons were weighed and transferred to separate aliquots of treated and untreated exposure manure and were allowed to hatch. Hatched F{sub 1} earthworms were allowed to mature for 21 days before being counted and individually weighed. Parameters monitored and statistically analyzed were: F{sub 0} burrowing time at initiation, F{sub 0} survival following 7 and 14 days of exposure, cocoon production, cocoon weight, cocoon viability, number and weight of F{sub 1} earthworms at 21 days post-hatch. The following endpoints clearly demonstrated chronic effects in at least the highest exposure concentration: cocoon production, mean cocoon weight, sum of cocoon weights, cocoon viability, number and weight of surviving earthworms (F{sub 1}) at 21 days post-hatch, mean and total earthworm (F{sub 1}) biomass at 21 days post-hatch. Although the acute LC50 of copper sulfate to Eisenia foetida was previously determined to be 1,100 {+-} 380 mg copper sulfate/kg, this methodology indicates that chronic toxicity effects can be observed at substantially lower concentrations.

  12. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida.

    PubMed

    Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei

    2014-10-01

    The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.

  13. Role of epigeic earthworms on trophic group of nematodes during organic matter decomposition in litter bags under tomato cropping on ultisol

    NASA Astrophysics Data System (ADS)

    Alam, Syamsu; Lisnawati, Kilowasid, Laode Muhammad Harjoni; Darwis, Asniah, Nurmas, Andi

    2015-09-01

    Epigeic earthworms are often used to restore of soil quality. Trophic group of nematodes plays an important role in driving of decomposition rate of organic matter. Ultisols is characterized with the soil biological quality that is not suitable for the development of vegetable crops. The objective of this study was to analyze the effect of epigeic earthworms on the abundance of nematode trophic groups during the decomposition of organic material in litter bags under cropping of tomato (L. esculentum Mill.) on Ultisols. Epigeic species of earthworms (Lumbricus sp.) were used to modify the soil environment. The experiment treatment consisted of nine combinations of three types of organic matter and three individual levels of earthworms. The organic material consisted of litters of C. odorata, I. cylindrica and Colopogonium sp. The number of earthworms consisted of 0, 20 and 40 individuals plot-1. Each combination of each litter type and number of earthworms was repeated three times in an experimental randomized block design. Research found three trophic groups of nematodes, namely root-herbivorous, bacterivorous and predaceous in the litter bags. Abundance of root-herbivorous between combinations was significantly different at 30 days after exposure. Abundance of bacterivorous nematodes among treatments was significant at 60 days after exposure, which at the 30 and 90 days were not significant. Abundance of predaceous was differed significantly at the 60 and 90 days, and at the 30 days was not significantly different. Constant of decomposition rate of each organic matter under different number of earthworms was similar. Coefficient correlation showed that relation between the constant of decomposition rate with abundance of root-herbivorous was positive at 30 days and negative with bacterivorous at the 90 days. Research concluded that the introduction of epigeic earthworms influenced trophic group dynamics of nematodes during the decomposition of organic material

  14. A better method for assessing sublethal effects of soils to the earthworm Eisenia foetida

    SciTech Connect

    Gibbs, M.H.; Wicker, L.F.; Stewart, A.J.

    1994-12-31

    The authors have developed and tested a procedure which allows quantification of growth and reproductive effects of contaminated soils to the earthworm, Eisenia foetida. The procedure monitors isolated pairs of earthworms and generates a higher ratio of data per organism than other commonly used procedures which require larger numbers of earthworms per experimental unit. The procedure also incorporates an accurate technique for measuring adult growth. The method has high sensitivity and is cost-effective. The method was applied to a variety of soil-testing problems to demonstrate its versatility and provide validation. A food-and-substrate trial demonstrated the sensitivity of the method and the need for food supplementation in OECD artificial soil to stimulate earthworm reproduction. A trial to examine a soil bioremediation technology revealed the advantage of measuring both growth and reproduction and highlighted the usefulness of a single integrated measure of these two responses. The method then was applied as a fast-screening method for field soils in a large-scale ecological risk assessment. Finally, a reference toxicant, applied in dilution series, demonstrated that responses of Eisenia foetida to their method are similar to their responses to the OECD artificial soil test. Collectively, results of this study indicate that their procedure can be used both for regulatory and compliance needs within the framework of ecological risk assessment.

  15. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae).

    PubMed

    Hackenberger, Branimir K; Jarić-Perkusić, Davorka; Stepić, Sandra

    2008-10-01

    In this study, adult Eisenia fetida earthworms were exposed to the sub-lethal concentrations of temephos using the contact filter paper test procedure. Since temephos is an organophosphate pesticide, its effects on earthworms were determined by measuring ChE inhibition--a known biomarker of exposure. The ChE activity was measured after a short time of exposure--1 and 2 h. As expected, the lowest ChE activity (72.70% and 38.03% inhibition) was measured at the highest concentration of temephos (120 ng cm(-2)) applied. More interestingly, at the 0.12 ng cm(-2) concentration the ChE activity increased up to 36.28% of activity in the control in all three conducted experiments. Dose-response curves showed an inverted U-shape characteristic for hormesis. This hormetic-like effect could be important for health status of an earthworm.

  16. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils.

    PubMed

    Duan, Xiongwei; Xu, Meng; Zhou, Youya; Yan, Zengguang; Du, Yanli; Zhang, Lu; Zhang, Chaoyan; Bai, Liping; Nie, Jing; Chen, Guikui; Li, Fasheng

    2016-02-01

    The bioavailability and toxicity of metals in soil are influenced by a variety of soil properties, and this principle should be recognized in establishing soil environmental quality criteria. In the present study, the uptake and toxicity of Cu to the earthworm Eisenia fetida in 15 Chinese soils with various soil properties were investigated, and regression models for predicting Cu toxicity across soils were developed. The results showed that earthworm survival and body weight change were less sensitive to Cu than earthworm cocoon production. The soil Cu-based median effective concentrations (EC50s) for earthworm cocoon production varied from 27.7 to 383.7 mg kg(-1) among 15 Chinese soils, representing approximately 14-fold variation. Soil cation exchange capacity and organic carbon content were identified as key factors controlling Cu toxicity to earthworm cocoon production, and simple and multiple regression models were developed for predicting Cu toxicity across soils. Tissue Cu-based EC50s for earthworm cocoon production were also calculated and varied from 15.5 to 62.5 mg kg(-1) (4-fold variation). Compared to the soil Cu-based EC50s for cocoon production, the tissue Cu-based EC50s had less variation among soils, indicating that metals in tissue were more relevant to toxicity than metals in soil and hence represented better measurements of bioavailability.

  17. Self-Assemblage and Quorum in the Earthworm Eisenia fetida (Oligochaete, Lumbricidae)

    PubMed Central

    Zirbes, Lara; Brostaux, Yves; Mescher, Mark; Jason, Maxime; Haubruge, Eric; Deneubourg, Jean-Louis

    2012-01-01

    Despite their ubiquity and ecological significance in temperate ecosystems, the behavioural ecology of earthworms is not well described. This study examines the mechanisms that govern aggregation behaviour specially the tendency of individuals to leave or join groups in the compost earthworm Eisenia fetida, a species with considerable economic importance, especially in waste management applications. Through behavioural assays combined with mathematical modelling, we provide the first evidence of self-assembled social structures in earthworms and describe key mechanisms involved in cluster formation. We found that the probability of an individual joining a group increased with group size, while the probability of leaving decreased. Moreover, attraction to groups located at a distance was observed, suggesting a role for volatile cues in cluster formation. The size of earthworm clusters appears to be a key factor determining the stability of the group. These findings enhance our understanding of intra-specific interactions in earthworms and have potential implications for extraction and collection of earthworms in vermicomposting processes. PMID:22396774

  18. Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test.

    PubMed

    Ciğerci, İbrahim Hakkı; Ali, Muhammad Muddassir; Kaygısız, Şöhret Yüksek; Liman, Recep

    2016-02-01

    Cobalt and its different compounds are extensively used worldwide and considered as possible environmental pollutant. Earthworms are useful model organism and its different species are used to monitor soil pollution. No study has been found to detect cobalt chloride (CoCl2) genotoxicity in earthworms. So, current study aimed to evaluate CoCl2 induced genotoxicity in Eisenia hortensis earthworms coelomocytes by alkaline comet assay (CA) and micronucleus (MN) test. The earthworms (n = 10 for each group) were exposed to different series of CoCl2 concentrations (100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm) to find LD50. The LD50 for CoCl2 was found at 226 ppm. Then, doses of LD50/2, LD50 and 2XLD50 for 48 h were used. CA and MN demonstrated the significant increase (P < 0.05) in DNA damage and chromosomal aberrations. Dose dependent relationship was found. Highest DNA damage and chromosomal aberrations were noticed at 2XLD50. The results concluded that CoCl2 induced DNA damage, cytokinesis failure and chromosomal aberrations in E. hortensis earthworms.

  19. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    PubMed

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  20. Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field-contaminated soil

    SciTech Connect

    Belfroid, A.; Berg, M. van den; Seinen, W.; Hermens, J.; Gestel, K. van

    1995-04-01

    Uptake, accumulation, and elimination of hydrophobic organic chemicals in earthworms (Eisenia andrei) exposed to field-contaminated Volgermeerpolder soil was studied. Earthworms were able to take up chlorobenzenes and polychlorobiphenyls (PCBs), but body burdens did not exceed concentrations measured in the soil. For the chlorobenzenes, steady-state concentrations in the worms and biota-to-soil accumulation factor (BSAF) values were much smaller than expected based on earlier experiments, suggesting a decreased bioavailability in the Volgermeerpolder soil. Comparison of the PCB accumulation pattern in worms to the pattern in soil showed that biotransformation of the studied PCBs is of minor importance in this species. Elimination of all chemicals studied was monophasic, with the exception of hexachlorobenzene, which showed a biphasic elimination. The elimination half-life for the initial fast phase of this compound is comparable to the elimination measured in previous studies. Elimination rate constants decreased with increasing log K{sub ow}.

  1. Effects of PAHs and dioxins on the earthworm Eisenia andrei: a multivariate approach for biomarker interpretation.

    PubMed

    Sforzini, Susanna; Moore, Michael N; Boeri, Marta; Bencivenga, Mauro; Viarengo, Aldo

    2015-01-01

    In this study, a battery of biomarkers was utilised to evaluate the stress syndrome induced in the earthworm Eisenia andrei by exposure to environmentally realistic concentrations of benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) in OECD soil. The set of tests was then employed to assess the toxicity of field soils contaminated with organic xenobiotic compounds (such as PAHs, dioxins and PCBs). The results highlighted an impairment of immune and metabolic functions and genotoxic damage in worms exposed also to lower bioavailable concentrations of toxic chemicals. Multivariate analysis of biomarker data showed that all different contaminated soils had a detrimental effect on the earthworms. A separation between temporal and concentration factors was also evident for B[a]P and TCDD treatments; and field contaminated soils were further differentiated reflecting a diverse contamination. Multivariate analysis also demonstrated that lysosomal membrane stability can be considered a prognostic indicator for worm health status.

  2. Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida).

    PubMed

    Liu, Tong; Wang, Xiuguo; Xu, Jinli; You, Xiangwei; Chen, Dan; Wang, Fenglong; Li, Yiqiang

    2017-02-22

    Dinotefuran is a third-generation neonicotinoid insecticide, that is considered promising due to its excellent properties. In the present work, the biochemical and genetic toxicity of dinotefuran on earthworms were evaluated at a series of environmental background concentrations. Meanwhile, the effective concentrations of dinotefuran in artificial soil during the entire exposure period were monitored. The present results showed that dinotefuran was stable in artificial soil, and its concentrations changed no more than 20% during the 28-d exposure. At 1.0 mg/kg and 2.0 mg/kg, dinotefuran induced excess generation of ROS, resulting in significant changes in antioxidant enzyme activities and functional gene expression. Moreover, lipids, proteins and nucleic acids were oxidized and damaged by the excess ROS induced by dinotefuran, resulting in serious destruction of the structure and function of cells. Additionally, the toxicity of dinotefuran showed obvious dose- and time-dependent effects. Therefore, we consider that dinotefuran may be a high-risk pollutant for earthworms.

  3. Acute and chronic toxicity testing of TPH-contaminated soils with the earthworm, Eisenia foetida

    SciTech Connect

    Stewart, A.J.; Wicker, L.F.; Nazerias, M.S.

    1995-12-31

    Responses of Eisenia foetida to petroleum-contaminated soils are being assessed using a 21-day test described previously. The authors prepared dilutions of two soils, referred to as A and B, using their reference-soil counterparts, collected from near the contaminated sites. The total petroleum hydrocarbon (TPH) content of each soil was measured by latroscan before the dilutions were prepared. References for the A and B soils contained 167 and 1,869 ppm of TPH, respectively. Thus, neither reference soil was pristine. Dilutions of the A soil tested with E. foetida contained from 179 to 305 ppm TPH; dilutions of the B soil contained from 1,875 to 1,950 ppm TPH. E foetida survival was 100% in both dilution series. Mean growth of Eisenia in dilutions of the A soil ranged from 48 to 74 mg dry-weight growth per pair of worms; these values were lower than those in any dilution of the B soil series. Lipid levels of worms in higher concentrations of the A and B soils were similar to one another and to published values, suggesting little inhibition of feeding in either dilution series. Earthworm reproduction was zero in the A series, but moderately high in the B series. Thus, the A soil apparently contained materials other than TPH that inhibited earthworm growth and reproduction. This study shows that (1) TPH at concentrations as high as 1,800 ppm may not always be inhibitor to earthworm growth or reproduction and (2) that earthworm survival, as a test endpoint, is much less sensitive than either growth or reproduction.

  4. Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida.

    PubMed

    Zhang, Qingming; Zhang, Guoli; Yin, Peijun; Lv, Yanzhen; Yuan, Shun; Chen, Jiqiang; Wei, Binbin; Wang, Caixia

    2015-11-01

    The aim of this study was to evaluate the potential toxicity of spirotetramat to the earthworm Eisenia fetida in a natural soil environment. Many biochemical markers, viz., superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST), cellulase, and malondialdehyde (MDA) contents were measured after exposure to 0.25, 1.25, and 2.5mgkg(-1) for 2, 7, 14, 21, and 28days. In addition, the comet assay was performed on earthworm coelomocytes to assess the level of genetic damage. The results demonstrate that the SOD activity and MDA content were significantly stimulated by the highest dose (2.5mgkg(-1)) of spirotetramat for the entire period of exposure. The activities of CAT and POD increased significantly by 2d and 21d, respectively, but the activities of both were significantly inhibited after prolonged exposure (28d). After an initial increase on the 2nd day, the cellulase activity in the high-dose treatment group was significantly inhibited for the entire remaining exposure period. The comet assay results demonstrate that spirotetramat (⩽2.5mgkg(-1)) can induce low and intermediate degrees of DNA damage in earthworm coelomocytes. The results indicate that spirotetramat may pose potential biochemical and genetic toxicity to earthworms (E. fetida), and this information is helpful for understanding the ecological toxicity of spirotetramat on soil invertebrate organisms.

  5. Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida).

    PubMed

    Nam, Tae-Hoon; Kim, Leesun; Jeon, Hwang-Ju; Kim, Kyeongnam; Ok, Yong-Sik; Choi, Sung-Deuk; Lee, Sung-Eun

    2017-04-01

    α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC50 values of 9.7, 133.2, and 86.2 mg kg(-1), respectively. A mixture toxicity assay was conducted using α-endosulfan at LC10 and fluorene or phenanthrene at LC50 in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.

  6. Bioaccumulation and Elimination of the Herbicide Clomazone in the Earthworms Eisenia fetida.

    PubMed

    Cao, Jia; Li, Ping; Li, Qing X; Zheng, Pengfei; Diao, Xiaoping

    2015-11-01

    Acute toxicity, bioaccumulation, and elimination of herbicide clomazone in the earthworm Eisenia fetida were investigated in the different exposure systems. The LC50 values of clomazone on earthworms were 5.6 μg cm(-2) in the contact filter paper test (48 h), 174.9 mg kg(-1) (7 days) and 123.4 mg kg(-1) (14 days) in artificial soil test, respectively. Clomazone could rapidly bioaccumulate in earthworms and reached the highest concentration after 3 days exposure, with the maximum concentrations of 9.0, 35.3 and 142.3 mg kg(-1) at 10.0, 40.0 and 160.0 mg kg(-1) of clomazone, respectively. Clomazone uptake showed a good correlation with exposure concentration. After the 14th day, clomazone declined to minimum value. About 74%-80% of accumulated clomazone was eliminated within 1 day after exposed to clomazone-free soil. However, a trace amount of clomazone persisted for a relatively long time in earthworms.

  7. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms.

  8. Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida).

    PubMed

    Wang, Caixia; Zhang, Qingming; Wang, Feifei; Liang, Wenxing

    2017-02-01

    The objective of this study was to evaluate the toxicity of the fungicide dimethomorph to soil microbial activity and the earthworm Eisenia fetida. Multiple biomarkers, namely, four soil enzymes (urease, dehydrogenase, invertase, and acid phosphatase), four earthworm biochemical indices (dismutase, catalase, cellulase, and malondialdehyde), and the transcriptional levels of both target genes (dismutase and catalase) were measured at 1, 10, and 100 mg kg(-1) after 1, 7, 21, and 28 days. The degradation rate of dimethomorph in soil was also determined, and the results indicated that most parameters did not differ from the controls at 1 and 10 mg kg(-1) dimethomorph by the last exposure time (28 d). However, high concentrations (100 mg kg(-1)) of dimethomorph had varying effects on soil enzymatic activity and earthworms. These effects gradually decreased with prolonged exposure times. Positive correlations (R(2) > 0.57) between the target gene expression levels and antioxidant enzyme activities were observed in this study. We also found that earthworms have improved soil microbial activity and accelerated the degradation of dimethomorph. Overall, higher concentrations of dimethomorph might pose an ecological hazard to soil environments in the short term.

  9. Influence of soil properties on the bioaccumulation and effects of arsenic in the earthworm Eisenia andrei.

    PubMed

    Romero-Freire, A; Peinado, F J Martín; Ortiz, M Díez; van Gestel, C A M

    2015-10-01

    This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations in the earthworms (AsE) were greatly different between soils. These two variables were highly correlated and were key factors in earthworm toxicity response. AsW was explained by some soil properties, such as the pH, calcium carbonate content, ionic strength, texture or oxide forms. Toxicity showed a clear variation between soils, in some cases without achieving 50 % adverse effect at the highest As concentration added (600 mg kg(-1)). Nevertheless, soil properties did not show, in general, a high relation with studied toxicity endpoints, although the high correlation with AsW could greatly reduce indirectly As bioavailability and toxicity risk for earthworms. Obtained results suggest that soil properties should be part of the criteria to establishing thresholds for contaminated soils because they will be key in controlling As availability and thus result in different degrees of toxicity.

  10. Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida.

    PubMed

    Gupta, Renuka; Mutiyar, Praveen Kumar; Rawat, Naresh Kumar; Saini, Mahender Singh; Garg, V K

    2007-09-01

    The aim of this work was to investigate the potential of water hyacinth (WH) spiked with cow dung (CD) into vermicompost. Five vermireactors containing WH and CD in different ratios, were run under laboratory conditions for 147 days. The maximum worm growth was recorded in CD alone. Worms grew and reproduced favourably in 25% WH+75% CD feed mixture. Greater proportion of WH in feed mixture significantly affected the biomass gain, hatchling numbers and numbers of cocoons produced during experiments. In all the vermireactors, there was significant decrease in pH, TOC and C:N ratio, but increase in TKN, TK and TAP at the end. The heavy metals content in the vermicomposts was lower than initial feed mixtures. The results indicated that WH could be potentially useful as raw substrate in vermicomposting if mixed with up to 25% in cow dung (on dry weight basis).

  11. Bacillus eiseniae sp. nov., a swarming, moderately halotolerant bacterium isolated from the intestinal tract of an earthworm (Eisenia fetida L.).

    PubMed

    Hong, Sung Wook; Park, Jung Min; Kim, Soo-Jin; Chung, Kun Sub

    2012-09-01

    A swarming and moderately halotolerant bacterium, designated strain A1-2(T), was isolated from the intestinal tract of the earthworm Eisenia fetida L. Cells were endospore-forming rods that were facultatively anaerobic, catalase-positive, oxidase-negative and motile by peritrichous flagella. The isolate grew optimally at 30 °C and pH 7.0, and could grow with up to 9 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain A1-2(T) belonged to the genus Bacillus and exhibited 16S rRNA gene sequence similarities of 96.8, 96.0, 96.0, 96.4 and 96.7 % with Bacillus drentensis LMG 21831(T), B. horneckiae PT-45(T), B. niacini BAC 1015, B. infantis SMC 4352-1(T) and B. shackletonii LMG 18435(T), respectively. DNA-DNA relatedness values between the isolate and the reference strains were ≤ 38.3 %. The DNA G+C content of strain A1-2(T) was 38.5 mol%. The predominant menaquinone was MK-7 and the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were iso-C(15 : 0) (51.5 %) and anteiso-C(15 : 0) (29.6 %) and the cell-wall diamino acid was meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis and chemotaxonomic and phenotypic characteristics, it is concluded that strain A1-2(T) represents a novel species of the genus Bacillus, for which we propose the name Bacillus eiseniae sp. nov. The type strain is A1-2(T) (= KCCM 90092(T) = JCM 16993(T)).

  12. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of five bacterial strains were isolated from earthworm, Eisenia fetida and examined for bacterial cellulose (BC) production in Hestrin–Schramm medium (HS). Among the five strains tested, CBNU-EW3 exhibited excellent BC production and was identified as Leifsonia sp. by 16S rDNA sequence analy...

  13. Influence of temperature on the toxicity of zinc to the earthworm Eisenia fetida

    SciTech Connect

    Spurgeon, D.J.; Tomlin, M.A.; Hopkin, S.P.

    1997-02-01

    A range of toxicity tests have been proposed to assess the potential hazards of pollutants to earthworms. Of these, the two acute toxicity tests using Eisenia fetida recommended by the OECD and EEC have become routinely used in the risk assessment and regulation of new and existing chemicals. In addition to the acute tests, procedures have also been proposed for measuring the sub-lethal effects of chemicals on parameter such as reproduction and weight change. In both the lethal and sub-lethal toxicity tests developed with worms, attempts have been made to standardise test conditions to allow results from different laboratories to be directly compared. However, variability in exposure conditions and responses are fundamental to determine the effects of pollutants under natural conditions. In the field, conditions such as light, moisture availability, pH, temperature and humidity all fluctuate over time. Such variations affect both the sensitivity and exposure of individuals to toxic chemicals. Hence when evaluating the potential effects of pollutants, it may be important to known how changes in test conditions influence toxicity. This study assessed the effects of different temperatures on the lethal and sub-lethal toxicity of zinc for the earthworm Eisenia fetida. 23 refs., 1 fig., 1 tab.

  14. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei.

    PubMed

    Šmídová, Klára; Šerá, Jana; Bielská, Lucie; Hofman, Jakub

    2015-12-01

    Earthworm density and feeding during exposure to contaminated soil have been used inconsistently in bioaccumulation studies, which may lead to possible errors in risk assessment and modeling. Hydrophobic organic pollutants with a wide range of environmental properties (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) were used to study the effect of different earthworm densities in combination with the presence or absence of feeding on bioaccumulation factors (BAFs). Similar BAFs were found at various soil-to-worm ratios, with the exception of phenanthrene. We recommend using at least 15 gsoil dw per earthworm. The absence of feeding doubled the BAFs and, thus, using no food ration can be considered as "the worst case scenario". Whenever food is to be applied (i.e. to ensure the validity of the test in earthworm mass loss), we suggest feeding depending on the organic carbon content of the studied soil.

  15. Multilevel assessment of Cry1Ab Bt-maize straw return affecting the earthworm Eisenia fetida.

    PubMed

    Shu, Yinghua; Zhang, Yanyan; Cheng, Miaomiao; Zeng, Huilan; Wang, Jianwu

    2015-10-01

    Non-target effects of two varieties of Bacillus thuringiensis (Bt)-maize straw (5422Bt1 [event Bt11] and 5422CBCL [MON810]) return on the Eisenia fetida were investigated by using multilevel assessments, compared to near-isogenic non-Bt-maize (5422). 5422Bt1 straw return had no deleterious effects on adult earthworms and had significantly positive effects on juveniles over three generations. Negative, no, and positive effects on adults treated with 5422CBCL straw were observed in the 1st, 2nd and 3rd generation, respectively. Negative and positive effects were observed on juveniles produced from the 1st- and 2nd-generation adults treated with 5422CBCL straw, respectively. Glutathione peroxidase activity of earthworms from Bt-maize treatments was significantly higher than that of control on the 90th d. Translationally controlled tumour protein (TCTP) and superoxide dismutase (SOD) genes were down-regulated, while annetocin (ANN) expression was up-regulated in 5422Bt1 treatments. TCTP and SOD genes were up-regulated, while ANN and heat shock protein 70 were down-regulated in E. fetida from 5422CBCL treatments. Enzyme-linked immunosorbent assay revealed that Cry1Ab released from 5422Bt1 and 5422CBCL straw degraded rapidly on the 15th and 30th d and had a slow decline in the rest testing time. Cry1Ab concentrations in the soil, casts and guts of earthworm significantly decreased over the course of the experiment. This study was the first to evaluate generational effects of Bt-maize straw return on earthworms under laboratory conditions. The responses of enzymes activity and genes expression may contribute to better understand above different effects of Bt-maize straw return on earthworms from the 1st generation.

  16. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida.

    PubMed

    Shu, Yinghua; Zhang, Yanyan; Zeng, Huilan; Zhang, Yahui; Wang, Jianwu

    2017-04-01

    The eco-toxicological effects of Bacillus thuringiensis (Bt) maize on earthworm life-history traits were widely studied and the results were controversial, while their effects on earthworm bacterial community have been rarely studied. Here, effects of two hybrids of Bt maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] straw return on Eisenia fetida bacterial community were investigated by the terminal restriction fragment length polymorphism (T-RFLP) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) combing with DNA sequencing, compared to near-isogenic non-Bt maize (5422). Bt maize straw return had significant effects on soil nutrients, especially for available nitrogen (N). The significant differences were shown in soil bacterial community between Bt and non-Bt maize treatments on the 75(th) and 90(th) d, which was closely correlated with soil available N, P and K rather than Cry1Ab protein. There was no statistically significant difference in the bacterial community of earthworm gut contents between Bt and non-Bt maize treatments. The significant differences in the bacterial community of earthworm casts were found among three maize varieties treatments, which were closely correlated with Cry1Ab protein and N levels. The differentiated bacterial species in earthworm casts mainly belonged to Proteobacteria, including Brevundimonas, Caulobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Asticcacaulis and Achromobacter etc., which were associated with the mineralization, metabolic process and degradation of plants residues. Therefore, Bt maize straw return caused changes in the bacterial community of E. fetida casts, which was possibly caused by the direct (Cry1Ab protein) and non-expected effects (N levels) of Bt maize straw.

  17. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  18. Biomarker responses in earthworms (Eisenia fetida) to soils contaminated with di-n-butyl phthalates.

    PubMed

    Du, Li; Li, Guangde; Liu, Mingming; Li, Yanqiang; Yin, Suzhen; Zhao, Jie

    2015-03-01

    Di-n-butyl phthalates (DBP) are recognized as ubiquitous contaminants in soil and adversely impact the health of organisms. Changes in the activity of antioxidant enzymes and levels of glutathione-S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) were used as biomarkers to evaluate the impact of DBP on earthworms (Eisenia fetida) after exposure to DBP for 28 days. DBP was added to artificial soil in the amounts of 0, 5, 10, 50, and 100 mg kg(-1) of soil. Earthworm tissues exposed to each treatment were collected on the 7th, 14th, 21st, and 28th day of the treatment. We found that superoxide dismutase (SOD) and catalase (CAT) levels were significantly inhibited in the 100 mg kg(-1) treatment group on day 28. After 21 days of treatment, GST activity in 10-50 mg kg(-1) treatment groups was markedly stimulated compared to the control group. MDA content in treatment groups was higher than in the control group throughout the exposure time, suggesting that DBP may lead to lipid peroxidation (LPO) in cells. GSH content increased in the treatment group that received 50 mg kg(-1) DBP from 7 days of exposure to 28 days. These results suggest that DBP induces serious oxidative damage on earthworms and induce the formation of reactive oxygen species (ROS) in earthworms. However, DBP concentration in current agricultural soil in China will not constitute any threat to the earthworm or other animals in the soil.

  19. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida.

    PubMed

    Tkalec, Mirta; Stambuk, Anamaria; Srut, Maja; Malarić, Krešimir; Klobučar, Göran I V

    2013-04-01

    Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.

  20. Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.

    PubMed

    Bigorgne, Emilie; Cossu-Leguille, Carole; Bonnard, Marc; Nahmani, Johanne

    2010-08-01

    The aim of this study was to examine genotoxic effects of nickel (Ni=105 mg kg(-1)), trivalent and hexavalent chromium (Cr=491 mg kg(-1)) on the Eisenia fetida earthworm after 2 and 4d of exposure to two different spiked soils (an artificial (OECD) and a natural one). DNA damages were evaluated on the earthworm's coelomocytes using the comet assay. After an exposure into OECD spiked soils, Ni did not induce genotoxic effect whereas Cr(III) and Cr(VI) revealed to be genotoxic after 2d of exposure. After 4d of exposure, only Cr(VI) still induced significant damages. In natural spiked soils, nickel and Cr(III) revealed to be genotoxic after 2 and 4d of exposure. Concerning Cr(VI) toxicity, all the earthworms died after 1d of exposure. These results underline the importance to take into account the nature and the speciation of metallic pollutants, although the experiment has been performed on spiked soil with higher bioavailibity than in contaminated natural soil.

  1. A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia foetida

    SciTech Connect

    Gibbs, M.H.; Wicker, L.F.; Stewart, A.J.

    1996-03-01

    The authors developed and tested a procedure that allows quantification of the effects of soil contaminants on earthworm (Eisenia foetida) growth and reproduction. The procedure monitors isolated pairs of earthworms and generates a higher ratio of data per organisms than other commonly used procedures. It also incorporates an accurate technique for measuring adult growth, has high sensitivity compared to the Organization for Economic Cooperation and Development (OECD) 14-d acute toxicity test, and is cost effective. The authors applied the method to a variety of soil-testing problems. A food-and-substrate trial using artificial soil demonstrated the sensitivity of the method and the need for food supplementation to stimulate earthworm reproduction. Application of the procedure to assess efficacy of a soil bioremediation technology revealed the advantage of measuring both growth and reproduction and highlighted the usefulness of a single integrated measure of these two responses. The method also was used as a fast-screening analysis for field soils in a large-scale ecological risk assessment. Finally, a reference toxicant, used in dilution series, demonstrated that responses of E. foetida using the authors` method were similar to their responses in the OECD artificial-soil test method. The results of this study indicate that this procedure can be used both for regulatory and compliance needs within the framework of ecological risk assessment.

  2. Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida).

    PubMed

    Qin, Fang; Gao, Yongxin; Guo, Baoyuan; Xu, Peng; Li, Jianzhong; Wang, Huili

    2014-06-01

    The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R-form, rac-form, and S-form were 2.27, 2.08, and 1.22 µg cm(-2), respectively. After 72 h of exposure, the calculated LC50 values were 1.90, 1.54, and 1.00 µg cm(-2), respectively. Therefore, the acute toxicity of furalaxyl enantiomers was enantioselective. During the bioaccumulation experiment, the enantiomer fraction of furalaxyl in earthworm tissue was observed to deviate from 0.50 and maintained a range of 0.55-0.60; in other words, the bioaccumulation of furalaxyl was enantioselective in earthworm tissue with a preferential accumulation of S-furalaxyl. The uptake kinetic of furalaxyl enantiomers fitted the first-order kinetics well and the calculated kinetic parameters were consistent with the low accumulation efficiency.

  3. Rank-based biomarker index to assess cadmium ecotoxicity on the earthworm Eisenia andrei.

    PubMed

    Panzarino, O; Hyršl, P; Dobeš, P; Vojtek, L; Vernile, P; Bari, G; Terzano, R; Spagnuolo, M; de Lillo, E

    2016-02-01

    A proper soil risk assessment needs to estimate the processes that affect the fate and the behaviour of a contaminant, which are influenced by soil biotic and abiotic components. For this reason, the measurement of biomarkers in soil bioindicator organisms, such as earthworms, has recently received increasing attention. In this study, the earthworm Eisenia andrei was used to assess the pollutant-induced stress syndrome after exposure to sublethal concentrations of Cd (10 or 100 μg g(-1)) in OECD soil, after 14 d of exposure. Cadmium bioaccumulation and potential biomarkers such as catalase (CAT), hydrogen peroxide (H2O2), glutathione-S-transferase (GST), malondialdehyde (MDA), phenoloxidase (PO), metallothioneins (MTs) and genotoxic damage were determined. Results suggested that the exposure to 10 and 100 μg g(-1) Cd significantly increased Cd bioaccumulation, MTs and MDA; 100 μg g(-1) Cd contamination evidenced significantly higher values of H2O2 content and PO activity; CAT activity was inhibited at the higher concentration while GST and Comet assay did not show any significant differences from the control. Rank-based biomarker index showed that both different contaminated soils had an effect on the earthworms and allowed to validate the ecotoxicological relevance of this battery of biomarkers for a promising integrated multi-marker approach in soil monitoring and assessment.

  4. Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida

    PubMed Central

    Zwarycz, Allison S.; Nossa, Carlos W.; Putnam, Nicholas H.; Ryan, Joseph F.

    2016-01-01

    Annelida represents a large and morphologically diverse group of bilaterian organisms. The recently published polychaete and leech genome sequences revealed an equally dynamic range of diversity at the genomic level. The availability of more annelid genomes will allow for the identification of evolutionary genomic events that helped shape the annelid lineage and better understand the diversity within the group. We sequenced and assembled the genome of the common earthworm, Eisenia fetida. As a first pass at understanding the diversity within the group, we classified 363 earthworm homeoboxes and compared them with those of the leech Helobdella robusta and the polychaete Capitella teleta. We inferred many gene expansions occurring in the lineage connecting the most recent common ancestor (MRCA) of Capitella and Eisenia to the Eisenia/Helobdella MRCA. Likewise, the lineage leading from the Eisenia/Helobdella MRCA to the leech H. robusta has experienced substantial gains and losses. However, the lineage leading from Eisenia/Helobdella MRCA to E. fetida is characterized by extraordinary levels of homeobox gain. The evolutionary dynamics observed in the homeoboxes of these lineages are very likely to be generalizable to all genes. These genome expansions and losses have likely contributed to the remarkable biology exhibited in this group. These results provide a new perspective from which to understand the diversity within these lineages, show the utility of sub-draft genome assemblies for understanding genomic evolution, and provide a critical resource from which the biology of these animals can be studied. PMID:26659921

  5. Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida.

    PubMed

    Zwarycz, Allison S; Nossa, Carlos W; Putnam, Nicholas H; Ryan, Joseph F

    2015-12-10

    Annelida represents a large and morphologically diverse group of bilaterian organisms. The recently published polychaete and leech genome sequences revealed an equally dynamic range of diversity at the genomic level. The availability of more annelid genomes will allow for the identification of evolutionary genomic events that helped shape the annelid lineage and better understand the diversity within the group. We sequenced and assembled the genome of the common earthworm, Eisenia fetida. As a first pass at understanding the diversity within the group, we classified 363 earthworm homeoboxes and compared them with those of the leech Helobdella robusta and the polychaete Capitella teleta. We inferred many gene expansions occurring in the lineage connecting the most recent common ancestor (MRCA) of Capitella and Eisenia to the Eisenia/Helobdella MRCA. Likewise, the lineage leading from the Eisenia/Helobdella MRCA to the leech H. robusta has experienced substantial gains and losses. However, the lineage leading from Eisenia/Helobdella MRCA to E. fetida is characterized by extraordinary levels of homeobox gain. The evolutionary dynamics observed in the homeoboxes of these lineages are very likely to be generalizable to all genes. These genome expansions and losses have likely contributed to the remarkable biology exhibited in this group. These results provide a new perspective from which to understand the diversity within these lineages, show the utility of sub-draft genome assemblies for understanding genomic evolution, and provide a critical resource from which the biology of these animals can be studied.

  6. Vermicomposting of paper mill solid waste using epigeic earthworm Eudrilus eugeniae.

    PubMed

    Ponmani, S; Udayasoorian, C; Jayabalakrishnan, R M; Kumar, K Vinoth

    2014-07-01

    A 90 day study was conducted to evaluate the efficiency of an exotic earthworm species (Eudrilus eugeniae) for decomposition of different types of organic substrates (mixed liquor suspended solids, cow dung and leaf litter) into valuable vermicompost. Mixed liquor suspended solids (MLSS) and leaf litter (LL) were mixed with cow dung (CD) in eight different ratios with three replicates for each treatment. All vermibeds expressed a significant decrease in pH, organic carbon, C:N ratio and an increase in total nitrogen, phosphorus and potash. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of MLSS. Maximum value for earth worm zoo mass and higher concentration of nutrient content was observed in CD + MLSS + LL in 1:1:2 ratios. Earthworm mortality tended to increase with increasing proportion of MLSS and maximum mortality in E. eugeniae was recorded for MLSS treatment alone. Results indicate that vermicomposting might be useful for managing the energy and nutrient of MLSS on a low-input basis. Products of this process can be used for sustainable land restoration practices.

  7. Combined subacute toxicity of copper and antiparasitic albendazole to the earthworm (Eisenia fetida).

    PubMed

    Gao, Yuhong; Li, Hongshuang; Li, Xuemei; Sun, Zhenjun

    2016-03-01

    Copper (Cu) is one of the most common metal contaminants, and albendazole (ABZ) is a veterinary drug with a high efficacy against helminthes. It is believed that the two may co-exist in soil. In this study, the combined subacute toxicity of Cu exposure (0, 80, 120, 160 mg kg(-1)) and ABZ exposure (0, 3, 9 mg kg(-1)) in earthworms (Eisenia fetida) were observed using three approaches, namely chronic growth and reproduction, antioxidant enzyme activity, and earthworm Cu residue. The results have shown that the toxicity of Cu on cocoon hatching success and biomass was alleviated by presence of low concentrations of ABZ (3 mg kg(-1)) during a 56-day exposure period. However, the sensitivity of the earthworms' reproduction to Cu increased with the presence of high concentrations of ABZ (9 mg kg(-1)), indicating a reduction beginning at a Cu concentration of 80 mg kg(-1), in the cocoon number, hatching success, and biomass. In addition, the three enzyme activities exhibited different responsive patterns, indicating inducement in the catalase and glutathione peroxidase, and inhibition in the superoxide dismutase, which were dependent on the exposure times and concentrations. In regard to the earthworm Cu residue, when increasing Cu exposure concentrations, the internal Cu concentrations tended to level off, exhibited a linear pattern at the Cu concentration range of 40 to 120 mg kg(-1), and showed a stable trend above 120 mg kg(-1). The results of the present study can potentially provide important information regarding the combined toxicity of the veterinary drugs and the heavy metals in soil.

  8. Determination of biomarkers for polycyclic aromatic hydrocarbons (PAHs) toxicity to earthworm (Eisenia fetida).

    PubMed

    Nam, Tae-Hoon; Jeon, Hwang-Ju; Mo, Hyung-ho; Cho, Kijong; Ok, Yong-Sik; Lee, Sung-Eun

    2015-12-01

    Polycyclic aromatic hydrocarbon (PAH) compounds are persistent, carcinogenic, and mutagenic. When PAHs enter agricultural soils through sewage sludge, they pose an environmental risk to soil organisms, including earthworms. Therefore, we aimed to determine the toxic effects of PAHs on earthworms. Five PAHs were used: fluorene, anthracene, phenanthrene, fluoranthene, and pyrene. Only fluorene and phenanthrene exhibited toxicity (LC50 values 394.09 and 114.02 g L(-1), respectively) against the earthworm Eisenia fetida. None of the other PAHs tested in this study enhanced the mortality of adult earthworm until the concentrations reached to 1000 g L(-1). After exposure to PAHs, acetylcholinesterase (AChE) activity in E. fetida decreased in a concentration-dependent manner, and phenanthrene exhibited the strongest inhibitory effect on AChE, followed by fluorene. Activity of a representative detoxifying enzyme, carboxylesterase, was dramatically reduced in E. fetida exposed to all tested PAHs in comparison with that observed in the control test. The remaining glutathione S-transferase activity significantly decreased in E. fetida after exposure to PAHs. To profile small proteins <20 kDa, SELDI-TOF MS with Q10 ProteinChips was used, and 54 proteins were identified as being significantly different from the control (p = 0.05). Among them, the expressions of three proteins at 4501.8, 4712.4, and 4747.9 m/z were only enhanced in E. fetida exposed to anthracene and pyrene. One protein with 16,174 m/z was selectively expressed in E. fetida exposed to fluorene, phenanthrene, and fluoranthene. These proteins may be potential biomarkers for the five PAHs tested in E. fetida.

  9. Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): an ecotoxicoproteomics approach.

    PubMed

    Wu, Shijin; Xu, Xian; Zhao, Shiliang; Shen, Feichao; Chen, Jianmeng

    2013-10-01

    The goal of this study was to identify promising new biomarkers of phenanthrene by identifying differentially expressed proteins in Eisenia fetida after exposure to phenanthrene. Extracts of earthworm epithelium collected at days 2, 7, 14, and 28 after phenanthrene exposure were analyzed by two dimensional electrophoresis (2-DE) and quantitative image analysis. Comparing the intensity of protein spots, 36 upregulated proteins and 45 downregulated proteins were found. Some of the downregulated and upregulated proteins were verified by MALDI-TOF/TOF-MS and database searching. Downregulated proteins in response to phenanthrene exposure were involved in glycolysis, energy metabolism, chaperones, proteolysis, protein folding and electron transport. In contrast, oxidation reduction, oxygen transport, defense systems response to pollutant, protein biosynthesis and fatty acid biosynthesis were upregulated in phenanthrene-treated E. fetida. In addition, ATP synthase b subunit, lysenin-related protein 2, lombricine kinase, glyceraldehyde 3-phosphate dehydrogenase, actinbinding protein, and extracellular globin-4 seem to be potential biomarkers since these biomarker were able to low levels (2.5 mg kg(-1)) of phenanthrene. Our study provides a functional profile of the phenanthrene-responsive proteins in earthworms. The variable levels and trends in these spots could play a potential role as novel biomarkers for monitoring the levels of phenanthrene contamination in soil ecosystems.

  10. Individual and combined toxic effects of herbicide atrazine and three insecticides on the earthworm, Eisenia fetida.

    PubMed

    Wang, Yanhua; An, Xuehua; Shen, Weifeng; Chen, Liezhong; Jiang, Jinhua; Wang, Qiang; Cai, Leiming

    2016-07-01

    In the present study, we evaluated the individual and combined toxic effects of herbicide atrazine and three insecticides (chlorpyrifos, lambda-cyhalothrin and imidacloprid) on the earthworm, Eisenia fetida. Results from 48-h filter paper test indicated that imidacloprid had the highest toxicity to E. fetida with an LC50 of 0.05 (0.041-0.058) μg a.i. cm(-2), followed by lambda-cyhalothrin and atrazine with LC50 values ranging from 4.89 (3.52-6.38) to 4.93 (3.76-6.35) μg a.i. cm(-2), while chlorpyrifos had the least toxicity to the worms with an LC50 of 31.18 (16.22-52.85) μg a.i. cm(-2). Results from 14-days soil toxicity test showed a different pattern of toxicity except that imidacloprid was the most toxic even under the soil toxicity bioassay system. The acute toxicity of atrazine was significantly higher than that of chlorpyrifos. In contrast, lambda-cyhalothrin was the least toxic to the animals under the soil toxicity bioassay system. The binary mixture of atrazine-lambda-cyhalothrin and ternary mixture of atrazine-chlorpyrifos-lambda-cyhalothrin displayed a significant synergistic effect on the earthworms under the soil toxicity bioassay. Our findings would help regulatory authorities understand the complexity of effects from pesticide mixtures on non-target organisms and provide useful information of the interaction of various pesticide classes detected in natural environment.

  11. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil

    PubMed Central

    Domínguez, Anahí; Brown, George Gardner; Sautter, Klaus Dieter; Ribas de Oliveira, Cintia Mara; de Vasconcelos, Eliane Carvalho; Niva, Cintia Carla; Bartz, Marie Luise Carolina; Bedano, José Camilo

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate’s main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxicological methods (ISO). Field-relevant concentrations of AMPA had no significant effects on mortality in acute or chronic assays. Except at the highest concentration tested, a significant biomass loss was observed compared to controls in the chronic assay. The number of juveniles and cocoons increased with higher concentrations of AMPA applied, but their mean weights decreased. This mass loss indicates higher sensitivity of juveniles than adults to AMPA. Our results suggest that earthworms coming from parents grown in contaminated soils may have reduced growth, limiting their beneficial roles in key soil ecosystem functions. Nevertheless, further research is needed to better understand the mechanisms underlying the sublethal effects observed here. PMID:26792548

  12. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil

    NASA Astrophysics Data System (ADS)

    Domínguez, Anahí; Brown, George Gardner; Sautter, Klaus Dieter; Ribas de Oliveira, Cintia Mara; de Vasconcelos, Eliane Carvalho; Niva, Cintia Carla; Bartz, Marie Luise Carolina; Bedano, José Camilo

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate’s main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxicological methods (ISO). Field-relevant concentrations of AMPA had no significant effects on mortality in acute or chronic assays. Except at the highest concentration tested, a significant biomass loss was observed compared to controls in the chronic assay. The number of juveniles and cocoons increased with higher concentrations of AMPA applied, but their mean weights decreased. This mass loss indicates higher sensitivity of juveniles than adults to AMPA. Our results suggest that earthworms coming from parents grown in contaminated soils may have reduced growth, limiting their beneficial roles in key soil ecosystem functions. Nevertheless, further research is needed to better understand the mechanisms underlying the sublethal effects observed here.

  13. Uptake of cesium-134 by the earthworm species Eisenia foetida and Lumbricus rubellus

    SciTech Connect

    Janssen, M.P.M.; Glastra, P.; Lembrechts, J.F.M.M.

    1996-06-01

    The uptake processes of {sup 134}Cs in two earthworm species were investigated as well as the effect of temperature on these processes. The results show that equilibrium concentrations in the two species differ by 1.5- to fivefold. Equilibrium concentrations range from 367 to 963 Bq g{sup {minus}1} in Lumbricus rubellus and from 920 to 1,893 g{sup {minus}1} in Eisenia foetida; biological half-lives range from 56 to 119 h and 52 to 64 h, respectively. Assimilation was two to four times higher in E. foetida and elimination rate one to two times higher in E. foetida than in L. rubellus. Further, the results show that temperature may affect the {sup 134}Cs concentration in these earthworms by a factor of 1.4 to 2.1 between 10 and 20 C, depending on the species. The maximum difference found within one species was a factor of 2.6. Their results show no clear effect of temperature on the assimilation, but a small negative effect on elimination, resulting in an increasing biological half-life and concentration factor with higher temperatures.

  14. Investigation of the toxicokinetics of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    PubMed

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    The Canada-wide standards for petroleum hydrocarbons in soils regulate petroleum hydrocarbons based on four distillate ranges: F1 (C6-C10), F2 (>C10-C16), F3 (>C16-C34), and F4 (>C34). Previous toxicity tests with earthworms and F2, as well as two subfractions of F3, F3a (>C16-C23) and F3a (>C23-C34), indicate that test durations might not be sufficiently long to reach threshold effect concentrations, likely because of the differing toxicokinetics for each distillate. A study was conducted to determine the toxicokinetics of both aliphatic and aromatic fractions of F2, F3a, and F3b with the earthworm Eisenia andrei. Peak accumulation curves were observed for F2 aliphatics and aromatics and F3a aromatics, likely as a result of changes in exposure concentration over the test duration via loss or a decrease in the bioavailable fraction. Biota-soil accumulation factors were >1 for total F2 aliphatics and aromatics and F3a aromatics as well as for several individual polyaromatic hydrocarbons for each distillate. Aromatics were disproportionately accumulated over aliphatics and were the main contributors to toxicity; therefore, aromatics and aliphatics should be regulated separately. The toxicokinetics were used to interpret previous toxicity data. Higher molecular weight distillates need longer-than-standard test durations to determine toxicity, so toxicity test results from fixed, standard-duration tests are not strictly comparable for these petroleum distillates.

  15. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    PubMed

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida.

  16. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida.

    PubMed

    Chen, Chen; Wang, Yanhua; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong

    2014-04-01

    Various pesticides have become widespread contaminants of soils due to their large applications in agriculture and homes. An earthworm assay was used to assess the acute toxicity of butachlor, imidacloprid and chlorpyrifos with different modes of action. Ecotoxicities of these pesticides were compared for earthworm Eisenia fetida separately and in combination in artificial soil and contact filter paper tests. Imidacloprid was the most toxic for E. fetida with LC₅₀ (lethal concentration 50) values three orders magnitude lower than that of butachlor and chlorpyrifos in both tests. The toxicity of the mixtures was compared to that predicted by the concentration addition (CA) model. According to the CA model, the observed toxicities of all binary mixtures were less than additive. However, for all the mixtures in 14 d artificial soil test, and mixtures of butachlor plus chlorpyrifos and imidacloprid plus chlorpyrifos in 48 h contact filter paper test, the difference in toxicity was less than 30%, hence it was concluded that the mixtures conformed to CA. The combined effects of the pesticides in contact filter paper tests were not consistent with the results in artificial soil toxicity tests, which may be associated with the interaction of soil salts with the pesticides. The CA model provides estimates of mixture toxicity that did not markedly underestimate the measured toxicity, and therefore the CA model is the most suitable to use in ecological risk assessments of the pesticides.

  17. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida.

    PubMed

    Wang, Yanhua; Chen, Chen; Qian, Yongzhong; Zhao, Xueping; Wang, Qiang

    2015-03-02

    The combined toxicities of five insecticides (chlorpyrifos, avermectin, imidacloprid, λ-cyhalothrin, and phoxim), two herbicides (atrazine and butachlor), and a heavy metal (cadmium) have been examined using the acute toxicity test on the earthworm. With a concentration of 2.75 mg/kg being lethal for 50% of the organisms, imidacloprid exhibited the highest acute toxicity toward the earthworm Eisenia fetida. Toxicological interactions of these chemicals in ternary mixtures were studied using the combination-index (CI) equation method. Twenty-one ternary mixtures exhibited various interactive effects, in which 11 combinations showed synergistic effects, four led to dual synergistic/additive behaviors, one exhibited an additive effect, and five showed increasing antagonism within the entire range of effects. The CI method was compared with the classical models of concentration addition and independent action, and it was found that the CI method could accurately predict combined toxicity of the chemicals studied. The predicted synergism in the majority of the mixtures, especially at low-effect levels, might have implications in the real terrestrial environment.

  18. Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid.

    PubMed

    Zhang, Qingming; Zhang, Baohua; Wang, Caixia

    2014-11-01

    Imidacloprid, a neonicotinoid insecticide, has been used widely in agriculture worldwide. The adverse effects of imidacloprid on exposed biota have brought it increasing attention. However, knowledge about the effects of imidacloprid on antioxidant defense systems and digestive systems in the earthworm is vague and not comprehensive. In the present study, the changes in the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), cellulase, reactive oxygen species (ROS), and malondialdehyde (MDA) in the earthworm Eisenia fetida exposed to artificial soil treated with imidacloprid were examined systematically. The results showed that the activity of these biomarkers was closely related to the dose and duration of the exposure to imidacloprid. The activity of SOD was stimulated significantly at doses of 0.66 and 2 mg kg(-1) imidacloprid but markedly inhibited at a dose of 4 mg kg(-1) imidacloprid with prolonged exposure. The activities of CAT and POD increased irregularly at 0.2-4 mg kg(-1) imidacloprid over different exposure times. The level of ROS at a dose of 2 or 4 mg kg(-1) imidacloprid was significantly increased over the entire exposure period. When the concentration of imidacloprid was above 0.66 mg kg(-1), the balance of the activity of the antioxidant enzymes and ROS level was interrupted. The activity of cellulase decreased significantly with prolonged exposure. At the stress of 4 mg kg(-1) imidacloprid, the content of MDA was significantly increased with increasing exposure time. The results of the present study suggest that imidacloprid has a potentially harmful effect on E. fetida and may be helpful for assessment of the risk of imidacloprid to the soil ecosystem environment. However, to obtain more comprehensive toxicity data, it is necessary to investigate the effects of imidacloprid on earthworm using native soils in the future work.

