Science.gov

Sample records for epimerase enzymatic function

  1. Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening

    SciTech Connect

    Kalyanaraman, C.; Imker, H; Fedorov, A; Fedorov, E; Glasner, M; Babbitt, P; Almo, S; Gerlt, J; Jacobson, M

    2008-01-01

    We have developed a computational approach to aid the assignment of enzymatic function for uncharacterized proteins that uses homology modeling to predict the structure of the binding site and in silico docking to identify potential substrates. We apply this method to proteins in the functionally diverse enolase superfamily that are homologous to the characterized L-Ala-D/L-Glu epimerase from Bacillus subtilis. In particular, a protein from Thermotoga martima was predicted to have different substrate specificity, which suggests that it has a different, but as yet unknown, biological function. This prediction was experimentally confirmed, resulting in the assignment of epimerase activity for L-Ala-D/L-Phe, L-Ala-D/L-Tyr, and L-Ala-D/L-His, whereas the enzyme is annotated incorrectly in GenBank as muconate cycloisomerase. Subsequently, crystal structures of the enzyme were determined in complex with three substrates, showing close agreement with the computational models and revealing the structural basis for the observed substrate selectivity.

  2. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor.

    PubMed

    Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng

    2017-06-01

    In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment.

  3. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets.

    PubMed

    Mann, Paul A; Müller, Anna; Wolff, Kerstin A; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J; Pinho, Mariana G; Schneider, Tanja; Roemer, Terry

    2016-05-01

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.

  4. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets

    PubMed Central

    Mann, Paul A.; Müller, Anna; Wolff, Kerstin A.; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E.; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R.; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J.; Pinho, Mariana G.; Schneider, Tanja; Roemer, Terry

    2016-01-01

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. PMID:27144276

  5. Identification of functionally important cysteine residues of the human renin-binding protein as the enzyme N-acetyl-D-glucosamine 2-epimerase.

    PubMed

    Takahashi, S; Takahashi, K; Kaneko, T; Ogasawara, H; Shindo, S; Saito, K; Kawamura, Y

    2001-04-01

    Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney. It was recently identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353] and its active site residue was determined to be cysteine 380 by site-directed mutagenesis [Takahashi, S. et al. (1999) J. Biochem. 126, 639-642]. To further investigate the relationship between structure and function of recombinant human (rh) RnBP as a GlcNAc 2-epimerase, we have constructed several C-terminal deletion and multi-cysteine/serine mutants of rhGlcNAc 2-epimerase and expressed them in Escherichia coli cells. The expression was detected by Western blotting using anti-rhRnBP antiserum. The C-terminal deletion mutant, Delta400-417, had approximately 50% activity relative to the wild-type enzyme, but other C-terminal deletion mutants, Delta380-417, Delta386-417, and Delta390-417, had no enzymatic activity. Mutational analysis of multi-cysteine/serine mutants revealed that cysteines 41 and 390 were critical for the activity or stabilization of the enzyme, while cysteine residues in the middle of the enzyme, cysteines 125, 210, 239, and 302, had no essential function in relation to the activity.

  6. Identification of the active site of DS-epimerase 1 and requirement of N-glycosylation for enzyme function.

    PubMed

    Pacheco, Benny; Maccarana, Marco; Goodlett, David R; Malmström, Anders; Malmström, Lars

    2009-01-16

    Dermatan sulfate is a highly sulfated polysaccharide and has a variety of biological functions in development and disease. Iduronic acid domains in dermatan sulfate, which are formed by the action of two DS-epimerases, have a key role in mediating these functions. We have identified the catalytic site and three putative catalytic residues in DS-epimerase 1, His-205, Tyr-261, and His-450, by tertiary structure modeling and amino acid conservation to heparinase II. These residues were systematically mutated to alanine or more conserved residues, which resulted in complete loss of epimerase activity. Based on these data and the close relationship between lyase and epimerase reactions, we propose a model where His-450 functions as a general base abstracting the C5 proton from glucuronic acid. Subsequent cleavage of the glycosidic linkage by Tyr-261 generates a 4,5-unsaturated hexuronic intermediate, which is protonated at the C5 carbon by His-205 from the side of the sugar plane opposite to the side of previous proton abstraction. Concomitant recreation of the glycosidic linkage ends the reaction, generating iduronic acid. In addition, we show that proper N-glycosylation of DS-epimerase 1 is required for enzyme activity. This study represents the first description of the structural basis for epimerization by a glycosaminoglycan epimerase.

  7. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme.

    PubMed

    Ito, Shigeaki; Taguchi, Hidenori; Hamada, Shigeki; Kawauchi, Shinpei; Ito, Hiroyuki; Senoura, Takeshi; Watanabe, Jun; Nishimukai, Megumi; Ito, Susumu; Matsui, Hirokazu

    2008-06-01

    The gene for cellobiose 2-epimerase (CE) from Ruminococcus albus NE1 was overexpressed in Escherichia coli cells. The recombinant CE was purified to homogeneity by a simple purification procedure with a high yield of 88%, and the molecular mass was 43.1 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis and 44.0 kDa on gel chromatography. It exhibited optimal activity around at 30 degrees C and pH 7.5, and the enzyme activity was inhibited by Al3+, Fe3+, Co2+, Cu2+, Zn2+, Pb2+, Ag+, N-bromosuccinimide, iodoacetate, and 4-chloromercuribenzoate. In addition to cello-oligosaccharides, the enzyme was found to effectively 2-epimerize lactose to yield 4-O-beta-D-galactopyranosyl-D-mannose (epilactose), which occurs in cow milk as a rare oligosaccharide. The Km and kcat/Km values toward lactose were 33 mM and 1.6 s(-1) mM(-1), and those toward cellobiose were 13.8 mM and 4.6 s(-1) mM(-1), respectively. N-Acetyl-D-glucosamine, uridine 5'-diphosphate-glucose, D-glucose 6-phosphate, maltose, sophorose, laminaribiose, and gentiobiose were inert as substrates for the recombinant CE. We demonstrated that epilactose was resistant to rat intestinal enzymes, utilized by human adult bifidobacteria, and stimulated the tight junction permeability in Caco-2 cells. These results strongly suggest that this rare disaccharide is promising for use as a prebiotic.

  8. Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose.

    PubMed

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-01-15

    The rare sugar D-psicose is a hexoketose monosaccharide and a C-3 epimer of D-fructose. D-Psicose is a novel functional sweetener with 70% of the sweetness but only 0.3% of the energy content of sucrose. Generally, the industrial production of D-psicose involves a bioconversion from D-fructose induced by ketose 3-epimerases. The D-psicose 3-epimerase (DPEase) gene from Treponema primitia ZAS-1 (Trpr-DPEase) was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified with a molecular mass of 33 kDa. Trpr-DPEase exhibited optimal activity at pH 8.0 and 70 °C and was sensitive to temperature, with relative thermal stability below 50 °C. It was strictly metal-dependent and displayed maximum catalytic activity with 450 µmol L(-1) Co(2+). The Km values of the enzyme for D-psicose and D-fructose were 209 and 279 mmol L(-1) respectively. The D-psicose/D-fructose equilibrium ratio of Trpr-DPEase was 28:72. A novel DPEase from T. primitia ZAS-1 was characterized that could catalyze the formation of D-psicose from D-fructose. D-Psicose was produced at a yield of 137.5 g L(-1) from 500 g L(-1) D-fructose, suggesting that Trpr-DPEase might be appropriate for the industrial production of D-psicose. © 2015 Society of Chemical Industry.

  9. The Biosynthesis of d-Galacturonate in Plants. Functional Cloning and Characterization of a Membrane-Anchored UDP-d-Glucuronate 4-Epimerase from Arabidopsis1

    PubMed Central

    Mølhøj, Michael; Verma, Rajeev; Reiter, Wolf-Dieter

    2004-01-01

    Pectic cell wall polysaccharides owe their high negative charge to the presence of d-galacturonate, a monosaccharide that appears to be present only in plants and some prokaryotes. UDP-d-galacturonate, the activated form of this sugar, is known to be formed by the 4-epimerization of UDP-d-glucuronate; however, no coding regions for the epimerase catalyzing this reaction have previously been described in plants. To better understand the mechanisms by which precursors for pectin synthesis are produced, we used a bioinformatics approach to identify and functionally express a UDP-d-glucuronate 4-epimerase (GAE1) from Arabidopsis. GAE1 is predicted to be a type II membrane protein that belongs to the family of short-chain dehydrogenases/reductases. The recombinant enzyme expressed in Pichia pastoris established a 1.3:1 equilibrium between UDP-d-galacturonate and UDP-d-glucuronate but did not epimerize UDP-d-Glc or UDP-d-Xyl. Enzyme assays on cell extracts localized total UDP-d-glucuronate 4-epimerase and recombinant GAE1 activity exclusively to the microsomal fractions of Arabidopsis and Pichia, respectively. GAE1 had a pH optimum of 7.6 and an apparent Km of 0.19 mm. The recombinant enzyme was strongly inhibited by UDP-d-Xyl but not by UDP, UDP-d-Glc, or UDP-d-Gal. Analysis of Arabidopsis plants transformed with a GAE1:GUS construct showed expression in all tissues. The Arabidopsis genome contains five GAE1 paralogs, all of which are transcribed and predicted to contain a membrane anchor. This suggests that all of these enzymes are targeted to an endomembrane system such as the Golgi where they may provide UDP-d-galacturonate to glycosyltransferases in pectin synthesis. PMID:15247385

  10. Functional analysis of mutations in UDP-galactose-4-epimerase (GALE) associated with galactosemia in Korean patients using mammalian GALE-null cells.

    PubMed

    Bang, You-Lim; Nguyen, Trang T T; Trinh, Tram T B; Kim, Yun J; Song, Junghan; Song, Young-Han

    2009-04-01

    Galactosemia is caused by defects in the galactose metabolic pathway, which consists of three enzymes, including UDP-galactose-4-epimerase (GALE). We previously reported nine mutations in Korean patients with epimerase-deficiency galactosemia. In order to determine the functional consequences of these mutations, we expressed wild-type and mutant GALE proteins in 293T cells. GALE(E165K) and GALE(W336X) proteins were unstable, had reduced half-life, formed aggregates and were partly degraded by the proteasome complex. When expressed in GALE-null ldlD cells GALE(E165K), GALE(R239W), GALE(G302D) and GALE(W336X) had no detectable enzyme activity, although substantial amounts of protein were detected in western blots. The relative activities of other mutants were lower than that of wild-type. In addition, unlike wild-type, GALE(R239W) and GALE(G302D) were not able to rescue galactose-sensitive cell proliferation when stably expressed in ldlD cells. The four inactive mutant proteins did not show defects in dimerization or affect the activity of other mutant alleles identified in patients. Our observations show that altered protein stability is due to misfolding and that loss or reduction of enzyme activity is responsible for the molecular defects underlying GALE-deficiency galactosemia.

  11. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar.

    PubMed

    Fujiwara, Takaaki; Saburi, Wataru; Inoue, Sota; Mori, Haruhide; Matsui, Hirokazu; Tanaka, Isao; Yao, Min

    2013-04-02

    Enzymatic epimerization is an important modification for carbohydrates to acquire diverse functions attributable to their stereoisomers. Cellobiose 2-epimerase (CE) catalyzes interconversion between d-glucose and d-mannose residues at the reducing end of β-1,4-linked oligosaccharides. Here, we solved the structure of Ruminococcus albus CE (RaCE). The structure of RaCE showed strong similarity to those of N-acetyl-D-glucosamine 2-epimerase and aldose-ketose isomerase YihS with a high degree of conservation of residues around the catalytic center, although sequence identity between them is low. Based on structural comparison, we found that His184 is required for RaCE activity as the third histidine added to two essential histidines in other sugar epimerases/isomerases. This finding was confirmed by mutagenesis, suggesting a new catalytic mechanism for CE involving three histidines. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production.

    PubMed

    Dedania, Samir R; Patel, Manisha J; Patel, Dijit M; Akhani, Rekha C; Patel, Darshan H

    2017-12-01

    D-Psicose (D-ribo-2-hexulose or D-allulose), an epimer of D-fructose is considered as a rare low-calorie sugar displaying important physiological functions. Enzymatic production using ketose 3-epimerases is the feasible process for the production of D-Psicose. However, major drawbacks in application of ketose 3-epimerases are bioconversion efficiency and reusability of the enzyme. We have attempted immobilization of ketose 3-epimerases from Agrobacterium tumefaciens (agtu) D-psicose 3-epimerase (DPEase) on graphene oxide. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA) showed that the enzyme was successfully immobilized on the graphene oxide. Graphene oxide immobilized agtu-DPEase (GO-agtu-DPEase) shows pH optima at 7.5 and 60°C as higher working temperature. Significant improvement in thermal stability was observed which showed half-life of 720min at 60°C whereas Agrobacterium tumefaciens (agtu) DPEase displayed 3.99min. At equilibrium, 40:60 (D-psicose: D-fructose) the bioconversion efficiency was accounted for Graphene oxide immobilized DPEase which is higher than the agtu-DPEase. Graphene oxide immobilized DPEase showed bioconversion efficiency up to 10 cycles of reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Galactose Epimerase Deficiency: Expanding the Phenotype.

    PubMed

    Dias Costa, Filipa; Ferdinandusse, Sacha; Pinto, Carla; Dias, Andrea; Keldermans, Liesbeth; Quelhas, Dulce; Matthijs, Gert; Mooijer, Petra A; Diogo, Luísa; Jaeken, Jaak; Garcia, Paula

    2017-03-01

    Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.

  14. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.

    PubMed

    Saburi, Wataru; Tanaka, Yuka; Muto, Hirohiko; Inoue, Sota; Odaka, Rei; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide

    2015-01-01

    The aerobic soil bacterium Cellvibrio vulgaris has a β-mannan-degradation gene cluster, including unkA, epiA, man5A, and aga27A. Among these genes, epiA has been assigned to encode an epimerase for converting D-mannose to D-glucose, even though the amino acid sequence of EpiA is similar to that of cellobiose 2-epimerases (CEs). UnkA, whose function currently remains unknown, shows a high sequence identity to 4-O-β-D-mannosyl-D-glucose phosphorylase. In this study, we have investigated CE activity of EpiA and the general characteristics of UnkA using recombinant proteins from Escherichia coli. Recombinant EpiA catalyzed the epimerization of the 2-OH group of sugar residue at the reducing end of cellobiose, lactose, and β-(1→4)-mannobiose in a similar manner to other CEs. Furthermore, the reaction efficiency of EpiA for β-(1→4)-mannobiose was 5.5 × 10(4)-fold higher than it was for D-mannose. Recombinant UnkA phosphorolyzed β-D-mannosyl-(1→4)-D-glucose and specifically utilized D-glucose as an acceptor in the reverse reaction, which indicated that UnkA is a typical 4-O-β-D-mannosyl-D-glucose phosphorylase.

