Rager, Julia E; Auerbach, Scott S; Chappell, Grace A; Martin, Elizabeth; Thompson, Chad M; Fry, Rebecca C
2017-10-16
Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) μg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) μg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 μg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.
Not All Biofluids Are Created Equal: Chewing Over Salivary Diagnostics and the Epigenome
Wren, M.E.; Shirtcliff, E.A.; Drury, Stacy S.
2015-01-01
Purpose This article describes progress to date in the characterization of the salivary epigenome and considers the importance of previous work in the salivary microbiome, proteome, endocrine analytes, genome, and transcriptome. Methods PubMed and Web of Science were used to extensively search the existing literature (original research and reviews) related to salivary diagnostics and bio-marker development, of which 125 studies were examined. This article was derived from the most relevant 73 sources highlighting the recent state of the evolving field of salivary epigenomics and contributing significantly to the foundational work in saliva-based research. Findings Validation of any new saliva-based diagnostic or analyte will require comparison to previously accepted standards established in blood. Careful attention to the collection, processing, and analysis of salivary analytes is critical for the development and implementation of newer applications that include genomic, transcriptomic, and epigenomic markers. All these factors must be integrated into initial study design. Implications This commentary highlights the appeal of the salivary epigenome for translational applications and its utility in future studies of development and the interface among environment, disease, and health. PMID:25778408
Not all biofluids are created equal: chewing over salivary diagnostics and the epigenome.
Wren, Michael E; Shirtcliff, Elizabeth A; Drury, Stacy S
2015-03-01
This article describes progress to date in the characterization of the salivary epigenome and considers the importance of previous work in the salivary microbiome, proteome, endocrine analytes, genome, and transcriptome. PubMed and Web of Science were used to extensively search the existing literature (original research and reviews) related to salivary diagnostics and biomarker development, of which 125 studies were examined. This article was derived from the most relevant 74 sources highlighting the recent state of the evolving field of salivary epigenomics and contributing significantly to the foundational work in saliva-based research. Validation of any new saliva-based diagnostic or analyte will require comparison to previously accepted standards established in blood. Careful attention to the collection, processing, and analysis of salivary analytes is critical for the development and implementation of newer applications that include genomic, transcriptomic, and epigenomic markers. All these factors must be integrated into initial study design. This commentary highlights the appeal of the salivary epigenome for translational applications and its utility in future studies of development and the interface among environment, disease, and health. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
The gymnastics of epigenomics in rice.
Banerjee, Aditya; Roychoudhury, Aryadeep
2018-01-01
Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.
The Air Force In Silico -- Computational Biology in 2025
2007-11-01
and chromosome) these new fields are commonly referred to as “~omics.” Proteomics , transcriptomics, metabolomics , epigenomics, physiomics... Bioinformatics , 2006, http://journal.imbio.de/ http://www-bm.ipk-gatersleben.de/stable/php/ journal /articles/pdf/jib-22.pdf (accessed 30 September...Chirino, G. Tansley and I. Dryden, “The implications for Bioinformatics of integration across physical scales,” Journal of Integrative Bioinformatics
Fundamentals of precision medicine
Divaris, Kimon
2018-01-01
Imagine a world where clinicians make accurate diagnoses and provide targeted therapies to their patients according to well-defined, biologically-informed disease subtypes, accounting for individual differences in genetic make-up, behaviors, cultures, lifestyles and the environment. This is not as utopic as it may seem. Relatively recent advances in science and technology have led to an explosion of new information on what underlies health and what constitutes disease. These novel insights emanate from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, as well as epigenomics and exposomics—such ‘omics data can now be generated at unprecedented depth and scale, and at rapidly decreasing cost. Making sense and integrating these fundamental information domains to transform health care and improve health remains a challenge—an ambitious, laudable and high-yield goal. Precision dentistry is no longer a distant vision; it is becoming part of the rapidly evolving present. Insights from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, and epigenomics and exposomics have reached an unprecedented depth and scale. Much more needs to be done, however, for the realization of precision medicine in the oral health domain. PMID:29227115
Integrated Molecular Characterization of Uterine Carcinosarcoma.
Cherniack, Andrew D; Shen, Hui; Walter, Vonn; Stewart, Chip; Murray, Bradley A; Bowlby, Reanne; Hu, Xin; Ling, Shiyun; Soslow, Robert A; Broaddus, Russell R; Zuna, Rosemary E; Robertson, Gordon; Laird, Peter W; Kucherlapati, Raju; Mills, Gordon B; Weinstein, John N; Zhang, Jiashan; Akbani, Rehan; Levine, Douglas A
2017-03-13
We performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified. Copyright © 2017 Elsevier Inc. All rights reserved.
Karapiperis, Christos; Kempf, Stefan J; Quintens, Roel; Azimzadeh, Omid; Vidal, Victoria Linares; Pazzaglia, Simonetta; Bazyka, Dimitry; Mastroberardino, Pier G; Scouras, Zacharias G; Tapio, Soile; Benotmane, Mohammed Abderrafi; Ouzounis, Christos A
2016-05-11
The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at:
Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers
Esterhuyse, Maria M.; Weiner, January; Caron, Etienne; Loxton, Andre G.; Iannaccone, Marco; Wagman, Chandre; Saikali, Philippe; Stanley, Kim; Wolski, Witold E.; Mollenkopf, Hans-Joachim; Schick, Matthias; Aebersold, Ruedi; Linhart, Heinz; Walzl, Gerhard
2015-01-01
ABSTRACT An estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type. PMID:26374119
Big Data Analytics in Medicine and Healthcare.
Ristevski, Blagoj; Chen, Ming
2018-05-10
This paper surveys big data with highlighting the big data analytics in medicine and healthcare. Big data characteristics: value, volume, velocity, variety, veracity and variability are described. Big data analytics in medicine and healthcare covers integration and analysis of large amount of complex heterogeneous data such as various - omics data (genomics, epigenomics, transcriptomics, proteomics, metabolomics, interactomics, pharmacogenomics, diseasomics), biomedical data and electronic health records data. We underline the challenging issues about big data privacy and security. Regarding big data characteristics, some directions of using suitable and promising open-source distributed data processing software platform are given.
Huang, Shao-shan Carol; Clarke, David C.; Gosline, Sara J. C.; Labadorf, Adam; Chouinard, Candace R.; Gordon, William; Lauffenburger, Douglas A.; Fraenkel, Ernest
2013-01-01
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. PMID:23408876
Integrated Molecular Characterization of Testicular Germ Cell Tumors.
Shen, Hui; Shih, Juliann; Hollern, Daniel P; Wang, Linghua; Bowlby, Reanne; Tickoo, Satish K; Thorsson, Vésteinn; Mungall, Andrew J; Newton, Yulia; Hegde, Apurva M; Armenia, Joshua; Sánchez-Vega, Francisco; Pluta, John; Pyle, Louise C; Mehra, Rohit; Reuter, Victor E; Godoy, Guilherme; Jones, Jeffrey; Shelley, Carl S; Feldman, Darren R; Vidal, Daniel O; Lessel, Davor; Kulis, Tomislav; Cárcano, Flavio M; Leraas, Kristen M; Lichtenberg, Tara M; Brooks, Denise; Cherniack, Andrew D; Cho, Juok; Heiman, David I; Kasaian, Katayoon; Liu, Minwei; Noble, Michael S; Xi, Liu; Zhang, Hailei; Zhou, Wanding; ZenKlusen, Jean C; Hutter, Carolyn M; Felau, Ina; Zhang, Jiashan; Schultz, Nikolaus; Getz, Gad; Meyerson, Matthew; Stuart, Joshua M; Akbani, Rehan; Wheeler, David A; Laird, Peter W; Nathanson, Katherine L; Cortessis, Victoria K; Hoadley, Katherine A
2018-06-12
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Online Tools for Bioinformatics Analyses in Nutrition Sciences12
Malkaram, Sridhar A.; Hassan, Yousef I.; Zempleni, Janos
2012-01-01
Recent advances in “omics” research have resulted in the creation of large datasets that were generated by consortiums and centers, small datasets that were generated by individual investigators, and bioinformatics tools for mining these datasets. It is important for nutrition laboratories to take full advantage of the analysis tools to interrogate datasets for information relevant to genomics, epigenomics, transcriptomics, proteomics, and metabolomics. This review provides guidance regarding bioinformatics resources that are currently available in the public domain, with the intent to provide a starting point for investigators who want to take advantage of the opportunities provided by the bioinformatics field. PMID:22983844
Functional Genomics in the Study of Mind-Body Therapies
Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.
2014-01-01
Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735
Functional genomics in the study of mind-body therapies.
Niles, Halsey; Mehta, Darshan H; Corrigan, Alexandra A; Bhasin, Manoj K; Denninger, John W
2014-01-01
Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes-from epigenomics to proteomics and metabolomics.
Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells
Sen, Partho; Kemppainen, Esko; Orešič, Matej
2018-01-01
Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models. PMID:29376056
Single Cell Analysis: From Technology to Biology and Medicine.
Pan, Xinghua
2014-01-01
Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.
Network Analysis of Rodent Transcriptomes in Spaceflight
NASA Technical Reports Server (NTRS)
Ramachandran, Maya; Fogle, Homer; Costes, Sylvain
2017-01-01
Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.
Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.
Casey, Alison E; Sinha, Ankit; Singhania, Rajat; Livingstone, Julie; Waterhouse, Paul; Tharmapalan, Pirashaanthy; Cruickshank, Jennifer; Shehata, Mona; Drysdale, Erik; Fang, Hui; Kim, Hyeyeon; Isserlin, Ruth; Bailey, Swneke; Medina, Tiago; Deblois, Genevieve; Shiah, Yu-Jia; Barsyte-Lovejoy, Dalia; Hofer, Stefan; Bader, Gary; Lupien, Mathieu; Arrowsmith, Cheryl; Knapp, Stefan; De Carvalho, Daniel; Berman, Hal; Boutros, Paul C; Kislinger, Thomas; Khokha, Rama
2018-06-19
The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology. © 2018 Casey et al.
Unmasking molecular profiles of bladder cancer.
Piao, Xuan-Mei; Byun, Young Joon; Kim, Wun-Jae; Kim, Jayoung
2018-03-01
Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.
Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis
Fang, Fang; Turcan, Sevin; Rimner, Andreas; Kaufman, Andrew; Giri, Dilip; Morris, Luc G. T.; Shen, Ronglai; Seshan, Venkatraman; Mo, Qianxing; Heguy, Adriana; Baylin, Stephen B.; Ahuja, Nita; Viale, Agnes; Massague, Joan; Norton, Larry; Vahdat, Linda T.; Moynahan, Mary Ellen; Chan, Timothy A.
2011-01-01
Cancer-specific alterations in DNA methylation are hallmarks of human malignancies; however, the nature of the breast cancer epigenome and its effects on metastatic behavior remain obscure. To address this issue, we used genome-wide analysis to characterize the methylomes of breast cancers with diverse metastatic behavior. Groups of breast tumors were characterized by the presence or absence of coordinate hypermethylation at a large number of genes, demonstrating a breast CpG island methylator phenotype (B-CIMP). The B-CIMP provided a distinct epigenomic profile and was a strong determinant of metastatic potential. Specifically, the presence of the B-CIMP in tumors was associated with low metastatic risk and survival, and the absence of the B-CIMP was associated with high metastatic risk and death. B-CIMP loci were highly enriched for genes that make up the metastasis transcriptome. Methylation at B-CIMP genes accounted for much of the transcriptomal diversity between breast cancers of varying prognosis, indicating a fundamental epigenomic contribution to metastasis. Comparison of the loci affected by the B-CIMP with those affected by the hypermethylator phenotype in glioma and colon cancer revealed that the CIMP signature was shared by multiple human malignancies. Our data provide a unifying epigenomic framework linking breast cancers with varying outcome and transcriptomic changes underlying metastasis. These findings significantly enhance our understanding of breast cancer oncogenesis and aid the development of new prognostic biomarkers for this common malignancy. PMID:21430268
Ocak, S; Sos, M L; Thomas, R K; Massion, P P
2009-08-01
During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.
Wolters, Jarno E J; van Breda, Simone G J; Grossmann, Jonas; Fortes, Claudia; Caiment, Florian; Kleinjans, Jos C S
2018-06-01
We performed a multiple 'omics study by integrating data on epigenomic, transcriptomic, and proteomic perturbations associated with mitochondrial dysfunction in primary human hepatocytes caused by the liver toxicant valproic acid (VPA), to deeper understand downstream events following epigenetic alterations in the mitochondrial genome. Furthermore, we investigated persistence of cross-omics changes after terminating drug treatment. Upon transient methylation changes of mitochondrial genes during VPA-treatment, increasing complexities of gene-interaction networks across time were demonstrated, which normalized during washout. Furthermore, co-expression between genes and their corresponding proteins increased across time. Additionally, in relation to persistently decreased ATP production, we observed decreased expression of mitochondrial complex I and III-V genes. Persistent transcripts and proteins were related to citric acid cycle and β-oxidation. In particular, we identified a potential novel mitochondrial-nuclear signaling axis, MT-CO2-FN1-MYC-CPT1. In summary, this cross-omics study revealed dynamic responses of the mitochondrial epigenome to an impulse toxicant challenge resulting in persistent mitochondrial dysfunctioning. Moreover, this approach allowed for discriminating between the toxic effect of VPA and adaptation. Copyright © 2018 Elsevier B.V. All rights reserved.
Single-Cell Sequencing for Drug Discovery and Drug Development.
Wu, Hongjin; Wang, Charles; Wu, Shixiu
2017-01-01
Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Single Cell Multi-Omics Technology: Methodology and Application.
Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying
2018-01-01
In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions.
Single Cell Multi-Omics Technology: Methodology and Application
Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying
2018-01-01
In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions. PMID:29732369
Perrino, Cinzia; Barabási, Albert-Laszló; Condorelli, Gianluigi; Davidson, Sean Michael; De Windt, Leon; Dimmeler, Stefanie; Engel, Felix Benedikt; Hausenloy, Derek John; Hill, Joseph Addison; Van Laake, Linda Wilhelmina; Lecour, Sandrine; Leor, Jonathan; Madonna, Rosalinda; Mayr, Manuel; Prunier, Fabrice; Sluijter, Joost Petrus Geradus; Schulz, Rainer; Thum, Thomas; Ytrehus, Kirsti
2017-01-01
Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human ‘diseasome’. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era. PMID:28460026
Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells
Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles
2015-01-01
It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817
Ogino, Shuji; Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M; Meyerhardt, Jeffrey A; Meissner, Alexander; Schernhammer, Eva S; Fuchs, Charles S; Giovannucci, Edward
2013-04-01
Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
Ogino, Shuji; Lochhead, Paul; Chan, Andrew T.; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M.; Meyerhardt, Jeffrey A.; Meissner, Alexander; Schernhammer, Eva S.; Fuchs, Charles S.; Giovannucci, Edward
2013-01-01
Epigenetics acts as an interface between environmental / exogenous factors, cellular responses and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases, including non-neoplastic disorders (e.g., cardiovascular diseases, hypertension, diabetes mellitus, autoimmune diseases, and some infectious diseases) and neoplasms (e.g., leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc.) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. DNA methylation assays are widely applied to formalin-fixed paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiologic factors, cellular molecular characteristics, and disease evolution, the field of “Molecular Pathological Epidemiology (MPE)” has emerged as an interdisciplinary integration of “molecular pathology” and “epidemiology”, with a similar conceptual framework to systems biology and network medicine. In contrast to traditional epidemiologic research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle; that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macro-environment and tissue microenvironment. The widespread application of epigenomics (e.g., methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 hypomethylation, etc.), and host-disease interactions. MPE may represent a logical evolution of GWAS, termed “GWAS-MPE approach”. Though epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. This article will illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention. PMID:23307060
OMICS: Current and future perspectives in reproductive medicine and technology
Egea, Rocío Rivera; Puchalt, Nicolás Garrido; Escrivá, Marcos Meseguer; Varghese, Alex C.
2014-01-01
Many couples present fertility problems at their reproductive age, and although in the last years, the efficiency of assisted reproduction techniques has increased, these are still far from being 100% effective. A key issue in this field is the proper assessment of germ cells, embryos and endometrium quality, in order to determine the actual likelihood to succeed. Currently available analysis is mainly based on morphological features of oocytes, sperm and embryos and although these strategies have improved the results, there is an urgent need of new diagnostic and therapeutic tools. The emergence of the - OMICS technologies (epigenomics, genomics, transcriptomics, proteomics and metabolomics) permitted the improvement on the knowledge in this field, by providing with a huge amount of information regarding the biological processes involved in reproductive success, thereby getting a broader view of complex biological systems with a relatively low cost and effort. PMID:25191020
Gurwitz, David
2016-09-01
The development and clinical implementation of personalized medicine crucially depends on the availability of high-quality human biosamples; animal models, although capable of modeling complex human diseases, cannot reflect the large variation in the human genome, epigenome, transcriptome, proteome, and metabolome. Although the biosamples available from public biobanks that store human tissues and cells may represent the large human diversity for most diseases, these samples are not always sufficient for developing biomarkers for patient-tailored therapies for neuropsychiatric disorders. Postmortem human tissues are available from many biobanks; nevertheless, collections of neuronal human cells from large patient cohorts representing the human diversity remain scarce. Two tools are gaining popularity for personalized medicine research on neuropsychiatric disorders: human induced pluripotent stem cell-derived neurons and human lymphoblastoid cell lines. This review examines and contrasts the advantages and limitations of each tool for personalized medicine research.
Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.
2014-01-01
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607
van Iterson, Maarten; van Zwet, Erik W; Heijmans, Bastiaan T
2017-01-27
We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking.
Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.
Pecak, Matija; Korošec, Peter; Kunej, Tanja
2018-06-01
Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.
The International Human Epigenome Consortium Data Portal.
Bujold, David; Morais, David Anderson de Lima; Gauthier, Carol; Côté, Catherine; Caron, Maxime; Kwan, Tony; Chen, Kuang Chung; Laperle, Jonathan; Markovits, Alexei Nordell; Pastinen, Tomi; Caron, Bryan; Veilleux, Alain; Jacques, Pierre-Étienne; Bourque, Guillaume
2016-11-23
The International Human Epigenome Consortium (IHEC) coordinates the production of reference epigenome maps through the characterization of the regulome, methylome, and transcriptome from a wide range of tissues and cell types. To define conventions ensuring the compatibility of datasets and establish an infrastructure enabling data integration, analysis, and sharing, we developed the IHEC Data Portal (http://epigenomesportal.ca/ihec). The portal provides access to >7,000 reference epigenomic datasets, generated from >600 tissues, which have been contributed by seven international consortia: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The portal enhances the utility of these reference maps by facilitating the discovery, visualization, analysis, download, and sharing of epigenomics data. The IHEC Data Portal is the official source to navigate through IHEC datasets and represents a strategy for unifying the distributed data produced by international research consortia. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Manifestations and mechanisms of stem cell aging
Liu, Ling
2011-01-01
Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases. PMID:21502357
GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues
NASA Technical Reports Server (NTRS)
Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid;
2016-01-01
NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
Epigenomics of autoimmune diseases.
Gupta, Bhawna; Hawkins, R David
2015-03-01
Autoimmune diseases are complex disorders of largely unknown etiology. Genetic studies have identified a limited number of causal genes from a marginal number of individuals, and demonstrated a high degree of discordance in monozygotic twins. Studies have begun to reveal epigenetic contributions to these diseases, primarily through the study of DNA methylation, but chromatin and non-coding RNA changes are also emerging. Moving forward an integrative analysis of genomic, transcriptomic and epigenomic data, with the latter two coming from specific cell types, will provide an understanding that has been missed from genetics alone. We provide an overview of the current state of the field and vision for deriving the epigenomics of autoimmunity.
Kim, Taemook; Seo, Hogyu David; Hennighausen, Lothar; Lee, Daeyoup
2018-01-01
Abstract Octopus-toolkit is a stand-alone application for retrieving and processing large sets of next-generation sequencing (NGS) data with a single step. Octopus-toolkit is an automated set-up-and-analysis pipeline utilizing the Aspera, SRA Toolkit, FastQC, Trimmomatic, HISAT2, STAR, Samtools, and HOMER applications. All the applications are installed on the user's computer when the program starts. Upon the installation, it can automatically retrieve original files of various epigenomic and transcriptomic data sets, including ChIP-seq, ATAC-seq, DNase-seq, MeDIP-seq, MNase-seq and RNA-seq, from the gene expression omnibus data repository. The downloaded files can then be sequentially processed to generate BAM and BigWig files, which are used for advanced analyses and visualization. Currently, it can process NGS data from popular model genomes such as, human (Homo sapiens), mouse (Mus musculus), dog (Canis lupus familiaris), plant (Arabidopsis thaliana), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and budding yeast (Saccharomyces cerevisiae) genomes. With the processed files from Octopus-toolkit, the meta-analysis of various data sets, motif searches for DNA-binding proteins, and the identification of differentially expressed genes and/or protein-binding sites can be easily conducted with few commands by users. Overall, Octopus-toolkit facilitates the systematic and integrative analysis of available epigenomic and transcriptomic NGS big data. PMID:29420797
Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.
2013-01-01
Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859
Ponce, Dalia; Brinkman, Diane L; Potriquet, Jeremy; Mulvenna, Jason
2016-04-05
Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.
Perrino, Cinzia; Barabási, Albert-Laszló; Condorelli, Gianluigi; Davidson, Sean Michael; De Windt, Leon; Dimmeler, Stefanie; Engel, Felix Benedikt; Hausenloy, Derek John; Hill, Joseph Addison; Van Laake, Linda Wilhelmina; Lecour, Sandrine; Leor, Jonathan; Madonna, Rosalinda; Mayr, Manuel; Prunier, Fabrice; Sluijter, Joost Petrus Geradus; Schulz, Rainer; Thum, Thomas; Ytrehus, Kirsti; Ferdinandy, Péter
2017-06-01
Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human 'diseasome'. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology.
Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics.
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard; Thorsson, Vesteinn; Colaprico, Antonio; Bertrand, Denis; Gibbs, David L; Weerasinghe, Amila; Huang, Kuan-Lin; Tokheim, Collin; Cortés-Ciriano, Isidro; Jayasinghe, Reyka; Chen, Feng; Yu, Lihua; Sun, Sam; Olsen, Catharina; Kim, Jaegil; Taylor, Alison M; Cherniack, Andrew D; Akbani, Rehan; Suphavilai, Chayaporn; Nagarajan, Niranjan; Stuart, Joshua M; Mills, Gordon B; Wyczalkowski, Matthew A; Vincent, Benjamin G; Hutter, Carolyn M; Zenklusen, Jean Claude; Hoadley, Katherine A; Wendl, Michael C; Shmulevich, Llya; Lazar, Alexander J; Wheeler, David A; Getz, Gad
2018-04-05
The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Precision medicine in acute myeloid leukemia: Hope, hype or both?
Prasad, Vinay; Gale, Robert Peter
2016-09-01
Precision medicine is interchangeably used with personalized medicine, genomic medicine and individualized medicine. Collectively, these terms refer to at least 5 distinct concepts in the context of AML. 1st, using molecular or omics data (e.g. genomics, epigenomics, transcriptomics, proteomics) to delineate or define subtypes of AML. 2nd, using these data to select the best therapy for someone with an AML subtype, such as a person with a FLT3-mutation. 3rd, using these data to monitor therapy-response such as measurable residual disease [MRD]-testing. 4th, using results of MRD-testing to select from amongst therapy-options such as additional chemotherapy or a haematopoietic cell transplant. And 5th, using these data to identify persons with hereditary forms of AML with potential therapy and surveillance implications. Here, we review these 5 conceptions and delineate where precision medicine is likely to afford greatest hope and where instead our rhetoric may constitute hype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single cell analysis of normal and leukemic hematopoiesis.
Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J
2018-02-01
The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.
Overview of 'Omics Technologies for Military Occupational Health Surveillance and Medicine.
Bradburne, Christopher; Graham, David; Kingston, H M; Brenner, Ruth; Pamuku, Matt; Carruth, Lucy
2015-10-01
Systems biology ('omics) technologies are emerging as tools for the comprehensive analysis and monitoring of human health. In order for these tools to be used in military medicine, clinical sampling and biobanking will need to be optimized to be compatible with downstream processing and analysis for each class of molecule measured. This article provides an overview of 'omics technologies, including instrumentation, tools, and methods, and their potential application for warfighter exposure monitoring. We discuss the current state and the potential utility of personalized data from a variety of 'omics sources including genomics, epigenomics, transcriptomics, metabolomics, proteomics, lipidomics, and efforts to combine their use. Issues in the "sample-to-answer" workflow, including collection and biobanking are discussed, as well as national efforts for standardization and clinical interpretation. Establishment of these emerging capabilities, along with accurate xenobiotic monitoring, for the Department of Defense could provide new and effective tools for environmental health monitoring at all duty stations, including deployed locations. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason
2016-01-01
Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558
Microfluidics for genome-wide studies involving next generation sequencing
Murphy, Travis W.; Lu, Chang
2017-01-01
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707
Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P
2014-10-15
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. Copyright © 2014 the American Physiological Society.
Integrated Analysis of Transcriptomic and Proteomic Data
Haider, Saad; Pal, Ranadip
2013-01-01
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820
Five years later: the current status of the use of proteomics and transcriptomics in EMF research.
Leszczynski, Dariusz; de Pomerai, David; Koczan, Dirk; Stoll, Dieter; Franke, Helmut; Albar, Juan Pablo
2012-08-01
The World Health Organization's and Radiation and Nuclear Safety Authority's "Workshop on Application of Proteomics and Transcriptomics in Electromagnetic Fields Research" was held in Helsinki in the October/November 2005. As a consequence of this meeting, Proteomics journal published in 2006 a special issue "Application of Proteomics and Transcriptomics in EMF Research" (Vol. 6 No. 17; Guest Editor: D. Leszczynski). This Proteomics issue presented the status of research, of the effects of electromagnetic fields (EMF) using proteomics and transcriptomics methods, present in 2005. The current overview/opinion article presents the status of research in this area by reviewing all studies that were published by the end of 2010. The review work was a part of the European Cooperation in the Field of Scientific and Technical Research (COST) Action BM0704 that created a structure in which researchers in the field of EMF and health shared knowledge and information. The review was prepared by the members of the COST Action BM0704 task group on the high-throughput screening techniques and electromagnetic fields (TG-HTST-EMF). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guerrero-Bosagna, Carlos; Savenkova, Marina; Haque, Md. Muksitul; Nilsson, Eric; Skinner, Michael K.
2013-01-01
Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that correlates with adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility. PMID:23555832
Verkest, Aurine; Byzova, Marina; Martens, Cindy; Willems, Patrick; Verwulgen, Tom; Slabbinck, Bram; Rombaut, Debbie; Van de Velde, Jan; Vandepoele, Klaas; Standaert, Evi; Peeters, Marrit; Van Lijsebettens, Mieke; Van Breusegem, Frank; De Block, Marc
2015-08-01
To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding. © 2015 American Society of Plant Biologists. All Rights Reserved.
This week, we are excited to announce the launch of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) Proteogenomics Computational DREAM Challenge. The aim of this Challenge is to encourage the generation of computational methods for extracting information from the cancer proteome and for linking those data to genomic and transcriptomic information. The specific goals are to predict proteomic and phosphoproteomic data from other multiple data types including transcriptomics and genetics.
Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Com, Emmanuelle, E-mail: emmanuelle.com@univ-rennes1.fr; INSERM U625, Proteomics Core Facility Biogenouest, Rennes; Boitier, Eric
2012-01-01
Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 andmore » 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic data turned out to be complementary and are integrated. ► A more comprehensive putative model of nephrotoxicity of gentamicin is presented.« less
Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective
Fleta-Soriano, Eva; Munné-Bosch, Sergi
2016-01-01
Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046
Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.
Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin
2014-06-13
Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Rokyta, Darin R; Ward, Micaiah J
2017-03-15
The order Scorpiones is one of the most ancient and diverse lineages of venomous animals, having originated approximately 430 million years ago and diversified into 14 extant families. Although partial venom characterizations have been described for numerous scorpion species, we provided the first quantitative transcriptome/proteome comparison for a scorpion species using single-animal approaches. We sequenced the venom-gland transcriptomes of a male and female black-back scorpion (Hadrurus spadix) from the family Caraboctonidae using the Illumina sequencing platform and conducted independent quantitative mass-spectrometry analyses of their venoms. We identified 79 proteomically confirmed venom proteins, an additional 69 transcripts with homology to toxins from other species, and 596 nontoxin proteins expressed at high levels in the venom glands. The venom of H. spadix was rich in antimicrobial peptides, K + -channel toxins, and several classes of peptidases. However, the most diverse and one of the most abundant classes of putative toxins could not be assigned even a tentative functional role on the basis of homology, indicating that this venom contained a wealth of previously unexplored animal toxin diversity. We found good agreement between both transcriptomic and proteomic abundances across individuals, but transcriptomic and proteomic abundandances differed substantially within each individual. Small peptide toxins such as K + -channel toxins and antimicrobial peptides proved challenging to detect proteomically, at least in part due to the significant proteolytic processing involved in their maturation. In addition, we found a significant tendency for our proteomic approach to overestimate the abundances of large putative toxins and underestimate the abundances of smaller toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.
The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts.
Williams, Tim D; Mirbahai, Leda; Chipman, J Kevin
2014-03-01
Zebrafish (Danio rerio) is one of a number of teleost fish species frequently employed in toxicology. Toxico-genomics determines global transcriptomic responses to chemical exposures and can predict their effects. It has been applied successfully within aquatic toxicology to assist in chemical testing, determination of mechanisms and environmental monitoring. Moreover, the related field of toxico-epigenomics, that determines chemical-induced changes in DNA methylation, histone modifications and micro-RNA expression, is emerging as a valuable contribution to understanding mechanisms of both adaptive and adverse responses. Zebrafish has proven a useful and convenient model species for both transcriptomic and epigenetic toxicological studies. Despite zebrafish's dominance in other areas of fish biology, alternative fish species are used extensively in toxico-genomics. The main reason for this is that environmental monitoring generally focuses on species native to the region of interest. We are starting to see advances in the integration of high-throughput screening, omics techniques and bioinformatics together with more traditional indicator endpoints that are relevant to regulators. Integration of such approaches with high-throughput testing of zebrafish embryos, leading to the discovery of adverse outcome pathways, promises to make a major contribution to ensuring the safety of chemicals in the environment.
Nutrigenomics: Definitions and Advances of This New Science
Sales, N. M. R.; Pelegrini, P. B.; Goersch, M. C.
2014-01-01
The search for knowledge regarding healthy/adequate food has increased in the last decades among the world population, researchers, nutritionists, and health professionals. Since ancient times, humans have known that environment and food can interfere with an individual's health condition, and have used food and plants as medicines. With the advance of science, especially after the conclusion of the Human Genome Project (HGP), scientists started questioning if the interaction between genes and food bioactive compounds could positively or negatively influence an individual's health. In order to assess this interaction between genes and nutrients, the term “Nutrigenomics” was created. Hence, Nutrigenomics corresponds to the use of biochemistry, physiology, nutrition, genomics, proteomics, metabolomics, transcriptomics, and epigenomics to seek and explain the existing reciprocal interactions between genes and nutrients at a molecular level. The discovery of these interactions (gene-nutrient) will aid the prescription of customized diets according to each individual's genotype. Thus, it will be possible to mitigate the symptoms of existing diseases or to prevent future illnesses, especially in the area of Nontransmissible Chronic Diseases (NTCDs), which are currently considered an important world public health problem. PMID:24795820
Individual Biomarkers Using Molecular Personalized Medicine Approaches.
Zenner, Hans P
2017-01-01
Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.
Sustainable data and metadata management at the BD2K-LINCS Data Coordination and Integration Center
Stathias, Vasileios; Koleti, Amar; Vidović, Dušica; Cooper, Daniel J.; Jagodnik, Kathleen M.; Terryn, Raymond; Forlin, Michele; Chung, Caty; Torre, Denis; Ayad, Nagi; Medvedovic, Mario; Ma'ayan, Avi; Pillai, Ajay; Schürer, Stephan C.