  19. Bioconversion of herbal industry waste into vermicompost using an epigeic earthworm Eudrilus eugeniae.

    PubMed

    Kumari, Mamta; Kumar, Sudhir; Chauhan, Rajinder Singh; Ravikanth, K

    2011-11-01

    The aim of the present study was to investigate the potential of bioconversion of industrial herbal waste to vermicompost using Eudrilus eugeniae. Vermibeds were made using a mixture of herbal waste and cowdung (1 : 1) in comparison with the use of cowdung alone as substrate, resulting in vermicomposts 1 and 2, respectively. Different parameters were studied and it was observed that the nutrient profile of vermicompost 1 strongly influenced the growth of pea (Pisum sativum) and marigold plant (Tagetus erectus). The dry and fresh weight of shoots and roots, number of flowers, total yield in terms of fruit showed significant increase with vermicompost 1. Furthermore, vermicompost 1 (herbal waste and cow dung as substrate) resulted in a significant reduction in TOC by 58% in comparison with vermicompost 2 (cowdung as substrate). The C : N ratio was less than 20 in vermicompost 1 as well as in vermicompost 2, which indicated an advanced degree of stabilization and mineralization. The ability of earthworms to survive, grow and breed in the vermibed fed with the herbal waste indicates the sustainability and efficiency of a heterogeneous kind of organic waste. The results of the study suggested that bulk industrial herbal waste can be utilized as a substrate for vermicomposting and this can be proposed as an alternative for waste disposal in a clean green manner, promoting the concept of organic farming.

  20. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  1. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    PubMed

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions.

  2. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  3. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    PubMed

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions.

  4. Effects of decabromodiphenyl ether (BDE-209) on the avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida).

    PubMed

    Xie, Xianchuan; Qian, Yan; Wu, Yingxin; Yin, Jun; Zhai, Jianping

    2013-04-01

    The effects of decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth, and reproduction of earthworms (Eisenia fetida) were investigated under laboratory conditions using natural and artificial soils as substrate. Results showed that no significant avoidance response was observed when earthworms were exposed to 0.1-1000 mg/kg of BDE-209 for 48 h. After 28-days exposure, no significant effects on survival and growth of adult earthworms was induced by 0.1-1000 mg/kg of BDE-209 indicating the Lowest Observed Effect Level (LOEL) of BDE-209 on their survival and body weight was more than 1000 mg/kg. Except for a significant decrease in the number of juveniles per hatched cocoon in artificial soils at 1000 mg/kg of BDE-209, no significant effects on reproductive parameters (e.g. cocoon production per earthworms, weight per cocoon and cocoon hatchability) were observed. These results suggest that adult earthworms have a strong tolerance for BDE-209 exposure in soils, but a potential toxicity does exist for earthworm embryos or juveniles.

  5. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils.

    PubMed

    Li, Yinsheng; Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li; Matthew, Cory; Cavanagh, Jo; Qiu, Jiangping

    2016-05-05

    Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg(-1) soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg(-1) soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO2 production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  6. Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida.

    PubMed

    Kobayashi, Hideshi; Ohta, Naoshi; Umeda, Masato

    2004-01-01

    Lysenin is a protein of 33?kDa in the coelomic fluid (CF) of the earthworm Eisenia foetida. It differs from other biologically active proteins, such as fetidins, eiseniapore, and coelomic cytolytic factor (CCF-1), that have been found in Eisenia foetida, in terms of both its biochemical and its biological characteristics. The large coelomocytes and free chloragocytes in the typhlosole of Eisenia foetida appear to be the cells that produce lysenin since the mRNA for lysenin and immunoreactive lysenin have been found in these cells. Lysenin binds specifically to sphingomyelin (SM) but not to other phospholipids in cell membranes. After binding to the cell membranes of target cells, lysenin forms oligomers in an SM-dependent manner, with subsequent formation of pores with a hydrodynamic diameter of approximately 3?nm. The biochemical interactions between lysenin and SM in cell membranes are responsible for the pharmacological activities of lysenin and of CF that contains lysenin in vertebrates, such as hemolysis, cytotoxicity, and contraction of smooth muscle in vitro and vasodepressor activity and lethality in vivo. When incubated with SM-liposomes, CF and lysenin lost some or all of their activity, an observation that suggests that SM might be involved in the induction of the various activities of lysenin and CF. However, in general, lysenin is neither cytotoxic nor lethal to invertebrates. An attempt has been made to explain the differences in the responses to lysenin and CF between vertebrates and invertebrates in terms of the presence or absence of SM in the various animals. Among Protostomia, SM is absent in Lophotrochozoa, with the exception of some molluscan species, but it is present in Ecdysozoa, with the exception of Nematomorpha and flies. Among Deuterostomia, Echinodermata and Hemichordata lack SM but SM is found in Chordata. Thus, the difference in terms of the response to lysenin between invertebrates and vertebrates cannot be fully explained by

  7. Joint toxicity of chlorpyrifos, atrazine, and cadmium at lethal concentrations to the earthworm Eisenia fetida.

    PubMed

    Yang, Guiling; Chen, Chen; Wang, Yanhua; Cai, Leiming; Kong, Xiangzhen; Qian, Yongzhong; Wang, Qiang

    2015-06-01

    Contaminants in the environment often occur as complex mixtures, and their combined effect may exhibit toxicity to organisms. Risk assessments based on individual components tend to underestimate the effects associated with toxic action of mixtures. Toxicity studies on chemical mixtures are urgently required to assess their potential combined toxicities. The combination index (CI)-isobologram method was used to study chemical interactions to determine the nature of toxicological interactions of two pesticides chlorpyrifos and atrazine and a heavy metal cadmium toward earthworm Eisenia fetida by artificial soil and filter paper acute toxicity tests. The results showed that the binary mixture of chlorpyrifos and atrazine was antagonistic toward E. fetida at all f a levels in an artificial soil test. The combination of atrazine and Cd exhibited a slight degree of synergism throughout the exposure range, while chlorpyrifos plus Cd combination led to dual antagonistic/synergistic behavior. The nature of binary combinations in filter paper displayed opposite interaction to that in the artificial soil test, and the toxicity of ternary mixtures was not significantly synergistic than their binaries. The combination index (CI)-isobologram equation method could determine the interaction types for a series of effect levels of three chemicals in binary and ternary combinations in two types of acute earthworm tests. However, the nature of these interactions was not uniform along the f a level range in any of the two tests. Bioavailability, the nature of toxicological interaction, and the test organism need to be considered for understanding exposures and chemical measures. The synergistic effect for the particular binary combination suggests that a potential risk associated with the co-occurrence of these pollutants may still exist, which may have implications in risk assessment for the terrestrial environment. The combined effects between different contaminants might be

  8. Molecular and cellular response of earthworm Eisenia andrei (Oligochaeta, Lumbricidae) to PCDD/Fs exposure.

    PubMed

    Nusair, Shreen Deeb; Abu Zarour, Yousef Sa'id

    2017-01-01

    The acute toxicity of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) was investigated in the earthworm Eisenia andrei using filter paper toxicity test. Protein content, catalase (CAT) activity, and histology of intestinal wall (chloragogen cells and intestinal epithelium) were investigated in earthworms exposed for 48 h to 0 (control), 0.5, 1.0, and 1.5 ng/cm(2) PCDD/Fs. The results showed an increase in the total protein content 1.56- (p = 0.104), 1.66- (p = 0.042), and 2.26-fold (p < 0.001), respectively, compared to control. The average ± standard deviation of tissular CAT activity showed no significant differences; it was 36.01 ± 7.65, 36.17 ± 9.45, 36.08 ± 9.80, and 40.01 ± 6.98 U/g tissue, respectively. However, the average specific activity of CAT ± standard deviation was significantly decreased (p < 0.001) at all doses compared to control; it was 2.93 ± 0.42, 1.93 ± 0.53, 1.80 ± 0.38, and 1.53 ± 0.44 U/mg protein, respectively. There was a progressive damage in both of the intestinal villi and the chloragogenous tissue associated with the incrementing doses. Since the toxic mixture altered the investigated biomarkers of E. andrei within 48 h, the cellular and molecular alterations resulted from the filter paper contact test could be utilized as a rapid toxicity assessment tool of environmental contamination with dioxins/furans and to assess consequent potential adverse effects on soil biota and other organisms in the ecosystem.

  9. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-01-01

    In the present work bagasse (B) i.e waste of the sugar industry, was fed to Eisenia fetida with cattle dung (CD) support as feed material at various ratios (waste: CD) of 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100) on dry weight basis. Co-composting with cattle dung helped to improve their acceptability for E. fetida and also improved physico-chemical characteristics. Best appropriate ratio for survival, maximum growth and population buildup of E. fetida was determined by observing population buildup, growth rate, biomass, mortality and cocoon formation. Minimum mortality and highest population size of worms was observed in 50:50 (B50) ratio. Increasing concentrations of wastes significantly affected the growth and reproduction of worms. Nutrients like nitrogen, phosphorus and sodium increased from pre-vermicompost to post-vermicompost, while organic carbon, and C:N ratio decreased in all the end products of post-vermicomposting. Heavy metals decreased significantly from initial except zinc, iron and manganese which increased significantly. Scanning electron microscopy (SEM) was used to recognize the changes in texture in the pre and post-vermicomposted samples. The post-vermicomposted ratios in the presence of earthworms validate more surface changes that prove to be good manure. The results observed from the present study indicated that the earthworm E. fetida was able to change bagasse waste into nutrient-rich manure and thus play a major role in industrial waste management.

  10. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida.

    PubMed

    Hayashi, Yuya; Heckmann, Lars-Henrik; Simonsen, Vibeke; Scott-Fordsmand, Janeck J

    2013-12-01

    The molecular mechanism of silver nanoparticle (AgNP) toxicity, particularly its temporal aspect, is currently limited in the literature. This study seeks to identify and profile changes in molecular response patterns over time during soil exposure of the earthworm Eisenia fetida to AgNPs (82±27 nm) with reference to dissolved silver salt (AgNO₃). Principal component analysis of selected gene and enzyme response profiles revealed dissimilar patterns between AgNO₃ and AgNP treatments and also over time. Despite the observed difference in molecular profiles, the body burdens of total Ag were within the same range (10-40 mg/kg dry weight worm) for both treatments with apparent correlation to the induction pattern of metallothionein. AgNO₃ induced the genes and enzymes related to oxidative stress at day 1, after which markers of energy metabolism were all suppressed at day 2. Exposure to AgNPs likewise led to induction of oxidative stress genes at day 2, but with a temporal pattern shift to immune genes at day 14 following metabolic upregulation at day 7. The involvement of oxidative stress and subsequent alterations in immune gene regulation were as predicted by our in vitro study reported previously, highlighting the importance of immunological endpoints in nanosilver toxicity.

  11. Vermiremediation of heavy metals in wastewater sludge from paper and pulp industry using earthworm Eisenia fetida.

    PubMed

    Suthar, Surindra; Sajwan, Poonam; Kumar, Kapil

    2014-11-01

    This work presents the results of removing heavy metals from paper mill wastewater (PMS) sludge spiked with cow dung (CD) employing Eisenia fetida. A total of seven set-ups were prepared: CD (100 percent), PMS: CD (1:3), PMS:CD (1:2), PMS:CD (1:1), PMS (100 percent), PMS:CD (3:1) and PMS:CD (2:1) and changes in chemical parameters were observed for 60 days. Vermistabilization caused the significant decrease in the level of Cd (32-37 percent), Cr (47.3-80.9 percent), Cu (68.8-88.4 percent), and Pb (95.3-97.5 percent) and substantial increase in EC, total-N, available P and K at the end. At the end, the tissues of inoculated worms showed the high load (mg kg(-1), dry biomass) of Pb (8.81-9.69), Cd (2.31-2.71), Cr (20.7-35.9) and Cu (9.94-11.6), respectively which indicated bioaccumulation of metals by worms. The PMS:CD (2:1 and/or 3:1) appeared to be suitable waste mixture in terms of high metal removal and earthworm growth rates. Bioaccumulation, as quantified using BCF, was in the order: Cd>Cr>Pb>Cu. Results suggested vermiremediation as appropriate technology for bioremediation of heavy metals from PMS.

  12. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida.

    PubMed

    Bigorgne, Emilie; Foucaud, Laurent; Lapied, Emmanuel; Labille, Jérôme; Botta, Céline; Sirguey, Catherine; Falla, Jaïro; Rose, Jérôme; Joner, Erik J; Rodius, François; Nahmani, Johanne

    2011-10-01

    The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO(2) byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO(2) byproducts showed aggregation of particles up to 700 μm with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO(2) byproducts did not induce cytotoxicity on cœlomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms.

  13. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)

    SciTech Connect

    J Unrine; S Hunyadi; O Tsyusko; W Rao; A Shoults-Wilson; P Bertsch

    2011-12-31

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs.

  14. A field screening method using earthworms (Eisenia foetida andrei) to evaluate contaminated soils

    SciTech Connect

    Wilborn, D.C.; Bollman, M.A.; Gillett, C.S.; Ott, S.L.; Linder, G.L.

    1997-09-01

    An on-site biological assessment for soil toxicity was performed using a lumbricid earthworm, Eisenia foetida andrei, at the Milltown Reservoir Superfund Site on the Clark Fork River near Missoula, MT. The assessment provided an opportunity to evaluate test containers and methodologies. Sixty-four field test stations, each consisting of three test containers of site soil, a control container of artificial soil, and a container to house soil moisture and temperature recording devices, were used. Laboratory tests were conducted on soil samples from selected field stations. The test containers were constructed from sections of polyvinyl chloride pipe and were found to be suitable in preventing escape of test organisms and damage by animals. The site soils had levels of arsenic, lead, cadmium, copper, and zinc higher than those in surrounding watersheds. Combined mortality for exposure to the site soil was similar in both the laboratory and field tests. Combined sublethal responses to the site soil were also similar in both laboratory and field tests. Artificial soil controls in both field and laboratory tests resulted in combined mortality rates of 1% or less. The methodologies employed proved successful in maintaining an adequate soil moisture level and allowed for measurement of soil temperature.

  15. The Earthworm Eisenia fetida Can Help Desalinate a Coastal Saline Soil in Tianjin, North China

    PubMed Central

    Zhang, Tao; Li, Suyan; Sun, Xiangyang; Zhang, Yang; Gong, Xiaoqiang; Fu, Ying; Jia, Liming

    2015-01-01

    A laboratory microcosm experiment was conducted to determine whether the earthworm Eisenia fetida could survive in a saline soil from a field site in North China, and an experiment using response surface methodology was conducted at that field site to quantify the effects of E. fetida and green waste compost (GWC) on the salt content of the soil. The microcosm results showed that E. fetida survived in GWC-amended saline soil and increased the contents of humic acid, available N, and available P in the GWC-amended soil. The data from the field experiment were described by the following second-order model:y^ =-1.76+0.091x1+0.48x2-0.00083x1x2-0.00078x12-0.022x22, where y is the decrease in soil salinity (g of salt per kg of dry soil) relative to the untreated control, x1 is the number of E. fetida added per m2, and x2 is the quantity of GWC added in kg per m2. The model predicted that the total salt content of the saline soil would decrease by > 2 g kg-1 (p<0.05) when 29–90 individuals m-2 of E. fetida and 6.1–15.0 kg m-2 of GWC were applied. We conclude that the use of E. fetida for soil desalination is promising and warrants additional investigation. PMID:26699869

  16. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta).

    PubMed

    Wu, Bing; Liu, Zhengtao; Xu, Yun; Li, Dingsheng; Li, Mei

    2012-07-01

    Cadmium (Cd) and lead (Pb) in soil have received extensive attention due to their potential toxicological effects. This study analyzed the combined toxicity of Cd and Pb on the earthworm Eisenia fetida. Cellulase activity and DNA damage were chosen as toxic endpoints. Factorial analysis was applied to identify the interaction of Cd and Pb. The results showed that single Pb and Cd could increase the cellulase activity and DNA damage of coelomocytes. The combination of both metals could significantly inhibit cellulase activity. For low Cd concentration, the addition of Pb could increase the DNA damage. However, for high Cd concentration, Pb could decrease the DNA damage. Factorial analysis showed that the changes of Cd concentrations exerted the highest influence on the combined toxicity, followed by factor "Cd*Pb" and "Pb". The combined toxicological effects between Cd and Pb were complex, which might be influenced by the competition adsorption of both metals in soil and biomembrane and their bioavailability. The results of this study are useful for understanding of combined toxicity of Cd and Pb on terrestrial invertebrates.

  17. Molecular cloning and expression of TLR in the Eisenia andrei earthworm.

    PubMed

    Škanta, František; Roubalová, Radka; Dvořák, Jiří; Procházková, Petra; Bilej, Martin

    2013-12-01

    Toll-like receptors (TLRs) play an important role in defense responses to pathogens in invertebrates. Here we characterize the first TLR isolated from an oligochaete annelid, namely, Eisenia andrei (EaTLR) and show its expression pattern. The full-length EaTLR cDNA consists of 2615 bp encoding a putative protein of 675 amino acids. The predicted amino acid sequence comprises of an extracellular domain containing 31 amino acid signal peptide and seven leucine-rich repeats (LRR), capped with cysteine-rich N- and C-terminal LRRs followed by a transmembrane domain and cytoplasmic Toll/IL-1R domain (TIR). TIR domains of twenty individual earthworms were sequenced and the variability suggesting the presence of a high number of TLR genes in the genome of E. andrei was observed. Phylogenetic analysis revealed the highest similarity of EaTLR with polychaete annelid, Capitella teleta and TLRs of mollusks and echinoderms. Finally, the highest constitutive expression of EaTLR was observed in the digestive tract. Gene expression was significantly increased in coelomocytes of E. andrei after the challenge with Gram-positive bacteria.

  18. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)?

    PubMed

    Shen, Chen-Chao; Shen, Dong-Sheng; Shentu, Jia-Li; Wang, Mei-Zhen; Wan, Ming-Yang

    2015-12-01

    The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA.

  19. Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols

    SciTech Connect

    Fitzpatrick, L.C.; Goven, A.J.; Muratti-Ortiz, J.F.

    1996-07-01

    Earthworms are ideal soil organisms for use in terrestrial ecotoxicology. As such, several earthworm protocols have been developed for testing toxic potential of chemicals and contaminated soils. Of these, the 48-h filter paper contact (FP) and the 14-d artificial soil exposure (AS) protocols, using mortality (LC50) as the toxic endpoint and Eisenia fetida as the test species, have received the most attention, with the latter being adopted by both OECD and EEC in Europe and the Environmental Protection Agency (USEPA) in the United States. Although the FP technique, adopted by EEC, provides for inexpensive reproducible toxicity screening for chemicals (i.e. establishing relative toxicities), it has been criticized for lacking the ecotoxicological relevance of the AS protocol. Choice of earthworm species for laboratory testing also has been controversial. The manure worm, E. fetida, is criticized for not being sufficiently sensitive to chemicals or representative of {open_quotes}typical{close_quotes} earthworms. Lumbricus terrestris and Apporectodea caliginosa have been suggested as more sensitive and ecologically relevant earthworms by Dean-Ross and Martin, respectively. This paper compares the AS and FP protocols in assessing toxicity of cadminum to L. terrestris and E. fetida using LC50s and LC50s. 19 refs., 2 tabs.

  20. Evaluation of DNA damage and antioxidant system induced by di-n-butyl phthalates exposure in earthworms (Eisenia fetida).

    PubMed

    Du, Li; Li, Guangde; Liu, Mingming; Li, Yanqiang; Yin, Suzhen; Zhao, Jie; Zhang, Xinyi

    2015-05-01

    Di-n-butyl phthalates (DBP) are recognized as ubiquitous contaminants in soil and adversely impact the health of organisms. The effect of DBP on the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT), malondialdehyde (MDA) content and DNA damage were used as biomarkers to analyze the relationship between DNA damage and oxidative stress and to evaluate the genotoxic effect of DBP on earthworms (Eisenia fetida). DBP was added to artificial soil in the amounts of 0, 5, 10, 50 and 100mg per kg of soil. Earthworm tissues exposed to each treatment were collected on the 7th, 14th, 21st, and 28th day of the treatment. The results showed that SOD and CAT levels were significantly inhibited in the 100mgkg(-1) treatment group on day 28. MDA content in treatment groups was higher than in the control group throughout the exposure time, suggesting that DBP may lead to oxidative stress in cells. A dose-response relationship existed between DNA damage and total soil DBP levels. The comet assay showed that increasing concentrations of DBP resulted in a gradual increase in the OTM, Comet Tail Length and Tail DNA %. The degree of DNA damage was increased with increasing concentration of DBP. These results suggested that DBP induced serious oxidative damage on earthworms and induced the formation of reactive oxygen species (ROS) in earthworms. The excessive generation of ROS caused damage to vital macromolecules including lipids and DNA. DBP in the soils were responsible for the exerting genotoxic effects on earthworms.

  1. Influence of earthworm Eisenia fetida on removal efficiency of N and P in vertical flow constructed wetland.

    PubMed

    Xu, Defu; Li, Yingxue; Howard, Alan

    2013-09-01

    This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p < 0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy.

  2. Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in Eisenia andrei.

    PubMed

    Kwak, Jin Il; Lee, Woo-Mi; Kim, Shin Woong; An, Youn-Joo

    2014-11-01

    Understanding the interaction of nanoparticles with biological fluid is important for predicting the behavior and toxicity of nanoparticles in living systems. The earthworm Eisenia andrei was exposed to citrate-coated silver nanoparticles (cAgNPs), and the interaction of cAgNPs with earthworm coelomic fluid (ECF), the cytotoxicity of cAgNPs in earthworm coelomocytes was assessed. The neutral red retention assay showed a reduction in lysosomal stability after exposure. The toxicity of silver ions dissolved from cAgNPs in the soil medium was not significant. The aggregation and dissolution of cAgNPs increased in ECF, which contains various electrolytes that alter the properties of nanoparticles, and their subsequent toxicity. Microscopic and dissolution studies demonstrated that the aggregation of cAgNPs rapidly increased, and readily dissolved in ECF. The bioavailability of cAgNPs to earthworms induced lysosomal cytotoxicity. This is the first report to test the interaction and lysosomal cytotoxicity of nanoparticles in earthworm biofluids.

  3. Nutrient and enzymatic changes of hydrolysed tannery solid waste treated with epigeic earthworm Eudrilus eugeniae and phytotoxicity assessment on selected commercial crops.

    PubMed

    Ravindran, B; Contreras-Ramos, S M; Wong, J W C; Selvam, A; Sekaran, G

    2014-01-01

    Animal fleshing (ANFL) is the predominant proteinaceous solid waste generated during processing of leather and it is confronting disposal problems. The aim of this study was to assess the potential of epigeic earthworm Eudrilus eugeniae to utilize and transform the fermented ANFL in the solid state (SSF) and submerged state (SmF) into a value added product along a low residence period (25 days). A total of six treatment units containing different waste mixture compositions were established. Fifty healthy and non-clitellated earthworms were introduced in three different treatment containers: control, SSF, and SmF (+worm). Another set of treatment mixtures (control, SSF, SmF) was established without earthworms (-worm) to compare the results. The products were characterized for physico-chemical, enzymatic analysis and seedling growth parameters to compare the differences in the process with and without earthworms. The changes observed in the analytical parameters were in the following order: SSF > SmF > control mixtures (p < 0.05). The vermicompost showed a significant reduction in heavy metals, total organic carbon and an increase in total Kjeldhal nitrogen as compared to the product untreated by earthworms. The maximum enzymatic activities were observed after 21 days of vermicomposting. The relative seed germination of vermicompost extracts were in the order of tomato (Lycopersicon esculentum) > green gram (Vigna radiata) > cucumber (Cucumis sativus) > bottle gourd (Lagenaria siceraria (Mol.) Standl.) and showed no phytotoxicity effects. The results indicated that the combination of both ANFL hydrolysis through fermentation and vermicomposting is a good alternative to the management of this kind of waste.

  4. Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia andrei

    SciTech Connect

    Renoux, A.Y.; Sarrazin, M.; Hawari, J.; Sunahara, G.I.

    2000-06-01

    The ability of the earthworm Eisenia andrei to metabolize 2,4,6-trinitrotoluene (TNT) was studied in experiments with TNT-spiked soils, dermal contact tests, and with an in vitro assay. Lethality of TNT in a forest sandy soil was first determined. Then TNT at lethal and sublethal concentrations was applied to the same soil and was monitored along with its metabolites in extracts of soil and earthworm tissue for up to 14 d post application. High performance liquid chromatography-ultra violet analyses indicated that TNT was transformed in the presence of E. andrei by a reductive pathway to 2-amino-3,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2.4-DANT), and traces of 2,6-diamino-4-nitrotoluene (2,6-DANT) in earthworm tissues. This transformation could be explained by either a metabolic mechanism within the earthworm or by the enhancement of an earthworm-associated microbial activity or both. The TNT concentrations decreased from the spiked soils. However, the monoamino-dinitrotoluene (2-ADNT and 4-ADNT) concentrations increased with exposure duration and were dependent on the initial TNT soil concentrations. This was also observed to a lesser extent in the TNT-spiked soils with no earthworms present. The biotransformation of TNT into 2-ADNT, 4-ADNT, and 2,4-DANT and the presence of these metabolites in E. andrei after dermal contact on TNT-spiked filter paper showed that dermal uptake can be a significant exposure route for TNT. In vitro experiments showed that earthworm homogenate could metabolize TNT and form 2-ADNT and 4-ADNT at room temperature and at 37 C. This effect was inhibited by heat inactivation prior to incubation or by incubation at 4 C, suggesting that the biotransformation of TNT in the presence of E. andrei may be enzymatic in nature.

  5. Combined toxicity of imidacloprid and three insecticides to the earthworm, Eisenia fetida (Annelida, Oligochaeta).

    PubMed

    Cang, Tao; Dai, Dejiang; Yang, Guiling; Yu, Yijun; Lv, Lu; Cai, Leiming; Wang, Qiang; Wang, Yanhua

    2017-02-16

    Although the earthworm Eisenia fetida has been used in many ecotoxicological studies in recent years, most of these studies have only focused on assessing the effects of individual insecticides. In the present study, we aimed to compare the individual and combined toxic effects of imidacloprid and three insecticides (phoxim, chlorpyrifos, and lambda-cyhalothrin) on E. fetida. We showed that imidacloprid had the highest intrinsic toxicity to the worms in filter paper contact test, followed by phoxim and lambda-cyhalothrin, while the least toxicity was found from chlorpyrifos. Moreover, 14-day soil toxicity test revealed that the highest toxicity was still detected for imidacloprid with an LC50 value of 2.82 (2.61∼3.17) mg a.i. kg(-1) dry weight (DW), followed by chlorpyrifos with an LC50 value of 384.9 (353.5∼440.3) mg a.i. kg(-1) DW. Meanwhile, a relatively less toxicity was found for lambda-cyhalothrin with an LC50 value of 560.3 (475.9∼718.5) mg a.i. kg(-1) DW, while the lowest toxicity to E. fetida was observed for phoxim with an LC50 value of 901.5 (821.3∼1017) mg a.i. kg(-1) DW. In addition, significant synergistic responses were found from the ternary mixture of imidacloprid-phoxim-lambda-cyhalothrin and quaternary mixture of imidacloprid-phoxim-chlorpyrifos-lambda-cyhalothrin in both bioassay systems. Therefore, our findings highlighted that the simultaneous presence of several insecticides in the soil environment might lead to increased toxicity, resulting in serious damage to the nontarget organisms compared with individual insecticides.

  6. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.

    PubMed

    Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A

    2010-07-01

    Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment.

  7. Effects of Particle Size on Chemical Speciation and Bioavailability of Copper to Earthworms ( Eisenia fetida ) Exposed to Copper Nanoparticles

    SciTech Connect

    J Unrine; O Tsyusko; S Hunyadi; J Judy; P Bertsch

    2011-12-31

    To investigate the role of particle size on the oxidation, bioavailability, and adverse effects of manufactured Cu nanoparticles (NPs) in soils, we exposed the earthworm Eisenia fetida to a series of concentrations of commercially produced NPs labeled as 20- to 40-nm or <100-nm Cu in artificial soil media. Effects on growth, mortality, reproduction, and expression of a variety of genes associated with metal homeostasis, general stress, and oxidative stress were measured. We also used X-ray absorption spectroscopy and scanning X-ray fluorescence microscopy to characterize changes in chemical speciation and spatial distribution of the NPs in soil media and earthworm tissues. Exposure concentrations of Cu NPs up to 65 mg kg{sup -1} caused no adverse effects on ecologically relevant endpoints. Increases in metallothionein expression occurred at concentrations exceeding 20 mg kg-1 of Cu NPs and concentrations exceeding 10 mg kg{sup -1} of CuSO{sub 4} Based on the relationship of Cu tissue concentration to metallothionein expression level and the spatial distribution and chemical speciation of Cu in the tissues, we conclude that Cu ions and oxidized Cu NPs were taken up by the earthworms. This study suggests that oxidized Cu NPs may enter food chains from soil but that adverse effects in earthworms are likely to occur only at relatively high concentrations (>65 mg Cu kg{sup -1} soil).

  8. Biochemical responses and DNA damage in earthworms (Eisenia fetida) induced by ionic liquid [omim]PF6.

    PubMed

    Liu, Xiaoyan; Zhang, Shumin; Wang, Jinhua; Wang, Jun; Shao, Yuting; Zhu, Lusheng

    2016-04-01

    Ionic liquids that are not that "green" to many organisms have recently been identified. This study examined the subchronic toxicity of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([omim]PF6) to earthworms (Eisenia fetida). Earthworms were exposed for a 28-day period (sampled on days 7, 14, 21, and 28) at concentrations of 0, 5, 10, 20, and 40 mg/kg. The levels of reactive oxygen species (ROS), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD)), detoxifying enzyme (glutathione S-transferase (GST)), lipid peroxidation, and DNA damage were measured. ROS significantly accumulated in all the treatment groups; the maximum ROS content was 51.9% higher than the control at 40 mg/kg [omim]PF6 on day 28. Increased SOD activities attenuated over the time of exposure, while the CAT activities of the treatment groups were similar to the controls, except on day 14. Furthermore, the activities of POD and GST were stimulated. Lipid peroxidation in earthworms was not apparent at 5 and 10 mg/kg [omim]PF6 but was quite obvious at 40 mg/kg [omim]PF6. In addition, DNA damage was dose- and time-dependent. In conclusion, [omim]PF6 caused oxidative stress and genotoxicity in earthworms.

  9. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether.

    PubMed

    Shi, Ya-juan; Xu, Xiang-bo; Zheng, Xiao-qi; Lu, Yong-long

    2015-01-01

    Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and decabromodiphenyl ether (BDE 209), suspected ubiquitous contaminants, account for the largest volume of brominated flame retardants (BFRs) since penta-BDE and octa-BDE have been phased out globally. In this paper, the growth inhibition and gene transcript levels of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) and the stress-response gene involved in the prevention of oxidative stress (Hsp70) of earthworms (Eisenia fetida) exposed to TBBPA, HBCD and BDE 209 were measured to identify the toxicity effects of selected BFRs on earthworms. The growth of earthworms treated by TBBPA at 200 and 400 mg/kg dw were inhibited at rate of 13.7% and 22.0% respectively, while there was no significant growth inhibition by HBCD and BDE 209. A significant (P<0.01) up-regulation of SOD expression level was observed in earthworms exposed to TBBPA at 50 mg/kg dw (1.77-fold) and to HBCD at 400 mg/kg dw (2.06-fold). The transcript level of Hsp70 gene was significantly up-regulated (P<0.01) when earthworms exposed to TBBPA at concentration of 50-200 mg/kg (2.16-2.19-fold) and HBCD at 400 mg/kg (2.61-fold). No significant variation of CAT gene expression in all the BFRs treatments was observed, neither does all the target gene expression level exposed to BDE 209. Assessed by growth inhibition and the changes at mRNA levels of encoding genes in earthworms, TBBPA showed the greatest toxicity, followed by HBCD and BDE 209, consistent with trends in molecular properties. The results help to understand the molecular mechanism of antioxidant defense.

  10. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida).

    PubMed

    Guo, Yingying; Liu, Tong; Zhang, Jun; Wang, Jinhua; Wang, Jun; Zhu, Lusheng; Yang, Jinhui

    2016-02-01

    Ionic liquids also known as "green solvents," are used in many fields. However, the dispersion of ionic liquids in soil systems is likely to cause damage to soil organisms. The objective of the present study was to investigate the toxicity of 1-octyl-3-methylimidazolium chloride ([C8 mim]Cl) on earthworms (Eisenia fetida). For this purpose, earthworms were exposed to different concentrations of [C8 mim]Cl (0 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg artificial soil) and sampled at 7 d, 14 d, 21 d, and 28 d. The results indicated that [C8 mim]Cl could cause an accumulation of reactive oxygen species (ROS) in earthworms, even at the lowest concentration (5 mg/kg). Compared with the controls, during the [C8 mim]Cl exposure period, the activities of superoxide dismutase (SOD) and catalase (CAT) decreased and then increased, whereas the activities of peroxidase (POD) and glutathione S-transferase (GST) increased. These changes in the activities of antioxidant enzymes and GST indicated that [C8 mim]Cl could induce oxidative damage in earthworms. The malondialdehyde content was increased by high levels of [C8 mim]Cl at 14 d and 28 d, indicating that [C8 mim]Cl could lead to lipid peroxidation in earthworms. In addition, the degree of DNA damage significantly increased with increasing [C8 mim]Cl concentrations and exposure time. The present study shows that [C8 mim]Cl caused biochemical and genetic toxicity in earthworms.

  11. Effects of phenanthrene on the mortality, growth, and anti-oxidant system of earthworms (Eisenia fetida) under laboratory conditions.

    PubMed

    Wu, Shijin; Wu, Ermiao; Qiu, Lequan; Zhong, Weihong; Chen, Jianmeng

    2011-04-01

    To assess the toxic effects of phenanthrene on earthworms, we exposed Eisenia fetida to artificial soils supplemented with different concentrations (0.5, 2.5, 12.5, mgkg(-1) soil) of phenanthrene. The residual phenanthrene in the soil, the bioaccumulation of phenanthrene in earthworms, and the subsequent effects of phenanthrene on growth, anti-oxidant enzyme activities, and lipid peroxidation (LPO) were determined. The degradation rate of low concentrations of phenanthrene was faster than it was for higher concentrations, and the degradation half-life was 7.3d (0.5 mgkg(-1)). Bioaccumulation of phenanthrene in the earthworms decreased the phenanthrene concentration in soils, and phenanthrene content in the earthworms significantly increased with increasing initial soil concentrations. Phenanthrene had a significant effect on E. fetida growth, and the 14-d LC(50) was calculated as 40.67 mgkg(-1). Statistical analysis of the growth inhibition rate showed that the concentration and duration of exposure had significant effects on growth inhibition (p<0.001). Superoxide dismutase (SOD) activity increased at the beginning (2 and 7d) and decreased in the end (14 and 28 d). Catalase (CAT) activity in all treatments was inhibited from 1 to 14 d of exposure. However, no significant perturbations in malondialdehyde (MDA) content were noted between control and phenanthrene-treated earthworms except after 2d of exposure. These results revealed that bioaccumulation of phenanthrene in E. fetida caused concentration-dependent, sub-lethal toxicity. Growth and superoxide dismutase activity can be regarded as sensitive parameters for evaluating the toxicity of phenanthrene to earthworms.

  12. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  13. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie; Liu, Lei; Ma, Qianchi; Xu, Xiaoming

    2016-07-01

    Arsenic is a pollutant that can be detected in different chemical forms in soil. However, the toxicological effects of different arsenic species on organisms have received little attention. In this study, we exposed earthworms Eisenia fetida to artificial soils contaminated by arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA) and dimethylarsinate (DMA) for 28 and 56 days. Three biomarkers including lipid peroxidation (LPO), metallothioneins (MTs) and lysosomal membrane stability (LMS) were analyzed in the organisms. In addition, the contents of total arsenic and arsenic species in earthworms were also determined to investigate the effects of bioaccumulation and biotransformation of arsenic on biomarkers and to evaluate the dose-response relationships. The results showed that the relationship between the three biomarkers and the two inorganic arsenic species were dose dependent, and the correlation levels between the biomarkers and As(III) were higher than that between the biomarkers and As(V). Trivalent arsenic species shows more toxicity than pentavalent arsenic on the earthworms at molecular and subcellular level, including oxidative damage, MTs induction and lysosomal membrane damage. The toxicity of MMA and DMA was lower than inorganic arsenic species. However, the occurrence of demethylation of organic arsenics could lead to the generation of highly toxic inorganic arsenics and induce adverse effects on organisms. The biotransformation of highly toxic inorganic arsenics to the less toxic organic species in the earthworms was also validated in this study. The biomarker responses of the earthworm to different arsenic species found in this study could be helpful in future environment monitoring programs.

  14. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil.

    PubMed

    Lachance, Bernard; Renoux, Agnès Y; Sarrazin, Manon; Hawari, Jalal; Sunahara, Geoffrey I

    2004-06-01

    Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.

  15. Sewage sludge toxicity assessment using earthworm Eisenia fetida: can biochemical and histopathological analysis provide fast and accurate insight?

    PubMed

    Babić, S; Barišić, J; Malev, O; Klobučar, G; Popović, N Topić; Strunjak-Perović, I; Krasnići, N; Čož-Rakovac, R; Klobučar, R Sauerborn

    2016-06-01

    Sewage sludge (SS) is a complex organic by-product of wastewater treatment plants. Deposition of large amounts of SS can increase the risk of soil contamination. Therefore, there is an increasing need for fast and accurate assessment of SS toxic potential. Toxic effects of SS were tested on earthworm Eisenia fetida tissue, at the subcellular and biochemical level. Earthworms were exposed to depot sludge (DS) concentration ratio of 30 or 70 %, to undiluted and to 100 and 10 times diluted active sludge (AS). The exposure to DS lasted for 24/48 h (acute exposure), 96 h (semi-acute exposure) and 7/14/28 days (sub-chronic exposure) and 48 h for AS. Toxic effects were tested by the measurements of multixenobiotic resistance mechanism (MXR) activity and lipid peroxidation levels, as well as the observation of morphological alterations and behavioural changes. Biochemical markers confirmed the presence of MXR inhibitors in the tested AS and DS and highlighted the presence of SS-induced oxidative stress. The MXR inhibition and thiobarbituric acid reactive substance (TBARS) concentration in the whole earthworm's body were higher after the exposition to lower concentration of the DS. Furthermore, histopathological changes revealed damage to earthworm body wall tissue layers as well as to the epithelial and chloragogen cells in the typhlosole region. These changes were proportional to SS concentration in tested soils and to exposure duration. Obtained results may contribute to the understanding of SS-induced toxic effects on terrestrial invertebrates exposed through soil contact and to identify defence mechanisms of earthworms.

  16. Differences in the accumulated metal concentrations in two epigeic earthworm species (Lumbricus rubellus and Dendrodrilus rubidus) living in contaminated soils

    SciTech Connect

    Morgan, J.E.; Morgan, A.J. )

    1991-08-01

    Lumbricus rubellus and Denrodrilus rubidus are acid-tolerant epigeic species, which are often the only species inhabiting the poorly vegetated and heavily contaminated soils associated with many abandoned mine sites. Although both species probably consume similar food materials, observations on worms collected from acidic and calcareous mine sites indicate that they accumulate significantly different metal concentrations in their tissues: the larger L. rubellus accumulates more Zn and Ca, but less Pb and Cd than D. rubidus. The aim of the present study was to analyze these two epigeic species sampled from ten diverse sites to determine whether the inter-species differences in relative metal accumulation is a general feature of these sympatrics.

  17. Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta).

    PubMed

    Hertel-Aas, Turid; Brunborg, Gunnar; Jaworska, Alicja; Salbu, Brit; Oughton, Deborah Helen

    2011-12-15

    Ecological risk assessment of ionising radiation requires knowledge about the responses of individuals and populations to chronic exposures, including situations when exposure levels change over time. The present study investigated processes such as recovery and the adaptive response with respect to reproduction endpoints in the earthworm Eisenia fetida exposed to (60)Co γ-radiation. Furthermore, a crossed experiment was performed to investigate the influence of F0 parental and F1 embryonic irradiation history on the response of irradiated or non-irradiated F1 offspring. Recovery: The sterility induced by sub-chronic exposure at 17 m Gy/h (accumulated dose: 25 Gy) was temporary, and 8 weeks after irradiation the worms had regained their reproductive capacity (number of viable offspring produced per adult per week). Adaptive response: Adult worms were continuously exposed at a low priming dose rate of 0.14 mGy/h for 12 weeks (accumulated dose: 0.24 Gy), followed by 14 weeks exposure at a challenge dose rate of 11 mGy/h. The results suggest a lack of adaptive response, since there were no significant differences in the effects on reproduction capacity between the primed and the unprimed groups after challenge doses ranging from 7.6 to 27 Gy. Crossed experiment: The effects of exposure at 11 mGy/h for 21 weeks on growth, sexual maturation and reproduction of offspring, derived either from parent worms and cocoons both exposed at 11 mGy/h, or from non-irradiated parents and cocoons (total accumulated dose 44 and 38 Gy, respectively) were compared. There were no significant differences between the two exposed offspring groups for any of the endpoints. The reproduction capacity was very low for both groups compared to the controls, but the reproduction seemed to be maintained at the reduced level, which could indicate acclimatisation or stabilisation. Finally, parental and embryonic exposures at 11 mGy/h did not affect reproduction in the F1 offspring as adults.

  18. Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei

    SciTech Connect

    Van Gestel, C.A.; Dirven-Van Breemen, E.M.; Baerselman, R.; Emans, H.J.; Janssen, J.A.; Postuma, R.; Van Vliet, P.J. )

    1992-04-01

    In this study, the effects of nine different chemicals on the survival, growth, and reproduction of the earthworm species Eisenia andrei were determined using a recently developed method. Earthworms were exposed for 3 weeks to the test chemicals in an artificial soil substrate. Additional data on the acute toxicity of these chemicals were derived from the literature. For some chemicals, cocoon production was the most sensitive parameter (cadmium, chromium, paraquat, fentin, benomyl, phenmedipham), while for others cocoon hatchability was most sensitive (pentachlorophenol, parathion, carbendazim). In the case of parathion, growth of the worms seemed to be even more sensitive than reproduction. As an overall parameter for the effect on earthworm reproduction, the total number of juveniles produced per worm appeared to be a useful parameter. Differences between (acute) LC50 values and the lowest NOEC value for effects on growth and reproduction were different for each chemical. Difference was greatest for cadmium (a factor of greater than 100) and smallest for fentin, benomyl, and pentachlorophenol (a factor of 5-6).

  19. Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei.

    PubMed

    Gastaldi, Laura; Ranzato, Elia; Caprì, Flavia; Hankard, Peter; Pérès, Guénola; Canesi, Laura; Viarengo, Aldo; Pons, Giovanni

    2007-09-01

    We applied a battery of biomarkers in the earthworm Eisenia andrei to assess the pollutant-induced stress syndrome. Earthworms were exposed to sublethal concentrations of copper (1-10 microM) and benzo[a]pyrene (0.01-10 microM) as models of inorganic and organic pollutants for 1, 3 and 7 days. Four potential biomarkers of stress were measured: lysosomal membrane stability of coelomocytes, lysosomal accumulation of lipofuscin in chloragogenous tissue and of neutral lipids in coelomatic cells, plasma membrane Ca2+-ATPase activity in the intestinal epithelium; metallothionein content was also evaluated as a biomarker of exposure. Significant changes were observed in the parameters measured in earthworms exposed to both contaminants. Certain biomarkers, such as lysosomal membrane stability and Ca2+-ATPase activity, that showed a decreasing trend with increasing pollutant concentration and time of exposure, proved to be particularly suitable to describe the evolution of a stress syndrome from its early phase to the development of pathological conditions. On the other hand, contaminant-induced changes in lysosomal lipofuscin and neutral lipid accumulation showed a bell-shaped trend, indicating that these biomarkers are able to follow the development of pollutant-induced stress syndrome as far as an equilibrium in the cell functions is maintained; therefore, they are particularly useful to describe mild stress conditions.

  20. Short-term effects of Dechlorane Plus on the earthworm Eisenia fetida determined by a systems biology approach.

    PubMed

    Zhang, Liujun; Ji, Funian; Li, Mei; Cui, Yibin; Wu, Bing

    2014-05-30

    Dechlorane Plus (DP), a chlorinated flame retardant, has been widely detected in environmental matrices, especially in sediment and soil. DP has characteristics similar to persistent organic pollutants. However, no toxicity data of DP on terrestrial invertebrate are available. In this study, earthworms Eisenia fetida were exposed to 0.1, 1, 10, and 50mg/kg DP for 14 days. Lethality, oxidative stress and damage, neurotoxicity, and transcriptomic profiles of E. fetida were assessed on day 7 and day 14 of exposure. Results showed that the acute toxicity of DP was very low. However, DP exposure induced an increase in the oxidative stress markers malonaldehyde (MDA) and 8-Hydroxy-2'-deoxyguanosine (8-OHdG), and altered acetylcholinesterase (AChE) activities. High throughput sequencing-based transcriptomic analysis showed that DP exposure significantly altered gene expression and pathways related to antioxidant enzymes, stress responses, neurological dysfunctions, calcium binding, and signal transduction. The results from different toxicological endpoints indicate that DP toxicity on the earthworm is primarily through oxidative damage and neurotoxicity. Based on these results, we deduce that changes in oxidative stress and neurotoxicity might be the primary mechanisms of DP toxicity. This study provides insight into the toxicological effects of DP on earthworm model, and may be useful for risk assessment of DP on soil ecosystems.

  1. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems.

    PubMed

    Zhao, Shuyan; Zhu, Lingyan

    2017-01-01

    The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota.

  2. Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils.

    PubMed

    Robidoux, Pierre Yves; Sunahara, Geoffrey I; Savard, Kathleen; Berthelot, Yann; Dodard, Sabine; Martel, Majorie; Gong, Ping; Hawari, Jalal

    2004-04-01

    Monocyclic nitramine explosives such as 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are toxic to a number of ecological receptors, including earthworms. The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is a powerful explosive that may replace RDX and HMX, but its toxicity is not known. In the present study, the lethal and sublethal toxicities of CL-20 to the earthworm (Eisenia andrei) are evaluated. Two natural soils, a natural sandy forest soil (designated RacFor2002) taken in the Montreal area (QC, Canada; 20% organic carbon, pH 7.2) and a Sassafras sandy loam soil (SSL) taken on the property of U.S. Army Aberdeen Proving Ground (Edgewood, MD, USA; 0.33% organic carbon, pH 5.1), were used. Results showed that CL-20 was not lethal at concentrations of 125 mg/kg or less in the RacFor2002 soil but was lethal at concentrations of 90.7 mg/kg or greater in the SSL soil. Effects on the reproduction parameters such as a decrease in the number of juveniles after 56 d of exposure were observed at the initial CL-20 concentration of 1.6 mg/kg or greater in the RacFor2002 soil, compared to 0.2 mg/kg or greater in the SSL soil. Moreover, low concentrations of CL-20 in SSL soil (approximately 0.1 mg/kg; nominal concentration) were found to reduce the fertility of earthworms. Taken together, the present results show that CL-20 is a reproductive toxicant to the earthworm, with lethal effects at higher concentrations. Its toxicity can be decreased in soils favoring CL-20 adsorption (high organic carbon content).

  3. Comparative proteomic analysis of differentially expressed proteins in the earthworm Eisenia fetida during Escherichia coli O157:H7 stress.

    PubMed

    Wang, Xing; Chang, Li; Sun, Zhenjun; Zhang, Yufeng

    2010-12-03

    Escherichia coli O157:H7 is an intestine-inhabiting bacterium associated with many severe disease outbreaks worldwide. It may enter the soil environment with the excreta of infected animals (e.g., horses, cattle, chickens) and humans. Earthworms can protect themselves against invading pathogens because of their efficient innate defense system. Identification of differential proteomic responses to E. coli O157:H7 may provide a better understanding of the survival mechanisms of the earthworm Eisenia fetida that lives in E. coli O157:H7-polluted environments. Whole earthworm extracts, collected at days 7, 14, 21, and 28 after E. coli O157:H7 stress, were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. In total, 124 proteins demonstrated significant regulation at least at one time point, and 52 proteins were identified by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry and database searching. Compared with control samples, 11 protein spots were up-regulated and 41 were down-regulated for at least one time point. The identified proteins, including heat shock protein 90, fibrinolytic protease 0, gelsolin-like protein, lombricine kinase, coelomic cytolytic factor-1, manganous superoxide dismutase, catalase, triosephosphate isomerase, extracellular globin-4, lysenin, intermediate filament protein, and glyceraldehyde-3-phosphate dehydrogenase, are involved in several processes, including transcription, translation, the tricarboxylic acid cycle, and the glucose metabolic process. Thus, our study provides a functional profile of the E. coli O157:H7-responsive proteins in earthworms. We suggest that the variable levels and trends in these spots on the gel may be useful as biomarker profiles to investigate E. coli O157:H7 contamination levels in soils.

  4. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions.

  5. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida.

    PubMed

    Rico, Andreu; Sabater, Consuelo; Castillo, María-Ángeles

    2016-05-01

    The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems.

  6. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests.

    PubMed

    Garcia-Velasco, Nerea; Gandariasbeitia, Maite; Irizar, Amaia; Soto, Manuel

    2016-10-01

    Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.

  7. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity.

    PubMed

    Calisi, A; Grimaldi, A; Leomanni, A; Lionetto, M G; Dondero, F; Schettino, T

    2016-05-01

    Carbon nanotubes have received a great attention in the last years thanks to their remarkable structural, electrical, and chemical properties. Nowadays carbon nanotubes are increasingly found in terrestrial and aquatic environment and potential harmful impacts of these nanoparticles on humans and wildlife are attracting increasing research and public attention. The effects of carbon nanotubes on aquatic organisms have been explored by several authors, but comparatively the information available on the impact of these particles on soil organisms is much less. Earthworms have traditionally been considered to be convenient indicators of land use impact and soil fertility. The aim of this work was to study the integrated response of a suite of biomarkers covering molecular to whole organism endpoints for the assessment of multi-walled carbon nanotube (MWCNTs) effects on earthworms (Eisenia fetida) exposed to spiked soil. Results showed that cellular and biochemical responses, such as immune cells morphometric alterations and lysosomal membrane destabilization, acetylcholinesterase inhibition and metallothionein tissue concentration changes, showed high sensitivity to MWCNTs exposure. They can improve our understanding and ability to predict chronic toxicity outcomes of MWCNTs exposure such as reproductive alterations. In this context although more investigation is needed to understand the mechanistic pathway relating the biochemical and cellular biomarker analyzed to reproductive alterations, the obtained results give an early contribution to the future development of an adverse outcomes pathways for MWCNTs exposure.

  8. Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Annelida, Oligochaeta).

    PubMed

    Li, Mei; Liu, Zhengtao; Xu, Yun; Cui, Yibin; Li, Dingsheng; Kong, Zhiming

    2009-02-01

    There are rising concerns about the hazardous effects of cadmium (Cd) and lead (Pb) on the environment in China. Biochemical and comet assays were conducted on the earthworm Eisenia fetida, a suitable bio-indicator organism for evaluating soil pollution after exposure to two heavy metals, Cd and Pb. Protein content increased at low Cd concentrations (p<0.05) and decreased at the highest concentration of 10 mg kg(-1), compared to control (p<0.05). Pb showed an inhibitory effect on protein content at low concentrations but demonstrated no significant effect at higher concentrations. There were no significant differences between control and treated groups at the doses of 1 and 10 mg kg(-1) Cd while at a dose of 0.1 mg kg(-1) Cd the cellulase activity was significantly increased compared to control. Cellulase activities of Pb-treated E. fetida increased in a dose dependent fashion. Results of the comet assay indicated toxicant induced DNA damage. Cd exposure caused significant differences between control and treatment groups (ANOVA, p< 0.05, p< 0.01) and a positive dose-response profile. As for Pb treatment, there were no significant differences between the groups treated with 50 and 500 mg kg(-1) of Pb and the control. Results showed that DNA damage from Cd was more serious than that from Pb. And this indicated that the earthworm was more sensitive to the effects of Cd.

  9. Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida.