  15. Structural and Functional Characterization of the R-modules in Alginate C-5 Epimerases AlgE4 and AlgE6 from Azotobacter vinelandii

    PubMed Central

    Buchinger, Edith; Knudsen, Daniel H.; Behrens, Manja A.; Pedersen, Jan Skov; Aarstad, Olav A.; Tøndervik, Anne; Valla, Svein; Skjåk-Bræk, Gudmund; Wimmer, Reinhard; Aachmann, Finn L.

    2014-01-01

    The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6. PMID:25266718

  16. Functional characterization and transcriptional analysis of galE gene encoding a UDP-galactose 4-epimerase in Xanthomonas campestris pv. campestris.

    PubMed

    Li, Chien-Te; Liao, Chao-Tsai; Du, Shin-Chiao; Hsiao, Yu-Ping; Lo, Hsueh-Hsia; Hsiao, Yi-Min

    2014-01-01

    The Gram-negative plant pathogen Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers, a disease that causes tremendous agricultural loss. In this study, the Xcc galE gene was characterized. Sequence and mutational analysis demonstrated that the Xcc galE encodes a UDP-galactose 4-epimerase (EC 5.1.3.2), which catalyzes the interconversion of UDP-galactose and UDP-glucose. Alanine substitution of the putative catalytic residues (Ser124, Tyr147, and Lys151) of GalE caused loss of epimerase activity. Further study showed that the Xcc galE mutant had reduced biofilm formation ability. Furthermore, reporter assays revealed that galE transcription exhibits a distinct expression profile under different culture conditions, is subject to catabolite repression, and is positively regulated by Clp and RpfF. In addition, the galE transcription initiation site was mapped. This is the first time that UDP-galactose 4-epimerase has been characterized in the crucifer pathogen Xcc.

  17. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    SciTech Connect

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts are not

  18. Cloning of the amphibolic Calvin cycle/OPPP enzyme D-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1) from spinach chloroplasts: functional and evolutionary aspects.

    PubMed

    Nowitzki, U; Wyrich, R; Westhoff, P; Henze, K; Schnarrenberger, C; Martin, W

    1995-12-01

    Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme D-ribulose-5-phosphate 3-epimerase (R5P3E)(EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.

  19. Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues.

    PubMed

    Patel, Satya Narayan; Sharma, Manisha; Lata, Kusum; Singh, Umesh; Kumar, Vinod; Sangwan, Rajender S; Singh, Sudhir P

    2016-09-01

    The aim of the present work was to improve stability of d-psicose 3-epimerase and biotransformation of fruit and vegetable residues for d-psicose production. The study established that N-terminal fusion of a yeast homolog of SUMO protein - Smt3 - can confer elevated optimal temperature and improved operational stability to d-psicose 3-epimerase. The Smt3-d-psicose 3-epimerase conjugate system exhibited relatively better catalytic efficiency, and improved productivity in terms of space-time yields of about 8.5kgL(-1)day(-1). It could serve as a promising catalytic tool for the pilot scale production of the functional sugar, d-psicose. Furthermore, a novel approach for economical production of d-psicose was developed by enzymatic and microbial bioprocessing of fruit and vegetable residues, aimed at epimerization of in situd-fructose to d-psicose. The bioprocessing led to achievement of d-psicose production to the extent of 25-35% conversion (w/w) of d-fructose contained in the sample.

  20. Characterization of Mannuronan C-5-Epimerase Genes from the Brown Alga Laminaria digitata1

    PubMed Central

    Nyvall, Pi; Corre, Erwan; Boisset, Claire; Barbeyron, Tristan; Rousvoal, Sylvie; Scornet, Delphine; Kloareg, Bernard; Boyen, Catherine

    2003-01-01

    Alginate is an industrially important polysaccharide obtained commercially by harvesting brown algae. The final step in alginate biosynthesis, the epimerization of β-1,4-d-mannuronic acid to α-1,4-l-guluronic acid, a structural change that controls the physicochemical properties of the alginate, is catalyzed by the enzyme mannuronan C-5-epimerase. Six different cDNAs with homology to bacterial mannuronan C-5-epimerases were isolated from the brown alga Laminaria digitata (Phaeophyceae). Hydrophobic cluster analysis indicated that the proteins encoded by the L. digitata sequences have important structural similarities to the bacterial mannuronan C-5-epimerases, including conservation of the catalytic site. The expression of the C-5-epimerase genes was examined by northern-blot analysis and reverse transcriptase-polymerase chain reaction in L. digitata throughout a year. Expression was also monitored in protoplast cultures by northern and western blot, reverse transcriptase-polymerase chain reaction, and activity measurements. From both the structural comparisons and the expression pattern, it appears that the cDNAs isolated from L. digitata encode functional mannuronan C-5-epimerases. The phylogenetic relationships of the bacterial and brown algal enzymes and the inferences on the origin of alginate biosynthetic machinery are discussed. PMID:14526115

  1. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  2. Functional Characterization of the Rice UDP-glucose 4-epimerase 1, OsUGE1: A Potential Role in Cell Wall Carbohydrate Partitioning during Limiting Nitrogen Conditions

    PubMed Central

    Guevara, David R.; El-Kereamy, Ashraf; Yaish, Mahmoud W.; Mei-Bi, Yong; Rothstein, Steven J.

    2014-01-01

    Plants grown under inadequate mineralized nitrogen (N) levels undergo N and carbon (C) metabolic re-programming which leads to significant changes in both soluble and insoluble carbohydrate profiles. However, relatively little information is available on the genetic factors controlling carbohydrate partitioning during adaptation to N-limitation conditions in plants. A gene encoding a uridine-diphospho-(UDP)-glucose 4-epimerase (OsUGE-1) from rice (Oryza sativa) was found to be N-responsive. We developed transgenic rice plants to constitutively over-express the OsUGE-1 gene (OsUGE1-OX1–2). The transgenic rice lines were similar in size to wild-type plants at the vegetative stage and at maturity regardless of the N-level tested. However, OsUGE1-OX lines maintained 18–24% more sucrose and 12–22% less cellulose in shoots compared to wild-type when subjected to sub-optimal N-levels. Interestingly, OsUGE1-OX lines maintained proportionally more galactose and glucose in the hemicellulosic polysaccharide profile of plants compared to wild-type plants when grown under low N. The altered cell wall C-partitioning during N-limitation in the OsUGE1-OX lines appears to be mediated by OsUGE1 via the repression of the cellulose synthesis associated genes, OsSus1, OsCesA4, 7, and 9. This relationship may implicate a novel control point for the deposition of UDP-glucose to the complex polysaccharide profiles of rice cell walls. However, a direct relationship between OsUGE1 and cell wall C-partitioning during N-limitation requires further investigation. PMID:24788752

  3. Functional characterization of the rice UDP-glucose 4-epimerase 1, OsUGE1: a potential role in cell wall carbohydrate partitioning during limiting nitrogen conditions.

    PubMed

    Guevara, David R; El-Kereamy, Ashraf; Yaish, Mahmoud W; Mei-Bi, Yong; Rothstein, Steven J

    2014-01-01

    Plants grown under inadequate mineralized nitrogen (N) levels undergo N and carbon (C) metabolic re-programming which leads to significant changes in both soluble and insoluble carbohydrate profiles. However, relatively little information is available on the genetic factors controlling carbohydrate partitioning during adaptation to N-limitation conditions in plants. A gene encoding a uridine-diphospho-(UDP)-glucose 4-epimerase (OsUGE-1) from rice (Oryza sativa) was found to be N-responsive. We developed transgenic rice plants to constitutively over-express the OsUGE-1 gene (OsUGE1-OX1-2). The transgenic rice lines were similar in size to wild-type plants at the vegetative stage and at maturity regardless of the N-level tested. However, OsUGE1-OX lines maintained 18-24% more sucrose and 12-22% less cellulose in shoots compared to wild-type when subjected to sub-optimal N-levels. Interestingly, OsUGE1-OX lines maintained proportionally more galactose and glucose in the hemicellulosic polysaccharide profile of plants compared to wild-type plants when grown under low N. The altered cell wall C-partitioning during N-limitation in the OsUGE1-OX lines appears to be mediated by OsUGE1 via the repression of the cellulose synthesis associated genes, OsSus1, OsCesA4, 7, and 9. This relationship may implicate a novel control point for the deposition of UDP-glucose to the complex polysaccharide profiles of rice cell walls. However, a direct relationship between OsUGE1 and cell wall C-partitioning during N-limitation requires further investigation.

  4. [Histidine triad protein superfamily--biological function and enzymatic activity].

    PubMed

    Krakowiak, Agnieszka; Fryc, Izabela

    2012-01-01

    The HIT superfamily consists of proteins that share the histidine triad motif, His-X-His-X-His-X-X (where X is a hydrophobic amino acid), which constitutes enzymatic catalytic center. These enzymes act as nucleotidylyl hydrolase or transferase, and the mutation of the second histidine in the triad abolishes their activity. HIT proteins were found ubiquitous in all organisms and they were classified into 5 branches, which are represented by human proteins: HINT1, FHIT, Aprataxin, GALT and DCPS. Because HINT1 orthologs, which belong to the evolutionally oldest family branch, were found from prokaryotes to eukaryotes, it is clear that HIT motif was conserved during the evolution what means that the enzymatic activity is necessary for functions of these proteins. However, in few cases, e.g. HINT1 and FHIT, the connection between the biological function and the enzymatic activity is still obscure. In this review, the relations between biology and activity for 7 HIT proteins, which were found in human, are highlighted.

  5. Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene.

    PubMed

    Ertesvåg, H; Doseth, B; Larsen, B; Skjåk-Braek, G; Valla, S

    1994-05-01

    An Azotobacter vinelandii mannuronan C-5-epimerase gene was cloned in Escherichia coli. This enzyme catalyzes the Ca(2+)-dependent epimerization of D-mannuronic acid residues in alginate to the corresponding epimer L-guluronic acid. The epimerase gene was identified by screening a bacteriophage EMBL3 gene library of A. vinelandii DNA with a synthetic oligonucleotide probe. The sequence of this probe was deduced after determination of the N-terminal amino acid sequence of a previously reported extracellular mannuronan C-5-epimerase from A. vinelandii. A DNA fragment hybridizing against the probe was subcloned in a plasmid vector in E. coli, and the corresponding recombinant plasmid expressed intracellular mannuronan C-5-epimerase in this host. The nucleotide sequence of the gene encoding the epimerase was determined, and the sequence data showed that the molecular mass of the deduced protein is 103 kDa. A module consisting of about 150 amino acids was repeated tandemly four times in the C-terminal part of the deduced protein. Each of the four repeats contained four to six tandemly oriented nonameric repeats. The sequences in these motifs are similar to the Ca(2+)-binding domains of functionally unrelated secreted proteins reported previously in other bacteria. The reaction product of the recombinant epimerase was analyzed by nuclear magnetic resonance spectroscopy, and the results showed that the guluronic acid residues were distributed in blocks along the polysaccharide chain. Such a nonrandom distribution pattern, which is important for the commercial use of alginate, has previously also been identified in the reaction product of the corresponding enzyme isolated from A. vinelandii.

  6. Enzymatic catalysis: the emerging role of conceptual density functional theory.

    PubMed

    Roos, Goedele; Geerlings, Paul; Messens, Joris

    2009-10-15

    Experimentalists and quantum chemists are living in a different world. A wealth of theoretical enzymology-related publications is hardly known by experimentalists, and vice versa. Our aim is to bring both worlds together and to show the powerful possibilities of a multidisciplinary approach to study subtle details of complicated enzymatic processes to a broad readership. MD simulations and QM/MM approaches often focus on the calculation of reaction paths based on activation energies, which is a time-consuming task. A valuable alternative is the reactivity descriptors founded in conceptual DFT like softness, electrophilicity, and the Fukui function, which describe the kinetic aspects of a reaction in terms of the response to perturbations in N and/or upsilon(r), typical for a chemical reaction, of the reagents in the ground state. As such, the relative energies at the beginning of the reaction predict a sequence of activation energies only based on the properties of the reactants (Figure 5 ). In 2003, Geerlings et al. published a key review giving a detailed description of the principles and concepts of conceptual DFT and highlighting its success to study generalized acid/base reactions including addition, substitution, and elimination reactions. Since the time that this review appeared, conceptual DFT has proven its strength in literally hundreds of papers with application to organic and inorganic reactions. Its role in unravelling enzymatic reaction mechanisms, in handling experimentally difficult accessible biochemical problems, and in the interpretation of biochemical experimental observations is emerging and very promising.

  7. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  8. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  9. UDP-galactose 4' epimerase (GALE) is essential for development of Drosophila melanogaster.

    PubMed

    Sanders, Rebecca D; Sefton, Jennifer M I; Moberg, Kenneth H; Fridovich-Keil, Judith L

    2010-01-01

    UDP-galactose 4' epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose in the final step of the Leloir pathway; human GALE (hGALE) also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. GALE therefore plays key roles in the metabolism of dietary galactose, in the production of endogenous galactose, and in maintaining the ratios of key substrates for glycoprotein and glycolipid biosynthesis. Partial impairment of hGALE results in the potentially lethal disorder epimerase-deficiency galactosemia. We report here the generation and initial characterization of a first whole-animal model of GALE deficiency using the fruit fly Drosophila melanogaster. Our results confirm that GALE function is essential in developing animals; Drosophila lacking GALE die as embryos but are rescued by the expression of a human GALE transgene. Larvae in which GALE has been conditionally knocked down die within days of GALE loss. Conditional knockdown and transgene expression studies further demonstrate that GALE expression in the gut primordium and Malpighian tubules is both necessary and sufficient for survival. Finally, like patients with generalized epimerase deficiency galactosemia, Drosophila with partial GALE loss survive in the absence of galactose but succumb in development if exposed to dietary galactose. These data establish the utility of the fly model of GALE deficiency and set the stage for future studies to define the mechanism(s) and modifiers of outcome in epimerase deficiency galactosemia.