2018-01-01
The NIH-funded LINCS Consortium is creating an extensive reference library of cell-based perturbation response signatures and sophisticated informatics tools incorporating a large number of perturbagens, model systems, and assays. To date, more than 350 datasets have been generated including transcriptomics, proteomics, epigenomics, cell phenotype and competitive binding profiling assays. The large volume and variety of data necessitate rigorous data standards and effective data management including modular data processing pipelines and end-user interfaces to facilitate accurate and reliable data exchange, curation, validation, standardization, aggregation, integration, and end user access. Deep metadata annotations and the use of qualified data standards enable integration with many external resources. Here we describe the end-to-end data processing and management at the DCIC to generate a high-quality and persistent product. Our data management and stewardship solutions enable a functioning Consortium and make LINCS a valuable scientific resource that aligns with big data initiatives such as the BD2K NIH Program and concords with emerging data science best practices including the findable, accessible, interoperable, and reusable (FAIR) principles. PMID:29917015
Intratumor and Intertumor Heterogeneity in Melanoma.
Grzywa, Tomasz M; Paskal, Wiktor; Włodarski, Paweł K
2017-12-01
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Luyten, Leen J; Saenen, Nelly D; Janssen, Bram G; Vrijens, Karen; Plusquin, Michelle; Roels, Harry A; Debacq-Chainiaux, Florence; Nawrot, Tim S
2018-06-13
Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution. To summarize and discuss the current evidence and define the gaps of knowledge concerning human placental -omics markers in association with prenatal exposure to ambient air pollution. Two investigators independently searched the PubMed, ScienceDirect, and Scopus databases to identify all studies published until January 2017 with an emphasis on epidemiological research on prenatal exposure to ambient air pollution and the effect on placental -omics signatures. From the initial 386 articles, 25 were retained following an a priori set inclusion and exclusion criteria. We identified eleven studies on the genome, two on the transcriptome, five on the epigenome, five on the proteome category, one study with both genomic and proteomic topics, and one study with both genomic and transcriptomic topics. Six studies discussed the triple relationship between exposure to air pollution during pregnancy, the associated placental -omics marker(s), and the potential effect on disease development later in life. So far, no metabolomic or exposomic data discussing associations between the placenta and prenatal exposure to air pollution have been published. Integration of placental biomarkers in an environmental epidemiological context enables researchers to address fundamental questions essential in unraveling the fetal origin of disease and helps to better define the pregnancy exposome of air pollution. Copyright © 2018 Elsevier Inc. All rights reserved.
Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis.
Song, Xinqiang; Lin, Qingsong
2017-08-01
Rheumatoid arthritis is an autoimmune disease that affects several organs and tissues, predominantly the synovial joints. The pathogenesis of this disease is not completely understood, which maybe involved in the genomic variations, gene expression, protein translation and post-translational modifications. These system variations in genomics, transcriptomics and proteomics are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. However, various '-omics' techniques developed in recent years have opened up new possibilities for clarifying disease pathways and thereby facilitating early diagnosis and specific therapies. This review examines how recent advances in the fields of genomics, transcriptomics and proteomics have contributed to our understanding of rheumatoid arthritis.
Androgen signaling in the liver of fathead minnows (Pimephales promelas) was examined both at the transcriptome level and the proteome level. We exposed female fathead minnows for 48 hr to a prototypical androgen (17b-trenbolone, 5 ug/L), to an antiandrogen (flutamide, 50...
Madio, Bruno; Undheim, Eivind A B; King, Glenn F
2017-08-23
More than a century of research on sea anemone venoms has shown that they contain a diversity of biologically active proteins and peptides. However, recent omics studies have revealed that much of the venom proteome remains unexplored. We used, for the first time, a combination of proteomic and transcriptomic techniques to obtain a holistic overview of the venom arsenal of the well-studied sea anemone Stichodactyla haddoni. A purely search-based approach to identify putative toxins in a transcriptome from tentacles regenerating after venom extraction identified 508 unique toxin-like transcripts grouped into 63 families. However, proteomic analysis of venom revealed that 52 of these toxin families are likely false positives. In contrast, the combination of transcriptomic and proteomic data enabled positive identification of 23 families of putative toxins, 12 of which have no homology known proteins or peptides. Our data highlight the importance of using proteomics of milked venom to correctly identify venom proteins/peptides, both known and novel, while minimizing false positive identifications from non-toxin homologues identified in transcriptomes of venom-producing tissues. This work lays the foundation for uncovering the role of individual toxins in sea anemone venom and how they contribute to the envenomation of prey, predators, and competitors. Proteomic analysis of milked venom combined with analysis of a tentacle transcriptome revealed the full extent of the venom arsenal of the sea anemone Stichodactyla haddoni. This combined approach led to the discovery of 12 entirely new families of disulfide-rich peptides and proteins in a genus of anemones that have been studied for over a century. Copyright © 2017 Elsevier B.V. All rights reserved.
Steinberg, Julia; Brooks, Roger A; Southam, Lorraine; Bhatnagar, Sahir; Roumeliotis, Theodoros I; Hatzikotoulas, Konstantinos; Zengini, Eleni; Wilkinson, J Mark; Choudhary, Jyoti S; McCaskie, Andrew W; Zeggini, Eleftheria
2018-05-08
To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.
Kraniotou, Christina; Karadima, Vasiliki; Bellos, George; Tsangaris, George Th
2018-03-05
The global incidence of metabolic disorders like type 2 diabetes mellitus (DM2) has assumed epidemic proportions, leading to adverse health and socio-economic impacts. It is therefore of critical importance the early diagnosis of DM2 patients and the detection of those at increased risk of disease. In this respect, Precision Medicine (PM) is an emerging approach that includes practices, tests, decisions and treatments adapted to the characteristics of each patient. With regard to DM2, PM manages a wealth of "omics" data (genomic, metabolic, proteomic, environmental, clinical and paraclinical) to increase the number of clinically validated biomarkers in order to identify patients in early stage even before the prediabetic phase. In this paper, we discuss the epidemic dimension of metabolic disorders like type 2 diabetes mellitus (DM2) and the urgent demand for novel biomarkers to reduce the incidence or even delay the onset of DM2. Recent research data produced by "multi-omics" technologies (genomics/epigenomics, transcriptomics, proteomics and metabolomics), suggest that many potential biomarkers might be helpful in the prediction and early diagnosis of DM2. Predictive, Preventive and Personalized Medicine (PPPM) manages and integrates these data to apply personalized, preventive, and therapeutic approaches. This is significant because there is an emerging need for establishing channels for communication and personalized consultation between systems research and precision medicine, as the medicine of the future. Copyright © 2018 Elsevier B.V. All rights reserved.
dbHiMo: a web-based epigenomics platform for histone-modifying enzymes
Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O.; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11 576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. Database URL: http://hme.riceblast.snu.ac.kr/ PMID:26055100
dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.
Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11,576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. © The Author(s) 2015. Published by Oxford University Press.
CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.
Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang
2016-03-15
The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area. © 2015 UICC.
Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics.
Farlik, Matthias; Sheffield, Nathan C; Nuzzo, Angelo; Datlinger, Paul; Schönegger, Andreas; Klughammer, Johanna; Bock, Christoph
2015-03-03
Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
ZHANG, YAFANG; CROFTON, ELIZABETH J.; FAN, XIUZHEN; LI, DINGGE; KONG, FANPING; SINHA, MALA; LUXON, BRUCE A.; SPRATT, HEIDI M.; LICHTI, CHERYL F.; GREEN, THOMAS A.
2016-01-01
Transcriptomic and proteomic approaches have separately proven effective at identifying novel mechanisms affecting addiction-related behavior; however, it is difficult to prioritize the many promising leads from each approach. A convergent secondary analysis of proteomic and transcriptomic results can glean additional information to help prioritize promising leads. The current study is a secondary analysis of the convergence of recently published separate transcriptomic and proteomic analyses of nucleus accumbens (NAc) tissue from rats subjected to environmental enrichment vs. isolation and cocaine self-administration vs. saline. Multiple bioinformatics approaches (e.g. Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA)) were used to interrogate these rich data sets. Although there was little correspondence between mRNA vs. protein at the individual target level, good correspondence was found at the level of gene/protein sets, particularly for the environmental enrichment manipulation. These data identify gene sets where there is a positive relationship between changes in mRNA and protein (e.g. glycolysis, ATP synthesis, translation elongation factor activity, etc.) and gene sets where there is an inverse relationship (e.g. ribosomes, Rho GTPase signaling, protein ubiquitination, etc.). Overall environmental enrichment produced better correspondence than cocaine self-administration. The individual targets contributing to mRNA and protein effects were largely not overlapping. As a whole, these results confirm that robust transcriptomic and proteomic data sets can provide similar results at the gene/protein set level even when there is little correspondence at the individual target level and little overlap in the targets contributing to the effects. PMID:27717806
USDA-ARS?s Scientific Manuscript database
Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...
A Unique Model Platform for C4 Plant Systems and Synthetic Biology
2015-12-10
International Conference in Bioinformatics , Sydney, Australia, July 31 - August 2, 2014. Nielsen LK (2015) Genome scale metabolic and regulatory...the comparison of transcriptome proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting successful...guide the comparison of transcriptome, proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting
Salivary biomarker development using genomic, proteomic and metabolomic approaches
2012-01-01
The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches. PMID:23114182
Stavrianakou, Maria; Perez, Ricardo; Wu, Cheng; Sachs, Matthew S; Aramayo, Rodolfo; Harlow, Mark
2017-08-14
The electric organ of Tetronarce californica (an electric ray formerly known as Torpedo californica) is a classic preparation for biochemical studies of cholinergic neurotransmission. To broaden the usefulness of this preparation, we have performed a transcriptome assembly of the presynaptic component of the electric organ (the electric lobe). We combined our assembled transcriptome with a previous transcriptome of the postsynaptic electric organ, to define a MetaProteome containing pre- and post-synaptic components of the electric organ. Sequencing yielded 102 million paired-end 100 bp reads. De novo Trinity assembly was performed at Kmer 25 (default) and Kmers 27, 29, and 31. Trinity, generated around 103,000 transcripts, and 78,000 genes per assembly. Assemblies were evaluated based on the number of bases/transcripts assembled, RSEM-EVAL scores and informational content and completeness. We found that different assemblies scored differently according to the evaluation criteria used, and that while each individual assembly contained unique information, much of the assembly information was shared by all assemblies. To generate the presynaptic transcriptome (electric lobe), while capturing all information, assemblies were first clustered and then combined with postsynaptic transcripts (electric organ) downloaded from NCBI. The completness of the resulting clustered predicted MetaProteome was rigorously evaluated by comparing its information against the predicted proteomes from Homo sapiens, Callorhinchus milli, and the Transporter Classification Database (TCDB). In summary, we obtained a MetaProteome containing 92%, 88.5%, and 66% of the expected set of ultra-conserved sequences (i.e., BUSCOs), expected to be found for Eukaryotes, Metazoa, and Vertebrata, respectively. We cross-annotated the conserved set of proteins shared between the T. californica MetaProteome and the proteomes of H. sapiens and C. milli, using the H. sapiens genome as a reference. This information was used to predict the position in human pathways of the conserved members of the T. californica MetaProteome. We found proteins not detected before in T. californica, corresponding to processes involved in synaptic vesicle biology. Finally, we identified 42 transporter proteins in TCDB that were detected by the T. californica MetaProteome (electric fish) and not selected by a control proteome consisting of the combined proteomes of 12 widely diverse non-electric fishes by Reverse-Blast-Hit Blast. Combined, the information provided here is not only a unique tool for the study of cholinergic neurotransmission, but it is also a starting point for understanding the evolution of early vertebrates.
Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry
2015-01-01
Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.
Guarnieri, Michael T.; Nag, Ambarish; Smolinski, Sharon L.; Darzins, Al; Seibert, Michael; Pienkos, Philip T.
2011-01-01
Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga. PMID:22043295
DOGMA: domain-based transcriptome and proteome quality assessment.
Dohmen, Elias; Kremer, Lukas P M; Bornberg-Bauer, Erich; Kemena, Carsten
2016-09-01
Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M
2013-01-01
Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation.
Sedeek, Khalid E. M.; Qi, Weihong; Schauer, Monica A.; Gupta, Alok K.; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P.; Schlüter, Philipp M.
2013-01-01
Background Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. Results We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Conclusion Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation. PMID:23734209
From Genomics to Omics Landscapes of Parkinson's Disease: Revealing the Molecular Mechanisms
Redenšek, Sara; Dolžan, Vita
2018-01-01
Abstract Molecular mechanisms of Parkinson's disease (PD) have already been investigated in various different omics landscapes. We reviewed the literature about different omics approaches between November 2005 and November 2017 to depict the main pathological pathways for PD development. In total, 107 articles exploring different layers of omics data associated with PD were retrieved. The studies were grouped into 13 omics layers: genomics–DNA level, transcriptomics, epigenomics, proteomics, ncRNomics, interactomics, metabolomics, glycomics, lipidomics, phenomics, environmental omics, pharmacogenomics, and integromics. We discussed characteristics of studies from different landscapes, such as main findings, number of participants, sample type, methodology, and outcome. We also performed curation and preliminary synthesis of multiple omics data, and identified overlapping results, which could lead toward selection of biomarkers for further validation of PD risk loci. Biomarkers could support the development of targeted prognostic/diagnostic panels as a tool for early diagnosis and prediction of progression rate and prognosis. This review presents an example of a comprehensive approach to revealing the underlying processes and risk factors of a complex disease. It urges scientists to structure the already known data and integrate it into a meaningful context. PMID:29356624
Alzheimer's disease in the omics era.
Sancesario, Giulia M; Bernardini, Sergio
2018-06-18
Recent progresses in high-throughput technologies have led to a new scenario in investigating pathologies, named the "Omics era", which integrate the opportunity to collect large amounts of data and information at the molecular and protein levels together with the development of novel computational and statistical tools that are able to analyze and filter such data. Subsequently, advances in genotyping arrays, next generation sequencing, mass spectrometry technology, and bioinformatics allowed for the simultaneous large-scale study of thousands of genes (genomics), epigenetics factors (epigenomics), RNA (transcriptomics), metabolites (metabolomics) and proteins(proteomics), with the possibility of integrating multiple types of omics data ("multi -omics"). All of these technological innovations have modified the approach to the study of complex diseases, such as Alzheimer's Disease (AD), thus representing a promising tool to investigate the relationship between several molecular pathways in AD as well as other pathologies. This review focuses on the current knowledge on the pathology of AD, the recent findings from Omics sciences, and the challenge of the use of Big Data. We then focus on future perspectives for Omics sciences, such as the discovery of novel diagnostic biomarkers or drugs. Copyright © 2018. Published by Elsevier Inc.
The IBD interactome: an integrated view of aetiology, pathogenesis and therapy.
de Souza, Heitor S P; Fiocchi, Claudio; Iliopoulos, Dimitrios
2017-12-01
Crohn's disease and ulcerative colitis are prototypical complex diseases characterized by chronic and heterogeneous manifestations, induced by interacting environmental, genomic, microbial and immunological factors. These interactions result in an overwhelming complexity that cannot be tackled by studying the totality of each pathological component (an '-ome') in isolation without consideration of the interaction among all relevant -omes that yield an overall 'network effect'. The outcome of this effect is the 'IBD interactome', defined as a disease network in which dysregulation of individual -omes causes intestinal inflammation mediated by dysfunctional molecular modules. To define the IBD interactome, new concepts and tools are needed to implement a systems approach; an unbiased data-driven integration strategy that reveals key players of the system, pinpoints the central drivers of inflammation and enables development of targeted therapies. Powerful bioinformatics tools able to query and integrate multiple -omes are available, enabling the integration of genomic, epigenomic, transcriptomic, proteomic, metabolomic and microbiome information to build a comprehensive molecular map of IBD. This approach will enable identification of IBD molecular subtypes, correlations with clinical phenotypes and elucidation of the central hubs of the IBD interactome that will aid discovery of compounds that can specifically target the hubs that control the disease.
The Twins Study: NASA's First Foray into 21st Century Omics Research
NASA Technical Reports Server (NTRS)
Kundrot, C. E.; Shelhamer, M.; Scott, G. B. I.
2015-01-01
The full array of 21st century omics-based research methods should be intelligently employed to reduce the health and performance risks that astronauts will be exposed to during exploration missions beyond low Earth Orbit. In March of 2015, US Astronaut Scott Kelly will launch to the International Space Station for a one year mission while his twin brother, Mark Kelly, a retired US Astronaut, remains on the ground. This situation presents an extremely rare flight opportunity to perform an integrated omics-based demonstration pilot study involving identical twin astronauts. A group of 10 principal investigators has been competitively selected, funded, and teamed together to form the Twins Study. A very broad range of biological function are being examined including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. The plans for the Twins Study and an overview of initial results will be described as well as the technological and ethical issues raised for such spaceflight studies. An anticipated outcome of the Twins Study is that it will place NASA on a trajectory of using omics-based information to develop precision countermeasures for individual astronauts.
Kel, AlexanderE
2017-02-01
Computational analysis of master regulators through the search for transcription factor binding sites followed by analysis of signal transduction networks of a cell is a new approach of causal analysis of multi-omics data. This paper contains results on analysis of multi-omics data that include transcriptomics, proteomics and epigenomics data of methotrexate (MTX) resistant colon cancer cell line. The data were used for analysis of mechanisms of resistance and for prediction of potential drug targets and promising compounds for reverting the MTX resistance of these cancer cells. We present all results of the analysis including the lists of identified transcription factors and their binding sites in genome and the list of predicted master regulators - potential drug targets. This data was generated in the study recently published in the article "Multi-omics "Upstream Analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer" (Kel et al., 2016) [4]. These data are of interest for researchers from the field of multi-omics data analysis and for biologists who are interested in identification of novel drug targets against NTX resistance.
Ogino, Shuji; King, Emily E.; Beck, Andrew H.; Sherman, Mark E.; Milner, Danny A.; Giovannucci, Edward
2012-01-01
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators. PMID:22935517
Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K
2013-12-01
The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.
Helper T Cell Identity and Evolution of Differential Transcriptomes and Epigenomes
Vahedi, Golnaz; Poholek, Amanda; Hand, Timothy W.; Laurence, Arian; Kann, Yuka; O’Shea, John J.; Hirahara, Kiyoshi
2013-01-01
Summary CD4+ T cells are critical for the elimination of an immense array of microbial pathogens. Among the ways they accomplish this task is to generate progeny with specialized, characteristic patterns of gene expression. From this perspective, helper cells can be viewed as pluripotent precursors that adopt distinct cell fates. Although there are aspects of helper cell differentiation that can be modeled as a classic cell fate commitment, CD4+ T cells also maintain considerable flexibility in their transcriptional program. This makes sense in terms of host defense but raises the question of how these remarkable cells balance both these requirements, a high degree of specific gene expression and the capacity for plasticity. In this review, we discuss recent advances in our understanding of CD4+ T-cell specification, focusing on how genomic perspectives have influenced our views of these processes. The relative contributions of sensors of the cytokine milieu, especially the signal transducer and activator of transcription (STAT) family transcription factors, ‘master regulators’, and other transcription factors are considered as they relate to the helper cell transcriptome and epigenome. PMID:23405893
Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes
Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise
2009-01-01
Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885
Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D
2006-04-01
Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.
accumulation," J. Proteomics (2013) "Comparative Proteomics Lends Insight into Genotype-Specific Pathogenicity," J. Proteomics (2013) "De Novo Transcriptomic Analysis of Hydrogen Production in the amino acid changes in the small envelope protein and rescued by a novel glycosolation site," J
Rosa-Garrido, Manuel; Chapski, Douglas J.; Schmitt, Anthony D.; Kimball, Todd H.; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J.; Ren, Shuxun; Wang, Yibin; Ren, Bing
2017-01-01
Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload–induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Results: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. Conclusions: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. PMID:28802249
Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M
2017-10-24
Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.
Liu, Ying; Giannopoulou, Eugenia G; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C David; Rafii, Shahin; Seandel, Marco
2016-04-27
Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming.
Liu, Ying; Giannopoulou, Eugenia G.; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C. David; Rafii, Shahin; Seandel, Marco
2016-01-01
Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. PMID:27117588
Ma, Yibao; Zhao, Yong; Zhao, Ruiming; Zhang, Weiping; He, Yawen; Wu, Yingliang; Cao, Zhijian; Guo, Lin; Li, Wenxin
2010-07-01
Scorpion venoms contain a vast untapped reservoir of natural products, which have the potential for medicinal value in drug discovery. In this study, toxin components from the scorpion Heterometrus petersii venom were evaluated by transcriptome and proteome analysis.Ten known families of venom peptides and proteins were identified, which include: two families of potassium channel toxins, four families of antimicrobial and cytolytic peptides,and one family from each of the calcium channel toxins, La1-like peptides, phospholipase A2,and the serine proteases. In addition, we also identified 12 atypical families, which include the acid phosphatases, diuretic peptides, and ten orphan families. From the data presented here, the extreme diversity and convergence of toxic components in scorpion venom was uncovered. Our work demonstrates the power of combining transcriptomic and proteomic approaches in the study of animal venoms.
Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul
2017-10-06
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Computational Study of the Genomic and Epigenomic Phenomena
NASA Astrophysics Data System (ADS)
Yang, Wenjing
Biological systems are perhaps the ultimate complex systems, uniquely capable of processing and communicating information, reproducing in their lifetimes, and adapting in evolutionary time scales. My dissertation research focuses on using computational approaches to understand the biocomplexity manifested in the multitude of length scales and time scales. At the molecular and cellular level, central to the complex behavior of a biological system is the regulatory network. My research study focused on epigenetics, which is essential for multicellular organisms to establish cellular identity during development or in response to intracellular and environmental stimuli. My computational study of epigenomics is greatly facilitated by recent advances in high-throughput sequencing technology, which enables high-resolution snapshots of epigenomes and transcriptomes. Using human CD4+ T cell as a model system, the dynamical changes in epigenome and transcriptome pertinent to T cell activation were investigated at the genome scale. Going beyond traditional focus on transcriptional regulation, I provided evidences that post-transcriptional regulation may serve as a major component of the regulatory network. In addition, I explored alternative polyadenylation, another novel aspect of gene regulation, and how it cross-talks with the local chromatin structure. As the renowned theoretical biologist Theodosius Dobzhansky said eloquently, "Nothing in biology makes sense except in the light of evolution''. To better understand this ubiquitous driving force in the biological world, I went beyond molecular events in a single organism, and investigated the dynamical changes of population structure along the evolutionary time scale. To this end, we used HIV virus population dynamics in the host immune system as a model system. The evolution of HIV viral population plays a key role in AIDS immunopathogenesis with its exceptionally high mutation rate. However, the theoretical studies of the effect of recombination have been rather limited. Given the phylogenetic and experimental evidences for the high recombination rate and its important role in HIV evolution and epidemics, I established a mathematical model to study the effect of recombination, and explored the complex behavior of this dynamics system.
Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing
2011-01-01
Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Conclusions Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. PMID:21605378
Proteogenomics | Office of Cancer Clinical Proteomics Research
Proteogenomics, or the integration of proteomics with genomics and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio; Ortega-Villaizan, María Del Mar
2018-04-09
Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.
Puente-Marin, Sara; Ciordia, Sergio; Mena, María Carmen; Chico, Verónica; Coll, Julio
2018-01-01
Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation. PMID:29642539
Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.
The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less
Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation
Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...
2015-02-16
The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina
2017-07-06
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie
2017-01-01
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. PMID:28684682
Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology.
Tan, Kar-Chun; Ipcho, Simon V S; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S
2009-09-01
SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.
Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila
2011-01-01
Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938
Shukla, Hem D
2017-10-25
During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.
Proteogenomics, integration of proteomics, genomics, and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun
2016-01-01
Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283
Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.
Zhang, Xiaoyan; Marjani, Sadie L; Hu, Zhaoyang; Weissman, Sherman M; Pan, Xinghua; Wu, Shixiu
2016-03-15
Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing. ©2016 American Association for Cancer Research.
Shabalina, Svetlana A.; Ogurtsov, Aleksey Y.; Spiridonov, Nikolay A.; Koonin, Eugene V.
2014-01-01
Alternative splicing (AS), alternative transcription initiation (ATI) and alternative transcription termination (ATT) create the extraordinary complexity of transcriptomes and make key contributions to the structural and functional diversity of mammalian proteomes. Analysis of mammalian genomic and transcriptomic data shows that contrary to the traditional view, the joint contribution of ATI and ATT to the transcriptome and proteome diversity is quantitatively greater than the contribution of AS. Although the mean numbers of protein-coding constitutive and alternative nucleotides in gene loci are nearly identical, their distribution along the transcripts is highly non-uniform. On average, coding exons in the variable 5′ and 3′ transcript ends that are created by ATI and ATT contain approximately four times more alternative nucleotides than core protein-coding regions that diversify exclusively via AS. Short upstream exons that encompass alternative 5′-untranslated regions and N-termini of proteins evolve under strong nucleotide-level selection whereas in 3′-terminal exons that encode protein C-termini, protein-level selection is significantly stronger. The groups of genes that are subject to ATI and ATT show major differences in biological roles, expression and selection patterns. PMID:24792168
Marmiroli, Marta; Imperiale, Davide; Pagano, Luca; Villani, Marco; Zappettini, Andrea; Marmiroli, Nelson
2015-01-01
A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment. PMID:26732871
Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome
Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.
2011-01-01
Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880
Safavi-Hemami, Helena; Hu, Hao; Gorasia, Dhana G.; Bandyopadhyay, Pradip K.; Veith, Paul D.; Young, Neil D.; Reynolds, Eric C.; Yandell, Mark; Olivera, Baldomero M.; Purcell, Anthony W.
2014-01-01
Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities. PMID:24478445
A practical data processing workflow for multi-OMICS projects.
Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin
2014-01-01
Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.
Identifier mapping performance for integrating transcriptomics and proteomics experimental results
2011-01-01
Background Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit. Results We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed. Conclusions The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging. PMID:21619611
He, Ruifeng; Kim, Min-Jeong; Nelson, William; Balbuena, Tiago S; Kim, Ryan; Kramer, Robin; Crow, John A; May, Greg D; Thelen, Jay J; Soderlund, Carol A; Gang, David R
2012-02-01
The common reed (Phragmites australis), one of the most widely distributed of all angiosperms, uses its rhizomes (underground stems) to invade new territory, making it one of the most successful weedy species worldwide. Characterization of the rhizome transcriptome and proteome is needed to identify candidate genes and proteins involved in rhizome growth, development, metabolism, and invasiveness. We employed next-generation sequencing technologies including 454 and Illumina platforms to characterize the reed rhizome transcriptome and used quantitative proteomics techniques to identify the rhizome proteome. Combining 336514 Roche 454 Titanium reads and 103350802 Illumina paired-end reads in a de novo hybrid assembly yielded 124450 unique transcripts with an average length of 549 bp, of which 54317 were annotated. Rhizome-specific and differentially expressed transcripts were identified between rhizome apical tips (apical meristematic region) and rhizome elongation zones. A total of 1280 nonredundant proteins were identified and quantified using GeLC-MS/MS based label-free proteomics, where 174 and 77 proteins were preferentially expressed in the rhizome elongation zone and apical tip tissues, respectively. Genes involved in allelopathy and in controlling development and potentially invasiveness were identified. In addition to being a valuable sequence and protein data resource for studying plant rhizome species, our results provide useful insights into identifying specific genes and proteins with potential roles in rhizome differentiation, development, and function.
Educating future nursing scientists: Recommendations for integrating omics content in PhD programs.
Conley, Yvette P; Heitkemper, Margaret; McCarthy, Donna; Anderson, Cindy M; Corwin, Elizabeth J; Daack-Hirsch, Sandra; Dorsey, Susan G; Gregory, Katherine E; Groer, Maureen W; Henly, Susan J; Landers, Timothy; Lyon, Debra E; Taylor, Jacquelyn Y; Voss, Joachim
2015-01-01
Preparing the next generation of nursing scientists to conduct high-impact, competitive, sustainable, innovative, and interdisciplinary programs of research requires that the curricula for PhD programs keep pace with emerging areas of knowledge and health care/biomedical science. A field of inquiry that holds great potential to influence our understanding of the underlying biology and mechanisms of health and disease is omics. For the purpose of this article, omics refers to genomics, transcriptomics, proteomics, epigenomics, exposomics, microbiomics, and metabolomics. Traditionally, most PhD programs in schools of nursing do not incorporate this content into their core curricula. As part of the Council for the Advancement of Nursing Science's Idea Festival for Nursing Science Education, a work group charged with addressing omics preparation for the next generation of nursing scientists was convened. The purpose of this article is to describe key findings and recommendations from the work group that unanimously and enthusiastically support the incorporation of omics content into the curricula of PhD programs in nursing. The work group also calls to action faculty in schools of nursing to develop strategies to enable students needing immersion in omics science and methods to execute their research goals. Copyright © 2015 Elsevier Inc. All rights reserved.
The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop
Budinger, GR Scott; Kohanski, Ronald A; Gan, Weiniu; Kobor, Michael S; Amaral, Luis A; Armanios, Mary; Kelsey, Karl T; Pardo, Annie; Tuder, Rubin; Macian, Fernando; Chandel, Navdeep; Vaughan, Douglas; Rojas, Mauricio; Mora, Ana L; Kovacs, Elizabeth; Duncan, Steven R; Finkel, Toren; Choi, Augustine; Eickelberg, Oliver; Chen, Danica; Agusti, Alvar; Selman, Moises; Balch, William E; Busse, Paula; Lin, Anning; Morimoto, Richard; Sznajder, Jacob I; Thannickal, Victor J
2017-01-01
Abstract Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor. PMID:28498894
Lewis, David J. M.; Lythgoe, Mark P.
2015-01-01
Advances in “omics” technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity. Predictive biomarkers of relatively frequent inflammatory reactogenicity may be identified in systems vaccinology studies involving tens or hundreds of participants and used to screen new vaccines and adjuvants in in vitro, ex vivo, animal, or human models. The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology. The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models. Discriminatory profiles or biomarkers are being identified, which require validation in large trials involving thousands of participants before they can be generalized. Ultimately, it is to be hoped that the knowledge gained from such initiatives will provide tools to the industry, academia, and regulators to select optimal noninflammatory but immunogenic and effective vaccine adjuvant combinations, thereby shortening product development cycles and identifying unsuitable vaccine candidates that would fail in expensive late stage development or postmarketing. PMID:26380327
A Systems Toxicology Approach Reveals Biological Pathways Dysregulated by Prenatal Arsenic Exposure
Laine, Jessica E.; Fry, Rebecca C.