    PubMed

    Bednarska, Agnieszka J; Choczyński, Maciej; Laskowski, Ryszard; Walczak, Marcin

    2017-01-01

    In polluted environments organisms are commonly exposed to a combination of chemicals with different modes of action, and their effects can be additionally modified by natural abiotic conditions. One possible mechanism for interactions in mixtures is via toxicokinetics, as chemicals may alter the uptake, distribution, biotransformation and/or elimination of each other, and all these processes can be affected by temperature. In this study, the effect of temperature (T) on the toxicokinetics of copper (Cu) and chlorpyriphos (CHP), applied either singly or in binary mixtures, was studied in the earthworm Eisenia fetida. The experiments were conducted at 10 or 20 °C and the earthworms were exposed to environmentally realistic concentrations of Cu and/or CHP for 16 d, followed by a depuration period of 4 d in uncontaminated soil. The earthworms were sampled for body Cu and/or CHP concentrations and acetylcholinesterase (AChE) activity measurements. The CHP degradation rate in the soil was substantially higher at 20 °C and in soil treated with Cu. The significant (p < 0.05) inhibition of AChE activity in the earthworms exposed to CHP was found. The effect of Cu was significant only at p < 0.1. No synergistic effect of the parallel CHP and Cu exposure was found. Four days after transferring the earthworms to uncontaminated soil, the AChE activity recovered to the level observed in control animals. The temperature effect on the toxicokinetic parameters was more pronounced for CHP than for Cu. In the case of CHP, the assimilation rate constant (kA) was significantly higher at 20 °C than at 10 °C, both in CHP-only and CHP + Cu treatments. A similar trend was found for the elimination rate constant (kE), but the difference was statistically significant only for non-Cu treatments. In the case of Cu, the general trend of higher kA and kE at 20 °C and in the absence of CHP was observed.

  10. Prevalence of Bacillus anthracis-Like Organisms and Bacteriophages in the Intestinal Tract of the Earthworm Eisenia fetida▿ †

    PubMed Central

    Schuch, R.; Pelzek, A. J.; Kan, S.; Fischetti, V. A.

    2010-01-01

    Stable infection of Bacillus anthracis laboratory strains with environmental bacteriophages confers survival phenotypes in soil and earthworm intestinal niches (R. Schuch and V. A. Fischetti, PLoS One 4:e6532, 2009). Here, the natural occurrence of two such B. anthracis-infective bacteriophages, Wip1 and Wip4, was examined in the intestines of Eisenia fetida earthworms as part of a 6-year longitudinal study at a Pennsylvania forest site. The Wip1 tectivirus was initially dominant before being supplanted by the Wip4 siphovirus, which was then dominant for the next 3 years. In a host range analysis of a wide-ranging group of Bacillus species and related organisms, Wip1 and Wip4 were both infective only toward B. anthracis and certain B. cereus strains. The natural host of Wip4 remained constant for 3 years and was a B. cereus strain that expressed a B. anthracis-like surface polysaccharide at septal positions on the cell surface. Next, a novel metagenomic approach was used to determine the extent to which such B. cereus- and B. anthracis-like strains are found in worms from two geographical locations. Three different enrichment strategies were used for metagenomic DNA isolation, based either on the ability of B. cereus sensu lato to form heat-resistant spores, the sensitivity of B. anthracis to the PlyG lysin, or the selective amplification of environmental phages cocultured with B. anthracis. Findings from this work indicate that B. cereus sensu lato and its phages are common inhabitants of earthworm intestines. PMID:20118353

  11. Prevalence of Bacillus anthracis-like organisms and bacteriophages in the intestinal tract of the earthworm Eisenia fetida.

    PubMed

    Schuch, R; Pelzek, A J; Kan, S; Fischetti, V A

    2010-04-01

    Stable infection of Bacillus anthracis laboratory strains with environmental bacteriophages confers survival phenotypes in soil and earthworm intestinal niches (R. Schuch and V. A. Fischetti, PLoS One 4:e6532, 2009). Here, the natural occurrence of two such B. anthracis-infective bacteriophages, Wip1 and Wip4, was examined in the intestines of Eisenia fetida earthworms as part of a 6-year longitudinal study at a Pennsylvania forest site. The Wip1 tectivirus was initially dominant before being supplanted by the Wip4 siphovirus, which was then dominant for the next 3 years. In a host range analysis of a wide-ranging group of Bacillus species and related organisms, Wip1 and Wip4 were both infective only toward B. anthracis and certain B. cereus strains. The natural host of Wip4 remained constant for 3 years and was a B. cereus strain that expressed a B. anthracis-like surface polysaccharide at septal positions on the cell surface. Next, a novel metagenomic approach was used to determine the extent to which such B. cereus- and B. anthracis-like strains are found in worms from two geographical locations. Three different enrichment strategies were used for metagenomic DNA isolation, based either on the ability of B. cereus sensu lato to form heat-resistant spores, the sensitivity of B. anthracis to the PlyG lysin, or the selective amplification of environmental phages cocultured with B. anthracis. Findings from this work indicate that B. cereus sensu lato and its phages are common inhabitants of earthworm intestines.

  12. NOVEL MODEL DESCRIBING TRACE METAL CONCENTRATIONS IN THE EARTHWORM, EISENIA ANDREI

    EPA Science Inventory

    We developed a novel model describing Eisenia andrei body concentrations for Cd, Cu, Pb, and Zn as a function of pH, metals, and soluble organic carbon (SOC) in soil extracts for potential use in predicting values in contaminated field sites. Data from 17 moderately contaminated ...

  13. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida).

    PubMed

    Qu, Han; Wang, Peng; Ma, Rui-xue; Qiu, Xing-xu; Xu, Peng; Zhou, Zhi-qiang; Liu, Dong-hui

    2014-07-01

    The enantioselective acute toxicity to earthworms of racemic fipronil and its individual enantiomers was studied. R-(-)-fipronil was approximately 1.5 times more toxic than the racemate and approximately 2 times more toxic than S-(+)-fipronil after 72 and 96 h of exposure, respectively. Assays of fipronil enantiomer bioaccumulation and degradation in earthworms were conducted. The bio-concentration factors (BCFs) were slightly different between the two enantiomers. The enantiomeric fraction (EF) values in earthworms in the bioaccumulation period were approximately 0.5, which indicated there was no enantioselective bioaccumulation. In contrast, the degradation of fipronil in earthworms was enantioselective: the t1/2 values for R- and S-fipronil were 3.3 and 2.5 days, respectively, in natural soil, and 2.1 and 1.4 days, respectively, in artificial soil. The results of soil analyses showed that the degradation of fipronil was not enantioselective, which suggested that the enantioselectivity of fipronil in earthworms results from the organism's metabolism. The study also demonstrated that the presence of earthworms could accelerate the degradation of fipronil in soil.

  14. Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida.

    PubMed

    Ye, Xiaoqing; Xiong, Kang; Liu, Jing

    2016-06-05

    More attention is being paid to the enantioselective toxicity of chiral pesticides. However, limited investigations have been done to assess the ecological risks of chiral pesticides to soil community. Fenvalerate (FV), an extensively used synthetic pyrethroid, is a typical chiral pesticide. The most insecticidally active enantiomer of FV, esfenvalerate (ESFV), also has been marketed and widely used. In this study, the toxicological sensitivity and bioaccumulation of FV and ESFV in earthworms were assessed. The results showed that FV was less toxic than ESFV, but more accumulated in earthworms. ESFV was at least 4 times more toxic to earthworms than FV according to the filter paper contact toxicity test and the artificial soil test. Enantiospecific induction in oxidative stress was observed in earthworms exposed to FV and ESFV. The bioaccumulation of FV and ESFV in earthworm tissues was also enantioselective, preferentially accumulating FV. The uptake of ESFV by earthworms was lower than that of FV, so that the biota to soil accumulation factor (BSAF) value of ESFV was lower than that of FV. Our findings suggest that the enantioselective toxicity and bioaccumulation of chiral pesticides should be considered for evaluating ecological risks of these compounds to non-target organisms.

  15. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    PubMed

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition.

  16. Gene expression profiling of coelomic cells and discovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags.

    PubMed

    Tak, Eun Sik; Cho, Sung-Jin; Park, Soon Cheol

    2015-01-01

    The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system.

  17. Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol and 2,4-dichloroaniline

    SciTech Connect

    van Gestel, C.A.; van Dis, W.A.; van Breemen, E.M.; Sparenburg, P.M. )

    1989-12-01

    This article describes a standardized test method for determining the effect of chemical substances on the reproduction of the earthworm Eisenia fetida andrei. It is based on the existing guidelines for acute toxicity testing with earthworms, and for reasons of standardization the same artificial soil substrate and earthworm species were chosen as prescribed by these guidelines. After being preconditioned for one week in untreated soil, earthworms are exposed to the chemical substances for 3 weeks. The number of cocoons produced is determined, and cocoons are incubated in untreated artificial soil for 5 weeks to assess hatchability. Results are presented from toxicity experiments with pentachlorophenol, copper, and 2,4-dichloroaniline. For these compounds no-effect levels (NEL) for cocoon production were 32, 60-120, and 56 mg.kg-1 dry soil, respectively. Hatching of cocoons was influenced by pentachlorophenol (NEL, 10 mg.kg-1), but not by copper and dichloroaniline. Following exposure, earthworms were incubated in clean soil again to study the possibility of recovery of cocoon production. For copper and dichloroaniline earthworms did recover cocoon production to a level as high as the control level or even higher; in case of pentachlorophenol, cocoon production was still reduced after 3 weeks in clean soil.

  18. Study on the influential factors of Cd(2+) on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach.

    PubMed

    Zhou, Dongxing; Ning, Yucui; Wang, Bing; Wang, Guangdong; Su, Ye; Li, Lei; Wang, Ye

    2016-08-01

    When earthworms are exposed to pollutants, their antioxidant system will have responses immediately. Consequently earthworms are widely used to monitor various pollutants as a sensitive bio-indicator. However, there are a large number of indices associated with the oxidative stress response. Finding out the key monitoring indices in the stress process becomes a practical demand of the pollution monitoring and warning process. Factor analysis approach is a statistical method that uses a few factors to replace many original factors. This paper is aimed at analyzing and sorting factors related to Cd(2+) on the earthworm Eisenia fetida in oxidative stress. We studied two groups, the short-term test and the long-term test. The former test lasted for ten days, removing an earthworm every day for analysis; The latter test lasted for 30 days, taking out an earthworm every ten days. The Cd(2+) concentration was set at 0, 50, 100, 125, 250 and 500 mg kg(-1), post-clitellum segments of earthworms were chosen to determine SOD, POD, GPX, GST, CAT, VE, MDA and AChE. The results showed that in the short-term group, the main bioindicator associated with oxidative stress reaction was CAT at the exposure time of 1-3 days, at 4-5 days MDA, 6-7 days POD, and GST and GPX at 8th day, CAT at 9-10 days. While with the long-term test, the main bioindicator associated with oxidative stress reaction was GPX.

  19. Intestinal Absorption of Fibrinolytic and Proteolytic Lumbrokinase Extracted from Earthworm, Eisenia andrei

    PubMed Central

    Yan, Xiang Mei; Kim, Chung-Hyo; Lee, Chul Kyu; Shin, Jang Sik; Cho, Il Hwan

    2010-01-01

    To investigate the intestinal absorption of a fibrinolytic and proteolytic lumbrokinase extracted from Eisenia andrei, we used rat everted gut sacs and an in situ closed-loop recirculation method. We extracted lumbrokinase from Eisenia andrei, and then raised polyclonal antibody against lumbrokinase. Fibrinolytic activity and proteolytic activity in the serosal side of rat everted gut sacs incubated with lumbrokinase showed dose- and time-dependent patterns. Immunological results obtained by western blotting serosal side solution using rat everted gut sacs method showed that lumbrokinase proteins between 33.6 and 54.7 kDa are absorbed mostly by the intestinal epithelium. Furthermore, MALDI-TOF mass spectrometric analysis of plasma fractions obtained by in situ recirculation method confirmed that lumbrokinase F1 is absorbed into blood. These results support the notion that lumbrokinase can be absorbed from mucosal lumen into blood by oral administration. PMID:20473377

  20. The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida).

    PubMed

    Liu, Tong; Zhu, Lusheng; Han, Yingnan; Wang, Jinhua; Wang, Jun; Zhao, Yan

    2014-10-01

    As the main optical isomer of metalaxyl, metalaxyl-M has been widely used worldwide in recent years because of its notable effect on the prevention and control of crop diseases. Together with the toxicity and degradation of metalaxyl-M, the chemical has attracted the attention of researchers. The present study examined the toxic effects of metalaxyl-M on earthworms at 0 mg kg(-1) , 0.1 mg kg(-1) , 1 mg kg(-1) , and 3 mg kg(-1) on days 7, 14, 21 and 28 after exposure. The results showed that metalaxyl-M could cause an obvious increase in the production of reactive oxygen species (ROS) when the concentration was higher than 0.1 mg kg(-1) , which led to lipid peroxidation in earthworms. Metalaxyl-M can induce DNA damage in earthworms, and the level of DNA damage markedly increased with increasing the concentration of metalaxyl-M. Metalaxyl-M also has a serious influence on the activities of antioxidant enzymes, which results in irreversible oxidative damage in cells. The changes of these indicators all indicated that metalaxyl-M may cause cytotoxic and genotoxic effects on earthworms.

  1. Lead accumulations and toxic effects in earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether.

    PubMed

    Zhang, Wei; Chen, Lin; Liu, Kou; Chen, Lei; Lin, Kuangfei; Guo, Jie; Liu, Lili; Cui, Changzheng; Yan, Zenguang

    2014-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impact on earthworms of exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the Pb accumulations and toxic effects by earthworms in the presence of BDE209 for the first time. The results have demonstrated that BDE209 presence can affect Pb bioaccumulation efficiency compared with exposure to Pb alone. The Pb contents in earthworms had a highly positive correlation with the Pb concentrations in soils. For different Pb doses, almost contrary response trends were found for Pb uptake examined separately on day 7 or 28, and dose-effect relationships were clearly observed in the presence of BDE209. After 7 days of exposure, the earthworm bodies receiving 1-mg kg(-1) BDE209 dose showed significantly lower Pb contents (average = 175.85 mg kg(-1)) and bioaccumulation factor (average = 0.574) than those receiving non-BDE209 treatments (217.39 mg kg(-1) and 1.209, respectively). As the incubation time extended, the influence of BDE209 presence on Pb uptake gradually declined. Additionally, either single or combined exposure to both chemicals can affect the protein synthesis in earthworms (p < 0.01), while different levels of BDE209 addition barely caused visible differences. The results of these observations have provided a basic understanding on the potential toxicological effects of joint Pb and BDE209 exposure on terrestrial invertebrates.

  2. Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine by the earthworm Eisenia andrei in a sandy loam soil.

    PubMed

    Sarrazin, Manon; Dodard, Sabine G; Savard, Kathleen; Lachance, Bernard; Robidoux, Pierre Y; Kuperman, Roman G; Hawari, Jalal; Ampleman, Guy; Thiboutot, Sonia; Sunahara, Geoffrey I

    2009-10-01

    The heterocyclic polynitramine hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a highly energetic compound found as a soil contaminant at some defense installations. Although RDX is not lethal to soil invertebrates at concentrations up to 10,000 mg/kg, it decreases earthworm cocoon formation and juvenile production at environmentally relevant concentrations found at contaminated sites. Very little is known about the uptake of RDX in earthworms and the potential risks for food-chain transfer of RDX in the environment. Toxicokinetic studies were conducted to quantify the bioaccumulation factors (BAFs) using adult earthworms (Eisenia andrei) exposed for up to 14 d to sublethal concentrations of nonlabeled RDX or [14C]RDX in a Sassafras sandy loam soil. High-performance liquid chromatography of acetonitrile extracts of tissue and soil samples indicated that nonlabeled RDX can be accumulated by the earthworm in a concentration- and time-dependent manner. The BAF, expressed as the earthworm tissue to soil concentration ratio, decreased from 6.7 to 0.1 when the nominal soil RDX concentrations were increased from 1 to 10,000 mg/kg. Tissue concentrations were comparable in earthworms exposed to nonlabeled RDX or [14C]RDX. The RDX bioaccumulation also was estimated using the kinetically derived model (BAFK), based on the ratio of the uptake to elimination rate constants. The established BAFK of 3.6 for [14C]RDX uptake was consistent with the results for nonlabeled RDX. Radioactivity also was present in the tissue residues of [14C]RDX-exposed earthworms following acetonitrile extraction, suggesting the formation of nonextractable [14C]RDX metabolites associated with tissue macromolecules. These findings demonstrated a net accumulation of RDX in the earthworm and the potential for food-chain transfer of RDX to higher-trophic-level receptors.

  3. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    SciTech Connect

    Hartenstein, R.; Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  4. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  5. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang; Peng, Fang; Wan, Yun; Liao, Min-Hong

    2014-07-01

    In this work, a laboratory experiment was performed to investigate the influences of inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus caledoniun L. and/or epigeic earthworms (Eisenia foetida) on phytoremediation of a PCB-contaminated soil by ryegrass grown for 180d. Planting ryegrass, ryegrass inoculated with earthworms, ryegrass inoculated with AMF, and ryegrass co-inoculated with AMF and earthworms decreased significantly initial soil PCB contents by 58.4%, 62.6%, 74.3%, and 79.5%, respectively. Inoculation with AMF and/or earthworms increased the yield of plants, and the accumulation of PCBs in ryegrass. However, PCB uptake by ryegrass accounted for a negligible portion of soil PCB removal. The number of soil PCB-degrading populations increased when ryegrass was inoculated with AMF and/or earthworms. The data show that fungal inoculation may significantly increase the remedial potential of ryegrass for soil contaminated with PCBs.

  6. Toxicity of mixtures of λ-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method.

    PubMed

    Wang, Yanhua; Chen, Chen; Qian, Yongzhong; Zhao, Xueping; Wang, Qiang; Kong, Xiangzhen

    2015-01-01

    Contaminants in the environment do not appear singly and usually occur as mixtures. We applied the combination index (CI)-isobologram method which allows computerized quantitation of synergism, additive effect and antagonism to determine the nature of toxicological interactions of two pesticides λ-cyhalothrin, imidacloprid, and heavy metal cadmium towards earthworm Eisenia fetida. In an artificial soil test, λ-cyhalothrin and Cd combination was slightly synergistic at low effect levels which turned into a slight antagonism above f(a) values of 0.6, while the binary mixtures containing imidacloprid exhibited antagonism. The presence of imidacloprid in the ternary mixture also resulted in an antagonistic effect to the earthworms. This behavior became more antagonistic in the ternary mixture in filter paper tests.

  7. Effects of dioxin exposure in Eisenia andrei: integration of biomarker data by an Expert System to rank the development of pollutant-induced stress syndrome in earthworms.

    PubMed

    Sforzini, Susanna; Dagnino, Alessandro; Oliveri, Laura; Canesi, Laura; Viarengo, Aldo

    2011-10-01

    A battery of biomarkers has recently been developed in the earthworm Eisenia andrei. In this study, different biomarkers (i.e. Ca²⁺-ATPase activity, lysosomal membrane stability-LMS, lysosomal lipofuscin and neutral lipid content) were utilized to evaluate the alterations in the physiological status of animals, induced by exposure for 3d to different sublethal concentrations of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (1.5 × 10⁻³, 1.5 × 10⁻², 1.5×10⁻¹ ng mL⁻¹) utilizing the paper contact toxicity test. Lysosome/cytoplasm volume ratio and DNA damage were also evaluated as a biomarker at the tissue level and as a biomarker of genotoxicity, respectively. Moreover, the NR retention time assay conditions were optimized for the determination of in vivo LMS in earthworm coelomocytes. The results demonstrate that LMS and Ca²⁺-ATPase activity were early warning biomarkers able to detect the effects of minimal amounts of TCDD and that biomarkers evaluated at the tissue level are important for following the evolution of the stress syndrome in earthworms. To evaluate the health status of the animals, an Earthworm Expert System (EES) for biomarker data integration and interpretation was developed. The EES proved to be a suitable tool able to rank, objectively, the different levels of the stress syndrome in E. andrei induced by the different concentrations of TCDD.

  8. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations.

    PubMed

    Bade, Rabindra; Oh, Sanghwa; Shin, Won Sik

    2012-02-01

    The applicability of diffusive gradients in thin-films (DGT) as a biomimic surrogate was investigated to determine the bioavailable heavy metal concentrations to earthworm (Eisenia foetida). The relationships between the amount of DGT and earthworm uptake; DGT uptake and the bioavailable concentrations of heavy metals in soils were evaluated. The one-compartment model for the dynamic uptake of heavy metals in the soil fitted well to both the earthworm (R(2)=0.641-0.990) and DGT (R(2)=0.473-0.998) uptake data. DGT uptake was linearly correlated with the total heavy metal concentrations in the soil (aqua regia), the bioavailable heavy metal concentrations estimated by fractions I+II of the standard measurements and testing (SM&T) and physiologically based extraction test (PBET, stomach+intestine). The coefficients of determination (R(2)) of DGT uptake vs. aqua regia were 0.433, 0.929 and 0.723; vs. SM&T fractions (I+II) were 0.901, 0.882 and 0.713 and vs. PBET (stomach+intestine) were 0.913, 0.850 and 0.649 for Pb, Zn and Cu, respectively. These results imply that DGT can be used as a biomimic surrogate for the earthworm uptake of heavy metals in contaminated soils as well as predict bioavailable concentrations of heavy metals estimated by SM&T (I+II) and PBET as a human oral bioavailable concentrations of heavy metals.

  9. Preliminary evidence of differences in cadmium tolerance in metal-free stocks of the standard earthworm test species Eisenia andrei (Oligochaeta).

    PubMed

    Otomo, Patricks Voua; Otomo, Laetitia Voua; Bezuidenhout, Carlos C; Maboeta, Mark S

    2016-08-01

    To test whether metal-tolerant and metal-sensitive earthworm specimens could be an inherent part of metal-free earthworm populations, (i) we used DNA barcoding to identify and categorize earthworms from 8 populations of the standard test species Eisenia andrei, and (ii) the earthworms carrying three of the identified COI haplotypes (named Hap1, hap3 and Hap3) were paired up and exposed to Cd in order to assess the difference in Cd sensitivity between the breeding pairs. A total of six breeding pairs were exposed to 0, 25, 50 and 100 mg Cd/kg for 4 weeks at 20 °C. The survival of the breeding pairs, their change in biomass and cocoon production were assessed. For all of the endpoints assessed, the results indicated that couple 6 (Hap3 × Hap3) was the most sensitive breeding pair whereas couple 4 (Hap1 × Hap3) was the least sensitive one. The analysis of Cd tissue contents revealed that with increasing Cd concentration, Cp6 (Hap3 × Hap3) could accumulate significantly more Cd than any other breeding pair (p ≤ 0.01). Our findings indicate that E. andrei may harbour intrinsically Cd-tolerant and Cd-sensitive individuals and that this may be due to individual differences in Cd accumulation kinetics. In the context of ecotoxicological testing, our results underline the importance of using genetically diverse populations in laboratory testing to prevent generating flawed data from genetically homogeneous laboratory stocks. Although we do not regard the present mitochondrial haplotypes as proxy for possibly nuclear encoded traits, we discuss the necessity of a standardised earthworm barcoding protocol that could help not only to confirm the taxonomy of laboratory earthworm stocks but also to select genetically diverse stocks suitable for laboratory testing.

  10. Rapid bioassessment methods for assessing the toxicity of terrestrial waste sites at the Savannah River Site using the earthworm, Eisenia foetida

    SciTech Connect

    Specht, W.L.; Sydow, S.N.

    1995-08-01

    Studies were conducted to assess the feasibility of using the earthworm, Eisenia foetida, to evaluate the toxicity of contaminated soils at the Savannah River Site. Survival was assessed in several uncontaminated soils, including sandy loams and clayey loams, as well as in soils contaminated with coal fines, ash, diesel fuel, and heavy metals. In addition, behavior responses, changes in biomass, and bioaccumulation of heavy metals were assessed as sublethal indicators of toxicity. The results indicate excellent survival of Eisenia foetida in uncontaminated sandy and clayey soils. No amendment of these uncontaminated soils or addition of food was necessary to sustain the worms for the 14-day test period. In contaminated soils, no significant mortality was observed, except in soils which have very low pH (< 3). However, sublethal responses were observed in earthworms exposed to several of the contaminated soils. These responses included worms clumping on the surface of the soil, worms clumping between the sides of the test container and the soil, increased burrowing times, reductions in biomass, and elevated concentrations of heavy metals in worm tissue.

  11. Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2014-01-01

    Genotoxicity of pressmud (PM) to Allium cepa was investigated to assess its toxic potential and to elucidate the effect of vermicomposting to reduce its toxicity. The PM produced as a waste by product of the sugar cane industry was mixed with cow dung (CD) at different ratios of 0:100 (V₀), 25:75 (V₂₅), 50:50 (V₅₀), 75:25 (V₇₅) and 100:0 (V100) (PM:CD) on a dry weight basis for vermicomposting with Eisenia fetida. Different concentrations of 100% PM sludge extract (10%, 20%, 40%, 60%, 80% and 100%) and negative control (distilled water) and positive control (maleic hydrazide) were analyzed with A. cepa assay to evaluate frequency of chromosomal aberrations before and after vermicomposting. Percent aberration was greatest (30.8%) after exposure to 100% PM extract after 6 h but was reduced to 20.3% after vermicomposting. Exposure to the extract induced c-mitosis, delayed anaphase, laggards, stickiness and vagrant aberrations. Microscopic examination of root meristem exposed to PM sludge extract showed significant inhibition of mitotic index. Also, the mitotic index decreased with increase in concentration of PM sludge extract. After vermicomposting the mitotic index was increased. However, increasing percentages of PM significantly affected the growth and fecundity of the worms and maximum population size was reached in the 25:75 (PM:CD) feed mixture. Nitrogen, phosphorus, sodium, electrical conductivity (EC) and pH increased from initial feed mixture to the final products (i.e., vermicompost), while organic carbon, C/N ratio and potassium declined in all products of vermicomposting. Scanning electron microscopy (SEM) was recorded to identify the changes in texture with numerous surface irregularities and high porosity that proves to be good vermicompost manure. It could be concluded that vermicomposting could be an important tool to reduce the toxicity of PM as evidenced by the results of genotoxicity.

  12. Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil.

    PubMed

    Pino, Ma Rosa; Val, Jonatan; Mainar, Ana Ma; Zuriaga, Estefanía; Español, Cecilia; Langa, Elisa

    2015-06-15

    Following soil applications of recycled water and biosolids, pharmaceutical residues can eventually enter the terrestrial environment. In vitro and in vivo assays have largely focused on the acute ecotoxicity of these compounds in aquatic systems. However, studies on the ecotoxicological effects of pharmaceuticals in soil biota are especially scarce. The aim of this study was to investigate the acute toxicity of 18 pharmaceuticals (4 NSAIDs, 5 blood lipid-lowering agents, 6 β-blockers and 3 antibiotics) that are usually found in the environment by using an Eisenia fetida bioassay. In addition, the presence of these pharmaceuticals in artificial soil was verified at the end of the test. Our results indicate that seven of the studied drugs cause acute adverse effects in E. fetida, in particular, the NSAIDs and the blood lipid-lowering agents. Ibuprofen (LC50=64.80 mg/kg) caused the highest acute toxicity for all tested compounds, followed by diclofenac (LC50=90.49 mg/kg) and simvastatin (LC50=92.70 mg/kg). Other tested pharmaceuticals from NSAIDs and blood lipid-lowering families have toxicity effects, from a LC50=140.87 mg/kg for gemfibrozil to 795.07 mg/kg for lovastatin. Atorvastatin, bezafibrate, β-blockers and antibiotics showed no detectable lethality in E. fetida. The four NSAIDs showed evidence of modification of their original chemical structure after 14 days so the detected toxicity may be due to the original product as well as their degradation products. The three blood lipid-lowering agents seem to be more stable in soil. From an environmental perspective, the lethal concentrations of the tested drugs are much greater than those reported in wastewater and biosolids, therefore acute toxic effects may be improbable. However, little is known about the accumulation of these substances in soils after regular applications, so accumulative and chronic effects cannot be excluded. Moreover, more studies are needed to determine the role of the degradation

  13. EPR detection of hydroxyl radical generation and oxidative perturbations in lead-exposed earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether.

    PubMed

    Liu, Kou; Chen, Lin; Zhang, Wei; Lin, Kuangfei; Zhao, Li

    2015-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg(-1)) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg(-1)). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms.

  14. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil.

    PubMed

    Lankadurai, Brian P; Furdui, Vasile I; Reiner, Eric J; Simpson, André J; Simpson, Myrna J

    2013-08-27

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined.

  15. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  16. Microbial and nutrient stabilization of two animal manures after the transit through the gut of the earthworm Eisenia fetida (Savigny, 1826).

    PubMed

    Aira, Manuel; Domínguez, Jorge

    2009-01-30

    Here we studied how the transit through the gut of the earthworm Eisenia fetida affects the microbial and nutrient stabilization of pig and cow manure, by analyzing fresh casts. Earthworms reduced the pools of dissolved organic C and N in casts from both types of manure, as wells as mineral N. Microbial biomass was enhanced only in casts from pig manure and did not change in casts from cow manure, and fungal populations only raised in casts from cow manure. Earthworms reduced microbial activity in casts from cow manure and did not modify in casts from pig slurry. Enzyme activities in casts also depended on the manure ingested; there were no changes in dehydrogenase and beta-glucosidase activities, whereas acid and alkaline phosphatases increased. The results indicate that the first stage in vermicomposting of pig and cow manure by E. fetida, i.e. casting, produced a microbial stabilization decreasing the activity of microorganisms; this stabilization occurred despite of the increase in microbial biomass. The strong reduction in nutrient pools of manures may be the responsible of this contradiction. These changes will influence the dynamics of the organic matter degradation by reducing forms of C and N available to microorganisms and hence restricting their growth and multiplication. Nevertheless, casts were also characterized by an increased enzyme potential that might lead to a further thorough degradation of pig and cow manure.

  17. Comparison of heavy-metal uptake by Eisenia foetida with that of other common earthworms. Final technical report

    SciTech Connect

    Stafford, E.A.; Edwards, C.A.

    1986-01-01

    Earthworms have been used in the field to indicate levels of soil pollution and in the laboratory for the ecotoxicological testing of industrial chemicals. An earthworm bioassay procedure developed at the Waterways Experiment Station (Vicksburg, Mississippi) was modified and evaluated as a method of providing information on heavy-metal bioavailability in contaminated soils and sediments from Europe. Eight soils/sediments containing elevated levels of a least one of the elements Zn, Cu, Cd and Pb were selected as well as a control and a reference soil. Six species of earthworm, including the WES bioassay earthworm E. foetida, and five field species were grown in the soils/sediments for periods of 15, 28 or 56 days. Concentrations of the elements Zn, Cu, Cd, Ni, Cr and Pb present in the earthworm samples (corrected for the presence of soil-derived metals within the earthworm gut) were compared between earthworm species from the same soil and for each earthworm species from a range of metal contaminated soils/sediments. A close linear relationship between metal uptake by E.foetida and the field species of earthworm emerged and good correlation between total (HNO3/HC104) soil Pb and Cd levels and earthworm tissue concentrations and between DTPA extractable soil Cu and Cc levels and earthworm tissue concentrations was observed.

  18. A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm.

    PubMed

    Li, Huaizheng Z; Wang, Sheng; Ye, Jianfeng F; Xu, Zuxin X; Jin, Wei

    2011-01-01

    This paper presents a simple method for the restoration of clogged vertical subsurface flow constructed wetland by earthworm. Since clogging always takes place at the top layer, epigeic earthworm is suitable for restoration of the clogged wetland. Earthworm can not only loosen the substrate, but also transform 80∼90% of undissolved organic particles into dissolved matters. Accordingly, the accumulated solids in substrate with earthworm are 50% less than the one without earthworm. The wetland with earthworm removed 2∼5 percentage points more nitrogen and 12 percentage points more phosphorous for its better ventilation conditions, while 2 percentage points less COD because the generation of dissolved organic matter from undissolved organic particles by earthworm. In general, the influence of earthworm on the effluent quality of the wetland could be ignored. Hydrology of six full-scale clogged wetlands was restored by Eisenia foetida. The optimal strength of earthworm addition is 0.5 kg/m2, which spend RMB six yuan/m2, less than € 0.75/m2. No specific training is required for the staffs on this method; it takes 10 days to restore the clogged wetland.

  19. The effect of the glycolipoprotein extract (G-90) from earthworm Eisenia foetida on the wound healing process in alloxan-induced diabetic rats.

    PubMed

    Goodarzi, Golnaz; Qujeq, Durdi; Elmi, Maryam M; Feizi, Farideh; Fathai, Sadegh

    2016-06-01

    Diabetes is now regarded as a major public health problem. The number of patients is estimated to increase to over 439 million cases by 2030. One of the major health clinical problems in patients with diabetes patients is impaired wound healing. Diabetic foot ulcer is a major complication of diabetes mellitus in 12 to 25% of patients, which increases the risk of damage in the limbs or amputation. The earthworm Eisenia foetida glycolipoprotein (as known G-90) is a blend of macromolecules with some biological properties including mitogenicity, anticoagulation, fibrinolysis, bacteriostatic and antioxidatiaon. Given the biological properties of G-90, this study was conducted to investigate the effect of extract obtained from the homogenate of Eisenia foetida (G-90) on the wound healing process in alloxan-induced diabetic rats. The results of the present study revealed that treatment by using G-90 can speed up the wound healing process, which is exactly similar to the effect of D-panthenol treatment in rats. These findings also demonstrated that G-90 treatment decreases the risk of infection in the wound site compared with D-panthenol treatment. In addition, histological analysis indicated that a better extracellular matrix formation with increased fibroblast proliferation, neovascularization, collagen synthesis and early epithelial layer formation was observed in G-90 treated group. Therefore, the G-90 could be considered as a new wound healing agent introducing promising therapeutic approaches in both human and veterinary medicine. Copyright © 2016 John Wiley & Sons, Ltd.

  20. DNA damage in earthworms (Eisenia spp.) as an indicator of environmental stress in the industrial zone of Coatzacoalcos, Veracruz, Mexico.

    PubMed

    Espinosa-Reyes, Guillermo; Ilizaliturri, Cesar A; Gonzalez-Mille, Donaji J; Costilla, Rogelio; Diaz-Barriga, Fernando; Carmen Cuevas, Maria Del; Martinez, Miguel Angel; Mejia-Saavedra, Jesus

    2010-01-01

    Coatzacoalcos, Veracruz is one of the major industrial areas of Mexico. Presently, the Coatzacoalcos River and the areas surrounding the industrial complex are considered by various authors to be some of most polluted sites in Mexico. The objective of this study was to determine if earthworms could be used as indicators of environmental stress in the Coatzacoalcos industrial zone. Often, detritivores and decomposers such as earthworms are the first to be affected when the soil is contaminated. We collected soil samples to be used for persistent organic pollutants (POPs) quantification by gas chromatography. Concentrations of hexachlorobenzene, lindane and total polychlorinated biphenyls (PCBs) in the soil were above the maximum permissible limits of the Canadian Environmental Quality Guidelines (CEQG). Comet assay was conducted in coelomocytes of wild earthworms collected in Coatzacoalcos and compared with the control earthworms. We found DNA damage in earthworms from Coatzacoalcos that was significantly higher (P < 0.05) in comparison to laboratory earthworms. Earthworms are an appropriate organism to use as an indicator of environmental impact in contaminated sites. DNA damage recorded in the earthworms provides clear evidence of environmental impacts by the chemical industry on the wildlife of this region.

  1. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil.

    PubMed

    Zhao, Shuyan; Fang, Shuhong; Zhu, Lingyan; Liu, Li; Liu, Zhengtao; Zhang, Yahui

    2014-01-01

    Wheat and earthworms were exposed individually and together to soils contaminated with 11 perfluoroalkyl substances (PFASs). Wheat accumulated PFASs from soil with root concentration factors and bioconcentration factors that decreased as the number of perfluorinated carbons in the molecule increased. Earthworms accumulated PFASs from soil with biota-to-soil accumulation factors that increased with the number of carbons. Translocation factors (TF) of perfluorinated carboxylates (PFCAs) in wheat peaked at perfluorohexanoic acid and decreased significantly as the number of carbons increased or decreased. Perfluorohexane sulfonate produced the greatest TF of the three perfluorinated sulfonates (PFSAs) examined. Wheat increased the bioaccumulation of all 11 PFASs in earthworms and earthworms increased the bioaccumulation in wheat of PFCAs containing seven or less perfluorinated carbons, decreased bioaccumulation of PFCAs with more than seven carbons, and decreased bioaccumulation of PFSAs. In general, the co-presence of wheat and earthworms enhanced the bioavailability of PFASs in soil.

  2. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  3. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination.

    PubMed

    Shi, Yajuan; Zhang, Qiangbin; Huang, Dunqi; Zheng, Xiaoqi; Shi, Yajing

    2016-03-01

    The survival, growth, activity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) of earthworms exposed to the contaminated soils from a former DDT plant and reference soils were investigated, and compared with the corresponding indicators in simulated soil-earthworm system, unpolluted natural soils with spiked-in DDT series, to identify the toxic effects of DDT on earthworms and their cellular defense system in complex soil system. The results indicated that DDT level in the contaminated soils was significantly higher than that in the reference soils with similar level of other pollutants and soil characters. The mortality, growth inhibition rates, GST and CST activities of earthworms exposed to the contaminated soils were significantly higher than that in reference soils. The contribution of historical DDT in contaminated soils to earthworms was confirmed by the DDT spiked tests. DDT spiked in soils at rates of higher than 200 mg·kg(-1) was significantly toxic to both the survival and the growth of earthworms. DDT significantly stimulated GST and CAT activity in earthworms after 14 days. The CAT and GST activities were also stimulated by DDT exposure at rates of 100 mg·kg(-1) after chronic exposure (42 days). The results provide implications for validating the extrapolation from laboratory simulated soils criteria to contaminated soils and for making site risk assessments.

  4. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    PubMed

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC.

  5. Impact of ionophore monensin on performance and Cu uptake in earthworm Eisenia andrei exposed to copper-contaminated soil.

    PubMed

    Zidar, Primož; Kos, Monika; Vogel-Mikuš, Katarina; van Elteren, Johannes Teun; Debeljak, Marta; Žižek, Suzana

    2016-10-01

    Exposure of beneficial soil organisms to chemical mixtures is of great concern and can result in unexpected deleterious consequences. We investigated the effects of concurrent soil contamination with monensin, a veterinary pharmaceutical and feed additive, and copper, on earthworm copper uptake and reproductive success. The animals were exposed for 14 or 28 days to both substances and the results showed that the Cu body burden of earthworms increases in the presence of monensin. The harmful effects of Cu on earthworm cocoon production were considerably higher when monensin was also present in the soil. To localise the copper in earthworm tissues, histological staining was performed using two different dyes (rubeanic acid and 5-4-(p-dimethylaminobenzylidene)-rhodanine). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to quantify the Cu levels in the tissues. Cu was found predominantly in the gut wall. The Cu content in the body wall was at least ten times lower compared to the gut, but was proportional to the level of soil contamination. Concurrent soil contamination with monensin and copper resulted in higher earthworm Cu levels and in decreased reproductive success of these important soil decomposers.

  6. Uptake and depuration kinetics of lead (Pb) and biomarker responses in the earthworm Eisenia fetida after simultaneous exposure to decabromodiphenyl ether (BDE209).

    PubMed

    Zhang, Wei; Liu, Kou; Li, Jing; Chen, Lin; Lin, Kuangfei

    2015-03-01

    Lead (Pb) and BDE209 (decabromodiphenyl ether) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impact on earthworms of exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the uptake and toxicity of Pb in the presence of BDE209 to the earthworm Eisenia fetida. The results have demonstrated that the presence of BDE209 facilitated the release of Pb into soil porewater. Compared with exposure to Pb alone, simultaneous exposure to BDE209 significantly enhanced the Pb uptake rate at the level of p<0.05, while decreased the depuration rate, ultimately resulting in a larger bioaccumulation factor (BAF) value. Additionally, BDE209 addition reduced the antioxidant enzymatic activities [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST)] and total antioxidant capacity (T-AOC). The decline trend in antioxidant enzymatic activities and T-AOC might explain an increase in lipid peroxidation reflected by the observed augment in malondialdehyde (MDA) level. Moreover, a biomarker of the lysosomal membrane stability, measured by neutral red retention time (NRRT), was also investigated. The NRRT obviously declined in the joint presence of BDE209, indicating a distinct time-response relationship. The results of these observations have provided a basic understanding of the potential eco-toxicological effects of joint heavy metal and BDE209 exposure on terrestrial invertebrates in a multi-contamination context of ecosystems.

  7. Immune response of earthworms (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) following in situ soil exposure to atmospheric deposition from a cement factory.

    PubMed

    Massicotte, Richard; Robidoux, Pierre Yves; Sauvé, Sébastien; Flipo, Denis; Fournier, Michel; Trottier, Bertin

    2003-10-01

    In order to reduce their energy costs, many cement plants use fuel product substitutes (old tyres and used oil). The combustion of these products generates a metal increase (e.g. Cu, Cd, Pb and Zn) in the atmospheric emissions. After their release, these elements are deposited into the environment and could eventually accumulate up to concentrations of concern. At the Saint-Laurent cement factory (Joliette, QC, Canada), maximum deposition of these elements occurs in the direction of prevailing winds (North-East). We evaluated the potential impact of these depositions upon the immune system of three earthworm species (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) exposed in a natural environment. The exposure sites were 0.5, 1.0, and 2.0 km downwind from the cement factory, along with an upwind reference site. The immune parameters studied were the cell viability and phagocytic potential of the immune cells (coelomocytes). For both L. terrestris and E. andrei, after 7 d exposure, none of the measured parameters showed significant differences among the sites. On the other hand, for the indigenous worm A. tuberculata, in the most exposed zone (at 0.5 km), we observed an increase in cell viability and phagocytic potential. This increase could possibly be attributed to physicochemical effects such as the alkaline pH of the soil, or alternatively, it could result from beneficial effects induced by an increased calcium supply.

  8. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure.

  9. Combined toxicity of butachlor, atrazine and λ-cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method.

    PubMed

    Chen, Chen; Wang, Yanhua; Zhao, Xueping; Qian, Yongzhong; Wang, Qiang

    2014-10-01

    Pesticides in the environment do not appear singly and usually occur as complex mixtures and their combined effect may exhibit toxicity to organisms. The individual and combined toxicities of two herbicides, atrazine and butachlor and an insecticide λ-cyhalothrin have been examined to the earthworm Eisenia fetida, as a non-target terrestrial organism, in artificial soil and filter paper tests. The order of toxicity for the individual pesticides was ranked as atrazine>λ-cyhalothrin>butachlor in both tests. We applied the combination index (CI)-isobologram method which is widely used to study chemical interactions to determine the nature of toxicological interactions of the pesticides and it allows computerized quantitation of synergism, additive effect and antagonism. For most cases in artificial soil test, synergism was observed in majority of the mixtures except for the combination of butachlor plus λ-cyhalothrin. This particular combination displayed opposite interaction in filter paper test. The CI method was compared with the classical models of Concentration Addition (CA) and Independent Action (IA) and we found that CI method could accurately predict the combined toxicity and can serve as a useful tool in ecotoxicological risk assessment.

  10. Using estimates of metal bioavailability in the soil and genetic variation of allozymes to investigate heavy metal tolerance in the earthworm Eisenia fetida (Oligochaeta).

    PubMed

    Voua Otomo, P; Owojori, O J; Reinecke, S A; Daniels, S; Reinecke, A J

    2011-10-01

    In a recent study, we showed that the earthworm species Eisenia fetida, inhabiting an extremely high metal polluted compost heap on a wine farm, did not have elevated body loads of the metals but exhibited genotoxic tolerance when exposed to Cd in the laboratory (Voua Otomo and Reinecke, 2010). To unravel the mechanism behind the surprisingly low metal body burdens on one hand and genotoxic tolerance on the other hand, we investigated the estimated bioavailability of these metals (Cu, Zn, Pb and Cd) using sequential extraction methods with CaCl(2) and di-ethylene-triamine-pentaacetic acid (DTPA) and allozyme polymorphism in this field population, a laboratory control as well as a long-term Cd exposed population. The amounts of mobile (extracted with CaCl(2)) and mobilizable (extracted with DTPA) metals in relation to the total (extracted with nitric acid) metals were all below 0.05% for all four metals, suggesting low availability for uptake. The low availability of these metals could not be explained by physico-chemical properties of soil but by the phenomenon of aging of the metals. There was no difference in allozyme frequency between metal tolerant and non-metal tolerant populations of E. fetida. This suggested that the tolerance found in earlier studies could be a mere physiological adaptation.

  11. Characterization of EamaT1, a member of maT family of transposable elements from the earthworm Eisenia andrei (Annelida, Oligochaeta).

    PubMed

    Jee, Sang Hyun; Kim, Go Eun; Hong, Seung Hyun; Seo, Sang Beom; Shim, Jae Kuk; Park, Soon Cheol; Choo, Jong Kil

    2007-10-01

    The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120-250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5'-CAGGGTG-3') and AT-rich region on the internal bases for ITRs-transposase interaction.

  12. Effects of benzo[a]pyrene on growth, the antioxidant system, and DNA damage in earthworms (Eisenia fetida) in 2 different soil types under laboratory conditions.

    PubMed

    Duan, Xiaochen; Xu, Li; Song, Jing; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Li, Huixin

    2015-02-01

    The aims of the present study were to compare the toxic effects of benzo[a]pyrene (BaP) and to screen for rapid and sensitive biomarkers that can be used to assess the environmental risks of BaP in earthworms in different natural soil types. The authors exposed Eisenia fetida to 2 types of soil (red soil and fluvo-aquic soil) spiked with different concentrations (0 mg kg(-1), 1 mg kg(-1), 10 mg kg(-1), 100 mg kg(-1), and 500 mg kg(-1)) of BaP for 7 d or 14 d. Benzo[a]pyrene-induced weight variation altered the activities of antioxidant enzymes (superoxide dismutase [SOD]; catalase [CAT]; and guaiacol peroxidase [POD]) and changed the content of malondialdehyde (MDA). In addition, using the comet assay, the authors determined the DNA damage in earthworms. The results revealed that the comet assay was suitable for evaluating the genotoxicity of BaP in the soil, even at the lowest examined concentration. The MDA content was the least sensitive indicator of BaP toxicity. A 3-way analysis of variance (ANOVA) was used to determine whether the soil type, exposure concentration, and duration affected the BaP toxicity. The antioxidant enzyme activities and the MDA content were shown to be significantly correlated with the exposure concentration. The percentage of weight variation (p < 0.001), CAT activity (p < 0.05), and SOD activity (p < 0.01) were significantly affected by the soil type, and the POD activity (p < 0.01), CAT activity (p < 0.001), and SOD activity (p < 0.001) were significantly affected by the exposure duration. Therefore, measuring DNA damage in earthworms is a simple and efficient means of assessing BaP genotoxicity in a terrestrial environment, and the effects of the soil type and exposure time on the other parameters that were investigated in E. fetida, which were used as responsive biomarkers, should be considered.

  13. Dermal exposure of Eisenia andrei earthworms: Effects of heavy metals on metallothionein and phytochelatin synthase gene expressions in coelomocytes.

    PubMed

    Homa, Joanna; Rorat, Agnieszka; Kruk, Jerzy; Cocquerelle, Claude; Plytycz, Barbara; Vandenbulcke, Franck

    2015-06-01

    Parameters such as total number of coelomocytes, riboflavin content in coelomocytes, expression of genes implied in metal homeostasis, and detoxification mechanisms can be used as biomarkers to assess the impact of metals on annelids. Defense biomarkers (detoxification gene expressions and coelomocyte parameters) were investigated in the ecotoxicologically important species Eisenia andrei following in vivo exposure to 5 different metals (zinc, copper, nickel, lead, and cadmium) at known concentrations. Coelomocyte numbers and riboflavin content were not affected by metallic exposure, but metal-specific gene expression variations were evidenced.

  14. Biomanagement of paper mill sludge using an indegenous (Lampito mauritii) and two exotic (Eudrilus eugineae and Eisenia foetida) earthworms.

    PubMed

    Banu, J R; Logakanthi, S; Vijayalakshmi, G S

    2001-07-01

    Paper mills have severe problem in disposing effluent or semisolid sludge despite repeated recycling. It requires treatment prior to disposal of sludge. In recent years biological treatment methods received much attention and considered as efficient low-cost treatment. One such method is vermiculture treatment. The present study was carried out to dispose the paper mill sludge biologically using 2 exotic species (Eudrilus eugineae and Eiseniafoetida) and an indigenous species (Lampito mauritii) of earthworm. The paper mill sludge in various concentration 25%,50% and 75% were subjected to vermitub treatment for a period of 60 days. During the period of study data were collected on reproductive strategies of earthworm and chemical analysis of wastes before and after treatment. Results obtained indicate that 25% concentration of sludge was ideal and of the three worms used Eiseniafoetida proved to be the best worm for biomanagement.

  15. Community-specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest.

    PubMed

    Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J

    2013-12-01

    Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.

  16. Effects of bifenthrin exposure in soil on whole-organism endpoints and biomarkers of earthworm Eisenia fetida.

    PubMed

    Li, Lingling; Yang, Da; Song, Yufang; Shi, Yi; Huang, Bin; Yan, Jun; Dong, Xinxin

    2017-02-01

    In this study, toxic effects of bifenthrin in soil on earthworms were evaluated by acute and chronic toxic endpoints combined with a set of biomarkers. Bifenthrin was moderately toxic in 72-h filter paper test and low toxic in 14-d soil test. The exposure of earthworms to bifenthrin-polluted soil for 8 weeks showed that cocoons were inhibited by high dose of bifenthrin, and larvae were stimulated by low dose but inhibited by high dose of bifenthrin. Furthermore, 28-d soil test on the responses of enzymes associated with antioxidation and detoxification in worms showed that peroxidase (POD) was stimulated by bifenthrin, superoxide dismutase (SOD) inhibited in the early period but stimulated in the later period, glutathione S- transferase (GST) inhibited in the later period, and ethoxyresorufin-O-deethylase (EROD) inhibited at day 3 but markedly stimulated at day 28 at high dose. The different responses of these indexes indicated that multi indexes should be jointly taken into account for comprehensive evaluation of the environmental risk of contaminants in soil.

  17. Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils.

    PubMed

    Liu, Kailin; Pan, Xiong; Han, Yuling; Tang, Feifan; Yu, Yunlong

    2012-11-01

    Both sorption by soil and uptake by organisms of ionizable organic pollutants depend on their speciation (i.e., neutral and ionized forms); thus, the bioavailability of ionizable organic pollutants is more complicated than that of neutral organic pollutants in soil. The toxicity of the weak base carbendazim to earthworms (Eisenia fetida) was estimated using Soxhlet extracted concentrations (C(SE)), an excess of water extracted concentrations (C(EEW)), ex situ pore water concentrations (C(EPW)) and in situ pore water concentrations (C(IPW)) in different soils. The results indicated that the median lethal concentrations (LC50) calculated from C(SE) ranged from 2.32 to 34.0 mg kg(-1) in the five tested soils and the coefficient of variation (CV) of LC50s was 69.8%. When the LC50 was calculated from the C(EEW), C(EPW) and C(IPW), the variability of the LC50 gradually became smaller in these soils, with the CVs of LC50s being 58.1%, 50.6% and 38.6% (for C(EEW), C(EPW) and C(IPW), respectively). However, the LC50 based on C(IPW) in strongly acidic soil (where carbendazim partially exists as ionized form) was significantly lower than in other soils, and the values of the LC50 calculated from the in situ pore water concentrations were approximately equal. The results indicated that the in situ pore water concentration could be used to estimate the toxicity of carbendazim in different soils especially in those soils where carbendazim exists in the neutral form.

  18. Genotoxicity assessment in Eisenia andrei coelomocytes: a study of the induction of DNA damage and micronuclei in earthworms exposed to B[a]P- and TCDD-spiked soils.

    PubMed

    Sforzini, Susanna; Boeri, Marta; Dagnino, Alessandro; Oliveri, Laura; Bolognesi, Claudia; Viarengo, Aldo

    2012-07-04

    Earthworms are useful indicators of soil quality and are widely used as model organisms in terrestrial ecotoxicology. The assessment of genotoxic effects caused by environmental pollutants is of great concern because of their relevance in carcinogenesis. In this work, the earthworm Eisenia andrei was exposed for 10 and 28 days to artificial standard soil contaminated with environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (1×10(-5), 1×10(-4), 2×10(-3)ppm). Micronucleus (MNi) induction was evaluated in earthworm coelomocytes after DNA staining with the fluorescent dye DAPI. In the same cells, the DNA damage was assessed by means of the alkaline comet assay. Induction of MNi in coelomocytes, identified according to standard criteria, was demonstrated. B[a]P exposure for 10 and 28 days induced a significant increase in MNi frequency. In TCDD-treated earthworms, a significant effect on chromosomal damage was observed at all the concentrations used; surprisingly, greater effects were induced in animals exposed to the lowest concentration (1×10(-5)ppm). The data of the comet assay revealed a significant increase in the level of DNA damage in coelomocytes of earthworms exposed for 10 and 28 days to the different concentrations of B[a]P and TCDD. The results show that the comet and MN assays were able to reveal genotoxic effects in earthworms exposed even to the lowest concentrations of both chemicals tested here. The combined application in E. andrei of the comet assay and the micronucleus test, which reflect different biological mechanisms, may be suggested to identify genotoxic effects induced in these invertebrates by environmental contaminants in terrestrial ecosystems.