  10. Enzymatic functionalization of a nanobody using protein insertion technology.

    PubMed

    Crasson, O; Rhazi, N; Jacquin, O; Freichels, A; Jérôme, C; Ruth, N; Galleni, M; Filée, P; Vandevenne, M

    2015-10-01

    Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily

    PubMed Central

    Lukk, Tiit; Sakai, Ayano; Kalyanaraman, Chakrapani; Brown, Shoshana D.; Imker, Heidi J.; Song, Ling; Fedorov, Alexander A.; Fedorov, Elena V.; Toro, Rafael; Hillerich, Brandan; Seidel, Ronald; Patskovsky, Yury; Vetting, Matthew W.; Nair, Satish K.; Babbitt, Patricia C.; Almo, Steven C.; Gerlt, John A.; Jacobson, Matthew P.

    2012-01-01

    The rapid advance in genome sequencing presents substantial challenges for protein functional assignment, with half or more of new protein sequences inferred from these genomes having uncertain assignments. The assignment of enzyme function in functionally diverse superfamilies represents a particular challenge, which we address through a combination of computational predictions, enzymology, and structural biology. Here we describe the results of a focused investigation of a group of enzymes in the enolase superfamily that are involved in epimerizing dipeptides. The first members of this group to be functionally characterized were Ala-Glu epimerases in Eschericiha coli and Bacillus subtilis, based on the operon context and enzymological studies; these enzymes are presumed to be involved in peptidoglycan recycling. We have subsequently studied more than 65 related enzymes by computational methods, including homology modeling and metabolite docking, which suggested that many would have divergent specificities;, i.e., they are likely to have different (unknown) biological roles. In addition to the Ala-Phe epimerase specificity reported previously, we describe the prediction and experimental verification of: (i) a new group of presumed Ala-Glu epimerases; (ii) several enzymes with specificity for hydrophobic dipeptides, including one from Cytophaga hutchinsonii that epimerizes D-Ala-D-Ala; and (iii) a small group of enzymes that epimerize cationic dipeptides. Crystal structures for certain of these enzymes further elucidate the structural basis of the specificities. The results highlight the potential of computational methods to guide experimental characterization of enzymes in an automated, large-scale fashion. PMID:22392983

  12. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    PubMed

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  13. Automatic single- and multi-label enzymatic function prediction by machine learning.

    PubMed

    Amidi, Shervine; Amidi, Afshine; Vlachakis, Dimitrios; Paragios, Nikos; Zacharaki, Evangelia I

    2017-01-01

    The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level) and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC) code (six main classes) on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss) of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

  14. Automatic single- and multi-label enzymatic function prediction by machine learning

    PubMed Central

    Paragios, Nikos

    2017-01-01

    The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level) and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC) code (six main classes) on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss) of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7. PMID:28367366

  15. Crystal structure of the novel amino-acid racemase isoleucine 2-epimerase from Lactobacillus buchneri.

    PubMed

    Hayashi, Junji; Mutaguchi, Yuta; Minemura, Yume; Nakagawa, Noriko; Yoneda, Kazunari; Ohmori, Taketo; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2017-05-01

    Crystal structures of Lactobacillus buchneri isoleucine 2-epimerase, a novel branched-chain amino-acid racemase, were determined for the enzyme in the apo form, in complex with pyridoxal 5'-phosphate (PLP), in complex with N-(5'-phosphopyridoxyl)-L-isoleucine (PLP-L-Ile) and in complex with N-(5'-phosphopyridoxyl)-D-allo-isoleucine (PLP-D-allo-Ile) at resolutions of 2.77, 1.94, 2.65 and 2.12 Å, respectively. The enzyme assembled as a tetramer, with each subunit being composed of N-terminal, C-terminal and large PLP-binding domains. The active-site cavity in the apo structure was much more solvent-accessible than that in the PLP-bound structure. This indicates that a marked structural change occurs around the active site upon binding of PLP that provides a solvent-inaccessible environment for the enzymatic reaction. The main-chain coordinates of the L. buchneri isoleucine 2-epimerase monomer showed a notable similarity to those of α-amino-ℇ-caprolactam racemase from Achromobactor obae and γ-aminobutyrate aminotransferase from Escherichia coli. However, the amino-acid residues involved in substrate binding in those two enzymes are only partially conserved in L. buchneri isoleucine 2-epimerase, which may account for the differences in substrate recognition by the three enzymes. The structures bound with reaction-intermediate analogues (PLP-L-Ile and PLP-D-allo-Ile) and site-directed mutagenesis suggest that L-isoleucine epimerization proceeds through abstraction of the α-hydrogen of the substrate by Lys280, while Asp222 serves as the catalytic residue adding an α-hydrogen to the quinonoid intermediate to form D-allo-isoleucine.

  16. A Structural Basis for the Allosteric Regulatin of Non-Hydrolysing UDP-G1cNAc 2-Epimerases

    SciTech Connect

    Velloso,L.; Bhaskaran, S.; Schuch, R.; Fischetti, V.; Stebbins, C.

    2008-01-01

    The non-hydrolysing bacterial UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) catalyses the conversion of UDP-GlcNAc into UDP-N-acetylmannosamine, an intermediate in the biosynthesis of several cell-surface polysaccharides. This enzyme is allosterically regulated by its substrate UDP-GlcNAc. The structure of the ternary complex between the Bacillus anthracis UDP-GlcNAc 2-epimerase, its substrate UDP-GlcNAc and the reaction intermediate UDP, showed direct interactions between UDP and its substrate, and between the complex and highly conserved enzyme residues, identifying the allosteric site of the enzyme. The binding of UDP-GlcNAc is associated with conformational changes in the active site of the enzyme. Kinetic data and mutagenesis of the highly conserved UDP-GlcNAc-interacting residues confirm their importance in the substrate binding and catalysis of the enzyme. This constitutes the first example to our knowledge, of an enzymatic allosteric activation by direct interaction between the substrate and the allosteric activator.

  17. A structural basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc 2-epimerases

    PubMed Central

    Velloso, Lucas M; Bhaskaran, Shyam S; Schuch, Raymond; Fischetti, Vincent A; Stebbins, C Erec

    2008-01-01

    The non-hydrolysing bacterial UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) catalyses the conversion of UDP-GlcNAc into UDP-N-acetylmannosamine, an intermediate in the biosynthesis of several cell-surface polysaccharides. This enzyme is allosterically regulated by its substrate UDP-GlcNAc. The structure of the ternary complex between the Bacillus anthracis UDP-GlcNAc 2-epimerase, its substrate UDP-GlcNAc and the reaction intermediate UDP, showed direct interactions between UDP and its substrate, and between the complex and highly conserved enzyme residues, identifying the allosteric site of the enzyme. The binding of UDP-GlcNAc is associated with conformational changes in the active site of the enzyme. Kinetic data and mutagenesis of the highly conserved UDP-GlcNAc-interacting residues confirm their importance in the substrate binding and catalysis of the enzyme. This constitutes the first example to our knowledge, of an enzymatic allosteric activation by direct interaction between the substrate and the allosteric activator. PMID:18188181

  18. Hydrogen/Deuterium Exchange-LC-MS Approach to Characterize the Action of Heparan Sulfate C5-Epimerase

    PubMed Central

    Babu, Ponnusamy; Victor, Xylophone V.; Nelsen, Emily; Nguyen, Thao Kim Nu; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparan sulfate (HS) proteoglycans regulate a number of biological functions in many systems. Most of the functions of HS are attributed to its unique structure, consisting of sulfated and non-sulfated domains, arising from the differential presence of iduronyl and glucuronyl residues along the polysaccharide chain. A single glucuronyl C5-epimerase enzyme acts on heparan sulfate precursor, converts glucuronyl residues into iduronyl residues and modulates subsequent biosynthetic steps in vivo. The ratios of non-sulfated epimers within the polysaccharide chain have been calculated by resolving radiolabeled GlcA-AManR and IdoA-AManR disaccharides using a tedious paper chromatography technique. Radioactive assay, based on measuring either the release or incorporation of 3H at C5 carbon of uronyl residues of 3H-labeled HS precursor substrate, has been in use over three decades to characterize the action of HS C5-epimerase. We have developed a non-radioactive assay to estimate the epimerase activity through resolving GlcA-AManR and IdoA-AManR disaccharides on HPLC in conjunction with hydrogen/deuterium exchange upon epimerization protocol-liquid chromatography mass spectrometry (DEEP-LC-MS). Utilizing this new, non-radioactive based assay, DEEP-LC-MS, we were able to determine the extent of both forward and reverse reaction on the same substrate catalyzed by C5-epimerase. Results from this study also provide insights into the action of C5-epimerase and provide an opportunity to delineate snapshots of biosynthetic events that occur during the HSPG assembly in the Golgi. PMID:21573838

  19. Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii.

    PubMed

    Høidal, H K; Glaerum Svanem, B I; Gimmestad, M; Valla, S

    2000-02-01

    Differentiation in Azotobacter vinelandii involves the encystment of the vegetative cell under adverse environmental circumstances and the germination of the resting cell into the vegetative state when growth conditions are satisfactory again. Morphologically, the encystment process involves the development of a protective coat around the resting cell. This coat partly consists of multiple layers of alginate, which is a copolymer of beta-D-mannuronic acid (M) and alpha-L-guluronic acid (G). Alginate contributes to coat rigidity by virtue of a high content of GG blocks. Such block structures are generated through a family of mannuronan C-5 epimerases that convert M to G after polymerization. Results from immunodetection and light microscopy, using stains that distinguish between different cyst components and types, indicate a correlation between cyst coat organization and the amount and appearance of mannuronan C-5 epimerases in the extracellular medium and attached to the cells. Specific roles of individual members of the epimerase family are indicated. Calcium and magnesium ions appear to have different roles in the structural organization of the cyst coat. Also reported is a new gene sharing strong sequence homology with parts of the epimerase-encoded R-modules. This gene is located within the epimerase gene cluster of Azotobacter vinelandii.

  20. Structural and functional insights into asymmetric enzymatic dehydration of alkenols.

    PubMed

    Nestl, Bettina M; Geinitz, Christopher; Popa, Stephanie; Rizek, Sari; Haselbeck, Robert J; Stephen, Rosary; Noble, Michael A; Fischer, Max-Philipp; Ralph, Erik C; Hau, Hoi Ting; Man, Henry; Omar, Muhiadin; Turkenburg, Johan P; van Dien, Stephen; Culler, Stephanie J; Grogan, Gideon; Hauer, Bernhard

    2017-03-01

    The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of β-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5-C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis.

  1. Recent advances in the elucidation of enzymatic function in natural product biosynthesis.

    PubMed

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2015-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  2. Recent advances in the elucidation of enzymatic function in natural product biosynthesis

    PubMed Central

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2016-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed. PMID:26989472

  3. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, Gnu and GnaB.

    PubMed

    Cunneen, Monica M; Liu, Bin; Wang, Lei; Reeves, Peter R

    2013-01-01

    We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation.

  4. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG*

    PubMed Central

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codée, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1–4-linked β-d-mannuronate. As the polymer passages through the periplasm, 22–44% of the mannuronate residues are converted to α-l-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-d-mannuronate and α-l-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His319 acts as the catalytic base and that Arg345 neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca2+ dependence. PMID:24398681

  5. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG.

    PubMed

    Wolfram, Francis; Kitova, Elena N; Robinson, Howard; Walvoort, Marthe T C; Codée, Jeroen D C; Klassen, John S; Howell, P Lynne

    2014-02-28

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.

  6. Predicting enzymatic function from global binding site descriptors.

    PubMed

    Volkamer, Andrea; Kuhn, Daniel; Rippmann, Friedrich; Rarey, Matthias

    2013-03-01

    Due to the rising number of solved protein structures, computer-based techniques for automatic protein functional annotation and classification into families are of high scientific interest. DoGSiteScorer automatically calculates global descriptors for self-predicted pockets based on the 3D structure of a protein. Protein function predictors on three levels with increasing granularity are built by use of a support vector machine (SVM), based on descriptors of 26632 pockets from enzymes with known structure and enzyme classification. The SVM models represent a generalization of the available descriptor space for each enzyme class, subclass, and substrate-specific sub-subclass. Cross-validation studies show accuracies of 68.2% for predicting the correct main class and accuracies between 62.8% and 80.9% for the six subclasses. Substrate-specific recall rates for a kinase subset are 53.8%. Furthermore, application studies show the ability of the method for predicting the function of unknown proteins and gaining valuable information for the function prediction field. Copyright © 2012 Wiley Periodicals, Inc.

  7. Enzymatic Functionalization of Carbon-Hydrogen Bonds1

    PubMed Central

    Lewis, Jared C.; Coelho, Pedro S.

    2010-01-01

    The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts. PMID:21079862

  8. Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function.

    PubMed

    Timmins, Amy; de Visser, Sam P

    2015-01-01

    Despite the fact that halogenated compounds are rare in biology, a number of organisms have developed processes to utilize halogens and in recent years, a string of enzymes have been identified that selectively insert halogen atoms into, for instance, a CH aliphatic bond. Thus, a number of natural products, including antibiotics, contain halogenated functional groups. This unusual process has great relevance to the chemical industry for stereoselective and regiospecific synthesis of haloalkanes. Currently, however, industry utilizes few applications of biological haloperoxidases and halogenases, but efforts are being worked on to understand their catalytic mechanism, so that their catalytic function can be upscaled. In this review, we summarize experimental and computational studies on the catalytic mechanism of a range of haloperoxidases and halogenases with structurally very different catalytic features and cofactors. This chapter gives an overview of heme-dependent haloperoxidases, nonheme vanadium-dependent haloperoxidases, and flavin adenine dinucleotide-dependent haloperoxidases. In addition, we discuss the S-adenosyl-l-methionine fluoridase and nonheme iron/α-ketoglutarate-dependent halogenases. In particular, computational efforts have been applied extensively for several of these haloperoxidases and halogenases and have given insight into the essential structural features that enable these enzymes to perform the unusual halogen atom transfer to substrates.