2016-01-01
BACKGROUND Prenatal exposure to inorganic arsenic (iAs) is associated with dysregulated gene and protein expression in the fetus, both evident at birth. Potential epigenetic mechanisms that underlie these changes include but are not limited to the methylation of cytosines (CpG). OBJECTIVE The aim of the present study was to compile datasets from studies on prenatal arsenic exposure to identify whether key genes, proteins, or both and their associated biological pathways are perturbed. METHODS We compiled datasets from 12 studies that analyzed the relationship between prenatal iAs exposure and fetal changes to the epigenome (5-methyl cytosine), transcriptome (mRNA expression), and/or proteome (protein expression changes). FINDINGS Across the 12 studies, a set of 845 unique genes was identified and found to enrich for their role in biological pathways, including those signaled by peroxisome proliferator-activated receptor, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, and the glucocorticoid receptor. Tumor necrosis factor was identified as a putative cellular regulator underlying most (n = 277) of the identified iAs-associated genes or proteins. CONCLUSIONS Given their common identification across numerous human cohorts and their known toxicologic role in disease, the identified genes and pathways may underlie altered disease susceptibility associated with prenatal exposure to iAs. PMID:27325076
Dayem Ullah, Abu Z; Oscanoa, Jorge; Wang, Jun; Nagano, Ai; Lemoine, Nicholas R; Chelala, Claude
2018-05-11
Broader functional annotation of genetic variation is a valuable means for prioritising phenotypically-important variants in further disease studies and large-scale genotyping projects. We developed SNPnexus to meet this need by assessing the potential significance of known and novel SNPs on the major transcriptome, proteome, regulatory and structural variation models. Since its previous release in 2012, we have made significant improvements to the annotation categories and updated the query and data viewing systems. The most notable changes include broader functional annotation of noncoding variants and expanding annotations to the most recent human genome assembly GRCh38/hg38. SNPnexus has now integrated rich resources from ENCODE and Roadmap Epigenomics Consortium to map and annotate the noncoding variants onto different classes of regulatory regions and noncoding RNAs as well as providing their predicted functional impact from eight popular non-coding variant scoring algorithms and computational methods. A novel functionality offered now is the support for neo-epitope predictions from leading tools to facilitate its use in immunotherapeutic applications. These updates to SNPnexus are in preparation for its future expansion towards a fully comprehensive computational workflow for disease-associated variant prioritization from sequencing data, placing its users at the forefront of translational research. SNPnexus is freely available at http://www.snp-nexus.org.
Gene–Dairy Food Interactions and Health Outcomes: A Review of Nutrigenetic Studies
Pasin, Gonca
2017-01-01
Each person differs from the next by an average of over 3 million genetic variations in their DNA. This genetic diversity is responsible for many of the interindividual differences in food preferences, nutritional needs, and dietary responses between humans. The field of nutrigenetics aims to utilize this type of genetic information in order to personalize diets for optimal health. One of the most well-studied genetic variants affecting human dietary patterns and health is the lactase persistence mutation, which enables an individual to digest milk sugar into adulthood. Lactase persistence is one of the most influential Mendelian factors affecting human dietary patterns to occur since the beginning of the Neolithic Revolution. However, the lactase persistence mutation is only one of many mutations that can influence the relationship between dairy intake and disease risk. The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes. Nonetheless, the understanding of an individual’s nutrigenetic responses is just one component of personalized nutrition. In addition to nutrigenetic responses, future studies should also take into account nutrigenomic responses (epigenomic, transcriptomic, proteomic, metabolomic), and phenotypic/characteristic traits (age, gender, activity level, disease status, etc.), as these factors all interact with diet to influence health. PMID:28684688
Molecular nutrition research: the modern way of performing nutritional science.
Norheim, Frode; Gjelstad, Ingrid Merethe Fange; Hjorth, Marit; Vinknes, Kathrine J; Langleite, Torgrim M; Holen, Torgeir; Jensen, Jørgen; Dalen, Knut Tomas; Karlsen, Anette S; Kielland, Anders; Rustan, Arild C; Drevon, Christian A
2012-12-03
In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases.
Molecular Nutrition Research—The Modern Way Of Performing Nutritional Science
Norheim, Frode; Gjelstad, Ingrid M. F.; Hjorth, Marit; Vinknes, Kathrine J.; Langleite, Torgrim M.; Holen, Torgeir; Jensen, Jørgen; Dalen, Knut Tomas; Karlsen, Anette S.; Kielland, Anders; Rustan, Arild C.; Drevon, Christian A.
2012-01-01
In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases. PMID:23208524
The impact of network medicine in gastroenterology and hepatology.
Baffy, György
2013-10-01
In the footsteps of groundbreaking achievements made by biomedical research, another scientific revolution is unfolding. Systems biology draws from the chaos and complexity theory and applies computational models to predict emerging behavior of the interactions between genes, gene products, and environmental factors. Adaptation of systems biology to translational and clinical sciences has been termed network medicine, and is likely to change the way we think about preventing, predicting, diagnosing, and treating complex human diseases. Network medicine finds gene-disease associations by analyzing the unparalleled digital information discovered and created by high-throughput technologies (dubbed as "omics" science) and links genetic variance to clinical disease phenotypes through intermediate organizational levels of life such as the epigenome, transcriptome, proteome, and metabolome. Supported by large reference databases, unprecedented data storage capacity, and innovative computational analysis, network medicine is poised to find links between conditions that were thought to be distinct, uncover shared disease mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and trajectories, identify novel therapeutic applications, and help avoid off-target and undesirable drug effects. Recent advances indicate that these perspectives are increasingly within our reach for understanding and managing complex diseases of the digestive system. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Welkie, David; Zhang, Xiaohui; Markillie, Meng; ...
2014-12-29
Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we were able to quantify the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes.
Casimiro-Soriguer, Carlos S; Muñoz-Mérida, Antonio; Pérez-Pulido, Antonio J
2017-06-01
The current cheapening of next-generation sequencing has led to an enormous growth in the number of sequenced genomes and transcriptomes, allowing wet labs to get the sequences from their organisms of study. To make the most of these data, one of the first things that should be done is the functional annotation of the protein-coding genes. But it used to be a slow and tedious step that can involve the characterization of thousands of sequences. Sma3s is an accurate computational tool for annotating proteins in an unattended way. Now, we have developed a completely new version, which includes functionalities that will be of utility for fundamental and applied science. Currently, the results provide functional categories such as biological processes, which become useful for both characterizing particular sequence datasets and comparing results from different projects. But one of the most important implemented innovations is that it has now low computational requirements, and the complete annotation of a simple proteome or transcriptome usually takes around 24 hours in a personal computer. Sma3s has been tested with a large amount of complete proteomes and transcriptomes, and it has demonstrated its potential in health science and other specific projects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D
2016-12-09
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis . The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Santibáñez-López, Carlos E.; Cid-Uribe, Jimena I.; Batista, Cesar V. F.; Ortiz, Ernesto; Possani, Lourival D.
2016-01-01
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms. PMID:27941686
Genome-wide proteomics analysis on longissimus muscles in Qinchuan beef cattle.
He, Hua; Chen, Si; Liang, Wei; Liu, Xiaolin
2017-04-01
To gain further insight into the molecular mechanism of bovine muscle development, we combined mass spectrometry characterization of proteins with Illumina deep sequencing of RNAs obtained from bovine longissimus muscle (LD) at prenatal and postnatal stages. For the proteomic study, each group of LD proteins was extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) method. Among the 1321 proteins identified from six samples, 390 proteins were differentially expressed in embryos at day 135 post-fertilization (Emb135d) vs. 30-month-old adult cattle (Emb135d vs. 30M) samples. Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted to better understand the different functions. Furthermore, we analyzed the relationship between transcript and protein regulation between samples by direct comparison of expression levels from transcriptomic and iTRAQ-based proteomics. Association results indicated that 1295 of 1321 proteins could be mapped to transcriptome sequencing data. This study provides the most comprehensive, targeted survey of bovine LD proteins to date and has shown the power of combining transcriptomic and proteomic approaches to provide molecular insights for understanding the developmental characteristics in bovine muscle, and even in other mammals. © 2016 Stichting International Foundation for Animal Genetics.
Fungal proteomics: from identification to function.
Doyle, Sean
2011-08-01
Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
METAL BIOSENSORS: DEVELOPMENT AND ENVIRONMENTAL TESTING
Proteomic and Transcriptional Findings
P. putida cells responded differentially to Cd and Cu exposures at the proteomic and transcriptome levels. The cells displayed different stress responses that correlated with a more intense oxidative stress imposed...
de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain
2015-01-01
Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
2014-01-01
Background Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. Findings We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. Conclusions The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles. PMID:25392735
Chen, Pao-Yang; Montanini, Barbara; Liao, Wen-Wei; Morselli, Marco; Jaroszewicz, Artur; Lopez, David; Ottonello, Simone; Pellegrini, Matteo
2014-01-01
Tuber melanosporum, also known in the gastronomic community as "truffle", features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody ("truffle"), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles.
Proteogenomics Dashboard for the Human Proteome Project.
Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto
2015-09-04
dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.
Méplan, Catherine; Johnson, Ian T; Polley, Abigael C J; Cockell, Simon; Bradburn, David M; Commane, Daniel M; Arasaradnam, Ramesh P; Mulholland, Francis; Zupanic, Anze; Mathers, John C; Hesketh, John
2016-08-01
Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. © The Author(s).
Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; ...
2016-03-03
The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less
Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.
Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali
2018-04-01
Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dihong; Ni, Weimin; Stanley, Bruce A.
The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less
Effects of Space Environment on Genome, Transcriptome, and Proteome of Klebsiella pneumoniae.
Guo, Yinghua; Li, Jia; Liu, Jinwen; Wang, Tong; Li, Yinhu; Yuan, Yanting; Zhao, Jiao; Chang, De; Fang, Xiangqun; Li, Tianzhi; Wang, Junfeng; Dai, Wenkui; Fang, Chengxiang; Liu, Changting
2015-11-01
The aim of this study was to explore the effects of space flight on Klebsiella pneumoniae. A strain of K. pneumoniae was sent to space for 398 h aboard the ShenZhou VIII spacecraft during November 1, 2011-November 17, 2011. At the same time, a ground simulation with similar temperature conditions during the space flight was performed as a control. After the space mission, the flight and control strains were analyzed using phenotypic, genomic, transcriptomic and proteomic techniques. The flight strains LCT-KP289 exhibited a higher cotrimoxazole resistance level and changes in metabolism relative to the ground control strain LCT-KP214. After the space flight, 73 SNPs and a plasmid copy number variation were identified in the flight strain. Based on the transcriptomic analysis, there are 232 upregulated and 1879 downregulated genes, of which almost all were for metabolism. Proteomic analysis revealed that there were 57 upregulated and 125 downregulated proteins. These differentially expressed proteins had several functions that included energy production and conversion, carbohydrate transport and metabolism, translation, ribosomal structure and biogenesis, posttranslational modification, protein turnover, and chaperone functions. At a systems biology level, the ytfG gene had a synonymous mutation that resulted in significantly downregulated expression at both transcriptomic and proteomic levels. The mutation of the ytfG gene may influence fructose and mannose metabolic processes of K. pneumoniae during space flight, which may be beneficial to the field of space microbiology, providing potential therapeutic strategies to combat or prevent infection in astronauts. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.
Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan
2015-02-06
Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.
Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.
Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J
2015-10-01
Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics
Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M.
2016-01-01
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.” PMID:26904030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Michael R.
The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologiesmore » for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?« less
A 2-D guinea pig lung proteome map
USDA-ARS?s Scientific Manuscript database
Guinea pigs represent an important model for a number of infectious and non-infectious pulmonary diseases. The guinea pig genome has recently been sequenced to full coverage, opening up new research avenues using genomics, transcriptomics and proteomics techniques in this species. In order to furth...
Ji, Jialei; Yang, Limei; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng
2018-05-15
Plant male reproductive development is a very complex biological process that involves multiple metabolic pathways. To reveal novel insights into male reproductive development, we conducted an integrated profiling of gene activity in the developing buds of a cabbage recessive genetic male sterile mutant. Using RNA-Seq and label-free quantitative proteomics, 2881 transcripts and 1245 protein species were identified with significant differential abundance between the male sterile line 83121A and its isogenic maintainer line 83121B. Analyses of function annotations and correlations between transcriptome and proteome and protein interaction networks were also conducted, which suggested that the male sterility involves a complex regulatory pattern. Moreover, several key biological processes, such as fatty acid metabolism, tapetosome biosynthesis, amino acid metabolism and protein synthesis and degradation were identified as being of relevance to male reproductive development. A large number of protein species involved in sporopollenin synthesis, amino acid synthesis, ribosome assembly, protein processing in endoplasmic reticulum and lipid transfer were observed to be significantly down-accumulated in 83121A buds, indicating their potential roles in the regulation of cabbage microspore abortion. In summary, the conjoint analysis of the transcriptome and proteome provided a global picture regarding the molecular dynamics in male sterile buds of 83121A. Male sterile mutants are excellent materials for the study of plant male reproductive development. This study revealed the molecular dynamics of recessive male sterility in cabbage at the transcriptome and proteome levels, which deepens our understanding of the metabolic pathways involved in male development. Moreover, the male sterility-related genes identified in this study could provide a reference for the artificial regulation of cabbage fertility by using genetic engineering technology, which may result in potential applications in agriculture such as production of hybrid seeds using male sterility. Copyright © 2018 Elsevier B.V. All rights reserved.
Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions
Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín
2016-01-01
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID:27746771
Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula
2016-01-01
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887. PMID:27379110
Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula
2016-01-01
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.
Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde
2013-05-01
Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.
Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei
2016-01-01
Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.
2013-01-01
Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955
Liu, Fuqing; Huang, Peng; Zhu, Pengcheng; Chen, Jinjun; Shi, Mingming; Guo, Fang; Cheng, Pi; Zeng, Jing; Liao, Yifang; Gong, Jing; Zhang, Hong-Mei; Wang, Depeng; Guo, An-Yuan; Xiong, Xingyao
2013-01-01
Background The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. Methodology and Principal Findings We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. Conclusions/Significance To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies. PMID:23326424
Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique
2017-01-01
The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).
Meder, Benjamin; Haas, Jan; Sedaghat-Hamedani, Farbod; Kayvanpour, Elham; Frese, Karen; Lai, Alan; Nietsch, Rouven; Scheiner, Christina; Mester, Stefan; Bordalo, Diana Martins; Amr, Ali; Dietrich, Carsten; Pils, Dietmar; Siede, Dominik; Hund, Hauke; Bauer, Andrea; Holzer, Daniel Benjamin; Ruhparwar, Arjang; Mueller-Hennessen, Matthias; Weichenhan, Dieter; Plass, Christoph; Weis, Tanja; Backs, Johannes; Wuerstle, Maximilian; Keller, Andreas; Katus, Hugo A; Posch, Andreas E
2017-10-17
Biochemical DNA modification resembles a crucial regulatory layer among genetic information, environmental factors, and the transcriptome. To identify epigenetic susceptibility regions and novel biomarkers linked to myocardial dysfunction and heart failure, we performed the first multi-omics study in myocardial tissue and blood of patients with dilated cardiomyopathy and controls. Infinium human methylation 450 was used for high-density epigenome-wide mapping of DNA methylation in left-ventricular biopsies and whole peripheral blood of living probands. RNA deep sequencing was performed on the same samples in parallel. Whole-genome sequencing of all patients allowed exclusion of promiscuous genotype-induced methylation calls. In the screening stage, we detected 59 epigenetic loci that are significantly associated with dilated cardiomyopathy (false discovery corrected P ≤0.05), with 3 of them reaching epigenome-wide significance at P ≤5×10 -8 . Twenty-seven (46%) of these loci could be replicated in independent cohorts, underlining the role of epigenetic regulation of key cardiac transcription regulators. Using a staged multi-omics study design, we link a subset of 517 epigenetic loci with dilated cardiomyopathy and cardiac gene expression. Furthermore, we identified distinct epigenetic methylation patterns that are conserved across tissues, rendering these CpGs novel epigenetic biomarkers for heart failure. The present study provides to our knowledge the first epigenome-wide association study in living patients with heart failure using a multi-omics approach. © 2017 American Heart Association, Inc.
Proteomics technique opens new frontiers in mobilome research.
Davidson, Andrew D; Matthews, David A; Maringer, Kevin
2017-01-01
A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.
Maringer, Kevin; Yousuf, Amjad; Heesom, Kate J; Fan, Jun; Lee, David; Fernandez-Sesma, Ana; Bessant, Conrad; Matthews, David A; Davidson, Andrew D
2017-01-19
Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
Blue Journal Conference. Aging and Susceptibility to Lung Disease
Thannickal, Victor J.; Murthy, Mahadev; Balch, William E.; Chandel, Navdeep S.; Meiners, Silke; Eickelberg, Oliver; Selman, Moisés; Pardo, Annie; White, Eric S.; Levy, Bruce D.; Busse, Paula J.; Tuder, Rubin M.; Antony, Veena B.; Sznajder, Jacob I.
2015-01-01
The aging of the population in the United States and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered at the conference to develop a broad framework and perspective to stimulate basic, clinical, and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic, and proteomic data and elucidate the relationship between biologic hallmarks of aging, altered lung function, and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identify new strategies to prevent or treat age-related lung disease. PMID:25590812
The Emerging Genomic Landscape of Endometrial Cancer
Le Gallo, Matthieu; Bell, Daphne W.
2014-01-01
BACKGROUND Endometrial cancer is responsible for ~74,000 deaths amongst women worldwide each year. It is a heterogeneous disease that consists of multiple different histological subtypes. In the United States, the majority of deaths from endometrial carcinoma are attributed to the serous and endometrioid subtypes. An understanding of the fundamental genomic alterations that drive serous and endometrioid endometrial carcinomas lays the foundation for the identification of molecular markers that could improve the clinical management of patients presenting with these tumors. CONTENT Herein we review the current state of knowledge of the somatic genomic alterations that are present in serous and endometrioid endometrial tumors. We present this knowledge in a historical context – reviewing the genomic alterations that have been identified over the past two decades or more, from studies of individual genes and proteins, followed by a review of very recent studies that have conducted comprehensive, systematic surveys of genomic, exomic, transcriptomic, epigenomic, and proteomic alterations in serous and endometrioid endometrial carcinomas. SUMMARY The recent mapping of the genomic landscape of serous and endometrioid endometrial carcinomas has resulted in the first comprehensive molecular classification of these tumors and has distinguished four molecular subgroups: a POLE ultramutated subgroup, a hypermutated/microsatellite unstable subgroup, a copy number low/microsatellite stable subgroup, and a copy number high subgroup. This molecular classification may ultimately serve to refine the diagnosis and treatment of women with endometrioid and serous endometrial tumors. PMID:24170611
Arsenomics: omics of arsenic metabolism in plants
Tripathi, Rudra Deo; Tripathi, Preeti; Dwivedi, Sanjay; Dubey, Sonali; Chatterjee, Sandipan; Chakrabarty, Debasis; Trivedi, Prabodh K.
2012-01-01
Arsenic (As) contamination of drinking water and groundwater used for irrigation can lead to contamination of the food chain and poses serious health risk to people worldwide. To reduce As intake through the consumption of contaminated food, identification of the mechanisms for As accumulation and detoxification in plant is a prerequisite to develop efficient phytoremediation methods and safer crops with reduced As levels. Transcriptome, proteome, and metabolome analysis of any organism reflects the total biological activities at any given time which are responsible for the adaptation of the organism to the surrounding environmental conditions. As these approaches are very important in analyzing plant As transport and accumulation, we termed “Arsenomics” as approach which deals transcriptome, proteome, and metabolome alterations during As exposure. Although, various studies have been performed to understand modulation in transcriptome in response to As, many important questions need to be addressed regarding the translated proteins of plants at proteomic and metabolomic level, resulting in various ecophysiological responses. In this review, the comprehensive knowledge generated in this area has been compiled and analyzed. There is a need to strengthen Arsenomics which will lead to build up tools to develop As-free plants for safe consumption. PMID:22934029
Baldrian, Petr; López-Mondéjar, Rubén
2014-02-01
Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. | Office of Cancer Genomics
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels.
Shen, Yao; Stanislauskas, Milda; Li, Gen; Zheng, Deyou; Liu, Liang
2017-01-01
To elucidate the complex molecular mechanisms underlying the adverse effects UV radiation (UVR) on skin homeostasis, we performed multi-omics studies to characterize UV-induced genetic and epigenetic changes. Human keratinocytes from a single donor treated with or without UVR were analyzed by RNA-seq, exome-seq, and H3K27ac ChIP-seq at 4 h and 72 h following UVR. Compared to the relatively moderate mutagenic effects of UVR, acute UV exposure induced substantial epigenomic and transcriptomic alterations, illuminating a previously underappreciated role of epigenomic and transcriptomic instability in skin pathogenesis. Integration of the multi-omics data revealed that UVR-induced transcriptional dysregulation of a subset of genes was attributable to either genetic mutations or global redistribution of H3K27ac. H3K27ac redistribution further led to the formation of distinctive super enhancers in UV-irradiated cells. Our analysis also identified several new UV target genes, including CYP24A1, GJA5, SLAMF7 and ETV1, which were frequently dysregulated in human squamous cell carcinomas, highlighting their potential as new molecular targets for prevention or treatment of UVR-induced skin cancers. Taken together, our concurrent multi-omics analyses provide new mechanistic insights into the complex molecular networks underlying UV photobiological effects, which have important implications in understanding its impact on skin homeostasis and pathogenesis. PMID:28211524
USDA-ARS?s Scientific Manuscript database
Cantharidin is a potent natural herbicide. This work was conducted to probe its mode of action. We previously published its effect on transcription of plant genes (mRNA production) with transcriptomic methods. This paper follows up and looks at cantharidin effects translation of mRNA using proteom...
Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita
Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui
2013-01-01
Background Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. Methodology/Principal Findings To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. Conclusions/Significance This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry. PMID:23418592
Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.
Wang, Man; Gu, Bianli; Huang, Jie; Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui
2013-01-01
Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Wang, Shao-Hua; You, Zheng-Ying; Ye, Lu-Peng; Che, Jiaqian; Qian, Qiujie; Nanjo, Yohei; Komatsu, Setsuko; Zhong, Bo-Xiong
2014-02-07
To investigate the molecular mechanisms underlying the low fibroin production of the ZB silkworm strain, we used both SDS-PAGE-based and gel-free-based proteomic techniques and transcriptomic sequencing technique. Combining the data from two different proteomic techniques was preferable in the characterization of the differences between the ZB silkworm strain and the original Lan10 silkworm strain. The correlation analysis showed that the individual protein and transcript were not corresponded well, however, the differentially changed proteins and transcripts showed similar regulated direction in function at the pathway level. In the ZB strain, numerous ribosomal proteins and transcripts were down-regulated, along with the transcripts of translational related elongation factors and genes of important components of fibroin. The proteasome pathway was significantly enhanced in the ZB strain, indicating that protein degradation began on the third day of fifth instar when fibroin would have been produced in the Lan10 strain normally and plentifully. From proteome and transcriptome levels of the ZB strain, the energy-metabolism-related pathways, oxidative phosphorylation, glycolysis/gluconeogenesis, and citrate cycle were enhanced, suggesting that the energy metabolism was vigorous in the ZB strain, while the silk production was low. This may due to the inefficient energy employment in fibroin synthesis in the ZB strain. These results suggest that the reason for the decreasing of the silk production might be related to the decreased ability of fibroin synthesis, the degradation of proteins, and the inefficiency of the energy exploiting.
An automated method for detecting alternatively spliced protein domains.
Coelho, Vitor; Sammeth, Michael
2018-06-01
Alternative splicing (AS) has been demonstrated to play a role in shaping eukaryotic gene diversity at the transcriptional level. However, the impact of AS on the proteome is still controversial. Studies that seek to explore the effect of AS at the proteomic level are hampered by technical difficulties in the cumbersome process of casting forth and back between genome, transcriptome and proteome space coordinates, and the naïve prediction of protein domains in the presence of AS suffers many redundant sequence scans that emerge from constitutively spliced regions that are shared between alternative products of a gene. We developed the AstaFunk pipeline that computes for every generic transcriptome all domains that are altered by AS events in a systematic and efficient manner. In a nutshell, our method employs Viterbi dynamic programming, which guarantees to find all score-optimal hits of the domains under consideration, while complementary optimisations at different levels avoid redundant and other irrelevant computations. We evaluate AstaFunk qualitatively and quantitatively using RNAseq in well-studied genes with AS, and on large-scale employing entire transcriptomes. Our study confirms complementary reports that the effect of most AS events on the proteome seems to be rather limited, but our results also pinpoint several cases where AS could have a major impact on the function of a protein domain. The JAVA implementation of AstaFunk is available as an open source project on http://astafunk.sammeth.net. micha@sammeth.net. Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.
2014-08-07
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less
Xu, Ning; Zhao, Hong-Yan; Yin, Yin; Shen, Shan-Shan; Shan, Lin-Lin; Chen, Chuan-Xi; Zhang, Yan-Xia; Gao, Jian-Fang; Ji, Xiang
2017-04-21
We conducted an omics-analysis of the venom of Naja kaouthia from China. Proteomics analysis revealed six protein families [three-finger toxins (3-FTx), phospholipase A 2 (PLA 2 ), nerve growth factor, snake venom metalloproteinase (SVMP), cysteine-rich secretory protein and ohanin], and venom-gland transcriptomics analysis revealed 28 protein families from 79 unigenes. 3-FTx (56.5% in proteome/82.0% in transcriptome) and PLA 2 (26.9%/13.6%) were identified as the most abundant families in venom proteome and venom-gland transcriptome. Furthermore, N. kaouthia venom expressed strong lethality (i.p. LD 50 : 0.79μg/g) and myotoxicity (CK: 5939U/l) in mice, and showed notable activity in PLA 2 but weak activity in SVMP, l-amino acid oxidase or 5' nucleotidase. Antivenomic assessment revealed that several venom components (nearly 17.5% of total venom) from N. kaouthia could not be thoroughly immunocaptured by commercial Naja atra antivenom. ELISA analysis revealed that there was no difference in the cross-reaction between N. kaouthia and N. atra venoms against the N. atra antivenom. The use of commercial N. atra antivenom in treatment of snakebites caused by N. kaouthia is reasonable, but design of novel antivenom with the attention on enhancing the immune response of non-immunocaptured components should be encouraged. The venomics, antivenomics and venom-gland transcriptome of the monocoled cobra (Naja kaouthia) from China have been elucidated. Quantitative and qualitative differences are evident when venom proteomic and venom-gland transcriptomic profiles are compared. Two protein families (3-FTx and PLA 2 ) are found to be the predominated components in N. kaouthia venom, and considered as the major players in functional role of venom. Other protein families with relatively low abundance appear to be minor in the functional significance. Antivenomics and ELISA evaluation reveal that the N. kaouthia venom can be effectively immunorecognized by commercial N. atra antivenom, but still a small number of venom components could not be thoroughly immunocaptured. The findings indicate that exploring the precise composition of snake venom should be executed by an integrated omics-approach, and elucidating the venom composition is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms. Copyright © 2017 Elsevier B.V. All rights reserved.
Proteomic insights into floral biology.
Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng
2016-08-01
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Rongfeng; Yu, Huahua; Xue, Wei; Yue, Yang; Liu, Song; Xing, Ronge; Li, Pengcheng
2014-06-25
Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A₂ (PLA₂), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA₂, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A₂, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of sting. This is the first research about the venomics of jellyfish S. meleagris. It will be significant to understand the mechanism of the biological effects and helpful to develop ways to deal with the sting. Copyright © 2014 Elsevier B.V. All rights reserved.
The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome
Renaud, Ludivine; da Silveira, Willian A.; Hazard, E. Starr; Simpson, Jonathan; Falcinelli, Silvia; Carnevali, Oliana; Hardiman, Gary
2017-01-01
Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer. PMID:29027980
Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang
2014-01-01
Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.
International network of cancer genome projects
2010-01-01
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554
O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik
2015-01-01
To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329
Bayram, H; Sayadi, A; Goenaga, J; Immonen, E; Arnqvist, G
2017-02-01
The seed beetle Callosobruchus maculatus is a significant agricultural pest and increasingly studied model of sexual conflict. Males possess genital spines that increase the transfer of seminal fluid proteins (SFPs) into the female body. As SFPs alter female behaviour and physiology, they are likely to modulate reproduction and sexual conflict in this species. Here, we identified SFPs using proteomics combined with a de novo transcriptome. A prior 2D-sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis identified male accessory gland protein spots that were probably transferred to the female at mating. Proteomic analysis of these spots identified 98 proteins, a majority of which were also present within ejaculates collected from females. Standard annotation workflows revealed common functional groups for SFPs, including proteases and metabolic proteins. Transcriptomic analysis found 84 transcripts differentially expressed between the sexes. Notably, genes encoding 15 proteins were highly expressed in male abdomens and only negligibly expressed within females. Most of these sequences corresponded to 'unknown' proteins (nine of 15) and may represent rapidly evolving SFPs novel to seed beetles. Our combined analyses highlight 44 proteins for which there is strong evidence that they are SFPs. These results can inform further investigation, to better understand the molecular mechanisms of sexual conflict in seed beetles. © 2016 The Royal Entomological Society.
Shemesh-Mayer, Einat; Ben-Michael, Tomer; Rotem, Neta; Rabinowitch, Haim D.; Doron-Faigenboim, Adi; Kosmala, Arkadiusz; Perlikowski, Dawid; Sherman, Amir; Kamenetsky, Rina
2015-01-01
Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed. PMID:25972879
Proteomic and transcriptomic analyses to explain the pleiotropic effects of Ankaferd blood stopper
Simsek, Cem; Selek, Sebnem; Koca, Meltem; Haznedaroglu, Ibrahim Celal
2017-01-01
Ankaferd blood stopper is a standardized mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum, and Urtica dioica and has been used as a topical hemostatic agent and with its clinical application established in randomized controlled trials and case reports. Ankaferd has been successfully used in gastrointestinal endobronchial mucosal and cutaneous bleedings and also in abdominal, thoracic, dental and oropharyngeal, and pelvic surgeries. Ankaferd’s hemostatic action is thought to form a protein complex with coagulation factors that facilitate adhesion of blood components. Besides its hemostatic action, Ankaferd has demonstrated pleiotropic effects, including anti-neoplastic and anti-microbial activities and tissue-healing properties; the underlying mechanisms for these have not been well studied. Ankaferd’s individual components were determined by proteomic and chemical analyses. Ankaferd also augments transcription of some transcription factors which is shown with transcriptomic analysis. The independent effects of these ingredients and augmented transcription factors are not known precisely. Here, we review what is known of Ankaferd blood stopper components from chemical, proteomic, and transcriptomic analyses and propose that individual components can explain some pleiotropic effects of Ankaferd. Certainly more research is needed focusing on individual ingredients of Ankaferd to elucidate their precise and effects. PMID:28839937
Toxicogenomics concepts and applications to study hepatic effects of food additives and chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stierum, Rob; Heijne, Wilbert; Kienhuis, Anne
2005-09-01
Transcriptomics, proteomics and metabolomics are genomics technologies with great potential in toxicological sciences. Toxicogenomics involves the integration of conventional toxicological examinations with gene, protein or metabolite expression profiles. An overview together with selected examples of the possibilities of genomics in toxicology is given. The expectations raised by toxicogenomics are earlier and more sensitive detection of toxicity. Furthermore, toxicogenomics will provide a better understanding of the mechanism of toxicity and may facilitate the prediction of toxicity of unknown compounds. Mechanism-based markers of toxicity can be discovered and improved interspecies and in vitro-in vivo extrapolations will drive model developments in toxicology. Toxicologicalmore » assessment of chemical mixtures will benefit from the new molecular biological tools. In our laboratory, toxicogenomics is predominantly applied for elucidation of mechanisms of action and discovery of novel pathway-supported mechanism-based markers of liver toxicity. In addition, we aim to integrate transcriptome, proteome and metabolome data, supported by bioinformatics to develop a systems biology approach for toxicology. Transcriptomics and proteomics studies on bromobenzene-mediated hepatotoxicity in the rat are discussed. Finally, an example is shown in which gene expression profiling together with conventional biochemistry led to the discovery of novel markers for the hepatic effects of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole.« less
NASA Astrophysics Data System (ADS)
Wang, Yajuan; Yuan, Yanting; Liu, Jinwen; Su, Longxiang; Chang, De; Guo, Yinghua; Chen, Zhenhong; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Zhou, Lisha; Fang, Chengxiang; Yang, Ruifu; Liu, Changting
2014-04-01
The microgravity environment of spaceflight expeditions has been associated with altered microbial responses. This study explores the characterization of Serratia marcescensis grown in a spaceflight environment at the phenotypic, transcriptomic and proteomic levels. From November 1, 2011 to November 17, 2011, a strain of S. marcescensis was sent into space for 398 h on the Shenzhou VIII spacecraft, and ground simulation was performed as a control (LCT-SM213). After the flight, two mutant strains (LCT-SM166 and LCT-SM262) were selected for further analysis. Although no changes in the morphology, post-culture growth kinetics, hemolysis or antibiotic sensitivity were observed, the two mutant strains exhibited significant changes in their metabolic profiles after exposure to spaceflight. Enrichment analysis of the transcriptome showed that the differentially expressed genes of the two spaceflight strains and the ground control strain mainly included those involved in metabolism and degradation. The proteome revealed that changes at the protein level were also associated with metabolic functions, such as glycolysis/gluconeogenesis, pyruvate metabolism, arginine and proline metabolism and the degradation of valine, leucine and isoleucine. In summary S. marcescens showed alterations primarily in genes and proteins that were associated with metabolism under spaceflight conditions, which gave us valuable clues for future research.