  19. Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test.

    PubMed

    Langdon, Caroline J; Hodson, Mark E; Arnold, Rebecca E; Black, Stuart

    2005-11-01

    Mature (clitellate) Eisenia andrei Bouché (ultra epigeic), Lumbricus rubellus Hoffmeister (epigeic), and Aporrectodea caliginosa (Savigny) (endogeic) earthworms were placed in soils treated with Pb(NO(3))(2) to have concentrations in the range 1,000 to 10,000 mg Pb kg(-1). After 28 days LC50(-95%confidence limit)(+95%confidence limit) values were E. andrei 5824(-361)(+898) mg Pb kg(-1), L. rubellus 2867(-193)(+145) mg Pb kg(-1) and A. caliginosa2747(-304)(+239) mg Pb kg(-1) and EC50s for weight change were E. andrei2841(-68)(+150) mg Pb kg(-1), L. rubellus1303(-201)(+240) mg Pb kg(-1) and A. caliginosa1208(-206)(+212) mg Pb kg(-1). At any given soil Pb concentration, Pb tissue concentrations after 28 days were the same for all three earthworm species. In a soil avoidance test there was no difference between the behaviour of the different species. The lower sensitivity to Pb exhibited by E. andrei is most likely due to physiological adaptations associated with the modes of life of the earthworms, and could have serious implications for the use of this earthworm as the species of choice in standard toxicological testing.

  20. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels

    PubMed Central

    Ma, Tingting; Chen, Li’ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  1. Melatonin as protective agent for the cytotoxic effects of diazinon in the spermatogenesis in the earthworm Eisenia foetida.

    PubMed

    Bustos-Obregón, E; González, J R; Espinoza, O

    2005-01-01

    Diazinon (D) is an organophosphorate synthetic insecticide widely used in the world. It inhibits acetylcholinesterase activity and damages reproduction as well as other organic functions mostly by increasing lipid peroxidation. Melatonin (M) is an indolamine secreted by the pineal gland. It performs numerous functions but recently it has been proposed as a good scavenger of oxygen radicals. The earthworm E. foetida is reputed as an excellent bioindicator of environmental chemical pollution. The testicular toxic effect of D and the protective role of M was analyzed in adult E. foetida, at 1, 7, 10, 15 and 30 days after exposure to 1/4, 1/2 and 3/4 of LD50. Sperm counts and the diameter of the seminal receptacles and of their lumina were altered in D exposed worms, which in addition have a lower percentage of survival, decreased weight and show cholinergic effect (coiling of the tail). All these changes were prevented fully or in part by simultaneous exposure to M. The observations confirm that D is a general and testicular toxicant for E. foetida, a good sentinel indicator and stresses the role of M as a protective agent.

  2. Comparative avoidance behaviour of the earthworm Eisenia fetida towards chloride, nitrate and sulphate salts of Cd, Cu and Zn using filter paper and extruded water agar gels as exposure media.

    PubMed

    Demuynck, Sylvain; Lebel, Aurélie; Grumiaux, Fabien; Pernin, Céline; Leprêtre, Alain; Lemière, Sébastien

    2016-07-01

    We studied the avoidance behaviour of the earthworm Eisenia fetida towards Cd, Cu, and Zn, trace elements (TEs) tested as chloride, nitrate and sulphate salts. Sub adults were exposed individually using dual-cell chambers at 20+2°C in the dark. Recordings were realised at different dates from 2h to 32h. We used filter paper and extruded water agar gel as exposure media to evaluate the contribution of the dermal and the digestive exposure routes on the avoidance reactions. Exposures to Cu or Cd (10mgmetal ionL(-1)) resulted in highly significant avoidance reactions through the exposure duration. Worms avoided Zn poorly and reactions towards Zn salts varied along the exposure. Worm sensitivity towards TEs differed between salts and this could result from differential toxicity or accessibility of these TE salts to earthworms. The anion in itself was not the determinant of the avoidance reactions since exposures to similar concentrations of these anions using calcium salts did not result in significant avoidance worm behaviour. Avoidance responses towards TEs were higher in the case of water agar exposures than in filter paper exposures. Thus, dermal contacts with TE solutions would elicit worm avoidance but signals from receptors located inside the digestive tract could reinforce this behaviour. The use of extruded water agar gels as the substrate allows checking the real sensitivity of earthworm species towards TEs since the TE concentrations leading to significant avoidance reactions were below those reported in the literature when using TE-spiked soils.

  3. Effect of pesticides on the reproductive output of Eisenia fetida.

    PubMed

    Yasmin, Shahla; D'Souza, Doris

    2007-11-01

    We investigated the effects of three different pesticides (carbendazim, dimethoate, and glyphosate) and their mixture on the growth and reproduction of the earthworm species, Eisenia fetida. The study was conducted following the suggestion of the International Workshop on Earthworm Ecotoxicology. The results showed that the pesticide treatment had a marked negative impact on the growth and reproduction of earthworms. Carbendazim and dimethoate were found to cause greater harm to the selected earthworm species than glyphosate.

  4. Review of the Eisenia muganiensis (Michaelsen, 1910) species group with description of two new species (Oligochaeta: Lumbricidae).

    PubMed

    Szederjesi, Tímea; Pavlíček, Tomás; Latif, Robabeh; Csuzdi, Csaba

    2014-11-14

    The Eisenia muganiensis species group is established, consisting of a set of Asian earthworm species characterized by elongate, backward placed clitellum and tubercles: Eisenia malevici Perel, 1962; Eisenia muganiensis (Michaelsen, 1910); Eisenia patriciae Szederjesi, Pavlíček, Coşkun & Csuzdi, 2014 and Eisenia transcaucasica (Perel, 1967). The species are shortly reviewed and furthermore, two new species of the E. muganiensis group are described, E. kontschani sp. nov. from Turkey and E. malekae sp. nov. from Iran. 

  5. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    PubMed

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.

  6. Application of microcosmic system for assessment of insecticide effects on biomarker responses in ecologically different earthworm species.

    PubMed

    Velki, Mirna; Hackenberger, Branimir K; Lončarić, Zeljka; Hackenberger, Davorka K

    2014-06-01

    Earthworms from different ecological categories--epigeic Eisenia andrei and Lumbricus rubellus, endogeic Octolasion lacteum and anecic Lumbricus terrestris--were exposed in a microcosmic system to three commonly used insecticides. The effects of the insecticides were evaluated by measuring the following molecular biomarkers-the activities of AChE, CES, CAT, GST and the concentration of GSH. The results showed that environmentally relevant doses of organophosphates dimethoate and pirimiphos-methyl significantly affected the measured biomarkers, whereas pyrethroid deltamethrin did not affect the earthworms at the recommended agricultural dose. Considering the ecological category of earthworms, the results were inhomogeneous and species-specific differences in the biomarker responses were recorded. Since the biomarker responses of the investigated earthworm species were different after exposure to organophosphates in a microcosm compared to the exposure via standardized toxicity tests, two types of species sensitivity should be distinguished-physiological and environmental sensitivity. In addition, the hormetic effect of organophosphates on AChE and CES activities was recorded. The detection of hormesis in a microcosm is of great importance for future environmental research and soil biomonitoring, since in a realistic environment pollutants usually occur at low concentrations that could cause a hormetic effect. The results demonstrate the importance of the application of microcosmic systems in the assessment of the effects of environmental pollutants and the necessity of taking into account the possible differences between physiological and environmental species sensitivity.

  7. Influence of Cadmium(II) Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida) – Bio-transforming of Toxic Wastes

    PubMed Central

    Huska, Dalibor; Krizkova, Sona; Beklova, Miroslava; Havel, Ladislav; Zehnalek, Josef; Diopan, Vaclav; Adam, Vojtech; Zeman, Ladislav; Babula, Petr; Kizek, Rene

    2008-01-01

    Metallothioneins belong to a group of intracellular, high molecular and cysteine-rich proteins whose content in an organism increase with increasing concentration of a heavy metal. The aim of this work was to apply the electrochemical analysis for the analysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge. Here we utilized adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction to determine metallothionein in different biological samples. By means this very sensitive technique it was possible to analyze metallothionein in concentrations below 1 μmol.l−1 with the standard deviation of 4-5%. We found out that the average MT level in the non-treated earthworms oscillated between 19 and 48 μmol.l−1. When we analysed samples of earthworms treated by cadmium, we observed that the MT content increased with the exposition length and increase dose of cadmium ions. Finally, we attempted to study and compare the toxicity of the raw sludge and its leach by using of earthworms. The raw brewery sludge caused the death of the earthworms quickly. Earthworms held in the presence of leach from brewery sludge increased their weight of 147 % of their original weight because they ingested the nutrients from the sludge. The metallothionein level changes markedly with increasing time of exposition and applied dose of toxic compound. It clearly follows from the obtained results that the MT synthesis is insufficient in the first hours of the exposition and increases after more than 24 h. PMID:27879751

  8. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil.

  9. Determination of selected polychlorinated biphenyls in soil and earthworm (Eisenia fetida) using a QuEChERS-based method and gas chromatography with tandem MS.

    PubMed

    He, Zeying; Wang, Lu; Peng, Yi; Luo, Ming; Wang, Wenwen; Liu, Xiaowei

    2015-11-01

    Soil and earthworms are important objects in soil pollution assessment and environmental behavior and toxicity study for polychlorinated biphenyls. Accelerated solvent extraction and solid-phase extraction are generally required for the extraction and clean-up of polychlorinated biphenyls in soil and earthworm, which are tedious and time-consuming. In this work, a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure combined with gas chromatography and triple quadrupole mass spectrometry was developed for the determination of 20 selected polychlorinated biphenyl congeners in soil and earthworm. Different extraction times, solvents, and clean-up adsorbents were compared and optimized. The average recoveries from spiked soils ranged between 70 and 120% with satisfactory relative standard deviations for all the polychlorinated biphenyls. In earthworm, the recoveries of polychlorinated biphenyls 180, 183, and 189 were relatively low (< 70% in some spiking levels) compared to that of the other polychlorinated biphenyls. The limits of quantification were in the range of 0.01-0.05 ng/g. The method was successfully applied to the analysis of 66 agricultural soils. To our knowledge, a combined method based on QuEChERS for the determination of polychlorinated biphenyls in soil and earthworms has not been published before. The procedure proved to be simple, sensitive, efficient, and environmentally friendly.

  10. Changes in radiocesium concentrations in epigeic earthworms in relation to the organic layer 2.5 years after the 2011 Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Hasegawa, Motohiro; Kaneko, Shinji; Ikeda, Shigeto; Akama, Akio; Komatsu, Masabumi; Ito, Masamichi T

    2015-07-01

    We reported previously that radiocesium ((137)Cs) concentrations in earthworms increased with those in litter and/or soil in Fukushima Prefecture forests 0.5 y after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. This study provides further results for 1.5 and 2.5 y after the accident and discusses temporal changes in (137)Cs concentrations and transfer factors (TF) from litter to earthworms to better understand the mechanisms by which (137)Cs enters soil food webs. The concentration of (137)Cs in accumulated litter on the forest floor rapidly decreased, and the concentration in soil (0-5-cm depth) increased over time from 0.5 to 1.5 y, but changed only moderately from 1.5 to 2.5 y. The concentration of (137)Cs in earthworms consistently decreased during the study period; values 2.5 y after the accident were 18.8-68.5% of those 0.5 y after the accident. The TFs from accumulated litter to earthworms decreased over time: 0.24 ± 0.08 (mean ± SD) at 0.5 y and 0.16 ± 0.04 at 2.5 y. This decrease may be a result of decreases in the bioavailability of (137)Cs in litter and the surface soil layer. Changes in (137)Cs bioavailability should be continuously tracked to determine any changes in the relationship between radiocesium concentrations in earthworms and that in accumulated litter or soil.

  11. On site domestic organic waste treatment through vermitechnology using indigenous earthworm species.

    PubMed

    Rajpal, Ankur; Bhargava, Renu; Sasi, Salin Kumar; Chopra, Ak

    2012-03-01

    In India the exotic epigeic species, Eisenia fetida is mostly used for vermicomposting. The introduction of exotic species into local bio system may affect the indigenous earthworm species population. A comparative study between exotic species (Eisenia fetida) and indigenous species Perionyx sansibaricus and Perionyx excavates was performed to determine the potential of indigenous species of the area vis-à-vis the exotic species for composting of domestic organic waste blended with cattle manure. The results of the study show a significant reduction in initial C/N ratio from 55 to 13 for P. excavates and 15 for P. sansibaricus of the ready product which was within the agronomic acceptable limit ( < 20). The total organic matter reduced by 50% and pH also reduced to be nearer to neutral, but there was an increase in total nitrogen to 102% and total phosphorus increased from the initial concentration of 7.62 g kg(-1) up to 13.2 g kg(-1). Overall, by employing above indigenous species, domestic organic waste can be directly converted into high-quality hygienic stable fertilizer (vermicompost) which is rich in nitrogen, phosphorus and potassium and free from pathogens.

  12. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    DTIC Science & Technology

    2006-03-01

    ATCLP is a modification of the Toxicity Characteristic Leaching Procedure ( TCLP ) (40 Code of Federal Regulations (CFR) Part 268.41, Hazardous Waste...and BACCTO® potting soil (Michigan Peat Co., Houston, TX, USA). The pH was adjusted to 6.2 + 0.1 by adding calcium carbonate (pulverized lime). The...culture was kept moist at 21 ± 2 °C with continuous light. Earthworm colonies were fed biweekly with dehydrated alfalfa pellets (27% fiber , 17% protein

  13. Changes in fungal population of fly ash and vinasse mixture during vermicomposting by Eudrilus eugeniae and Eisenia fetida: documentation of cellulase isozymes in vermicompost.

    PubMed

    Pramanik, Prabhat; Chung, Young Ryun

    2011-06-01

    Fly ash (FA) and vinasse (VN), two industrial wastes, are generated in huge amounts and cause serious hazards to the environment. In this experiment, different proportions of these two wastes were used as food for two epigeic earthworms (Eisenia fetida and Eudrilus eugeniae) to standardize the recycling technique of these two wastes and to study their effect on fungal especially cellulolytic fungal population, cellulase activity and their isozyme pattern, chitin content and microbial biomass of waste mixture during vermicomposting. Increasing VN proportion from 25% to 50% or even higher, counts of both fungi and cellulolytic fungi in waste mixtures were significantly (P ≤ 0.05) increased during vermicomposting. Higher cellulase activity in treatments having 50% or more vinasse might be attributed to the significantly (P ≤ 0.05) higher concentration of group I isozyme while concentrations of other isozymes (group II and III) of cellulase were statistically at par. Higher chitin content in vinasse-enriched treatments suggested that fungal biomass and fungi-to-microbial biomass ratio in these treatments were also increased due to vermicomposting. Results revealed that Eudrilus eugeniae and Eisenia fetida had comparable effect on FA and VN mixture during vermicomposting. Periodical analysis of above-mentioned biochemical and microbial properties and nutrient content of final vermicompost samples indicated that equal proportion (1:1, w/w) of FA and VN is probably the optimum composition to obtain best quality vermicompost.

  14. Proposed annex to the ASTM Standard Guide E1676-95, bioaccumulation testing utilizing Eisenia foetida

    SciTech Connect

    Roper, J.; Simmers, J.; Lee, C.; Tatem, H.

    1995-12-31

    A detailed description of the method developed at the Waterways Experiment Station (WES) to determine sediment toxicity utilizing the earthworm, Eisenia foetida. This method has been used successfully in evaluating the target contaminants; metals, PAHs, and PCBs. This procedure is currently a proposed annex to the ASTM Standard Guide E1676-95: Conducting a Laboratory Soil Toxicity Test With The Lumbricid Earthworm, Eisenia foetida.

  15. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny.

    PubMed

    Selin-Rani, Selvaraj; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Edwin, Edward-Sam; Ponsankar, Athirstam; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy; Abdel-Megeed, Ahmed; Hunter, Wayne B; Alessandro, Rocco T

    2016-12-01

    A novel flavonoid, quercetin, was isolated from the medicinal plant Euphorbia hirta L. through chromatography techniques including: TLC, Column chromatography, NMR and then screened for toxicity to larvae of Spodoptera litura Fab. Bioassays were used to analyze pupal weight, survival rate, fecundity, egg hatchability, population growth index, Nutritional index and histopathology of treated larvae at a range of E. hirta extract concentrations. Results of toxicity assays demonstrated that, 6 ppm of quercetin caused 94.6% mortality of second, 91.8% of third, 88% of fourth, and 85.2% of fifth instars respectively. The lethal concentrations (LC50 and LC90) was calculated as 10.88 and 69.91 ppm for fourth instar larvae. The changes in consumption ratio and approximate digestibility produced a reduction in growth rates. Histopathology examinations revealed that the cell organelles were severely infected. Analyses of earthworm toxicity effects resulted in significantly lower rates compared to synthetic insecticides (chloropyrifos and cypermethrin). These results suggests that the botanical compound (quercetin), could have a part as a new biorational product which provides an ecofriendly alternative. Validation of the potential of quercetin, still needs to be demonstrated under field conditions, where formulation will be important in maintaining the activity.

  16. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny.

    PubMed

    Ponsankar, Athirstam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Edwin, Edward-Sam; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Alessandro, Rocco T; Abdel-Megeed, Ahmed; Paik, Chae-Hoon; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    Botanical insecticides may provide alternatives to synthetic insecticides for controlling Spodoptera litura (F.) and they are target specific, biodegradable, and harmless to mammals. Eight natural chemical compounds with larvicidal activity were identified from fraction F6 of C. guianensis flower extract. Probit analysis of 95% confidence level exposed an LC50 of 223ppm against S. litura third instar larvae. The growth and development of S. litura was affected in sub-lethal concentrations of fraction F6 (50, 100, 150 and 200ppm) compared to controls. Similarly nutritional indices values decreased significantly compared to controls. Fraction F6 also damaged the gut epithelial layer and brush border membrane (BBM). This study also resolved the effects of toxicity to non-target earthworm treated with fraction F6 and chemical pesticides (monotrophos and cypermethrin) and the results showed that fraction F6 had no harmful effect on E. fetida. Further, fraction F6 was eluted and sub fractions F6c (50ppm) showed high mortality against S. litura third instar larvae. Octacosane from fraction F6c was established and confirmed using IR spectrum and HPLC. The time of retention of fraction F6c was confirmed with the octacosane standard. Fraction F6 of C. guianensis extract caused dose-dependent mortality towards S. litura. Octacosane in fraction F6c was establish to be the prominent chemical compound associated with causing mortality but other compounds present in the fraction F6 were shown to be associated with changes in development of S. litura at low dosages. S. litura at low dosage. Therefore, these findings suggest that octacosane may be one of the major insecticidal compounds affecting S. litura survival.

  17. Vermicomposting of Solid Waste Using Local and Exotic Earthworms: A Comparative Study.

    PubMed

    Amit, Krishan; Ajit, Kumar; Arthanareeswari, M; Kamaraj, P

    2014-07-01

    The aim of this study was to assess the decomposition efficiency of earthworms, local (L.mauritii) as well as exotic (Eisenia foetida) in vermicomposting of garden litter in SRM University campus. The vermicompost produced through vermicomposting of garden litter mixed with cow dung in the ratio of 3:1 by using local and exotic earthworms (Eisenia foetida) was rich in ammoniacal nitrogen, nitrate nitrogen, available phosphorus, total potassium and TKN, and there was a reduction in total organic carbon and carbon to nitrogen ratio. The study reveals that the decomposition efficiency of exotic earthworms is better compared to local earthworms.

  18. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  19. New earthworm records from Turkey, with description of three new species (Oligochaeta: Lumbricidae).

    PubMed

    Szederjesi, Tímea; Pavlíček, Tomás; Coşkun, Yüksel; Csuzdi, Csaba

    2014-02-13

    Identifying the earthworm material recently collected in different parts of Turkey (Marmara Region, Upper Mesopotamia, Hatay Province and East Anatolia) resulted in records of 29 earthworm species including three lumbricids new to science: Dendrobaena cevdeti, D. szalokii and Eisenia patriciae spp. nov. In addition, Dendrobaena cognettii is reported for the first time from the country. With this contribution, the number of earthworm species and subspecies registered in Turkey is raised to 80.

  20. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  1. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida.

    PubMed

    Rodríguez-Canché, L G; Cardoso Vigueros, L; Maldonado-Montiel, T; Martínez-Sanmiguel, M

    2010-05-01

    This study evaluated the potential of earthworms (Eisenia fetida) to remove pathogens from the sludge from septic tanks. Three earthworm population densities, equivalent to 1, 2, and 2.5kgm(-2), were tested for pathogen removal from sludge. The experimental phase lasted 60days, starting from the initial earthworm inoculation. After 60days, it was found that earthworms reduced concentrations of fecal coliforms, Salmonella spp., and helminth ova to permissible levels (<1000MPN/g, <3MPN/g, and <1viable ova/g on a dry weight basis, respectively) in accordance with Official Mexican Standard of environmental protection (NOM-004-SEMARNAT-2002) (SEMARNAT, 2002). Thus, sludge treatment with earthworms generated Class A biosolids, useful for forest, agricultural, and soil improvement.

  2. Tolerance Test of Eisenia Fetida for Sodium Chloride

    SciTech Connect

    Kerr, M.; Stewart, A.J.

    2003-01-01

    Saltwater spills that make soil excessively saline often occur at petroleum exploration and production (E&P) sites and are ecologically damaging. Brine scars appear when produced water from an E&P site is spilled onto surrounding soil, causing loss of vegetation and subsequent soil erosion. Revegetating lands damaged by brine water can be difficult. The research reported here considers earthworms as a bioremedial treatment for increasing the salt mobility in this soil and encouraging plant growth and a healthy balance of soil nutrients. To determine the practical application of earthworms to remediate brine-contaminated soil, a 17-d test was conducted to establish salt tolerance levels for the common compost earthworm (Eisenia fetida) and relate those levels to soil salinity at brine-spill sites. Soil samples were amended with sodium chloride in concentrations ranging from 1 to 15 g/kg, which represent contamination levels at some spill sites. The survival rate of the earthworms was near 90% in all tested concentrations. Also, reproduction was noted in a number of the lower-concentration test replicates but absent above the 3-g/kg concentrations. Information gathered in this investigation can be used as reference in further studies of the tolerance of earthworms to salty soils, as results suggest that E. fetida is a good candidate to enhance remediation at brine-damaged sites.

  3. Fluorescence fingerprints of Eisenia fetida and Eisenia andrei.

    PubMed

    Albani, J R; Demuynck, S; Grumiaux, F; Leprêtre, A

    2003-12-01

    We describe a fluorescent method that allows to differentiate the worms Eisenia fetida and Eisenia andrei. In fact, the coelomic fluid of E. andrei displays specific fluorescence absent in that of E. fetida. The two species do not metabolize the same types of molecules and thus can be differentiated at the molecular level. Each species has specific fluorescence fingerprints.

  4. Earthworm species influence on carbon-mineral association in a sugar maple forest in northern Minnesota

    NASA Astrophysics Data System (ADS)

    Lyttle, A.; Yoo, K.; Aufdenkampe, A. K.; Hale, C. M.; Sebestyen, S. D.

    2011-12-01

    Non-native European earthworms are invading previously earthworm-free hardwood forests in the northern Great Lakes Region. Whereas earthworms' impacts on soil morphology and geochemical properties have been well documented in agricultural settings, the role of earthworms in biogeochemical cycles of undisturbed forests remains poorly understood. The forest soils that were recently invaded by exotic earthworms, therefore, provide a unique opportunity to understand how and how much earthworms contribute to biogeochemistry of non-agricultural environments. Increased degree and extent of soil mixing is one of the better known consequences of the earthworm invasion. Our hypothesis is that invasive earthworms positively affect carbon (C) stabilization by enhancing contacts between organic matter and minerals. We are studying C-mineral complexation along a well-established earthworm chronosequence in a sugar maple forest in northern Minnesota. We have observed changes in total earthworm biomass, A horizon C storage, and total specific surface area (SSA) of minerals as the invasion progresses. Because each earthworm species has different feeding and dwelling habits, biogeochemical imprints of the invasion reflect not only earthworms' biomass but also their species composition. All earthworm species show an increase in their biomass with greater time length since the invasion, though epigeic earthworms tend to be the pioneer species. As the total earthworm biomass increases, we find greater incorporation of organic C into the A horizon; the O horizon thickness decreases from 8 to 0 cm as the A horizon thickens from ~5 cm to ~12 cm. While leaf litter biomass is negatively correlated with total earthworm biomass, dramatic decreases in litter biomass are coupled with considerable increases in the biomass of epi-endogeic species. Despite the general decrease in C storage in the A horizon with greater degree of invasion, the storages fluctuate along the transect because

  5. Methods for the assessment of the toxicity of environmental chemicals to earthworms

    SciTech Connect

    Dean-Ross, D.

    1983-03-01

    In view of the impending publication of standards for earthworm toxicity testing by the Commission of the European Communities, a review has been made of the recent literature on earthworm toxicology. Relevant studies are reviewed from the standpoints of methods used, reproducibility of results, and ability to extrapolate laboratory results to field situations. Eisenia foetida, a commonly used test species, is much less sensitive to agricultural chemicals than other, native earthworms and is of doubtful utility for extrapolating laboratory data to field conditions, but when native soil organisms are used, such extrapolations show good general agreement. Standardization of test conditions and broadening of the data base are encouraged.

  6. Interaction of plant and earthworm during primary succession in heaps after coal

    NASA Astrophysics Data System (ADS)

    Roubíčková, Alena; Frouz, Jan

    2015-04-01

    These results of field manipulation experiment show that earthworms can remarkably influence vegetation succession on spoil heaps, namely promoting grasses and late succession species. This is in agreement with concurrent appearance of earthworms and some plant species typical for late-succession communities of meadows and forests aren't purely coincidental. On the other hand, facilitation of soil conditions by plant communities during succession is an important factor in earthworm distribution on the spoil heaps; earthworms showed a low survival on sites with sparse vegetation cover and thin litter layer, which means that their occurrence in certain stages of succession isn't determined only by migration abilities or passive dispersal. More field experiments are needed to test if earthworms could be used in directed succession management practices to speed up the natural rate of succession. Preliminary results from an experiment with introduction earthworms to a 20- year old, earthworm-free site indicate that colonization of this site from a single deposition of about 100 specimen of epigeic and 100 endogeic earthworms is slow and not very efficient. Results show that interaction between earthworm and vegetation are important in ecosystem development in post mining sites.

  7. Responses of earthworms and microbial communities in their guts to Triclosan.

    PubMed

    Ma, Lili; Xie, Yuwei; Han, Zhihua; Giesy, John P; Zhang, Xiaowei

    2017-02-01

    Responses of the earthworm (Eisenia fetida) and compositions of associated microbial communities were determined after exposure to various concentrations of Triclosan (TCS) for 7 d. Concentrations of TCS were greater in intestines than in epidermis of earthworms, which suggested that earthworms accumulate TCS mainly by ingestion rather than by epidermic penetration. Exposure to TCS caused a concentration-dependent increase in activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in malondialdehyde (MDA) in E. fetida. Analyses of both the bacterial and eukaryotic community by next generation sequencing (NGS), demonstrated that TCS caused a concentration-dependent decrease in sensitive genera. While relative abundances of Pseudomonas, Stenotrophomonas, and Achromobacter were increased. Nine susceptible microbial groups were more sensitive to exposure to TCS, than were activities of enzymes in earthworms. Thus, rapid genomic measures of gut flora can be used as indicators to assess adverse effects of chemicals on earthworms.

  8. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique.

    PubMed

    Li, Shibin; Irin, Fahmida; Atore, Francis O; Green, Micah J; Cañas-Carrell, Jaclyn E

    2013-02-15

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthworms were first processed into a powder by freeze drying. Then, samples were measured by utilizing 10 s exposure to 30 W microwave power. This method showed the potential to quantitatively measure MWNTs in earthworms at low concentrations (~0.1 μg in 20 mg of earthworm). Also, a simple MWNT bioaccumulation study in earthworms indicated a low bioaccumulation factor of 0.015±0.004. With an appropriate sample processing method and instrumental parameters (power and exposure time), this technique has the potential to quantify MWNTs in a variety of sample types (plants, earthworms, human blood, etc.).

  9. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida.

    PubMed

    Huang, Kui; Li, Fusheng; Wei, Yongfen; Chen, Xuemin; Fu, Xiaoyong

    2013-12-01

    Changes of bacterial and fungal community during vermicomposting of vegetable wastes by hatchling, juvenile and adult Eisenia foetida were investigated through analysis of the extracted bacterial 16S rDNA and fungal 18S rDNA with quantitative polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and sequencing. After 60days of composting, significantly lower values of microbial activity and bacterial and fungal densities were revealed in the products of composting with earthworms than in the control (without earthworms). PCR-DGGE images showed vermicomposting significantly enhanced the diversities of bacterial and fungal communities. However, for their structures, sequencing results revealed that, compared to the control where the bacterial Firmicutes were predominant, in the composts with earthworms, the bacterial Bacteroidetes and Actinomycetes, and the fungal Sordariomycetes were found dominant. In addition, some beneficial species of bacteria and fungi against pathogens were also isolated from the vermicomposting products.

  10. Recycled water sources influence the bioavailability of copper to earthworms.

    PubMed

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms.

  11. Vermicomposting of Tea Factory Coal Ash: metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg).

    PubMed

    Goswami, L; Sarkar, S; Mukherjee, S; Das, S; Barman, S; Raul, P; Bhattacharyya, P; Mandal, N C; Bhattacharya, S; Bhattacharya, S S

    2014-08-01

    Earthworms can accumulate heavy metals in their intestines to a great extent. Impact of feed materials and duration of metal exposure on natural activity of earthworms are rather unclear; this investigation therefore addresses the impact of metal rich Tea Factory Coal Ash (TFCA) on reproduction, composting and metal accumulation ability of Eisenia fetida and Lampito mauritii. Earthworm count and cocoon production increased significantly during vermicomposting. pH of the vermicomposted mixtures shifted toward neutrality, total organic C decreased substantially and total N enhanced significantly compared to composting. High heavy metal (Mn, Zn, Cu, As) accumulation was recorded in the intestine of both the earthworm species. Moreover, gradual increase in the metal-inducible metallothionein concentration indicated the causal mechanism of metal accumulation in these species. TFCA+cow dung (CD) (1:1) were most favorable feed mixture for E. fetida and TFCA+CD (1:2) were good for L. mauritii in regard to metal accumulation and compost quality.

  12. The toxicokinetic behavior of chlorobenzenes in earthwork (Eisenia andrei) experiments in soil

    SciTech Connect

    Belfroid, A.; Sikkenk, M.; Seinen, W.; Hermens, J. . Research Inst. of Toxicology); Gestel, K. van . Dept. of Ecology and Ecotoxicology)

    1994-01-01

    The toxicokinetic behavior of some chlorobenzenes in earthworms (Eisenia andrei) kept in soil was studied. To determine elimination kinetics, worms were exposed to chlorobenzenes for 7 d, followed by a depuration period of 15 or 35 d. Elimination of chlorobenzenes by earthworms kept in soil was best fitted using a bi-exponential elimination curve. The half-life belonging to the slow phase was in good agreement with measured elimination half-lives for the same compounds by earthworms kept in water. Accumulation of chlorobenzenes in earthworms was studied by exposure over 50 d. Equilibrium was rapidly achieved within 7 d. BAFs based on the concentration in soil and on the concentration in the interstitial water were calculated. BAFs of 1,2,3,4-tetrachlorobenzene and pentachlorobenzene in earthworms kept in soil and BCFs in earthworms kept in water were comparable, demonstrating that uptake proceeds mainly via the interstitial water. For hexachlorobenzene, the BAF was much larger than the BCF, which suggests that intestinal uptake for this compound is an important complementary route.

  13. Influence of organic wastes and seasonal environmental factors on growth and reproduction of Eisenia fetida.

    PubMed

    Biradar, Pulikeshi M; Amoji, Sharabanna D

    2003-01-01

    Epigeic earthworms (E. fetida) were cultured on variety of organic wastes amended with cattle manure to determine the influence of diets and the seasonal environmental factors on growth and reproduction. The results showed that growth and reproductive strategies of E. fetida varied with different diets and seasons. Growth and reproduction of worms in all wastes were significantly more in winter and monsoon than in summer season. Hence winter and monsoon seasons could be considered congenial for vermiculture. During all seasons, worm activities were more in cattle manure followed by amended Bengal gram grain husk and Mixed Organic waste by E. fetida. Parthenin containing diet had deleterious effects on cocoon production.

  14. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    PubMed

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow).

  15. Plasmid Transfer between Spatially Separated Donor and Recipient Bacteria in Earthworm-Containing Soil Microcosms

    PubMed Central

    Daane, L. L.; Molina, J.; Sadowsky, M. J.

    1997-01-01

    Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically

  16. Earthworms lost from pesticides application in potato crops

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Forrer, Karin; Binder, Claudia R.

    2010-05-01

    Bioturbation from earthworm's activity contributes to soil creep and soil carbon dynamics, and provide enough aeration conditions for agricultural practices all over the world. In developing countries where there is a long term misuse of pesticides for agricultural purposes, lost of these benefits from earthworms activity might already yielded negative effects in the current crop production. Little research has been performed on earthworms avoidance to pesticides in developing countries located in the tropics. Furthermore, the complete avoidance reaction (from attraction to 100% avoidance) from earthworms to most of the pesticides used in potato cultivation in developing countries like Colombia is incomplete as yet. Hence the aim of this study is to assess the lost of earthworm on the soils caused by different concentrations of pesticides and associated agricultural impacts caused by a lost in the soil bioturbation. As a first stage, we have studied earthworm's avoidance to pesticide concentration in a potato agricultural area located in Colombia. Local cultivated Eisenia fetida were exposed to four of the most frequent applied active ingredients in potato crops i.e. carbofuran, mancozeb, methamidophos and chlorpyriphos. Adult earthworm toxicity experiments were carried out in two soils, untreated grasslands under standard (ISO guidelines) and undisturbed conditions, and exposed to six different concentrations of the active ingredients. The results of the avoidance reaction on the standard soils were significant for carbofuran, mancoceb and chlorpyrifos. For each of the three active ingredients, we found i) overuse of pesticide, ii) applied dose of carbofuran, mancoceb and chlorpyrifos by the farmers potentially caused 20%, 11% and 9% of earthworms avoidance on the cultivated soils, respectively.

  17. Effects of a natural toxin on life history and gene expression of Eisenia andrei.

    PubMed

    van Ommen Kloeke, A E Elaine; Gong, Ping; Ellers, Jacintha; Roelofs, Dick

    2014-02-01

    Earthworms perform key functions for a healthy soil ecosystem, such as bioturbation. The soil ecosystem can be challenged by natural toxins such as isothiocyanates (ITCs), produced by many commercial crops. Therefore, the effects of 2-phenylethyl ITC were investigated on the earthworm Eisenia andrei using an ecotoxicogenomics approach. Exposure to 2-phenylethyl ITC reduced both survival and reproduction of E. andrei in a dose-dependent manner (median effective concentration [EC50] = 556 nmol/g). Cross-species comparative genomic hybridization validated the applicability of an existing 4 × 44,000 Eisenia fetida microarray to E. andrei. Gene expression profiles revealed the importance of metallothionein (MT) as an early warning signal when E. andrei was exposed to low concentrations of 2-phenylethyl ITC. Alignment of these MT genes with the MT-2 gene of Lumbricus rubellus showed that at least 2 MT gene clusters are present in the Eisenia sp. genome. At high-exposure concentrations, gene expression was mainly affected by inhibiting chitinase activity, inducing an oxidative stress response, and stimulating energy metabolism. Furthermore, analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway implied that the high concentration may have caused impaired light sensitivity, angiogenesis, olfactory perception, learning, and memory. Increased levels of ITCs may be found in the field in the near future. The results presented call for a careful investigation to quantify the risk of such compounds before allowing them to enter the soil on a large scale.

  18. Investigating the Multiple Food Sources and N Chemistry of Invasive Earthworms at the Rhinelander, WI, Free Air CO2 Enrichment (FACE) Experiment

    NASA Astrophysics Data System (ADS)

    Top, S. M.; Filley, T. R.

    2013-12-01

    Rising levels of atmospheric CO2 can directly and indirectly alter biogeochemical cycling in forest ecosystems through changes to plant productivity, tissue chemistry, and associated feedbacks to microbial and faunal communities. At the Rhinelander free air CO2 enrichment site (FACE), Rhinelander WI, we examined the consumption and movement of plant tissue and soil by invasive earthworm species using a multi-proxy stable isotope and amino acid chemistry analysis of plant and soil, as well as fecal matter extracted from invasive earthworms present at the site. Using an isotopic mixing model that exploits the 13C-depleted CO2 source and a previous 15N labeling in the FACE experiment, we determined potential sources to the earthworm fecal matter and the movement of amino compounds. For epigeic, surface dwelling earthworms, the stable isotope modeling showed the largest contribution to the C and N in fecal matter was from leaf litter (up to 80%) which was depleted in amino acid C under elevated CO2 conditions. Fecal matter from the endogeic, mineral soil dwelling earthworms was primarily derived from 0-5 cm soil (up to 56%) and fine root tissue (up to 70%). Additionally, amino acid C in this group of earthworms had a proportionately greater relative concentration compared to the epigeic species and the 0-5cm soil. Here we demonstrate that earthworms are incorporating multiple sources (leaf litter, root, and soil) into their fecal matter, which then get deposited throughout the soil profile, where nutrients could become available for plant use.

  19. Biodegradation of Garden Waste, Market Waste Using Eisenia fetida and Eudrilus eugenia and Assessment of Manure Quality on Tomato

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2014-06-01

    Comparative study was performed to evaluate the vermicomposting efficiency of two earthworm species Eisenia fetida, Eudrilus eugenia from the garden wastes, vegetable market wastes. Three different experimental works were conducted. For each experiment three plastic vermibins were used. Experiment (1) mentioned for control without earthworms. Experiment (2) bedded with Eudrilus eugenia, Experiment (3) comprised of bedding with Eisenia fetida. Pre composting was allowed for 10 days after that Eudrilus eugenia, Eisenia fetida were added in respective vermibins. The multiplication of earthworms in terms of number was calculated at the end of vermicomposting. The N, P, K value of the manure in each vermibin was estimated before and after the completion of the experiment. High N, P, K value was obtained in Experiment (2) and Experiment (3) compared to control. Among the solid wastes, the vegetable wastes were degraded quickly by Eudrilus eugenia and also it has the best quality of manure. Eudrilus eugenia was found to be efficient for quick degradation of both garden wastes and vegetable wastes. After manure production, field trials were conducted using different fertilizers to assess the manure quality in the growth and yield of tomato plants. Six types of experimental trial pots were prepared where one was kept as control and five others were treated with different category of fertilizers. The treatment pots (P3) showed better growth parameters (leaf numbers, stem diameter, plant height) than the rest of the trial.

  20. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge.

    PubMed

    Ma, Xiaojie; Xing, Meiyan; Wang, Yin; Xu, Zhe; Yang, Jian

    2016-04-01

    This paper reports on a seasonal pattern comparison of microbial enzymatic activities and biomass responses based on a conventional biofilter (BF, without earthworm) and a vermifilter (VF, with earthworm, Eisenia fetida) for excess sludge treatment. The volatile suspended solids (VSS) reduction, viable cell number and enzyme activities were assayed to probe what made the VF operate stably. The results indicated that the earthworm activities can polish the VSS reduction with 27.17% more than the BF. Though the VF had a lower level in the viable cell number compared with the BF, the earthworm strongly improved the microbial enzymatic activities such as INT-dehydrogenase, protease, β-glucosidase and amylase, which can explain the excellent performance of VSS reduction. The correlation analysis documented that the VSS reduction was positively correlated with microbial enzyme activities. More importantly, the earthworm enabled the VF to avoid the detrimental influence of temperature, which guaranteed a stable performance during seasonal variations.

  1. Review of the earthworm fauna of Iran with emphasis on Kohgiluyeh & Boyer-Ahmad Province.

    PubMed

    Farhadi, Zeinab; Malek, Masoumeh; Elahi, Elahe

    2013-01-01

    Earthworms were collected in forests, damp habitats, springs, orchards and agricultural fields of the Kohgiluyeh & Boyer Ahmad Province, Iran, from April 2009 to April 2010. Specimens were collected at 20 established stations by digging and by diluted formalin methods. Ten species belonging to family Lumbricidae were identified based on morphology: Aporrectodea caliginosa (Savigny, 1826), Ap. rosea (Savigny, 1826), Ap. jassyensis (Michaelsen, 1891), Dendrobaena veneta (Rosa, 1886), D. byblica (Rosa, 1893) complex, D. orientalis orientalis Cernosvitov 1940, Eisenia fetida (Savigny, 1826), Eiseniella tetraedra (Savigny, 1826), Octolasion lacteum (Örley, 1881), Perelia kaznakovi (Michaelsen, 1910). Ap. caliginosa was the dominant species in this province and D. orientalis orientalis is a new record for Iran. A checklist of all earthworms species form Iran is presented, containing 19 species. Then, in order to show earthworm geographical affinities, hierarchical analysis were applied to available data on earthworm of Iran.

  2. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs.

    PubMed

    Kumaresan, Deepak; Héry, Marina; Bodrossy, Levente; Singer, Andrew C; Stralis-Pavese, Nancy; Thompson, Ian P; Murrell, J Colin

    2011-12-01

    Landfills represent a major source of methane in the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity. In this study, a simulated landfill cover soil mesocosm (1 m × 0.15 m) was used to observe the influence of earthworms (Eisenia veneta) on the active methanotroph community composition, by analyzing the expression of the pmoA gene, which is responsible for methane oxidation. mRNA-based pmoA microarray analysis revealed that earthworm activity in landfill cover soil stimulated activity of type I methanotrophs (Methylobacter, Methylomonas, Methylosarcina spp.) compared to type II methanotrophs (particularly Methylocystis spp.). These results, along with previous studies of methanotrophs in landfill cover soil, can now be used to plan in situ field studies to integrate earthworm-induced methanotrophy with other landfill management practises in order to maximize soil methane oxidation and reduce methane emissions from landfills.

  3. Teacher's Guide for Earthworms.

    ERIC Educational Resources Information Center

    Bruno, Merle S.; And Others

    This teacher's guide on earthworms includes four major sections: (1) introduction, (2) caring for earthworms in the classroom, (3) classroom activities, and (4) the appendix. The introduction includes information concerning grade level, scheduling, materials, obtaining earthworms, field study, classroom clean-up, and records. Caring for earthworms…

  4. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché.

    PubMed

    Rodriguez-Seijo, A; Lourenço, J; Rocha-Santos, T A P; da Costa, J; Duarte, A C; Vala, H; Pereira, R

    2017-01-01

    The ocean has been assumed as the main sink of microplastics (MPs), however, soils may also receive MPs from different sources and through different pathways, which may affect the biota and their role in soil functions. To the best of our knowledge, only one study, until now, reported the effects of MPs on the survival and fitness of soil organisms (Lumbricus terrestris). In our study, epigeic earthworms, of the species E. andrei, were exposed to different concentrations of MPs (0, 62.5, 125, 250, 500 and 1000 mg/kg soildw) in an OECD artificial soil and tested for reproduction, survival and growth of adults, following a standard protocol. The size of the polyethylene MPs to which earthworms were exposed ranged between 250 and 1000 μm. No significant effects were recorded on survival, number of juveniles and, in the final weight of adult earthworms after 28d of exposure, to the different concentrations of MPs. Nevertheless, FTIR-ATR of earthworms and histopathological analysis of the gut provided evidences of damages and immune system responses to MPs.

  5. Sampling epigeal arthropods: A permanent, sheltered, closeable pitfall trapping station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigeal arthropods constitute the bulk of herbivore, predator, and decomposer species in soil and litter ecosystems. Being small and difficult to observe within these sometimes densely vegetated habitats, they are inherently difficult to sample quantitatively. Further, most methods have inherent tax...

  6. Coelomocyte-derived fluorescence and DNA markers of composting earthworm species.

    PubMed

    Rorat, Agnieszka; Kachamakova-Trojanowska, Neli; Jozkowicz, Alicja; Kruk, Jerzy; Cocquerelle, Claude; Vandenbulcke, Franck; Santocki, Michal; Plytycz, Barbara

    2014-01-01

    Supravital species identification of morphologically similar syntopic earthworms inhabiting dung and compost heaps or those from commercial cultures is difficult. The aim of the studies was to find out non-invasive species-specific markers for proper segregation of earthworm species from a dense mixed colony of waste decomposers. Worms were segregated according to external characteristics into Eisenia andrei, Eisenia fetida, and Dendrobaena veneta, and left for reproduction and analysis of non-invasively retrieved coelomocyte-containing coelomic fluid and/or species-specific partial sequences of cytochrome c oxidase subunit I (COI) gene in DNA extracted from amputated tail tips of adults and their offspring. Flow cytometric analysis of coelomocyte samples revealed that amount of nuclear DNA increases in order D. veneta ≪ E. andrei < E. fetida, and intensity of eleocyte-derived fluorescence is lower in D. veneta than in Eisenia spp. Spectrofluorimetry of coelomocyte lysates revealed that the amount of eleocyte-stored riboflavin is significantly lower in coelomocyte lysates from D. veneta than from Eisenia spp., and the emission peak of X-fluorophore is much more distinct in D. veneta than in Eisenia spp. Coelomic fluid of E. andrei exhibits a very distinct spectra of MUG fluorophore which are absent in D. veneta and in the majority of E. fetida, while some E. fetida possess MUG-like fluorophore. Sequences of the COI gene in the DNA of the worms from the mixed colony and their offspring confirmed species identity. In conclusion, species-specific coelomocyte-derived markers may be a useful complement to morphological and DNA-based taxonomy during studies on syntopic earthworms.

  7. [Effects of imidazolium chloride ionic liquids on the acute toxicity and weight of earthworm].

    PubMed

    Huang, Ruo-Nan; Fan, Jun-Jie; Tu, Hong-Zhi; Tang, Ling-Yan; Liu, Hui-Jun; Xu, Dong-Mei

    2013-04-01

    Standard contact filter paper test of OECD and artificial soil test were used to study the acute lethal effect of three imidazolium chloride ionic liquids, 1-butyl- 3-methylimidazolium chloride ([Bmim] Cl), 1-hexyl- 3-methylimidazolium chloride ([Hmim] Cl), and 1-octyl- 3-methylimidazolium chloride ([Omim] Cl) on earthworm (Eisenia fetida), and the weight of the earthworms was measured after subtle exposure. The 24 h-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl using the contact filter paper method were 109.60, 50.38 and 7.94 microg x cm(-2), respectively. The 48 h-LC50 values were 98.52, 39.14 and 3.61 microg x cm(-2), respectively. Using the artificial soil method, the 7 d-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl were 447.78, 245.56 and 180.51 mg x kg(-1), respectively, and the 14 d-LC50 values were 288.42, 179.75, 150.35 mg x kg(-1), respectively. There were differences in poisoning symptoms of the three ionic liquids on earthworms. The growth of Eisenia fetida was inhibited and declined with increasing ionic liquid concentration. The toxicity of ionic liquids on Eisenia fetida increased with the length of carbon chain.

  8. Earthworms use odor cues to locate and feed on microorganisms in soil.

    PubMed

    Zirbes, Lara; Mescher, Mark; Vrancken, Véronique; Wathelet, Jean-Paul; Verheggen, François J; Thonart, Philippe; Haubruge, Eric

    2011-01-01

    Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities.

  9. Earthworms Use Odor Cues to Locate and Feed on Microorganisms in Soil

    PubMed Central

    Zirbes, Lara; Mescher, Mark; Vrancken, Véronique; Wathelet, Jean-Paul; Verheggen, François J.; Thonart, Philippe; Haubruge, Eric

    2011-01-01

    Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities. PMID:21799756

  10. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms.

    PubMed

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira

    2017-03-01

    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl2. Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg(-1) (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces.

  11. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Bustos, Víctor; Mondaca, Pedro; Verdejo, José; Sauvé, Sébastien; Gaete, Hernán; Celis-Diez, Juan L; Neaman, Alexander

    2015-12-01

    Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to

  12. Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics

    NASA Astrophysics Data System (ADS)

    Top, Sara; Filley, Timothy

    2010-05-01

    Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and

  13. Species-specific differences in biomarker responses in two ecologically different earthworms exposed to the insecticide dimethoate.

    PubMed

    Velki, Mirna; Hackenberger, Branimir K

    2012-08-01

    Earthworms ingest large amounts of soil and therefore are continuously exposed to contaminants through their alimentary surfaces. Additionally, several studies have shown that earthworm skin is a significant route of contaminant uptake as well. In order to determine effects of dimethoate, a broad-spectrum organophosphorous insecticide, two ecologically different earthworm species were used - Eisenia andrei and Octolasion lacteum. Although several studies used soil organisms to investigate the effects of dimethoate, none of these studies included investigations of dimethoate effects on biochemical biomarkers in earthworms. Earthworms were exposed to 0.001, 0.005, 0.01, 0.5 and 1 μg/cm(2) of dimethoate for 24 h, and the activities of acetylcholinesterase, carboxylesterase, catalase and efflux pump were measured. In both earthworm species dimethoate caused significant inhibition of acetylcholinesterase and carboxylesterase activities, however in E. andrei an hormetic effect was evident. Efflux pump activity was inhibited only in E. andrei, and catalase activity was significantly inhibited in both earthworm species. Additionally, responses of earthworm acetylcholinesterase, carboxylesterase and catalase activity to dimethoate were examined through in vitro experiments. Comparison of responses between E. andrei and O. lacteum has shown significant differences, and E. andrei has proved to be less susceptible to dimethoate exposure.

  14. Effect of earthworm feeding guilds on ingested dissimilatory nitrate reducers and denitrifiers in the alimentary canal of the earthworm.

    PubMed

    Depkat-Jakob, Peter S; Hilgarth, Maik; Horn, Marcus A; Drake, Harold L

    2010-09-01

    The earthworm gut is an anoxic nitrous oxide (N(2)O)-emitting microzone in aerated soils. In situ conditions of the gut might stimulate ingested nitrate-reducing soil bacteria linked to this emission. The objective of this study was to determine if dissimilatory nitrate reducers and denitrifiers in the alimentary canal were affected by feeding guilds (epigeic [Lumbricus rubellus], anecic [Lumbricus terrestris], and endogeic [Aporrectodea caliginosa]). Genes and gene transcripts of narG (encodes a subunit of nitrate reductase and targets both dissimilatory nitrate reducers and denitrifiers) and nosZ (encodes a subunit of N(2)O reductase and targets denitrifiers) were detected in guts and soils. Gut-derived sequences were similar to those of cultured and uncultured soil bacteria and to soil-derived sequences obtained in this study. Gut-derived narG sequences and narG terminal restriction fragments (TRFs) were affiliated mainly with Gram-positive organisms (Actinobacteria). The majority of gut- and uppermost-soil-derived narG transcripts were affiliated with Mycobacterium (Actinobacteria). In contrast, narG sequences indicative of Gram-negative organisms (Proteobacteria) were dominant in mineral soil. Most nosZ sequences and nosZ TRFs were affiliated with Bradyrhizobium (Alphaproteobacteria) and uncultured soil bacteria. TRF profiles indicated that nosZ transcripts were more affected by earthworm feeding guilds than were nosZ genes, whereas narG transcripts were less affected by earthworm feeding guilds than were narG genes. narG and nosZ transcripts were different and less diverse in the earthworm gut than in mineral soil. The collective results indicate that dissimilatory nitrate reducers and denitrifiers in the earthworm gut are soil derived and that ingested narG- and nosZ-containing taxa were not uniformly stimulated in the guts of worms from different feeding guilds.

  15. Empirical maximum lifespan of earthworms is twice that of mice

    PubMed Central

    Baerselman, Rob; Posthuma, Leo

    2007-01-01

    We considered a Gompertzian model for the population dynamics of Eisenia andrei case-cohorts in artificial OECD soil under strictly controlled conditions. The earthworm culture was kept between 18 and 22°C at a constant pH of 5.0. In all, 77 lumbricids were carefully followed for almost 9 years, until the oldest died. The Eisenia median longevity is 4.25 years and the oldest specimen was 8.73 years. Eisenia cocoons were hand-sorted every 3 weeks, washed in distilled water, placed in Petri dishes, and counted. Regular removal did not reduce breeding. Each fertile cocoon contained on average two or three embryos. The failure rates (mortality and infertility percentages) are smooth power functions where the rate at time (n + 1) captured most of the phenomenology of the previous rate at time n, as expected by the considered law, but not at both the beginning and the end of this long-term laboratory study. PMID:19424841

  16. Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants.