  9. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase.

    PubMed Central

    Franklin, M J; Chitnis, C E; Gacesa, P; Sonesson, A; White, D C; Ohman, D E

    1994-01-01

    Alginate is a viscous extracellular polymer produced by mucoid strains of Pseudomonas aeruginosa that cause chronic pulmonary infections in patients with cystic fibrosis. Alginate is polymerized from GDP-mannuronate to a linear polymer of beta-1-4-linked residues of D-mannuronate and its C5-epimer, L-guluronate. We previously identified a gene called algG in the alginate biosynthetic operon that is required for incorporation of L-guluronate residues into alginate. In this study, we tested the hypothesis that the product of algG is a C5-epimerase that directly converts D-mannuronate to L-guluronate. The DNA sequence of algG was determined, and an open reading frame encoding a protein (AlgG) of approximately 60 kDa was identified. The inferred amino terminus of AlgG protein contained a putative signal sequence of 35 amino acids. Expression of algG in Escherichia coli demonstrated both 60-kDa pre-AlgG and 55-kDa mature AlgG proteins, the latter of which was localized to the periplasm. An N-terminal analysis of AlgG showed that the signal sequence was removed in the mature form. Pulse-chase experiments in both E. coli and P. aeruginosa provided evidence for conversion of the 60- to the 55-kDa size in vivo. Expression of algG from a plasmid inan algG (i.e., polymannuronate-producing) mutant of P. aeruginosa restored production of an alginate containing L-guluronate residues. The observation that AlgG is apparently processed and exported from the cytoplasm suggested that it may act as a polymer-level mannuronan C5-epimerase. An in vitro assay for mannuronan C5 epimerization was developed wherein extracts of E. coli expressing high levels of AlgG were incubated with polymannuronate. Epimerization of D-mannuronate to L-guluronate residues in the polymer was detected enzymatically, using a L-guluronate-specific alginate lyase of Klebsiella aerogenes. Epimerization was also detected in the in vitro reaction between recombinant AlgG and poly-D-mannuronate, using high

  10. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    PubMed Central

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  11. Enzymatic modification and X-ray photoelectron spectroscopy analysis of a functionalized polydiacetylene thin film

    SciTech Connect

    Wilson, T.E.; Spevak, W.; Bednarski, M.D. Lawrence Berkeley Lab., CA ); Charych, D.H. )

    1994-05-01

    The mild conditions and specificity of biological catalysts are attractive incentives for their use in the formation of surfaces with well-defined chemical functionality. Herein, we describe the synthesis, characterization, and enzymatic modification of a functionalized polymeric bilayer assembly. The assembly is composed of a self-assembled monolayer of octadecylsilane and a Langmuir-Blodgett monolayer of polydiacetylene functionalized with the dipeptide phenylalanine-alanine (Phe-Ala). We demonstrate via X-ray photoelectron spectroscopy surface analysis that the surface-bound Phe-Ala dipeptide is a substrate for specific cleavage by the enzyme subtilisin BPN[prime]. In-situ surface transformations via enzymatic synthesis or cleavage offer an alternative to chemical treatments of organic thin films. 28 refs., 4 figs.

  12. The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize.

    PubMed

    Walsh, Jesse R; Schaeffer, Mary L; Zhang, Peifen; Rhee, Seung Y; Dickerson, Julie A; Sen, Taner Z

    2016-11-29

    As metabolic pathway resources become more commonly available, researchers have unprecedented access to information about their organism of interest. Despite efforts to ensure consistency between various resources, information content and quality can vary widely. Two maize metabolic pathway resources for the B73 inbred line, CornCyc 4.0 and MaizeCyc 2.2, are based on the same gene model set and were developed using Pathway Tools software. These resources differ in their initial enzymatic function assignments and in the extent of manual curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate the effect of initial computational enzymatic function assignments on the quality and content of metabolic pathway resources. These two resources are different in their content. MaizeCyc contains GO annotations for over 21,000 genes that CornCyc is missing. CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no alternate splicing. MaizeCyc also does not match CornCyc's breadth in representing the metabolic domain; MaizeCyc has fewer compounds, reactions, and pathways than CornCyc. CornCyc's computational predictions are more accurate than those in MaizeCyc when compared to experimentally determined function assignments, demonstrating the relative strength of the enzymatic function assignment pipeline used to generate CornCyc. Our results show that the quality of initial enzymatic function assignments primarily determines the quality of the final metabolic pathway resource. Therefore, biologists should pay close attention to the methods and information sources used to develop a metabolic pathway resource to gauge the utility of using such functional assignments to construct hypotheses for experimental studies.

  13. Size Dependent Platelet Subpopulations: Relationship of Platelet Volume to Ultrastructure Enzymatic Activity, and Function.

    DTIC Science & Technology

    1983-03-10

    of the present apheresis instruments to separate the larger more functional platelets from the smaller ones. The selective isolation of large... PLATELET VOLUME T. -(U) BOSTON UNIV MA SCHOOL OF I MEDICINE C B THOMPSON ET RL 10 MAR 83 BUSM-93-89 UNIIDN919CA89 /68 6ilfflfllflflflflll l...N00014-79-C-0168 TECHNICAL REPORT NO. 83-08 SIZE DEPENDENT PLATELET SUBPOPULATIONS: RELATIONSHIP OF PLATELET VOLUME TO ULTRASTRUCTURE. ENZYMATIC ACTIVITY

  14. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.

    PubMed Central

    Poolman, B; Royer, T J; Mainzer, S E; Schmidt, B F

    1990-01-01

    The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels. Images PMID:1694527

  15. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose.

    PubMed

    Jmel, Mohamed Amine; Ben Messaoud, Ghazi; Marzouki, M Nejib; Mathlouthi, Mohamed; Smaali, Issam

    2016-01-01

    Although green macro-algae represent a renewable and highly abundant biomass, they remain poorly exploited in terms of carbohydrate polymers compared to red and brown ones and other lignocellulosic materials. In this study, cellulose from the green macro-algae Enteromorpha sp. was isolated, physico-chemically characterized and enzymatically functionalized. The cellulose content was about 21.4% (w/w). FTIR analyses indicated an absence of acetyl or uronic esters confirming the absence of hemicellulose contamination. The 36% crystallinity index of the extracted cellulose revealed a high amorphous character as determined by X-ray diffraction. The moisture adsorption isotherms and specific surface measurements were respectively 42.87g/100g and 8.34m(2)/g. The Enteromorpha sp. cellulose was first enzymatically saccharified by a commercial cellulase preparation from Aspergillus niger with a hydrolysis yield of 70.4%. Besides, it was successfully functionalized based on the transglycosylation mechanism of the same enzymatic preparation, to produce highly added-value biosurfactants (butyl-glucoside) with a concentration of 8mM.

  16. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  17. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine.

    PubMed

    Dong, Aixue; Fan, Xuerong; Wang, Qiang; Yu, Yuanyuan; Cavaco-Paulo, Artur

    2015-08-01

    Enzymatic grafting of synthetic molecules onto lignins provides a mild and eco-friendly alternative for the functionalization of lignocellulosic materials. In this study, laccase-mediated grafting of octadecylamine (OA) onto lignin-rich jute fabrics was investigated for enhancing the surface hydrophobicity. First, the lignins in jute fabrics were isolated and analyzed in the macromolecular level by MALDI-TOF MS, (1)H NMR, (13)C NMR, and HSQC-NMR. Then, the surface of jute fabrics was characterized by FT-IR, XPS, and SEM. Subsequently, the nitrogen content of jute fabrics was determined by the micro-Kjeldahl method, and the grafting percentage (Gp) and grafting efficiency (GE) of the enzymatic reaction were calculated. Finally, the surface hydrophobicity of the jute fabrics was estimated by contact angle and wetting time measurements. The results indicate that the OA monomers were successfully grafted onto the lignin moieties on the jute fiber surface by laccase with Gp and GE values of 0.712% and 10.571%, respectively. Moreover, the modified jute fabrics via OA-grafting showed an increased wetting time of 18.5 min and a contact angle of 116.72°, indicating that the surface hydrophobicity of the jute fabrics increased after the enzymatic grafting modification with hydrophobic OA molecules.

  18. C5-Alkynyl-Functionalized α-L-LNA: Synthesis, Thermal Denaturation Experiments and Enzymatic Stability

    PubMed Central

    2015-01-01

    Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformationally restricted nucleotide building blocks such as locked nucleic acid (LNA). In the preceding article in this issue, we introduced a different strategy toward this end, i.e., C5-functionalization of LNA uridines. In the present article, we extend this strategy to α-L-LNA: i.e., one of the most interesting diastereomers of LNA. α-L-LNA uridine monomers that are conjugated to small C5-alkynyl substituents induce significant improvements in target affinity, binding specificity, and enzymatic stability relative to conventional α-L-LNA. The results from the back-to-back articles therefore suggest that C5-functionalization of pyrimidines is a general and synthetically straightforward approach to modulate biophysical properties of oligonucleotides modified with LNA or other conformationally restricted monomers. PMID:24797769

  19. Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons.

    PubMed

    Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu, Yi; Bentley, William E; Payne, Gregory F

    2013-03-01

    Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP(+). Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics.

  20. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network.

    PubMed

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel; Malhotra, Vivek

    2014-09-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.

  1. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network

    PubMed Central

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel

    2014-01-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN. PMID:25179630

  2. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    PubMed

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  3. Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica

    SciTech Connect

    Yu, Yuehua; Chen, Baowei; Qi, Wen N.; Li, Xiaolin; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

    2012-05-01

    We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can be released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.

  4. Role of loop-loop interactions in coordinating motions and enzymatic function in triosephosphate isomerase.

    PubMed

    Wang, Yan; Berlow, Rebecca B; Loria, J Patrick

    2009-06-02

    The enzyme triosephosphate isomerase (TIM) has been used as a model system for understanding the relationship between protein sequence, structure, and biological function. The sequence of the active site loop (loop 6) in TIM is directly correlated with a conserved motif in loop 7. Replacement of loop 7 of chicken TIM with the corresponding loop 7 sequence from an archaeal homologue caused a 10(2)-fold loss in enzymatic activity, a decrease in substrate binding affinity, and a decrease in thermal stability. Isotope exchange studies performed by one-dimensional (1)H NMR showed that the substrate-derived proton in the enzyme is more susceptible to solvent exchange for DHAP formation in the loop 7 mutant than for WT TIM. TROSY-Hahn Echo and TROSY-selected R(1rho) experiments indicate that upon mutation of loop 7, the chemical exchange rate for active site loop motion is nearly doubled and that the coordinated motion of loop 6 is reduced relative to that of the WT. Temperature dependent NMR experiments show differing activation energies for the N- and C-terminal hinges in this mutant enzyme. Together, these data suggest that interactions between loop 6 and loop 7 are necessary to provide the proper chemical context for the enzymatic reaction to occur and that the interactions play a significant role in modulating the chemical dynamics near the active site.

  5. Molecular and Structural Discrimination of Proline Racemase and Hydroxyproline-2-Epimerase from Nosocomial and Bacterial Pathogens

    PubMed Central

    Goytia, Maira; Chamond, Nathalie; Cosson, Alain; Coatnoan, Nicolas; Hermant, Daniel; Berneman, Armand; Minoprio, Paola

    2007-01-01

    The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for ‘proline racemase’ virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not ‘one way’ directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on contraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host. PMID:17849014

  6. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts

    PubMed Central

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0–3 mm, transitional zone (TZ) 3–7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98–0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86–113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  7. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts.

    PubMed

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0-3 mm, transitional zone (TZ) 3-7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98-0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86-113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem.

  8. An Orthogonal D2 O-Based Induction System that Provides Insights into d-Amino Acid Pattern Formation by Radical S-Adenosylmethionine Peptide Epimerases.

    PubMed

    Morinaka, Brandon I; Verest, Marjan; Freeman, Michael F; Gugger, Muriel; Piel, Jörn

    2017-01-16

    Radical S-adenosyl methionine peptide epimerases (RSPEs) are an enzyme family that accomplishes regiospecific and irreversible introduction of multiple d-configured residues into ribosomally encoded peptides. Collectively, RSPEs can generate diverse epimerization patterns in a wide range of substrates. Previously, the lack of rapid methods to localize epimerized residues has impeded efforts to investigate the function and applicative potential of RSPEs. An efficient mass spectrometry-based assay is introduced that permits characterization of products generated in E. coli. Applying this to a range of non-natural peptide-epimerase combinations, it is shown that the d-amino acid pattern is largely but not exclusively dictated by the core peptide sequence, while the epimerization order is dependent on the enzyme-leader pair. RSPEs were found to be highly promiscuous, which allowed for modular introduction of peptide segments with defined patterns.

  9. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.

    PubMed

    Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-13

    Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.

  10. Association of fecal microbial diversity and taxonomy with selected enzymatic functions.

    PubMed

    Flores, Roberto; Shi, Jianxin; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-01-01

    Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial β-glucuronidase and β-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify β-glucuronidase and β-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal β-glucuronidase was elevated with weight loss of at least 5 lb. (P = 0.03), whereas β-glucosidase was marginally reduced in the four vegetarians (P = 0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all P = 0.05-0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation.

  11. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa.

    PubMed

    Arai, Hiroyuki; Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-12-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.

  12. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.

    PubMed

    Guadarrama-Fernández, Leonor; Chanona-Pérez, Jorge; Manzo-Robledo, Arturo; Calderón-Domínguez, Georgina; Martínez-Rivas, Adrián; Ortiz-López, Jaime; Vargas-García, Jorge Roberto

    2014-10-01

    Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.