Armero, Alix; Bocs, Stéphanie; This, Dominique
2017-01-01
The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/). PMID:28334050
NASA Astrophysics Data System (ADS)
Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting
2015-07-01
Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space environment.
Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.
Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C
2017-08-01
Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.
Bien, Stephanie A; Auer, Paul L; Harrison, Tabitha A; Qu, Conghui; Connolly, Charles M; Greenside, Peyton G; Chen, Sai; Berndt, Sonja I; Bézieau, Stéphane; Kang, Hyun M; Huyghe, Jeroen; Brenner, Hermann; Casey, Graham; Chan, Andrew T; Hopper, John L; Banbury, Barbara L; Chang-Claude, Jenny; Chanock, Stephen J; Haile, Robert W; Hoffmeister, Michael; Fuchsberger, Christian; Jenkins, Mark A; Leal, Suzanne M; Lemire, Mathieu; Newcomb, Polly A; Gallinger, Steven; Potter, John D; Schoen, Robert E; Slattery, Martha L; Smith, Joshua D; Le Marchand, Loic; White, Emily; Zanke, Brent W; Abeçasis, Goncalo R; Carlson, Christopher S; Peters, Ulrike; Nickerson, Deborah A; Kundaje, Anshul; Hsu, Li
2017-01-01
The evaluation of less frequent genetic variants and their effect on complex disease pose new challenges for genomic research. To investigate whether epigenetic data can be used to inform aggregate rare-variant association methods (RVAM), we assessed whether variants more significantly associated with colorectal cancer (CRC) were preferentially located in non-coding regulatory regions, and whether enrichment was specific to colorectal tissues. Active regulatory elements (ARE) were mapped using data from 127 tissues and cell-types from NIH Roadmap Epigenomics and Encyclopedia of DNA Elements (ENCODE) projects. We investigated whether CRC association p-values were more significant for common variants inside versus outside AREs, or 2) inside colorectal (CR) AREs versus AREs of other tissues and cell-types. We employed an integrative epigenomic RVAM for variants with allele frequency <1%. Gene sets were defined as ARE variants within 200 kilobases of a transcription start site (TSS) using either CR ARE or ARE from non-digestive tissues. CRC-set association p-values were used to evaluate enrichment of less frequent variant associations in CR ARE versus non-digestive ARE. ARE from 126/127 tissues and cell-types were significantly enriched for stronger CRC-variant associations. Strongest enrichment was observed for digestive tissues and immune cell types. CR-specific ARE were also enriched for stronger CRC-variant associations compared to ARE combined across non-digestive tissues (p-value = 9.6 × 10-4). Additionally, we found enrichment of stronger CRC association p-values for rare variant sets of CR ARE compared to non-digestive ARE (p-value = 0.029). Integrative epigenomic RVAM may enable discovery of less frequent variants associated with CRC, and ARE of digestive and immune tissues are most informative. Although distance-based aggregation of less frequent variants in CR ARE surrounding TSS showed modest enrichment, future association studies would likely benefit from joint analysis of transcriptomes and epigenomes to better link regulatory variation with target genes.
Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro
2017-01-01
Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780
Proteomics of drug resistance in Candida glabrata biofilms.
Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P
2010-04-01
Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.
Omics approaches in food safety: fulfilling the promise?
Bergholz, Teresa M.; Moreno Switt, Andrea I.; Wiedmann, Martin
2014-01-01
Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to detection, prevention and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. While practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions. PMID:24572764
Xie, Bing; Huang, Yu; Baumann, Kate; Fry, Bryan Grieg; Shi, Qiong
2017-01-01
The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the rapid development of next-generation sequencing (NGS) and liquid chromatography–tandem mass spectrometry (LC-MS/MS), it has been much easier and faster to identify more toxins and predict their functions with bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an overview of related bioinformatics pipelines that have been supported by a combination of transcriptomics and proteomics for identification and function prediction of novel marine toxins. PMID:28358320
Xie, Bing; Huang, Yu; Baumann, Kate; Fry, Bryan Grieg; Shi, Qiong
2017-03-30
The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the rapid development of next-generation sequencing (NGS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), it has been much easier and faster to identify more toxins and predict their functions with bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an overview of related bioinformatics pipelines that have been supported by a combination of transcriptomics and proteomics for identification and function prediction of novel marine toxins.
Gosselin, David; Glass, Christopher K
2014-01-01
Summary Macrophages play essential roles in tissue homeostasis, pathogen elimination, and tissue repair. A defining characteristic of these cells is their ability to efficiently adapt to a variety of abruptly changing and complex environments. This ability is intrinsically linked to a capacity to quickly alter their transcriptome, and this is tightly associated with the epigenomic organization of these cells and, in particular, their enhancer repertoire. Indeed, enhancers are genomic sites that serve as platforms for the integration of signaling pathways with the mechanisms that regulate mRNA transcription. Notably, transcription is pervasive at active enhancers and enhancer RNAs (eRNAs) are tightly coupled to regulated transcription of protein-coding genes. Furthermore, given that each cell type possesses a defining enhancer repertoire, studies on enhancers provide a powerful method to study how specialization of functions among the diverse macrophage subtypes may arise. Here, we review recent studies providing insights into the distinct mechanisms that contribute to the establishment of enhancers and their role in the regulation of transcription in macrophages. PMID:25319330
“Gestaltomics”: Systems Biology Schemes for the Study of Neuropsychiatric Diseases
Gutierrez Najera, Nora A.; Resendis-Antonio, Osbaldo; Nicolini, Humberto
2017-01-01
The integration of different sources of biological information about what defines a behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of its individual parts. In this sense, the challenge of Systems Biology for understanding the “psychiatric phenotype” is to provide an improved vision of the shape of the phenotype as it is visualized by “Gestalt” psychology, whose fundamental axiom is that the observed phenotype (behavior or mental disorder) will be the result of the integrative composition of every part. Therefore, we propose the term “Gestaltomics” as a term from Systems Biology to integrate data coming from different sources of information (such as the genome, transcriptome, proteome, epigenome, metabolome, phenome, and microbiome). In addition to this biological complexity, the mind is integrated through multiple brain functions that receive and process complex information through channels and perception networks (i.e., sight, ear, smell, memory, and attention) that in turn are programmed by genes and influenced by environmental processes (epigenetic). Today, the approach of medical research in human diseases is to isolate one disease for study; however, the presence of an additional disease (co-morbidity) or more than one disease (multimorbidity) adds complexity to the study of these conditions. This review will present the challenge of integrating psychiatric disorders at different levels of information (Gestaltomics). The implications of increasing the level of complexity, for example, studying the co-morbidity with another disease such as cancer, will also be discussed. PMID:28536537
Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya
2014-06-15
Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Research from the NASA Twins Study and Omics in Support of Mars Missions
NASA Technical Reports Server (NTRS)
Kundrot, C.; Shelhamer, M.; Scott, G.
2015-01-01
The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.
The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop.
Budinger, G R Scott; Kohanski, Ronald A; Gan, Weiniu; Kobor, Michael S; Amaral, Luis A; Armanios, Mary; Kelsey, Karl T; Pardo, Annie; Tuder, Rubin; Macian, Fernando; Chandel, Navdeep; Vaughan, Douglas; Rojas, Mauricio; Mora, Ana L; Kovacs, Elizabeth; Duncan, Steven R; Finkel, Toren; Choi, Augustine; Eickelberg, Oliver; Chen, Danica; Agusti, Alvar; Selman, Moises; Balch, William E; Busse, Paula; Lin, Anning; Morimoto, Richard; Sznajder, Jacob I; Thannickal, Victor J
2017-10-12
Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor. Published by Oxford University Press on behalf of The Gerontological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
An inference method from multi-layered structure of biomedical data.
Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung
2017-05-18
Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.
The developmental proteome of Drosophila melanogaster
Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk
2017-01-01
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612
Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals
2013-01-01
Background Genomic and transcriptomic sequence data are essential tools for tackling ecological problems. Using an approach that combines next-generation sequencing, de novo transcriptome assembly, gene annotation and synthetic gene construction, we identify and cluster the protein families from Favia corals from the northern Red Sea. Results We obtained 80 million 75 bp paired-end cDNA reads from two Favia adult samples collected at 65 m (Fav1, Fav2) on the Illumina GA platform, and generated two de novo assemblies using ABySS and CAP3. After removing redundancy and filtering out low quality reads, our transcriptome datasets contained 58,268 (Fav1) and 62,469 (Fav2) contigs longer than 100 bp, with N50 values of 1,665 bp and 1,439 bp, respectively. Using the proteome of the sea anemone Nematostella vectensis as a reference, we were able to annotate almost 20% of each dataset using reciprocal homology searches. Homologous clustering of these annotated transcripts allowed us to divide them into 7,186 (Fav1) and 6,862 (Fav2) homologous transcript clusters (E-value ≤ 2e-30). Functional annotation categories were assigned to homologous clusters using the functional annotation of Nematostella vectensis. General annotation of the assembled transcripts was improved 1-3% using the Acropora digitifera proteome. In addition, we screened these transcript isoform clusters for fluorescent proteins (FPs) homologs and identified seven potential FP homologs in Fav1, and four in Fav2. These transcripts were validated as bona fide FP transcripts via robust fluorescence heterologous expression. Annotation of the assembled contigs revealed that 1.34% and 1.61% (in Fav1 and Fav2, respectively) of the total assembled contigs likely originated from the corals’ algal symbiont, Symbiodinium spp. Conclusions Here we present a study to identify the homologous transcript isoform clusters from the transcriptome of Favia corals using a far-related reference proteome. Furthermore, the symbiont-derived transcripts were isolated from the datasets and their contribution quantified. This is the first annotated transcriptome of the genus Favia, a major increase in genomics resources available in this important family of corals. PMID:23937070
Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress.
Zhang, Zaibao; Hu, Menghui; Feng, Xiaobing; Gong, Andong; Cheng, Lin; Yuan, Hongyu
2017-10-01
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohien, Ceereena Ubaida; Colquhoun, David R.; Mathias, Derrick K.; Gibbons, John G.; Armistead, Jennifer S.; Rodriguez, Maria C.; Rodriguez, Mario Henry; Edwards, Nathan J.; Hartler, Jürgen; Thallinger, Gerhard G.; Graham, David R.; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R.
2013-01-01
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus. PMID:23082028
Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R
2013-01-01
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.
Phosphoproteome and transcriptome analyses of ErbB ligand-stimulated MCF-7 cells.
Nagashima, Takeshi; Oyama, Masaaki; Kozuka-Hata, Hiroko; Yumoto, Noriko; Sakaki, Yoshiyuki; Hatakeyama, Mariko
2008-01-01
Cellular signal transduction pathways and gene expression are tightly regulated to accommodate changes in response to physiological environments. In the current study, molecules were identified that are activated as a result of intracellular signaling and immediately expressed as mRNA in MCF-7 breast cancer cells shortly after stimulation of ErbB receptor ligands, epidermal growth factor (EGF) or heregulin (HRG). For the identification of tyrosine-phosphorylated proteins and expressed genes, a SILAC (stable isotopic labeling using amino acids in cell culture) method and Affymetrix gene expression array system, respectively, were used. Unexpectedly, the overlapping of genes appeared in two experimental datasets was very low for HRG (43 hits in the proteome data, 1,655 in the transcriptome data, and 5 hits common to both datasets), while no overlapping gene was detected for EGF (15 hits in the proteome data, 211 hits in the transcriptome data, and no hits common to both datasets). The HRG overlapping genes included ERBB2, NEDD9, MAPK3, JUP and EPHA2. Biological pathway analysis indicated that HRG-stimulated molecular activation is significantly related to cancer pathways including bladder cancer, chronic myeloid leukemia and pancreatic cancer (p < 0.05). The proteome datasets of EGF and HRG contain molecules that are related to Axon guidance, ErbB signaling and VEGF signaling at a high rate.
Subramanian, Vikram; Seemann, Ingar; Merl-Pham, Juliane; Hauck, Stefanie M; Stewart, Fiona A; Atkinson, Michael J; Tapio, Soile; Azimzadeh, Omid
2017-01-06
Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.
Maver, Ales; Medica, Igor; Peterlin, Borut
2009-12-01
The search for gene candidates in multifactorial diseases such as sarcoidosis can be based on the integration of linkage association data, gene expression data, and protein profile data from genomic, transcriptomic and proteomic studies, respectively. In this study we performed a literature-based search for studies reporting such data, followed by integration of collected information. Different databases were examined--Medline, HugGE Navigator, ArrayExpress and Gene Expression Omnibus (GEO). Candidate genes were defined as genes which were reported in at least 2 different types of omics studies. Genes previously investigated in sarcoidosis were excluded from further analyses. We identified 177 genes associated with sarcoidosis as potential new candidate genes. Subsequently, 9 gene candidates identified to overlap in 2 different types of studies (genomic, transcriptomic and/or proteomic) were consistently reported in at least 3 studies: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214. These genes are involved in regulation of immune response, cellular proliferation, apoptosis, inhibition of protease activity, lipid metabolism. Exact biological functions of HBEGF, LRIG1, PTPN23, DPM2 and NUP214 remain to be completely elucidated. We propose 9 candidate genes: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214, as genes with high potential for association with sarcoidosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte
2012-03-15
We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treatedmore » biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen
Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected atmore » the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.« less
A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration
Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.
2015-01-01
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488
Yun, Ze; Jin, Shuai; Ding, Yuduan; Wang, Zhuang; Gao, Huijun; Pan, Zhiyong; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin
2012-01-01
Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)–CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses. PMID:22323274
The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5
Lim, Chee Kent; Hassan, Karl A.; Tetu, Sasha G.; Loper, Joyce E.; Paulsen, Ian T.
2012-01-01
One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels. PMID:22723948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ma, Zihao; Carr, Steven A.
Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less
Transitioning from Forensic Genetics to Forensic Genomics
Kayser, Manfred
2017-01-01
Due to its support of law enforcement, forensics is a conservative field; nevertheless, driven by scientific and technological progress, forensic genetics is slowly transitioning into forensic genomics. With this Special Issue of Genes we acknowledge and appreciate this rather recent development by not only introducing the field of forensics to the wider community of geneticists, but we do so by emphasizing on different topics of forensic relevance where genomic, transcriptomic, and epigenomic principles, methods, and datasets of humans and beyond are beginning to be used to answer forensic questions. PMID:29271907
Genomic and Epigenomic Alterations in Cancer.
Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana
2016-07-01
Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua
2017-01-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741
Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.
Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun
2017-02-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.
Mokada-Gopal, Lavanya; Boeser, Alexander; Lehmann, Christian H K; Drepper, Friedel; Dudziak, Diana; Warscheid, Bettina; Voehringer, David
2017-05-01
The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4. Microarray analysis revealed that 214 mRNAs were upregulated and 149 were downregulated >3-fold by IL-4 in a STAT6-dependent manner. Across all samples, ∼5000 proteins were identified by label-free quantitative liquid chromatography/mass spectrometry. A total of 149 proteins was found to be differentially expressed >3-fold between IL-4-stimulated wild-type and STAT6 -/- B cells (75 upregulated and 74 downregulated). Comparative analysis of the proteome and transcriptome revealed that expression of these proteins was mainly regulated at the transcriptional level, which argues against a major role for posttranscriptional mechanisms that modulate the STAT6-dependent proteome. Nine proteins were selected for confirmation by flow cytometry or Western blot. We show that CD30, CD79b, SLP-76, DEC205, IL-5Rα, STAT5, and Thy1 are induced by IL-4 in a STAT6-dependent manner. In contrast, Syk and Fc receptor-like 1 were downregulated. This dataset provides a framework for further functional analysis of newly identified IL-4-regulated proteins in B cells that may contribute to germinal center formation and IgE switching in type 2 immunity. Copyright © 2017 by The American Association of Immunologists, Inc.
Mu, Huawei; Sun, Jin; Heras, Horacio; Chu, Ka Hou; Qiu, Jian-Wen
2017-02-23
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs. Copyright © 2017 Elsevier B.V. All rights reserved.
Listeriomics: an Interactive Web Platform for Systems Biology of Listeria
Koutero, Mikael; Tchitchek, Nicolas; Cerutti, Franck; Lechat, Pierre; Maillet, Nicolas; Hoede, Claire; Chiapello, Hélène; Gaspin, Christine
2017-01-01
ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. PMID:28317029
Gene and protein expression following exposure to radiofrequency fields from mobile phones.
Vanderstraeten, Jacques; Verschaeve, Luc
2008-09-01
Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure.
Jiang, Shuai; Qiu, Limei; Wang, Lingling; Jia, Zhihao; Lv, Zhao; Wang, Mengqiang; Liu, Conghui; Xu, Jiachao; Song, Linsheng
2018-01-01
As invertebrates lack an adaptive immune system, they depend to a large extent on their innate immune system to recognize and clear invading pathogens. Although phagocytes play pivotal roles in invertebrate innate immunity, the molecular mechanisms underlying this killing remain unclear. Cells of this type from the Pacific oyster Crassostrea gigas were classified efficiently in this study via fluorescence-activated cell sorting (FACS) based on their phagocytosis of FITC-labeled latex beads. Transcriptomic and quantitative proteomic analyses revealed a series of differentially expressed genes (DEGs) and proteins present in phagocytes; of the 352 significantly high expressed proteins identified here within the phagocyte proteome, 262 corresponding genes were similarly high expressed in the transcriptome, while 140 of 205 significantly low expressed proteins within the proteome were transcriptionally low expressed. A pathway crosstalk network analysis of these significantly high expressed proteins revealed that phagocytes were highly activated in a number of antimicrobial-related biological processes, including oxidation–reduction and lysosomal proteolysis processes. A number of DEGs, including oxidase, lysosomal protease, and immune receptors, were also validated in this study using quantitative PCR, while seven lysosomal cysteine proteases, referred to as cathepsin Ls, were significantly high expressed in phagocytes. Results show that the expression level of cathepsin L protein in phagocytes [mean fluorescence intensity (MFI): 327 ± 51] was significantly higher (p < 0.01) than that in non-phagocytic hemocytes (MFI: 83 ± 26), while the cathepsin L protein was colocalized with the phagocytosed Vibrio splendidus in oyster hemocytes during this process. The results of this study collectively suggest that oyster phagocytes possess both potent oxidative killing and microbial disintegration capacities; these findings provide important insights into hemocyte phagocytic killing as a component of C. gigas innate immunity. PMID:29942306
Proteomics reveals novel components of the Anopheles gambiae eggshell
Amenya, Dolphine A.; Chou, Wayne; Li, Jianyong; Yan, Guiyun; Gershon, Paul D.; James, Anthony A.; Marinotti, Osvaldo
2010-01-01
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes. PMID:20433845
Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe
2018-01-01
Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875
Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.
Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F
2013-10-01
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Wang, Xuyong; Ribeiro, José M C; Broce, Alberto B; Wilkerson, Melinda J; Kanost, Michael R
2009-09-01
Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen 5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental Tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls.
Wang, Xuyong; Ribeiro, José M. C.; Broce, Alberto B.; Wilkerson, Melinda J.; Kanost, Michael R.
2009-01-01
Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen-5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls. PMID:19576987
2010-01-01
Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930
Bennuru, Sasisekhar; Cotton, James A.; Ribeiro, Jose M. C.; Grote, Alexandra; Harsha, Bhavana; Holroyd, Nancy; Mhashilkar, Amruta; Molina, Douglas M.; Randall, Arlo Z.; Shandling, Adam D.; Unnasch, Thomas R.; Ghedin, Elodie; Berriman, Matthew
2016-01-01
ABSTRACT Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite’s adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. PMID:27881553
Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock
Braga, D; Barcella, M; D’Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, MH; DeLano, FA; Baselli, G; Schmid-Schönbein, GW; Kistler, EB; Aletti, F
2017-01-01
Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger’s shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients. PMID:28661205
Proteome Studies of Filamentous Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Scott E.; Panisko, Ellen A.
2011-04-20
The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel basedmore » proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.« less
Proteome studies of filamentous fungi.
Baker, Scott E; Panisko, Ellen A
2011-01-01
The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide variety of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, nongel-based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of variations on the general methods and technologies for identifying peptides in a given sample. We present a method that can serve as a "baseline" for proteomic studies of fungi.
Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*
Dai, Shaojun; Chen, Sixue
2012-01-01
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375
Grobei, Monica A.; Qeli, Ermir; Brunner, Erich; Rehrauer, Hubert; Zhang, Runxuan; Roschitzki, Bernd; Basler, Konrad; Ahrens, Christian H.; Grossniklaus, Ueli
2009-01-01
Pollen, the male gametophyte of flowering plants, represents an ideal biological system to study developmental processes, such as cell polarity, tip growth, and morphogenesis. Upon hydration, the metabolically quiescent pollen rapidly switches to an active state, exhibiting extremely fast growth. This rapid switch requires relevant proteins to be stored in the mature pollen, where they have to retain functionality in a desiccated environment. Using a shotgun proteomics approach, we unambiguously identified ∼3500 proteins in Arabidopsis pollen, including 537 proteins that were not identified in genetic or transcriptomic studies. To generate this comprehensive reference data set, which extends the previously reported pollen proteome by a factor of 13, we developed a novel deterministic peptide classification scheme for protein inference. This generally applicable approach considers the gene model–protein sequence–protein accession relationships. It allowed us to classify and eliminate ambiguities inherently associated with any shotgun proteomics data set, to report a conservative list of protein identifications, and to seamlessly integrate data from previous transcriptomics studies. Manual validation of proteins unambiguously identified by a single, information-rich peptide enabled us to significantly reduce the false discovery rate, while keeping valuable identifications of shorter and lower abundant proteins. Bioinformatic analyses revealed a higher stability of pollen proteins compared to those of other tissues and implied a protein family of previously unknown function in vesicle trafficking. Interestingly, the pollen proteome is most similar to that of seeds, indicating physiological similarities between these developmentally distinct tissues. PMID:19546170
GENOMICS AND ENVIRONMENTAL RESEARCH
The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...
Trapp, Judith; McAfee, Alison; Foster, Leonard J
2017-02-01
Globally, there are over 20 000 bee species (Hymenoptera: Apoidea: Anthophila) with a host of biologically fascinating characteristics. Although they have long been studied as models for social evolution, recent challenges to bee health (mainly diseases and pesticides) have gathered the attention of both public and research communities. Genome sequences of twelve bee species are now complete or under progress, facilitating the application of additional 'omic technologies. Here, we review recent developments in honey bee and native bee research in the genomic era. We discuss the progress in genome sequencing and functional annotation, followed by the enabled comparative genomics, proteomics and transcriptomics applications regarding social evolution and health. Finally, we end with comments on future challenges in the postgenomic era. © 2016 John Wiley & Sons Ltd.
Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart
Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel
2015-01-01
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671
Growth in spaceflight hardware results in alterations to the transcriptome and proteome
NASA Astrophysics Data System (ADS)
Basu, Proma; Kruse, Colin P. S.; Luesse, Darron R.; Wyatt, Sarah E.
2017-11-01
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions.
Ma, Yibao; He, Yawen; Zhao, Ruiming; Wu, Yingliang; Li, Wenxin; Cao, Zhijian
2012-02-16
Venom is an important genetic development crucial to the survival of scorpions for over 400 million years. We studied the evolution of the scorpion venom arsenal by means of comparative transcriptome analysis of venom glands and phylogenetic analysis of shared types of venom peptides and proteins between buthids and euscorpiids. Fifteen types of venom peptides and proteins were sequenced during the venom gland transcriptome analyses of two Buthidae species (Lychas mucronatus and Isometrus maculatus) and one Euscorpiidae species (Scorpiops margerisonae). Great diversity has been observed in translated amino acid sequences of these transcripts for venom peptides and proteins. Seven types of venom peptides and proteins were shared between buthids and euscorpiids. Molecular phylogenetic analysis revealed that at least five of the seven common types of venom peptides and proteins were likely recruited into the scorpion venom proteome before the lineage split between Buthidae and Euscorpiidae with their corresponding genes undergoing individual or multiple gene duplication events. These are α-KTxs, βKSPNs (β-KTxs and scorpines), anionic peptides, La1-like peptides, and SPSVs (serine proteases from scorpion venom). Multiple types of venom peptides and proteins were demonstrated to be continuously recruited into the venom proteome during the evolution process of individual scorpion lineages. Our results provide an insight into the recruitment pattern of the scorpion venom arsenal for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.
A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.
Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W
2015-08-01
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Proteomic contributions to our understanding of vaccine and immune responses
Galassie, Allison C.; Link, Andrew J.
2015-01-01
Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses. PMID:26172619
Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
Zelanis, André; Tashima, Alexandre Keiji
2014-09-01
The study of snake venom proteomes (venomics) has been experiencing a burst of reports, however the comprehensive knowledge of the dynamic range of proteins present within a single venom, the set of post-translational modifications (PTMs) as well as the lack of a comprehensive database related to venom proteins are among the main challenges in venomics research. The phenotypic plasticity in snake venom proteomes together with their inherent toxin proteoform diversity, points out to the use of integrative analysis in order to better understand their actual complexity. In this regard, such a systems venomics task should encompass the integration of data from transcriptomic and proteomic studies (specially the venom gland proteome), the identification of biological PTMs, and the estimation of artifactual proteomes and peptidomes generated by sample handling procedures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Proteomic approaches and their application to plant gravitropism.
Basu, Proma; Luesse, Darron R; Wyatt, Sarah E
2015-01-01
Proteomics is a powerful technique that allows researchers a window into how an organism responds to a mutation, a specific environment, or at a distinct point during development by quantifying relative protein abundance and posttranslational modifications. Here, we describe methods for the proteomic analysis of Arabidopsis thaliana tissue. Extraction protocols are provided for isolation of soluble, plasma membrane, and tonoplast proteins. In addition, basic analysis and quality metrics for MS/MS data are discussed. The protocols outlined have the potential to unlock new avenues of research that are not possible through basic genetics or transcriptomic approaches. By combining proteomic information with known gene regulatory patterns, researchers can gain a complete picture of how molecular pathways, such as those required for gravitropism, are initiated, regulated, and terminated.
Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.
Waryah, Charlene Babra; Moses, Colette; Arooj, Mahira; Blancafort, Pilar
2018-01-01
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Ketone bodies as epigenetic modifiers.
Ruan, Hai-Bin; Crawford, Peter A
2018-07-01
Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.
TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.
Omics Research on the International Space Station
NASA Technical Reports Server (NTRS)
Love, John
2015-01-01
The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated with spaceflight.
The human early-life exposome (HELIX): project rationale and design.
Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J
2014-06-01
Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.
Ogino, Shuji; Nishihara, Reiko; VanderWeele, Tyler J; Wang, Molin; Nishi, Akihiro; Lochhead, Paul; Qian, Zhi Rong; Zhang, Xuehong; Wu, Kana; Nan, Hongmei; Yoshida, Kazuki; Milner, Danny A; Chan, Andrew T; Field, Alison E; Camargo, Carlos A; Williams, Michelle A; Giovannucci, Edward L
2016-07-01
Molecular pathology diagnostics to subclassify diseases based on pathogenesis are increasingly common in clinical translational medicine. Molecular pathological epidemiology (MPE) is an integrative transdisciplinary science based on the unique disease principle and the disease continuum theory. While it has been most commonly applied to research on breast, lung, and colorectal cancers, MPE can investigate etiologic heterogeneity in non-neoplastic diseases, such as cardiovascular diseases, obesity, diabetes mellitus, drug toxicity, and immunity-related and infectious diseases. This science can enhance causal inference by linking putative etiologic factors to specific molecular biomarkers as outcomes. Technological advances increasingly enable analyses of various -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, microbiome, immunomics, interactomics, etc. Challenges in MPE include sample size limitations (depending on availability of biospecimens or biomedical/radiological imaging), need for rigorous validation of molecular assays and study findings, and paucities of interdisciplinary experts, education programs, international forums, and standardized guidelines. To address these challenges, there are ongoing efforts such as multidisciplinary consortium pooling projects, the International Molecular Pathological Epidemiology Meeting Series, and the Strengthening the Reporting of Observational Studies in Epidemiology-MPE guideline project. Efforts should be made to build biorepository and biobank networks, and worldwide population-based MPE databases. These activities match with the purposes of the Big Data to Knowledge (BD2K), Genetic Associations and Mechanisms in Oncology (GAME-ON), and Precision Medicine Initiatives of the United States National Institute of Health. Given advances in biotechnology, bioinformatics, and computational/systems biology, there are wide open opportunities in MPE to contribute to public health.
Proceedings of The Second International Molecular Pathological Epidemiology (MPE) Meeting
Ogino, Shuji; Campbell, Peter T.; Nishihara, Reiko; Phipps, Amanda I.; Beck, Andrew H.; Sherman, Mark E.; Chan, Andrew T.; Troester, Melissa A.; Bass, Adam J.; Fitzgerald, Kathryn C.; Irizarry, Rafael A.; Kelsey, Karl T.; Nan, Hongmei; Peters, Ulrike; Poole, Elizabeth M.; Qian, Zhi Rong; Tamimi, Rulla M.; Tchetgen Tchetgen, Eric J.; Tworoger, Shelley S.; Zhang, Xuehong; Giovannucci, Edward L.; van den Brandt, Piet A.; Rosner, Bernard A.; Wang, Molin; Chatterjee, Nilanjan; Begg, Colin B.
2015-01-01
Disease classification system increasingly incorporates information on pathogenic mechanisms to predict clinical outcomes and response to therapy and intervention. Technological advancements to interrogate omics (genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, interactomics, etc.) provide widely-open opportunities in population-based research. Molecular pathological epidemiology (MPE) represents integrative science of molecular pathology and epidemiology. This unified paradigm requires multidisciplinary collaboration between pathology, epidemiology, biostatistics, bioinformatics, and computational biology. Integration of these fields enables better understanding of etiologic heterogeneity, disease continuum, causal inference, and the impact of environment, diet, lifestyle, host factors (including genetics and immunity), and their interactions on disease evolution. Hence, the Second International MPE Meeting was held in Boston in December 2014, with aims to: (1) develop conceptual and practical frameworks; (2) cultivate and expand opportunities; (3) address challenges; and (4) initiate the effort of specifying guidelines for MPE. The meeting mainly consisted of presentations of method developments and recent data in various malignant neoplasms and tumors (breast, prostate, ovarian and colorectal cancers, renal cell carcinoma, lymphoma, and leukemia), followed by open discussion sessions on challenges and future plans. In particular, we recognized need for efforts to further develop statistical methodologies. This meeting provided an unprecedented opportunity for interdisciplinary collaboration, consistent with the purposes of the BD2K (Big Data to Knowledge), GAME-ON (Genetic Associations and Mechanisms in Oncology), and Precision Medicine Initiatives of the U.S.A. National Institute of Health. The MPE Meeting Series can help advance transdisciplinary population science, and optimize training and education systems for 21st century medicine and public health. PMID:25956270
Hinkson, Izumi V.; Davidsen, Tanja M.; Klemm, Juli D.; Chandramouliswaran, Ishwar; Kerlavage, Anthony R.; Kibbe, Warren A.