    PubMed

    Natal-da-Luz, Tiago; Lee, Iwa; Verweij, Rudo A; Morais, Paula V; Van Velzen, Martin J M; Sousa, José Paulo; Van Gestel, Cornelis A M

    2012-04-01

    Earthworms may promote the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil, but the mechanism through which they exert such influence is still unknown. To determine if the stimulation of PAH degradation by earthworms is related to changes in microbial communities, a microcosm experiment was conducted consisting of columns with natural uncontaminated soil covered with PAH-contaminated dredge sediment. Columns without and with low and high Eisenia andrei densities were prepared. Organic matter and PAH content, microbial biomass, and dehydrogenase activity (DHA) were measured in soil and sediment over time. Biolog Ecoplate™ and polymerase chain reaction using denaturing gradient gel electrophoresis were used to evaluate changes in metabolic and structural diversity of the microbial community, respectively. Earthworm activity promoted PAH degradation in soil, which was significant for biphenyl, benzo[a]pyrene, and benzo[e]pyrene. Microbial biomass and DHA activity generally did not change over the experiment. Earthworm activity did change microbial community structure, but this did not affect its functioning in terms of carbon substrate consumption. Results suggest no relationship between changes in the microbial community by earthworm activity and increased PAH disappearance. The role of shifts in soil microbial community structure induced by earthworms in PAH removal needs further investigation.

  17. The influence of earthworms on nutrient dynamics during the process of vermicomposting.

    PubMed

    Domínguez, Jorge; Gómez-Brandón, María

    2013-08-01

    In the present study the potential of the earthworm Eisenia andrei to modify chemical and microbiological properties, with a special focus on the nutrient content of fresh organic matter, was evaluated during 16 weeks of vermicomposting of cattle manure and sewage sludge. Samples were periodically collected in order to determine the changes in inorganic nitrogen (N), in total microbial biomass and activity, as well as in the total and available content of macro- and micronutrients. An optimal moisture level, ranging from 75% to 88%, was maintained throughout the process. The content of organic matter decreased over time, but no changes were found in this parameter as a result of earthworm activity. The carbon/N ratio rapidly decreased, but only in the manure, reflecting rapid decomposition and mineralisation of the organic matter by the earthworms. An increase in N mineralisation was also attributable to the presence of earthworms, although in the manure this effect was hardly detectable before the eighth week of vermicomposting. Earthworm activity also enhanced the total content of potassium, calcium and iron together with an increase in the availability of phosphorus and zinc. We did not detect a significant earthworm effect on microbial respiration, but their activity increased greatly microbial biomass nitrogen in sewage sludge.

  18. Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms.

    PubMed

    Brown, David S; Jarman, Simon N; Symondson, William O C

    2012-03-01

    Little quantitative ecological information exists on the diets of most invertebrate feeding reptiles, particularly nocturnal or elusive species that are difficult to observe. In the UK and elsewhere, reptiles are legally required to be relocated before land development can proceed, but without knowledge of their dietary requirements, the suitability of receptor sites cannot be known. Here, we tested the ability of non-invasive DNA-based molecular diagnostics (454 pyrosequencing) to analyse reptile diets, with the specific aims of determining which earthworm species are exploited by slow worms (the legless lizard Anguis fragilis) and whether they feed on the deeper-living earthworm species that only come to the surface at night. Slow worm faecal samples from four different habitats were analysed using earthworm-specific PCR primers. We found that 86% of slow worms (N=80) had eaten earthworms. In lowland heath and marshy/acid grassland, Lumbricus rubellus, a surface-dwelling epigeic species, dominated slow worm diet. In two other habitats, riverside pasture and calciferous coarse grassland, diet was dominated by deeper-living anecic and endogeic species. We conclude that all species of earthworm are exploited by these reptiles and lack of specialization allows slow worms to thrive in a wide variety of habitats. Pyrosequencing of prey DNA in faeces showed promise as a practical, rapid and relatively inexpensive means of obtaining detailed and valuable ecological information on the diets of reptiles.

  19. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    NASA Astrophysics Data System (ADS)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant

  20. Uptake and retention of radio-caesium in earthworms cultured in soil contaminated by the Fukushima nuclear power plant accident.

    PubMed

    Fujiwara, K; Takahashi, T; Nguyen, P; Kubota, Y; Gamou, S; Sakurai, S; Takahashi, S

    2015-01-01

    To understand the effects of radionuclides on non-human biota and the environment, it is essential to study the intake and metabolism of radio-isotopes in earthworms which are among the most important soil organisms, and Eisenia fetida, which were used in this study, are known to be sufficiently sensitive to chemicals and representative of common earthworms. In this study, we assessed the concentration ratios, uptake and retention, absorbed dose rate, and distribution of radio-caesium in earthworms. The concentration ratios of (137)Cs (i.e., the concentrations of radio-caesium in earthworms relative to those in dry soil) were higher early in the culturing period and decreased gradually over the experimental period. (137)Cs taken up by E. fetida was cleared rapidly after the worms were cultured in radio-caesium-free soil, suggesting that the metabolism of radio-caesium in earthworms is very rapid. Autoradiography demonstrated that the concentration of radio-caesium within the digestive tract was as high as that in the soil, while radio-caesium in the body tissue was lower than radio-caesium in the soil and was almost uniformly distributed among earthworm tissues. The highest absorbed dose rate of total exposure to radio-caesium ((137)Cs + (134)Cs) was calculated to be 1.9 × 10(3) (μGy/day) in the earthworms.

  1. Nutrition Studies with Earthworms.

    ERIC Educational Resources Information Center

    Tobaga, Leandro

    1980-01-01

    Describes experiments which demonstrate how different diets affect the growth rate of earthworms. Procedures for feeding baby worms are outlined, the analysis of results are discussed, and various modifications of the exercise are provided. (CS)

  2. Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities.

    PubMed

    Jubileus, Mandy T; Theron, Pieter D; van Rensburg, Leon; Maboeta, Mark S

    2013-03-01

    South Africa is an important platinum mining country which results in environmental impacts due to the construction of tailing disposal facilities (TDFs). It is unclear what the effects of ageing are on the ecotoxicity of TDFs and whether it increases or decreases over time. The aim of this study was to determine the ecotoxicity of differently aged TDFs by investigating earthworm (Eisenia andrei) responses viz. growth, reproduction, neutral red retention times (NRRT) and tissue metal concentrations. Further, to evaluate the status of these in terms of a geoaccumulation index (I(geo)), pollution index and integrated pollution index. Results indicated that earthworms showed reduced reproductive success (hatchlings per cocoon) and decreased NRRT in all the sites. Juveniles per cocoon between all of the different treatment groups were; control (2.83 ± 0.54) > site 2 (20 years old; 1.83 ± 0.27) > sites 1 and 3 (40 years old; 1.06 ± 0.15 and 6 years old; 0.88 ± 0.39). This might be ascribed to the elevated levels of Cr (±200 to 1,166 μg g(-1)) and Ni (±100 to 316 μg g(-1)) in all of the sites. Earthworms did not bioaccumulate metals with bioconcentration factors for all the different treatments <0.01. Studies like these could be useful when establishing a ranking of TDFs in the future to provide legislative institutions with an indication of the environmental liabilities of platinum mines.

  3. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  4. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    PubMed

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste.

  5. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P

    2011-09-01

    Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants.

  6. Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil

    NASA Astrophysics Data System (ADS)

    Filley, Timothy

    2010-05-01

    Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA

  7. Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species - a laboratory-based investigation.

    PubMed

    Bhattacharjee, Gautam; Chaudhuri, P S

    2002-06-01

    Data on the reproductive biology of seven Indian species of earthworms, viz. Perionyx excavatus Perrier, Lampito mauritii Kinberg, Polypheretima elongata (Perrier), Pontoscolex corethrurus (Muller), Eutyphoeus gammiei (Beddard), Dichogaster modiglianii (Rosa) and Drawida nepalensis Michaelsen are presented. The peregrine earthworms such as Perionyx excavatus, Pontoscolex corethrurus, Dichogaster modiglianii, and Polypheretima elongata are considered to be continuous breeders with high fecundity. Native Lampito mauritii and Drawida nepalensis are semi-continuous and Eutyphoeus gammiei discrete breeders. There is a dramatic increase in cocoon production by most earthworm species of Tripura in the summer and monsoon with a corresponding peak during April and July. Cocoon production decreased or ceased during winter. Temperature affected the incubation period of cocoons. With increase in temperature, incubation period increased in the endogeic worms, Pontoscolex corethrurus, Polypheretima elongata and Drawida nepalensis and decreased in the epigeic worms, Perionyx excavatus and Dichogaster modiglianii, within a temperature range between 28-32 degrees C under laboratory conditions. There was a significant (P < 0.05) positive correlation between number of hatchlings per cocoon and incubation period in Lampito mauritii. High rate of cocoon production, short development time with high hatching success, as well as continuous breeding strategies in the epigeic species Perionyx excavatus and Dichogaster modiglianii and the top soil endogeic species, Pontoscolex corethrurus, Drawida nepalensis and Lampito mauritii, indicate their possible usefulness in vermiculture. The giant anecic worm, Eutyphoeus gammiei, which has a very long cocoon development time, discrete breeding strategy and very low rate of cocoon production, is not a suitable species for vermiculture.

  8. In silico identification of conserved microRNAs and their target transcripts from expressed sequence tags of three earthworm species.

    PubMed

    Gong, Ping; Xie, Fuliang; Zhang, Baohong; Perkins, Edward J

    2010-12-01

    MicroRNAs are a recently identified class of small regulatory RNAs that target more than 30% protein-coding genes. Elevating evidence shows that miRNAs play a critical role in many biological processes, including developmental timing, tissue differentiation, and response to chemical exposure. In this study, we applied a computational approach to analyze expressed sequence tags, and identified 32 miRNAs belonging to 22 miRNA families, in three earthworm species Eisenia fetida, Eisenia andrei, and Lumbricus rubellus. These newly identified earthworm miRNAs possess a difference of 2-4 nucleotides from their homologous counterparts in Caenorhabditis elegans. They also share similar features with other known animal miRNAs, for instance, the nucleotide U being dominant in both mature and pre-miRNA sequences, particularly in the first position of mature miRNA sequences at the 5' end. The newly identified earthworm miRNAs putatively regulate mRNA genes that are involved in many important biological processes and pathways related to development, growth, locomotion, and reproduction as well as response to stresses, particularly oxidative stress. Future efforts will focus on experimental validation of their presence and target mRNA genes to further elucidate their biological functions in earthworms.

  9. Mercury in Eisenia fetida and soil in the vicinity of a natural gas treatment plant in northern Croatia.

    PubMed

    Crnić, Andreja Prevendar; Zgorelec, Željka; Šuran, Jelena; Jurasović, Jasna; Špirić, Zdravko; Levak, Stefani; Bašić, Ferdo; Kisić, Ivica; Srebočan, Emil

    2016-01-28

    In the last two decades (1990-2012), as part of a mercury monitoring programme, earthworms and soils have been collected from four locations in the vicinity of a natural gas production and treatment plant near the village of Molve, Croatia. The aim of this study was to determine the concentration of mercury in the collected samples, monitor its changes over a longer period of time and determine the bioaccumulation of total mercury in earthworms (Eisenia fetida) from the soil. Total mercury concentrations in earthworms from the surroundings of four boreholes (Molve 9-12) ranged within 0.195-1.050, 0.129-1.0, 0.229-1.236 and 0.223-0.799 μg g(-1) dry weight, while total mercury concentrations in different soil types at the same locations within 0.055-0.350, 0.035-0.250, 0.031-0.240 and 0.071-0.475 μg Hg g(-1) of soil. The calculated mercury bioaccumulation factor ranged between 0.9 and 17.5. Mercury levels in soil and earthworms, as a tool for soil pollution assessment, suggested low mercury exposure and risks for human health in the monitored area.

  10. A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry.

    PubMed

    Kwak, Jin Il; Kim, Shin Woong; An, Youn-Joo

    2014-10-01

    This study describes a new and sensitive method for measuring the in vivo and in vitro cytotoxicity of 2 earthworm species, Eisenia andrei and Perionyx excavatus, exposed to copper. Specifically, we measured the number of coelomocyte cells that were affected by copper following in vivo and in vitro exposure by flow cytometry, after calcein acetoxymethyl ester (calcein-AM) staining. We found that the coelomocyte viability of both earthworm species was noticeably reduced in the in vivo cytotoxicity test at concentrations of 100mg/kg copper in dry soil. However, pathological symptoms, such as mucous secretion and bleeding, swelling, thinning, and fragmentation, and burrowing symptoms were not evident following exposure to copper levels of <400mg/kg dry soil. In conclusion, the present study demonstrates that calcein-AM is a more sensitive test of earthworm coelomocyte cytotoxicity compared to the traditional individual level toxicity test. Therefore, this test could be used to detect low levels of metal contamination in soils.

  11. Assessment of avoidance behaviour by earthworms (Lumbricus rubellus and Octolasion cyaneum) in linear pollution gradients.

    PubMed

    Lowe, Christopher N; Butt, Kevin R; Cheynier, Kevin Yves-Marie

    2016-02-01

    Avoidance behaviour by earthworms is recognised as a valuable endpoint in soil quality assessment and has resulted in the development of a standardised test (ISO 17512-1, 2008) providing epigeic earthworms with a choice between test and control soils. This study sought to develop and evaluate an avoidance test utilising soil-dwelling earthworms in linear pollution gradients with Visible Implant Elastomer (VIE) tags used to identify individual organisms. Sequential experiments were established in laboratory-based mesocosms (0.6m×0.13m×0.1m) that determined the relative sensitivities (in terms of associated avoidance behaviour) of Octolasion cyaneum and Lumbricus rubellus at varying levels of polluted soil and also assessed the influence of introduction point on recorded movement within gradients. In an initial gradient (0%, 25%, 50%, 75%, 100% polluted soil), both species exhibited a clear avoidance response with all surviving earthworms retrieved (after 7 days) from the unpolluted soil. In a less polluted gradient (0%, 6.25%, 12.5%, 18.75%, 25%) L. rubellus were retrieved throughout the gradient while O. cyaneum were located within the 0% and 6.25% divisions, suggesting a species-specific response to polluted soil. Results also showed that the use of a linear pollution gradient system has the potential to assess earthworm avoidance behaviour and could provide a more ecologically relevant alternative to the ISO 17512: 2008 avoidance test. However, further work is required to establish the effectiveness of this procedure, specifically in initial chemical screening and assessment of single contaminant bioavailability, where uptake of pollutants by earthworms could be measured and directly related to the point of introduction and retrieval.

  12. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia fetida.

    PubMed

    Chen, Linhua; Lu, Xianting; Ma, Yun

    2012-12-01

    Many of organophosphorous insecticides are chiral compounds. In this study, the enantioselective effects of organophosphate insecticide methamidophos on the coelomocytes lysosomal membrane stability of earthworm Eisenia fetida were studied: (1) The enantiomers of methamidophos were absolutely separated by high-performance liquid chromatography with a commercial chiral column; (2) The neutral red retention assay was used to judge the lysosomal membrane stability. The results showed that with the concentration increasing, lysosomal membranes have been significantly destroyed by individual stereoisomers and racemate of methamidophos. The neutral red retention times were significantly descended from 76.88 to 29.78 min. Both (+)- and (-)-methamidophos showed more prone to destroy the integrity of the lysosomal membrane than the racemate. However, the different effect between stereoisomers is slight.

  13. [Polyploid races of earthworms (Lumbricidae, Oligochaeta) in the East European plain and Siberia].

    PubMed

    Vsevolodova-Perel', T S; Bulatova, N Sh

    2008-01-01

    The distribution of polyploid races of earthworms in the East European plain and Siberia was analyzed. Amphimictic autopolyploid races of two species of the Asian genus Eisenia, E. nordenskioldi and A. atlavinyteae, are widespread in Siberia, from its southern boundary to the arctic region, while polyploid Lumbricidae in the East-European plain, except for the Volga region, are represented mainly by parthenogenetic forms of other genera. This is presumably related to differences in the Pleistocene environmental history between the two adjacent geographic regions of Eurasia.

  14. A Comparison of Multiple Esterases as Biomarkers of Organophosphate Exposure and Effect in Two Earthworm Species

    PubMed Central

    Schneider, Ashley; Stoskopf, Michael K.

    2011-01-01

    Two different earthworm species, Eisenia fetida and Lumbricus terrestris, were exposed to 5 μg/cm2 of malathion to evaluate their usefulness as sentinels of organophosphate exposure and to assess three different esterases, as biomarkers of malathion exposure and effect. Tissue xenobiotic burdens and esterase activity were determined for each species and each esterase in order to assess variability. E. fetida exhibited 4-fold less variability in tissue burdens than did L. terrestris and had less variable basal esterase activities. An attempt was made to correlate malathion and malaoxon tissue burdens with esterase activity post-exposure. There was no malaoxon present in the earthworm tissues. No significant correlations were determined by comparing acetylcholinesterase, butyrylcholinesterase, nor carboxylesterase activities with malathion burdens. PMID:21404045

  15. Structure and earthworms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthworms are an important part of the soil ecosystem and an indicator of soil quality. Sometimes referred to as ecosystem engineers, they play a pivotal role in maintaining soil productivity. Their burrowing, feeding, and casting activities alter the physical, chemical, and biological properties o...

  16. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  17. The influence of earthworms on the mobility of microelements in soil and their availability for plants

    NASA Astrophysics Data System (ADS)

    Bityutskii, N. P.; Kaidun, P. I.

    2008-12-01

    The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.

  18. Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter.

    PubMed

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Ceccanti, Brunello; Masciandaro, Grazia

    2012-10-26

    Two plant species (Paulownia tomentosa and Cytisus scoparius), earthworms (Eisenia fetida), and organic matter (horse manure) were used as an ecological approach to bioremediate a soil historically contaminated by heavy metals and hydrocarbons. The experiment was carried out for six months at a mesoscale level using pots containing 90 kg of polluted soil. Three different treatments were performed for each plant: (i) untreated planted soil as a control (C); (ii) planted soil + horse manure (20:1 w/w) (M); (iii) planted soil + horse manure + 15 earthworms (ME). Both the plant species were able to grow in the polluted soil and to improve the soil's bio-chemical conditions, especially when organic matter and earthworms were applied. By comparing the two plant species, few significant differences were observed in the soil characteristics; Cytisus scoparius improved soil nutrient content more than Paulownia tomentosa, which instead stimulated more soil microbial metabolism. Regarding the pollutants, Paulownia tomentosa was more efficient in reducing the heavy metal (Pb, Cr, Cd, Zn, Cu, Ni) content, while earthworms were particularly able to stimulate the processes involved in the decontamination of organic pollutants (hydrocarbons). This ecological approach, validated at a mesoscale level, has recently been transferred to a real scale situation to carry out the bioremediation of polluted soil in San Giuliano Terme Municipality (Pisa, Italy).

  19. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil

    SciTech Connect

    van Gestel, C.A.; Ma, W.C.

    1988-06-01

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in the latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.

  20. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola).

    PubMed

    Kwak, Jin Il; An, Youn-Joo

    2016-09-05

    Understanding how nanomaterials are transferred through food chains and evaluating their resulting toxicity is important. However, limited research has been conducted on the toxic consequences of trophically transferred nanomaterials in terrestrial ecosystems. In this study, we documented the adverse effects of trophically transferred silver nanoparticles (AgNPs) in a soil-earthworm (Eisenia andrei)-Collembola (Lobella sokamensis) food chain. We exposed E. andrei to soil with AgNPs at concentrations of 50, 200, and 500μg AgNPs/g soil dry weight and assessed their survival after 7days. Trophic-transfer containers were then prepared and E. andrei that survived the 7days test period were washed, killed in boiling water, and added to the containers with L. sokamensis. We noted negligible effects and low bioaccumulation at the lowest AgNP concentration (50μg AgNPs/g soil dry weight) in earthworms and the L. sokamensis that fed on them. The highest concentration of AgNPs (500μg AgNPs/g soil dry weight) resulted in juvenile earthworm mortality and increased transfer of AgNPs to Collembola, which subsequently inhibited their locomotion. To our knowledge, this is the first study to document the trophic transfer and adverse effects of AgNPs in a soil-earthworm-Collembola food chain, a common prey-decomposer interaction in soil ecosystems.

  1. Earthworm coelomocytes as nanoscavenger of ZnO NPs

    NASA Astrophysics Data System (ADS)

    Gupta, Shruti; Kushwah, Tanuja; Yadav, Shweta

    2014-05-01

    Earthworms can `biotransform' or `biodegrade' chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They `absorb' the dissolved chemicals through their moist `body wall' due to the interstitial water and also ingest by `mouth' while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles.

  2. Earthworm coelomocytes as nanoscavenger of ZnO NPs

    PubMed Central

    2014-01-01

    Earthworms can ‘biotransform’ or ‘biodegrade’ chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They ‘absorb’ the dissolved chemicals through their moist ‘body wall’ due to the interstitial water and also ingest by ‘mouth’ while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles. PMID:24959107

  3. Trade-offs between nitrous oxide emission and C-sequestration in the soil: the role of earthworms

    NASA Astrophysics Data System (ADS)

    van Groenigen, J.; Lubbers, I. M.; Giannopoulos, G.

    2008-12-01

    The rapidly rising concentrations of the greenhouse gas carbon dioxide (CO2) in the atmosphere has spurred the interest in soils as a potential carbon (C) sink. However, there are many reports indicating that C- sequestration is often negated by elevated emissions of the potent greenhouse gas nitrous oxide (N2O). It is not yet clear what the driving factors behind this trade-off are, nor how it can be avoided. We suggest that earthworm activity may be partly responsible for the trade-off. Earthworm activity is increasingly recognized as being beneficial to C-sequestration through stabilization of SOM. We report experimental results suggesting that they can also lead to strongly elevated N2O-emissions. In a first experiment, dried grass residue (Lolium perenne) was applied at the top of a loamy soil or mixed through the soil, and N2O-emission was followed for three months. Treatments included presence of the epigeic earthworm Lumbricus rubellus and the anecic earthworm Aporrectodea longa. Cumulative N2O-emissions increased significantly for both species. The strongest effect was measured for L. rubellus, where N2O-emissions significantly increased from 55.7 to 789.1 micro g N2O-N kg- 1 soil. This effect was only observed when residue was applied on top of the soil. In a second experiment we determined the effect of epigeic (L. rubellus) and endogeic (Aporrectodea caliginosa) earthworms on N2O-emissions for two different soil types (loam and sand) in the presence of 15N-labeled radish residue (Raphanus sativus subsp. oleiferus). Both species showed significant increases in N2O-emissions, which differed with residue application method and soil type. N2O- emissions were generally larger in loamy soils and the strongest effect was measured for A. caliginosa when residue was mixed into the soil, increasing emissions from 1350.1 to 2223.2 micro g N2O-N kg- 1 soil. L. rubellus only resulted in elevated N2O-emissions when residue was applied on top. These studies make it

  4. Life cycle toxicity assessment of earthworms exposed to cadmium-contaminated soils.

    PubMed

    Chen, Wei-Yu; Li, Wen-Hsuan; Ju, Yun-Ru; Liao, Chung-Min; Liao, Vivian Hsiu-Chuan

    2017-01-27

    Cadmium (Cd) is of great concern in the soil environment and it can damage terrestrial organisms. The purpose of this study was to employ a toxicokinetic/toxicodynamic (TK/TD) approach to investigate the effects of toxicologically relevant Cd accumulation on the life cycle growth of earthworms (Lumbricus rubellus and Eisenia fetida) and to assess potential terrestrial ecosystem risk. We reanalyzed growth toxicity and whole body and pellet accumulation data linked with TK/TD and life cycle growth models to estimate key rate constants. The growth risk of earthworms exposed to Cd was also assessed. This study found that the estimated whole body killing rate constant (0.114 g d μg(-1)) was much lower than that of pellet (0.248 g d μg(-1)). The recovery rate constant for whole body (6.02 d(-1)) was much higher than that of pellet (2.91 d(-1)). We also employed a life cycle-based probabilistic risk assessment model to estimate the growth inhibition risk for earthworms in response to environmentally relevant concentrations of Cd in Taiwan. Results showed that earthworms had a 90% growth inhibition probability risk of body weight, which was lower than 872.33 mg based on assessment of toxicologically relevant Cd accumulation. This study suggests that toxicologically relevant Cd accumulation could accurately reflect the capacity of Cd toxicity to earthworms. The integrated life cycle toxicity of earthworms exposed to Cd in this study provides a robust and applicable tool for the management of ecological risk assessment of Cd-contaminated soil.

  5. Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) using spiked soil

    SciTech Connect

    Jager, T.; Anton Sanchez, F.A.; Muijs, B.; Velde, E.G. van der; Posthuma, L.

    2000-04-01

    The accumulation of four polycyclic aromatic hydrocarbons ([PAHs]; phenanthrene, pyrene, fluoranthene, and benzo[a]pyrene) was tested in the earthworm Eisenia andrei in a spiked artificial soil medium. A typical peak in the body residues was observed for all PAHs around day 7, which could not be explained from changes in the total soil concentration. It is argued that the most likely cause of this peak is a decrease in the concentration in pore water, the main bioavailable phase for earthworms. The decrease is caused by biodegradation while the low rate of mass transfer from the solid state precludes replenishment. To describe the data, bioavailability was assumed to decline exponentially in time, but the shape of the accumulation curves suggests a more abrupt change. Estimates of the uptake rate (k{sub 1}) are similar for all PAHs when expressed on soil solution basis (approximately 2,000 L/kg/d); the elimination rate (k{sub 2}) shows a decrease with K{sub ow} as expected, but the values tend to be slightly lower than literature data. The dynamic bioconcentration factors (k{sub 1}/k{sub 1}) agree well with an equilibrium partitioning between soil water and the phases inside the organism.

  6. Searching for a more sensitive earthworm species to be used in pesticide homologation tests - a meta-analysis.

    PubMed

    Pelosi, C; Joimel, S; Makowski, D

    2013-01-01

    Pesticide risk assessments include experiments designed to measure the effect of pesticides on earthworms using the Eisenia fetida fetida or Eisenia fetida andrei species. There is no clear consensus in the literature on the sensitivity of different earthworm species to pesticides. We performed a meta-analysis on the sensitivity of several earthworm species to pesticides to determine the most sensitive species, and to discuss their suitability for European homologation tests. A dataset including median lethal dose (LC50) values reported in 44 experimental treatments was constructed and then analyzed in order to compare the sensitivity levels of E. fetida with that of other earthworm species. Results showed that LC50 values reported for Lumbricus terrestris and Aporrectodea caliginosa were on average significantly lower than for E. fetida. Considering the relatively high LC50 values reported for E. fetida and the absence of this species from zones where pesticides are usually applied, the relevance of using E. fetida for pesticide homologation tests is questionable and we advise risk assessors to use A. caliginosa as model species. A new protocol based on this species could be proposed for European homologation tests but its implementation will require the definition of a new standard and take time. In the meantime, the results obtained with E. fetida should be interpreted with caution taking into account the low sensitivity of this species. Our study illustrates the value of the meta-analysis approach for comparing the sensitivity of different earthworm species to pesticides. It would be useful to extend the dataset presented in this paper in order to analyze the sensitivity of other aquatic or terrestrial organism groups used for pesticide homologation or ecotoxicology tests.

  7. Development of a suitable test method for evaluating the toxicity of contaminated soils to earthworms in Canada

    SciTech Connect

    Stephenson, G.L.; Scroggins, R.

    1995-12-31

    Environment Canada has embarked on a five year program to develop, standardize, and validate a battery of soil toxicity tests which can be used to assess the relative toxicity of contaminants in soils to terrestrial organisms. These tests must be applicable to soil conditions typically found in Canadian environments and the test species must be representative of the species of soil invertebrates or plants inhabiting soil ecosystems in Canada. One of the toxicity tests being developed is designed to assess the toxicity of contaminated soils to earthworms. Five of the potential test species belong to the Lumbricidae family and include the Canadian worm (Allobophora calignosa/Aporrectodea tuberculate), the European bark worm (Dendrodtilus rubidus (rubida)), the pink soil worm (Eisenia rosea), the red marsh worm (Lumbricus rubellus), and the Canadian night crawler or dew worm (Lumbricus terrestris). The sixth species, the white pot worm (Enchytraeus albidus), belongs to the Enchytraeidae family. Further assessment reduced the number of representative species to three. Most earthworm test methods have been developed to assess the toxicity of chemically-spiked artificial soils to Eisenia fetida or E. andrei. Test methods have also been developed to assess the relative toxicity of contaminated soils from hazardous waste sites. Comparative acute toxicity data for three species of earthworm exposed to a hydrocarbon contamination will be presented. Comparative toxicity data for the same three species of earthworm will also be presented using test procedures and conditions that have been modified to accommodate biological differences among the species of earthworm. Recommendations regarding test design, methods, and conditions optimal for each test species will be summarized and discussed with respect to the precision of test results.

  8. Diverse impacts of a step and repeated BDE209-Pb exposures on accumulation and metabolism of BDE209 in earthworms.

    PubMed

    Zhang, Wei; Liang, Jun; Li, Jing; Lin, Kuangfei; Fu, Rongbing

    2016-09-01

    Decabromodiphenyl ether (BDE209) and lead (Pb) are the two common contaminants at e-waste recycling sites (EWRSs). A laboratory incubation study was conducted to explore the impacts of a step and repeated BDE209-Pb exposures on accumulation and metabolism of BDE209 in earthworms Eisenia fetida for the first time. The results indicated that BDE209 concentrations in repetitively-polluted soils were clearly higher. And the existence of high-level Pb could promote the bioaccumulation of BDE209 in earthworms along the exposure time. The post-clitellum contents of BDE209 were more than the pre-clitellum during the entire incubation. Additionally, GC/MS analysis results demonstrated that BDE206, BDE208, BDE153, BDE99, BDE47 and BDE28 could be detected in Eisenia fetida throughout 28-d experiment, and BDE206 and BDE208 were predominant metabolic products. A step exposure decreased the capability to metabolize BDE209 in the presence of Pb. Average bioaccumulation factor (BAF) for a step treatment was 0.525, as well as it was more than 1.1 times that of repeated exposure (BAF = 0.48). SEM observations suggested that a step exposure mode aggravated the damage in earthworms than repeated exposure. The results and related findings will establish a useful scientific basis for soil ecological risk assessment at EWRSs.

  9. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine.

    PubMed

    Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia

    2013-02-01

    The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers.

  10. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  11. Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2011-06-01

    The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction.

  12. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots1

    PubMed Central

    Canellas, Luciano Pasqualoto; Olivares, Fabio Lopes; Okorokova-Façanha, Anna L.; Façanha, Arnoldo Rocha

    2002-01-01

    Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H+-ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H+-ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances. PMID:12481077

  13. Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent

    PubMed Central

    Azmi, Nurhazirah; Hashim, Puziah; Hashim, Dzulkifly M; Halimoon, Normala; Majid, Nik Muhamad Nik

    2014-01-01

    Objective To examine whether earthworms of Eisenia fetida, Lumbricus rubellus and Eudrilus eugeniae extracts have elastase, tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory activity. Methods The earthworms extract was screened for elastase, tyrosinase and MMP-1 inhibitory activity and compared with the positive controls. It was also evaluated for whitening and anti-wrinkle capacity. Results The extract showed significantly (P<0.05) good elastase and tyrosinase inhibition and excellent MMP-1 inhibition compared to N-Isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid. Conclusions Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent. PMID:25183109

  14. Predator hunting mode influences patterns of prey use from grazing and epigeic food webs.

    PubMed

    Wimp, Gina M; Murphy, Shannon M; Lewis, Danny; Douglas, Margaret R; Ambikapathi, Ramya; Van-Tull, Lie'Ann; Gratton, Claudio; Denno, Robert F

    2013-02-01

    Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.

  15. Association of earthworm-denitrifier interactions with increased emission of nitrous oxide from soil mesocosms amended with crop residue.

    PubMed

    Nebert, Lucas D; Bloem, Jaap; Lubbers, Ingrid M; van Groenigen, Jan Willem

    2011-06-01

    Earthworm activity is known to increase emissions of nitrous oxide (N(2)O) from arable soils. Earthworm gut, casts, and burrows have exhibited higher denitrification activities than the bulk soil, implicating priming of denitrifying organisms as a possible mechanism for this effect. Furthermore, the earthworm feeding strategy may drive N(2)O emissions, as it determines access to fresh organic matter for denitrification. Here, we determined whether interactions between earthworm feeding strategy and the soil denitrifier community can predict N(2)O emissions from the soil. We set up a 90-day mesocosm experiment in which (15)N-labeled maize (Zea mays L.) was either mixed in or applied on top of the soil in the presence or absence of the epigeic earthworm Lumbricus rubellus and/or the endogeic earthworm Aporrectodea caliginosa. We measured N(2)O fluxes and tested the bulk soil for denitrification enzyme activity and the abundance of 16S rRNA and denitrifier genes nirS and nosZ through real-time quantitative PCR. Compared to the control, L. rubellus increased denitrification enzyme activity and N(2)O emissions on days 21 and 90 (day 21, P = 0.034 and P = 0.002, respectively; day 90, P = 0.001 and P = 0.007, respectively), as well as cumulative N(2)O emissions (76%; P = 0.014). A. caliginosa activity led to a transient increase of N(2)O emissions on days 8 to 18 of the experiment. Abundance of nosZ was significantly increased (100%) on day 90 in the treatment mixture containing L. rubellus alone. We conclude that L. rubellus increased cumulative N(2)O emissions by affecting denitrifier community activity via incorporation of fresh residue into the soil and supplying a steady, labile carbon source.

  16. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.

    PubMed

    Robidoux, P Y; Svendsen, C; Sarrazin, M; Thiboutot, S; Ampleman, G; Hawari, J; Weeks, J M; Sunahara, G I

    2005-01-01

    Polynitro-organic compounds such as 2,4,6-trinitrotoluene (TNT) can be released into the environment from production and processing facilities and military firing ranges as well as through field use and disposal practices. Based on laboratory toxicity data, TNT has lethal (at >/=260 mg TNT/kg dry soil) and sublethal effects (at >/=59 mg TNT/kg dry soil) to the earthworm. However, field studies are needed to relate exposure of organisms to explosives in mixed-contaminated soil under field conditions and to define effects-based ecotoxicologic benchmarks for TNT-contaminated soil. In the present study, the lethal and sublethal effects of a 10-day in situ exposure at a TNT-contaminated field site using mesh-bag mesocosms were assessed. In addition to the survival end point, the biomarkers of earthworm exposure and effect-including tissue residues, lysosomal neutral red retention time (NRRT), and total immune activity (TIA)-were measured. Concentrations of TNT in soil mesocosms ranged from 25 to 17,063 mg/kg. Experiments indicated a trend toward decreasing survival of caged Aporrectodea rosea and Eisenia andrei as the concentration of TNT and total nitroaromatic compounds increased. E. andrei tolerated higher concentrations of TNT (up to 4050 mg/kg dry soil) in mesocosms than did indigenous earthworms, who survived only at Earthworms E. andrei and A. rose survived in 67% and 75% of TNT-contaminated mesocosms, respectively, compared with references groups. NRRT was significantly decreased in surviving earthworms from the contaminated areas compared with those from the reference site. TIA was not affected by field exposure to TNT. Earthworm tissue concentrations of TNT metabolites 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not correlated with TNT soil concentrations. In addition, higher tissue concentrations of TNT metabolites were observed at concentrations ranging from 116 to 130 mg TNT/kg soil. The results showed that earthworm

  17. Behaviors of N-ethyl perfluorooctane sulfonamide ethanol (N-EtFOSE) in a soil-earthworm system: Transformation and bioaccumulation.

    PubMed

    Zhao, Shuyan; Ma, Xinxin; Fang, Shuhong; Zhu, Lingyan

    2016-06-01

    N-ethyl perfluorooctane sulfonamido ethanol (N-EtFOSE) is a typical precursor of perfluorooctane sulfonate (PFOS). In this study, the behaviors of N-EtFOSE in a soil-earthworm system, including biodegradation in soil and bioaccumulation and biotransformation in earthworms (Eisenia fetida) were investigated. N-EtFOSE could be biodegraded in soil and biotransformed in earthworms to several metabolites, including n-ethylperfluorooctane sulfonamide acetate (N-EtFOSAA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS, with N-EtFOSAA as the predominant intermediate and PFOS as the terminal product in both soil and earthworm. The uptake rate coefficients (ku, 0.746 goc gdw(-1)d(-1)), degradation rate constant in soil (k0, 0.138 d(-1)) and the biota-to-soil accumulation factor (BSAF, 0.523 goc gdw(-1)) of N-EtFOSE were estimated. For N-EtFOSE, N-EtFOSAA, FOSAA, FOSA and PFOS, their loss rate constants in earthworms were in the range of 0.467-30.2 (α) and 0.006-0.415 (β) d(-1), respectively. The results provided important information about the behaviors of N-EtFOSE in the soil-earthworm system.

  18. [Aging Law of PAHs in Contaminated Soil and Their Enrichment in Earthworms Characterized by Chemical Extraction Techniques].

    PubMed

    Zhang, Ya-nan; Yang, Xing-lun; Bian, Yong-rong; Gu, Cheng-gang; Liu, Zong-tang; Li, Jiao; Wang, Dai-zhang; Jiang, Xin

    2015-12-01

    To evaluate the effect of aging on the availability of PAHs, chemical extraction by exhaustive ( ASE extraction) and nonexhaustive techniques (Tenax-TA extraction, hydroxypropyl-p-cyclodextrin ( HPCD ) extraction, n-butyl alcohol ( BuOH) extraction) as well as PAHs accumulation in earthworms (Eisenia fetida) were conducted in yellow soil from Baguazhou, Nanjing, China, and red soil from Hainan, China, spiked with phenanthrene, pryene and benzo(a) pyrene and aged 0, 7, 15, 30 and 60 days. The results showed that the concentration of PAHs extracted by ASE and three nonexhaustive techniques and accumulated by earthworms significantly decreased with aging time, except the ASE extracted concentration between 30-and 60-day aging time. Furthermore, the relationships were studied in this experiment between chemical extracted PAHs concentration and accumulated concentration in earthworms. PAHs accumulated concentration in earthworms was not significantly correlated with the exhaustive extracted concentration of PAHs in soil (R² 0.44-0.56), which indicated that ASE extraction techniques could not predict PAHs bioavailability to earthworms because it overestimated the risk of PAHs. However, the PAHs accumulated concentration in earthworms was significantly correlated with the three nonexhaustive extracted concentrations of PAHs in soil, which indicated that all the three nonexhaustive techniques could predict PAHs bioavailability to earthworm to some extent, among which, HPCD extraction (R² 0.94-0.99) was better than Tenax-TA extraction (R² 0.62-0.87) and BuOH extraction (R² 0.69-0.94). So HPCD extraction was a more appropriate and reliable technique to predict bioavailability of PAHs in soil.

  19. Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities.

    PubMed

    Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander

    2017-06-01

    Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg(-1), As >19mgkg(-1)) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg(-1) (339 - 528mgkg(-1) 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil.

  20. Combined effects of soil moisture and carbaryl to earthworms and plants: simulation of flood and drought scenarios.

    PubMed

    Lima, Maria P R; Soares, Amadeu M V M; Loureiro, Susana

    2011-07-01

    Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions.

  1. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    NASA Astrophysics Data System (ADS)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  2. Edge effects on epigeic ant assemblages in a grassland-forest mosaic in southern Brazil

    NASA Astrophysics Data System (ADS)

    Pinheiro, Esther R. S.; Duarte, Leandro da S.; Diehl, Elena; Hartz, Sandra M.

    2010-07-01

    This study analyzed the influence of vegetation structure variation along a natural vegetation mosaic formed by Araucaria forest and Campos grassland in the southern Brazilian highlands, on the species richness and composition of epigeic ants. The study site consisted of two different grassland-forest ecotones, where 76 pitfall traps were installed. We estimated the area covered by canopy vegetation by hemispherical photographs, and the structure of the understory vegetation by counting the number of vegetation touches, using a graduated stick. We collected 31 species or morphospecies of epigeic ants belonging to 17 genera and 6 subfamilies. Cluster analysis defined three habitat groups (grassland, edge, and forest) with different ant species composition as revealed by ordination analysis. The highest richness was observed at the forest edge, and decreased towards the grassland and the forest interior. Variation in the richness and composition of epigeic ant species was significantly explained by the factor of distance from the forest. The relationship between species richness and understory density was negative. On the other hand, species composition of epigeic ant assemblages was significantly explained by canopy cover. This finding indicates that the ecological responses of ant assemblages resulted predominantly from edge effects mediated by changes in vegetation structure.

  3. Underground evolution: new roots for the old tree of lumbricid earthworms.

    PubMed

    Domínguez, Jorge; Aira, Manuel; Breinholt, Jesse W; Stojanovic, Mirjana; James, Samuel W; Pérez-Losada, Marcos

    2015-02-01

    Earthworms belonging to the family Lumbricidae are extremely abundant in terrestrial temperate regions. They affect soil properties and nutrient cycling, thus shaping plant community composition and aboveground food webs. Some lumbricids are also model organisms in ecology and toxicology. Despite the intense research efforts dedicated to lumbricids over the last 130years, the evolutionary relationships and taxonomic classification of these organisms are still subject to great debate. Resolution of their systematics is hampered by the structural simplicity of the earthworm body plan and the existence of cryptic species. We sampled 160 earthworm specimens belonging to 84 lumbricid species (28 genera) and 22 Lumbricoidea outgroups, sequenced two nuclear genes, four mitochondrial genes and seven mitochondrial tRNAs and examined 22 morphological characters. We then applied a combination of phylogenetic methods to generate the first robust genus-level phylogeny of the Lumbricidae. Our results show that the current Lumbricidae classification and the underlying hypotheses of character evolution must be revised. Our chronogram suggests that lumbricids emerged in the Lower Cretaceous in the holarctic region and that their diversification has been driven by tectonic processes (e.g. Laurasia split) and geographical isolation. Our chronogram and character reconstruction analysis reveal that spermathecae number does not follow a gradual pattern of reduction and that parthenogenesis arose from sexual relatives multiple times in the group; the same analysis also indicates that both epigeic and anecic earthworms evolved from endogeic ancestors. These findings emphasize the strong and multiple changes to which morphological and ecological characters are subjected, challenging the hypothesis of character stasis in Lumbricidae.

  4. Underground evolution: New roots for the old tree of lumbricid earthworms

    PubMed Central

    Domínguez, Jorge; Aira, Manuel; Breinholt, Jesse W.; Stojanovic, Mirjana; James, Samuel W.; Pérez-Losada, Marcos

    2016-01-01

    Earthworms belonging to the family Lumbricidae are extremely abundant in terrestrial temperate regions. They affect soil properties and nutrient cycling, thus shaping plant community composition and aboveground food webs. Some lumbricids are also model organisms in ecology and toxicology. Despite the intense research efforts dedicated to lumbricids over the last 130 years, the evolutionary relationships and taxonomic classification of these organisms are still subject to great debate. Resolution of their systematics is hampered by the structural simplicity of the earthworm body plan and the existence of cryptic species. We sampled 160 earthworm specimens belonging to 84 lumbricid species (28 genera) and 22 Lumbricoidea outgroups, sequenced two nuclear genes, four mitochondrial genes and seven mitochondrial tRNAs and examined 22 morphological characters. We then applied a combination of phylogenetic methods to generate the first robust genus-level phylogeny of the Lumbricidae. Our results show that the current Lumbricidae classification and the underlying hypotheses of character evolution must be revised. Our chronogram suggests that lumbricids emerged in the Lower Cretaceous in the holarctic region and that their diversification has been driven by tectonic processes (e.g. Laurasia split) and geographical isolation. Our chronogram and character reconstruction analysis reveal that spermathecae number does not follow a gradual pattern of reduction and that parthenogenesis arose from sexual relatives multiple times in the group; the same analysis also indicates that both epigeic and anecic earthworms evolved from endogeic ancestors. These findings emphasize the strong and multiple changes to which morphological and ecological characters are subjected, challenging the hypothesis of character stasis in Lumbricidae. PMID:25463017

  5. Purification and characterization of novel raw-starch-digesting and cold-adapted alpha-amylases from Eisenia foetida.

    PubMed

    Ueda, Mitsuhiro; Asano, Tomohiko; Nakazawa, Masami; Miyatake, Kazutaka; Inouye, Kuniyo

    2008-05-01

    Novel raw-starch-digesting and cold-adapted alpha-amylases (Amy I and Amy II) from the earthworm Eisenia foetida were purified to electrophoretically homogeneous states. The molecular weights of both purified enzymes were estimated to be 60,000 by SDS-PAGE. The enzymes were most active at pH 5.5 and 50 degrees C and stable at pH 7.0-9.0 and 50-60 degrees C. Both Amy I and II exhibited activities at 10 degrees C. The enzymes were inhibited by metal ions Cu(2+), Fe(2+), and Hg(2+), and hydrolyzed raw starch into glucose, maltose and maltotriose as end products.

  6. Avoidance behaviour of Eisenia fetida to carbofuran, chlorpyrifos, mancozeb and metamidophos in natural soils from the highlands of Colombia.

    PubMed

    García-Santos, Glenda; Keller-Forrer, Karin

    2011-07-01

    Earthworm avoidance behaviour test is an important screening tool in soil eco-toxicology. This test has been developed and validated under North American and European conditions. However, little research has been performed on the avoidance test in the tropics. This work demonstrates the potential suitability of the avoidance behaviour test as screening method in the highlands of Colombia using Eisenia fetida as the bio-indicator species on contaminated soils with carbofuran and chlorpyrifos. Though for the two active ingredients 100% avoidance was not reached, a curve with six meaningful concentrations is provided. No significant avoidance behaviour trend was found for mancozeb and methamidophos. Tests were conducted in the field yielded similar results to the tests carried out in the laboratory for chlorpyrifos and mancozeb. However, for the case of carbofuran and methamidophos, differences of more than double in avoidance were obtained. Divergence might be explained by soil and temperature conditions.

  7. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action.

    PubMed

    McKelvie, Jennifer R; Wolfe, David M; Celejewski, Magda A; Alaee, Mehran; Simpson, André J; Simpson, Myrna J

    2011-12-01

    Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.

  8. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics.

    PubMed

    Yuk, Jimmy; Simpson, Myrna J; Simpson, André J

    2012-07-01

    Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.

  9. Chlorinated pesticide and PCB analysis of earthworms for determination of body burden and bioaccumulation factors

    SciTech Connect

    Gouveia, D.A.; Turton, D.; Rury, P.

    1995-12-31

    A study of target chlorinated pesticide and polychlorinated biphenyl (PCB) uptake in Red Wiggler (Eisenia foetida) earthworms for the determination of body burden and bioaccumulation factors was performed to provide site-specific data for an extensive ecological risk assessment. Earthworms and contaminated site soil (both prior to and following earthworm exposure) were analyzed for chlorinated pesticides, PCB Aroclors, and target metals. While the target metal analysis was straightforward, the pesticide and PCB analyses were complicated due to the number and concentration of site contaminants, as well as interferences from the biological matrix. This study provided valuable information on: integration of analytical chemistry in an ecological risk assessment; available options for extraction, cleanup, and analysis; selection of optimum analytical methodologies to meet data quality objectives (DQOs); interpretation of soil and tissue analytical results; and understanding of the potential error and uncertainty in the analyses. By coordinating risk assessment needs and expectations with the analytical laboratory capabilities and by maintaining a flexible analysis program, the study provided analytical data capable of meeting the DQOs and overall risk assessment objectives.

  10. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms.

    PubMed

    Petersen, Elijah J; Pinto, Roger A; Landrum, Peter F; Weber, Walter J

    2009-06-01

    Increasing production of and application potentials for carbon nanotubes (CNTs) suggest these materials will enter soil and sediment ecosystems in significant masses in upcoming years. This may result in ecological risks, either from the presence of the CNTs themselves or, given their exceptional sorption capacities, from their effects on the fate and accumulation of concurrently present hydrophobic organic chemicals (HOCs). Here we test the influence of additions of single-walled CNTs (SWNTs) and multi-walled CNTs (MWNTs) to two different pyrene-contaminated soils on uptake of this HOC by earthworms (Eisenia foetida). The effects of nanotube additions to the soils were observed to be CNT concentration dependent, with 0.3 mg nanotubes per gram of soil having no impact, while 3.0 mg/g of SWNTs or MWNTs substantially decreased pyrene bioaccumulation from both contaminated soils. The presence of CNTs also affected pyrene elimination rates. After a 14-day exposure to pyrene-spiked soils, earthworms showed enhanced elimination rates in soils amended with 3.0 mg CNT/g but not 0.3 mg CNT/g. These results suggest that the presence of SWNTs or MWNTs in terrestrial ecosystems will have concentration-dependent effects on decreasing HOC accumulation by earthworms in a manner similar to that expected of most "hard" carbons.

  11. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  12. Addressing the role of earthworms in treating domestic wastewater by analyzing biofilm modification through chemical and spectroscopic methods.

    PubMed

    Wang, Yin; Xing, Mei-Yan; Yang, Jian; Lu, Biao

    2016-03-01

    Vermifiltration eco-friendly system is an alternative and low-cost artificial ecosystem for decentralized wastewater treatment and excess sludge reduction. The biofilm characteristics of a vermifilter (VF) with earthworms, Eisenia fetida, for domestic wastewater treatment were studied. A conventional biofilter (BF) without earthworms served as the control. Pore number in VF biofilm was significantly more than BF biofilm, and VF biofilm showed a better level-administrative structure through scanning electron microscope. VF biofilms had lower levels of protein and polysaccharide, but phosphoric acids and humic acid showed the opposite results. Furthermore, in the presence of earthworms, VF biofilms contained higher total organic carbon (TOC) percentage composition in the condition of less volatile suspended substances (VSS) contents. Dehydrogenase activity (DHA) and adenosine triphosphate (ATP) contents along VF showed better results than BF by increment of 12.84 ∼ 16.46 %. Overall findings indicated that the earthworms' presence remarkably decreases biofilm contests but increases enzyme activity and improves the community structure of VF biofilms, which is beneficial for the wastewater disposal.

  13. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: A vermicompost based assessment with vegetable market waste and rice straw feed mixtures.

    PubMed

    Hussain, Nazneen; Singh, Archana; Saha, Sougata; Venkata Satish Kumar, Mattaparthi; Bhattacharyya, Pradip; Bhattacharya, Satya Sundar

    2016-12-01

    Vermicomposting is a dependable waste recycling technology which greatly augments N and P levels mainly through microbial action. This paper aims to identify efficient N-fixing (NFB) and P-solubilizing (PSB) bacteria from earthworm intestines. Various combinations of vegetable market waste, rice straw, and cowdung were fed to two earthworm species (Eisenia fetida and Perionyx excavatus). Total organic C decreased, pH shifted towards neutrality, and NPK availability, and microbial (NFB, PSB, and total bacteria) population increased remarkably during vermicomposting with E. fetida. Therefore, 45 NFB and 34 PSB strains isolated from Eisenia gut were initially screened, their inter-dominance assessed, and 8 prolific strains were identified through 16SrRNA sequencing. Interestingly, two novel N-fixing strains of Kluyvera ascorbata emerged as an efficient biofertilizer candidate. Moreover, both N-fixing and P-solubilizing strains of Serratia and Bacillus were isolated from earthworm gut. All the isolated strains significantly improved soil health and facilitated crop growth as compared to commercial biofertilizers.

  14. For Better Soil, Let Earthworms Toil.

    ERIC Educational Resources Information Center

    Swinehart, Rebecca, Ed.

    1995-01-01

    This activity involves elementary students in investigating how earthworms affect soil fertility. An introduction discusses topsoil loss and the connections between soil and earthworm ecology. Materials needed and step-by-step procedure are provided. (LZ)

  15. Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker.

    PubMed

    Jensen, John; Diao, Xiaoping; Scott-fordsmand, Janeck J

    2007-06-01

    The antiparasitic abamectin has been proven effective against both endo- and ectoparasites of farm animals and hence used widely in animal husbandry. It may enter the soil environment with the excreta of treated animals. Very little information is available with regard to the sub-lethal effects of abamectin on soil invertebrates, such as earthworms. The objective of this study was to evaluate the toxic effect of abamectin on earthworms, using Eisenia fetida, by analyzing changes in the survival, growth, reproduction and cocoon hatchability of exposed earthworms. Furthermore, a biomarker of the lysosomal membrane stability, measured by neutral red retention time (NRR-time), was also applied. Abamectin showed significant toxicity on the growth of earthworms with increasing concentrations up to 5mg/kg. The most sensitive parameter was reproduction (cocoons production and hatchability) and NRR-time. The number of cocoons was reduced at concentrations above 0.25mg/kg and no cocoons were present at the highest concentration of 5mg/kg. Cocoons exposed to abamectin exhibited a reduced hatching success at concentrations above 1.5mg/kg. The NRR-time was reduced significantly at exposure concentrations of abamectin above 0.25mg/kg. The change in lysosomal membrane stability showed a good correlation with reproduction and may hence be a potential predicator of the effects on earthworm populations.