  13. A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions.

    PubMed

    Longobardi, Sara; Gravagnuolo, Alfredo Maria; Funari, Riccardo; Della Ventura, Bartolomeo; Pane, Francesca; Galano, Eugenio; Amoresano, Angela; Marino, Gennaro; Giardina, Paola

    2015-01-01

    The development of efficient and rapid methods for the identification with high sequence coverage of proteins is one of the most important goals of proteomic strategies today. The on-plate digestion of proteins is a very attractive approach, due to the possibility of coupling immobilized-enzymatic digestion with direct matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) analysis. The crucial step in the development of on-plate immobilization is however the functionalization of the solid surface. Fungal self-assembling proteins, the hydrophobins, are able to efficiently functionalize surfaces. We have recently shown that such modified plates are able to absorb either peptides or proteins and are amenable to MALDI-TOF-MS analysis. In this paper, the hydrophobin-coated MALDI sample plates were exploited as a lab-on-plate for noncovalent immobilization of enzymes commonly used in protein identification/characterization, such as trypsin, V8 protease, PNGaseF, and alkaline phosphatase. Rapid and efficient on-plate reactions were performed to achieve high sequence coverage of model proteins, particularly when performing multiple enzyme digestions. The possibility of exploiting this direct on-plate MALDI-TOF/TOF analysis has been investigated on model proteins and, as proof of concept, on entire whey milk proteome.

  14. Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus.

    PubMed

    Kim, Yeong-Su; Oh, Deok-Kun

    2012-01-01

    The conditions for maximum lactulose production from lactose, as a single substrate, by a thermostable recombinant cellobiose-2-epimerase from Caldicellulosiruptor saccharolyticus were determined to be pH 7.5, 80 °C, 700 g l(-1) lactose, and 150 U ml(-1) of enzyme. Under the conditions, the enzyme produced the two bifidus factors lactulose at 408 g l(-1) and epilactose at 107 g l(-1) after 2 h. The yields of lactulose and epilactose from lactose and the productivities of lactulose and epilactose were 58%, 15%, 204 g l(-1) h(-1), and 54 g l(-1) h(-1), respectively. The yield and productivity of both lactulose and epilactose from lactose were 74% and 258 g l(-1) h(-1), respectively. The yield, concentration, and productivity of lactulose in the present study are the highest among enzymatic syntheses. This is the first trial of enzymatic synthesis of lactulose using the single substrate lactose. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates.

    PubMed

    Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven

    2015-03-02

    Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction

    PubMed Central

    2010-01-01

    Background Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels. Results This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs. Conclusions FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated, statistically rigorous procedure

  17. [Enzymatic modification of the functional, nutritional and sensorial properties of soybeans for special feeding].

    PubMed

    Calderón de la Barca, A M; Wall Medrano, A; Jara Marini, M; González Córdova, A F; Ruíz Salazar, A

    2000-03-01

    Production of new protein-based products for special nutrition such as hypoallergenic infant formulas, fortified beverages and nutraceutics, require ideal ingredients. Protein ingredients were developed by enzymatic hydrolysis and methionine synthesis of soy protein. Hydrolysis was done at 4% (w/v) using porcine pancreatic enzymes (4% w/w), 50 degrees C, 6 h and pH 8. After drying powder was resuspended (20% w/v) and incubated with 7.6% (w/w) methionine methyl-ester, 1% (w/w) chymotrypsin and 3 M glycerol, 37 degrees C, 3 h and pH 7. Hydrolysates were fractionated by ultrafiltration (UF) before and after enrichment (E): FI > 10, 10 > FII > 3 and 3 > FIII > 1 kDa. Functional properties, amino acid content, anti-physiological factor activities and antigenicity were assayed for all the UF fractions and the soybean meal. Protein quality bioassay and sensorial test of an non-enriched fraction and an enriched fraction were performed. Functional properties were positively modified by hydrolysis and synthesis by using a minimum time and methionine added for the last reaction. After UF all the fractions under 10 kDa showed 100% solubility (pH 4 and 7), good clarity, acceptable foam capacity and negligible antigenicity and antiphysiological activities. Additionally, methionine enrichment enhanced their nutritional value, upgrading sulfur amino acid requirements for infants and adults. Because functionality and nutritional value FIII-E could be used for hypoallergenic infant formulas, FII-E for fortified soluble formulas and nutraceutics and FI-E for a semi-solid baby food.

  18. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase.

    PubMed

    Führing, Jana; Damerow, Sebastian; Fedorov, Roman; Schneider, Julia; Münster-Kühnel, Anja-Katharina; Gerardy-Schahn, Rita

    2013-04-01

    Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.

  19. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays

    PubMed Central

    Spagnolo, Jeannie F.; Rossignol, Evan; Bullitt, Esther; Kirkegaard, Karla

    2010-01-01

    Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase–polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells. PMID:20051491

  20. Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase*

    PubMed Central

    Lakshminarasimhan, Mahadevan; Madzelan, Peter; Nan, Ruth; Milkovic, Nicole M.; Wilson, Mark A.

    2010-01-01

    Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 Å C-α root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue. PMID:20630867

  1. Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase

    SciTech Connect

    Lakshminarasimhan, Mahadevan; Madzelan, Peter; Nan, Ruth; Milkovic, Nicole M.; Wilson, Mark A.

    2010-09-13

    Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 {angstrom}. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 {angstrom} C-{alpha} root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.

  2. Crystal Structure of Human Senescence Marker Protein 30: Insights Linking Structural, Enzymatic, and Physiological Functions

    SciTech Connect

    Chakraborti, Subhendu; Bahnson, Brian J.

    2010-05-25

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in nonprimate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 {angstrom}. The protein has a 6-bladed {beta}-propeller fold, and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca{sup 2+} or a Zn{sup 2+} atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a k{sub cat} preference of divalent cations in the order Zn{sup 2+} > Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+}. Notably, the Ca{sup 2+} had a significantly higher value of K{sub d} compared to those of the other metal ions tested (566, 82, 7, and 0.6 {micro}m for Ca{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, and Mn{sup 2+}, respectively), suggesting that the Ca{sup 2+}-bound form may be physiologically relevant for stressed cells with an elevated free calcium level.

  3. A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities.

    PubMed

    Hmani, Houda; Daoud, Lobna; Jlidi, Mouna; Jalleli, Karim; Ben Ali, Manel; Hadj Brahim, Adel; Bargui, Mansour; Dammak, Alaeddine; Ben Ali, Mamdouh

    2017-08-01

    We have proposed and validate an in vitro probiotic selection, based on enzymatic potentialities associated to well-established probiotic functional properties. A new Bacillus subtilis HB2 isolate, selected based on its high extracellular enzyme production, was chosen as a probiotic candidate for application as animal feed supplement. The HB2 strain showed an excellent acid and bile salts tolerance, a strong adhesion to chick enterocytes and produced antimicrobials against pathogens. An in vivo trial in poultry farming was conducted to evaluate the HB2 probiotic performance. After 35 days, HB2 achieved the higher growth performance than the control groups. The mortality and the feed conversion ratio were significantly decreased. Finally, the HB2 treated group showed wet litter and less severe ammonia odor in the atmosphere. Our study provides new insights into the importance of enzymatic potentialities, associated with the common functional properties, as a novel approach for probiotic selection.

  4. Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus.

    PubMed

    Ito, Shigeaki; Hamada, Shigeki; Yamaguchi, Kozo; Umene, Shingo; Ito, Hiroyuki; Matsui, Hirokazu; Ozawa, Tadahiro; Taguchi, Hidenori; Watanabe, Jun; Wasaki, Jun; Ito, Susumu

    2007-08-31

    Cellobiose 2-epimerase (EC 5.1.3.11) was first identified in 1967 as an extracellular enzyme that catalyzes the reversible epimerization between cellobiose and 4-O-beta-D-glucopyranosyl-D-mannose in a culture broth of Ruminococcus albus 7 (ATCC 27210(T)). Here, for the first time, we describe the purification of cellobiose 2-epimerase from R. albus NE1. The enzyme was found to 2-epimerize the reducing terminal glucose moieties of cellotriose and cellotetraose in addition to cellobiose. The gene encoding cellobiose 2-epimerase comprises 1170 bp (389 amino acids) and is present as a single copy in the genome. The deduced amino acid sequence of the mature enzyme contains the possible catalytic residues Arg52, His243, Glu246, and His374. Sequence analysis shows the gene shares a very low level of homology with N-acetyl-D-glucosamine 2-epimerases (EC 5.1.3.8), but no significant homology to any other epimerases reported to date.

  5. Structure of d-tagatose 3-epimerase-like protein from Methanocaldococcus jannaschii

    PubMed Central

    Uechi, Keiko; Takata, Goro; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2014-01-01

    The crystal structure of a d-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the d-tagatose 3-epimerase from Pseudomonas cichorii and the d-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit–subunit interface differed substantially from that in d-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of d-tagatose 3-epimerase family enzymes and endonuclease IV. PMID:25005083

  6. Structure of D-tagatose 3-epimerase-like protein from Methanocaldococcus jannaschii.

    PubMed

    Uechi, Keiko; Takata, Goro; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2014-07-01

    The crystal structure of a D-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the D-tagatose 3-epimerase from Pseudomonas cichorii and the D-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit-subunit interface differed substantially from that in D-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of D-tagatose 3-epimerase family enzymes and endonuclease IV.

  7. Expression, crystallization and preliminary X-ray crystallographic analysis of cellobiose 2-epimerase from Dictyoglomus turgidum DSM 6724

    PubMed Central

    Pham, Tan-Viet; Hong, Seung-Hye; Hong, Myoung-ki; Ngo, Ho-Phuong-Thuy; Oh, Deok-Kun; Kang, Lin-Woo

    2013-01-01

    Cellobiose 2-epimerase epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. N-Acyl-d-glucosamine 2-epimerase (DT_epimerase) from Dictyoglomus turgidum has an unusually high catalytic activity towards its substrate cellobiose. DT_epimerase was expressed, purified and crystallized. Crystals were obtained of both His-tagged DT_epimerase and untagged DT_epimerase. The crystals of His-tagged DT_epimerase diffracted to 2.6 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 63.9, b = 85.1, c = 79.8 Å, β = 110.8°. With a Matthews coefficient V M of 2.18 Å3 Da−1, two protomers were expected to be present in the asymmetric unit with a solvent content of 43.74%. The crystals of untagged DT_epimerase diffracted to 1.85 Å resolution and belonged to the ortho­rhombic space group P212121, with unit-cell parameters a = 55.9, b = 80.0, c = 93.7 Å. One protomer in the asymmetric unit was expected, with a corresponding V M of 2.26 Å3 Da−1 and a solvent content of 45.6%. PMID:24100573

  8. Hidden Reaction: Mesophilic Cellobiose 2-Epimerases Produce Lactulose.

    PubMed

    Kuschel, Beatrice; Seitl, Ines; Glück, Claudia; Mu, Wanmeng; Jiang, Bo; Stressler, Timo; Fischer, Lutz

    2017-03-29

    Lactulose (4-O-β-d-galactopyranosyl-d-fructofuranose) is a prebiotic sugar derived from the milk sugar lactose (4-O-β-d-galactopyranosyl-d-glucopyranose). In our study we observed for the first time that known cellobiose 2-epimerases (CEs; EC 5.1.3.11) from mesophilic microorganisms were generally able to catalyze the isomerization reaction of lactose into lactulose. Commonly, CEs catalyze the C2-epimerization of d-glucose and d-mannose moieties at the reducing end of β-1,4-glycosidic-linked oligosaccharides. Thus, epilactose (4-O-β-d-galactopyranosyl-d-mannopyranose) is formed with lactose as substrate. So far, only four CEs, exclusively from thermophilic microorganisms, have been reported to additionally catalyze the isomerization reaction of lactose into lactulose. The specific isomerization activity of the seven CEs in this study ranged between 8.7 ± 0.1 and 1300 ± 37 pkat/mg. The results indicate that very likely all CEs are able to catalyze both the epimerization as well as the isomerization reaction, whereby the latter is performed at a comparatively much lower reaction rate.

  9. Comparison of Dynamics of Wildtype and V94M Human UDP-Galactose 4-Epimerase – A computational perspective on severe Epimerase-deficiency Galactosemia

    PubMed Central

    Timson, David J.; Lindert, Steffen

    2013-01-01

    UDP-galactose 4′-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr-157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosemine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia. PMID:23732289

  10. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

    PubMed

    Timson, David J; Lindert, Steffen

    2013-09-10

    UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.

  11. Terbium(III)-cholate functionalized vesicles as luminescent indicators for the enzymatic conversion of dihydroxynaphthalene diesters.

    PubMed

    Balk, Stefan; Maitra, Uday; König, Burkhard

    2014-07-25

    The phosphorescence intensity of unilamellar DOPC vesicles with embedded Tb(3+)-cholate complexes depends on the concentration of dihydroxynaphthalene (DHN) as sensitizer in solution. This was used to monitor the enzymatic conversion of DHN esters or DHN glucosides by enzymes in aqueous buffered solution.

  12. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin.

    PubMed

    Ohta, Yukari; Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji

    2017-01-20

    Enzymatic catalysis is an ecofriendly strategy for the production of high-value low-molecular-weight aromatic compounds from lignin. Although well-definable aromatic monomers have been obtained from synthetic lignin-model dimers, enzymatic-selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β-O-4-cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate-binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio-based industries, we chemically generate value-added GHP derivatives for bio-based polymers. Together with these chemical conversions for the valorization of lignin-derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in "white biotechnology" for sustainable biorefineries.

  13. Immobilization of Clostridium cellulolyticum D-psicose 3-epimerase on artificial oil bodies.

    PubMed

    Tseng, Chih-Wen; Liao, Chien-Yi; Sun, Yuanxia; Peng, Chi-Chung; Tzen, Jason T C; Guo, Rey-Ting; Liu, Je-Ruei

    2014-07-16

    The rare sugar D-psicose possesses several fundamental biological functions. D-Psicose 3-epimerase from Clostridium cellulolyticum (CC-DPEase) has considerable potential for use in D-psicose production. In this study, CC-DPEase was fused to the N terminus of oleosin, a unique structural protein of seed oil bodies and was overexpressed in Escherichia coli as a CC-DPEase-oleosin fusion protein. After reconstitution into artificial oil bodies (AOBs), refolding, purification, and immobilization of the active CC-DPEase were simultaneously accomplished. Immobilization of CC-DPEase on AOB increased the optimal temperature but decreased the optimal pH of the enzyme activity. Furthermore, the AOB-immobilized CC-DPEase had a thermal stability and a bioconversion rate similar to those of the free-form enzyme and retained >50% of its initial activity after five cycles of enzyme use. Thus, AOB-immobilized CC-DPEase has potential application in the production of d-psicose at a lower cost than the free-form enzyme.