2017-01-01
Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome. To maximize the value of these data, an interdisciplinary approach is paramount. The National Cancer Institute (NCI) has initiated multiple projects to characterize tumor samples using multi-omic approaches. These projects harness the expertise of clinicians, biologists, computer scientists, and software engineers to investigate cancer biology and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic, transcriptomic, epigenomic, proteomic, and imaging data have been generated by these projects. To address the data analysis challenges associated with these large datasets, the NCI has sponsored the development of the Genomic Data Commons (GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests and harmonizes genomic data, and securely redistributes the data. During its pilot phase, the Cloud Resources tested multiple cloud-based approaches for enhancing data access, collaboration, computational scalability, resource democratization, and reproducibility. These NCI-led efforts are continuously being refined to better support open data practices and precision oncology, and to serve as building blocks of the NCI Cancer Research Data Commons. PMID:28983483
Oulas, Anastasis; Minadakis, George; Zachariou, Margarita; Sokratous, Kleitos; Bourdakou, Marilena M; Spyrou, George M
2017-11-27
Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine. © The Author 2017. Published by Oxford University Press.
Biomarkers in Sporadic and Familial Alzheimer's Disease.
Lista, Simone; O'Bryant, Sid E; Blennow, Kaj; Dubois, Bruno; Hugon, Jacques; Zetterberg, Henrik; Hampel, Harald
2015-01-01
Most forms of Alzheimer's disease (AD) are sporadic (sAD) or inherited in a non-Mendelian fashion, and less than 1% of cases are autosomal-dominant. Forms of sAD do not exhibit familial aggregation and are characterized by complex genetic and environmental interactions. Recently, the expansion of genomic methodologies, in association with substantially larger combined cohorts, has resulted in various genome-wide association studies that have identified several novel genetic associations of AD. Currently, the most effective methods for establishing the diagnosis of AD are defined by multi-modal pathways, starting with clinical and neuropsychological assessment, cerebrospinal fluid (CSF) analysis, and brain-imaging procedures, all of which have significant cost- and access-to-care barriers. Consequently, research efforts have focused on the development and validation of non-invasive and generalizable blood-based biomarkers. Among the modalities conceptualized by the systems biology paradigm and utilized in the "exploratory biomarker discovery arena", proteome analysis has received the most attention. However, metabolomics, lipidomics, transcriptomics, and epigenomics have recently become key modalities in the search for AD biomarkers. Interestingly, biomarker changes for familial AD (fAD), in many but not all cases, seem similar to those for sAD. The integration of neurogenetics with systems biology/physiology-based strategies and high-throughput technologies for molecular profiling is expected to help identify the causes, mechanisms, and biomarkers associated with the various forms of AD. Moreover, in order to hypothesize the dynamic trajectories of biomarkers through disease stages and elucidate the mechanisms of biomarker alterations, updated and more sophisticated theoretical models have been proposed for both sAD and fAD.
Chocu, Sophie; Evrard, Bertrand; Lavigne, Régis; Rolland, Antoine D; Aubry, Florence; Jégou, Bernard; Chalmel, Frédéric; Pineau, Charles
2014-11-01
Spermatogenesis is a complex process, dependent upon the successive activation and/or repression of thousands of gene products, and ends with the production of haploid male gametes. RNA sequencing of male germ cells in the rat identified thousands of novel testicular unannotated transcripts (TUTs). Although such RNAs are usually annotated as long noncoding RNAs (lncRNAs), it is possible that some of these TUTs code for protein. To test this possibility, we used a "proteomics informed by transcriptomics" (PIT) strategy combining RNA sequencing data with shotgun proteomics analyses of spermatocytes and spermatids in the rat. Among 3559 TUTs and 506 lncRNAs found in meiotic and postmeiotic germ cells, 44 encoded at least one peptide. We showed that these novel high-confidence protein-coding loci exhibit several genomic features intermediate between those of lncRNAs and mRNAs. We experimentally validated the testicular expression pattern of two of these novel protein-coding gene candidates, both highly conserved in mammals: one for a vesicle-associated membrane protein we named VAMP-9, and the other for an enolase domain-containing protein. This study confirms the potential of PIT approaches for the discovery of protein-coding transcripts initially thought to be untranslated or unknown transcripts. Our results contribute to the understanding of spermatogenesis by characterizing two novel proteins, implicated by their strong expression in germ cells. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD000872. © 2014 by the Society for the Study of Reproduction, Inc.
Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis
El-Rami, Fadi; Kong, Xiangzhen; Parikh, Hardik; Zhu, Bin; Stone, Victoria; Kitten, Todd; Xu, Ping
2018-01-01
The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions. PMID:29393020
Omics studies of citrus, grape and rosaceae fruit trees
Shiratake, Katsuhiro; Suzuki, Mami
2016-01-01
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted. PMID:27069397
Omics studies of citrus, grape and rosaceae fruit trees.
Shiratake, Katsuhiro; Suzuki, Mami
2016-01-01
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Park, C Sehwan; Valomon, Amandine; Welzl, Hans
2015-01-01
Environmental enrichment has been reported to delay or restore age-related cognitive deficits, however, a mechanism to account for the cause and progression of normal cognitive decline and its preservation by environmental enrichment is lacking. Using genome-wide SAGE-Seq, we provide a global assessment of differentially expressed genes altered with age and environmental enrichment in the hippocampus. Qualitative and quantitative proteomics in naïve young and aged mice was used to further identify phosphorylated proteins differentially expressed with age. We found that increased expression of endogenous protein phosphatase-1 inhibitors in aged mice may be characteristic of long-term environmental enrichment and improved cognitive status. As such, hippocampus-dependent performances in spatial, recognition, and associative memories, which are sensitive to aging, were preserved by environmental enrichment and accompanied by decreased protein phosphatase activity. Age-associated phosphorylated proteins were also found to correspond to the functional categories of age-associated genes identified through transcriptome analysis. Together, this study provides a comprehensive map of the transcriptome and proteome in the aging brain, and elucidates endogenous protein phosphatase-1 inhibition as a potential means through which environmental enrichment may ameliorate age-related cognitive deficits.
Kratochwill, Klaus; Bender, Thorsten O; Lichtenauer, Anton M; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph
2015-01-01
Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Mark H.; Qian, Weijun; Wang, Haixing
2008-02-10
The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list providesmore » a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.« less
Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli
Samir, Parimal; Rahul; Slaughter, James C.; Link, Andrew J.
2015-01-01
Ultimately, the genotype of a cell and its interaction with the environment determine the cell’s biochemical state. While the cell’s response to a single stimulus has been studied extensively, a conceptual framework to model the effect of multiple environmental stimuli applied concurrently is not as well developed. In this study, we developed the concepts of environmental interactions and epistasis to explain the responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, environmental stimuli can be treated as analogous to genetic elements. This would allow modeling of the effects of multiple stimuli using the concepts and tools developed for studying gene interactions. Mirroring gene interactions, our results show that environmental interactions play a critical role in determining the state of the proteome. We show that individual and complex environmental stimuli behave similarly to genetic elements in regulating the cellular responses to stimuli, including the phenomena of dominance and suppression. Interestingly, we observed that the effect of a stimulus on a protein is dominant over other stimuli if the response to the stimulus involves the protein. Using publicly available transcriptomic data, we find that environmental interactions and epistasis regulate transcriptomic responses as well. PMID:26247773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men, Yujie; Feil, Helene; Verberkmoes, Nathan C
2012-01-01
Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0 0.01 lmol per day for the co-culture and 10.1 0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8 0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0 0.5107 cells permore » lmol Cl released, compared with 6.8 0.9107 cells per lmol Cl released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3 1.8107 cells per lmol Cl released). The transcriptome of DE195 grown in the co-culture was analyzed using a wholegenome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.« less
Lin, Li-Ling; Hsia, Chieh-Ren; Hsu, Chia-Lang; Huang, Hsuan-Cheng; Juan, Hsueh-Fen
2015-02-05
Tanshinone IIA (TIIA) is a diterpene quinone extracted from the plant Danshen (Salvia miltiorrhiza) used in traditional Chinese herbal medicine. It has been reported to have anti-tumor potential against several kinds of cancer, including gastric cancer. In most solid tumors, a metabolic switch to glucose is a hallmark of cancer cells, which do this to provide nutrients for cell proliferation. However, the mechanism associated with glucose metabolism by which TIIA acts on gastric cancer cells remains to be elucidated. We found that TIIA treatment is able to significantly inhibit cell growth and the proliferation of gastric cancer in a dose-dependent manner. Using next-generation sequencing-based RNA-seq transcriptomics and quantitative proteomics-isobaric tags for relative and absolute quantification (iTRAQ), we characterized the mechanism of TIIA regulation in gastric cancer cell line AGS. In total, 16,603 unique transcripts and 102 proteins were identified. After enrichment analysis, we found that TIIA regulated genes are involved in carbohydrate metabolism, the cell cycle, apoptosis, DNA damage and cytoskeleton reorganization. Our proteomics data revealed the downregulation of intracellular ATP levels, glucose-6-phosphate isomerase and L-lactate dehydrogenase B chains by TIIA, which might work with disorders of glucose metabolism and extracellular lactate levels to suppress cell proliferation. The up-regulation of p53 and down-regulation of AKT was shown in TIIA- treated cells, which indicates the transformation of oncogenes. Severe DNA damage, cell cycle arrest at the G2/M transition and apoptosis with cytoskeleton reorganization were detected in TIIA-treated gastric cancer cells. Combining transcriptomics and proteomics results, we propose that TIIA treatment could lead cell stresses, including nutrient deficiency and DNA damage, by inhibiting the glucose metabolism of cancer cells. This study provides an insight into how the TIIA regulatory metabolism in gastric cancer cells suppresses cell growth, and may help improve the development of cancer therapy.
Gene and Protein Expression following Exposure to Radiofrequency Fields from Mobile Phones
Vanderstraeten, Jacques; Verschaeve, Luc
2008-01-01
Background Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. Objectives We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. Discussion To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. Conclusions The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure. PMID:18795152
Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang
2017-01-01
Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.
Growth in spaceflight hardware results in alterations to the transcriptome and proteome.
Basu, Proma; Kruse, Colin P S; Luesse, Darron R; Wyatt, Sarah E
2017-11-01
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater ® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi
2011-01-01
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306
Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi
2011-03-24
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo
2016-01-01
Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e-5) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. Conclusion: A combination of the de novo transcriptome and proteome profiling based on the Illumina HiSeq 2000 sequencing platform and iTRAQ technique was shown to be a powerful method for the discovery of candidate genes, which encoded enzymes that were responsible for the biosynthesis of novel secondary metabolites in a non-model plant. The transcriptome data of our study provides a very important resource for the understanding of the triterpenoid saponins biosynthesis of A. flaccida. PMID:27504115
Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).
Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong
2015-09-10
The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5'-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.
Parasites, proteomes and systems: has Descartes' clock run out of time?
Wastling, J M; Armstrong, S D; Krishna, R; Xia, D
2012-08-01
Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
Parasites, proteomes and systems: has Descartes’ clock run out of time?
WASTLING, J. M.; ARMSTRONG, S. D.; KRISHNA, R.; XIA, D.
2012-01-01
SUMMARY Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types. PMID:22828391
International Standards for Genomes, Transcriptomes, and Metagenomes
Mason, Christopher E.; Afshinnekoo, Ebrahim; Tighe, Scott; Wu, Shixiu; Levy, Shawn
2017-01-01
Challenges and biases in preparing, characterizing, and sequencing DNA and RNA can have significant impacts on research in genomics across all kingdoms of life, including experiments in single-cells, RNA profiling, and metagenomics (across multiple genomes). Technical artifacts and contamination can arise at each point of sample manipulation, extraction, sequencing, and analysis. Thus, the measurement and benchmarking of these potential sources of error are of paramount importance as next-generation sequencing (NGS) projects become more global and ubiquitous. Fortunately, a variety of methods, standards, and technologies have recently emerged that improve measurements in genomics and sequencing, from the initial input material to the computational pipelines that process and annotate the data. Here we review current standards and their applications in genomics, including whole genomes, transcriptomes, mixed genomic samples (metagenomes), and the modified bases within each (epigenomes and epitranscriptomes). These standards, tools, and metrics are critical for quantifying the accuracy of NGS methods, which will be essential for robust approaches in clinical genomics and precision medicine. PMID:28337071
Metabolomic technologies are increasingly being applied to study biological questions in a range of different settings from clinical through to environmental. As with other high-throughput technologies, such as those used in transcriptomics and proteomics, metabolomics continues...
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer.
Peng, Xinxin; Xu, Xiaoyan; Wang, Yumeng; Hawke, David H; Yu, Shuangxing; Han, Leng; Zhou, Zhicheng; Mojumdar, Kamalika; Jeong, Kang Jin; Labrie, Marilyne; Tsang, Yiu Huen; Zhang, Minying; Lu, Yiling; Hwu, Patrick; Scott, Kenneth L; Liang, Han; Mills, Gordon B
2018-05-14
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels. The edited COPA protein increases proliferation, migration, and invasion of cancer cells in vitro. Our study suggests an important contribution of A-to-I RNA editing to protein diversity in cancer and highlights its translational potential. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju
2017-01-01
Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942
Elguoshy, Amr; Hirao, Yoshitoshi; Xu, Bo; Saito, Suguru; Quadery, Ali F; Yamamoto, Keiko; Mitsui, Toshiaki; Yamamoto, Tadashi
2017-12-01
In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10 -4 )% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.
Morel, Alexandre; Teyssier, Caroline; Trontin, Jean-François; Eliášová, Kateřina; Pešek, Bedřich; Beaufour, Martine; Morabito, Domenico; Boizot, Nathalie; Le Metté, Claire; Belal-Bessai, Leila; Reymond, Isabelle; Harvengt, Luc; Cadene, Martine; Corbineau, Françoise; Vágner, Martin; Label, Philippe; Lelu-Walter, Marie-Anne
2014-09-01
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets. © 2014 Scandinavian Plant Physiology Society.
Mining biological databases for candidate disease genes
NASA Astrophysics Data System (ADS)
Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.
2001-07-01
The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).
Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis.
Dong, Shu; Chen, Qi-Long; Song, Ya-Nan; Sun, Yang; Wei, Bin; Li, Xiao-Yan; Hu, Yi-Yang; Liu, Ping; Su, Shi-Bing
2016-01-01
The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.
Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses
Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Hurst, Gregory B.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.
2013-01-01
Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. PMID:23874800
Varas, Macarena; Valdivieso, Camilo; Mauriaca, Cecilia; Ortíz-Severín, Javiera; Paradela, Alberto; Poblete-Castro, Ignacio; Cabrera, Ricardo; Chávez, Francisco P
2017-04-01
Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.
Nishiyama, Milton Yutaka; dos Santos, Maria Beatriz Viana; Santos-da-Silva, Andria de Paula; Chalkidis, Hipócrates de Menezes; Souza-Imberg, Andreia; Candido, Denise Maria; Yamanouye, Norma; Dorce, Valquíria Abrão Coronado; Junqueira-de-Azevedo, Inácio de Loiola Meirelles
2018-01-01
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species. PMID:29561852
Wang, Jian-Hui; Liu, Jian-Jun; Chen, Ke-Ling; Li, Hong-Wen; He, Jian; Guan, Bin; He, Li
2017-12-21
Transcriptome and proteome analyses on fruit pulp from the blood orange 'Zaohong' and the navel orange 'twenty-first century' were performed to study Citrus sinensis quality-related molecular changes during consecutive developmental periods, including young fruit, fruit-coloring onset and fruit delayed-harvest for two months, during which fruit remained on the trees. The time-course analysis for the fruit developmental periods indicated a complex, dynamic gene expression pattern, with the numbers of differentially expressed genes (DEGs) between the two cultivars being 119, 426 and 904 at the three continuous stages tested during fruit development and ripening. The continuous increase in total soluble solids over the course of fruit development was correlated with up-regulated sucrose phosphate synthase (SPS) transcription levels in both cultivars. Eleven differentially expressed genes between the two cultivars involved in the flavonoid pathway were significantly enriched at the onset of the fruit-coloring stage when anthocyanins were detected in blood orange alone. Among 5185 proteins, 65 up-regulated and 29 down-regulated proteins were co-expressed with their cognate mRNAs with significant transcription and protein expression levels when the fruits from the two cultivars were compared at the fruit delayed-harvest stage. Additionally, important genes participating in the γ-aminobutyric acid (GABA) shunt were activated in blood orange at two significant expression levels in the fruit delayed-harvest stage. Thus, organic acids in fruit continuously decreased during this stage. This research was the first to provide a more comprehensive understanding of the differentially expressed genes involved in anthocyanin, sucrose and citrate metabolism at the transcriptome and proteome levels in C. sinensis, especially during the fruit delayed-harvest stage.
OMICS-strategies and methods in the fight against doping.
Reichel, Christian
2011-12-10
During the past decade OMICS-methods not only continued to have their impact on research strategies in life sciences and in particular molecular biology, but also started to be used for anti-doping control purposes. Research activities were mainly reasoned by the fact that several substances and methods, which were prohibited by the World Anti-Doping Agency (WADA), were or still are difficult to detect by direct methods. Transcriptomics, proteomics, and metabolomics in theory offer ideal platforms for the discovery of biomarkers for the indirect detection of the abuse of these substances and methods. Traditionally, the main focus of transcriptomics and proteomics projects has been on the prolonged detection of the misuse of human growth hormone (hGH), recombinant erythropoietin (rhEpo), and autologous blood transfusion. An additional benefit of the indirect or marker approach would also be that similarly acting substances might then be detected by a single method, without being forced to develop new direct detection methods for new but comparable prohibited substances (as has been the case, e.g. for the various forms of Epo analogs and biosimilars). While several non-OMICS-derived parameters for the indirect detection of doping are currently in use, for example the blood parameters of the hematological module of the athlete's biological passport, the outcome of most non-targeted OMICS-projects led to no direct application in routine doping control so far. The main reason is the inherent complexity of human transcriptomes, proteomes, and metabolomes and their inter-individual variability. The article reviews previous and recent research projects and their results and discusses future strategies for a more efficient application of OMICS-methods in doping control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Colak, Dilek; Alaiya, Ayodele A; Kaya, Namik; Muiya, Nzioka P; AlHarazi, Olfat; Shinwari, Zakia; Andres, Editha; Dzimiri, Nduna
2016-01-01
The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer's disease, chemokine-mediated inflammation and cytokine signalling pathways. The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease.
2012-01-01
Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577
Knoll-Gellida, Anja; André, Michèle; Gattegno, Tamar; Forgue, Jean; Admon, Arie; Babin, Patrick J
2006-01-01
Background The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. Results Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. Conclusion This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development. PMID:16526958
Peng, Chuanhua; Wang, Xiaoping; Li, Fei; Lin, Yongjun
2012-01-01
The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac. PMID:22666467
Morris, Katrina M.; O’Meally, Denis; Zaw, Thiri; Song, Xiaomin; Gillett, Amber; Molloy, Mark P.; Polkinghorne, Adam; Belov, Katherine
2016-01-01
Production of milk is a key characteristic of mammals, but the features of lactation vary greatly between monotreme, marsupial and eutherian mammals. Marsupials have a short gestation followed by a long lactation period, and milk constituents vary greatly across lactation. Marsupials are born immunologically naïve and rely on their mother’s milk for immunological protection. Koalas (Phascolarctos cinereus) are an iconic Australian species that are increasingly threatened by disease. Here we use a mammary transcriptome, two milk proteomes and the koala genome to comprehensively characterise the protein components of koala milk across lactation, with a focus on immune constituents. The most abundant proteins were well-characterised milk proteins, including β-lactoglobulin and lactotransferrin. In the mammary transcriptome, 851 immune transcripts were expressed, including immunoglobulins and complement components. We identified many abundant antimicrobial peptides, as well as novel proteins with potential antimicrobial roles. We discovered that marsupial VELP is an ortholog of eutherian Glycam1, and likely has an antimicrobial function in milk. We also identified highly-abundant koala endogenous-retrovirus sequences, identifying a potential transmission route from mother to young. Characterising the immune components of milk is key to understanding protection of marsupial young, and the novel immune compounds identified may have applications in clinical research. PMID:27713568
Proteogenomic characterization of human colon and rectal cancer
Zhang, Bing; Wang, Jing; Wang, Xiaojing; Zhu, Jing; Liu, Qi; Shi, Zhiao; Chambers, Matthew C.; Zimmerman, Lisa J.; Shaddox, Kent F.; Kim, Sangtae; Davies, Sherri R.; Wang, Sean; Wang, Pei; Kinsinger, Christopher R.; Rivers, Robert C.; Rodriguez, Henry; Townsend, R. Reid; Ellis, Matthew J.C.; Carr, Steven A.; Tabb, David L.; Coffey, Robert J.; Slebos, Robbert J.C.; Liebler, Daniel C.
2014-01-01
Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology. PMID:25043054
Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J
2015-01-01
Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Khorsandi, Shirin Elizabeth; Salehi, Siamak; Cortes, Miriam; Vilca-Melendez, Hector; Menon, Krishna; Srinivasan, Parthi; Prachalias, Andreas; Jassem, Wayel; Heaton, Nigel
2018-02-15
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Proteomic and Transcriptomic Analysis of Aspergillus fumigatus on Exposure to Amphotericin B▿ †
Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha
2008-01-01
Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development. PMID:18838595
Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B.
Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha
2008-12-01
Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development.
Barkla, Bronwyn J; Castellanos-Cervantes, Thelma; de León, José L Diaz; Matros, Andrea; Mock, Hans-Peter; Perez-Alfocea, Francisco; Salekdeh, Ghasem H; Witzel, Katja; Zörb, Christian
2013-06-01
Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker, Eugene
Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.
Bioinformatics and School Biology
ERIC Educational Resources Information Center
Dalpech, Roger
2006-01-01
The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…
USDA-ARS?s Scientific Manuscript database
The foodborne transmission of Listeria monocytogenes requires physiological adaptation to various conditions, including the cold, osmotic, heat, acid, alkaline, and oxidative stresses, associated with food hygiene, processing, and preservation measures. We review the current knowledge on the molecul...
Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S
2013-01-04
We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation.
Silvestre, Frédéric; Gillardin, Virginie; Dorts, Jennifer
2012-11-01
Nowadays, the unprecedented rates of anthropogenic changes in ecosystems suggest that organisms have to migrate to new distributional ranges or to adapt commensurately quickly to new conditions to avoid becoming extinct. Pollution and global warming are two of the most important threats aquatic organisms will have to face in the near future. If genetic changes in a population in response to natural selection are extensively studied, the role of acclimation through phenotypic plasticity (the property of a given genotype to produce different phenotypes in response to particular environmental conditions) in a species to deal with new environmental conditions remains largely unknown. Proteomics is the extensive study of the protein complement of a genome. It is dynamic and depends on the specific tissue, developmental stage, and environmental conditions. As the final product of gene expression, it is subjected to several regulatory steps from gene transcription to the functional protein. Consequently, there is a discrepancy between the abundance of mRNA and the abundance of the corresponding protein. Moreover, proteomics is closer to physiology and gives a more functional knowledge of the regulation of gene expression than does transcriptomics. The study of protein-expression profiles, however, gives a better portrayal of the cellular phenotype and is considered as a key link between the genotype and the organismal phenotype. Under new environmental conditions, we can observe a shift of the protein-expression pattern defining a new cellular phenotype that can possibly improve the fitness of the organism. It is now necessary to define a proteomic norm of reaction for organisms acclimating to environmental stressors. Its link to fitness will give new insights into how organisms can evolve in a changing environment. The proteomic literature bearing on chronic exposure to pollutants and on acclimation to heat stress in aquatic organisms, as well as potential application of proteomics in evolutionary issues, are outlined. While the transcriptome responses are commonly investigated, proteomics approaches now need to be intensified, with the new perspective of integrating the cellular phenotype with the organismal phenotype and with the mechanisms of the regulation of gene expression, such as epigenetics.
Swanepoel, Conrad C.
2014-01-01
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1) metabolism, (2) growth and replication, (3) pathogenicity, and (4) drug resistance, from the perspective of systems biology. PMID:24771957
Amniotic fluid: the use of high-dimensional biology to understand fetal well-being.
Kamath-Rayne, Beena D; Smith, Heather C; Muglia, Louis J; Morrow, Ardythe L
2014-01-01
Our aim was to review the use of high-dimensional biology techniques, specifically transcriptomics, proteomics, and metabolomics, in amniotic fluid to elucidate the mechanisms behind preterm birth or assessment of fetal development. We performed a comprehensive MEDLINE literature search on the use of transcriptomic, proteomic, and metabolomic technologies for amniotic fluid analysis. All abstracts were reviewed for pertinence to preterm birth or fetal maturation in human subjects. Nineteen articles qualified for inclusion. Most articles described the discovery of biomarker candidates, but few larger, multicenter replication or validation studies have been done. We conclude that the use of high-dimensional systems biology techniques to analyze amniotic fluid has significant potential to elucidate the mechanisms of preterm birth and fetal maturation. However, further multicenter collaborative efforts are needed to replicate and validate candidate biomarkers before they can become useful tools for clinical practice. Ideally, amniotic fluid biomarkers should be translated to a noninvasive test performed in maternal serum or urine.
Global Survey of Protein Expression during Gonadal Sex Determination in Mice*
Ewen, Katherine; Baker, Mark; Wilhelm, Dagmar; Aitken, R. John; Koopman, Peter
2009-01-01
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development. PMID:19617587
Atanassov, Ilian; Kuznetsova, Irina; Hinze, Yvonne; Mourier, Arnaud; Filipovska, Aleksandra
2017-01-01
Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment. PMID:29132502
Detecting Rhythms in Time Series with RAIN
Thaben, Paul F.; Westermark, Pål O.
2014-01-01
A fundamental problem in research on biological rhythms is that of detecting and assessing the significance of rhythms in large sets of data. Classic methods based on Fourier theory are often hampered by the complex and unpredictable characteristics of experimental and biological noise. Robust nonparametric methods are available but are limited to specific wave forms. We present RAIN, a robust nonparametric method for the detection of rhythms of prespecified periods in biological data that can detect arbitrary wave forms. When applied to measurements of the circadian transcriptome and proteome of mouse liver, the sets of transcripts and proteins with rhythmic abundances were significantly expanded due to the increased detection power, when we controlled for false discovery. Validation against independent data confirmed the quality of these results. The large expansion of the circadian mouse liver transcriptomes and proteomes reflected the prevalence of nonsymmetric wave forms and led to new conclusions about function. RAIN was implemented as a freely available software package for R/Bioconductor and is presently also available as a web interface. PMID:25326247
The effect of skin fatty acids on Staphylococcus aureus.
Neumann, Yvonne; Ohlsen, Knut; Donat, Stefanie; Engelmann, Susanne; Kusch, Harald; Albrecht, Dirk; Cartron, Michael; Hurd, Alexander; Foster, Simon J
2015-03-01
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
Li, Yong-Fang; Mahalingam, Ramamurthy; Sunkar, Ramanjulu
2017-01-01
Alteration of gene expression is an essential mechanism, which allows plants to respond and adapt to adverse environmental conditions. Transcriptome and proteome analyses in plants exposed to abiotic stresses revealed that protein levels are not correlated with the changes in corresponding mRNAs, indicating regulation at translational level is another major regulator for gene expression. Analysis of translatome, which refers to all mRNAs associated with ribosomes, thus has the potential to bridge the gap between transcriptome and proteome. Polysomal RNA profiling and recently developed ribosome profiling (Ribo-seq) are two main methods for translatome analysis at global level. Here, we describe the classical procedure for polysomal RNA isolation by sucrose gradient ultracentrifugation followed by highthroughput RNA-seq to identify genes regulated at translational level. Polysomal RNA can be further used for a variety of downstream applications including Northern blot analysis, qRT-PCR, RNase protection assay, and microarray-based gene expression profiling.
Reppe, Sjur; Datta, Harish K; Gautvik, Kaare M
2017-08-01
The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Nwaobi, Sinifunanya E.; Olsen, Michelle L.
2015-01-01
DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity. PMID:26436772
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Nutrigenetics, nutrigenomics, and selenium.
Ferguson, Lynnette R; Karunasinghe, Nishi
2011-01-01
Selenium (Se) is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its' levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health, and genotype. Nutrigenetic studies of different Se levels, in the presence of genetic variants in selenoproteins, suggest that an effective dietary Se intake for one individual may be very different from that for others. However, we are just starting to learn the significance of various genes in selenoprotein pathways, functional variants in these, and how to combine such data from genes into pathways, alongside dietary intake or serum levels of Se. Advances in systems biology, genetics, and genomics technologies, including genetic/genomic, epigenetic/epigenomic, transcriptomic, proteomic, and metabolomic information, start to make it feasible to assess a comprehensive spectrum of the biological activity of Se. Such nutrigenomic approaches may prove very sensitive biomarkers of optimal Se status at the individual or population level. The premature cessation of a major human Se intervention trial has led to considerable controversy as to the value of Se supplementation at the population level. New websites provide convenient links to current information on methodologies available for nutrigenetics and nutrigenomics. These new technologies will increasingly become an essential tool in optimizing the level of Se and other micronutrients for optimal health, in individuals and in population groups. However, definitive proof of such effects will require very large collaborative studies, international agreement on study design, and innovative approaches to data analysis.
Nutrigenetics, Nutrigenomics, and Selenium
Ferguson, Lynnette R.; Karunasinghe, Nishi
2011-01-01
Selenium (Se) is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its’ levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health, and genotype. Nutrigenetic studies of different Se levels, in the presence of genetic variants in selenoproteins, suggest that an effective dietary Se intake for one individual may be very different from that for others. However, we are just starting to learn the significance of various genes in selenoprotein pathways, functional variants in these, and how to combine such data from genes into pathways, alongside dietary intake or serum levels of Se. Advances in systems biology, genetics, and genomics technologies, including genetic/genomic, epigenetic/epigenomic, transcriptomic, proteomic, and metabolomic information, start to make it feasible to assess a comprehensive spectrum of the biological activity of Se. Such nutrigenomic approaches may prove very sensitive biomarkers of optimal Se status at the individual or population level. The premature cessation of a major human Se intervention trial has led to considerable controversy as to the value of Se supplementation at the population level. New websites provide convenient links to current information on methodologies available for nutrigenetics and nutrigenomics. These new technologies will increasingly become an essential tool in optimizing the level of Se and other micronutrients for optimal health, in individuals and in population groups. However, definitive proof of such effects will require very large collaborative studies, international agreement on study design, and innovative approaches to data analysis. PMID:22303312
Ogino, Shuji; Nishihara, Reiko; VanderWeele, Tyler J.; Wang, Molin; Nishi, Akihiro; Lochhead, Paul; Qian, Zhi Rong; Zhang, Xuehong; Wu, Kana; Nan, Hongmei; Yoshida, Kazuki; Milner, Danny A; Chan, Andrew T.; Field, Alison E.; Camargo, Carlos A; Williams, Michelle A; Giovannucci, Edward L.
2016-01-01
Molecular pathology diagnostics to subclassify diseases based on pathogenesis are increasingly common in clinical translational medicine. Molecular pathological epidemiology (MPE) is an integrative transdisciplinary science based on the unique disease principle and the disease continuum theory. While it has been most commonly applied to research on breast, lung, and colorectal cancers, MPE can investigate etiologic heterogeneity in non-neoplastic diseases such as cardiovascular diseases, obesity, diabetes mellitus, drug toxicity, and immunity-related and infectious diseases. This science can enhance causal inference by linking putative etiologic factors to specific molecular biomarkers as outcomes. Technological advances increasingly enable analyses of various -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, microbiome, immunomics, interactomics, etc. Challenges in MPE include sample size limitations (depending on availability of biospecimens or biomedical / radiological imaging), need for rigorous validation of molecular assays and study findings, and paucities of interdisciplinary experts, education programs, international forums, and standardized guidelines. To address these challenges, there are ongoing efforts such as multidisciplinary consortium pooling projects, the International Molecular Pathological Epidemiology (MPE) Meeting Series, and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)-MPE guideline project. Efforts should be made to build biorepository and biobank networks, and worldwide population-based MPE databases. These activities match with the purposes of the Big Data to Knowledge (BD2K), Genetic Associations and Mechanisms in Oncology (GAME-ON), and Precision Medicine Initiatives of the United States National Institute of Health. Given advances in biotechnology, bioinformatics, and computational / systems biology, there are wide open opportunities in MPE to contribute to public health. PMID:26928707
Cinzia, Raso; Carlo, Cosentino; Marco, Gaspari; Natalia, Malara; Xuemei, Han; Daniel, McClatchy; Kyu, Park Sung; Maria, Renne; Nuria, Vadalà; Ubaldo, Prati; Giovanni, Cuda; Vincenzo, Mollace; Francesco, Amato; Yates, John R.