  16. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  17. Comparative Heavy Metal Uptake by Soil-Dwelling Invertebrates and the Bioassay Earthworm Eisenia Foetida

    DTIC Science & Technology

    1988-03-31

    Diptera/2 Lepidoptera L. ’Coleoptera sampled were all carabid larvae. 46 TABLE 2(a) contd ... PLOT COL." ARAN. OTHERS 23 76 2 1 Oymnopt~ra/6 Diptera/l...IOVBKIE 1986 PLOTS Zn Cu 9i Cd Cr Pb -------------------------------------------------------------------- (1) Carabid larvae 2.10.14.16 103 159 16 2.6

  18. Comparison of Heavy Metal Uptake by Eisenia Foetida with That of other Common Earthworms.

    DTIC Science & Technology

    1986-01-01

    Beech Leaf Press, Kalamazoo, Michigan 1, 137-150. BOUCHE, M.B. (1972) Lombriciens de France : Ecologie et Systematique. Ann. Zool. Ecol. Anim . (Num...An assessment of contaminant mobility and bioavailability can be made by monitoring the uptake into plant and animal tissues. The Waterways...Experiment Station (Vicksburg, Mississippi) has developed plant and animal bioassay procedures using surrogate species of Pik& plant and animal to indicate

  19. Toxicities of TNT and RDX to the Earthworm Eisenia fetida in Five Soils with Contrasting Characteristics

    DTIC Science & Technology

    2013-05-01

    5 2.6 ACN Extraction of TNT and RDX from Soil .....................................................5 2.7 Adapted...chromatography (HPLC)-grade acetone (CAS no. 67-64-1) was used to prepare TNT and RDX solutions for soil amendment. Acetonitrile ( ACN ; CAS no. 75-05-8; HPLC...buffers, rinsed, and blotted again. The electrode was also rinsed with ASTM Type I water and blotted before each pH measurement. 2.6 ACN Extraction

  20. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.

    PubMed

    Unuofin, F O; Mnkeni, P N S

    2014-11-01

    Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.

  1. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.

  2. Evaluation of a remediation process for lead contaminated soil by toxicity bioassays: Plants and earthworms

    SciTech Connect

    Chana, L.W.; Smith, K.

    1995-12-31

    Soil from a site contaminated with heavy metals (predominantly lead) was treated using the TERRAMET{reg_sign} lead extraction process. Earthworm acute toxicity and plant seed germination/root elongation (SG/RE) bioassays were used to evaluate the toxicity of the soil before treatment (BT), after treatment (AT) and after treatment, followed by rinsing with water, intended to simulate exposure to rainfall (RT). The results showed BT and RT were not toxic to earthworms in a 14-day exposure while AT showed significant toxicity. The LC{sub 50} values for Eisenia and Lumbricus were 44.04 and 28.83 (as % AT soil/test soil mixture), respectively. The phytotoxicity data indicated that all 3 test soils significantly inhibited lettuce SG/RE in a dose-related manner, with AT being the most phytotoxic. In oats, RT had no effect on SG/RE and AT was more toxic than BT. For the two local-site grass seeds tested (blue grama and sideoat grama), the AT soil was the most phytotoxic followed by BT and RT. The results suggest that the soil after this remediation process exerts significant toxicity on both plant and earthworm, but after a rain-simulating rinse, the toxicity is the same as, or less than, the toxicity before treatment. Further studies are in progress to confirm the assumption that the high salt concentrations generated by acidification during the leaching process, followed by neutralization are responsible for the increased toxicity of unrinsed soil in both plant and earthworm.

  3. Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model.

    PubMed

    Qiu, Hao; Vijver, Martina G; He, Erkai; Peijnenburg, Willie J G M

    2013-05-07

    This study aimed to develop bioavailability models for predicting Cu toxicity to earthworms (Lumbricus rubellus, Aporrectodea longa, and Eisenia fetida) in a range of soils of varying properties. A multicomponent Freundlich model, complying with the basic assumption of the biotic ligands model, was used to relate Cu toxicity to the free Cu(2+) activity and possible protective cations in soil porewater. Median lethal concentrations (LC50s) of Cu based on the total Cu concentration varied in each species from soil to soil, reaching differences of approximately a factor 9 in L. rubellus, 49 in A. longa and 45 in E. fetida. The relative sensitivity of the earthworms to Cu in different soils followed the same order: L. rubellus > A. longa > E. fetida. Only pH not other cations (K(+), Ca(2+), Na(+), and Mg(2+)) were found to exert significant protective effects against Cu toxicity to earthworms. The Freundlich-type model in which the protective effects of pH were included, explained 84%, 94%, and 96% of variations in LC50s of Cu (expressed as free ion activity) for L. rubellus, A. longa, and E. fetida, respectively. Predicted LC50s never differed by a factor of more than 2 from the observed LC50s. External validation of the model showed a similar level of precision, even though toxicity data for other soil organisms and for different endpoints were used. The findings of the present study showed the possibility of extrapolating the developed toxicity models for one earthworm species to another species. Moreover, the Freundlich-type model in which the free Cu(2+) activity and pH in soil porewater are considered can even be used to predict toxicity for other soil invertebrates and plants.

  4. Toxicity of sodium tungstate to earthworm, oat, radish, and lettuce.

    PubMed

    Bamford, Josie E; Butler, Alicia D; Heim, Katherine E; Pittinger, Charles A; Lemus, Ranulfo; Staveley, Jane P; Lee, K Brian; Venezia, Carmen; Pardus, Michael J

    2011-10-01

    Due to unknown effects of the potential exposure of the terrestrial environment to tungsten substances, a series of toxicity studies of sodium tungstate (Na(2) WO(4) ) was conducted. The effect on earthworm (Eisenia fetida) survival and reproduction was examined using Organisation for Economic Co-operation and Development (OECD) Guideline 222. No effect on either endpoint was seen at the highest concentration tested, resulting in a 56-d no-observed-effect concentration (NOEC) of ≥586 mg tungsten/kg dry soil (nominal concentrations). The effect of sodium tungstate on emergence and growth of plant species was examined according to OECD Guideline 208: oat (Avena sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). No effects on emergence, shoot height, and dry shoot weight were observed in oats exposed to the highest concentration, resulting in a 21-d NOEC of ≥586 mg tungsten/kg dry soil. The NOECs for radish and lettuce were 65 and 21.7 mg tungsten/kg dry soil (nominal concentrations), respectively. Respective 21-d median effective concentration values (EC50) for radish and lettuce were >586 and 313 mg tungsten/kg dry soil (based on shoot height) (confidence level [CL] -8.5-615); EC25 values were 152 (CL 0-331) and 55 (CL 0-114) mg tungsten/kg dry soil. Results are consistent with the few other tungsten substance terrestrial toxicity studies in the literature.

  5. Can earthworms survive fire retardants?

    USGS Publications Warehouse

    Beyer, W.N.; Olson, A.

    1996-01-01

    Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.

  6. Manganese toxicity in soil for Eisenia fetida, Enchytraeus crypticus (Oligochaeta), and Folsomia candida (Collembola).

    PubMed

    Kuperman, R G; Checkai, R T; Simini, M; Phillips, C T

    2004-01-01

    The U.S. Environmental Protection Agency is developing Ecological Soil Screening Level (Eco-SSL) benchmarks for ecological risk assessment (ERA) of contaminants at Superfund sites. Eco-SSLs are developed from published values whenever sufficient quantity and quality of data exist. Because insufficient information was available to generate an Eco-SSL for Mn, standardized toxicity testing was undertaken to fill the data gaps. Tests included the earthworm (Eisenia fetida) cocoon production test, the enchytraeid (Enchytraeus crypticus) reproduction test, and the collembolan (Folsomia candida) reproduction test, all conducted in Sassafras sandy loam soil that supports a relatively high bioavailability of metals. Weathering and aging of manganese-amended soil were carried out to more closely simulate exposure effects at Superfund sites on soil invertebrates. Data were analyzed by nonlinear regression to determine EC20 and EC50 values based on concentration-response relationships. The toxicity order for manganese in Sassafras sandy loam was E. crypticus>E. fetida>F. candida, with EC20 values of 116, 629, and 1209 mg kg(-1), respectively. The Eco-SSL requirement for the testing of multiple representative species is well justified. All study results will be submitted to the Eco-SSL Task Group for quality control review prior to inclusion in the Eco-SSL database.

  7. Optimization of NRU assay in primary cultures of Eisenia fetida for metal toxicity assessment.

    PubMed

    Irizar, Amaia; Duarte, Daniel; Guilhermino, Lucia; Marigómez, Ionan; Soto, Manu

    2014-09-01

    Coelomocytes, immunocompetent cells of lumbricids, have received special attention for ecotoxicological studies due to their sensibility to pollutants. Their in vitro responses are commonly quantified after in vivo exposure to real or spiked soils. Alternatively, quantifications of in vitro responses after in vitro exposure are being studied. Within this framework, the present study aimed at optimizing the neutral red uptake (NRU) assay in primary culture of Eisenia fetida coelomocytes for its application in soil toxicity testing. Optimized assay conditions were: earthworm depuration for 24 h before retrieving coelomocytes by electric extrusion; 2 × 10(5) seeded cells/well (200 µl) for the NRU assay and incubation for 1 h with neutral red dye. Supplementation of the culture medium with serum was not compatible with the NRU assay, but coelomocytes could be maintained with high viability for 3 days in a serum-free medium without replenishment. Thus, primary cultures were used for 24 h in vitro toxicity testing after exposure to different concentrations of Cd, Cu, Ni and Pb (ranging from 0.1 to 100 μg/ml). Primary cultures were sensitive to metals, the viability declining in a dose-dependent manner. The toxicity rank was, from high to low, Pb > Ni > Cd > Cu. Therefore, it can be concluded that the NRU assay in coelomocytes in primary cultures provides a sensitive and prompt response after in vitro exposure to metals.

  8. Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida.

    PubMed

    Daam, Michiel A; Leitão, Sara; Cerejeira, Maria José; Paulo Sousa, J

    2011-10-01

    The sole routine testing of the standard earthworm Eisenia fetida for the terrestrial risk assessment of pesticides has been under much debate since other soil invertebrates may be more sensitive than this standard test species. However, the very low availability of laboratory toxicity data for taxa other than E. fetida has greatly hampered sensitivity comparisons. In the present study, the relative tolerance (T(rel)) approach was used to enable comparing toxicity thresholds obtained from the US-EPA ECOTOX database, for main terrestrial taxonomic groups and pesticidal types of action (insecticides, fungicides, herbicides, and other) separately. Analyses confirmed previously reported lower and higher sensitivity of collembolans to fungicides and insecticides, respectively. However, various other discrepancies in susceptibility relative to E. fetida were encountered as indicated by species sensitivity distributions and/or calculated 95% confidence intervals of T(rel) values. Arachnids and isopods were found to be more sensitive to insecticides, and nematodes to fungicides, as compared to E. fetida. Implications of study findings for the terrestrial risk assessment of pesticides are discussed.

  9. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions.

    PubMed

    Piola, Lucas; Fuchs, Julio; Oneto, María Luisa; Basack, Silvana; Kesten, Eva; Casabé, Norma

    2013-04-01

    Glyphosate-based products are the leading post-emergent agricultural herbicides in the world, particularly in association with glyphosate tolerant crops. However, studies on the effects of glyphosate-based formulations on terrestrial receptors are scarce. This study was conducted to evaluate the comparative toxicity of two glyphosate-based products: Roundup FG (monoammonium salt, 72% acid equivalent, glyphosate-A) and Mon 8750 (monoammonium salt, 85.4% acid equivalent, glyphosate-B), towards the earthworm Eisenia andrei. Median lethal concentration (LC50) showed that glyphosate-A was 4.5-fold more toxic than glyphosate-B. Sublethal concentrations caused a concentration-dependent weight loss, consistent with the reported effect of glyphosate as uncoupler of oxidative phosphorylation. Glyphosate-A showed deleterious effects on DNA and lysosomal damage at concentrations close to the applied environmental concentrations (14.4 μg ae cm(-2)). With glyphosate-B toxic effects were observed at higher doses, close to its LC50, suggesting that the higher toxicity of formulate A could be attributed to the effects of some of the so-called "inert ingredients", either due to a direct intrinsic toxicity, or to an enhancement in the bioavailability and/or bioaccumulation of the active ingredient. Our results highlight the importance of ecotoxicological assessment not only of the active ingredients, but also of the different formulations usually employed in agricultural practices.

  10. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels

    PubMed Central

    Chen, Li’ke; Wu, Longhua; Christie, Peter; Zhang, Haibo; Luo, Yongming

    2017-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester (PAE) that has aroused public concern due to its resistance to degradation and its toxicity as an endocrine-disrupting compound. Effects of different concentrations of DEHP on Eisenia fetida in spiked natural soil have been studied in the body of the earthworm by means of soil cultivation tests 7, 14, 21 and 28 days after exposure. The results indicated that, in general, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, metallothionein (MT) content, the expression of heat shock protein 70 (HSP 70) and all the tested geno-toxicity parameters are promoted as time elapses and with increasing concentration of DEHP. However, peroxidase (POD) activity, neutral red retention time (NRRT) and mitochondrial membrane potential difference values were found to decrease even at a low concentration of DEHP of 1 mg kg-1 soil (p<0.05). Clear toxic effects of DEHP on E. fetida have been generally recognized by means of the disturbance of antioxidant enzyme activity/content and critical proteins, cell membrane and organelle disorder and DNA damage estimated by length of tail, tail DNA ratio, and tail moment parameters. A concentration of DEHP of 3 mg kg-1 may be recommended as a precaution against the potential risk of PAEs in soils and for indicating suitable threshold values for other soil animals and soil micro-organisms. PMID:28319143

  11. Earthworm-derived pore-forming toxin lysenin and screening of its inhibitors.

    PubMed

    Sukumwang, Neelanun; Umezawa, Kazuo

    2013-08-08

    Lysenin is a pore-forming toxin from the coelomic fluid of earthworm Eisenia foetida. This protein specifically binds to sphingomyelin and induces erythrocyte lysis. Lysenin consists of 297 amino acids with a molecular weight of 41 kDa. We screened for cellular signal transduction inhibitors of low molecular weight from microorganisms and plants. The purpose of the screening was to study the mechanism of diseases using the obtained inhibitors and to develop new chemotherapeutic agents acting in the new mechanism. Therefore, our aim was to screen for inhibitors of Lysenin-induced hemolysis from plant extracts and microbial culture filtrates. As a result, we isolated all-E-lutein from an extract of Dalbergia latifolia leaves. All-E-lutein is likely to inhibit the process of Lysenin-membrane binding and/or oligomer formation rather than pore formation. Additionally, we isolated tyrosylproline anhydride from the culture filtrate of Streptomyces as an inhibitor of Lysenin-induced hemolysis.

  12. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    PubMed

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation.

  13. Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response.

    PubMed

    Natal-da-Luz, Tiago; Amorim, Mónica J B; Römbke, Jörg; Sousa, José Paulo

    2008-10-01

    Based on the ability of organisms to avoid contaminated soils, avoidance tests have a great potential as early screening tools in lower tier levels of ERA schemes. Aiming at their standardization, the definition of the minimum exposure time necessary to observe an avoidance response to a contaminant is needed. To fill this gap, avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida), comparing distinct time periods (from 1-7 to 1-14 days, respectively), were performed using the artificial OECD soil and reference chemicals for each test organism. Results showed that for both organisms a clear response within 24 h of exposure can be obtained. This rapid response enhances the utility of the test for "on site" analysis to evaluate contaminated sites.

  14. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia.

    PubMed

    Boughattas, Iteb; Hattab, Sabrine; Boussetta, Hamadi; Sappin-Didier, Valérie; Viarengo, Aldo; Banni, Mohamed; Sforzini, Susanna

    2016-11-01

    Eisenia andrei earthworms were exposed for 7 and 14 days to six samples of soil taken from around an abandoned lead (Pb) mine and characterized by different levels of metal contamination (S6-S1, this latter being the most contaminated soil). The organisms were analyzed for metal bioaccumulation and for biological parameters as biomarkers of stress (lysosomal membrane stability; lipofuscin lysosomal content; lysosomal/cytoplasmic volume ratio) and genotoxicity (Micronucleus frequency). Chemical analysis showed the loads of Pb, Cd, Zn, and Cu in the worms following exposure. Among the stress biomarkers, lysosomal membrane stability was significantly affected in the coelomocytes of the earthworms exposed already 7 days to different contaminated soils. Organisms exposed for 14 days to S1 showed in the cells of the chloragogenous tissue, a particularly relevant increase in lipofuscin, a biomarker of oxidative stress, and an increase in the lysosome/cytoplasm volume ratio, indicating stressful condition at the tissue level. Moreover, in the same conditions, a decrease in total body weight was observed. At the longer exposure time, the coelomocytes of worms exposed to S1, S2, and S3 (soils with higher metal concentrations) showed a significant increase in micronuclei (MNi) frequency. Expressions of the P21 and topoisomerase genes, which are involved in DNA repair, showed significant up-regulation in the cells of worms exposed to S1, S2, S3, S4 and to a less extend S6. This may indicate that the worms were only able to successfully reduce the level of DNA damage in S4 and S5 if considering MN frequency data. The biomarker data was integrated by the Earthworm Expert System, allowing an objective interpretation of the complex biological data and clearly defining the areas in which the presence of chemicals is toxic for the edaphic organisms.

  15. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    PubMed

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  16. Important Issues in Ecotoxicological Investigations Using Earthworms.

    PubMed

    Velki, Mirna; Ečimović, Sandra

    The importance and beneficial effects of earthworms on soil structure and quality is well-established. In addition, earthworms have proved to be important model organisms for investigation of pollutant effects on soil ecosystems. In ecotoxicological investigations effects of various pollutants on earthworms were assessed. But some important issues regarding the effects of pollutants on earthworms still need to be comprehensively addressed. In this review several issues relevant to soil ecotoxicological investigations using earthworms are emphasized and guidelines that should be adopted in ecotoxicological investigations using earthworms are given. The inclusion of these guidelines in ecotoxicological studies will contribute to the better quantification of impacts of pollutants and will allow more accurate prediction of the real field effects of pollutants to earthworms.

  17. Influence of invasive earthworm activity on carbon dynamics in soils from the Aspen Free Air CO2 Enrichment Experiment

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Top, S. M.; Hopkins, F. M.

    2010-12-01

    The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm

  18. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg(-1) soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm(-1). Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  19. Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms.

    PubMed

    Li, Bing; Yao, Tianqi; Sun, Hongwen; Zhang, Yanwei; Yang, Jirui

    2016-01-15

    In this study, two ecological types of earthworms were exposed to soil samples that were artificially contaminated with individual hexabromocyclododecane (HBCD) diastereomers (α-, β-, and γ-HBCDs) to investigate the bioaccumulation, depuration, enantiomer selectivity and isomerization of HBCDs in earthworms. The uptake rate constant (ku), bioaccumulation factor (BAF), biota soil accumulation factor (BSAF), and half-life (t1/2) for the α-HBCD were the highest among the three diastereomers. The bioaccumulation parameters of the three diastereoisomers differed between the two ecologically different species of earthworms. The BSAF values of α- and γ-HBCDs were substantially higher in Eisenia fetida than those in Metaphire guillelmi, with the higher lipid and protein contents in E. fetida as the primary reason for this difference. The other processes, such as uptake, depuration, metabolism and isomerization, also differed between the two species and led to a difference in the bioaccumulation of β-HBCD. The β- and γ-HBCDs were bioisomerized to α-HBCD in the earthworms, but to a greater extent in E. fetida. The highest BSAF, t1/2 of α-HBCD and the bioisomerization of β- and γ-HBCDs to α-HBCD might explain in part why α-HBCD was the dominant isomer in biota samples. Most of the enantiomer fractions (EFs) for the three HBCD diastereoisomers in the earthworms were different from those in standard samples (p<0.05), indicating that enantiomer selectivity occurred. Moreover, the trends and extent of the enantioselectivity were different between the two species. Additionally, the EFs of α-HBCD that was bioisomerized from β- or γ-isomers were also different from those in the standards (p<0.05), which likely reflect the integration of several processes, such as enantioselective isomerization and the subsequent selective metabolism of the produced α-HBCD or selective excretion of the enantiomers.

  20. Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods.

    PubMed

    Yang, Jian; Lv, Baoyi; Zhang, Jie; Xing, Meiyan

    2014-02-01

    This work illustrated the effects of earthworm in vermicomposting (Eisenia fetida) by determining the water-extracts through chemical and spectroscopic methods. A field experiment with sludge as the only feed was subjected to vermicomposting and the control (without worms) for three weeks. Compared to the control, vermicomposting resulted in lower pH and water-extractable organic carbon (WEOC) along with higher electrical conductivity (EC). Moreover, vermicomposting caused nearly two times higher content of water-extractable nitrate (WEN-NO3(-)) than the control. Furthermore, fourier transform infrared spectra (FT-IR) revealed that vermicomposting promoted the hydrolysis/transformation of macromolecular organic matters and accelerated the degradation of polysaccharide-like and protein-like materials. Fluorescence spectroscopy also reflected vermicomposting led to higher humification degree than the control. In all, this study supplies a new view to assess the roles of earthworm in vermicomposting of sewage sludge by evaluating the water extracts.

  1. Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers.

    PubMed

    King, R Andrew; Vaughan, Ian P; Bell, James R; Bohan, David A; Symondson, William O C

    2010-04-01

    The carabid beetle Pterostichus melanarius is a major natural enemy of pests, such as aphids and slugs in agricultural systems. Earthworms are a dominant non-pest component of the diet of P. melanarius which help sustain the beetles during periods when the pest population is low or absent. In this study we wanted to test whether this predator exercises prey choice among different earthworm species or ecological groups. High levels of genetic diversity within morphological species of earthworm necessitated the development of primers that were specific not just to species but lineages and sub-lineages within species as well. Gut samples from beetles were analysed using multiplex-PCR and fluorescent-labelled primers. Calibratory feeding trials were undertaken to calculate median detection times for prey DNA following ingestion. Extensive testing demonstrated that the primers were species-specific, that detection periods were negatively related to amplicon size and that meal size had a highly significant effect on detection periods. Monte Carlo simulations showed that, in general, worms were being predated in proportion to their densities in the field with little evidence of prey choice, other than probable avoidance of the larger, deep-living species. There was no evidence that epigeic species were being taken preferentially in comparison with endogeic species. There was also no evidence that defensive secretions by Allolobophora chlorotica reduced predation pressure on this species by P. melanarius. We concluded that any management system that increases earthworm densities generally, regardless of component species, is likely to be optimal for increasing numbers of this beneficial beetle predator.

  2. Distribution, isomerization and enantiomer selectivity of hexabromocyclododecane (HBCD) diastereoisomers in different tissue and subcellular fractions of earthworms.

    PubMed

    Li, Bing; Chen, Hao; Sun, Hongwen; Lan, Zhonghui

    2017-05-01

    In this study, earthworms Eisenia fetida (E. fetida) were exposed to a soil artificially contaminated with individual hexabromocyclododecane (HBCD) diastereoisomers (α-, β- and γ-HBCDs) to investigate the distribution, isomerization and enantiomer selectivity of HBCDs at tissue and subcellular levels. At the tissue level, the concentrations of HBCDs all followed the order of gut>bodyfluid>body wall, which suggested that earthworms accumulated HBCDs mainly via ingesting soil particles. At the subcellular level, the concentrations of HBCDs in an extracellular fraction consisting of granules, tissue fragment, cell membrane and intact cells (fraction A) were higher than those in an intracellular fractions consisting of the microsomal and cytosol (fraction B+C). This confirmed the passive diffusion during the distribution of HBCDs into the intracellular compartment. The distribution proportions of HBCDs varied among different tissue and subcellular fractions, and all changed over time within 14 days. The variable distributions of HBCDs in different fractions were a result of the comprehensive effects of dynamics and thermodynamics processes. The β- and γ-HBCDs were isomerized to α-HBCD in all tissue and subcellular fractions except for fraction C, and the isomerization ratios varied a lot, which seemed to be related to HBCDs residence time. The selective enrichment of (-) α-, (-) β and (-) γ-HBCDs was found in all fractions and this is consistent with that in the whole earthworm. Besides, the extents of enantio-selectivity did not change significantly among different tissue and subcellular fractions.

  3. Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls

    SciTech Connect

    Meier, J.R.; Chang, L.W.; Meckes, M.C.; Smith, M.K.; Jacobs, S.; Torsella, J.

    1997-05-01

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below the remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.

  4. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  5. Comparative toxicity of pentachlorophenol to three earthworm species in artificial soil

    SciTech Connect

    Fitzgerald, D.; Lanno, R.P.; Farwell, A.; Dixon, D.G.

    1994-12-31

    Although methods for standardized toxicity tests with earthworms exist, many of the test parameters and conditions have not been validated in actual tests and with different species of worms. This study evaluated the toxicity of pentachlorophenol (PCP) to three species of earthworms, Lumbricus terrestris, Eisenia fetida, and Eudrilus eugeniae using various methods of data analysis and body residues. Tests were conducted in artificial soil for a period of 28 days or until an Acute Lethality Threshold (ALT) was reached. An intensive temporal sampling regime was applied to generate sufficient data for the accurate estimation of ALTs using both LC50/time and time-to-death/soil concentration methods of data analysis. L. terrestris was tested at 15 C, E. eugeniae at 24 C, and E. fetida at both temperatures. Total body residues of PCP were measured by GC following cryogenic separation of the lipid fraction of the worm. ALTs were significantly different between E. fetida and the two larger species of worms. No effect of temperature on the ALT for E. fetida was observed, although the time taken to reach the ALT increased at the lower temperature. The relationship of PCP residues at mortality will be discussed in terms of the effects of species, body size and temperature. Limitations of the artificial soil based upon growth curves of worms will also be examined.

  6. Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology.

    PubMed

    Ricketts, H J; Morgan, A J; Spurgeon, D J; Kille, P

    2004-01-01

    The emergence of new technologies from the genomics revolution will transform the potential application of biomarkers to assess how pollutants impact people, animals, and ecosystems. Genetic databases provide a huge resource from which candidate molecular biomarkers can be identified and, subsequently, exploited to address these issues. However, a major challenge is to link these novel molecular indices to ecologically relevant whole-organism life-cycle traits (such as reproduction and growth). Such a functional link is provided by annetocin, previously characterized as a member of the vasopressin/oxytocin superfamily of neuropeptides. It is expressed in annelid worms within the neurons of the central nervous system and has been shown to be involved in the induction of egg-laying behavior. This paper outlines the validation of annetocin as a novel biomarker of reproductive fitness in the earthworm Eisenia fetida. The design of primer pairs targeted toward oligochaete annetocin has facilitated the isolation of a full-length annetocin cDNA from this species. Optimization of a real-time quantitative PCR procedure exploiting the fluorescent DNA-binding molecule, Sybr Green, has allowed the measurement of annetocin transcript levels over a range covering six orders of magnitude. Using this approach, gene expression was measured in earthworms exposed to soils polluted with high concentrations of zinc and lead. Traditional growth and reproductive indices, including cocoon production, were also recorded and related to the molecular parameter. The future use of annetocin as a molecular genetic biomarker in terrestrial ecotoxicology is discussed.

  7. Surfactants differentially impact p,p'-DDE accumulation by plant and earthworm species.

    PubMed

    White, Jason C; Peters, Richard; Kelsey, Jason W

    2007-04-15

    The effect of four surfactants (Triton X-100, Tween-80, rhamnolipids, cyclodextrin) at 100-1000 mg/L on p,p'-DDE phytoextraction by Cucurbita pepo (zucchini) under field conditions and p,p'-DDE bioaccumulation by earthworm species (Eisenia fetida, Lumbricus terrestris) under laboratory conditions was investigated. Abiotically, surfactants (except cyclodextrin) increased contaminant desorption from soil by 4-fold, with higher concentrations generally promoting greater release. Cyclodextrin had no effect on DDE desorption. DDE concentrations in unamended zucchini roots and stems were 30- and 7.8-fold greater than soil levels, respectively, and 1.6% of the contaminant was extracted from the soil. The surfactant effects were cultivar specific. Triton X-100 increased DDE uptake in "Costata" by 2.6-fold, yielding 5% contaminant phytoextraction. In "Goldrush", DDE accumulation decreased by 69% across all surfactants. Surfactants significantly increased DDE bioaccumulation by earthworms. For E. fetida with all surfactants and L. terrestriswith Triton X-100 and cyclodextrin, DDE accumulation increased 2.5-7.2-fold, paralleling abiotic desorption. However, Tween-80 and rhamnolipids increased DDE accumulation in L. terrestris by 74 and 36 fold, respectively. These dramatic increases in contaminant bioaccumulation do not correlate with the increased availability observed abiotically. Surfactant-mediated increases in contaminant bioavailability are an unexpectedly complex process and clearly present unanticipated concerns over pollutant exposure to nontarget organisms.

  8. Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico.

    PubMed

    Geissen, Violette; Gomez-Rivera, Petrona; Lwanga, Esperanza Huerta; Mendoza, Ricardo Bello; Narcías, Antonio Trujillo; Marcías, Everardo Barba

    2008-11-01

    This study focuses on the medium-term effects of soil bioremediation on mortality and reproduction rates of Eisenia fetida (laboratory experiment) and of the tropical earthworm Polypheretima elongata (field experiment). We compared soils restored with the two bioremediation technologies landfarming (LF) and compost-bioremediation (BI) with control soils and with soils contaminated with 1% and 2% of petroleum. Control and restored soils both were fertile and showed low hydrocarbon contents. The mortality of E. fetida was not influenced by soil restoration and by contamination with 1% petroleum; it only increased in soils contaminated with 2% petroleum. However, the reproduction rate of E. fetida was significantly lower in the soils restored with LF and in those contaminated with 1% crude oil and significantly higher in the soils restored with BI. P. elongata showed the same reaction as E. fetida. We conclude that it is important to include reproduction or other sub-lethal tests for earthworms when estimating the efficiency of restoration techniques.

  9. Effect of chiral differences of metolachlor and its (S)-isomer on their toxicity to earthworms.

    PubMed

    Xu, Dongmei; Wen, Yuezhong; Wang, Kaixiong

    2010-11-01

    The effects of (Rac)-metolachlor and (S)-metolachlor on the avoidance behavior, bodyweight change and in vivo enzyme activity of earthworms (Eisenia foetida) were determined and compared in this study. The effects of (Rac)-metolachlor on the enzyme activities of E. foetida and bodyweight were more significant than those of (S)-metolachlor at the same concentrations. In the short term (2 d, 7 d), (S)-metolachlor had faster effects on cellulase and catalase activities of E. foetida. However, in the relatively long term (14 d, 28 d), (Rac)-metolachlor had higher toxic effects on cellulase and catalase activities. The inter-group difference between (Rac)-metolachlor and (S)-metolachlor on E. foetida enzyme activities was the most significant for catalase, and the least significant for cellulase. The test of avoidance behavior shows that earthworms are more sensitive to the stimulation of (Rac)-metolachlor than to that of (S)-metolachlor. The results will help to develop an understanding of the biologically mediated environmental processes of these two herbicides.

  10. The role of sublethal effects in evaluating earthworm responses to soil contamination

    SciTech Connect

    Wilborn, D.; Bollman, M.; Linder, G.

    1994-12-31

    Frequently, standard test methods rely upon relatively straightforward, easily interpreted endpoints to evaluate biological effects, like growth inhibition, gross morbidity or death. In soil contamination evaluations, for example, earthworm toxicity tests are routinely completed in order to consider adverse biological effects associated with exposures to soil samples in the laboratory or field. Here, the toxicity endpoint measured in the standard test using Eisenia foetida is death; however, if chronic effects are more appropriate to the questions being asked within a risk assessment context, then alternative test endpoints must be developed and standardized. Prior evaluations have relied upon sublethal endpoints, most frequently behavioral and morphological observations, for evaluating chronic effects associated with contaminant exposures. The authors applied these behavioral and morphological endpoints in analyzing potential chronic effects in earthworms exposed to heavy metal-contaminated soils in both the laboratory and field. In using a relatively standard set of these sublethal endpoints the authors found that these endpoints could be used to evaluate chronic effects associated with soil exposures, but that selection of the specific end-points had to be adequately standardized and that observer bias had to be adequately characterized in order for these measures of chronic effects to be unequivocally applied within an ecological risk assessment.

  11. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species.

    PubMed

    Khwairakpam, Meena; Bhargava, Renu

    2009-12-01

    Three different earthworm species Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus in individual (Monocultures) and combinations (Polycultures) were utilized to compare the suitability of worm species for vermicomposting of filter mud as well as the quality of the end product. The filter mud blended with saw dust can be directly converted into good quality fertilizer (vermicompost). Eight different reactors including three monocultures and four polycultures of E. fetida, E. eugeniae and P. excavatus and one control were used for the experiment. Vermicomposting resulted in significant reduction in C/N ratio, pH, total organic matter (TOC) but increase in electrical conductivity (EC), total nitrogen (TN), total phosphorus (TP) and macronutrients (K, Ca and Na). Oxygen uptake rate (OUR) dropped up to 1.64-1.95 mg/g (volatile solids) VS/day for monoculture reactors and 1.45-1.78 mg/g VS/day for polycultures reactors, respectively, after 45 days of vermicomposting. Cocoon production and the earthworm biomass increased as vermicomposting progressed. On an overall the mono as well as polyculture reactors produced high quality stable compost free from pathogens and no specific differentiation could be inferred between the reactors.

  12. Legacy of earthworms' engineering effects enlarges the actual effects of earthworms on plants

    NASA Astrophysics Data System (ADS)

    Mudrák, Obdřej; Frouz, Jan

    2015-04-01

    Earthworms were recognized as key factor responsible for changes from early to late successional plant communities. They incorporate organic matter into the soil and creates there persistent structures, which improves conditions for plant growth. Earthworm activity might be therefore expected to be more important in early stages of the succession, when earthworm colonization of previously earthworm free soil starts, than in the late stages of the succession, where the soil was previously modified by earthworms. However, earthworms affect plants also via other effects such as increase of nutrient availability. The relative importance of soil structure modification and other earthworm effects on plants is poorly known, despite it is important for both theoretical and applied ecology. To test the effect of earthworms (Lumbricus rubellus and Aporrectodea caliginosa) on plants we performed microcosm laboratory experiment, where earthworms were affecting early successional (Poa compressa, Medicago lupulina, and Daucus carota) and late successional (Arrhenatherum elatius, Lotus corniculatus, and Plantago laceolata) plat species in soil previously unaffected by earthworms and in soil with previous long term effect of earthworms. These soils were taken from the early and late successional monitoring sites of the Sokolov coal mining district with known history. Earthworms increased plant biomass proportionally more in late successional soil. It was mainly because they increased availability of nutrients (nitrate and potassium) and plants get higher advantage out of this in late successional soil. Earthworms increased plant biomass of both early and late successional species, but late successional species suppressed early successional species in competition. This suppression was more intensive in presence of earthworms and in late successional soil. We therefore found multiplicative effect between earthworm soil engineering activity and their other effects, which might be

  13. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  14. Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

    PubMed Central

    Heger, Zbynek; Michalek, Petr; Guran, Roman; Havelkova, Barbora; Kominkova, Marketa; Cernei, Natalia; Richtera, Lukas; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Background The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. Methodology/Principal Findings Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. Conclusions/Significance The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels. PMID:26695684

  15. Effects of soil properties on the uptake of pharmaceuticals into earthworms.

    PubMed

    Carter, Laura J; Ryan, Jim J; Boxall, Alistair B A

    2016-06-01

    Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment.

  16. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test

    PubMed Central

    Yang, Yang; Xiao, Yao; Li, Mei; Ji, Funian; Hu, Changwei; Cui, Yibin

    2017-01-01

    As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2–4×104 cells/well (1–2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants. PMID:28125623

  17. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test.

    PubMed

    Yang, Yang; Xiao, Yao; Li, Mei; Ji, Funian; Hu, Changwei; Cui, Yibin

    2017-01-01

    As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.

  18. Chemical reactivation and aging kinetics of organophosphorus-inhibited cholinesterases from two earthworm species.

    PubMed

    Rodríguez-Castellanos, Laura; Sanchez-Hernandez, Juan C

    2007-09-01

    An in vitro study was conducted to evaluate the ability of pyridine-2-aldoxime methochloride (2-PAM) to recover organophosphorus (OP)-inhibited cholinesterase (ChE) activity of two earthworm species (Eisenia fetida and Lumbricus terrestris). After inhibition of ChE activity by OP pesticides, an alkyl group may be released from the OP-ChE complex. This reaction is termed aging, and the esterase cannot be reactivated either spontaneously or by the action of reactivating agents, such as 2-PAM. We also examined the aging kinetics of OP-inhibited ChE activity to evaluate the suitability of 2-PAM reactivation methodology for field monitoring. A 2-PAM concentration of 5 x 10(-4) M was enough to reactivate the OP-inhibited ChE activity after 60 min of incubation at 25 degrees C. Chemical reactivation kinetics followed an exponential rise to a maximum of 70 to 80% of normal enzyme activity when ChEs were inhibited with methyl paraoxon or dichlorvos and up to 60% for the chlorpyrifos-inhibited ChE of E. fetida. The aging rates (ka) of the inhibited ChEs were strongly affected by the OP type, and these rates decreased for both earthworm species in the following order: Methyl paraoxon (ka = 0.023-0.033/h) > dichlorvos (ka = 0.008-0.009/h) > chlorpyrifos oxon (ka = 0.003-0.006/h). In particular, chlorpyrifos-inhibited ChE activity of L. terrestris aged slowly (median aging time, 190 h), which means that chemical reactivation of esterase activity with 2-PAM seems feasible one week after exposure to OP pesticides. We conclude that reactivation of earthworm ChE activity by treatment with 2-PAM is a complementary and specific methodology for assessing exposure to OP pesticides.

  19. Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability.

    PubMed

    Mirmonsef, Hassan; Hornum, Hanne D; Jensen, John; Holmstrup, Martin

    2017-01-01

    Contaminated soil is a problem throughout the industrialized world, and a significant proportion of these sites are polluted with heavy metals such as copper. Ecological risk assessment of contaminated sites requires ecotoxicological studies with spiked soils as well as in-situ ecological observations. Here, we report laboratory and field assessment of copper toxicity for earthworms at a Danish site (Hygum) exclusively contaminated with an increasing gradient in copper from background to highly toxic levels (>1000mgkg(-1) dry soil). More specifically, we report effects on field populations, body contents of copper, hatching of earthworm cocoons and reproduction of the common species Aporrectodea tuberculata. Abundance of earthworms and cocoons decreased significantly from about 400-150m(-2) along the gradient as the soil copper concentration increased from ca. 50 to ca. 1000mgkg(-1). At lower concentrations, the population was dominated by endogeic species, whereas at high concentrations the population was dominated by epigeic species. At high copper contents the internal concentration of copper was in the range 100-160mgkg(-1) dry tissue. Despite the high internal copper contents, hatchability of field collected cocoons was not impaired in any species. The EC50 reproduction value of A. tuberculata was about 220mg copper kg(-1) dry soil in the first two exposure periods, but nearly doubled in the third period suggesting that an acclimation response had occurred. Also in the laboratory reproduction test, cocoon hatchability was not reduced, but rather slightly stimulated by copper. Based on these results we discuss the possibility that acute exposure in laboratory experiments is more detrimental than exposure in a field situation, perhaps because increased tolerance may be acquired through natural selection and genetic adaptation through increased use of defense mechanisms such as metallothioneins. Further, we discuss that the rather high tissue copper level of

  20. Unexpected earthworm effects on forest understory plants

    PubMed Central

    2013-01-01

    Background Introduced earthworms are widespread in forests of North America creating significant negative impacts on forest understory communities. However, much of the reported evidence for negative earthworm effects comes from field investigations either comparing invaded and non-invaded forests or across invasion fronts. While important, such work is rarely able to capture the true effect of earthworms on individual plant species because most forests in North America simultaneously face multiple stressors which may confound earthworm impacts. We used a mesocosm experiment to isolate effects of the anecic introduced earthworm, Lumbricus terrestris L. on seedlings of 14 native plant species representing different life form groups (perennial herb, graminoid, and tree). Results Earthworm presence did not affect survival, fertility or biomass of any of the seedling plant species tested over a 17-week period. However, L. terrestris presence significantly decreased growth of two sedges (Carex retroflexa Muhl. ex Willd. and Carex radiata (Wahlenb.) Small) by decreasing the number of culms. Conclusions Our mesocosm results with seedlings contrast with field reports indicating extensive and significant negative effects of introduced earthworms on many mature native forbs, and positive effects on sedges. We suggest that earthworm impacts are context- and age-specific and that generalizations about their impacts are potentially misleading without considering and manipulating other associated factors. PMID:24314263

  1. EARTHWORMS AND THEIR IMPACT ON SLUG CONTROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in the anecic earthworm species, Lumbricus terrestris L., have occurred in western Oregon grass fields due to increases in surface residue since the phase-out of open field burning. The use of earthworm toxic chemicals has been reduced through concerns for other important vertebrate and in...

  2. {sup 32}P-postlabeling determination of DNA adducts in the earthworm Lumbricus terrestris exposed to PAH-contaminated soils

    SciTech Connect

    Walsh, P. |; El Adlouni, C.; Mukhopadhyay, M.J.; Nadeau, D.; Poirier, G.G.; Viel, G.

    1995-05-01

    The importance of the search for reliable biomarkers of DNA damage in environmental health assessment is well recognized by the scientific community and regulatory agencies. Among the major biomarkers of DNA damage is the measurement of DNA adducts in target cells or tissues. Up to now, DNA adduct determinations have been directed mostly toward human exposure to toxic substances from the workplace and environment. Moreover, techniques for measuring DNA adducts, and in particular the {sup 32}P-postlabelling technique, presented also the possibility of determining DNA adduct levels in endogenous animal populations exposed to polluted environments as early warning monitors of ecotoxicity. Soil contamination is becoming a major environmental issue. Therefore, numerous contaminated sites must now be remediated to protect human health and to permit new uses of these sites as agricultural, residential, or industrial areas. Fulfillment of this task requires standardized and sensitive bioassays to carry out site evaluations and to establish scientifically defensible soil quality criteria. To that effect, the earthworm appears to be one of the best organisms for use in soil toxicity evaluation. Earthworms are probably the most relevant soil species, representing 60 to 80% of the total animal biomass in soil. Present soil bioassays focus mostly on plant species with end points like seed germination, root elongation, seedling growth and seedling emergence, and on acute toxicity evaluation (re: LC 50) on the earthworm Eisenia fetida. As yet, a standardized soil invertebrate test for teratogenic or mutagenic end points has not been developed. In this paper, we report the feasibility of DNA adduct determination by {sup 32}P-postlabelling in the earthworm Lumbricus terrestris as a way to detect the presence of genotoxic substances in soils. 20 refs., 1 fig., 1 tab.

  3. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    SciTech Connect

    Unuofin, F.O. Mnkeni, P.N.S.

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.

  4. Highly selective biomarkers for pesticides developed in Eisenia fetida using SELDI-TOF MS.

    PubMed

    Park, Doo-San; Jeon, Hwang-Ju; Park, Eun-Sil; Bae, In Kyung; Kim, Yong-Eun; Lee, Sung-Eun

    2015-03-01

    The repeated use of pesticides, and their subsequent residues, has contributed to severe adverse effects on the environment, including risks to human health. Therefore, it is important to assess the quality of the environment to ensure it remains free from pesticide residues. The six pesticides tested in this study showed high mortality on Eisenia fetida with LC50 values ranging from 7.7 to 37.9 g L(-1). The strongest lethal effect resulted from the organochlorine insecticide endosulfan (LC50=7.7 g L(-1)). Following exposure to the carbamate pesticides, acetylcholinesterase activity in E. fetida decreased dramatically in comparison to the control. Carboxylesterase activity was only lowered in E. fetida exposed to propoxur, when compared to the control. The remaining five pesticides had no significant effect on carboxylesterase activity in E. fetida. In order to discover pesticide-specific biomarkers with differentially expressed proteins after exposure to pesticides, protein patterns of pesticide-treated E. fetida were analyzed using SELDI-TOF MS with Q10 ProteinChips. Protein patterns were compared with their intensities at the same mass-to-charge ratios (m/z). All 42 peaks had intensities with associated p-values less than 0.089, and 40 of these peaks had associated p-values of 0.05. Using SELDI-TOF MS technology, selective biomarkers for the six pesticides tested were found in E. fetida; four proteins with 5425, 5697, 9523, and 9868 m/z were consistently observed in the earthworms following exposure to the carbamates.

  5. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content.

    PubMed

    McKelvie, Jennifer R; Whitfield Åslund, Melissa; Celejewski, Magda A; Simpson, André J; Simpson, Myrna J

    2013-04-01

    We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida.

  6. Bioaccumulation and toxic effects of decabromodiphenyl ether in the presence of nanoscale zero-valent iron in an earthworm-soil system.

    PubMed

    Liang, Jun; Xia, Xiaoqian; Zaman, Waqas Qamar; Zhang, Wei; Lin, Kuangfei; Hu, Shuangqing; Lin, Zhifen

    2017-02-01

    In this study, the bioaccumulation and toxic effects of decabromodiphenyl ether (BDE209) (1 and 10 mg kg(-1)) were investigated in the earthworm Eisenia fetida in the presence of different levels of nanoscale zero-valent iron (nZVI) (100, 500, and 1000 mg kg(-1)) in an earthworm-soil system. The results demonstrated that compared to single BDE209 exposure, the addition of high levels of nZVI significantly (P < 0.05) inhibited growth and respiration, while increased the avoidance response of earthworms. The perturbations of antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) and the malondialdehyde (MDA) content clearly revealed that oxidative stress was induced by the two chemicals. The histopathological observations of the body wall of earthworms under a combined exposure of 10 mg kg(-1) BDE209 with 500 or 1000 mg kg(-1) nZVI illustrated the presence of a serious injury in the intestinal tissues after a 28-day exposure. Additionally, a gas chromatography-mass spectrometry analysis revealed that the coexistence of high level of nZVI significantly (P < 0.05) decreased the bioaccumulation of BDE209 in earthworms; BDE208 and BDE206 were the predominant congeners of debrominated metabolites, and 4,6-dibromobenzene-1,2,3,5-tetraol along with benzene-1,2,4,5-tetraol were determined as the two main intermediates. The possible degradation pathways were proposed on the basis of the identified products. This work provides useful information on the biological effects of BDE209 and nZVI.

  7. Chitinophaga eiseniae sp. nov., isolated from vermicompost.

    PubMed

    Yasir, Muhammad; Chung, Eu Jin; Song, Geun Cheol; Bibi, Fehmida; Jeon, Che Ok; Chung, Young Ryun

    2011-10-01

    A Gram-negative, rod-shaped bacterial strain, YC6729(T), was isolated from vermicompost collected at Masan, Korea, and its taxonomic position was investigated by a polyphasic taxonomic approach. Strain YC6729(T) grew optimally at 30 °C and at pH 6.5-8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6729(T) belongs to the genus Chitinophaga in the family Chitinophagaceae. It was related most closely to Chitinophaga terrae KP01(T) (96.4 % 16S rRNA gene sequence similarity), Chitinophaga ginsengisegetis Gsoil 040(T) (96.1 %), Chitinophaga arvensicola IAM 12650(T) (96.1 %) and Chitinophaga pinensis DSM 2588(T) (93.3 %). Strain YC6729(T) contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The fatty acids of strain YC6729(T) were iso-C(15 : 0), C(16 : 1)ω5c, iso-C(17 : 0) 3-OH, C(16 : 0), anteiso-C(18 : 0) and/or C(18 : 2)ω6,9c, iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c, C(14 : 0), iso-C(15 : 0) 3-OH, iso-C(15 : 1) G, C(18 : 1)ω5c, iso-C(15 : 1) I and/or C(13 : 0) 3-OH, C(13 : 0) 2-OH, C(16 : 0) 3-OH and unknown fatty acid ECL 13.565. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain YC6729(T) was 48.9 mol%. The phenotypic, chemotaxonomic and phylogenetic data showed that strain YC6729(T) represents a novel species of the genus Chitinophaga, for which the name Chitinophaga eiseniae sp. nov. is proposed. The type strain is YC6729(T) ( = KACC 13774(T)  = DSM 22224(T)).

  8. Earthworm in the 21st century

    NASA Astrophysics Data System (ADS)

    Friberg, Paul; Lisowski, Stefan; Dricker, Ilya; Hellman, Sidney

    2010-05-01

    Earthworm (Johnson et al., 1995) is a fully open-source earthquake data acquisition and processing package that is in widespread use through out the world. Earthworm includes basic seismic data acquistion for the majority of the dataloggers currently available and provides network transport mechanisms and common formats as output for data transferral. In addition, it comes with network seismology tools to compute network detections, perform automated arrival picking, and automated hypocentral and magnitude estimations. More importantly it is an open and free framework in the C-programming language that can be used to create new modules that process waveform and earthquake data in near real time. The number of Earthworm installations is growing annually as are the number of contributions to the system. Furthermore its growth into other areas of waveform data acquistion (namely Geomagnetic observatories and Infrasound arrays) show its adaptability to other waveform technologies and processing strategies. In this presentation we discuss the coming challenges to growing Earthworm and new developments in its use; namely the open source add-ons that have become interfaces to Earthworm's core. These add-ons include GlowWorm, MagWorm, Hydra, SWARM, Winston, EarlyBird, Iworm, and most importantly, AQMS (formerly known as CHEETAH). The AQMS, ANSS Quake Monitoring System, is the Earthworm system created in California which has now been installed in the majority of Regional Seismic Networks (RSNs) in the United States. AQMS allows additional real-time and post-processing of Earthworm generated data to be stored and manipulated in a database using numerous database oriented tools. The use of a relational database for persistence provides users with the ability to implement configuration control and research capabilities not available in earlier Earthworm add-ons. By centralizing on AQMS, the RSNs will be able to leverage new developments by easily sharing Earthworm and AQMS

  9. Accumulation of chlorinated benzenes in earthworms

    USGS Publications Warehouse

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p < 0.05), the decrease was minor. Hexachlorobenzene in earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p < 0.05). Concentrations of both trichlorobenzene and hexachlorobenzene in earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  10. Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter, the Heritable Symbiotic Bacteria of Earthworms

    PubMed Central

    Kjeldsen, Kasper U.; Bataillon, Thomas; Pinel, Nicolás; De Mita, Stéphane; Lund, Marie B.; Panitz, Frank; Bendixen, Christian; Stahl, David A.; Schramm, Andreas

    2012-01-01

    While genomic erosion is common among intracellular symbionts, patterns of genome evolution in heritable extracellular endosymbionts remain elusive. We study vertically transmitted extracellular endosymbionts (Verminephrobacter, Betaproteobacteria) that form a beneficial, species-specific, and evolutionarily old (60–130 Myr) association with earthworms. We assembled a draft genome of Verminephrobacter aporrectodeae and compared it with the genomes of Verminephrobacter eiseniae and two nonsymbiotic close relatives (Acidovorax). Similar to V. eiseniae, the V. aporrectodeae genome was not markedly reduced in size and showed no A–T bias. We characterized the strength of purifying selection (ω = dN/dS) and codon usage bias in 876 orthologous genes. Symbiont genomes exhibited strong purifying selection (ω = 0.09 ± 0.07), although transition to symbiosis entailed relaxation of purifying selection as evidenced by 50% higher ω values and less codon usage bias in symbiont compared with reference genomes. Relaxation was not evenly distributed among functional gene categories but was overrepresented in genes involved in signal transduction and cell envelope biogenesis. The same gene categories also harbored instances of positive selection in the Verminephrobacter clade. In total, positive selection was detected in 89 genes, including also genes involved in DNA metabolism, tRNA modification, and TonB-dependent iron uptake, potentially highlighting functions important in symbiosis. Our results suggest that the transition to symbiosis was accompanied by molecular adaptation, while purifying selection was only moderately relaxed, despite the evolutionary age and stability of the host association. We hypothesize that biparental transmission of symbionts and rare genetic mixing during transmission can prevent genome erosion in heritable symbionts. PMID:22333491

  11. Earthworm survival and behavior results from a Clark Fork River Superfund site: Grant-Kohrs Ranch N.H.S., Montana

    SciTech Connect

    Rader, B.R.; Nimmo, D.R.; Chapman, P.L.