  14. Biochemical studies on WbcA, a sugar epimerase from Yersinia enterocolitica.

    PubMed

    Salinger, Ari J; Brown, Haley A; Thoden, James B; Holden, Hazel M

    2015-10-01

    Yersinia enterocolitica is a Gram-negative bacterium that causes yersiniosis, a zoonotic disease affecting the gastrointestinal tract of humans, cattle, and pigs, among others. The lipopolysaccharide of Y. enterocolitica O:8 contains an unusual sugar, 6-deoxy-d-gulose, which requires four enzymes for its biosynthesis. Here, we describe a combined structural and functional investigation of WbcA, which catalyzes the third step in the pathway, namely an epimerization about the C-3' carbon of a CDP-linked sugar. The structure of WbcA was determined to 1.75-Å resolution, and the model was refined to an overall R-factor of 19.5%. The fold of WbcA places it into the well-defined cupin superfamily of sugar epimerases. Typically, these enzymes contain both a conserved histidine and a tyrosine residue that play key roles in catalysis. On the basis of amino acid sequence alignments, it was anticipated that the "conserved" tyrosine had been replaced with a cysteine residue in WbcA (Cys 133), and indeed this was the case. However, what was not anticipated was the fact that another tyrosine residue (Tyr 50) situated on a neighboring β-strand moved into the active site. Site-directed mutant proteins were subsequently constructed and their kinetic properties analyzed to address the roles of Cys 133 and Tyr 50 in WbcA catalysis. This study emphasizes the continuing need to experimentally verify assumptions that are based solely on bioinformatics approaches.

  15. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    PubMed

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  16. Expression of MTAP inhibits tumor-related phenotypes in HT1080 cells via a mechanism unrelated to its enzymatic function.

    PubMed

    Tang, Baiqing; Kadariya, Yuwaraj; Chen, Yibai; Slifker, Michael; Kruger, Warren D

    2014-11-11

    Methylthioadenosine Phosphorylase (MTAP) is a tumor suppressor gene that is frequently deleted in human cancers and encodes an enzyme responsible for the catabolism of the polyamine byproduct 5'deoxy-5'-methylthioadenosine (MTA). To elucidate the mechanism by which MTAP inhibits tumor formation, we have reintroduced MTAP into MTAP-deleted HT1080 fibrosarcoma cells. Expression of MTAP resulted in a variety of phenotypes, including decreased colony formation in soft-agar, decreased migration, decreased in vitro invasion, increased matrix metalloproteinase production, and reduced ability to form tumors in severe combined immunodeficiency mice. Microarray analysis showed that MTAP affected the expression of genes involved in a variety of processes, including cell adhesion, extracellular matrix interaction, and cell signaling. Treatment of MTAP-expressing cells with a potent inhibitor of MTAP's enzymatic activity (MT-DADMe-ImmA) did not result in a MTAP- phenotype. This finding suggests that MTAP's tumor suppressor function is not the same as its known enzymatic function. To confirm this, we introduced a catalytically inactive version of MTAP, D220A, into HT1080 cells and found that this mutant was fully capable of reversing the soft agar colony formation, migration, and matrix metalloproteinase phenotypes. Our results show that MTAP affects cellular phenotypes in HT1080 cells in a manner that is independent of its known enzymatic activity. Copyright © 2015 Tang et al.

  17. Expression of MTAP Inhibits Tumor-Related Phenotypes in HT1080 Cells via a Mechanism Unrelated to Its Enzymatic Function

    PubMed Central

    Tang, Baiqing; Kadariya, Yuwaraj; Chen, Yibai; Slifker, Michael; Kruger, Warren D.

    2014-01-01

    Methylthioadenosine Phosphorylase (MTAP) is a tumor suppressor gene that is frequently deleted in human cancers and encodes an enzyme responsible for the catabolism of the polyamine byproduct 5′deoxy-5′-methylthioadenosine (MTA). To elucidate the mechanism by which MTAP inhibits tumor formation, we have reintroduced MTAP into MTAP-deleted HT1080 fibrosarcoma cells. Expression of MTAP resulted in a variety of phenotypes, including decreased colony formation in soft-agar, decreased migration, decreased in vitro invasion, increased matrix metalloproteinase production, and reduced ability to form tumors in severe combined immunodeficiency mice. Microarray analysis showed that MTAP affected the expression of genes involved in a variety of processes, including cell adhesion, extracellular matrix interaction, and cell signaling. Treatment of MTAP-expressing cells with a potent inhibitor of MTAP’s enzymatic activity (MT-DADMe-ImmA) did not result in a MTAP− phenotype. This finding suggests that MTAP’s tumor suppressor function is not the same as its known enzymatic function. To confirm this, we introduced a catalytically inactive version of MTAP, D220A, into HT1080 cells and found that this mutant was fully capable of reversing the soft agar colony formation, migration, and matrix metalloproteinase phenotypes. Our results show that MTAP affects cellular phenotypes in HT1080 cells in a manner that is independent of its known enzymatic activity. PMID:25387827

  18. Purification and characterization of d-allulose 3-epimerase derived from Arthrobacter globiformis M30, a GRAS microorganism.

    PubMed

    Yoshihara, Akihide; Kozakai, Taro; Shintani, Tomoya; Matsutani, Ryo; Ohtani, Kouhei; Iida, Tetsuo; Akimitsu, Kazuya; Izumori, Ken; Gullapalli, Pushpa Kiran

    2017-02-01

    An enzyme that catalyzes C-3 epimerization between d-fructose and d-allulose was found in Arthrobacter globiformis strain M30. Arthrobacter species have long been used in the food industry and are well-known for their high degree of safety. The enzyme was purified by ion exchange and hydrophobic interaction chromatographies and characterized as a d-allulose 3-epimerase (d-AE). The molecular weight of the purified enzyme was estimated to be 128 kDa with four identical subunits. The enzyme showed maximal activity and thermostability in the presence of Mg(2+). The optimal pH and temperature for enzymatic activity were 7.0-8.0 and 70°C, respectively. The enzyme was immobilized to ion exchange resin whereupon it was stable for longer periods than the free enzyme when stored at below 10°C. In the column reaction, the enzyme activity also maintained stability for more than 4 months. Under these conditions, 215 kg of d-allulose produced per liter immobilized enzyme, and this was the highest production yield of d-allulose reported so far. These highly stable properties suggest that this enzyme represents an ideal candidate for the industrial production of d-allulose.

  19. The crystal structure of ADP-L-glycero-D-manno-heptose-6-epimerase (HP0859) from Helicobacter pylori.

    PubMed

    Shaik, Md Munan; Zanotti, Giuseppe; Cendron, Laura

    2011-12-01

    Helicobacter pylori, the human pathogen that affects about half of the world population and that is responsible for gastritis, gastric ulcer and adenocarcinoma and MALT lymphoma, owes much of the integrity of its outer membrane on lipopolysaccharides (LPSs). Together with their essential structural role, LPSs contribute to the bacterial adherence properties, as well as they are well characterized for the capability to modulate the immuno-response. In H. pylori the core oligosaccharide, one of the three main domains of LPSs, shows a peculiar structure in the branching organization of the repeating units, which displayed further variability when different strains have been compared. We present here the crystal structure of ADP-L-glycero-D-manno-heptose-6-epimerase (HP0859, rfaD), the last enzyme in the pathway that produces L-glycero-D-manno-heptose starting from sedoheptulose-7-phosphate, a crucial compound in the synthesis of the core oligosaccharide. In a recent study, a HP0859 knockout mutant has been characterized, demonstrating a severe loss of lipopolysaccharide structure and a significant reduction of adhesion levels in an infection model to AGS cells, if compared with the wild type strain, in good agreement with its enzymatic role. The crystal structure reveals that the enzyme is a homo-pentamer, and NAD is bound as a cofactor in a highly conserved pocket. The substrate-binding site of the enzyme is very similar to that of its orthologue in Escherichia coli, suggesting also a similar catalytic mechanism.

  20. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.

    PubMed

    Morinaka, Brandon I; Vagstad, Anna L; Helf, Maximilian J; Gugger, Muriel; Kegler, Carsten; Freeman, Michael F; Bode, Helge B; Piel, Jörn

    2014-08-04

    PoyD is a radical S-adenosyl methionine epimerase that introduces multiple D-configured amino acids at alternating positions into the highly complex marine peptides polytheonamide A and B. This novel post-translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse D-amino acid patterns into all-L peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering.

  1. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers.

    PubMed

    Buongiorno, Daniela; Straganz, Grit D

    2013-01-15

    Mononuclear, non-heme-Fe(II) centers are key structures in O2 metabolism and catalyze an impressive variety of enzymatic reactions. While most are bound via two histidines and a carboxylate, some show a different organization. A short overview of atypically coordinated O2 dependent mononuclear-non-heme-Fe(II) centers is presented here Enzymes with 2-His, 3-His, 3-His-carboxylate and 4-His bound Fe(II) centers are discussed with a focus on their reactivity, metal ion promiscuity and recent progress in the elucidation of their enzymatic mechanisms. Observations concerning these and classically coordinated Fe(II) centers are used to understand the impact of the metal binding motif on catalysis.

  2. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers

    PubMed Central

    Buongiorno, Daniela; Straganz, Grit D.

    2013-01-01

    Mononuclear, non-heme-Fe(II) centers are key structures in O2 metabolism and catalyze an impressive variety of enzymatic reactions. While most are bound via two histidines and a carboxylate, some show a different organization. A short overview of atypically coordinated O2 dependent mononuclear-non-heme-Fe(II) centers is presented here Enzymes with 2-His, 3-His, 3-His-carboxylate and 4-His bound Fe(II) centers are discussed with a focus on their reactivity, metal ion promiscuity and recent progress in the elucidation of their enzymatic mechanisms. Observations concerning these and classically coordinated Fe(II) centers are used to understand the impact of the metal binding motif on catalysis. PMID:24850951

  3. Tailing DNA aptamers with a functional protein by two-step enzymatic reaction.

    PubMed

    Takahara, Mari; Hayashi, Kounosuke; Goto, Masahiro; Kamiya, Noriho

    2013-12-01

    An efficient, quantitative synthetic strategy for aptamer-enzyme conjugates was developed by using a two-step enzymatic reaction. Terminal deoxynucleotidyl transferase (TdT) was used to first incorporate a Z-Gln-Gly (QG) modified nucleotide which can act as a glutamine donor for a subsequent enzymatic reaction, to the 3'-OH of a DNA aptamer. Microbial transglutaminase (MTG) then catalyzed the cross-linking between the Z-QG modified aptamers and an enzyme tagged with an MTG-reactive lysine containing peptide. The use of a Z-QG modified dideoxynucleotide (Z-QG-ddUTP) or a deoxyuridine triphosphate (Z-QG-dUTP) in the TdT reaction enables the controlled introduction of a single or multiple MTG reactive residues. This leads to the preparation of enzyme-aptamer and (enzyme)n-aptamer conjugates with different detection limits of thrombin, a model analyte, in a sandwich enzyme-linked aptamer assay (ELAA). Since the combination of two enzymatic reactions yields high site-specificity and requires only short peptide substrates, the methodology should be useful for the labeling of DNA/RNA aptamers with proteins.

  4. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin

    PubMed Central

    Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji

    2016-01-01

    Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β‐O‐4‐cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate‐binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio‐based industries, we chemically generate value‐added GHP derivatives for bio‐based polymers. Together with these chemical conversions for the valorization of lignin‐derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in “white biotechnology” for sustainable biorefineries. PMID:27878983

  5. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose.

    PubMed

    Krewinkel, Manuel; Kaiser, Jana; Merz, Michael; Rentschler, Eva; Kuschel, Beatrice; Hinrichs, Jörg; Fischer, Lutz

    2015-06-01

    A selected number of enzymes have recently been assigned to the emerging class of cellobiose 2-epimerases (CE). All CE convert lactose to the rare sugar epilactose, which is regarded as a new prebiotic. Within this study, the gene products of 2 potential CE genes originating from the mesophilic bacteria Cellulosilyticum lentocellum and Dysgonomonas gadei were recombinantly produced in Escherichia coli and purified by chromatography. The enzymes have been identified as novel CE by sequence analysis and biochemical characterizations. The biochemical characterizations included the determination of the molecular weight, the substrate spectrum, and the kinetic parameters, as well as the pH and temperature profiles in buffer and food matrices. Both identified CE epimerize cellobiose and lactose into the C2 epimerization products glucosylmannose and epilactose, respectively. The epimerization activity for lactose was maximal at pH 8.0 or 7.5 and 40°C in defined buffer systems for the CE from C. lentocellum and the CE from D. gadei, respectively. In addition, biotransformations of the foodstuff milk ultrafiltrate containing lactose were demonstrated. The CE from D. gadei was produced in a stirred-tank reactor (12 L) and purified using an automatic system. Enzyme production and purification in this scale indicates that a future upscaling of CE production is possible. The bioconversions of lactose in milk ultrafiltrate were carried out either in a batch process or in a continuously operated enzyme membrane reactor (EMR) process. Both processes ran at an industrially relevant low temperature of 8°C to reduce undesirable microbial growth. The enzyme was reasonably active at the low process temperature because the CE originated from a mesophilic organism. An epilactose yield of 29.9% was achieved in the batch process within 28 h of operation time. In the continuous EMR process, the epilactose yield in the product stream was lower, at 18.5%. However, the enzyme productivity

  6. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases.

    PubMed

    Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias

    2016-02-01

    Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible.

  7. Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp. 8437.

    PubMed

    Zhang, Wenli; Fang, Dan; Zhang, Tao; Zhou, Leon; Jiang, Bo; Mu, Wanmeng

    2013-11-27

    The rare sugar d-psicose is an ideal sucrose substitute for food products, due to having 70% of the relative sweetness but 0.3% of the energy of sucrose. It also shows important physiological functions. d-Tagatose 3-epimerase (DTEase) family enzymes can produce d-psicose from d-fructose. In this paper, a new member of the DTEase family of enzymes was characterized from Desmospora sp. 8437 (GenBank accession no. WP_009711885 ) and was named Desmospora sp. d-psicose 3-epimerase (DPEase) due to its highest substrate specificity toward d-psicose. Desmospora sp. DPEase was strictly metal-dependent and displayed maximum activity in the presence of Co(2+). The optimum pH and temperature were 7.5 and 60 °C, respectively. The enzyme was relatively thermostable below 50 °C, but easily lost initial activity when preincubated at 60 °C. The thermostability property was almost not affected by the addition of Co(2+). Desmospora sp. DPEase had relatively high catalysis efficiency for the substrates d-psicose and d-fructose, which were measured to be 327 and 116 mM(-1) min(-1), respectively. The equilibrium ratio between d-psicose and d-fructose of Desmospora sp. DPEase was 30:70. The enzyme could produce 142.5 g/L d-psicose from 500 g/L of d-fructose, suggesting that the enzyme is a potential d-psicose producer for industrial production.