2012-01-01
Cancer is currently considered as the end point of numerous genomic and epigenomic mutations and as the result of the interaction of transformed cells within the stromal microenvironment. The present work focuses on breast cancer, one of the most common malignancies affecting the female population in industrialized countries. In this study we perform a proteomic analysis of bioptic samples from human breast cancer, namely interstitial fluids and primary cells, normal vs disease tissues, using Tandem mass Tags (TmT) quantitative mass spectrometry combined with the MudPIT technique. To the best of our knowledge this work, with over 1700 proteins identified, represents the most comprehensive characterization of the breast cancer interstitial fluid proteome to date. Network analysis was used to identify functionally active networks in the breast cancer associated samples. From the list of differentially expressed genes we have retrieved the associated functional interaction networks. Many different signaling pathways were found activated, strongly linked to invasion, metastasis development, proliferation and with a significant cross-talking rate. This pilot study presents evidence that the proposed quantitative proteomic approach can be applied to discriminate between normal and tumoral samples and for the discovery of yet unknown carcinogenesis mechanisms and therapeutic strategies. PMID:22563702
Integrating cell biology and proteomic approaches in plants.
Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef
2017-10-03
Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of representative studies combining proteomic and cell biology methods for various purposes. Integrating cell biology approaches with proteomic ones allow validation and better interpretation of proteomic data. Moreover, cell biology methods remarkably extend the knowledge provided by proteomic studies and might be fundamental for the functional complementation of proteomic data. This review article summarizes current literature linking proteomics with cell biology. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Current developments in the field of metagenomics in biological sciences have demonstrated the need and potential usefulness of taxonomical and functional analyses of meta-omics data generated by genomics, transcriptomics, proteomics, and metabolomics. This review will provide a general overview of...
Timing of transcriptomic and proteomic changes in the bovine placentome after parturition
USDA-ARS?s Scientific Manuscript database
Proper post-partum reproductive performance is important for reproductive efficiency in beef cows, and dystocia decreases post-partum fertility. Crossbred beef cows (n = 1676) were evaluated for lifetime performance based on degree of dystocia at presentation of the first calf. Cows that experience...
Fadrozole is a reversible, competitive inhibitor of aromatase activity and therefore an endocrine-disrupting compound (EDC) that disrupts steroidogenesis by inhibiting the conversion of testosterone to 172-estradiol. While fadrozole is a therapeutic drug with generally no enviro...
Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S
2017-08-18
Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates.
Corrêa-Netto, Carlos; Junqueira-de-Azevedo, Inácio de L M; Silva, Débora A; Ho, Paulo L; Leitão-de-Araújo, Moema; Alves, Maria Lúcia M; Sanz, Libia; Foguel, Débora; Zingali, Russolina Benedeta; Calvete, Juan J
2011-08-24
The venom proteomes of Micrurus altirostris and M. corallinus were analyzed by combining snake venomics and venom gland transcriptomic surveys. In both coral snake species, 3FTx and PLA(2) were the most abundant and diversified toxin families. 33 different 3FTxs and 13 PLA(2) proteins, accounting respectively for 79.5% and 13.7% of the total proteins, were identified in the venom of M. altirostris. The venom of M. corallinus comprised 10 3FTx (81.7% of the venom proteome) and 4 (11.9%) PLA(2) molecules. Transcriptomic data provided the full-length amino acid sequences of 18 (M. altirostris) and 10 (M. corallinus) 3FTxs, and 3 (M. altirostris) and 1 (M. corallinus) novel PLA(2) sequences. In addition, venom from each species contained single members of minor toxin families: 3 common (PIII-SVMP, C-type lectin-like, L-amino acid oxidase) and 4 species-specific (CRISP, Kunitz-type inhibitor, lysosomal acid lipase in M. altirostris; serine proteinase in M. corallinus) toxin classes. The finding of a lipase (LIPA) in the venom proteome and in the venom gland transcriptome of M. altirostris supports the view of a recruitment event predating the divergence of Elapidae and Viperidae more than 60 Mya. The toxin profile of both M. altirostris and M. corallinus venoms points to 3FTxs and PLA(2) molecules as the major players of the envenoming process. In M. altirostris venom, all major, and most minor, 3FTxs display highest similarity to type I α-neurotoxins, suggesting that these postsynaptically acting toxins may play the predominant role in the neurotoxic effect leading to peripheral paralysis, respiratory arrest, and death. M. corallinus venom posesses both, type I α-neurotoxins and a high-abundance (26% of the venom proteome) protein of subfamily XIX of 3FTxs, exhibiting similarity to bucandin from Malayan krait, Bungarus candidus, venom, which enhances acetylcholine release presynaptically. This finding may explain the presynaptic neurotoxicity of M. corallinus venom and the lack of this effect in M. altirostris venom. The anti-Micrurus (corallinus and frontalis) antivenom produced by Instituto Butantan quantitatively immunodepleted the minor toxins from M. altirostris and M. corallinus venoms but showed impaired crossreactivity towards their major 3FTx and PLA(2) molecules. The structural diversity of 3FTxs among Micrurus sp. may underlay the impaired cross-immunoreactivity of the Butantan antivenom towards M. altirostris and M. corallinus toxins, hampering the possibility to raise an antivenom against a simple venom mixture exhibiting paraspecific neutralization of other Micrurus venoms. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberemm, A., E-mail: axel.oberemm@bfr.bund.d; Ahr, H.-J.; Bannasch, P.
2009-12-01
A common animal model of chemical hepatocarcinogenesis was used to examine the utility of transcriptomic and proteomic data to identify early biomarkers related to chemically induced carcinogenesis. N-nitrosomorpholine, a frequently used genotoxic model carcinogen, was applied via drinking water at 120 mg/L to male Wistar rats for 7 weeks followed by an exposure-free period of 43 weeks. Seven specimens of each treatment group (untreated control and 120 mg/L N-nitrosomorpholine in drinking water) were sacrificed at nine time points during and after N-nitrosomorpholine treatment. Individual samples from the liver were prepared for histological and toxicogenomic analyses. For histological detection of preneoplasticmore » and neoplastic tissue areas, sections were stained using antibodies against the placental form of glutathione-S-transferase (GST-P). Gene and protein expression profiles of liver tissue homogenates were analyzed using RG-U34A Affymetrix rat gene chips and two-dimensional gel electrophoresis-based proteomics, respectively. In order to compare results obtained by histopathology, transcriptomics and proteomics, GST-P-stained liver sections were evaluated morphometrically, which revealed a parallel time course of the area fraction of preneoplastic lesions and gene plus protein expression patterns. On the transcriptional level, an increase of hepatic GST-P expression was detectable as early as 3 weeks after study onset. Comparing deregulated genes and proteins, eight species were identified which showed a corresponding expression profile on both expression levels. Functional analysis suggests that these genes and corresponding proteins may be useful as biomarkers of early hepatocarcinogenesis.« less
Liu, Mao-Sen; Li, Hui-Chun; Lai, Ying-Mi; Lo, Hsiao-Feng; Chen, Long-Fang O
2013-11-20
Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common and distinct mechanisms in delaying senescence of broccoli florets. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.
Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells.
Lyall, Marcus J; Cartier, Jessy; Thomson, John P; Cameron, Kate; Meseguer-Ripolles, Jose; O'Duibhir, Eoghan; Szkolnicka, Dagmara; Villarin, Baltasar Lucendo; Wang, Yu; Blanco, Giovanny Rodriguez; Dunn, Warwick B; Meehan, Richard R; Hay, David C; Drake, Amanda J
2018-07-05
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation ( TET ) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.
Epigenomics, gestational programming and risk of metabolic syndrome.
Desai, M; Jellyman, J K; Ross, M G
2015-04-01
Epigenetic mechanisms are emerging as mediators linking early environmental exposures during pregnancy with programmed changes in gene expression that alter offspring growth and development. There is irrefutable evidence from human and animal studies that nutrient and environmental agent exposures (for example, endocrine disruptors) during pregnancy may affect fetal/newborn development resulting in offspring obesity and obesity-associated metabolic abnormalities (metabolic syndrome). This concept of 'gestational programming' is associated with alterations to the epigenome (nongenomic) rather than changes in the DNA sequence (genomic). Epigenetic alterations induced by suboptimal maternal nutrition/endocrine factors include DNA methylation, histone modifications, chromatin remodeling and/or regulatory feedback by microRNAs, all of which have the ability to modulate gene expression and promote the metabolic syndrome phenotype. Recent studies have shown tissue-specific transcriptome patterns and phenotypes not only in the exposed individual, but also in subsequent progeny. Notably, the transmission of gestational programming effects to subsequent generations occurs in the absence of continued adverse environmental exposures, thus propagating the cycle of obesity and metabolic syndrome. This phenomenon may be attributed to an extrinsic process resulting from the maternal phenotype and the associated nutrient alterations occurring within each pregnancy. In addition, epigenetic inheritance may occur through somatic cells or through the germ line involving both maternal and paternal lineages. Since epigenetic gene modifications may be reversible, understanding how epigenetic mechanisms contribute to transgenerational transmission of obesity and metabolic dysfunction is crucial for the development of novel early detection and prevention strategies for programmed metabolic syndrome. In this review we discuss the evidence in human and animal studies for the role of epigenomic mechanisms in the transgenerational transmission of programmed obesity and metabolic syndrome.
Epigenomics of idiopathic pulmonary fibrosis
Yang, Ivana V
2012-01-01
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Gene-expression profiling studies have taught us quite a bit about the biology of this fatal disease, but epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptome changes associated with the development of IPF. This review will begin with an introduction to the disease, followed by brief summaries of studies of gene expression in IPF and epigenetic marks associated with exposures relevant to IPF. The majority of the discussion will focus on epigenetic studies conducted so far in IPF, the limitations, challenges and future directions in this field. PMID:22449190
Epigenomics of idiopathic pulmonary fibrosis.
Yang, Ivana V
2012-04-01
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Gene-expression profiling studies have taught us quite a bit about the biology of this fatal disease, but epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptome changes associated with the development of IPF. This review will begin with an introduction to the disease, followed by brief summaries of studies of gene expression in IPF and epigenetic marks associated with exposures relevant to IPF. The majority of the discussion will focus on epigenetic studies conducted so far in IPF, the limitations, challenges nd future directions in this field.
USDA-ARS?s Scientific Manuscript database
It has been often stated that we have moved from an age of chemistry to an age of biology. The ease of sequencing genomes and obtaining related genotypic, transcriptomic, proteomic, and metabolomics information is leading to the development of new commercial technologies where problems are solved "...
Genomic techniques (transcriptomics, proteomics, and metabolomics) have the potential to significantly improve the way chemical risk is managed in the 21st century. Indeed, a significant amount of research has been devoted to the use of these techniques to screen chemicals for h...
Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites
ERIC Educational Resources Information Center
Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa
2016-01-01
Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…
Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens
USDA-ARS?s Scientific Manuscript database
Marek’s disease (MD) is an immunosuppressive and proliferative disease of domestic chickens caused by a highly oncogenic cell-associated alpha-herpesvirus, named Marek’s disease virus (MDV). Despite the availability of highly efficacious vaccines for control of MD and existence of lines of chickens ...
Omics methods for probing the mode of action of natural phytotoxins
USDA-ARS?s Scientific Manuscript database
For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics...
USDA-ARS?s Scientific Manuscript database
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colarado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both ...
Knockout of an outer membrane protein operon of anaplasma marginale by transposon mutagenesis
USDA-ARS?s Scientific Manuscript database
Large amounts of data generated by genomics, transcriptomics and proteomics technologies have increased our understanding of the biology of Anaplasma marginale. However, these data have also led to new assumptions that require testing, ideally through classic genetic mutation. One example is the def...
Exploring cancer genomic data from the cancer genome atlas project.
Lee, Ju-Seog
2016-11-01
The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data. [BMB Reports 2016; 49(11): 607-611].
Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.
2013-01-01
High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779
High-throughput sequencing of black pepper root transcriptome.
Gordo, Sheila M C; Pinheiro, Daniel G; Moreira, Edith C O; Rodrigues, Simone M; Poltronieri, Marli C; de Lemos, Oriel F; da Silva, Israel Tojal; Ramos, Rommel T J; Silva, Artur; Schneider, Horacio; Silva, Wilson A; Sampaio, Iracilda; Darnet, Sylvain
2012-09-17
Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.
High-throughput sequencing of black pepper root transcriptome
2012-01-01
Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheis, Katja A., E-mail: katja.matheis@boehringer-ingelheim.com; Com, Emmanuelle; High-Throughput Proteomics Core Facility OUEST-genopole
2011-04-15
The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinicalmore » chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.« less
Higdon, Roger; Kala, Jessie; Wilkins, Devan; Yan, Julia Fangfei; Sethi, Manveen K; Lin, Liang; Liu, Siqi; Montague, Elizabeth; Janko, Imre; Choiniere, John; Kolker, Natali; Hancock, William S; Kolker, Eugene; Fanayan, Susan
2017-02-03
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Patient survival has remained largely the same for the past 20 years, with therapies causing significant health, cognitive, behavioral and developmental complications for those who survive the tumor. In this study, we profiled the total transcriptome and proteome of two established MB cell lines, Daoy and UW228, using high-throughput RNA sequencing (RNA-Seq) and label-free nano-LC-MS/MS-based quantitative proteomics, coupled with advanced pathway analysis. While Daoy has been suggested to belong to the sonic hedgehog (SHH) subtype, the exact UW228 subtype is not yet clearly established. Thus, a goal of this study was to identify protein markers and pathways that would help elucidate their subtype classification. A number of differentially expressed genes and proteins, including a number of adhesion, cytoskeletal and signaling molecules, were observed between the two cell lines. While several cancer-associated genes/proteins exhibited similar expression across the two cell lines, upregulation of a number of signature proteins and enrichment of key components of SHH and WNT signaling pathways were uniquely observed in Daoy and UW228, respectively. The novel information on differentially expressed genes/proteins and enriched pathways provide insights into the biology of MB, which could help elucidate their subtype classification.
Gautam, Vibhav; Sarkar, Ananda K
2015-04-01
Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.
Li, Hua-Xiang; Lu, Zhen-Ming; Zhu, Qing; Gong, Jin-Song; Geng, Yan; Shi, Jin-Song; Xu, Zheng-Hong; Ma, Yan-He
2017-09-01
Medicinal mushroom Antrodia camphorata sporulate large numbers of arthroconidia in submerged fermentation, which is rarely reported in basidiomycetous fungi. Nevertheless, the molecular mechanisms underlying this asexual sporulation (conidiation) remain unclear. Here, we used comparative transcriptomic and proteomic approaches to elucidate possible signaling pathway relating to the asexual sporulation of A. camphorata. First, 104 differentially expressed proteins and 2586 differential cDNA sequences during the culture process of A. camphorata were identified by 2DE and RNA-seq, respectively. By applying bioinformatics analysis, a total of 67 genes which might play roles in the sporulation were obtained, and 18 of these genes, including fluG, sfgA, SfaD, flbA, flbB, flbC, flbD, nsdD, brlA, abaA, wetA, ganB, fadA, PkaA, veA, velB, vosA, and stuA might be involved in a potential FluG-mediated signaling pathway. Furthermore, the mRNA expression levels of the 18 genes in the proposed FluG-mediated signaling pathway were analyzed by quantitative real-time PCR. In summary, our study helps elucidate the molecular mechanisms underlying the asexual sporulation of A. camphorata, and provides also useful transcripts and proteome for further bioinformatics study of this valuable medicinal mushroom. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis
Ghosh, Ritesh; Mishra, Ratnesh Chandra; Choi, Bosung; Kwon, Young Sang; Bae, Dong Won; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong
2016-01-01
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant. PMID:27665921
Pang, Chi Nam Ignatius; Tay, Aidan P; Aya, Carlos; Twine, Natalie A; Harkness, Linda; Hart-Smith, Gene; Chia, Samantha Z; Chen, Zhiliang; Deshpande, Nandan P; Kaakoush, Nadeem O; Mitchell, Hazel M; Kassem, Moustapha; Wilkins, Marc R
2014-01-03
Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.
Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.
Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W
2017-12-01
The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.
Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O
2015-08-25
Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.
Fitó, Montserrat; Melander, Olle; Martínez, José Alfredo; Toledo, Estefanía; Carpéné, Christian; Corella, Dolores
2016-01-01
Intervention with Mediterranean diet (MedDiet) has provided a high level of evidence in primary prevention of cardiovascular events. Besides enhancing protection from classical risk factors, an improvement has also been described in a number of non-classical ones. Benefits have been reported on biomarkers of oxidation, inflammation, cellular adhesion, adipokine production, and pro-thrombotic state. Although the benefits of the MedDiet have been attributed to its richness in antioxidants, the mechanisms by which it exercises its beneficial effects are not well known. It is thought that the integration of omics including genomics, transcriptomics, epigenomics, and metabolomics, into studies analyzing nutrition and cardiovascular diseases will provide new clues regarding these mechanisms. However, omics integration is still in its infancy. Currently, some single-omics analyses have provided valuable data, mostly in the field of genomics. Thus, several gene-diet interactions in determining both intermediate (plasma lipids, etc.) and final cardiovascular phenotypes (stroke, myocardial infarction, etc.) have been reported. However, few studies have analyzed changes in gene expression and, moreover very few have focused on epigenomic or metabolomic biomarkers related to the MedDiet. Nevertheless, these preliminary results can help to better understand the inter-individual differences in cardiovascular risk and dietary response for further applications in personalized nutrition. PMID:27598147
Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao
2017-02-20
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling
Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia
2014-01-01
The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435
Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang
2015-01-01
Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232
Ghatak, Arindam; Chaturvedi, Palak; Weckwerth, Wolfram
2017-01-01
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet. PMID:28626463
USDA-ARS?s Scientific Manuscript database
Alteration of gene expression is an essential mechanism, which allows plants to respond and adapt to adverse environmental conditions. Transcriptome and proteome analyses in plants exposed to abiotic stresses revealed that protein levels are not correlated with the changes in corresponding mRNAs, in...
USDA-ARS?s Scientific Manuscript database
Background: Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known on the protein composition of venom and how specific venom p...
Leigh Hawkins; Marilyn Warburton; Juliet Tang; John Tomashek; Dafne Alves Oliveira; Oluwaseun Ogunola; J. Smith; W. Williams
2018-01-01
Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to...
A tripartite approach identifies the major sunflower seed albumins.
Jayasena, Achala S; Franke, Bastian; Rosengren, Johan; Mylne, Joshua S
2016-03-01
We have used a combination of genomic, transcriptomic, and proteomic approaches to identify the napin-type albumin genes in sunflower and define their contributions to the seed albumin pool. Seed protein content is determined by the expression of what are typically large gene families. A major class of seed storage proteins is the napin-type, water soluble albumins. In this work we provide a comprehensive analysis of the napin-type albumin content of the common sunflower (Helianthus annuus) by analyzing a draft genome, a transcriptome and performing a proteomic analysis of the seed albumin fraction. We show that although sunflower contains at least 26 genes for napin-type albumins, only 15 of these are present at the mRNA level. We found protein evidence for 11 of these but the albumin content of mature seeds is dominated by the encoded products of just three genes. So despite high genetic redundancy for albumins, only a small sub-set of this gene family contributes to total seed albumin content. The three genes identified as producing the majority of sunflower seed albumin are potential future candidates for manipulation through genetics and breeding.
Omics Approaches for the Engineering of Pathogen Resistant Plants.
Gomez-Casati, Diego F; Pagani, María A; Busi, María V; Bhadauria, Vijai
2016-01-01
The attack of different pathogens, such as bacteria, fungi and viruses has a negative impact on crop production. In counter such attacks, plants have developed different strategies involving the modification of gene expression, activation of several metabolic pathways and post-translational modification of proteins, which culminate into the accumulation of primary and secondary metabolites implicated in plant defense responses. The recent advancement in omics techniques allows the increase coverage of plants transcriptomes, proteomes and metabolomes during pathogen attack, and the modulation of the response after the infection. Omics techniques also allow us to learn more about the biological cycle of the pathogens in addition to the identification of novel virulence factors in pathogens and their host targets. Both approaches become important to decipher the mechanism underlying pathogen attacks and to develop strategies for improving disease-resistant plants. In this review, we summarize some of the contribution of genomics, transcriptomics, proteomics, metabolomics and metallomics in devising the strategies to obtain plants with increased resistance to pathogens. These approaches constitute important research tools in the development of new technologies for the protection against diseases and increase plant production.
Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi
2017-01-01
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942
Spotlight on environmental omics and toxicology: a long way in a short time.
Martyniuk, Christopher J; Simmons, Denina B
2016-09-01
The applications for high throughput omics technologies in environmental science have increased dramatically in recent years. Transcriptomics, proteomics, and metabolomics have been used to study how chemicals in our environment affect both aquatic and terrestrial organisms, and the characterization of molecular initiating events is a significant goal in toxicology to better predict adverse responses to toxicants. This special journal edition demonstrates the scope of the science that leverages omics-based methods in both laboratory and wild populations within the context of environmental toxicology, ranging from fish to mammals. It is important to recognize that the environment comprises one axis of the One Health concept - the idea that human health is unequivocally intertwined to our environment and to the organisms that inhabit that environment. We have much to learn from a comparative approach, and studies that integrate the transcriptome, proteome, and the metabolome are expected to offer the most detailed mechanism-based adverse outcome pathways that are applicable for use in both environmental monitoring and risk assessment. Copyright © 2016 Elsevier Inc. All rights reserved.
Yan, Zhichao; Fang, Qi; Wang, Lei; Liu, Jinding; Zhu, Yu; Wang, Fei; Li, Fei; Werren, John H.; Ye, Gongyin
2016-01-01
Parasitoid wasps are abundant and diverse hymenopteran insects that lay their eggs into the internal body (endoparasitoid) or on the external surface (ectoparasitoid) of their hosts. To make a more conducive environment for the wasps’ young, both ecto- and endoparasitoids inject venoms into the host to modulate host immunity, metabolism and development. Endoparasitoids have evolved from ectoparasitoids independently in different hymenopteran lineages. Pteromalus puparum, a pupal endoparasitoid of various butterflies, represents a relatively recent evolution of endoparasitism within pteromalids. Using a combination of transcriptomic and proteomic approaches, we have identified 70 putative venom proteins in P. puparum. Most of them show higher similarity to venom proteins from the related ectoparasitoid Nasonia vitripennis than from other more distantly related endoparasitoids. In addition, 13 venom proteins are similar to venoms of distantly related endoparasitoids but have no detectable venom matches in Nasonia. These venom proteins may have a role in adaptation to endoparasitism. Overall, these results lay the groundwork for more detailed studies of venom function and adaptation to the endoparasitic lifestyle. PMID:26803989
Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics
Bourgard, Catarina; Albrecht, Letusa; Kayano, Ana C. A. V.; Sunnerhagen, Per; Costa, Fabio T. M.
2018-01-01
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research. PMID:29473024
Batista, Andrea N L; Santos-Pinto, José Roberto A Dos; Batista, João M; Souza-Moreira, Tatiana M; Santoni, Mariana M; Zanelli, Cleslei F; Kato, Massuo J; López, Silvia N; Palma, Mario S; Furlan, Maysa
2017-05-26
Peperomia obtusifolia, an ornamental plant from the Piperaceae family, accumulates a series of secondary metabolites with interesting biological properties. From a biosynthesis standpoint, this species produces several benzopyrans derived from orsellinic acid, which is a polyketide typically found in fungi. Additionally, the chiral benzopyrans were reported as racemic and/or as diastereomeric mixtures, which raises questions about the level of enzymatic control in the cyclization step for the formation of the 3,4-dihydro-2H-pyran moiety. Therefore, this article describes the use of shotgun proteomic and transcriptome studies as well as phytochemical profiling for the characterization of the main biosynthesis pathways active in P. obtusifolia. This combined approach resulted in the identification of a series of proteins involved in its secondary metabolism, including tocopherol cyclase and prenyltransferases. The activity of these enzymes was supported by the phytochemical profiling performed in different organs of P. obtusifolia. However, the polyketide synthases possibly involved in the production of orsellinic acid could not be identified, suggesting that orsellinic acid may be produced by endophytes intimately associated with the plant.
Aragón, C; Pascual, P; González, J; Escalona, M; Carvalho, L; Amancio, S
2013-11-01
Proteomic and transcriptomic profiles of key enzymes were monitored in pineapple plants propagated under C3 and CAM-inducing metabolisms to obtain insight into the CAM-facultative metabolism and the relationship of CAM plants with oxidative stress. Pineapple is one of the most important tropical crops worldwide. The use of temporary immersion bioreactors for the first stages of pineapple propagation enables precise control of plant growth, increases the rate of plant multiplication, decreases space, energy and labor requirements for pineapple plants in commercial micropropagation. Once the plantlets are ready to be taken from the reactors, they are carefully acclimatized to natural environmental conditions, and a facultative C3/CAM metabolism in the first 2 months of growth is the characteristic of pineapple plants, depending on environmental conditions. We subjected two sets of micropropagated pineapple plants to C3 and CAM-inducing environmental conditions, determined by light intensity/relative humidity (respectively 40 μmol m−2 s−1/85 % and 260 μmol m−2 s−1/50 %). Leaves of pineapple plants grown under CAM-inducing conditions showed higher leaf thickness and more developed cuticles and hypodermic tissue. Proteomic profiles of several proteins, isoenzyme patterns and transcriptomic profiles were also measured. Five major spots were isolated and identified, two of them for the first time in Ananas comosus (OEE 1; OEE 2) and the other three corresponding to small fragments of the large subunit of Rubisco (LSU). PEPC and PEPCK were also detected by immunobloting of 2DE at the end of both ex vitro treatments (C3/CAM) during the dark period. Isoenzymes of SOD and CAT were identified by electrophoresis and the transcript levels of OEE 1 and CAT were associated with CAM metabolism in pineapple plants.
Mosier, Annika C; Justice, Nicholas B; Bowen, Benjamin P; Baran, Richard; Thomas, Brian C; Northen, Trent R; Banfield, Jillian F
2013-03-12
Microorganisms grow under a remarkable range of extreme conditions. Environmental transcriptomic and proteomic studies have highlighted metabolic pathways active in extremophilic communities. However, metabolites directly linked to their physiology are less well defined because metabolomics methods lag behind other omics technologies due to a wide range of experimental complexities often associated with the environmental matrix. We identified key metabolites associated with acidophilic and metal-tolerant microorganisms using stable isotope labeling coupled with untargeted, high-resolution mass spectrometry. We observed >3,500 metabolic features in biofilms growing in pH ~0.9 acid mine drainage solutions containing millimolar concentrations of iron, sulfate, zinc, copper, and arsenic. Stable isotope labeling improved chemical formula prediction by >50% for larger metabolites (>250 atomic mass units), many of which were unrepresented in metabolic databases and may represent novel compounds. Taurine and hydroxyectoine were identified and likely provide protection from osmotic stress in the biofilms. Community genomic, transcriptomic, and proteomic data implicate fungi in taurine metabolism. Leptospirillum group II bacteria decrease production of ectoine and hydroxyectoine as biofilms mature, suggesting that biofilm structure provides some resistance to high metal and proton concentrations. The combination of taurine, ectoine, and hydroxyectoine may also constitute a sulfur, nitrogen, and carbon currency in the communities. Microbial communities are central to many critical global processes and yet remain enigmatic largely due to their complex and distributed metabolic interactions. Metabolomics has the possibility of providing mechanistic insights into the function and ecology of microbial communities. However, our limited knowledge of microbial metabolites, the difficulty of identifying metabolites from complex samples, and the inability to link metabolites directly to community members have proven to be major limitations in developing advances in systems interactions. Here, we show that combining stable-isotope-enabled metabolomics with genomics, transcriptomics, and proteomics can illuminate the ecology of microorganisms at the community scale.
Lv, Long-Xian; Yan, Ren; Shi, Hai-Yan; Shi, Ding; Fang, Dai-Qiong; Jiang, Hui-Yong; Wu, Wen-Rui; Guo, Fei-Fei; Jiang, Xia-Wei; Gu, Si-Lan; Chen, Yun-Bo; Yao, Jian; Li, Lan-Juan
2017-01-06
Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius. Copyright © 2016. Published by Elsevier B.V.
Single-cell sequencing in stem cell biology.
Wen, Lu; Tang, Fuchou
2016-04-15
Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.
Community resources and technologies developed through the NIH Roadmap Epigenomics Program.
Satterlee, John S; Beckel-Mitchener, Andrea; McAllister, Kim; Procaccini, Dena C; Rutter, Joni L; Tyson, Frederick L; Chadwick, Lisa Helbling
2015-01-01
This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.
Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung
2012-12-01
What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To identify more differentially expressed genes with a lower false discovery rate from a previously published microarray data set, an integrative hypothesis-testing statistical approach was applied. • For validation experiments, expression and phosphorylation levels of select proteins were evaluated by western blotting. • Integration analysis of this transcriptomics data set with our own quantitative proteomics data set identified 10 genes that are potentially regulated by APF in vivo from 4140 differentially expressed genes identified with a false discovery rate of 1%. • Of these, five (i.e. JUP, MAPKSP1, GSPT1, PTGS2/COX-2 and XPOT) were found to be prominent after network modelling of the common genes identified in the proteomics and microarray studies. • This molecular signature reflects the biological processes of cell adhesion, cell proliferation and inflammation, which is consistent with the known physiological effects of APF. • Lastly, we found the mammalian target of rapamycin pathway was down-regulated in response to APF. • This unbiased integration analysis of in vitro quantitative proteomics data with in vivo quantitative transcriptomics data led to the identification of potential downstream mediators of the APF signal transduction pathway. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.
Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah
2016-01-01
Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen–ovule recognition. PMID:27045089
Salisbury, Joseph P; Sîrbulescu, Ruxandra F; Moran, Benjamin M; Auclair, Jared R; Zupanc, Günther K H; Agar, Jeffrey N
2015-03-11
The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. Here, we report the de novo assembly and annotation of the A. leptorhynchus transcriptome. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered 42,459 unique contigs containing at least a partial protein-coding sequence based on alignment to a reference set of known Actinopterygii sequences. As many as 11,847 of these contigs contained full or near-full length protein sequences, providing broad coverage of the proteome. A variety of non-coding RNA sequences were also identified and annotated, including conserved long intergenic non-coding RNA and other long non-coding RNA observed previously to be expressed in adult zebrafish (Danio rerio) brain, as well as a variety of miRNA, snRNA, and snoRNA. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra was greatly improved by use of the assembly compared to databases of sequences from closely related organisms. The assembly and raw reads have been deposited at DDBJ/EMBL/GenBank under the accession number GBKR00000000. Tandem mass spectrometry data is available via ProteomeXchange with identifier PXD001285. Presented here is the first release of an annotated de novo transcriptome assembly from Apteronotus leptorhynchus, providing a broad overview of RNA expressed in central nervous system tissue. The assembly, which includes substantial coverage of a wide variety of both protein coding and non-coding transcripts, will allow the development of better tools to understand the mechanisms underlying unique characteristics of the knifefish model system, such as their tremendous regenerative capacity and negligible brain senescence.