    1995-12-31

    Concentrations of heavy metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the boundaries of the Grant-Kohrs Ranch National Historic Site, have exceeded those typically found in uncontaminated soils. Upstream mining activities along the Clark Fork River in the Deer Lodge Valley, Montana, have produced substantial quantities of mine waste which have been deposited throughout the watershed. Releases and re-releases of these contaminated substances continue to occur, and appear to be preventing the germination and establishment of critical riparian plant species and depressing soil microbe activity. Slickens, bare spots devoid of all vegetation, occur frequently in the floodplain along the Clark Fork River. This research investigates the toxicity of slicken soils using a series of earthworm (Eisenia foetida andrei) survival and behavior tests. In dilution tests, earthworm survival was reduced significantly in as little as 12.5% slicken soil. Results from earthworm behavior tests currently being conducted using non-lethal slicken soil dilutions will also be presented.

  12. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  13. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  14. Effects of Earthworms on the Dispersal of Steinernema spp.

    PubMed Central

    Shapiro, D. I.; Tylka, G. L.; Berry, E. C.; Lewis, L. C.

    1995-01-01

    Previous studies indicated that dispersal of S. carpocapsae may be enhanced in soil with earthworms. The objective of this research was to determine and compare the effects of earthworms on dispersal of other Steinernema spp. Vertical dispersal of Steinernema carpocapsae, S. feltiae, and S. glaseri was tested in soil columns in the presence and absence of earthworms (Lumbricus terrestris). Dispersal was evaluated by a bioassay and by direct extraction of nematodes from soil. Upward dispersal of S. carpocapsae and S. feltiae increased in the presence of earthworms, whereas upward dispersal of S. glaseri was not affected by earthworms. No significant differences were detected in downward dispersal of S. carpocapsae and S. feltiae in soil with earthworms compared to soil without earthworms. Downward dispersal of S. glaseri, however, was greater in soil without earthworms relative to soil with earthworms. In soil void of earthworms, dispersal of S. glaseri was greatest followed by dispersal of S. carpocapsae. The presence of earthworm burrows in soil did not influence nematode dispersal. Nematodes were recovered from the surface, interior, and casts of earthworms. Therefore, nematodes may have a phoretic association with earthworms. PMID:19277257

  15. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  16. Do epigeal termite mounds increase the diversity of plant habitats in a tropical rain forest in peninsular Malaysia?

    PubMed

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation.

  17. Mode of action of Cr(VI) in immunocytes of earthworms: Implications for animal health.

    PubMed

    Sforzini, Susanna; Moore, Michael N; Mou, Zhuofan; Boeri, Marta; Banni, Mohamed; Viarengo, Aldo

    2017-04-01

    Chromium (Cr) is one of the major and most detrimental pollutant, widely present in the environment as a result of several anthropogenic activities. In mammalian cells, Cr(VI) is known to enhance reactive oxygen species (ROS) production and to cause toxic and genotoxic effects. Less commonly investigated are the effects and mode of action of this contaminant in invertebrates, particularly in soil organisms. In this work, earthworms of the species Eisenia andrei were exposed for 1 and 3 days to various sublethal concentrations of Cr(VI) (2, 15, 30µgmL(-1)) using the paper contact toxicity test. In amoeboid leukocytes we investigated intracellular ROS and lipoperoxide production, oxidative DNA damage, and the effects on different cell functions. The analysis of the results shows that Cr(VI) triggered severe adverse reactions; the first events were an increase of intracellular ROS levels, generating in the cells oxidative stress conditions leading to membrane lipid peroxidation and oxidative DNA damage. Lysosomes showed relevant changes such as a strong membrane destabilization, which was accompanied by an increased catabolism of cytoplasmic proteins and accumulation of lipofuscin. With an increase in the dose and/or time of exposure, the physiological status of intracellular organelles (such as lysosomes, nucleus and mitochondria) showed further impairment and amoebocyte immune functions were adversely affected, as shown by the decrease of the phagocytic activity. By mapping the responses of the different parameters evaluated, diagnostic of (oxidative) stress events, against lysosomal membrane stability, a "health status" indicator (able to describe the stress syndrome from its early phase to pathology), we have shown that this biomarker is suitable as a prognostic test for health of earthworms. This is viewed as a crucial step toward the derivation of explanatory frameworks for prediction of pollutant impact on animal health.

  18. Tracking earthworm communities from soil DNA.

    PubMed

    Bienert, Friederike; De Danieli, Sébastien; Miquel, Christian; Coissac, Eric; Poillot, Carole; Brun, Jean-Jacques; Taberlet, Pierre

    2012-04-01

    Earthworms are known for their important role within the functioning of an ecosystem, and their diversity can be used as an indicator of ecosystem health. To date, earthworm diversity has been investigated through conventional extraction methods such as handsorting, soil washing or the application of a mustard solution. Such techniques are time consuming and often difficult to apply. We showed that combining DNA metabarcoding and next-generation sequencing facilitates the identification of earthworm species from soil samples. The first step of our experiments was to create a reference database of mitochondrial DNA (mtDNA) 16S gene for 14 earthworm species found in the French Alps. Using this database, we designed two new primer pairs targeting very short and informative DNA sequences (about 30 and 70 bp) that allow unambiguous species identification. Finally, we analysed extracellular DNA taken from soil samples in two localities (two plots per locality and eight samples per plot). The two short metabarcode regions led to the identification of a total of eight earthworm species. The earthworm communities identified by the DNA-based approach appeared to be well differentiated between the two localities and are consistent with results derived from inventories collected using the handsorting method. The possibility of assessing earthworm communities from hundreds or even thousands of localities through the use of extracellular soil DNA will undoubtedly stimulate further ecological research on these organisms. Using the same DNA extracts, our study also illustrates the potential of environmental DNA as a tool to assess the diversity of other soil-dwelling animal taxa.

  19. Earthworms, Dirt, and Rotten Leaves: An Exploration in Ecology.

    ERIC Educational Resources Information Center

    McLaughlin, Molly

    1994-01-01

    This article provides a model for inviting children to "an exploration in ecology" by observing earthworms. It gives reasons to explore earthworms and guides the investigator through a detailed examination of the worms to answer 21 observation questions. Explores the ways in which earthworms interact with their environment. (LZ)

  20. A Standardized Soil Ecotoxicological Test Using Red Worms (Eisenia fetida).

    ERIC Educational Resources Information Center

    Paradise, Christopher J.

    2001-01-01

    Describes a simple, inexpensive test for soil contamination that can be used in a variety of courses to examine the effects of soil toxicity, to practice standardized laboratory procedures, to study experimental design and data analysis, or to investigate earthworm ecology. Presents background information along with details regarding equipment,…

  1. Ecotoxicological evaluation of foundry sands and cosmetic sludges using new earthworm biomarkers.

    PubMed

    Curieses, Silvana Patricia; Sáenz, María Elena; Larramendy, Marcelo; Di Marzio, Walter

    2016-07-01

    The management and final disposal of industrial wastes are a matter of considerable human concern. The present study evaluates the cyto/genotoxic effects and changes of the coelomic cell formulas exerted by aqueous leachates and solid waste (SW) of two industrial residues using coelomocytes extruded from Eisenia fetida. The assayed wastes corresponded to industrial foundry and cosmetic activities. After 14 days of exposure, we obtained a group of endpoints that reflect the toxicity/genotoxicity, coelomocyte formula and indexes; and the mortality classical value (LC50-14d). Among the variables measured, total coelomocytes formula (eleocytes + amebocytes + granulocytes) appears as a single and easy parameter to assess the toxicity of eluates at short exposure times. We applied a set of assays using earthworms as test organism that would allow evaluating SW as well as its aqueous leachates. It is easy to run trials combining exposures of 1 h to 14 days, which can be integrated into the implementation of the traditional test for evaluating acute toxicity.

  2. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona.

    PubMed

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter; Autrup, Herman; Sutherland, Duncan S; Scott-Fordsmand, Janeck J

    2016-01-01

    Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role.

  3. Interactions between Nematodes and Earthworms: Enhanced Dispersal of Steinernema carpocapsae

    PubMed Central

    Shapiro, D. I.; Berry, E. C.; Lewis, L. C.

    1993-01-01

    Dispersal of the nematode Steinernema carpocapsae (All strain), applied on the top or the bottom of soil columns, was tested in the presence or absence of two earthworm species, Lumbricus terrestris or Aporrectodea trapezoides. Nematode dispersal was estimated after a 2-week period with a bioassay against the greater wax moth, Galleria mellonella. Vertical dispersal of nematodes was increased in the presence of earthworms. When nematodes were placed on the surface of soil columns, significantly more nematodes dispersed to the lower half of the columns when either earthworm species was present than when earthworms were not present. When nematodes were placed on the bottom of soil columns, significantly more nematodes dispersed to the upper half of the columns when L. terrestris was present than when A. trapezoides was present or in the absence of earthworms. Because nematodes were found on the exterior and in the interior of earthworms, nematode dispersal may be enhanced by direct contact with the earthworms. PMID:19279757

  4. Biochemical diversity of betaines in earthworms

    SciTech Connect

    Liebeke, Manuel; Bundy, Jacob G.

    2013-01-25

    Highlights: ► We develop a method for rapid untargetted analysis of betaines. ► We profile betaines in a comparative study of ten earthworm species. ► Earthworms contain a surprisingly high number of different betaine metabolites. ► Earthworms contain betaines normally seen only in plants or marine animals. -- Abstract: The ability to accumulate osmoprotectant compounds, such as betaines, is an important evolutionary feature in many organisms. This is particularly the case for organisms that live in variable environments, which may have fluctuations in moisture and salinity levels. There is, surprisingly, very little known about betaines in soil invertebrates in general, and there is almost no information about earthworms – a group that are important ‘ecosystem engineers’ and key indicators of soil health. Here, we describe a fast and reliable {sup 1}H–{sup 13}C heteronuclear single quantum coherence (HSQC) 2D NMR approach for the metabolic profiling of a series of betaines and related metabolites in tissue extracts, and list {sup 1}H and {sup 13}C chemical shifts for the trimethylammonium signal for 23 such compounds. The analysis of ten different species from three different families (Lumbricidae, Megascolecidae and Glossoscolecidae) showed an unexpected diversity of betaines present in earthworms. In total ten betaines were identified, including hydroxyproline-betaine, proline-betaine, taurine-betaine, GABA-betaine and histidine-betaine, and a further eleven as-yet unassigned putative betaine metabolites detected. The findings clearly indicate a hitherto-unappreciated important role for betaine metabolism in earthworms.

  5. Effects of Different Ratios of Sewage Sludge and Cattle Manure on Growth and Propagation of Eisenia Fetida

    PubMed Central

    Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan

    2016-01-01

    Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0–28, day 29–56, and day 57–91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid—rapidest—slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17–0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way. PMID:27257977

  6. Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

    USGS Publications Warehouse

    Kinney, Chad A.; Campbell, Bryan R.; Thompson, Regina; Furlong, Edward T.; Kolpin, Dana W.; Burkhardt, Mark R.; Zaugg, Steven D.; Werner, Stephen L.; Hay, Anthony G.

    2012-01-01

    Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids–amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids–soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil–biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids–soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤ 19 AWI). The earthworms exposed to the 8-week aged biosolids–soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large

  7. Digestive responses of two omnivorous rodents (Peromyscus maniculatus and P. alstoni) feeding on epigeous fungus (Russula occidentalis).

    PubMed

    D'Alva, T; Lara, C; Estrada-Torres, A; Castillo-Guevara, C

    2007-10-01

    The sporocarps of hypogeous and epigeous fungi are important dietary items for forest dwelling rodents in temperate and tropical forests throughout the world. However, results of some pioneering works have demonstrated that fungi cannot be considered as nutritionally high-quality food items for some mycophagous small rodents. According to these studies, when mycophagous rodents feed on fungus, they showed a minimal digestibility, but whether this applies to most rodent species that include fungi in their diets is unknown. In this study, we experimentally evaluated body mass changes and feed preferences in captive deer (Peromyscus maniculatus) and volcano (P. alstoni) mice when fed on epigeous fungus (Russula occidentalis). In experiment 1, the animals were fed with fungus as the only feedstuff in comparison to regular rodent chow and oat. In experiment 2, the animals were fed with fungus in a free-choice arrangement together with equal amounts of rodent chow and oat. Both species lost approximately 15% of their body mass within 4 days when fed on fungus alone, but gained 5-10% body mass during the same time period when ingesting oat and rodent chow, respectively, as the only feedstuff. However, in contrast, in the free-choice arrangement with all three feedstuffs, both species gained 20-30% body mass, and showed the highest feed preference for fungus followed by oat and rodent chow. In addition, apparent digestibility of energy and nitrogen were analyzed in both rodent species, which were 50-60% for fungus, whereas approximately 90-94% for rodent chow and oat. According to our results, animals need to supplement their diets with alternative high-quality food items in order to maintain and increase their body mass, suggesting that epigeous fungi are only of moderate nutritional value for small rodents. Futures studies should focus on exploring the importance of a mixture of fungal species in the diet of small mycophagous rodents.

  8. epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data.

    PubMed

    Vincent, Martin; Mundbjerg, Kamilla; Skou Pedersen, Jakob; Liang, Gangning; Jones, Peter A; Ørntoft, Torben Falck; Dalsgaard Sørensen, Karina; Wiuf, Carsten

    2017-02-21

    The study of epigenetic heterogeneity at the level of individual cells and in whole populations is the key to understanding cellular differentiation, organismal development, and the evolution of cancer. We develop a statistical method, epiG, to infer and differentiate between different epi-allelic haplotypes, annotated with CpG methylation status and DNA polymorphisms, from whole-genome bisulfite sequencing data, and nucleosome occupancy from NOMe-seq data. We demonstrate the capabilities of the method by inferring allele-specific methylation and nucleosome occupancy in cell lines, and colon and tumor samples, and by benchmarking the method against independent experimental data.

  9. Towards an integrative soil health assessment strategy: a three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution.

    PubMed

    Asensio, Vega; Rodríguez-Ruiz, Amaia; Garmendia, Larraitz; Andre, Jane; Kille, Peter; Morgan, Andrew John; Soto, Manu; Marigómez, Ionan

    2013-01-01

    This is a pilot study for assessing soil ecosystem health in chronically polluted sites on the basis of a 3-tier approach (screening+scoring+understanding) designed to be cost-effective and scientifically based, and to provide straightforward advice and support to managers and stakeholders involved in environmental protection. For the initial screening (Tier 1), the use of a highly sensitive, low-cost biomarker such as neutral red uptake (NRU) in earthworm coelomocytes is proposed. In sites where an alteration in NRU has been established, the stress level may be further assessed by utilising a suite of low-cost and rapid biomarkers of effect integrated in an integrative biological response (IBR) index to obtain an objective (scored) assessment of the induced stress syndrome (Tier 2). The IBR/n index is based on the integration of biomarkers at different levels of biological organisation. Acyl-CoA oxidase activity (AOX), catalase activity (CAT), lipofuscin optical density (LOD%), NRU and the mean epithelial thickness (MET) have been used to calculate the IBR/n index. Biomarkers are determined in earthworms, Eisenia fetida, exposed ex situ to real soils (three mining sites and a reference) for 3, 10 and 17d. The 3d NRU (Tier 1) provided signal of stress. After 3d, PCA, based on the suite of biomarkers (Tier 2), discriminated reference and polluted sites according to toxicity profiles and at 17d, the most polluted site is segregated from less polluted and reference sites. Soils were classified as harmful, unhealthy (not apparently toxic) or healthy. Soils were investigated by microarray transcriptomics (Tier 3), to understand the causes (aetiology) and consequences (prognosis) of health impairment. Tier 3 discriminates, according to stress syndrome traits, soils that did not fall into the category of highly stressed and revealed the main agent causing toxicity at each site by identifying the toxicity mechanisms and biological responses.

  10. Potential of Effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture.

    PubMed

    Mupambwa, Hupenyu Allan; Ravindran, Balasubramani; Mnkeni, Pearson Nyari Stephano

    2016-02-01

    The interactions between earthworms and microorganisms activity has prompted several researchers to evaluate the potential of artificially inoculating vermicomposts with additional specific microbes, with the intention of enhancing the vermicomposting process. This study evaluated the potential of inoculating fly ash (F)-cow dung-paper waste (CP) mixture (F-CP) with a specialized microbial cocktail called Effective micro-organisms (EM) during vermicomposting using Eisenia fetida earthworms. Inoculation with EM alone did not result in significantly (P>0.05) different changes in C/N ratio and dissolved organic matter (DOC) compared to the control with no EM and E. fetida. A significant interaction between EM and E. fetida presence resulted in greater changes in C/N ratio and DOC, which were not statistically different from the E. fetida alone treatment. It was also noteworthy that the activity of ß-Glucosidase was not influenced by the presence of EM, but was significantly influenced (P=0.0014) by the presence of E. fetida. However, the EM+E. fetida treatment resulted in a rate of weekly Olsen P release of 54.32mgkg(-1) which was 12.3%, 89.2% and 228.0% more that the E. fetida alone, EM alone and control treatments, respectively. Similarly, though higher in the E. fetida plus EM treatment, the phosphate solubilizing bacteria counts were not significantly different (P>0.05) from the E. fetida alone treatment. It is concluded that inoculation of F-CP composts with EM alone may not be beneficial, while combining EM with E. fetida results in faster compost maturity and significantly greater Olsen P release. It would be interesting to evaluate higher optimized rates of EM inoculation and fortifying EM cocktails with phosphate solubilizing bacteria (PSB) on F-CP vermicompost degradation and phosphorus mineralization.

  11. Persistence of Triclocarban and Triclosan in Soils after Land Application of Biosolids and Bioaccumulation in Eisenia foetida

    PubMed Central

    Higgins, Christopher P.; Paesani, Zachary J.; Chalew, Talia E. Abbot; Halden, Rolf U.; Hundal, Lakhwinder S.

    2010-01-01

    The presence of antimicrobial chemicals triclocarban (TCC) and triclosan (TCS) in municipal biosolids has raised concerns about the potential impacts of these chemicals on soil ecosystems following land application of municipal biosolids. The relative persistence of TCC and TCS in agricultural fields receiving yearly applications of biosolids at six different loading rates over a three-year period was investigated. Soil and biosolids samples were collected, extracted, and analyzed for TCC and TCS using liquid chromatography tandem mass spectrometry. In addition, the potential for bioaccumulation of TCC and TCS from the biosolids-amended soils was assessed over 28 d in the earthworm Eisenia foetida. Standard 28-d bioaccumulation tests were conducted for three biosolids loading rates from two sites, representing agronomic and twice the agronomic rates of biosolids application plots as well as control plots receiving no applications of biosolids. Additional bioaccumulation kinetics data were collected for the soils receiving the high biosolids loadings to ensure attainment of quasi-steady state conditions. The results indicate that TCC is relatively more persistent in biosolids-amended soil than TCS. In addition, TCC bioaccumulated in E. foetida, reaching body burdens of 25 ± 4 and 133 ± 17 ng/gww in worms exposed for 28 d to the two soils amended with biosolids at agronomic rates. The 28-d organic carbon and lipid-normalized biota soil accumulation factors (BSAFs) were calculated for TCC and ranged from 0.22 ± 0.12 to 0.71 ± 0.13. These findings suggest that TCC bioaccumulation is somewhat consistent with the traditional hydrophobic organic contaminant (HOC) partitioning paradigm. However, these data also suggest substantially reduced bioavailability of TCC in biosolids-amended soils when compared to HOC partitioning theory. PMID:21128266

  12. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  13. Easy Extraction of Roundworms from Earthworm Hosts.

    ERIC Educational Resources Information Center

    Eyster, Linda S.; Fried, Bernard

    2000-01-01

    Describes the inexpensive and safe method of using roundworms in the classroom or laboratories. Because parasitic infections are so common, students should learn about worms. Provides statistics on just how many people have a worm infection in the world. Explains how to study living nematodes, and obtain and use earthworms. (Contains 13…

  14. Earthworms, pesticides and sustainable agriculture: a review.

    PubMed

    Datta, Shivika; Singh, Joginder; Singh, Sharanpreet; Singh, Jaswinder

    2016-05-01

    The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.

  15. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  16. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction

    PubMed Central

    Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael

    2013-01-01

    Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance (‘activity-density’) because individual activity – which is affected by climatic factors – affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data. Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r, consistent with an exponential Q10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies. The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications. The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for

  17. Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests.

    PubMed

    Kranabetter, J M; Friesen, J; Gamiet, S; Kroeger, P

    2009-10-01

    Soil fertility and associated nitrogen (N) status was a key ecosystem attribute, and surveys of ectomycorrhizal fungal (EMF) communities via epigeous fruiting bodies could provide an effective biotic indicator of forest soil productivity. We explored the utility of aboveground EMF communities in this regard by surveying sporocarps over a 3-year period from contrasting plant associations of southern old-growth boreal forests of British Columbia (Canada). Cumulative richness ranged from 39 to 89 EMF species per plot (0.15 ha) and followed a skewed parabolic correlation with foliar N concentrations and soil N availability. EMF species composition was consistently distinct in ordinations and strongly correlated to the increasing rates of N mineralization aligned with soil productivity. Approximately 40 EMF species were specialists, as they collectively indicated oligotrophic, mesotrophic, and eutrophic nutrient regimes, while the remaining species were categorized as broadly tolerant (distributed over 100% of the N gradient), partially intolerant (approximately 70%), or satellites (rare). The functional organization of EMF communities reflected by distribution classes could help define the ecological integrity of forests, which was characterized in this boreal landscape by an average allotment of 20 broadly tolerant, 25 partially intolerant, 15 specialist, and ten satellite species per plot. Epigeous fruiting bodies provided a disparate yet complementary view to the belowground assessment of EMF communities that was valuable in identifying indicators for ecosystem monitoring.

  18. Polyethylene Glycol Camouflaged Earthworm Hemoglobin

    PubMed Central

    Moges, Selamawit; Nacharaju, Parimala; Roche, Camille; Dantsker, David; Palmer, Andre; Friedman, Joel M.

    2017-01-01

    Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals’ systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the

  19. [Ecotoxicological effects of chlorotetracycline on earthworm in soil].

    PubMed

    Ji, Zhan-Hua; An, Jing; Xiao, Ming-Yue; Wei, Shu-He; Tai, Pei-Dong; Lu, Ze

    2014-10-01

    Eiseniafoetida was selected to investigate the ecotoxicological effects of chlorotetracycline on the earthworm in soil. The results showed that 1, 10 and 100 mg · kg(-1) chlorotetracycline had no significant effects on earthworm's body mass after a 7-d exposure, but it was significantly inhibited by 10, 100 mg · kg(-1) chlorotetracycline after 21 days. The soluble protein content of earthworm was induced by 1, 10 and 100 mg · kg(-1) chlorotetracycline, and showed a positive response as the con- centration increased. Also, the earthworm treated by 1, 10 and 100 mg · kg(-1) chlorotetracycline induced the increases of SOD, POD and CAT activities to different degrees. The gene expression in earthworm changed significantly after a 28-d exposure. It is suggested that chlorotetracycline had a chronic ecotoxicological effect on earthworm, and the body mass, soluble protein, antioxidant en- zyme and gene expression could be used as the biomarkers to estimate chlorotetracycline toxicity.

  20. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system.

    PubMed

    Suthar, Surindra; Pandey, Bhawna; Gusain, Rita; Gaur, Rubia Zahid; Kumar, Kapil

    2017-01-01

    This paper reports the results of vermicomposting of water lettuce biomass (WL) spiked with cow dung at ratios of 20, 40, 60, and 80 % employing Eisenia fetida. A total of four treatments were established and changes in chemical properties of mixtures were observed. Vermicomposting caused a decrease in pH, TOC, volatile solids, and C/N ratio by 1.01-1.08-fold, 0.85-0.92-fold, 0.94-0.96-fold, 0.56-0.70-fold, respectively, but increase in EC, totN, totP, totK, totCa, totZn, totFe, and totCu, by 1.19-1.42-fold, 1.33-1.68-fold, 1.38-1.69-fold, 1.13-1.24-fold, 1.04-1.11-fold, 1.16-1.37-fold, 1.05-1.113-fold, 1.10-1.27-fold, respectively. Overall, the treatment with 60-80 % of WL showed the maximum decomposition and mineralization rates. The earthworm showed the growth and reproduction rate in considerable ranges in all treatment setups but setups with 60-80 % WL proportion exhibited the optimum results. Results reveal that biomass of water lettuce can be utilized effectively for production of valuable manure through vermicomposting system.

  1. Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions.

    PubMed

    Gomez-Eyles, Jose L; Jonker, Michiel T O; Hodson, Mark E; Collins, Chris D

    2012-01-17

    A number of extraction methods have been developed to assess polycyclic aromatic hydrocarbon (PAH) bioavailability in soils. As these methods are rarely tested in a comparative manner, against different test organisms, and using field-contaminated soils, it is unclear which method gives the most accurate measure of the actual soil ecosystem exposure. In this study, PAH bioavailability was assessed in ten field-contaminated soils by using exhaustive acetone/hexane extractions, mild solvent (butanol) extractions, cyclodextrin extractions, and two passive sampling methods; solid phase micro extraction (SPME) and polyoxymethylene solid phase extraction (POM-SPE). Results were compared to actual PAH bioaccumulation in earthworms (Eisenia fetida) and rye grass (Lolium multiflorum) roots. Exhaustive, mild solvent and cyclodextrin extractions consistently overpredicted biotic concentrations by a factor of 10-10 000 and therefore seem inappropriate for predicting PAH bioaccumulation in field contaminated soils. In contrast, passive samplers generally predicted PAH concentrations in earthworms within a factor of 10, although correlations between predicted and measured concentrations were considerably scattered. The same applied to the plant data, where passive samplers also tended to underpredict root concentrations. These results indicate the potential of passive samplers to predict PAH bioaccumulation, yet call for comparative studies between passive samplers and further research on plant bioavailability.

  2. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  3. Checklist of earthworms (Oligochaeta: Lumbricidae) from Germany.

    PubMed

    Lehmitz, Ricarda; Römbke, Jörg; Jänsch, Stephan; Krück, Stefanie; Beylich, Anneke; Graefe, Ulfert

    2014-09-23

    A checklist of the German earthworm fauna (Oligochaeta: Lumbricidae) is presented, including published data, data from reports, diploma- and PhD- theses as well as unpublished data from museum collections, research institutions and private persons. Overall, 16,000 datasets were analyzed to produce the first German checklist of Lumbricidae. The checklist comprises 46 earthworm species from 15 genera and provides ecological information, zoogeographical distribution type and information on the species distribution in Germany. Only one species, Lumbricus badensis Michaelsen, 1907, is endemic to Germany, whereas 41% are peregrine. As there are 14 species occurring exclusively in the southern or eastern part of Germany, the species numbers in German regions increase from north to south.

  4. Avoidance tests in site-specific risk assessment--influence of soil properties on the avoidance response of Collembola and earthworms.

    PubMed

    Natal-da-Luz, Tiago; Römbke, Jörg; Sousa, José Paulo

    2008-05-01

    The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties.

  5. Removal of mercury from soil with earthworms

    SciTech Connect

    Dorfman, D.

    1994-12-31

    Earthworms can live in soils containing high quantities of mercury, lead, and zinc. The worms (Lumbricus terrestris) concentrate these heavy metals in their tissues. The use of these worms to reduce the quantities of mercury and other heavy metals in soils may be practical. In July, 1993, a preliminary study was made using earthworms and soils with differing amounts of mercury, The quantities were 0.0 grams, 0.5 grams, and 1.0 grams of mercury as mercuric chloride. Earthworms were placed into these soils for two or more weeks, then harvested. The worms were rinsed with deionized water, then dissolved in nitric acid. Each sample was prepared for analysis with the addition of HNO{sub 3}, H{sub 2}SO{sub 4}, potassium permanganate, and hydrozylamine hydrochloride. A Jerome Instrument gold foil analyzer was used to determine levels of mercury after volatilizing the sample with stannous chloride. Worms exposed to contaminated soils remove 50 to 1,400 times as much mercury as do worms in control soils. In a hypothetical case, a site contaminated with one pound of mercury, 1,000 to 45,000 worms would be required to reduce mercury levels to background levels in the soil (about 250 ppb). After harvesting worms in contaminated soil they could be dried (90% of their weight is water), and the mercury regained by chemical processes. Soil conducive to earthworm survival is required. This includes a well aerated loamy soil, proper pH (7.0), and periodic watering and feeding. There are several methods of harvesting worms, including flooding and electricity. Large numbers of worms can be obtained from commercial growers.

  6. Effects of historic metal(loid) pollution on earthworm communities.

    PubMed

    Lévêque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mombo, Stéphane; Mazzia, Christophe; Foucault, Yann; Dumat, Camille

    2015-04-01

    The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).

  7. Determination of arsenic compounds in earthworms

    SciTech Connect

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W.; Francesconi, K.

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  8. Earthworm Effects without Earthworms: Inoculation of Raw Organic Matter with Worm-Worked Substrates Alters Microbial Community Functioning

    PubMed Central

    Aira, Manuel; Domínguez, Jorge

    2011-01-01

    Background Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects). Methodology/Principal Findings To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered. Conclusion/Significance Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity. PMID:21298016

  9. The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders.

    PubMed

    Mazzia, Christophe; Pasquet, Alain; Caro, Gaël; Thénard, Jodie; Cornic, Jean-François; Hedde, Mickaël; Capowiez, Yvan

    2015-04-01

    Apple orchards are agro-ecosystems managed with high levels of inputs and especially pesticides. Epigeal spider communities were sampled in three seasons using pitfall traps in 19 apple orchards with four different management strategies (abandoned, under organic, Integrated Pest Management or conventional protection) and thus significantly different pesticide usage. The abundance and diversity of the spider communities was the highest in abandoned orchards. Higher diversity and evenness values were the only difference in spider communities from the organic orchards compared to the other commercial orchards. The analysis of five ecological traits (proportion of aeronauts, type of diet, overwintering stages, body size and maternal care), however, clearly showed differences in the spiders from the organic orchards. The spider species in the other commercial orchards were smaller and have higher dispersal abilities. Seven bioindicator species were identified in abandoned orchards, two species in organic ones (only Lycosidae) and one species in conventional orchards (Linyphiidae).

  10. Earthworm effects on movement of water and solutes in soil

    SciTech Connect

    Trojan, M.D.

    1993-01-01

    The objectives of this study were to determine and model the effects of earthworms on water and solute movement in soil. Microrelief and rainfall effects on water and solute movement were determined in packed buckets inoculated with earthworms (Aporrectodea tuberculata). A solution of Br[sup [minus

  11. Effects of metals on earthworm life cycles: a review.

    PubMed

    Sivakumar, S

    2015-08-01

    Earthworms are abundant and ecologically very important organisms in the soil ecosystem. Impacts by pollutants on earthworm communities greatly influence the fertility of the terrestrial environment. In ecotoxicology, earthworms are good indicators of metal pollution. The observed median lethal concentrations (LC50) and the effective concentrations that cause 50% reduction of earthworm growth and reproduction (EC50) are referred to as toxicity concentrations or endpoints. In addition, the 'no observed effective concentration' (NOEC) is the estimation of the toxicity of metals on earthworms expressed as the highest concentration tested that does not show effects on growth and reproduction compared to controls. This article reviews the ecotoxicological parameters of LC50, EC50 and NOEC of a set of worms exposed to a number of metals in various tested media. In addition, this article reviews metal accumulation and the influences of soil characteristics on metal accumulation in earthworms. Morphological and behavioural responses are often used in earthworm toxicity studies. Therefore, earthworm responses due to metal toxicity are also discussed in this article.

  12. Effects of a constructed Technosol on mortality, survival and reproduction of earthworms

    NASA Astrophysics Data System (ADS)

    Pey, Benjamin; Cortet, Jerome; Capowiez, Yvan; Mignot, Lenaic; Nahmani, Johanne; Watteau, Francoise; Schwartz, Christophe

    2010-05-01

    Soils, whose properties and pedogenesis are dominated by artificial materials or transported materials, are classified as Technosols. Some of these Technosols are used in soil engineering, which is the voluntary action to combine technical materials in a given objective to restore an ecosystem. Primary by products that are used to build these Technosols need to be assessed on an ecotoxicological point of view. The following study aims to assess the effects of a constructed Technosol made from different primary by-products on the mortality, survival and reproductions of two earthworm species. The model of Technosol used here is a combination of green-waste compost (GWC) and papermill sludge (PS) mixed with thermally treated industrial soil (TIS). OECD soil is used as a control soil. Three different experiments have been managed: i) the first, to assess the potential toxicity effect on Eisenia foetida biomass (28 days) and reproduction (56 days), ii) the second to assess the short-term effect (7 days) on Lumbricus terrestris biomass, iii) and the third to assess the medium-term effect (30 days) on L. terrestris biomass. Reproduction of E. foetida is enhanced with high proportions of GWC. For biomass, GWC seems to improve body mass contrary to other materials which lead to losses of body mass. Thus, for E. foetida, GWC seems to be a high-quality and long-term source of food. Body mass of L. terrestris decreased with GWC and OECD. At short-term only, TIS/PS leads to a gain of body mass. Only equilibrium of 25% GWC - 75% TIS/PS allows a gain of body mass at medium term. TIS/PS appears to be a low-quality and short-term food resource but an excellent water tank. It can be concluded that the constructed Technosol is not toxic for fauna but some differences appear between different tested material combinations, depending on nature, proportion and trophic properties of materials.

  13. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms.

    PubMed

    Slizovskiy, Ilya B; Kelsey, Jason W; Hatzinger, Paul B

    2011-01-01

    The effectiveness of surfactant formulations to remove aged metals from a field soil and their influence on soil toxicity was investigated. Batch studies were conducted to evaluate the efficacy of cationic (1-dodecylpyridinium chloride; DPC), nonionic (oleyl dimethyl benzyl ammonium chloride; trade name Ammonyx KP), and anionic (rhamnolipid biosurfactant blend; trade name JBR-425) surfactants for extracting Zn, Cu, Pb, and Cd from a soil subjected to more than 80 years of metal deposition. All three surfactants enhanced removal of the target metals. The anionic biosurfactant JBR-425 was most effective, reducing Zn, Cu, Pb, and Cd in the soil by 39, 56, 68, and 43%, respectively, compared with less than 6% removal by water alone. Progressive acidification of the surfactants with citric acid buffer or addition of ethylenediaminetetra-acetic acid (EDTA) further improved extraction efficiency, with more than 95% extraction of all four metals by surfactants acidified to pH 3.6 and generally greater than 90% removal of all metals with addition of 0.1 M EDTA. In two species of earthworm, Eisenia fetida and Lumbricus terrestris, metal bioaccumulation was reduced by approximately 30 to 80%, total biomass was enhanced by approximately threefold to sixfold, and survival was increased to greater than 75% in surfactant-remediated soil compared with untreated soil. The data indicate that surfactant washing may be a feasible approach to treat surface soils contaminated with a variety of metals, even if those metals have been present for nearly a century, and that the toxicity and potential for metal accumulation in biota from the treated soils may be significantly reduced.

  14. Ecotoxicological effects of a veterinary food additive, copper sulphate, on antioxidant enzymes and mRNA expression in earthworms.

    PubMed

    Xiong, Wenguang; Ding, Xueyao; Zhang, Yiming; Sun, Yongxue

    2014-01-01

    The present study was aimed to investigate the effect of the veterinary food additive copper sulphate (CuSO₄) on the eco-toxicological responses of earthworms Eisenia fetida (E. fetida). The following biomarkers were measured: catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities. Gene expression analyses such as metallothionein (MT) and heat shock protein 70 (Hsp70) were also examined. A time-dependent increase of CAT activity was found at 400 mg/kg and SOD activity at 200 and 400 mg/kg. The highest expression of Hsp70 (4.4-fold) was observed at day 15 at 400 mg/kg. Our results indicated that the measured antioxidant enzymes (except GST) had the ability to provide antioxidant defenses against the stressor; and compared to expression of MT, expression of Hsp70 could be more reliable molecular tools with predictive possibilities to monitor the eco-toxicity of stressors such as feed additive CuSO₄.

  15. [Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworm in soils].

    PubMed

    Wang, Hui; Xie, Xin-Yuan

    2014-07-01

    Recently, soil heavy metal contamination becomes more and more serious in certain areas in China. Adverse effect caused by heavy metals in contaminated soils has been a wide concern for many years. In this study, a bioassay experiment with the earthworm (Eisenia foetida) was conducted to investigate the effects of compound application of Cd, Cu and Pb in soil on surperoxide dismutase (SOD), glutathione S-transferase (GST) and acid phosphatase (AP) activity in earthworms. Through a method of greenhouse soil experiment, this study utilized a uniform design method of three factors and six levels (Cd: 0-15 mg x kg(-1), Cu: 0-175 mg x kg(-1), Pb: 0-600 mg x kg(-1)) to research the physiological property and enrichment characteristics of earthworm in soils with Cd, Cu and Pb compound pollution. The activity of SOD, GST and AP were inhibited significantly under Cd, Cu and Pb compound pollution. And they were impacted by both time and heavy metal contents in the soil. Compared with the control sample, the activity of SOD increased by 7.4% -240.5% in the first eight days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 19.4% -69.7%. Compared with the control sample, the activity of GST increased by 104.3% -217.3% in the first sixteen days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 1.2% - 40.3%. The activity of AP changed over time in a trend of "increase, decrease, increase, decrease". Compared with the control sample, the activity of AP decreased by 9.2% -37.8% in the first eight days, then increased by 37.2% -117.2% in sixteenth days and decreased by 24.3% -34.0% to the last day. The analysis demonstrates that Pb and Cd-Cu-Pb is the dominant factor to the activity of SOD, while Cd and Cu were the dominant factors to the activity of GST and AP.

  16. Earthworms increase plant production: a meta-analysis

    PubMed Central

    van Groenigen, Jan Willem; Lubbers, Ingrid M.; Vos, Hannah M. J.; Brown, George G.; De Deyn, Gerlinde B.; van Groenigen, Kees Jan

    2014-01-01

    To meet the challenge of feeding a growing world population with minimal environmental impact, we need comprehensive and quantitative knowledge of ecological factors affecting crop production. Earthworms are among the most important soil dwelling invertebrates. Their activity affects both biotic and abiotic soil properties, in turn affecting plant growth. Yet, studies on the effect of earthworm presence on crop yields have not been quantitatively synthesized. Here we show, using meta-analysis, that on average earthworm presence in agroecosystems leads to a 25% increase in crop yield and a 23% increase in aboveground biomass. The magnitude of these effects depends on presence of crop residue, earthworm density and type and rate of fertilization. The positive effects of earthworms become larger when more residue is returned to the soil, but disappear when soil nitrogen availability is high. This suggests that earthworms stimulate plant growth predominantly through releasing nitrogen locked away in residue and soil organic matter. Our results therefore imply that earthworms are of crucial importance to decrease the yield gap of farmers who can't -or won't- use nitrogen fertilizer. PMID:25219785

  17. Earthworms increase plant production: a meta-analysis.

    PubMed

    van Groenigen, Jan Willem; Lubbers, Ingrid M; Vos, Hannah M J; Brown, George G; De Deyn, Gerlinde B; van Groenigen, Kees Jan

    2014-09-15

    To meet the challenge of feeding a growing world population with minimal environmental impact, we need comprehensive and quantitative knowledge of ecological factors affecting crop production. Earthworms are among the most important soil dwelling invertebrates. Their activity affects both biotic and abiotic soil properties, in turn affecting plant growth. Yet, studies on the effect of earthworm presence on crop yields have not been quantitatively synthesized. Here we show, using meta-analysis, that on average earthworm presence in agroecosystems leads to a 25% increase in crop yield and a 23% increase in aboveground biomass. The magnitude of these effects depends on presence of crop residue, earthworm density and type and rate of fertilization. The positive effects of earthworms become larger when more residue is returned to the soil, but disappear when soil nitrogen availability is high. This suggests that earthworms stimulate plant growth predominantly through releasing nitrogen locked away in residue and soil organic matter. Our results therefore imply that earthworms are of crucial importance to decrease the yield gap of farmers who can't -or won't- use nitrogen fertilizer.

  18. The effect of anthropogenic arsenic contamination on the earthworm microbiome.

    PubMed

    Pass, Daniel Antony; Morgan, Andrew John; Read, Daniel S; Field, Dawn; Weightman, Andrew J; Kille, Peter

    2015-06-01

    Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm-associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro-habitat (neutral pH, anoxia and increased carbon substrates). We identified a core earthworm community comprising Proteobacteria (∼50%) and Actinobacteria (∼30%), with lower abundances of Bacteroidetes (∼6%) and Acidobacteria (∼3%). In addition to the known earthworm symbiont (Verminephrobacter sp.), we identified a potential host-associated Gammaproteobacteria species (Serratia sp.) that was absent from soil yet observed in most earthworms. Although a distinct bacterial community defines these earthworms, clear family- and species-level modification were observed along an arsenic and iron contamination gradient. Several taxa observed in uncontaminated control microbiomes are suppressed by metal/metalloid field exposure, including eradication of the hereto ubiquitously associated Verminephrobacter symbiont, which raises implications to its functional role in the earthworm microbiome.

  19. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders

    PubMed Central

    Ziemba, Julie L.

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from “non-invaded” and “pheretimoid invaded” sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance

  20. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    PubMed

    Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian

  1. Changes in hardwood forest understory plant communities in response to European earthworm invasions.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B

    2006-07-01

    European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community.

  2. Nest site selection and nutritional provision through excreta: a form of parental care in a tropical endogeic earthworm.

    PubMed

    Ortiz-Ceballos, Angel I; Pérez-Staples, Diana; Pérez-Rodríguez, Paulino

    2016-01-01

    where offspring biomass increased with internal excreta. Further research is needed on the ecological conditions that favour the evolution of parental care in earthworms according to their ecological category (epigeic, endogeic and anecic).

  3. Nest site selection and nutritional provision through excreta: a form of parental care in a tropical endogeic earthworm

    PubMed Central

    Pérez-Staples, Diana; Pérez-Rodríguez, Paulino

    2016-01-01

    where offspring biomass increased with internal excreta. Further research is needed on the ecological conditions that favour the evolution of parental care in earthworms according to their ecological category (epigeic, endogeic and anecic). PMID:27231655

  4. Earthworms Produce phytochelatins in Response to Arsenic

    PubMed Central

    Lawlor, Alan J.; Bennett, Mark H.; Morris, Ceri A.; Kille, Peter; Svendsen, Claus; Spurgeon, David J.; Bundy, Jacob G.

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations. PMID:24278409

  5. Earthworms produce phytochelatins in response to arsenic.

    PubMed

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  6. Metals and terrestrial earthworms (Annelida: Oligochaeta)

    USGS Publications Warehouse

    Beyer, W.N.

    1981-01-01

    The toxicity of metals to earthworms and the residues of metals found in earthworms are reviewed. Meta 1 concentrations are rarely high enough to be toxic to worms, but copper may reduce populations in orchards heavily treated with fungicides and in soil contaminated with pig wastes. The metals in some industrial sewage sludges may interfere with using sludge in vermiculture. Storage ratios (the concentration of a metal in worms divided by the concentration in soil) tend to be highest in infertile soil and lowest in media rich in organic matter, such as sewage sludge. Cadmium, gold, and selenium are highly concentrated by worms. Lead concentrations in worms may be very high, but are generally lower than concentrations in soil. Body burdens of both copper and zinc seem to be regulated by worms. Because worms are part of the food webs of many wildlife species, and also because they are potentially valuable feed supplements for domestic animals, the possible toxic effects of cadmium and other metals should be studied. Worms can make metals more available to food webs and can redistribute them in soil.

  7. Epigeal fauna of a degraded soil treated with mineral fertilizer and compound cellulose cultivated of tree species

    NASA Astrophysics Data System (ADS)

    Giácomo, R. G.; de Arruda, O. G.; Souto Filho, S. N.; Alves, M. C.; Pereira, M. G.; Frigério, G. C.

    2012-04-01

    The aim of this study was to investigate the behavior of the epigeal fauna in a degraded soil in the recovery process after one year of cultivated with tree species. The experiment was established in February 2010 in Mato Grosso do Sul, Brazil. The experimental design was randomized blocks in split plots with five treatments and four replications. In the main plots, pure cultivation of Eucalyptus urograndis (exotic species - hybrids) and Mabea fistulifera Mart. (native species) and the subplot treatments: Control; D0 - without fertilization; DM - mineral fertilizer according to crop need; DC - with compost manure according to crop need (10 t ha-1); D15 - 15 t ha-1 and D20 - 20 t ha-1 of the compound. In February of the years 2010 and 2011 were installed in the central region of each treatment two traps "pitt fall" which remained for seven days in the field. We calculated Shannon diversity and Pielou evenness indices, and richness of wildlife activity groups. The results were analyzed by ANOVA and Scott Knott test at 5% significance level. In 2010, the area with M. fistulifera, was captured a total of 2697 organisms distributed mainly in: Hymenoptera with 45.83% of the total collected, Collembola (36.93%), Hemiptera Heteroptera (6.56%). In the area with E. urograndis, 1938 organisms were captured, being 50.67% of the order Hymenoptera, Collembola 26.83%, 7.59% Hemiptera Heteroptera. It was found that there was no significant difference between treatments and between species for all variables. Collected in 2011 were 4970 organisms in 56.22% of the order Hymenoptera, Collembola 18.49% and 7.12% beetle in the area of M. fistulifera. In the area of E. urograndis were 4200 organisms, 55.29% (Hymenoptera), 23.79% (Collembola) and 5.86% (Coleoptera). It appears that the activity values and richness of the fauna groups were significantly higher in treatments with organic fertilization in both cultive. It is concluded that after one year there was a variation of the dominant

  8. Direct, rapid and sustainable vermicomposting of the leaf litter of neem (Azadirachta indica).

    PubMed

    Nayeem-Shah, M; Gajalakshmi, S; Abbasi, S A

    2015-01-01

    The recently developed concept of high rate vermicomposting was successfully used to enable direct vermicomoposting of neem leaves-without any pre-composting or cow dung supplementation as previously reported processes had necessitated. All the three epigeic species of earthworms that were explored, Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus, provided efficient vermicast production with no mortality, persistent gain in body mass and good fecundity over the 16 months long period of reactor operation. In this period, all reactors were pulse-fed at the solid retention time of 20 days and were operated in the pseudo discretized continuous operation protocol developed earlier by the authors. With this, it was possible to almost completely dampen the influence of natural biodegradation of the feed or grazing by the earthworm born in the vermireactors. The findings, thus, conclusively prove that, all-through, the brisk vermicomposting was caused almost entirely by the action of the 'parent' earthworms on fresh feed.

  9. Checklist of the earthworm fauna of Croatia (Oligochaeta: Lumbricidae).

    PubMed

    Kutuzović, Davorka Hackenberger; Kutuzović, Branimir Hackenberger

    2013-01-01

    A checklist of the Croatian earthworm fauna (Oligochaeta: Lumbricidae) is presented, including published records and authors' personal data. This is the first checklist for Croatia only, with comprehensive information for each earthworm species regarding ecological category, habitat, distribution type and distribution in Croatia. The currently known earthworm fauna of Croatia comprises 68 species belonging to 17 genera, with Octodrilus being the species-richest genus (15 species). Chorologically these species can be allocated to 13 different types of distribution. Nineteen species are endemic of which 10 species are endemic to Croatia and 9 species are endemic to Croatia and neighbouring countries (Italy, Slovenia, Hungary, and Montenegro). The endemic earthworms are distributed in the areas of higher altitudes in the Continental and Alpine biogeographic region, mostly covered with forest or autochtonous vegetation.

  10. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas.

    PubMed

    Scheifler, R; Coeurdassier, M; Morilhat, C; Bernard, N; Faivre, B; Flicoteaux, P; Giraudoux, P; Noël, M; Piotte, P; Rieffel, D; de Vaufleury, A; Badot, P-M

    2006-12-01

    Despite the dramatic decrease of atmospheric lead (Pb) concentrations in urban areas of most industrialised countries, we hypothesised that urban common blackbirds (Turdus merula) may still be contaminated by Pb concentrations of toxicological concern due to transfer from soil through the food chain. We sampled blackbirds and earthworms, one of their main preys, in Besançon, a middle-size city of Eastern France (where atmospheric Pb concentrations decreased from 0.5 microg/m(3) in 1987 to nearly 0 in 2002) and in a rural reference site. Lead concentrations were determined in the tissues of the different functional groups of earthworms (anecic, epigeous and endogeous) and in blood, washed and unwashed outermost tail feathers and breast feathers of blackbirds. Fresh masses and an index of individual body condition were measured in the two blackbird populations as biomarkers of possible toxic effects. Lead concentrations in earthworms did not differ among functional groups but were significantly higher in urban individuals than in rural ones. Concentrations in outermost tail feathers, breast feathers and blood were significantly higher in urban blackbirds (7.75+/-4.50, 3.15+/-1.77 and 0.15+/-0.09 microg/g, respectively) than in rural individuals. In urban blackbirds, concentrations in washed and unwashed outermost tail feathers allowed estimating the external contamination (probably due to deposition of dusts and/or to excretion of the uropygial gland) at 37% of the total Pb concentration of the unwashed feathers. Remaining 63% should be linked to food chain transfer of persistent Pb from urban soils. Among the 23 sampled blackbirds, 4 of them (3 in the urban site and 1 in the rural site) exhibited blood Pb concentrations higher than the benchmark value (0.20 microg/g) related to subclinical and physiological effects in birds. Variations in body condition index were not correlated to Pb concentrations in blackbird tissues. Present results suggest that Pb may still be

  11. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.

    PubMed

    Ravindran, B; Mnkeni, P N S

    2016-09-01

    The main objective of the present study was to determine the optimum C/N ratio for converting waste paper and chicken manure to nutrient-rich manure with minimum toxicity. Six treatments of C/N ratio 20, 30, 40, 50, 60, and 70 (T1, T2, T3, T4, T5, and T6, respectively) achieved by mixing chicken manure with shredded paper were used. The study involved a composting stage for 20 days followed by vermicomposting with Eisenia fetida for 7 weeks. The results revealed that 20 days of composting considerably degraded the organic waste mixtures from all treatments and a further 7 weeks of vermiculture significantly improved the bioconversion and nutrient value of all treatments. The C/N ratio of 40 (T3) resulted in the best quality vermicompost compared to the other treatments. Earthworm biomass was highest at T3 and T4 possibly due to a greater reduction of toxic substances in these waste mixtures. The total N, total P, and total K concentrations increased with time while total carbon, C/N ratio, electrical conductivity (EC), and heavy metal content gradually decreased with time during the vermicomposting process. Scanning electron microscopy (SEM) revealed the intrastructural degradation of the chicken manure and shredded paper matrix which confirmed the extent of biodegradation of treatment mixtures as result of the composting and vermicomposting processes. Phytotoxicity evaluation of final vermicomposts using tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota), and onion (Allium cepa) as test crops showed the non-phytotoxicity of the vermicomposts to be in the order T3 > T4 > T2 > T1 > T5 > T6. Generally, the results indicated that the combination of composting and vermicomposting processes is a good strategy for the management of chicken manure/paper waste mixtures and that the ideal C/N ratio of the waste mixture is 40 (T3).

  12. Sensitivity of Eisenia andrei (Annelida, Oligochaeta) to a commercial formulation of abamectin in avoidance tests with artificial substrate and natural soil under tropical conditions.

    PubMed

    Nunes, Maria Edna Tenório; Espíndola, Evaldo Luiz Gaeta

    2012-05-01

    Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec® 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec® 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 ± 2°C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC(50,48h) = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC(50, 48h) and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.

  13. A global survey of the bacteria within earthworm nephridia.

    PubMed

    Davidson, Seana K; Powell, Ryan; James, Sam

    2013-04-01

    Earthworms comprise 16 described families in the Crassiclitellata plus a few other minor groups. Microscopy studies of the early 20th century detected bacteria within the excretory organs, the nephridia, of species within a few of these families. More recent evidence for the consistent and specific association of bacteria with nephridia within the Lumbricidae has been well documented, but the presence and identity of nephridial bacteria among the rest of the Crassiclitellata families had not been explored. The study presented here aimed to identify members of Crassiclitellata families that harbor bacteria in their nephridia, and identify these bacteria based on 16S rRNA gene sequences. Eleven earthworm families were surveyed from countries of six continents, and two island nations. The results revealed members of four bacterial orders commonly occurred within nephridia of genera within nine Crassiclitellata families. Members of the bacterial phyla Bacteroidetes (order Sphingobacteriales), Betaproteobacteria (order Burkholderiales; family Comamonadaceae), and Alphaproteobacteria (orders Rhodospirillales and Rhizobiales) were detected in the nephridia of basal Crassiclitellata, as well as in derived families. Earthworm genera with meronephridia, multiple small nephridia per segment, lacked bacteria, whereas bacteria were often detected in holonephridia, single pairs of large nephridia with a distinct morphology and external excretory pore. The Acanthodrilidae members, a large derived family of earthworms, did not appear to possess nephridial bacteria regardless of nephridial form. Although earthworms from a variety of habitat types were sampled, there were no clear correlations of lifestyle with symbiont types, with the exception of the aquatic earthworms that contained bacteria unrelated to those in any other earthworms. The findings support an evolutionarily long association of bacteria within the Crassiclitellata, and suggest a contribution to nitrogen

  14. Off to the (Earthworm) Races: A Quick and Flexible Lab Experiment for Introductory Zoology Courses.

    ERIC Educational Resources Information Center

    Switzer, Paul V.; Fritz, Ann H.