  8. Molecular engineering as an approach to design new functional properties of alginate.

    PubMed

    Mørch, Y A; Donati, I; Strand, B L; Skjåk-Braek, G

    2007-09-01

    Through enzymatic modification, we are now able to manipulate the composition and sequential nanostructures of alginate, one of the most versatile gelling polymers found in nature. Here we report the application of a set of processive polymer-modifying epimerases for the preparation of novel alginates with highly improved functional properties essential for numerous applications as gel matrices. Gels of enzymatically engineered alginate were found to be more elastic and compact, less permeable, and extremely stable under physiological conditions, offering significant advantages over native alginates. As a result, this study shows that, by controlling alginate nanostructure, its macroscopic properties can be highly controlled. The ability to tailor alginate has a great impact on the wide use of this biomaterial in industry and medicine. More importantly, this adds more knowledge to the link between polymer nanostructure and macroscopic properties and may serve as a model system for other polymer-based materials.

  9. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Cellobiose 2-epimerase from the thermophile Caldicellulosiruptor saccharolyticus (CsCE) catalyzes the isomerization of lactose into lactulose, a non-digestible disaccharide widely used in food and pharmaceutical industries. Semi-rational approaches were applied to enhance the thermostability of CsCE...

  10. Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein.

    PubMed

    Clayton, Peter; Fischer, Björn; Mann, Anuska; Mansour, Sahar; Rossier, Eva; Veen, Markus; Lang, Christine; Baasanjav, Sevjidmaa; Kieslich, Moritz; Brossuleit, Katja; Gravemann, Sophia; Schnipper, Nele; Karbasyian, Mohsen; Demuth, Ilja; Zwerger, Monika; Vaya, Amparo; Utermann, Gerd; Mundlos, Stefan; Stricker, Sigmar; Sperling, Karl; Hoffmann, Katrin

    2010-01-01

    The lamin B receptor (LBR) is an inner nuclear membrane protein with a structural function interacting with chromatin and lamins, and an enzymatic function as a sterol reductase. Heterozygous LBR mutations cause nuclear hyposegmentation in neutrophils (Pelger anomaly), while homozygous mutations cause prenatal death with skeletal defects and abnormal sterol metabolism (Greenberg dysplasia). It has remained unclear whether the lethality in Greenberg dysplasia is due to cholesterol defects or altered nuclear morphology.To answer this question we characterized two LBR missense mutations and showed that they cause Greenberg dysplasia. Both mutations affect residues that are evolutionary conserved among sterol reductases. In contrast to wildtype LBR, both mutations failed to rescue C14 sterol reductase deficient yeast, indicating an enzymatic defect. We found no Pelger anomaly in the carrier parent excluding marked effects on nuclear structure. We studied Lbr in mouse embryos and demonstrate expression in skin and the developing skeletal system consistent with sites of histological changes in Greenberg dysplasia. Unexpectedly we found in disease-relevant cell types not only nuclear but also cytoplasmatic LBR localization. The cytoplasmatic LBR staining co-localized with ER-markers and is thus consistent with the sites of endogeneous sterol synthesis. We conclude that LBR missense mutations can abolish sterol reductase activity, causing lethal Greenberg dysplasia but not Pelger anomaly. The findings separate the metabolic from the structural function and indicate that the sterol reductase activity is essential for human intrauterine development.

  11. Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein

    PubMed Central

    Mann, Anuska; Mansour, Sahar; Rossier, Eva; Veen, Markus; Lang, Christine; Baasanjav, Sevjidmaa; Kieslich, Moritz; Brossuleit, Katja; Gravemann, Sophia; Schnipper, Nele; Karbasyian, Mohsen; Demuth, Ilja; Zwerger, Monika; Vaya, Amparo; Utermann, Gerd; Mundlos, Stefan; Stricker, Sigmar; Sperling, Karl

    2010-01-01

    The lamin B receptor (LBR) is an inner nuclear membrane protein with a structural function interacting with chromatin and lamins, and an enzymatic function as a sterol reductase. Heterozygous LBR mutations cause nuclear hyposegmentation in neutrophils (Pelger anomaly), while homozygous mutations cause prenatal death with skeletal defects and abnormal sterol metabolism (Greenberg dysplasia). It has remained unclear whether the lethality in Greenberg dysplasia is due to cholesterol defects or altered nuclear morphology. To answer this question we characterized two LBR missense mutations and showed that they cause Greenberg dysplasia. Both mutations affect residues that are evolutionary conserved among sterol reductases. In contrast to wildtype LBR, both mutations failed to rescue C14 sterol reductase deficient yeast, indicating an enzymatic defect. We found no Pelger anomaly in the carrier parent excluding marked effects on nuclear structure. We studied Lbr in mouse embryos and demonstrate expression in skin and the developing skeletal system consistent with sites of histological changes in Greenberg dysplasia. Unexpectedly we found in disease-relevant cell types not only nuclear but also cytoplasmatic LBR localization. The cytoplasmatic LBR staining co-localized with ER-markers and is thus consistent with the sites of endogeneous sterol synthesis. We conclude that LBR missense mutations can abolish sterol reductase activity, causing lethal Greenberg dysplasia but not Pelger anomaly. The findings separate the metabolic from the structural function and indicate that the sterol reductase activity is essential for human intrauterine development. PMID:21327084

  12. GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis.

    PubMed

    Wang, Ya-Ting; Missiakas, Dominique; Schneewind, Olaf

    2014-08-15

    Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.

  13. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase.

    PubMed

    Gonzalez-Garcia, Ricardo Axayacatl; McCubbin, Tim; Wille, Annalena; Plan, Manuel; Nielsen, Lars Keld; Marcellin, Esteban

    2017-07-17

    Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway

  14. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    PubMed

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems.

  15. Enzymatic process of rice bran: a stabilized functional food with nutraceuticals and nutrients.

    PubMed

    S Vallabha, Vishwanath; Indira, T N; Jyothi Lakshmi, A; Radha, C; Tiku, Purnima Kaul

    2015-12-01

    Rice bran (RB), a byproduct of rice milling industry, is a rich source of nutraceuticals and nutrients. However its utility is limited due to the presence of lipase and lipoxygenase which initiates rancidity on milling. The aim of this investigation is to prevent oxidation of free fatty acids by enzymatic approach for its effective utilization. The enzymatic treatment comprised of alcalase treatment for complete inactivation of lipase along with reduction in lipoxygenase (LOX) activity and endoglucanase for improving the soluble fiber content. The enzyme treated rice bran was drum dried for further use. The nutraceutical molecules like γ-oryzanol, α-tocopherol and polyphenols were retained in the range of 68 to 110 % and the total antioxidant activity was improved. By the action of endoglucanase the complex carbohydrate was converted into glucose (72.28 %), cellobiose (18.36 %) and cellotriose (9.36 %). The prebiotic effect of enzyme treated rice bran was evaluated by the action of lactobacillus which was measured through the release of the short chain free fatty acids (SCFAs) analyzed by HPLC. The SCFAs; acetic acid and propionic acid increased by 1.72 folds and 2.12 folds respectively. B-complex vitamins showed maximum retention with vitamins like B1 (66.3 %), B2 (68.3 %) and B3 (55.0 %) after enzyme treatment. At different humidity levels, storage studies showed no change in LOX activity and also retained ubiquinol-10 in reduced state in enzyme treated RB for a period of 3 months. A stabilized RB has been developed enriched with short chain prebiotics and antioxidant molecules.

  16. Biochemical studies on WbcA, a sugar epimerase from Yersinia enterocolitica

    PubMed Central

    Salinger, Ari J; Brown, Haley A; Thoden, James B; Holden, Hazel M

    2015-01-01

    Yersinia enterocolitica is a Gram-negative bacterium that causes yersiniosis, a zoonotic disease affecting the gastrointestinal tract of humans, cattle, and pigs, among others. The lipopolysaccharide of Y. enterocolitica O:8 contains an unusual sugar, 6-deoxy-d-gulose, which requires four enzymes for its biosynthesis. Here, we describe a combined structural and functional investigation of WbcA, which catalyzes the third step in the pathway, namely an epimerization about the C-3′ carbon of a CDP-linked sugar. The structure of WbcA was determined to 1.75-Å resolution, and the model was refined to an overall R-factor of 19.5%. The fold of WbcA places it into the well-defined cupin superfamily of sugar epimerases. Typically, these enzymes contain both a conserved histidine and a tyrosine residue that play key roles in catalysis. On the basis of amino acid sequence alignments, it was anticipated that the “conserved” tyrosine had been replaced with a cysteine residue in WbcA (Cys 133), and indeed this was the case. However, what was not anticipated was the fact that another tyrosine residue (Tyr 50) situated on a neighboring β-strand moved into the active site. Site-directed mutant proteins were subsequently constructed and their kinetic properties analyzed to address the roles of Cys 133 and Tyr 50 in WbcA catalysis. This study emphasizes the continuing need to experimentally verify assumptions that are based solely on bioinformatics approaches. PMID:26174084

  17. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    SciTech Connect

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-02-01

    Recombinant d-tagatose 3-epimerase from P. cichorii was purified and crystallized. Diffraction data were collected to 2.5 Å resolution. d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-psicose has not been reported with epimerases other than P. cichorii D-TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules.

  18. Inert and oxidative subcritical water hydrolysis of insoluble egg yolk granular protein, functional properties, and comparison to enzymatic hydrolysis.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2014-08-13

    The use of enzymes to recover soluble peptides with functional properties from insoluble proteins could prove to be very expensive, implying high reaction times and low yields. In this study, the insoluble granular protein, previously delipidated, was hydrolyzed using enzymes (trypsin) as a comparison to the proposed alternative method: subcritical water hydrolysis (SWH) using both nitrogen and oxygen streams. The result of the hydrolysis was characterized in terms of the yield and peptide size distribution as well as different functional properties. The SWH of the delipidated granules resulted in a higher recovery yield than that obtained by enzymatic hydrolysis in half of the time. The foaming capacity of the peptides obtained by SWH was higher than that obtained by trypsin hydrolysis, although the foam stability was lower. Slight differences were detected between these peptides in terms of their emulsifying properties.

  19. Enzymatic production of lactulose and 1-lactulose: current state and perspectives.

    PubMed

    Wang, He; Yang, Ruijin; Hua, Xiao; Zhao, Wei; Zhang, Wenbin

    2013-07-01

    Lactulose, a synthetic ketose disaccharide, has been widely used in food and pharmaceutical industries as prebiotic food additives and drugs against constipation and hepatic encephalopathy. Lactulose has, so far, been produced chemically using lactose on a commercial scale. The key problems associated with such chemical process are the cost of removal of the catalyst and colored by-products and the product safety. Enzymatic production of lactulose is safe, environment-friendly, and simpler in comparison to the chemical method. As a promising alternative to the chemical method, enzymatic conversion of lactose into lactulose by β-galactosidase or cellobiose 2-epimerase has recently gained a great deal of attention. This could be considered as a possible route for whey surplus because lactose is the major component of cheese whey. Herein, we summarize recent advances on the enzymatic synthesis of lactulose with emphasis on the selectivity of biocatalysts and their catalytic efficiency in free and immobilized forms. The production of 1-lactulose by enzymatic bioconversion of lactose has also been discussed. Furthermore, future research needs of β-galactosidase and cellobiose 2-epimerase for the enzymatic synthesis of lactulose and 1-lactulose are reviewed.

  20. Composition and extracellular enzymatic function of pelagic, particle-associated, and benthic bacterial communities in the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Balmonte, J. P.; Teske, A.; Arnosti, C.

    2016-02-01

    The structure and function of Arctic bacterial communities have rarely been studied in concert, but are crucial to our understanding of biogeochemical cycles. As the Arctic transitions to become seasonally-ice free, a critical priority is to elucidate the present ecological role and environmental dependence of Arctic bacterial communities. We investigated the depth and regional variations in Central Arctic bacterial community composition (BCC) and extracellular enzymatic activities (EEA)—the initial step in organic matter breakdown—to explore links between community structure and function. Samples were collected across a gradient of sea-ice cover (open ocean, first year ice, multi-year ice) from 79°N to 88°N and from surface to bottom waters ( 3.5 to 4.5 km). Pelagic BCC most strongly varies with hydrography and with particle-association, which likely selects for a specialized community of heterotrophic opportunists; benthic BCC show little regional variation. In contrast, EEA reveal significant depth and regional differences in hydrolysis rates as well as in the spectrum of substrates hydrolyzed. Particle-associated EEA reveal an equal or greater range of enzymatic capabilities than in bulk-seawater measurements, supporting previous findings that particles are hotspots of microbial heterotrophic activity. These patterns suggest a complex relationship between BCC, EEA, and the environment: while water mass characteristics consistently differentiate bacterial communities, additional local factors shape their capabilities to hydrolyze organic matter. Multivariate analyses will be used to further explore the relationships between composition and function as well as their correlations with environmental data. Our findings provide a baseline for future comparisons and initial insight into the functionality and biogeography of Arctic bacterial communities.

  1. A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes.

    PubMed

    Chen, Xiao-mei; Cai, Zhi-min; Lin, Zhi-jie; Jia, Tian-tian; Liu, Hai-zhu; Jiang, Ya-qi; Chen, Xi

    2009-08-15

    A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)-functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs-FCNTs-Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH(-)), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 micromol L(-1) (r(2)=0.9974) with a detection limit (S/N=3) of 0.09 micromol L(-1). In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor.

  2. Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification

    PubMed Central

    West, Nicholas P.; Chow, Frances M. E.; Randall, Elizabeth J.; Wu, Jing; Chen, Jian; Ribeiro, Jose M. C.; Britton, Warwick J.