Kuuskeri, Jaana; Häkkinen, Mari; Laine, Pia; Smolander, Olli-Pekka; Tamene, Fitsum; Miettinen, Sini; Nousiainen, Paula; Kemell, Marianna; Auvinen, Petri; Lundell, Taina
2016-01-01
The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
Le Trionnaire, G; Francis, F; Jaubert-Possamai, S; Bonhomme, J; De Pauw, E; Gauthier, J-P; Haubruge, E; Legeai, F; Prunier-Leterme, N; Simon, J-C; Tanguy, S; Tagu, D
2009-01-01
Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. PMID:19788735
Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael
2017-01-01
Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516
Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki
2006-11-01
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.
Na, Wei; Wu, Yuan-Yuan; Gong, Peng-Fei; Wu, Chun-Yan; Cheng, Bo-Han; Wang, Yu-Xiang; Wang, Ning; Du, Zhi-Qiang; Li, Hui
2018-05-23
In avian species, liver is the main site of de novo lipogenesis, and hepatic lipid metabolism relates closely to adipose fat deposition. Using our fat and lean chicken lines of striking differences in abdominal fat content, post-hatch lipid metabolism in both liver and adipose tissues has been studied extensively. However, whether molecular discrepancy for hepatic lipid metabolism exists in chicken embryos remains obscure. We performed transcriptome and proteome profiling on chicken livers at five embryonic stages (E7, E12, E14, E17 and E21) between the fat and lean chicken lines. At each stage, 521, 141, 882, 979 and 169 differentially expressed genes were found by the digital gene expression, respectively, which were significantly enriched in the metabolic, PPAR signaling and fatty acid metabolism pathways. Quantitative proteomics analysis found 20 differentially expressed proteins related to lipid metabolism, PPAR signaling, fat digestion and absorption, and oxidative phosphorylation pathways. Combined analysis showed that genes and proteins related to lipid transport (intestinal fatty acid-binding protein, nucleoside diphosphate kinase, and apolipoprotein A-I), lipid clearance (heat shock protein beta-1) and energy metabolism (NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and succinate dehydrogenase flavoprotein subunit) were significantly differentially expressed between the two lines. For hepatic lipid metabolism at embryonic stages, molecular differences related to lipid transport, lipid clearance and energy metabolism exist between the fat and lean chicken lines, which might contribute to the striking differences of abdominal fat deposition at post-hatch stages.
CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.
Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong
2015-01-01
Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics's usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics. © The Author(s) 2015. Published by Oxford University Press.
Sawada, Hitoshi; Satoh, Noriyuki
2016-01-01
Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604
Methods, Tools and Current Perspectives in Proteogenomics *
Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.
2017-01-01
With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751
Krendl, Christian; Shaposhnikov, Dmitry; Rishko, Valentyna; Ori, Chaido; Ziegenhain, Christoph; Sass, Steffen; Simon, Lukas; Müller, Nikola S.; Straub, Tobias; Brooks, Kelsey E.; Chavez, Shawn L.; Enard, Wolfgang; Theis, Fabian J.; Drukker, Micha
2017-01-01
To elucidate the molecular basis of BMP4-induced differentiation of human pluripotent stem cells (PSCs) toward progeny with trophectoderm characteristics, we produced transcriptome, epigenome H3K4me3, H3K27me3, and CpG methylation maps of trophoblast progenitors, purified using the surface marker APA. We combined them with the temporally resolved transcriptome of the preprogenitor phase and of single APA+ cells. This revealed a circuit of bivalent TFAP2A, TFAP2C, GATA2, and GATA3 transcription factors, coined collectively the “trophectoderm four” (TEtra), which are also present in human trophectoderm in vivo. At the onset of differentiation, the TEtra factors occupy multiple sites in epigenetically inactive placental genes and in OCT4. Functional manipulation of GATA3 and TFAP2A indicated that they directly couple trophoblast-specific gene induction with suppression of pluripotency. In accordance, knocking down GATA3 in primate embryos resulted in a failure to form trophectoderm. The discovery of the TEtra circuit indicates how trophectoderm commitment is regulated in human embryogenesis. PMID:29078328
Origin and initiation mechanisms of neuroblastoma.
Tsubota, Shoma; Kadomatsu, Kenji
2018-05-01
Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of peanut and other crops is a major concern for producers globally, and has been shown to be exacerbated by drought stress. Previous transcriptomic and proteomic examination of the responses of isolates of Aspergillus flavus to drought-related oxidative stress in vitro have ...
USDA-ARS?s Scientific Manuscript database
The soybean aphid, a plant sap sucking insect, is an important soybean pest in the USA causing significant yield losses. The Rag2 gene of soybean provides resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were performed on near isogenic lines (NILs) with the Rag2 al...
A-to-I RNA Editing: An Overlooked Source of Cancer Mutations.
Ben-Aroya, Shay; Levanon, Erez Y
2018-05-14
RNA editing is a source of transcriptomic diversity, mainly in non-coding regions, and is found to be altered in cancer. In this issue of Cancer Cell, Peng et al. show that RNA editing events are manifested at the proteomic levels and are a source of cancer protein heterogeneity. Copyright © 2018. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
The contamination of crops with aflatoxins during Aspergillus flavus infection is exacerbated by drought stress. Reactive oxygen species have been shown to be produced in plant tissues in response to drought and to stimulate the production of aflatoxin by A. flavus in vitro. To better understand the...
USDA-ARS?s Scientific Manuscript database
A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown colored flavedo during ripening. Analysis of pigment composition in the wild type (WT) and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis...
Teng, Pang-Ning; Bateman, Nicholas W; Wang, Guisong; Litzi, Tracy; Blanton, Brian E; Hood, Brian L; Conrads, Kelly A; Ao, Wei; Oliver, Kate E; Darcy, Kathleen M; McGuire, William P; Paz, Keren; Sidransky, David; Hamilton, Chad A; Maxwell, G Larry; Conrads, Thomas P
2017-07-01
High grade serous ovarian cancer (HGSOC) patients have a high recurrence rate after surgery and adjuvant chemotherapy due to inherent or acquired drug resistance. Cell lines derived from HGSOC tumors that are resistant to chemotherapeutic agents represent useful pre-clinical models for drug discovery. Here, we describe establishment of a human ovarian carcinoma cell line, which we term WHIRC01, from a patient-derived mouse xenograft established from a chemorefractory HGSOC patient who did not respond to carboplatin and paclitaxel therapy. This newly derived cell line is platinum- and paclitaxel-resistant with cisplatin, carboplatin, and paclitaxel half-maximal lethal doses of 15, 130, and 20 µM, respectively. Molecular characterization of this cell line was performed using targeted DNA exome sequencing, transcriptomics (RNA-seq), and mass spectrometry-based proteomic analyses. Results from exomic sequencing revealed mutations in TP53 consistent with HGSOC. Transcriptomic and proteomic analyses of WHIRC01 showed high level of alpha-enolase and vimentin, which are associated with cell migration and epithelial-mesenchymal transition. WHIRC01 represents a chemorefractory human HGSOC cell line model with a comprehensive molecular profile to aid future investigations of drug resistance mechanisms and screening of chemotherapeutic agents.
Multi-Approach Analysis for the Identification of Proteases within Birch Pollen.
McKenna, Olivia E; Posselt, Gernot; Briza, Peter; Lackner, Peter; Schmitt, Armin O; Gadermaier, Gabriele; Wessler, Silja; Ferreira, Fatima
2017-07-04
Birch pollen allergy is highly prevalent, with up to 100 million reported cases worldwide. Proteases in such allergen sources have been suggested to contribute to primary sensitisation and exacerbation of allergic disorders. Until now the protease content of Betula verrucosa , a birch species endemic to the northern hemisphere has not been studied in detail. Hence, we aim to identify and characterise pollen and bacteria-derived proteases found within birch pollen. The pollen transcriptome was constructed via de novo transcriptome sequencing and analysis of the proteome was achieved via mass spectrometry; a cross-comparison of the two databases was then performed. A total of 42 individual proteases were identified at the proteomic level. Further clustering of proteases into their distinct catalytic classes revealed serine, cysteine, aspartic, threonine, and metallo-proteases. Further to this, protease activity of the pollen was quantified using a fluorescently-labelled casein substrate protease assay, as 0.61 ng/mg of pollen. A large number of bacterial strains were isolated from freshly collected birch pollen and zymographic gels with gelatinase and casein, enabled visualisation of proteolytic activity of the pollen and the collected bacterial strains. We report the successful discovery of pollen and bacteria-derived proteases of Betula verrucosa .
Nutrient control of eukaryote cell growth: a systems biology study in yeast.
Gutteridge, Alex; Pir, Pinar; Castrillo, Juan I; Charles, Philip D; Lilley, Kathryn S; Oliver, Stephen G
2010-05-24
To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62.
Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell
2014-01-01
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823
Systems biology approaches to understand the effects of nutrition and promote health.
Badimon, Lina; Vilahur, Gemma; Padro, Teresa
2017-01-01
Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits. © 2016 The British Pharmacological Society.
Novel biomarkers for cardiovascular risk assessment: current status and future directions.
MacNamara, James; Eapen, Danny J; Quyyumi, Arshed; Sperling, Laurence
2015-09-01
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
Functional genomics of root growth and development in Arabidopsis
Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.
2009-01-01
Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793
Functional genomics of root growth and development in Arabidopsis.
Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N
2009-04-01
Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.
Proteomic analysis of the venom from the scorpion Mesobuthus martensii.
Xu, Xiaobo; Duan, Zhigui; Di, Zhiyong; He, Yawen; Li, Jianglin; Li, Zhongjie; Xie, Chunliang; Zeng, Xiongzhi; Cao, Zhijian; Wu, Yingliang; Liang, Songping; Li, Wenxin
2014-06-25
The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrating Omics Technologies to Study Pulmonary Physiology and Pathology at the Systems Level
Pathak, Ravi Ramesh; Davé, Vrushank
2014-01-01
Assimilation and integration of “omics” technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level –called a “systomic” approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers. PMID:24802001
Prospects for discovery by epigenome comparison
Milosavljevic, Aleksandar
2010-01-01
Epigenomic analysis efforts have so far focused on the multiple layers of epigenomic information within individual cell types. With the rapidly increasing diversity of epigenomically mapped cell types, unprecedented opportunities for comparative analysis of epigenomes are opening up. One such opportunity is to map the bifurcating tree of cellular differentiation. Another is to understand the epigenomically mediated effects of mutations, environmental influences, and disease processes. Comparative analysis of epigenomes therefore has the potential to provide wide-ranging fresh insights into basic biology and human disease. The realization of this potential will critically depend on availability of a cyberinfrastructure that will scale with the volume of data and diversity of applications and a number of other computational challenges. PMID:20944597
Laird, Peter W
2009-10-01
The University of Southern California (USC, CA, USA) has a long tradition of excellence in epigenetics. With the recent explosive growth and technological maturation of the field of epigenetics, it became clear that a dedicated high-throughput epigenomic data production facility would be needed to remain at the forefront of epigenetic research. To address this need, USC launched the USC Epigenome Center as the first large-scale center in academics dedicated to epigenomic research. The Center is providing high-throughput data production for large-scale genomic and epigenomic studies, and developing novel analysis tools for epigenomic research. This unique facility promises to be a valuable resource for multidisciplinary research, education and training in genomics, epigenomics, bioinformatics, and translational medicine.
Single-Cell Sequencing Technologies for Cardiac Stem Cell Studies.
Liu, Tiantian; Wu, Hongjin; Wu, Shixiu; Wang, Charles
2017-11-01
Today with the rapid advancements in stem cell studies and the promising potential of using stem cells in clinical therapy, there is an increasing demand for in-depth comprehensive analysis on individual cell transcriptome and epigenome, as they play critical roles in a number of cell functions such as cell differentiation, growth, and reprogramming. The development of single-cell sequencing technologies has helped in revealing some exciting new perspectives in stem cells and regenerative medicine research. Among the various potential applications, single-cell analysis for cardiac stem cells (CSCs) holds tremendous promises in understanding the mechanisms of heart development and regeneration, which might light up the path toward cell therapy for cardiovascular diseases. This review briefly highlights the recent progresses in single-cell sequencing analysis technologies and their applications in CSC research.
Trauma-associated Human Neutrophil Alterations Revealed by Comparative Proteomics Profiling
Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Gao, Hong; Petritis, Brianne O.; De, Asit; Miller-Graziano, Carol; Bankey, Paul E.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald W.; Maier, Ronald V.; Tompkins, Ronald G.; Qian, Wei-Jun; Camp, David G.; Smith, Richard D.
2013-01-01
PURPOSE Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. EXPERIMENTAL DESIGN We applied 2D-LC-MS/MS based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. RESULTS A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs. PMID:23589343
Enabling interspecies epigenomic comparison with CEpBrowser.
Cao, Xiaoyi; Zhong, Sheng
2013-05-01
We developed the Comparative Epigenome Browser (CEpBrowser) to allow the public to perform multi-species epigenomic analysis. The web-based CEpBrowser integrates, manages and visualizes sequencing-based epigenomic datasets. Five key features were developed to maximize the efficiency of interspecies epigenomic comparisons. CEpBrowser is a web application implemented with PHP, MySQL, C and Apache. URL: http://www.cepbrowser.org/.
Challenges ahead for mass spectrometry and proteomics applications in epigenetics.
Kessler, Benedikt M
2010-02-01
Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.
Maze, Ian; Shen, Li; Zhang, Bin; Garcia, Benjamin A.; Shao, Ningyi; Mitchell, Amanda; Sun, HaoSheng; Akbarian, Schahram; Allis, C. David; Nestler, Eric J.
2014-01-01
Over the past decade, rapid advances in epigenomics research have extensively characterized critical roles for chromatin regulatory events during normal periods of eukaryotic cell development and plasticity, as well as part of aberrant processes implicated in human disease. Application of such approaches to studies of the central nervous system (CNS), however, is more recent. Here, we provide a comprehensive overview of currently available tools to analyze neuroepigenomics data, as well as a discussion of pending challenges specific to the field of neuroscience. Integration of numerous unbiased genome-wide and proteomic approaches will be necessary to fully understand the neuroepigenome and the extraordinarily complex nature of the human brain. This will be critical to the development of future diagnostic and therapeutic strategies aimed at alleviating the vast array of heterogeneous and genetically distinct disorders of the CNS. PMID:25349914
Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David
2016-03-01
Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Vlkova, Michaela; Sima, Michal; Rohousova, Iva; Kostalova, Tatiana; Sumova, Petra; Volfova, Vera; Jaske, Erin L.; Barbian, Kent D.; Gebre-Michael, Teshome; Hailu, Asrat; Warburg, Alon; Ribeiro, Jose M. C.; Valenzuela, Jesus G.; Jochim, Ryan C.; Volf, Petr
2014-01-01
Background In East Africa, Phlebotomus orientalis serves as the main vector of Leishmania donovani, the causative agent of visceral leishmaniasis (VL). Phlebotomus orientalis is present at two distant localities in Ethiopia; Addis Zemen where VL is endemic and Melka Werer where transmission of VL does not occur. To find out whether the difference in epidemiology of VL is due to distant compositions of P. orientalis saliva we established colonies from Addis Zemen and Melka Werer, analyzed and compared the transcriptomes, proteomes and enzymatic activity of the salivary glands. Methodology/Principal Findings Two cDNA libraries were constructed from the female salivary glands of P. orientalis from Addis Zemen and Melka Werer. Clones of each P. orientalis library were randomly selected, sequenced and analyzed. In P. orientalis transcriptomes, we identified members of 13 main protein families. Phylogenetic analysis and multiple sequence alignments were performed to evaluate differences between the P. orientalis colonies and to show the relationship with other sand fly species from the subgenus Larroussius. To further compare both colonies, we investigated the humoral antigenicity and cross-reactivity of the salivary proteins and the activity of salivary apyrase and hyaluronidase. Conclusions This is the first report of the salivary components of P. orientalis, an important vector sand fly. Our study expanded the knowledge of salivary gland compounds of sand fly species in the subgenus Larroussius. Based on the phylogenetic analysis, we showed that P. orientalis is closely related to Phlebotomus tobbi and Phlebotomus perniciosus, whereas Phlebotomus ariasi is evolutionarily more distinct species. We also demonstrated that there is no significant difference between the transcriptomes, proteomes or enzymatic properties of the salivary components of Addis Zemen (endemic area) and Melka Werer (non-endemic area) P. orientalis colonies. Thus, the different epidemiology of VL in these Ethiopian foci cannot be attributed to the salivary gland composition. PMID:24587463
Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M.; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald
2013-01-01
Escherichia coli K–12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (EttanTM DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K–12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation. PMID:23950949
Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald
2013-01-01
Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.
Mansfeldt, Cresten B.; Rowe, Annette R.; Heavner, Gretchen L. W.; Zinder, Stephen H.
2014-01-01
A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6 ± 0.6 μM Cl−/h)- and fast (22.9 ± 9.6 μM Cl−/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n = 53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112). PMID:25063656
De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.
Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel
2013-08-19
Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.
De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana
2013-01-01
Background Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development. PMID:23957668
Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Fuchs, Charles S; Beck, Andrew H; Giovannucci, Edward; Ogino, Shuji
2014-01-01
The term “field effect” (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, “etiologic field effect”, which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a “field of susceptibility” to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically-focused approach to field effect can: 1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; 2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, 3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying “etiologic field effect” as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an “etiologic field effect” paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine. PMID:24925058
An overview of the genetic susceptibility to alcoholism.
Buscemi, Loredana; Turchi, Chiara
2011-01-01
Alcoholism is a multifactorial, genetically influenced disorder. It is a major health and social issue, a highly frequent disease and a cause of premature death. It is also the most expensive addictive disorder due to morbidity, mortality, societal and legal problems. Besides their involvement in alcohol-related fatalities, forensic scientists are also required to assess driving and working ability as well as permanent invalidity due to alcohol-related conditions. Greater knowledge of the genetic basis of alcoholism could improve prevention by identifying specific risk factors and mechanisms, leading to effective therapeutic strategies and eventually to personalized treatments. This overview of the recent scientific literature on the genetic basis of alcoholism summarizes the analytical strategies currently applied to the identification of candidate genes involved in alcohol-use disorders (AUDs) and discusses some genes and related phenotypes that have been shown to influence the risk of alcoholism. Alcoholism is a complex heterogeneous genetic disease. It is a quantitative disorder, in which the combined incidence of multiple genetic factors and environmental factors varies from one subject to another. Family, twin and adoption studies indicate that 50-60% of the risk of alcoholism is due to genetic factors. Risk loci for AUDs include both genes involved in alcohol pharmacokinetics and pharmacodynamics as well as genes moderating neurophysiological responses such as impulsivity, disinhibition, sensation-seeking and externalizing behaviours. Alcoholism also co-exists with other addictions and psychiatric disorders. Such co-morbidity suggests the existence of shared aetiological factors. Despite several genes that influence the risk for AUDs having been identified, the genetic bases of alcoholism remain largely unknown. Particularly the mechanism of action or the understanding of the physiology of some genes, as well as the gene-environment interactions, is still unknown. Technological progress and advances in transcriptomics, epigenomics and proteomics are expected to enhance our knowledge of the genetic susceptibility to alcoholism.
Demircan, Turan; Keskin, Ilknur; Dumlu, Seda Nilgün; Aytürk, Nilüfer; Avşaroğlu, Mahmut Erhan; Akgün, Emel; Öztürk, Gürkan; Baykal, Ahmet Tarık
2017-01-01
Salamander axolotl has been emerging as an important model for stem cell research due to its powerful regenerative capacity. Several advantages, such as the high capability of advanced tissue, organ, and appendages regeneration, promote axolotl as an ideal model system to extend our current understanding on the mechanisms of regeneration. Acknowledging the common molecular pathways between amphibians and mammals, there is a great potential to translate the messages from axolotl research to mammalian studies. However, the utilization of axolotl is hindered due to the lack of reference databases of genomic, transcriptomic, and proteomic data. Here, we introduce the proteome analysis of the axolotl tail section searched against an mRNA-seq database. We translated axolotl mRNA sequences to protein sequences and annotated these to process the LC-MS/MS data and identified 1001 nonredundant proteins. Functional classification of identified proteins was performed by gene ontology searches. The presence of some of the identified proteins was validated by in situ antibody labeling. Furthermore, we have analyzed the proteome expressional changes postamputation at three time points to evaluate the underlying mechanisms of the regeneration process. Taken together, this work expands the proteomics data of axolotl to contribute to its establishment as a fully utilized model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proteomics technique opens new frontiers in mobilome research
Davidson, Andrew D.; Matthews, David A.
2017-01-01
ABSTRACT A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the “mobilome,” which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the “domestication” of transposon proteins for cellular functions. Although ‘omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called “proteomics informed by transcriptomics” (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease. PMID:28932623
USDA-ARS?s Scientific Manuscript database
One-hundred-thirty-six expressed sequence tags (ESTs) encoding alpha gliadins from Triticum aestivum cv Butte 86 were identified in public databases and assembled into 19 contigs. Consensus sequences for 12 of the contigs encoded complete alpha gliadin proteins, but only two were identical to protei...
Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng
2017-03-01
Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P < 0.001). Betaine (900 ppm in vivo; 2 mM in vitro) and DHA (1% in vivo; 100 μM in vitro) supplementation both resulted in lower steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.
Ragno, Silvia; Romano, Maria; Howell, Steven; Pappin, Darryl J C; Jenner, Peter J; Colston, Michael J
2001-01-01
We investigated the changes which occur in gene expression in the human macrophage cell line, THP1, at 1, 6 and 12 hr following infection with Mycobacterium tuberculosis. The analysis was carried out at the transcriptome level, using microarrays consisting of 375 human genes generally thought to be involved in immunoregulation, and at the proteomic level, using two-dimensional gel electrophoresis and mass spectrometry. The analysis of the transcriptome using microarrays revealed that many genes were up-regulated at 6 and 12 hr. Most of these genes encoded proteins involved in cell migration and homing, including the chemokines interleukin (IL)-8, osteopontin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), regulated on activation, normal, T-cell expressed and secreted (RANTES), MIP-1β, MIP-3α, myeloid progenitor inhibitory factor-1 (MPIF-1), pulmonary and activation regulated chemokine (PARC), growth regulated gene-β (GRO-β), GRO-γ, MCP-2, I-309, and the T helper 2 (Th2) and eosinophil-attracting chemokine, eotaxin. Other genes involved in cell migration which were up-regulated included the matrix metalloproteinase MMP-9, vascular endothelial growth factor (VEGF) and its receptor Flk-1, the chemokine receptor CCR3, and the cell adhesion molecules vesicular cell adhesion molecule-1 (VCAM-1) and integrin a3. In addition to the chemokine response, genes encoding the proinflammatory cytokines IL-1β (showing a 433-fold induction), IL-2 and tumour necrosis factor-α (TNF-α), were also found to be induced at 6 and/or 12 hr. It was more difficult to detect changes using the proteomic approach. Nevertheless, IL-1β was again shown to be strongly up-regulated. The enzyme manganese superoxide dismutase was also found to be strongly up-regulated; this enzyme was found to be macrophage-, rather than M. tuberculosis, derived. The heat-shock protein hsp27 was found to be down-regulated following infection. We also identified a mycobacterial protein, the product of the atpD gene (thought to be involved in the regulation of cytoplasmic pH) in the infected macrophage extracts. PMID:11576227
Welkie, David; Zhang, Xiaohui; Markillie, Meng Lye; Taylor, Ronald; Orr, Galya; Jacobs, Jon; Bhide, Ketaki; Thimmapuram, Jyothi; Gritsenko, Marina; Mitchell, Hugh; Smith, Richard D; Sherman, Louis A
2014-12-29
Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light-dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.
Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah
2016-05-01
Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E
2005-01-07
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
Understanding and utilising mammalian venom via a platypus venom transcriptome.
Whittington, Camilla M; Koh, Jennifer M S; Warren, Wesley C; Papenfuss, Anthony T; Torres, Allan M; Kuchel, Philip W; Belov, Katherine
2009-03-06
Only five mammalian species are known to be venomous, and while a large amount of research has been carried out on reptile venom, mammalian venom has been poorly studied to date. Here we describe the status of current research into the venom of the platypus, a semi-aquatic egg-laying Australian mammal, and discuss our approach to platypus venom transcriptomics. We propose that such construction and analysis of mammalian venom transcriptomes from small samples of venom gland, in tandem with proteomics studies, will allow the identification of the full range of mammalian venom components. Functional studies and pharmacological evaluation of the identified toxins will then lay the foundations for the future development of novel biomedical substances. A large range of useful molecules have already been identified in snake venom, and many of these are currently in use in human medicine. It is therefore hoped that this basic research to identify the constituents of platypus venom will eventually yield novel drugs and new targets for painkillers.
Isoform Sequencing and State-of-Art Applications for Unravelling Complexity of Plant Transcriptomes
An, Dong; Li, Changsheng; Humbeck, Klaus
2018-01-01
Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its applications in plant transcriptome study, specifically pointing out challenges associated with each step in the experimental design and highlight the development of bioinformatic pipelines. We aim to provide the community with an integrative overview and a comprehensive guidance to Iso-Seq, and thus to promote its applications in plant research. PMID:29346292
How may targeted proteomics complement genomic data in breast cancer?
Guerin, Mathilde; Gonçalves, Anthony; Toiron, Yves; Baudelet, Emilie; Audebert, Stéphane; Boyer, Jean-Baptiste; Borg, Jean-Paul; Camoin, Luc
2017-01-01
Breast cancer (BC) is the most common female cancer in the world and was recently deconstructed in different molecular entities. Although most of the recent assays to characterize tumors at the molecular level are genomic-based, proteins are the actual executors of cellular functions and represent the vast majority of targets for anticancer drugs. Accumulated data has demonstrated an important level of quantitative and qualitative discrepancies between genomic/transcriptomic alterations and their protein counterparts, mostly related to the large number of post-translational modifications. Areas covered: This review will present novel proteomics technologies such as Reverse Phase Protein Array (RPPA) or mass-spectrometry (MS) based approaches that have emerged and that could progressively replace old-fashioned methods (e.g. immunohistochemistry, ELISA, etc.) to validate proteins as diagnostic, prognostic or predictive biomarkers, and eventually monitor them in the routine practice. Expert commentary: These different targeted proteomic approaches, able to complement genomic data in BC and characterize tumors more precisely, will permit to go through a more personalized treatment for each patient and tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handakumbura, Pubudu; Hixson, Kim K.; Purvine, Samuel O.
We present a simple one-pot extraction protocol, which rapidly isolates hydrophyllic metabolites, lipids, and proteins from the same pulverized plant sample. Also detailed is a global plant proteomics sample preparation method utilizing iTRAQ multiplexing reagents that enables deep proteome coverage due to the use of HPLC fractionation of the peptides prior to mass spectrometric analysis. We have successfully used this protocol on several different plant tissues (e.g., roots, stems, leaves) from different plants (e.g., sorghum, poplar, Arabidopsis, soybean), and have been able to successfully detect and quantify thousands of proteins. Multiplexing strategies such as iTRAQ and the bioinformatics strategy outlinedmore » here, ultimately provide insight into which proteins are significantly changed in abundance between two or more groups (e.g., control, perturbation). Our bioinformatics strategy yields z-score values, which normalize the expression data into a format that can easily be cross-compared with other expression data (i.e., metabolomics, transcriptomics) obtained from different analytical methods and instrumentation.« less
Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism
Gorini, Giorgio; Adron Harris, R; Dayne Mayfield, R
2014-01-01
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction. PMID:23900301
Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi
2017-06-23
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Proteomic and transcriptomic analysis of lung tissue in OVA-challenged mice.
Lee, Yongjin; Hwang, Yun-Ho; Kim, Kwang-Jin; Park, Ae-Kyung; Paik, Man-Jeong; Kim, Seong Hwan; Lee, Su Ui; Yee, Sung-Tae; Son, Young-Jin
2018-01-01
Asthma is a long term inflammatory disease of the airway of lungs characterized by variable airflow obstruction and bronchospasm. Asthma is caused by a complex combination of environmental and genetic interactions. In this study, we conducted proteomic analysis of samples derived from control and OVA challenged mice for environmental respiratory disease by using 2-D gel electrophoresis. In addition, we explored the genes associated with the environmental substances that cause respiratory disease and conducted RNA-seq by next-generation sequencing. Proteomic analysis revealed 7 up-regulated (keratin KB40, CRP, HSP27, chaperonin containing TCP-1, TCP-10, keratin, and albumin) and 3 down-regulated proteins (PLC-α, PLA2, and precursor ApoA-1). The expression diversity of many genes was found in the lung tissue of OVA challenged moue by RNA-seq. 146 genes were identified as significantly differentially expressed by OVA treatment, and 118 genes of the 146 differentially expressed genes were up-regulated and 28 genes were downregulated. These genes were related to inflammation, mucin production, and airway remodeling. The results presented herein enable diagnosis and the identification of quantitative markers to monitor the progression of environmental respiratory disease using proteomics and genomic approaches.
Integrative analysis of 111 reference human epigenomes
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Kheradpour, Pouya; Zhang, Zhizhuo; Heravi-Moussavi, Alireza; Liu, Yaping; Amin, Viren; Ziller, Michael J; Whitaker, John W; Schultz, Matthew D; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Wang, Jianrong; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Pfenning, Andreas; Wang, Xinchen; Claussnitzer, Melina; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven; Li, Wei; Marra, Marco; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-01-01
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease. PMID:25693563
Integrative analysis of 111 reference human epigenomes.
Kundaje, Anshul; Meuleman, Wouter; Ernst, Jason; Bilenky, Misha; Yen, Angela; Heravi-Moussavi, Alireza; Kheradpour, Pouya; Zhang, Zhizhuo; Wang, Jianrong; Ziller, Michael J; Amin, Viren; Whitaker, John W; Schultz, Matthew D; Ward, Lucas D; Sarkar, Abhishek; Quon, Gerald; Sandstrom, Richard S; Eaton, Matthew L; Wu, Yi-Chieh; Pfenning, Andreas R; Wang, Xinchen; Claussnitzer, Melina; Liu, Yaping; Coarfa, Cristian; Harris, R Alan; Shoresh, Noam; Epstein, Charles B; Gjoneska, Elizabeta; Leung, Danny; Xie, Wei; Hawkins, R David; Lister, Ryan; Hong, Chibo; Gascard, Philippe; Mungall, Andrew J; Moore, Richard; Chuah, Eric; Tam, Angela; Canfield, Theresa K; Hansen, R Scott; Kaul, Rajinder; Sabo, Peter J; Bansal, Mukul S; Carles, Annaick; Dixon, Jesse R; Farh, Kai-How; Feizi, Soheil; Karlic, Rosa; Kim, Ah-Ram; Kulkarni, Ashwinikumar; Li, Daofeng; Lowdon, Rebecca; Elliott, GiNell; Mercer, Tim R; Neph, Shane J; Onuchic, Vitor; Polak, Paz; Rajagopal, Nisha; Ray, Pradipta; Sallari, Richard C; Siebenthall, Kyle T; Sinnott-Armstrong, Nicholas A; Stevens, Michael; Thurman, Robert E; Wu, Jie; Zhang, Bo; Zhou, Xin; Beaudet, Arthur E; Boyer, Laurie A; De Jager, Philip L; Farnham, Peggy J; Fisher, Susan J; Haussler, David; Jones, Steven J M; Li, Wei; Marra, Marco A; McManus, Michael T; Sunyaev, Shamil; Thomson, James A; Tlsty, Thea D; Tsai, Li-Huei; Wang, Wei; Waterland, Robert A; Zhang, Michael Q; Chadwick, Lisa H; Bernstein, Bradley E; Costello, Joseph F; Ecker, Joseph R; Hirst, Martin; Meissner, Alexander; Milosavljevic, Aleksandar; Ren, Bing; Stamatoyannopoulos, John A; Wang, Ting; Kellis, Manolis
2015-02-19
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.
Proteomics and Systems Biology: Current and Future Applications in the Nutritional Sciences1
Moore, J. Bernadette; Weeks, Mark E.