    2001-01-01

    Presents a hands-on, investigative lab activity for use in an introductory zoology course. Tests the behavioral hypothesis that substrate texture affects earthworm locomotor ability. Provides background information on earthworm locomotion followed by details of the lab exercise. (NB)

  15. Organochlorine insecticide residues in soil and earthworms in the Delhi area, India, August-October 1974

    SciTech Connect

    Yadav, D.V.; Mittal, P.K.; Agarwal, H.C.; Pillai, M.K.

    1981-09-01

    DDT residues in soil and earthworms from 50 sites in Delhi were monitored. DDT was detected in all but two samples each of soil and earthworms. Among DDT residues, p,p'-DDE was most common and was found in 48 samples each of soil and earthworms; p,p'-DDT was detected in only 43 soil samples and 46 earthworm samples. p,p'-TDE and o,p'-DDT were also present in smaller concentrations in 29 and 15 soil samples and in 43 and 25 earthworm samples, respectively. Maximum total DDT concentration of 2.6 ppm was detected in the soil from Durga Nagar in the vicinity of a DDT factory. The highest concentration of 37.7 ppm total DDT in earthworms was also obtained from the same site. The maximum concentration factor found in the earthworms was 551. The total DDT concentration in the earthworms and soil showed significant correlation.

  16. Effect of earthworms on the performance and microbial communities of excess sludge treatment process in vermifilter.

    PubMed

    Liu, Jing; Lu, Zhibo; Yang, Jian; Xing, Meiyan; Yu, Fen; Guo, Meiting

    2012-08-01

    Previous studies have shown that the stabilization of excess sludge by vermifiltration can be improved significantly through the use of earthworms. To investigate the effect of earthworms on enhancing sludge stabilization during the vermifiltration process, a vermifilter (VF) with earthworms and a conventional biofilter (BF) without earthworms were compared. The sludge reduction capability of the VF was ∼85% higher than that of the BF. Specifically, elemental analysis indicated that earthworms enhanced the stabilization of organic matter. Furthermore, earthworm predation strongly regulated microbial biomass while improving microbial activity. Denaturing gradient gel electrophoresis (DGGE) analysis showed that the most abundant microbes in the VF biofilms and earthworm casts were Flavobacterium, Myroides, Sphingobacterium, and Myxococcales, all of which are known to be highly effective at degrading organic matter. These results indicate that earthworms can improve the stabilization of excess sludge during vermifiltration, and reveal the processes by which this is achieved.

  17. Effects of gypsum on trace metals in soils and earthworms.

    PubMed

    Chen, Liming; Kost, Dave; Tian, Yongqiang; Guo, Xiaolu; Watts, Dexter; Norton, Darrell; Wolkowski, Richard P; Dick, Warren A

    2014-01-01

    Mined gypsum has been beneficially used for many years as an agricultural amendment. A large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance crop production. However, information is lacking concerning the potential environmental impacts of trace metals, especially Hg, in the FGD gypsum. Flue gas desulfurization and mined gypsums were evaluated to determine their ability to affect concentrations of Hg and other trace elements in soils and earthworms. The study was conducted at four field sites across the United States (Ohio, Indiana, Alabama, and Wisconsin). The application rates of gypsums ranged from 2.2 Mg ha in Indiana to 20 Mg ha in Ohio and Alabama. These rates are 2 to 10 times higher than typically recommended. The lengths of time from gypsum application to soil and earthworm sampling were 5 and 18 mo in Ohio, 6 mo in Indiana, 11 mo in Alabama, and 4 mo in Wisconsin. Earthworm numbers and biomass were decreased by FGD and mined gypsums in Ohio. Among all the elements examined, Hg was slightly increased in soils and earthworms in the FGD gypsum treatments compared with the control and the mined gypsum treatments. The differences were not statistically significant except for the Hg concentration in the soil at the Wisconsin site. Selenium in earthworms in the FGD gypsum treatments was statistically higher than in the controls but not higher than in the mined gypsum treatments at the Indiana and Wisconsin sites. Bioaccumulation factors for nondepurated earthworms were statistically similar or lower for the FGD gypsum treatments compared with the controls for all elements. Use of FGD gypsum at normal recommended agricultural rates seems not to have a significant impact on concentrations of trace metals in earthworms and soils.

  18. Literature-derived bioaccumulation models for earthworms: Development and validation

    SciTech Connect

    Sample, B.E.; Suter, G.W. II; Beauchamp, J.J.; Efroymson, R.A.

    1999-09-01

    Estimation of contaminant concentrations in earthworms is a critical component in many ecological risk assessments. Without site-specific data, literature-derived uptake factors or models are frequently used. Although considerable research has been conducted on contaminant transfer from soil to earthworms, most studies focus on only a single location. External validation of transfer models has not been performed. The authors developed a database of soil and tissue concentrations for nine inorganic and two organic chemicals. Only studies that presented total concentrations in departed earthworms were included. Uptake factors and simple and multiple regression models of natural-log-transformed concentrations of each analyte in soil and earthworms were developed using data from 26 studies. These models were then applied to data from six additional studies. Estimated and observed earthworm concentrations were compared using nonparametric Wilcoxon signed-rank tests. Relative accuracy and quality of different estimation methods were evaluated by calculating the proportional deviation of the estimate from the measured value. With the exception of Cr, significant, single-variable (e.g., soil concentration) regression models were fit for each analyte. Inclusion of soil Ca improved model fits for Cd and Pb. Soil pH only marginally improved model fits. The best general estimates of chemical concentrations in earthworms were generated by simple ln-ln regression models for As, Cd, Cu, Hg, Mn, Pb, Zn, and polychlorinated biphenyls. No method accurately estimated Cr or Ni in earthworms. Although multiple regression models including pH generated better estimates for a few analytes, in general, the predictive utility gained by incorporating environmental variables was marginal.

  19. Darwin, Earthworms & Circadian Rhythms: A Fertile Field for Science Fair Experiments

    ERIC Educational Resources Information Center

    Burns, John T.; Scurti, Paul J.; Furda, Amy M.

    2009-01-01

    This article discusses why the study of earthworms has fascinated many scientists, and why earthworms make ideal experimental animals for students to test in the laboratory. Although earthworms may appear to be primitive, they are governed by both circadian and seasonal rhythms, just as more advanced organisms are. They possess an intelligence…

  20. Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance.

    PubMed

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Dai, Xiaohu

    2014-07-15

    Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth. Earthworm gut microbial communities were dominated by Gammaproteobacteria, and the percentages arrived to 76-92% of the microbial species detected. (15)N and (13)C natural abundance of the earthworms decreased with operation time, and increased as the VF depth. Quantitative analysis using δ(15)N showed that earthworm feeding and earthworm-microorganism interaction were responsible for approximately 21% and 79%, respectively, of the enhanced volatile suspended solid reduction due to the presence of earthworm. The finding provides a quantitative insight into how earthworms influence on sewage sludge stabilization in vermifiltration system.

  1. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing

  2. Effects of anesthetic compounds on responses of earthworms to electrostimulation.

    PubMed

    Podolak-Machowska, Agnieszka; Kostecka, Joanna; Librowski, Tadeusz; Santocki, Michal; Bigaj, Janusz; Plytycz, Barbara

    2014-01-01

    Earthworms play an important role in biomedical research, and some surgical procedures require anesthesia. Anesthetic treatments used so far usually induce convulsive body movements connected with extrusion of coelomocyte-containing coelomic fluid that may affect experimental results. Extensive movements connected with the expulsion of coelomic fluid are exploited by immunologists as a method of harvesting immunocompetent coelomocytes from worms subjected to mild electrostimulation (4.5V). The aim of the investigations was to find anesthetic drugs without unintentional coelomocyte depletion. Experiments were performed on adult specimens of Dendrobaena veneta, the coelomocytes of which consist of amoebocytes and riboflavin-storing eleocytes. Earthworm mobility was filmed and extrusion of coelomocytes was quantified by detection of eleocyte-derived riboflavin in immersion fluid. Treatments included earthworms (1) immersed either in physiological saline (controls) or in a solution of one of the tested anesthetic drugs; (2) electrostimulated immediately after anesthesia, and (3) electrostimulated a second time after a 1-hour recovery period. The well-established fish and amphibian anesthetic agent MS-222 induced coelomocyte expulsion. In contrast, solutions of the mammalian local anesthetic drug, prilocaine hydrochloride (0.25-0.5%, 5-10 min) caused temporal earthworm immobilization followed by recovery, thus showing utility as an efficient earthworm anesthetic.

  3. Longitudinal in vivo MR imaging of live earthworms.

    PubMed

    Budán, Ferenc; Kovács, Noémi; Engelmann, Péter; Horváth, Ildikó; Veres, Dániel S; Németh, Péter; Szigeti, Krisztián; Máthé, Domokos

    2014-11-01

    Earthworm (Oligochaeta, Lumbricidae) species are used widely in eco-toxicological tests especially with contaminated soils. These long-term tests are reliable, but a high sample size is needed. Magnetic resonance imaging (MRI) can produce fast, robust, sensitive, and longitudinal morphological results using a small sample size. Performing longitudinal in vivo examinations of earthworms using MRI requires the need for anesthetics to completely avoid earthworm's moving. Our goal was to develop a simple and non-invasive method to anesthetize earthworms for in vivo longitudinal imaging studies. We investigated a number of different anesthesia methods and found that propan-2-ol and its vapor was optimal. We used a commercial sequential nanoScan® PET/MRI system (Mediso Ltd, Hungary, Budapest) to explore feasibility of MR imaging in immobilized earthworms. It was possible to visualize via micro MRI the brain, gastrointestinal tract, seminal vesicles, calciferous gland (Morren gland), and main blood vessels of the circulatory system. Our findings show the possibilities to examine changes in morphology using MRI of certain organs using a reversible, long-term immobilization method.

  4. Earthworm biomarker responses on exposure to commercial cypermethrin.

    PubMed

    Muangphra, Ptumporn; Sengsai, Supanyika; Gooneratne, Ravi

    2015-05-01

    Cypermethrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control, disease vector control, and food safety. It accumulates in soil. Therefore, traces of cypermethrin may frequently appear in vegetables grown in contaminated soil. There is a push now to develop biomarkers as early warning indicators of environmental pollution. In this study, DNA damage (tail DNA%, tail length, and olive tail moment), the micronucleus, neutral red retention (NRR) time, and pinocytic adherence ability of coelomocytes were investigated in Pheretima peguana earthworms exposed to cypermethrin in filter paper tests. The NRR time of earthworm coelomocytes decreased significantly at a concentration of 3.5 × 10(-3) µg · cm(-2) (1/100 LC50 ) after 48 h exposure, with a highly negative correlation with cypermethrin concentration. Pinocytic adherence ability of coelomocytes also declined significantly at a cypermethrin concentration of 3.5 × 10(-2) µg · cm(-2) (1/10 LC50 ). The DNA damage to earthworm coelomocytes (tail DNA%, tail length, and olive tail moment) increased considerably at the highest concentration (3.5 × 10(-1) µg · cm(-2) ) although the correlation between tail DNA% and cypermethrin concentration was low. Thus, physiological biomarkers were more sensitive than the genotoxic effects in earthworms exposed to commercial cypermethrin. Although a suite of earthworm biomarkers could be used to evaluate cypermethrin terrestrial pollution, the NRR test is easier to conduct and a more sensitive indicator.

  5. Building quantitative prediction models for tissue residue of two explosives compounds in earthworms from microarray gene expression data.

    PubMed

    Gong, Ping; Loh, Po-Ru; Barker, Natalie D; Tucker, George; Wang, Nan; Zhang, Chenhua; Escalon, B Lynn; Berger, Bonnie; Perkins, Edward J

    2012-01-03

    Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm Eisenia fetida. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios.

  6. Impact of Parthenium weeds on earthworms (Eudrilus eugeniae) during vermicomposting.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Rajendran, Venckatesh

    2014-11-01

    The aim of this work is to evaluate the effect of Parthenium-mediated compost on Eudrilus eugeniae during the process of vermicomposting. Nine different concentrations of Parthenium hysterophorus and cow dung mixtures were used to assess toxicity. The earthworms' growth, fecundity and antioxidant enzyme levels were analysed every 15 days. The antioxidant activities of enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], considered as biomarkers, indicate the biochemical and oxidative stresses due to the toxin from Parthenium weeds. The earthworms' growth, biomass gain, cocoon production and antioxidant enzymes were in a low level in a high concentration of P. hysterophorus (without cow dung). The results clearly indicated that appropriate mixing of P. hysterophorus quantity is an essential factor for the survival of earthworms without causing any harm.

  7. Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae).

    PubMed

    Novo, Marta; Fernández, Rosa; Andrade, Sónia C S; Marchán, Daniel F; Cunha, Luis; Díaz Cosín, Darío J

    2016-01-01

    Earthworm taxonomy and evolutionary biology remain a challenge because of their scarce distinct morphological characters of taxonomic value, the morphological convergence by adaptation to the uniformity of the soil where they inhabit, and their high plasticity when challenged with stressful or new environmental conditions. Here we present a phylogenomic study of the family Hormogastridae, representing also the first piece of work of this type within earthworms. We included seven transcriptomes of the group representing the main lineages as previously-described, analysed in a final matrix that includes twelve earthworms and eleven outgroups. While there is a high degree of gene conflict in the generated trees that obscure some of the internal relationships, the origin of the family is well resolved: the hormogastrid Hemigastrodrilus appears as the most ancestral group, followed by the ailoscolecid Ailoscolex, therefore rejecting the validity of the family Ailoscolecidae. Our results place the origin of hormogastrids in Southern France, as previously hypothesised.

  8. Methylation of Mercury in Earthworms and the Effect of Mercury on the Associated Bacterial Communities

    PubMed Central

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and methyl-Hg concentrations in the soils, earthworms, and their casts were analyzed. The impact of Hg on the bacterial community compositions in earthworms was also studied. Tissue concentrations of methyl-Hg in earthworms grown in soils treated with inorganic-Hg were about six times higher than in earthworms grown in soils without Hg. Concentrations of methyl-Hg in the soils and earthworm casts remained at significantly lower levels suggesting that Hg was mainly methylated in the earthworms. Bacterial communities in earthworms were mostly affected by methyl-Hg treatment. Terminal-restriction fragments (T-RFs) affiliated to Firmicutes were sensitive to inorganic and methyl-Hg, whereas T-RFs related to Betaproteobacteria were tolerant to the Hg treatments. Sulphate-reducing bacteria were detected in earthworms but not in soils. PMID:23577209

  9. Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities.

    PubMed

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and methyl-Hg concentrations in the soils, earthworms, and their casts were analyzed. The impact of Hg on the bacterial community compositions in earthworms was also studied. Tissue concentrations of methyl-Hg in earthworms grown in soils treated with inorganic-Hg were about six times higher than in earthworms grown in soils without Hg. Concentrations of methyl-Hg in the soils and earthworm casts remained at significantly lower levels suggesting that Hg was mainly methylated in the earthworms. Bacterial communities in earthworms were mostly affected by methyl-Hg treatment. Terminal-restriction fragments (T-RFs) affiliated to Firmicutes were sensitive to inorganic and methyl-Hg, whereas T-RFs related to Betaproteobacteria were tolerant to the Hg treatments. Sulphate-reducing bacteria were detected in earthworms but not in soils.

  10. An earthworm-like microrobot for colonoscopy.

    PubMed

    Wang, K D; Yan, G Z

    2006-01-01

    Miniature robotics for colonoscopy has become a hot research topic with the development of minimally invasive surgery (MIS). In this paper, a novel microrobot for colonoscopy that operates based on a simulation of the squirming motion of the earthworm is described. The robot uses a unique driving unit called a linear electromagnetic driver. The prototype measures 9.5 mm in diameter and 120 mm in length. It is driven by a linear direct current (DC) motor designed and manufactured by the authors. This paper describes the prototype, locomotion principle, and control system in detail. It then describes two models that were built to study the robot's ability to move in the viscoelastic colon environment. A slepe model of motion was developed and some mathematical evaluations of locomotion conditions were conducted. Experiments to test the creeping ability of the prototype on a slope were performed to verify these expressions. From the viscoelastic model relative to acting force between the robot and the colon, a transcendent equation about locomotive efficiency of the critical squirm step was deduced and solved to instruct the design of the robot. Last, in vitro experiments in the fresh colon of a pig were performed. The results show that this kind of microrobot can propel itself freely and reliably in the soft viscoelastic colon. Finally, future areas of research are noted.

  11. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    PubMed

    Deng, Shuguang; Zeng, Defang

    2017-01-23

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  12. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization.

    PubMed

    Zhang, Weixin; Hendrix, Paul F; Dame, Lauren E; Burke, Roger A; Wu, Jianping; Neher, Deborah A; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

    2013-01-01

    A recent review concluded that earthworm presence increases CO₂ emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO₂ emission nor in stabilized carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated 'carbon trap'. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO₂ emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

  13. Effect of earthworms on the biochemical characterization of biofilms in vermifiltration treatment of excess sludge.

    PubMed

    Yang, Jian; Liu, Jing; Xing, Meiyan; Lu, Zhibo; Yan, Qiong

    2013-09-01

    In this study, the biofilms formed in a vermifilter (VF) with earthworms and a conventional biofilter (BF) without earthworms were compared to investigate the effects of earthworms on the characteristics of biofilms during an excess sludge treatment period of 4months. Typical macrographs and micrographs of the biofilms showed that the feeding and casting actions of earthworms remarkably modified the VF morphology. Elemental analysis and fluorescence spectra indicated that earthworms enhanced the stabilization of organic matter by accelerating the mineralization and humification of organic materials during vermiconversion. In addition, bacterial communities inhabiting the VF biofilm showed that earthworms increased both bacterial diversity and metabolic activities in the film, as revealed by automatic testing bacteriology (ATB) expression and sequencing data. These results demonstrate that earthworms influence the structure and biochemical characteristics of biofilms and enhance their bacterial diversity and functions for improved sludge stabilization.

  14. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  15. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils.

    PubMed

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2014-08-01

    The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities … These results and the low correlation between estimated by CaCl2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter.

  16. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes.

    PubMed

    Muangphra, Ptumporn; Kwankua, Wimon; Gooneratne, Ravi

    2014-06-01

    The potential genotoxicity (nuclear anomalies, damage to single-strand DNA) and pinocytic adherence activity of two (glyphosate-based and paraquat-based) commercial herbicides to earthworm coelomocytes (immune cells in the coelomic cavity) were assessed. Coelomocytes were extracted from earthworms (Pheretima peguana) exposed to concentrations earthworms exposed to glyphosate at 25 × 10(-1) (10(-3) LC50) and paraquat at 39 × 10(-5) (10(-4) LC50) μg cm(-2) filter paper. In earthworms exposed to glyphosate, no differences in tail DNA%, tail length, and tail moment of coelomocytes were detected. In contrast, for paraquat at 10(-1) LC50 concentration, there were significant (P < 0.05) differences between tail DNA % and tail length, and at LC50 concentration, tail moment was also significantly different when compared with controls. A decline in pinocytic adherence activity in coelomocytes occurred on exposure to glyphosate or paraquat at 10(-3) LC50 concentration. This study showed that, at concentrations well below field application rates, paraquat induces both clastogenic and aneugenic effects on earthworm coelomocytes whereas glyphosate causes only aneugenic effects and therefore does not pose a risk of gene mutation in this earthworm.

  17. Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-09-01

    The invasion of exotic earthworms into northern temperate and boreal forests previously devoid of earthworms is an important driver of ecosystem change. Earthworm invasion can cause significant changes in soil structure and communities, nutrient cycles, and the diversity and abundance of herbaceous plants. However, the regional extent and patterns of this invasion are poorly known. We conducted a regional survey in the Chippewa and Chequamegon National Forests, in Minnesota and Wisconsin, U.S.A., respectively, to measure the extent and patterns of earthworm invasion and their relationship to potential earthworm introduction sites. We sampled earthworms, soils, and vegetation in 20 mature, sugar maple-dominated forest stands in each national forest and analyzed the relationship between the presence of five earthworm taxonomic groups, habitat variables, and distance to the nearest potential introduction site. Earthworm invasion was extensive but incomplete in the two national forests. Four of the six earthworm taxonomic groups occurred in 55-95% of transects; however 20% of all transects were invaded by only one taxonomic group that has relatively minor ecological effects. Earthworm taxonomic groups exhibited a similar sequence of invasion found in other studies: Dendrobaena > Aporrectodea = Lumbricus juveniles > L. rubellus > L. terrestris. Distance to the nearest road was the best predictor of earthworm invasion in Wisconsin while distance to the nearest cabin was the best predictor in Minnesota. These data allow us to make preliminary assessments of landscape patterns of earthworm invasion. As an example, we estimate that 82% of upland mesic hardwood stands in the Wisconsin region are likely invaded by most taxonomic groups while only 3% are unlikely to be invaded at present. Distance to roads and cabins provides a coarse-scale predictor of earthworm invasion to focus stand-level assessments that will help forest managers better understand current and potential

  18. Response of Pemphigus betae (Hemiptera: Aphididae) and Beneficial Epigeal Arthropod Communities to Sugarbeet Plant Density and Seed-Applied Insecticide in Western Nebraska.

    PubMed

    Pretorius, R J; Hein, G L; Blankenship, E E; Purrington, F F; Bradshaw, J D

    2017-02-01

    This study investigated the impact of a neonicotinoid seed-applied insecticide (Poncho Beta) and two plant densities (86,487 and 61,776 plants per hectare) on the sugarbeet root aphid (Pemphigus betae Doane), beneficial epigeal arthropods, and selected crop yield parameters in sugarbeet (Beta vulgaris L. var. vulgaris). Ground beetles and centipedes were the most commonly collected taxa during 2012 and 2013, respectively. Centipede, spider, and rove beetle activity densities were not affected by the seed-applied insecticide, whereas plant density had a marginal effect on centipede activity density during 2012. Ground beetle species richness, diversity, and evenness were also not impacted by the seed treatments. However, during 2013, ground beetle activity density was significantly higher in plots planted with untreated sugarbeet seeds due to the abundance of Bembidion quadrimaculatum oppositum Say. Sugarbeet root aphid populations were significantly higher in the untreated plots during both years. In 2012, sugarbeet tonnage and sugar yield were higher under the low plant density treatment, while higher sugar content was recorded from the seed-applied insecticide plots (2013). Seed-applied neonicotinoids and plant density had little impact on beneficial epigeal arthropod activity density. Seed treatment did result in decreased root aphid populations; however, these reductions were not sufficient to be considered as an adequate control. This limited aphid control likely contributed to inconsistent effects on yield parameters.

  19. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  20. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  1. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  2. Assessing the Toxicity and Bioavailability of 2,4-Dinitroanisole in Acute and Sub-Chronic Exposures Using the Earthworm, Eisenia fetida

    DTIC Science & Technology

    2010-06-01

    different methods, 2nd method chosen for final study: ► Coelomocytes collected in 2 ml Guaiacol Glyceryl Ether ( GGE ) solution, centrifuged, decanted...worm to GGE t= 2mins collect coelomocyte solution 1 row per worm/treatment, obtain measurements through spectrophotometer NRRT analysis 1) 2) BUILDING

  3. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel chemistries in botanical insecticides may provide alternatives to, or development of synthetic insecticides suitable for controlling the Lepidopteran pests, like Spodoptera litura (F.). Many botanical chemistries are biodegradable, and have lower mammalian toxicity. Eight natural chemical comp...

  4. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel flavonoid, quercetin, was isolated from Euphorbia hirta L., a medicinal plant using chromatography techniques including: Thin-layer chromatography, Column chromatography, Nuclear magnetic resonance spectroscopy. Toxicity to larval of Spodoptera litura analyze pupal weight, survival rate, fec...

  5. Plasmids of Xylella fastidiosa Mulberry-Infecting Strains Share Extensive Sequence Identity and Gene Complement with pVEIS01 From the Earthworm Symbiont Verminephrobacter Eiseniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ~25 kbp plasmid was present in each of four Californian strains of Xylella fastidiosa from mulberry affected with leaf scorch disease. Fragments of each plasmid were cloned into E. coli, sequenced, and assembled into circular contigs of 25,105 bp (pXF-RIV11 and pXF-RIV16) or 24,372 bp (pXF-RIV19 a...

  6. Disentangling the influence of earthworms in sugarcane rhizosphere

    PubMed Central

    Braga, Lucas P. P.; Yoshiura, Caio A.; Borges, Clovis D.; Horn, Marcus A.; Brown, George G.; Drake, Harold L.; Tsai, Siu M.

    2016-01-01

    For the last 150 years many studies have shown the importance of earthworms for plant growth, but the exact mechanisms involved in the process are still poorly understood. Many important functions required for plant growth can be performed by soil microbes in the rhizosphere. To investigate earthworm influence on the rhizosphere microbial community, we performed a macrocosm experiment with and without Pontoscolex corethrurus (EW+ and EW−, respectively) and followed various soil and rhizosphere processes for 217 days with sugarcane. In EW+ treatments, N2O concentrations belowground (15 cm depth) and relative abundances of nitrous oxide genes (nosZ) were higher in bulk soil and rhizosphere, suggesting that soil microbes were able to consume earthworm-induced N2O. Shotgun sequencing (total DNA) revealed that around 70 microbial functions in bulk soil and rhizosphere differed between EW+ and EW− treatments. Overall, genes indicative of biosynthetic pathways and cell proliferation processes were enriched in EW+ treatments, suggesting a positive influence of worms. In EW+ rhizosphere, functions associated with plant-microbe symbiosis were enriched relative to EW− rhizosphere. Ecological networks inferred from the datasets revealed decreased niche diversification and increased keystone functions as an earthworm-derived effect. Plant biomass was improved in EW+ and worm population proliferated. PMID:27976685

  7. Earthworm Biomass Measurement: A Science Activity for Middle School.

    ERIC Educational Resources Information Center

    Haskett, Jonathan; Levine, Elissa; Carey, Pauline B.; Niepold III, Frank

    2000-01-01

    Describes an activity on biomass measurement which, in this case, is the weight of a group of living things in a given area. The earthworm activity gives students a greater understanding of ecology, practical math applications, and the scientific method. (ASK)

  8. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  9. Relating results from earthworm toxicity tests to agricultural soil

    USGS Publications Warehouse

    Beyer, W.N.; Greig-Smith, P.W.

    1992-01-01

    The artificial soil tests of the European Economic Community and of the Organization for Economic Cooperation produce data relating earthworm mortality to pesticide concentrations in soil under laboratory conditions. To apply these results to agricultural soils it is necessary to relate these concentrations to amounts of pesticide applied per area. This paper reviews the relevant published literature and suggests a simple relation for regulatory use. Hazards to earthworms from pesticides are suggested to be greatest soon after application, when the pesticides may be concentrated in a soil layer a few millimeters thick. For estimating exposure of earthworms, however, a thicker soil layer should be considered, to account for their movement through soil. During favorable weather conditions, earthworms belonging to species appropriate to the artificial soil test have been reported to confine their activity to a layer about 5 cm. If a 5-cm layer is accepted as relevant for regulatory purposes, then an application of 1 kg/ha would be equivalent to 1-67 ppm (dry) in the artificial soil test.

  10. Impact of biochar on earthworm populations: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the overwhelming importance of earthworm activity in the soil system, there are a limited number of studies that have examined the impact resulting from biochar addition to soil. Biochar is part of the black carbon continuum of chemo-thermal converted biomass. This review summarizes existing...

  11. Sublethal effects of epoxiconazole on the earthworm Aporrectodea icterica.

    PubMed

    Pelosi, C; Lebrun, M; Beaumelle, L; Cheviron, N; Delarue, G; Nélieu, S

    2016-02-01

    Earthworms play a key role in agroecosystem soil processes. This study aims to assess the effects of different doses of a commercial formulation of epoxiconazole (Opus®), a persistent and widely used fungicide, on the earthworm Aporrectodea icterica. A laboratory study was conducted in a natural soil in order to measure effects of Opus® on earthworm mortality, uptake, weight gain, enzymatic activities (catalase and glutathione-S-transferase), and energy resources (lipids and glycogens). The estimated LC50 was 45.5 mg kg(-1), or 268 times the recommended dose. Weight gains were 28, 19, and 13% of the initial weight after 28 days of exposure in the control and D1 and D10 (1 and 10 times the recommended dose) treatments, respectively. No difference was observed for catalase activity between the three treatments, at 7, 14, or 28 days. The glutathion-S-transferase (GST) activity was two times as high in D1 as in D0 at 14 days. At 28 days, glycogen concentration was lower in D10 than in the D1 treatment. This study highlighted moderate sublethal effects of the commercial formulation Opus® for earthworms. Considering that these effects were observed on a species found in cultivated fields, even at recommended rates, much more attention should be paid to this pesticide.

  12. Life cycle of the earthworm Octodrilus complanatus (Oligochaeta, Lumbricidae).

    PubMed

    Monroy, Fernando; Aira, Manuel; Gago, José Angel; Domínguez, Jorge

    2007-05-01

    The earthworm Octodrilus complanatus (Dugès, 1828) is a large-sized species often found in grasslands and pastures, with a wide distribution area in Europe and North Africa. In order to determine the characteristics of its life cycle, earthworms of this species were cultured from hatching until they reached maturity. Development rates, cocoon production, and incubation period were recorded under controlled conditions. On average, individuals of O. complanatus reared in isolation from hatching reached maturity at day 150 and body weight at maturity ranged between 6 and 8 g. The cocoon incubation period was 66 days, and only one individual hatched from each cocoon, with a mean hatchability of 55%. Reproductive rate showed by O. complanatus after mating was of 52 cocoons per earthworm per year. The results showed that the life cycle of O. complanatus was characterized by both low growth rates and low fecundity. Specific features in life history traits of O. complanatus were compared with those of species of the genus Octodrilus and other related earthworms.

  13. Diversity and host specificity of the Verminephrobacter-earthworm symbiosis.

    PubMed

    Lund, Marie B; Davidson, Seana K; Holmstrup, Martin; James, Sam; Kjeldsen, Kasper U; Stahl, David A; Schramm, Andreas

    2010-08-01

    Symbiotic bacteria of the genus Verminephrobacter (Betaproteobacteria) were detected in the nephridia of 19 out of 23 investigated earthworm species (Oligochaeta: Lumbricidae) by 16S rRNA gene sequence analysis and fluorescence in situ hybridization (FISH). While all four Lumbricus species and three out of five Aporrectodea species were densely colonized by a mono-species culture of Verminephrobacter, other earthworm species contained mixed bacterial populations with varying proportions of Verminephrobacter; four species did not contain Verminephrobacter at all. The Verminephrobacter symbionts could be grouped into earthworm species-specific sequence clusters based on their 16S rRNA and RNA polymerase subunit B (rpoB) genes. Closely related host species harboured more closely related symbionts than did distantly related hosts. Co-diversification of the symbiotic partners could not be demonstrated unambiguously due to the poor resolution of the host phylogeny [based on histone H3 and cytochrome c oxidase subunit I (COI) gene sequence analyses]. However, there was a pattern of symbiont diversification within four groups of closely related hosts. The mean rate of symbiont 16S rRNA gene evolution was determined using a relaxed clock model, and the rate was calibrated with paleogeographical estimates of the time of origin of Lumbricid earthworms. The calibrated rates of symbiont 16S rRNA gene evolution are 0.012-0.026 substitutions per site per 50 million years and thus similar to rates reported from other symbiotic bacteria.

  14. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  15. Urban soil biomonitoring by beetle and earthworm populations

    SciTech Connect

    Janossy, L.; Bitto, A.

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roads are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.

  16. Avoidance, biomass and survival response of soil dwelling (endogeic) earthworms to OECD artificial soil: potential implications for earthworm ecotoxicology.

    PubMed

    Brami, C; Glover, A R; Butt, K R; Lowe, C N

    2017-03-09

    Soil dwelling earthworms are now adopted more widely in ecotoxicology, so it is vital to establish if standardised test parameters remain applicable. The main aim of this study was to determine the influence of OECD artificial soil on selected soil-dwelling, endogeic earthworm species. In an initial experiment, biomass change in mature Allolobophora chlorotica was recorded in Standard OECD Artificial Soil (AS) and also in Kettering Loam (KL). In a second experiment, avoidance behaviour was recorded in a linear gradient with varying proportions of AS and KL (100% AS, 75% AS + 25% KL, 50% KS + 50% KL, 25% AS + 75% KL, 100% KL) with either A. chlorotica or Octolasion cyaneum. Results showed a significant decrease in A. chlorotica biomass in AS relative to KL, and in the linear gradient, both earthworm species preferentially occupied sections containing higher proportions of KL over AS. Soil texture and specifically % composition and particle size of sand are proposed as key factors that influenced observed results. This research suggests that more suitable substrates are required for ecotoxicology tests with soil dwelling earthworms.

  17. Distribution of bacteria and fungi in the earthworm Libyodrillus violaceous (Annelida: Oligochaeta), a native earthworm from Nigeria.

    PubMed

    Idowu, A B; Edema, M O; Adeyi, A O

    2006-03-01

    Earthworms are soil invertebrates that play a key role in recycling organic matter in soils. In Nigeria, earthworms include Libyodrillus violaceous. Aerobic and anaerobic bacterial counts, as well as fungal counts of viable microorganisms in soils and gut sections, were made on twenty L. violaceous collected from different sites on the campus of the University of Agriculture, Abeokuta, Nigeria. The samples were collected between April and November, 2002. Numbers of microorganisms were higher in castings and gut sections than in un-ingested soil samples. The guts and their contents also had higher moisture and total nitrogen contents than the un-ingested soils. Bacteria and fungi isolated from the samples were identified by standard microbiological procedures on the bases of their morphological and biochemical characteristics. Isolated bacteria were identified as Staphylococcus, Bacillus spp., Pseudomonas aeruginosa, Streptococcus mutans, Clostridium, Spirocheata spp., Azotobacter spp., Micrococcus lylae, Acinetobacter spp., Halobacterium for bacteria. Yeast isolates were identified as Candida spp., Zygosaccharomyces spp., Pichia spp., and Saccharomyces spp while molds were identified as, Aspergillus spp., Pytium spp., Penicillium spp., Fusarium spp and Rhizopus spp. Of the five locations examined, the refuse dump area had the highest numbers of both aerobic and anaerobic organisms, followed by the arboretum while the cultivated land area recorded the lowest counts. The higher numbers of microorganisms observed in the gut sections and casts of the earthworms examined in this work reinforce the general concept that the gut and casts of earthworms show higher microbial diversity and activity than the surrounding soil.

  18. Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry.

    PubMed

    Luth; Robin, Paul; Germain, Philippe; Lecomte, Marcel; Landrain, Brigitte; Li, Yinsheng; Cluzeau, Daniel

    2011-02-01

    Treatment of liquid manure can result in the production of ammonia, nitrous oxide and methane. Earthworms mix and transform nitrogen and carbon without consuming additional energy. The objective of this paper is to analyse whether earthworms modify the emissions of NH(3), N(2)O, CH(4) and CO(2) during vermifiltration of pig slurry. The experiment used mesocosms of around 50 L, made from a vermifilter treating the diluted manure of a swine house. Three levels of slurry were added to the mesocosms, with or without earthworms, during one month, in triplicate. Earthworm abundance and gas emissions were measured three and five times, respectively. There was a decrease in emissions of ammonia and nitrous oxide and a sink of methane in treatments with earthworms. We suggest that earthworm abundance can be used as a bioindicator of low energy input, and low greenhouse gas and ammonia output in systems using fresh slurry with water recycling.

  19. An isozyme of earthworm serine proteases acts on hydrolysis of triacylglycerol.

    PubMed

    Nakajima, Nobuyoshi; Sugimoto, Manabu; Tsuboi, Sadao; Tsuji, Hideaki; Ishihara, Kohji

    2005-10-01

    An enzyme catalyzing the hydrolysis of triacylglycerol was purified from an earthworm. The N-terminal amino acid sequence and the catalytic function of the purified enzyme were identical to those of Isozyme C, an isozyme of the earthworm-serine proteases. No other lipase proteins were found in the earthworm cells. The isozyme might act on the hydrolysis of triacylglycerol as well as the protein decomposition.

  20. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    PubMed

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  1. Checklist of earthworms (Oligochaeta: Lumbricidae) from Montenegro: Diversity and biogeographical review.

    PubMed

    Stojanović, Mirjana; Milutinović, Tanja

    2013-01-01

    A checklist of the lumbricid earthworms in Montenegro is presented. Comprehensive information on the distribution and habitats of all earthworms is given in order to establish the definitive list of known taxa from Montenegro. The complete list of earthworm taxa of Montenegro comprises 40 species and subspecies, belonging to 12 genera of the family Lumbricidae. The list underlines the diversity of earthworms and provides a general overview of their distribution and zoogeographical type. Our study shows that the degree of endemism is comparatively high, exceeding 20%. Summing up the endemics and the Balkanic species, 42.5% of the total lumbricid fauna shows an autochthonous character.

  2. Earthworm is a versatile and sustainable biocatalyst for organic synthesis.

    PubMed

    Guan, Zhi; Chen, Yan-Li; Yuan, Yi; Song, Jian; Yang, Da-Cheng; Xue, Yang; He, Yan-Hong

    2014-01-01

    A crude extract of earthworms was used as an eco-friendly, environmentally benign, and easily accessible biocatalyst for various organic synthesis including the asymmetric direct aldol and Mannich reactions, Henry and Biginelli reactions, direct three-component aza-Diels-Alder reactions for the synthesis of isoquinuclidines, and domino reactions for the synthesis of coumarins. Most of these reactions have never before seen in nature, and moderate to good enantioselectivities in aldol and Mannich reactions were obtained with this earthworm catalyst. The products can be obtained in preparatively useful yields, and the procedure does not require any additional cofactors or special equipment. This work provides an example of a practical way to use sustainable catalysts from nature.

  3. Endemic earthworms (Oligochaeta: Lumbricidae) of the Balkan Peninsula: a review.

    PubMed

    Trakić, Tanja; Valchovski, Hristo; Stojanović, Mirjana

    2016-11-10

    A list of the endemic earthworms of the Balkan Peninsula is presented. Comprehensive information on the ecology, distribution on the Balkan Peninsula and zoogeographical type of all endemics is given. The list comprises 90 species and subspecies, belonging to 11 genera of the family Lumbricidae. The largest number of the Balkan endemic earthworms belongs to a narrow range group (63.3%). Broad range endemic species take part with 36.7%. Our study shows that the degree of endemism on the Balkan Peninsula is extremely high (about 40%) suggesting an important process of autochthonous speciation on the Balkan Peninsula. This appearance is attributable to relative isolation of the mountains compared to the lowlands within the context of paleoenvironmental changes.

  4. Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed Central

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Background Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance Our

  5. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  6. Trace Metals and Metalloids in Forest Soils and Exotic Earthworms in Northern New England, USA

    PubMed Central

    Richardson, J.B.; Görres, J.H.; Jackson, B.P.; Friedland, A.J.

    2015-01-01

    Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 uncontaminated sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg and U) TMM concentrations (mg kg-1) and pools (mg m-2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive Amynthas agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region. PMID:25883392

  7. Invasive and exotic earthworms: an unaccounted change to mercury cycling in northeastern US forest soils

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.; Görres, J. H.; Renock, D. J.; Jackson, B. P.

    2014-12-01

    Invasive and exotic earthworms are now present in many forested areas of the northeastern US with currently unquantified consequences to abiotic and biotic Hg cycling. To quantify these effects, we measured Hg concentrations (mg kg-1) and amounts (μg m-2) in earthworms and soil horizons at 45 soil pits from 9 sites in northern New England. Seven earthworm species were observed in varying assemblages. Most earthworm species attained concentrations of Hg potentially hazardous to wildlife that may ingest them, with highest concentrations found in shallow-burrowing, litter-feeders. Specifically, Aporrectodea rosea and Amynthas agrestis had the greatest Hg concentrations (0.9 ± 0.1) and Hg amounts (8 ± 2) μg m-2. Aporrectodea rosea and Amynthas agrestis were found to inhabit the forest floor and the top 5 cm of the mineral horizons in high abundance, potentially making it a readily accessible prey species. Bioaccumulation of Hg by invasive and exotic earthworms may be an important mechanism that transfers Hg to ground foraging predators, such as thrushes, red-backed salamanders and foxes, which is generally unaccounted for in terrestrial food chains. Earthworm Hg concentrations were poorly correlated with their respective soil Hg concentrations, suggesting a species dependence for Hg bioaccumulation rather than site effects. We observed that forest floor Hg concentrations and amounts were 23% and 57% lower, respectively, at soil pits with earthworms compared to those without. Moreover, Hg amounts in forest floor-feeding earthworms exceeded the remaining forest floor Hg pools. Mercury concentrations and pools in the mineral soil were 21% and 33% lower, respectively, for soil pits with earthworms compared to those without. We hypothesize that enhanced decomposition, horizon disturbance and bioaccumulation by earthworms has decreased Hg amounts in the forest floor and mineral soil. Our results suggest that earthworms are decreasing Hg storage in forest soils with

  8. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    NASA Astrophysics Data System (ADS)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  9. Short-term stabilization of grape marc through earthworms.

    PubMed

    Gómez-Brandón, María; Lazcano, Cristina; Lores, Marta; Domínguez, Jorge

    2011-03-15

    The winery industry generates vast amounts of organic waste during the various stages of wine production. Among the possible methodological alternatives available for its treatment, vermicomposting is one of the best-known processes for the biological stabilization of solid organic wastes by transforming them into safer and more stabilized materials suitable for application to soil. In this study we carried out a mesocosm experiment to evaluate the effectiveness of the active phase of vermicomposting for the stabilization of grape marc, an enriched lignocellulosic by-product obtained after the grape crushing and pressing stages in wine production. For this we analysed the chemical, biochemical and microbiological properties of the product resulting from this phase, in comparison with those in a control treatment. Earthworm activity reduced the abundance of both bacterial and fungal PLFA biomarkers. Decreases in microbial activity and in protease and cellulase activities were also attributed to the presence of earthworms. The differences in microbial communities were accompanied by a reduction in the labile C pool and the cellulose content. These results indicate that earthworms played a key role in the stabilization of the grape marc in the short-term, via its effects on organic matter decomposition and microbial biomass and activity.

  10. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?

    NASA Astrophysics Data System (ADS)

    Versteegh, Emma A. A.; Black, Stuart; Canti, Matthew G.; Hodson, Mark E.

    2013-12-01

    In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water δ18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 °C) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. δ18O values were determined on individual calcite granules (δ18Oc) and the soil solution (δ18Ow). The δ18Oc values reflect soil solution δ18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln α = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.

  11. Managing Earthworm Castings (Oligochaeta: Lumbricidae) in Turfgrass using a Natural By-Product of Tea Oil (Camellia sp.) Manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthworm casts are a problem on golf courses and sport fields when they disrupt the playability, aesthetics, and maintenance of playing surfaces. Abundant earthworms alongside airport runways can increase bird strike risk. Currently no pesticides are labeled for earthworms in the United States. W...

  12. Effects of oxidative stress reaction for the Eisenia fetida with exposure in Cd(2).

    PubMed

    Dongxing, Zhou; Yucui, Ning; Jiabin, Liu; Jie, Deng; Guohua, Rong; Bilige, Siqin; Yijun, Liu

    2016-11-01

    Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitoring indexes in the stress process becomes a practical demand of the pollution monitoring and warning process. We studied two groups, the short-term test and the long-term test. The former one is for 10 days, taking out an earthworm every day. The latter test lasted 30 days, taking out an earthworm every 10 days. The Cd(2+) concentration was set at 50, 100, 125, 250, and 500 mg kg(-1). Post-clitellum segments of earthworms were chosen to determine superoxide enzyme (SOD), peroxidase (POD), glutathione peroxidase (GSH-Px), glutathione-S transferase (GST), catalase (CAT), vitamin E (VE), malondialdehyde (MDA), and acetylcholinesterase (AChE). The results showed that the main bio-indicators associating with oxidative stress reaction in short-term group were CAT, SOD, and POD. MDA could be used as a bio-indicator in the early and mid-term. VE was only the bio-indicator in the mid-term stress. While with the long-term test, the main bio-indicators associated with oxidative stress reaction were GSH-Px and MDA. The AChE activity was only suitable for oxidative stress response caused by heavy metal stress more than 30 days.

  13. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  14. Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypothesized that ear...

  15. Earthworms enhance soil health and may also assist in improving biological insect pest suppression in pecans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of entomopathogenic nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypo...

  16. Phagocytosis in earthworms: An environmentally acceptable endpoint to assess immunotoxic potential of contaminated soils

    SciTech Connect

    Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.; Venables, B.J.; Callahan, C.A.

    1995-12-31

    Phagocytosis, a host-defense mechanism phylogenetically conserved throughout the animal kingdom, by earthworm (Lumbricus terrestris) coelomocytes has potential as a surrogate for vertebrates to be used as an environmentally acceptable endpoint to assess sublethal immunotoxic risks of contaminated soils to environmental (eg. higher wildlife) and public health. Coelomocytes can be exposed in vivo to complex contaminated parent soils by placing earthworms in situ at hazardous waste sites (HWS) or into soil samples and their dilutions with artificial soil (AS) in the laboratory, or in vitro to soil extracts and their fractionations. Here the authors report on phagocytosis by coelomocytes in earthworms exposed to pentachlorophenol (PCP) contaminated soils from a wood treatment HWS, PCP-spiked AS and PCP treated filter paper (FP). HWS soil was diluted to 25% with AS to a sublethal concentration (ca. 125 mg kg{sup {minus}1}) and earthworms exposed for 14d at 10 C under light conditions. AS was spiked at ca. 125 mg kg{sup {minus}1} PCP and earthworms were similarly exposed. Controls for both consisted of earthworms exposed to 100% AS. Earthworms were exposed to FP treated with a sublethal PCP concentration (15 {micro}g cm{sup {minus}2}) at 10 C under dark conditions for 96H. Controls were similarly exposed without PCP. Phagocytosis by coelomocytes in earthworms exposed to HWS soil, spiked AS and treated FP was suppressed 37, 41 and 29%, respectively. Results are discussed in terms of PCP body burdens and exposure protocols.

  17. Effects of treatment with sodium fluoride and subsequent starvation on fluoride content of earthworms

    SciTech Connect

    Walton, K.C.

    1987-01-01

    The two experiments described here originated during a long-term investigation into the occurrence and movement of pollutant fluoride in a terrestrial ecosystem. Moles (Talpa europaea) whose diet consist largely of various species of earthworm Lumbricidae, are one of the species under investigation. Bone fluoride in moles was found to be higher, on average, than in foxes or small rodents. Moles probably acquire fluoride from their earthworm diet. Earthworms do not have any readily identifiable tissue in which to store large amounts of fluoride but, for their size, they have a considerable amount of soil in their gut, up oto 20% of their dry weight. Preliminary measurements of fluoride in whole earthworms suggested that observed levels could probably be accounted for by fluoride bound in the mineral part of contained soil and released during preparatory ashing. Two experiments to investigate this situation are described; here their aims were: to expose earthworms kept in soil to different concentrations of sodium fluoride; to measure resulting fluoride in earthworms when soil was removed from their gut by starvation for varying periods of time; and to compare amounts of fluoride in whole starved earthworms with those in starved earthworms from which remaining soil had also been physically removed by dissection and washing.

  18. Earthworms, Microbes and the Release of C and N in Biochar Amended Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of biochar has the potential to increase soil fertility and sequester carbon. It is unclear how soil microbes and earthworms interact with biochar and affect release or retention of nutrients. In order to determine the effects and interactions among soil microbes, earthworms, and bi...

  19. Mutualism between common earthworm (Lumbricus terrestris) and giant ragweed (Ambrosia trifida) varies between Ohio and Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed caching of giant ragweed by common earthworm has been found to contribute to giant ragweed recruitment success in Ohio (OH) by protecting the seeds from postdispersal predation at a depth in the earthworm midden that is also suitable for germination. The objective of this study was to quantify ...

  20. Interactions of earthworms with Atrazine-degrading bacteria in an agricultural soil.

    PubMed

    Kersanté, Anne; Martin-Laurent, Fabrice; Soulas, Guy; Binet, Françoise

    2006-08-01

    In the last 10 years, accelerated mineralization of Atrazine (2-chloro-ethylamino-6-isopropylamino-s-triazine) has been evidenced in agricultural soils repeatedly treated with this herbicide. Here, we report on the interaction between earthworms, considered as soil engineers, and the Atrazine-degrading community. The impact of earthworm macrofauna on Atrazine mineralization was assessed in representative soil microsites of earthworm activities (gut contents, casts, burrow linings). Soil with or without earthworms, namely the anecic species Lumbricus terrestris and the endogenic species Aporrectodea caliginosa, was either inoculated or not inoculated with Pseudomonas sp. ADP, an Atrazine-degrading strain, and was either treated or not treated with Atrazine. The structure of the bacterial community, the Atrazine-degrading activity and the abundance of atzA, B and C sequences in soil microsites were investigated. Atrazine mineralization was found to be reduced in representative soil microsites of earthworm activities. Earthworms significantly affected the structure of soil bacterial communities. They also reduced the size of the inoculated population of Pseudomonas sp. ADP, thereby contributing to the diminution of the Atrazine-degrading genetic potential in representative soil microsites of earthworm activities. This study illustrates the regulation produced by the earthworms on functional bacterial communities involved in the fate of organic pollutants in soils.

  1. Metal content of earthworms in sludge-amended soils: uptake and loss

    SciTech Connect

    Neuhauser, E.F.; Malecki, M.R.; Cukic, Z.V.

    1985-11-01

    The widespread practice of landspreading of sludge has raised concern about increasing concentrations of potentially toxic metals in soils, with the possibility of these metals adversely impacting terrestrial and aquatic ecosystems. Earthworms, as one of the largest components of the soil biota, are useful indicators of potentially toxic soil metal concentrations. The study describes the metal content of five metals (Cd, Cu, Ni, Pb, and Zn) in one earthworm species, Allolobophora tuberculata, as a function of varying soil metal concentrations in the same soil type and the ability of the earthworms to bioconcentrate the five metals. The rate of uptake of the five metals in earthworms with initially low concentrations of metals placed in a soil with high metal concentrations was evaluated for a 112 day period. The rate of loss of the five metals in earthworms with initially high metal concentrations placed in soil with low metal concentrations was also examined.

  2. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada.

    PubMed

    Button, Mark; Koch, Iris; Reimer, Kenneth J

    2012-10-01

    Earthworms (Lumbricus castaneous and Dendrodrilus rubidus), their host soils and leaf litter were collected from a former gold mine with widespread arsenic (As) contamination in Nova Scotia, Canada and determined for total and speciated As. Resistance to As toxicity was investigated by measurement of DNA damage in exposed earthworm populations using the comet assay. Arsenobetaine (AB) was observed at low concentration in the earthworms but not in the host soil or leaf litter. Several different organoarsenic species were observed in the leaf litter and only inorganic As was found in the host soils. The results suggest that 1) adaptation to As toxicity in earthworms is widespread and not particular to a single species, 2) AB originates in the earthworm and not the consumed soil or leaf litter and 3) as previously hypothesised (Button et al., 2010), biotransformation of inorganic As to AB is not likely involved in the adaptation.

  3. Fluoride accumulation in different earthworm species near an industrial emission source in southern Germany

    SciTech Connect

    Vogel, J.; Ottow, J.C.G. )

    1991-10-01

    The information on fluorides (F)-pollution of soil invertebrates is sparse and only a few recent publications deal with F accumulation in some taxonomic groups of soil fauna. Earthworms in particular become the focus of soil-soil fauna interactions in F-polluted sites, even more so since a significant relationship between soil pollution and F load in earthworms was observed. Earthworms coat their burrowings and this may be a mechanism of F-dissemination and subsoil contamination. Evidence is growing that fluorides pass through food chains. Earthworms as the preferred prey of a wide range of animals are therefore in the center of interest as a possible way of F-bioaccumulation in higher trophic levels. For a risk assessment of F-pollution and pathways of F through organisms and ecosystems, detailed knowledge of F-accumulation in soil fauna, and in earthworms