2011-01-01
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences. PMID:22332076
Albalat, Amaya; Husi, Holger; Siwy, Justyna; Nally, Jarlath E; McLauglin, Mark; Eckersall, Peter D; Mullen, William
2014-02-01
Proteomics is a growing field that has the potential to be applied to many biology-related disciplines. However, the study of the proteome has proven to be very challenging due to its high level of complexity when compared to genome and transcriptome data. In order to analyse this level of complexity, high resolution separation of peptides/proteins are needed together with high resolution analysers. Currently, liquid chromatography and capillary electrophoresis (CE) are the two most widely used separation techniques that can be coupled on-line with a mass spectrometer (MS). In CE, proteins/ peptides are separated according to their size, charge and shape leading to high resolving power. Although further progress in the area of sensitivity, throughput and proteome coverage are expected, MS-based proteomics have developed to a level at which they are habitually applied to study a wide range of biological questions. The aim of this review is to present CE-MS as a proteomic analytical platform for biomarker research that could be used in farm animal and veterinary studies. This is a MS-analytical platform that has been widely used for biomarker research in the biomedical field but its application in animal proteomic studies is relatively novel. The review will focus on introducing the CE-MS platform and the primary considerations for its application to biomarker research. Furthermore, current applications but more importantly potential application in the field of farm animals and veterinary science will be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.
2013-11-01
Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, wemore » could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.« less
Omasits, Ulrich; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.
2013-01-01
Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ∼90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor. PMID:23878158
Chaitankar, Vijender; Karakülah, Gökhan; Ratnapriya, Rinki; Giuste, Felipe O.; Brooks, Matthew J.; Swaroop, Anand
2016-01-01
The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well. PMID:27297499
DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets
Albrecht, Felipe; List, Markus; Bock, Christoph; Lengauer, Thomas
2016-01-01
Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de. PMID:27084938
2011-10-17
analysis results. The components of the TAG biosynthetic pathway, including glycerol-3-phosphate acyl- transferase (GPAT), lyso- phosphatidic acid ...acyltransferase (LPAAT), phosphatidic acid phosphatase (PAP), lyso-phosphati- dylcholine acyltransferase (LPAT), and diacylglycerol acyltransfer- ase (DGAT...transfer to position one of G3P results in the formation of lyso- phosphatidic acid (LPA), in a reaction catalyzed by GPAT. Subsequent acyl transfer to
Altered lipid metabolism in the aging kidney identified by three layered omic analysis
Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.
2016-01-01
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165
Ma, Qi-Feng; Wu, Chun-Hui; Wu, Man; Pei, Wen-Feng; Li, Xing-Li; Wang, Wen-Kui; Zhang, Jinfa; Yu, Ji-Wen; Yu, Shu-Xun
2016-01-01
To investigate the molecular mechanisms of fiber initiation in cotton (Gossypium spp.), an integrated approach combining transcriptome, iTRAQ-based proteome and genetic mapping was taken to compare the ovules of the Xuzhou 142 wild type (WT) with its fuzzless-lintless (fl) mutant at −3 and 0 day post-anthesis. A total of 1,953 mRNAs, 187 proteins, and 131 phosphoproteins were differentially expressed (DE) between WT and fl, and the levels of transcripts and their encoded proteins and phosphoproteins were highly congruent. A functional analysis suggested that the abundance of proteins were mainly involved in amino sugar, nucleotide sugar and fatty acid metabolism, one carbon pool for folate metabolism and flavonoid biosynthesis. qRT-PCR, Western blotting, and enzymatic assays were performed to confirm the regulation of these transcripts and proteins. A molecular mapping located the lintless gene li3 in the fl mutant on chromosome 26 for the first time. A further in-silico physical mapping of DE genes with sequence variations between fl and WT identified one and four candidate genes in the li3 and n2 regions, respectively. Taken together, the transcript abundance, phosphorylation status of proteins at the fiber initiation stage and candidate genes have provided insights into regulatory processes underlying cotton fiber initiation. PMID:27075604
Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas.
Herlitze, Ines; Marie, Benjamin; Marin, Frédéric; Jackson, Daniel J
2018-06-01
Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.
Galindo González, Leonardo M; El Kayal, Walid; Ju, Chelsea J-T; Allen, Carmen C G; King-Jones, Susanne; Cooke, Janice E K
2012-04-01
In the autumn, stems of woody perennials such as forest trees undergo a transition from active growth to dormancy. We used microarray transcriptomic profiling in combination with a proteomics analysis to elucidate processes that occur during this growth-to-dormancy transition in a conifer, white spruce (Picea glauca[Moench] Voss). Several differentially expressed genes were likely associated with the developmental transition that occurs during growth cessation in the cambial zone and the concomitant completion of cell maturation in vascular tissues. Genes encoding for cell wall and membrane biosynthetic enzymes showed transcript abundance patterns consistent with completion of cell maturation, and also of cell wall and membrane modifications potentially enabling cells to withstand the harsh conditions of winter. Several differentially expressed genes were identified that encoded putative regulators of cambial activity, cell development and of the photoperiodic pathway. Reconfiguration of carbon allocation figured centrally in the tree's overwintering preparations. For example, genes associated with carbon-based defences such as terpenoids were down-regulated, while many genes associated with protein-based defences and other stress mitigation mechanisms were up-regulated. Several of these correspond to proteins that were accumulated during the growth-to-dormancy transition, emphasizing the importance of stress protection in the tree's adaptive response to overwintering. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An
2016-11-01
The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.
Altered lipid metabolism in the aging kidney identified by three layered omic analysis.
Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E
2016-03-01
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Zhou, Lifeng; Chen, Fengmao; Pan, Hongyang; Ye, Jianren; Dong, Xuejiao; Li, Chunyan; Lin, Fengling
2016-09-07
Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus' pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.
Zhao, Peng; Yang, Liping; Li, Jiansheng; Li, Ya; Tian, Yange; Li, Suyun
2016-01-01
Bufei Jianpi formula (BJF) has long been used as a therapeutic agent in the treatment of COPD. Systems pharmacology identified 145 active compounds and 175 potential targets of BJF in a previous study. Additionally, BJF was previously shown to effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production, in vivo. However, the system-level mechanism of BJF for the treatment of COPD is still unclear. The aim of this study was to gain insight into its system-level mechanisms by integrating transcriptomics, proteomics, and metabolomics together with systems pharmacology datasets. Using molecular function, pathway, and network analyses, the genes and proteins regulated in COPD rats and BJF-treated rats could be mainly attributed to oxidoreductase activity, antioxidant activity, focal adhesion, tight junction, or adherens junction. Furthermore, a comprehensive analysis of systems pharmacology, transcript, protein, and metabolite datasets is performed. The results showed that a number of genes, proteins, metabolites regulated in BJF-treated rats and potential target proteins of BJF were involved in lipid metabolism, cell junction, oxidative stress, and inflammatory response, which might be the system-level therapeutic mechanism of BJF treatment. PMID:27042044
Integrative FourD omics approach profiles the target network of the carbon storage regulatory system
Sowa, Steven W.; Gelderman, Grant; Leistra, Abigail N.; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A.; Romeo, Tony; Baldea, Michael
2017-01-01
Abstract Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. PMID:28126921
Al-Wathiqui, Nooria; Fallon, Timothy R; South, Adam; Weng, Jing-Ke; Lewis, Sara M
2016-12-22
Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.
Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.
Ngô, Huân M; Zhou, Ying; Lorenzi, Hernan; Wang, Kai; Kim, Taek-Kyun; Zhou, Yong; El Bissati, Kamal; Mui, Ernest; Fraczek, Laura; Rajagopala, Seesandra V; Roberts, Craig W; Henriquez, Fiona L; Montpetit, Alexandre; Blackwell, Jenefer M; Jamieson, Sarra E; Wheeler, Kelsey; Begeman, Ian J; Naranjo-Galvis, Carlos; Alliey-Rodriguez, Ney; Davis, Roderick G; Soroceanu, Liliana; Cobbs, Charles; Steindler, Dennis A; Boyer, Kenneth; Noble, A Gwendolyn; Swisher, Charles N; Heydemann, Peter T; Rabiah, Peter; Withers, Shawn; Soteropoulos, Patricia; Hood, Leroy; McLeod, Rima
2017-09-13
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri.
Zysset-Burri, Denise C; Müller, Norbert; Beuret, Christian; Heller, Manfred; Schürch, Nadia; Gottstein, Bruno; Wittwer, Matthias
2014-06-19
The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Tellgren-Roth, Christian; Baudo, Charles D.; Kennell, John C.; Sun, Sheng; Billmyre, R. Blake; Schröder, Markus S.; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L.; Heitman, Joseph
2017-01-01
Abstract Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. PMID:28100699
New Markers for Predicting Fertility of the Male Gametes in the Post Genomic Age.
Dipresa, Savina; De Toni, Luca; Foresta, Carlo; Garolla, Andrea
2018-04-18
A number of test have been proposed to assess male fertility potential, ranging from routine testing by light microscopic method for evaluating semen samples, to screening test for DNA integrity aimed to look at sperm chromatin abnormalities. Spermatozoa are an extremely differentiated cell, they have critical functions for embryo development and heredity, in addiction to delivering a haploid paternal genome to the oocyte. Towards this goal certain requirements must always be met. The ability of spermatozoa to perform its reproductive function taking place in the spermatogenesis, a highly specialized process depending on multiple factors with effect on male fertility. In the past 30 years, large-scale analyses of transcriptomic and genome expression in mammals have generated a large amount of informations on numberless biomolecules involved in spermatogenesis and male germ cell reproductive function. Sperm proteome represents the protein content that spermatozoa needs to survive and work correctly and modifications of sperm proteome play a role in determining functional changes leading to a decrease of reproductive competence into affected spermatozoa. The post-genomic approach consists of different methodologies for concurrently testicular transcriptome studies, protein compositional analysis and metabolomics findings of the spermatozoa in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhang, Fengjiao; Wang, Zhiquan; Dong, Wen; Sun, Chunqing; Wang, Haibin; Song, Aiping; He, Lizhong; Fang, Weimin; Chen, Fadi; Teng, Nianjun
2014-10-07
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul
2015-12-25
Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients.
Fernández-Santiago, Rubén; Carballo-Carbajal, Iria; Castellano, Giancarlo; Torrent, Roger; Richaud, Yvonne; Sánchez-Danés, Adriana; Vilarrasa-Blasi, Roser; Sánchez-Pla, Alex; Mosquera, José Luis; Soriano, Jordi; López-Barneo, José; Canals, Josep M; Alberch, Jordi; Raya, Ángel; Vila, Miquel; Consiglio, Antonella; Martín-Subero, José I; Ezquerra, Mario; Tolosa, Eduardo
2015-12-01
The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Future of Environmental Research in the Age of Epigenomics and Exposomics
Holland, Nina
2016-01-01
Environmental research and public health in the 21st century face serious challenges such as increased air pollution and global warming, widespread use of potentially harmful chemicals including pesticides, plasticizers, and other endocrine disruptors, and radical changes in nutrition and lifestyle typical of modern societies. In particular, exposure to environmental and occupational toxicants may contribute to the occurrence of adverse birth outcomes, neurodevelopmental deficits, and increased risk of cancer and other multifactorial diseases such as diabetes and asthma. Rapidly evolving methodologies of exposure assessment and the conceptual framework of the Exposome, first introduced in 2005, are new frontiers of environmental research. Metabolomics and adductomics provide remarkable opportunities for a better understanding of exposure and prediction of potential adverse health outcomes. Metabolomics, the study of metabolism at the whole-body level, involves assessment of the total repertoire of small molecules present in a biological sample, shedding light on interactions between gene expression, protein expression and the environment. Advances in genomics, transcriptomics and epigenomics are generating multidimensional structures of biomarkers of effect and susceptibility, increasingly important for the understanding of molecular mechanisms and the emergence of personalized medicine. Epigenetic mechanisms, particularly DNA methylation and miRNA expression, attract increasing attention as potential links between the genetic and environmental determinants of health and disease. Unlike genetics, epigenetic mechanisms could be reversible and an understanding of their role may lead to better protection of susceptible populations and improved public health. PMID:27768585
Pla, Davinia; Sanz, Libia; Whiteley, Gareth; Wagstaff, Simon C; Harrison, Robert A; Casewell, Nicholas R; Calvete, Juan J
2017-04-01
Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A 2 (PLA 2 ); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Grossmann, Jonas; Fernández, Helena; Chaubey, Pururawa M; Valdés, Ana E; Gagliardini, Valeria; Cañal, María J; Russo, Giancarlo; Grossniklaus, Ueli
2017-01-01
Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis . For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a "species-specific transcriptome database" (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models.
Unique cell-type-specific patterns of DNA methylation in the root meristem.
Kawakatsu, Taiji; Stuart, Tim; Valdes, Manuel; Breakfield, Natalie; Schmitz, Robert J; Nery, Joseph R; Urich, Mark A; Han, Xinwei; Lister, Ryan; Benfey, Philip N; Ecker, Joseph R
2016-04-29
DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.
Applications and challenges of next-generation sequencing in Brassica species.
Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui
2013-12-01
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu
Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui
2015-01-01
Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381
Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.
Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui
2015-01-01
Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.
Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele
2013-01-01
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376
Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele
2013-01-01
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Zhang, Lei; Shi, Wanxia; Zeng, Xian-Chun; Ge, Feng; Yang, Mingkun; Nie, Yao; Bao, Aorigele; Wu, Shifen; E, Guoji
2015-10-14
Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels. Copyright © 2015 Elsevier B.V. All rights reserved.
Badillo-Vargas, I E; Rotenberg, D; Schneweis, D J; Hiromasa, Y; Tomich, J M; Whitfield, A E
2012-08-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction.
Badillo-Vargas, I. E.; Rotenberg, D.; Schneweis, D. J.; Hiromasa, Y.; Tomich, J. M.
2012-01-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction. PMID:22696645
Evolution of epigenetic regulation in vertebrate genomes
Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting
2016-01-01
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453
Gruzieva, Olena; Xu, Cheng-Jian; Breton, Carrie V.; Annesi-Maesano, Isabella; Antó, Josep M.; Auffray, Charles; Ballereau, Stéphane; Bellander, Tom; Bousquet, Jean; Bustamante, Mariona; Charles, Marie-Aline; de Kluizenaar, Yvonne; den Dekker, Herman T.; Duijts, Liesbeth; Felix, Janine F.; Gehring, Ulrike; Guxens, Mònica; Jaddoe, Vincent V.W.; Jankipersadsing, Soesma A.; Merid, Simon Kebede; Kere, Juha; Kumar, Ashish; Lemonnier, Nathanael; Lepeule, Johanna; Nystad, Wenche; Page, Christian Magnus; Panasevich, Sviatlana; Postma, Dirkje; Slama, Rémy; Sunyer, Jordi; Söderhäll, Cilla; Yao, Jin; London, Stephanie J.; Pershagen, Göran; Koppelman, Gerard H.; Melén, Erik
2016-01-01
Background: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. Objectives: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. Methods: We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). Results: We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. Conclusions: NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104–110; http://dx.doi.org/10.1289/EHP36 PMID:27448387
Gruzieva, Olena; Xu, Cheng-Jian; Breton, Carrie V; Annesi-Maesano, Isabella; Antó, Josep M; Auffray, Charles; Ballereau, Stéphane; Bellander, Tom; Bousquet, Jean; Bustamante, Mariona; Charles, Marie-Aline; de Kluizenaar, Yvonne; den Dekker, Herman T; Duijts, Liesbeth; Felix, Janine F; Gehring, Ulrike; Guxens, Mònica; Jaddoe, Vincent V W; Jankipersadsing, Soesma A; Merid, Simon Kebede; Kere, Juha; Kumar, Ashish; Lemonnier, Nathanael; Lepeule, Johanna; Nystad, Wenche; Page, Christian Magnus; Panasevich, Sviatlana; Postma, Dirkje; Slama, Rémy; Sunyer, Jordi; Söderhäll, Cilla; Yao, Jin; London, Stephanie J; Pershagen, Göran; Koppelman, Gerard H; Melén, Erik
2017-01-01
Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104-110; http://dx.doi.org/10.1289/EHP36.
Seliger, Barbara; Dressler, Sven P.; Wang, Ena; Kellner, Roland; Recktenwald, Christian V.; Lottspeich, Friedrich; Marincola, Francesco M.; Baumgärtner, Maja; Atkins, Derek; Lichtenfels, Rudolf
2012-01-01
Results obtained from expression profilings of renal cell carcinoma using different “ome”-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to upregulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%) and cell motility/structural molecules (10%). Candidate biomarkers defined by proteomics and PROTEOMEX are frequently shared, whereas the sharing rate between cDNA microarray and proteome-based profilings is limited. Putative candidate biomarkers provide insights into their cellular (dys)function and their diagnostic/prognostic value but still warrant further validation in larger patient numbers. Based on the fact that merely 3 candidate biomarkers were shared by all applied technologies, namely annexin A4, tubulin alpha-1A chain and ubiquitin carboxyl-terminal hydrolase L1 the analysis at a single hierarchical level of biological regulation seems to provide only limited results thus emphasizing the importance and benefit of performing rather combinatorial screenings which can complement the standard clinical predictors. PMID:19235166
Janssen, K A; Sidoli, S; Garcia, B A
2017-01-01
Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.
DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets.
Albrecht, Felipe; List, Markus; Bock, Christoph; Lengauer, Thomas
2016-07-08
Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ribeiro, José M. C.; Schwarz, Alexandra; Francischetti, Ivo M. B.
2015-01-01
Saliva of blood-sucking arthropods contains a complex cocktail of pharmacologically active compounds that assists feeding by counteracting their hosts’ hemostatic and inflammatory reactions. Panstrongylus megistus (Burmeister) is an important vector of Chagas disease in South America, but despite its importance there is only one salivary protein sequence publicly deposited in GenBank. In the present work, we used Illumina technology to disclose and publicly deposit 3,703 coding sequences obtained from the assembly of >70 million reads. These sequences should assist proteomic experiments aimed at identifying pharmacologically active proteins and immunological markers of vector exposure. A supplemental file of the transcriptome and deducted protein sequences can be obtained from http://exon.niaid.nih.gov/transcriptome/P_megistus/Pmeg-web.xlsx. PMID:26334808
Phelix, C F; Feltus, F A
2015-01-01
Measuring biomarkers from plant tissue samples is challenging and expensive when the desire is to integrate transcriptomics, fluxomics, metabolomics, lipidomics, proteomics, physiomics and phenomics. We present a computational biology method where only the transcriptome needs to be measured and is used to derive a set of parameters for deterministic kinetic models of metabolic pathways. The technology is called Transcriptome-To-Metabolome (TTM) biosimulations, currently under commercial development, but available for non-commercial use by researchers. The simulated results on metabolites of 30 primary and secondary metabolic pathways in rice (Oryza sativa) were used as the biomarkers to predict whether the transcriptome was from a plant that had been under drought conditions. The rice transcriptomes were accessed from public archives and each individual plant was simulated. This unique quality of the TTM technology allows standard analyses on biomarker assessments, i.e. sensitivity, specificity, positive and negative predictive values, accuracy, receiver operator characteristics (ROC) curve and area under the ROC curve (AUC). Two validation methods were also used, the holdout and 10-fold cross validations. Initially 17 metabolites were identified as candidate biomarkers based on either statistical significance on binary phenotype when compared with control samples or recognition from the literature. The top three biomarkers based on AUC were gibberellic acid 12 (0.89), trehalose (0.80) and sn1-palmitate-sn2-oleic-phosphatidylglycerol (0.70). Neither heat map analyses of transcriptomes nor all 300 metabolites clustered the stressed and control groups effectively. The TTM technology allows the emergent properties of the integrated system to generate unique and useful 'Omics' information. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Quantitative proteomics in Giardia duodenalis-Achievements and challenges.
Emery, Samantha J; Lacey, Ernest; Haynes, Paul A
2016-08-01
Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia, including the analysis of post-translational modifications, and the design of MS-based assays for validation of differentially expressed proteins in large datasets. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-03-15
of animals from three inbred mouse strains exposed to the toxins acetaminophen and carbon tetrachloride for transcriptomes, proteins and miRNA...biomarkers.; 3) establishing MRM mass spectrometry assays for at least 25 liver-specific blood proteins based on the acetaminophen, CCL4, and other model...tetrachloride for protein biomarkers using proteomics technologies, including MRM; 5) Analyzing time course experiments of rat tissues and blood exposed to
... to epigenetic errors. Scientists continue to explore the relationship between the genome and the chemical compounds that ... variety of cells to begin to assess the relationship between epigenomics and human disease. Human Epigenome Atlas ...
Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena
2014-01-01
In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535
Proteome regulation during Olea europaea fruit development.
Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano
2013-01-01
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.
2013-01-01
Background Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. Results Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9–18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulhood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. Conclusions Existing snake venom toxins are the result of early recruitment events in the Toxicofera clade of reptiles by which ordinary genes were duplicated, and the new genes selectively expressed in the venom gland and amplified to multigene families with extensive neofunctionalization throughout the approximately 112–125 million years of ophidian evolution. Our findings support the view that understanding the phenotypic diversity of snake venoms requires a deep knowledge of the mechanisms regulating the transcriptional and translational activity of the venom gland. Our results suggest a functional role for miRNAs. The impact of specific miRNAs in the modulation of venom composition, and the integration of the mechanisms responsible for the generation of these miRNAs in the evolutionary landscape of the snake's venom gland, are further challenges for future research. PMID:23575160
Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Zamudio, Fernando Z; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D
2017-07-01
The soluble venom from the Mexican scorpion Megacormus gertschi of the family Euscorpiidae was obtained and its biological effects were tested in several animal models. This venom is not toxic to mice at doses of 100 μg per 20 g of mouse weight, while being lethal to arthropods (insects and crustaceans), at doses of 20 μg (for crickets) and 100 μg (for shrimps) per animal. Samples of the venom were separated by high performance liquid chromatography and circa 80 distinct chromatographic fractions were obtained from which 67 components have had their molecular weights determined by mass spectrometry analysis. The N-terminal amino acid sequence of seven protein/peptides were obtained by Edman degradation and are reported. Among the high molecular weight components there are enzymes with experimentally-confirmed phospholipase activity. A pair of telsons from this scorpion species was dissected, from which total RNA was extracted and used for cDNA library construction. Massive sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 110,528 transcripts. From those, we were able to annotate 182, which putatively code for peptides/proteins with sequence similarity to previously-reported venom components available from different protein databases. Transcripts seemingly coding for enzymes showed the richest diversity, with 52 sequences putatively coding for proteases, 20 for phospholipases, 8 for lipases and 5 for hyaluronidases. The number of different transcripts potentially coding for peptides with sequence similarity to those that affect ion channels was 19, for putative antimicrobial peptides 19, and for protease inhibitor-like peptides, 18. Transcripts seemingly coding for other venom components were identified and described. The LC/MS analysis of a trypsin-digested venom aliquot resulted in 23 matches with the translated transcriptome database, which validates the transcriptome. The proteomic and transcriptomic analyses reported here constitute the first approach to study the venom components from a scorpion species belonging to the family Euscorpiidae. The data certainly show that this venom is different from all the ones described thus far in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploiting the epigenome to control cancer promoting gene expression programs
Brien, Gerard L.; Valerio, Daria G.; Armstrong, Scott A.
2016-01-01
Summary The epigenome is a key determinant of transcriptional output. Perturbations within the epigenome are thought to be a key feature of many, perhaps all cancers, and it is now clear that epigenetic changes are instrumental in cancer development. The inherent reversibility of these changes makes them attractive targets for therapeutic manipulation and a number of small molecules targeting chromatin-based mechanisms are currently in clinical trials. In this perspective we discuss how understanding the cancer epigenome is providing insights into disease pathogenesis and informing drug development. We also highlight additional opportunities to further unlock the therapeutic potential within the cancer epigenome. PMID:27070701
Doll, Sophia; Urisman, Anatoly; Oses-Prieto, Juan A; Arnott, David; Burlingame, Alma L
2017-01-01
Glioblastoma multiformes (GBMs) are high-grade astrocytomas and the most common brain malignancies. Primary GBMs are often associated with disturbed RAS signaling, and expression of oncogenic HRAS results in a malignant phenotype in glioma cell lines. Secondary GBMs arise from lower-grade astrocytomas, have slower progression than primary tumors, and contain IDH1 mutations in over 70% of cases. Despite significant amount of accumulating genomic and transcriptomic data, the fundamental mechanistic differences of gliomagenesis in these two types of high-grade astrocytoma remain poorly understood. Only a few studies have attempted to investigate the proteome, phosphorylation signaling, and epigenetic regulation in astrocytoma. In the present study, we applied quantitative phosphoproteomics to identify the main signaling differences between oncogenic HRAS and mutant IDH1-driven glioma cells as models of primary and secondary GBM, respectively. Our analysis confirms the driving roles of the MAPK and PI3K/mTOR signaling pathways in HRAS driven cells and additionally uncovers dysregulation of other signaling pathways. Although a subset of the signaling changes mediated by HRAS could be reversed by a MEK inhibitor, dual inhibition of MEK and PI3K resulted in more complete reversal of the phosphorylation patterns produced by HRAS expression. In contrast, cells expressing mutant IDH1 did not show significant activation of MAPK or PI3K/mTOR pathways. Instead, global downregulation of protein expression was observed. Targeted proteomic analysis of histone modifications identified significant histone methylation, acetylation, and butyrylation changes in the mutant IDH1 expressing cells, consistent with a global transcriptional repressive state. Our findings offer novel mechanistic insight linking mutant IDH1 associated inhibition of histone demethylases with specific histone modification changes to produce global transcriptional repression in secondary glioblastoma. Our proteomic datasets are available for download and provide a comprehensive catalogue of alterations in protein abundance, phosphorylation, and histone modifications in oncogenic HRAS and IDH1 driven astrocytoma cells beyond the transcriptomic level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Whitelaw, Brooke L; Strugnell, Jan M; Faou, Pierre; da Fonseca, Rute R; Hall, Nathan E; Norman, Mark; Finn, Julian; Cooke, Ira R
2016-09-02
This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.
Tatsukami, Yohei; Nambu, Mami; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi
2013-07-31
Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts. We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions.
2013-01-01
Background Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts. Result We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. Conclusion The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions. PMID:23898917
Impacts of Chromatin States and Long-Range Genomic Segments on Aging and DNA Methylation
Sun, Dan; Yi, Soojin V.
2015-01-01
Understanding the fundamental dynamics of epigenome variation during normal aging is critical for elucidating key epigenetic alterations that affect development, cell differentiation and diseases. Advances in the field of aging and DNA methylation strongly support the aging epigenetic drift model. Although this model aligns with previous studies, the role of other epigenetic marks, such as histone modification, as well as the impact of sampling specific CpGs, must be evaluated. Ultimately, it is crucial to investigate how all CpGs in the human genome change their methylation with aging in their specific genomic and epigenomic contexts. Here, we analyze whole genome bisulfite sequencing DNA methylation maps of brain frontal cortex from individuals of diverse ages. Comparisons with blood data reveal tissue-specific patterns of epigenetic drift. By integrating chromatin state information, divergent degrees and directions of aging-associated methylation in different genomic regions are revealed. Whole genome bisulfite sequencing data also open a new door to investigate whether adjacent CpG sites exhibit coordinated DNA methylation changes with aging. We identified significant ‘aging-segments’, which are clusters of nearby CpGs that respond to aging by similar DNA methylation changes. These segments not only capture previously identified aging-CpGs but also include specific functional categories of genes with implications on epigenetic regulation of aging. For example, genes associated with development are highly enriched in positive aging segments, which are gradually hyper-methylated with aging. On the other hand, regions that are gradually hypo-methylated with aging (‘negative aging segments’) in the brain harbor genes involved in metabolism and protein ubiquitination. Given the importance of protein ubiquitination in proteome homeostasis of aging brains and neurodegenerative disorders, our finding suggests the significance of epigenetic regulation of this posttranslational modification pathway in the aging brain. Utilizing aging segments rather than individual CpGs will provide more comprehensive genomic and epigenomic contexts to understand the intricate associations between genomic neighborhoods and developmental and aging processes. These results complement the aging epigenetic drift model and provide new insights. PMID:26091484
[Introduction of translational research in omics science to clinical anesthesia].
Sugino, Shigekazu; Hayase, Tomo; Yamakage, Michiaki
2013-03-01
Much progress has been made in omics research following completion of the Human Genome Project. This comprehensive analysis produced a new discipline (i.e., bioinformatics), and its findings contributed to the clinical practice of anesthesiology. Genomes of patients show genetic variations and may predict the sensitivity to anesthetics and analgesics, incidence of adverse effects, and intensity of postsurgical pain. Changes in the transcriptomes of patients may also reflect anesthesia-related expression profiles of various types of neurons in the brain, and information on such changes may contribute to molecular targeted therapy in anesthetized patients. In addition, novel epigenome research may explain why environments change the phenotypes of clinical anesthesia. We currently hypothesize that female gender is associated with DNA methylation in pain-related and vomiting-related gene promoter regions at the genome-wide level and that epigenetic mechanisms are involved in gender differences in anesthesia practice.
West, Allyson A; Caudill, Marie A
2014-08-01
Nutritional genomics, defined as the study of reciprocal interactions among nutrients, metabolic intermediates, and the genome, along with other closely related nutritional -omic fields (eg, epigenomics, transcriptomics, and metabolomics) have become vital areas of nutrition study and knowledge. Utilizing results from human metabolic research on the essential nutrient choline, this article illustrates how nutrigenetic, nutrigenomic, and inter-related -omic research has provided new insights into choline metabolism and its effect on physiologic processes. Findings from highlighted choline research are also discussed in the context of translation to clinical and public health nutrition applications. Overall, this article underscores the utility of -omic research methods in elucidating nutrient metabolism as well as the potential for nutritional -omic concepts and discoveries to be broadly applied in nutritional practice. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Human induced pluripotent stem cells: A disruptive innovation.
De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S
2016-01-01
This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research.
Ye, Baixin; Gao, Qingping; Zeng, Zhi; Stary, Creed M; Jian, Zhihong; Xiong, Xiaoxing; Gu, Lijuan
2016-01-01
Cellular heterogeneity is a fundamental characteristic of many cancers. A lack of cellular homogeneity contributes to difficulty in designing targeted oncological therapies. Therefore, the development of novel methods to determine and characterize oncologic cellular heterogeneity is a critical next step in the development of novel cancer therapies. Single-cell sequencing (SCS) technology has been recently employed for analyzing the genetic polymorphisms of individual cells at the genome-wide level. SCS requires (1) precise isolation of the single cell of interest; (2) isolation and amplification of genetic material; and (3) descriptive analysis of genomic, transcriptomic, and epigenomic data. In addition to targeted analysis of single cells isolated from tumor biopsies, SCS technology may be applied to circulating tumor cells, which may aid in predicting tumor progression and metastasis. In this paper, we provide an overview of SCS technology and review the current literature on the potential application of SCS to clinical oncology and research.
Environmentally Induced Epigenetic Transgenerational Inheritance of Ovarian Disease
Nilsson, Eric; Larsen, Ginger; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Savenkova, Marina I.; Skinner, Michael K.
2012-01-01
The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology. PMID:22570695
Sequencing-based diagnostics for pediatric genetic diseases: progress and potential
Tayoun, Ahmad Abou; Krock, Bryan; Spinner, Nancy B.
2016-01-01
Introduction The last two decades have witnessed revolutionary changes in clinical diagnostics, fueled by the Human Genome Project and advances in high throughput, Next Generation Sequencing (NGS). We review the current state of sequencing-based pediatric diagnostics, associated challenges, and future prospects. Areas Covered We present an overview of genetic disease in children, review the technical aspects of Next Generation Sequencing and the strategies to make molecular diagnoses for children with genetic disease. We discuss the challenges of genomic sequencing including incomplete current knowledge of variants, lack of data about certain genomic regions, mosaicism, and the presence of regions with high homology. Expert Commentary NGS has been a transformative technology and the gap between the research and clinical communities has never been so narrow. Therapeutic interventions are emerging based on genomic findings and the applications of NGS are progressing to prenatal genetics, epigenomics and transcriptomics. PMID:27388938