    2009-01-01

    Discovery and characterization of novel secreted enzymes of Mycobacterium tuberculosis are important for understanding the pathogenesis of one of the most important human bacterial pathogens. The proteome of M. tuberculosis contains over 400 potentially secreted proteins, the majority of which are uncharacterized. A family of seven cutinase-like proteins (CULPs) was identified by bioinformatic analysis, expressed and purified from Escherichia coli, and characterized in terms of their enzymatic activities. These studies revealed a functional diversity of enzyme classes based on differential preferences for substrate chain length. One member, Culp1, exhibited strong esterase activity, 40-fold higher than that of Culp6, which had strong activity as a lipase. Another, Culp4, performed moderately as an esterase and weakly as a lipase. Culp6 lipase activity was optimal above pH 7.0, and fully maintained to pH 8.5. None of the CULP members exhibited cutinase activity. Site-directed mutagenesis of each residue of the putative catalytic triad in Culp6 confirmed that each was essential for activity toward all fatty acid chain lengths of nitrophenyl esters and lipolytic function. Culp1 and Culp2 were present only in culture supernatants of M. tuberculosis, while Culp6, which is putatively essential for mycobacterial growth, was retained in the cell wall, suggesting the proteins play distinct roles in mycobacterial biology.—West, N. P., Chow, F. M. E., Randall, E. J., Wu, J., Chen, J., Ribeiro, J. M. C., Britton, W. J. Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. PMID:19225166

  3. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties

    PubMed Central

    Ribeiro, Miguel; Nunes, Fernando M.; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M.; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-01-01

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten. PMID:26691232

  4. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties.

    PubMed

    Ribeiro, Miguel; Nunes, Fernando M; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-12-22

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.

  5. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control

    PubMed Central

    Huang, Zhi; Shiva, Sruti; Kim-Shapiro, Daniel B.; Patel, Rakesh P.; Ringwood, Lorna A.; Irby, Cynthia E.; Huang, Kris T.; Ho, Chien; Hogg, Neil; Schechter, Alan N.; Gladwin, Mark T.

    2005-01-01

    Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation remain uncertain. In support of a possible role for hemoglobin (Hb) as a sensor and effector of hypoxic vasodilation, here we show biochemical evidence that Hb exhibits enzymatic behavior as a nitrite reductase, with maximal NO generation rates occurring near the oxy-to-deoxy (R-to-T) allosteric structural transition of the protein. The observed rate of nitrite reduction by Hb deviates from second-order kinetics, and sigmoidal reaction progress is determined by a balance between 2 opposing chemistries of the heme in the R (oxygenated conformation) and T (deoxygenated conformation) allosteric quaternary structures of the Hb tetramer — the greater reductive potential of deoxyheme in the R state tetramer and the number of unligated deoxyheme sites necessary for nitrite binding, which are more plentiful in the T state tetramer. These opposing chemistries result in a maximal nitrite reduction rate when Hb is 40–60% saturated with oxygen (near the Hb P50), an apparent ideal set point for hypoxia-responsive NO generation. These data suggest that the oxygen sensor for hypoxic vasodilation is determined by Hb oxygen saturation and quaternary structure and that the nitrite reductase activity of Hb generates NO gas under allosteric and pH control. PMID:16041407

  6. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    PubMed

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study.

    PubMed

    Donelli, Ilaria; Taddei, Paola; Smet, Philippe F; Poelman, Dirk; Nierstrasz, Vincent A; Freddi, Giuliano

    2009-08-01

    The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after-treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR-ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm(-1) and 1,120/1,100 cm(-1)) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2-(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP-modified PET acquired a more crystalline character.

  8. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications.

    PubMed

    Van Overtveldt, Stevie; Verhaeghe, Tom; Joosten, Henk-Jan; van den Bergh, Tom; Beerens, Koen; Desmet, Tom

    2015-12-01

    In recent years, carbohydrate epimerases have attracted a lot of attention as efficient biocatalysts that can convert abundant sugars (e.g.d-fructose) directly into rare counterparts (e.g.d-psicose). Despite increased research activities, no review about these enzymes has been published in more than a decade, meaning that their full potential is hard to appreciate. Here, we present an overview of all known carbohydrate epimerases based on a classification in structural families, which links every substrate specificity to a well-defined reaction mechanism. The mechanism can even be predicted for enzymes that have not yet been characterized or that lack structural information. In this review, the different families are discussed in detail, both structurally and mechanistically, with special reference to recent examples in the literature. Furthermore, the value of understanding the reaction mechanism will be illustrated by making the link to possible application and engineering targets.

  9. Site-directed mutagenesis of possible catalytic residues of cellobiose 2-epimerase from Ruminococcus albus.

    PubMed

    Ito, Shigeaki; Hamada, Shigeki; Ito, Hiroyuki; Matsui, Hirokazu; Ozawa, Tadahiro; Taguchi, Hidenori; Ito, Susumu

    2009-07-01

    The cellobiose 2-epimerase from Ruminococcus albus (RaCE) catalyzes the epimerization of cellobiose and lactose to 4-O-beta-D-glucopyranosyl-D-mannose and 4-O-beta-D-galactopyranosyl-D-mannose (epilactose). Based on the sequence alignment with N-acetyl-D-glucosamine 2-epimerases of known structure and on a homology-modeled structure of RaCE, we performed site-directed mutagenesis of possible catalytic residues in the enzyme, and the mutants were expressed in Escherichia coli cells. We found that R52, H243, E246, W249, W304, E308, and H374 were absolutely required for the activity of RaCE. F114 and W303 also contributed to catalysis. These residues protruded into the active-site cleft in the model (alpha/alpha)(6) core barrel structure.

  10. Practical preparation of epilactose produced with cellobiose 2-epimerase from Ruminococcus albus NE1.

    PubMed

    Saburi, Wataru; Yamamoto, Takeshi; Taguchi, Hidenori; Hamada, Shigeki; Matsui, Hirokazu

    2010-01-01

    A practical purification method for a non-digestible disaccharide, epilactose (4-O-beta-galactosyl-D-mannose), was established. Epilactose was synthesized from lactose with cellobiose 2-epimerase and purified by the following procedure: (i) removal of lactose by crystallization, (ii) hydrolysis of lactose by beta-galactosidase, (iii) digestion of monosaccharides by yeast, and (iv) column chromatography with Na-form cation exchange resin. Epilactose of 91.1% purity was recovered at 42.5% yield.

  11. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    SciTech Connect

    Flentke, G.R.; Frey, P.A. )

    1990-03-06

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5{prime}-diphosphate chloroacetol (UDC) and uridine 5{prime}-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K{sub D} of 0.110 mM and k{sub inact} of 0.84 min{sup {minus}1} at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD{sup +}. The inactivation of epimerase by uridine 5{prime}-diphosphate ({sup 2}H{sub 2})chloroacetol proceeds with a primary kinetic isotope effect (k{sub H}/k{sub D}) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD{sup +} at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD{sup +} is proposed to be the chromophore with {lambda}{sub max} at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.

  12. Elucidation of Substrate Specificity in Aspergillus nidulans UDP-Galactose-4-Epimerase

    PubMed Central

    Dalrymple, Sean A.; Ko, John; Sheoran, Inder; Kaminskyj, Susan G. W.; Sanders, David A. R.

    2013-01-01

    The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results. PMID:24116166

  13. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes.

    PubMed

    Kim, Kwangsoo; Kim, Hye-Jung; Oh, Deok-Kun; Cha, Sun-Shin; Rhee, Sangkee

    2006-09-01

    D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.

  14. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Tate, Shin-Ichi; Gekko, Kunihiko; Kitazawa, Soichiro; Kitahara, Ryo; Kuwajima, Kunihiro

    2013-12-01

    To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme. © 2013.

  15. The Enzymatic Activity of Drosophila AWD/NDP Kinase Is Necessary but Not Sufficient for Its Biological Function

    PubMed

    Xu; Liu; Deng; Timmons; Hersperger; Steeg; Veron; Shearn

    1996-08-01

    The Drosophila abnormal wing discs (awd) gene encodes the subunit of a protein that has nucleoside diphosphate kinase (NDP kinase) activity. Null mutations of the awd gene cause lethality after puparium formation. Larvae homozygous for such mutations have small imaginal discs, lymph glands, and brain lobes. Neither the imaginal discs nor the ovaries from such null mutant larvae are capable of further growth or normal differentiation when transplanted into suitable host larvae. This null mutant phenotype can be entirely rescued by one copy of a transgene that has 750 bp of awd upstream regulatory DNA fused to a full-length awd cDNA. Tissue-specific expression of AWD protein from this rescue transgene is identical to tissue-specific expression of beta-galactosidase from a reporter transgene that has the same regulatory region fused to the bacterial lac Z gene. However, this rescue transgene or reporter transgene expression pattern is only a subset of the endogenous pattern of expression detected by either in situ hybridization or immunohistochemistry. This suggests that awd is normally expressed in some tissues where it is not required. The null mutant phenotype cannot be rescued at all by a transgene that has 750 bp of awd upstream regulatory DNA fused to a full-length awd cDNA with a mutation that eliminates NDP kinase activity by replacement of the active site histidine with alanine. This suggests that the enzymatic activity of the AWD protein is necessary for its biological function. The human genes nm23-H1 and nm23-H2 encode NDP kinase A and B subunits, respectively. The protein subunit encoded by either human nm23 gene is 78% identical to that encoded by the Drosophila awd gene. Transgenes that have the 750-bp awd upstream regulatory DNA fused to human nm23-H2 cDNA but not to nm23-H1 cDNA can rescue the imaginal disc phenotype and the zygotic lethality caused by homozygosis for an awd null mutation as efficiently as an awd transgene. However, rescue of female

  16. Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose 4-epimerase mutant of Neisseria meningitidis NMB.

    PubMed Central

    Lee, F K; Stephens, D S; Gibson, B W; Engstrom, J J; Zhou, D; Apicella, M A

    1995-01-01

    Neisseria meningitidis is the etiologic agent of epidemic bacterial meningitis. Lipooligosaccharide (LOS) is a principal virulence factor associated with the organism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of LOS has demonstrated that there is considerable microheterogeneity in the molecule. To begin our understanding of the nature of this heterogeneity, we identified a Tn916-generated LOS mutant of N. meningitidis NMB (serotype L3, monoclonal antibodies 3F11+, 6B4+, and 4C4-) that was designated NMB-SS3 (monoclonal antibodies 3F11-, 6B4-, and 4C4+). The transposon insertion was localized to the amino terminus of the functional copy of the UDP-Glc 4-epimerase gene (galE). UDP-Glc 4-epimerase (EC 5.1.3.2) activity was present in N. meningitidis NMB but not in NMB-SS3, indicating that the Tn916 insertion had abolished this activity. Mass spectrometric analysis of the LOS from strain NMB revealed multiple species of LOS, which is consistent with extensive microheterogeneity. While the most predominant structure was consistent with a terminal lacto-N-neotetrose structure found in other strains of N. meningitidis, Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-->(GlcNAc)-->Hep2PEA-->KDO2 (where Hep is heptose, PEA is phosphoethanolamine, and KDO is 2-keto-3-deoxymannooctulosonic acid), structures containing repetitive hexoses which are not precursors of this structure were also identified. Compositional analysis of LOS from strain NMB-SS3 revealed that there were no galactoses present in the structure. Mass spectrometric analysis of O-deacylated LOS revealed the presence of multiple species, with the predominant LOS species in this mutant strain formed by the Hex-->(HexNAc)-->Hep2PEA-->KDO2 (where Hex is hexose and HexNAc is N-acetylhexosamine) structure. However, LOS structures with repetitive hexoses, e.g., Hexn-->(HexNAc)-->Hep2PEA-->KDO2 (n = 2, 3, or 4), emanating from one or both heptoses were also identified. Since this mutant

  17. Crystal Structure of Human Senescence Marker Protein 30; Insights Linking Structural, Enzymatic and Physiological Functions †,‡

    PubMed Central

    Chakraborti, Subhendu; Bahnson, Brian J.

    2010-01-01

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in non-primate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 Å. The protein has a 6-bladed β-propeller fold and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca2+ or a Zn2+ atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a kcat preference of divalent cations in the order Zn2+ > Mn2+ > Ca2+ > Mg2+. Notably, the Ca2+ had a significantly higher value of Kd compared to the other metal ions tested (566, 82, 7 and 0.6 µm for Ca2+, Mg2+, Zn2+ and Mn2+, respectively), suggesting the Ca2+-bound form may be physiologically relevant for stressed cells with an elevated free calcium level. PMID:20329768

  18. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison

    PubMed Central

    D'Ambrosio, Lindsay; Ziervogel, Kai; MacGregor, Barbara; Teske, Andreas; Arnosti, Carol

    2014-01-01

    We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates. PMID:24763371

  19. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison.

    PubMed

    D'Ambrosio, Lindsay; Ziervogel, Kai; MacGregor, Barbara; Teske, Andreas; Arnosti, Carol

    2014-11-01

    We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.

  20. 6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.

    PubMed

    Le, Simone Balzer; Heggeset, Tonje Marita Bjerkan; Haugen, Tone; Nærdal, Ingemar; Brautaset, Trygve

    2017-02-17

    D-Ribulose-5-phosphate-3-epimerase (RPE) and 6-phosphofructokinase (PFK) catalyse two reactions in the ribulose monophosphate (RuMP) cycle in Bacillus methanolicus. The B. methanolicus wild-type strain MGA3 possesses two putative rpe and pfk genes encoded on plasmid pBM19 (rpe1-MGA3 and pfk1-MGA3) and on the chromosome (rpe2-MGA3 and pfk2-MGA3). The wild-type strain PB1 also encodes putative rpe and pfk genes on plasmid pBM20 (rpe1-PB1 and pfk1-PB1*); however, it only harbours a chromosomal pfk gene (pfk2-PB1). Transcription of the plasmid-encoded genes was 10-fold to 15-fold upregulated in cells growing on methanol compared to mannitol, while the chromosomal genes were transcribed at similar levels under both conditions in both strains. All seven gene products were recombinantly produced in Escherichia coli, purified and biochemically characterized. All three RPEs were active as hexamers, catalytically stimulated by Mg(2+) and Mn(2+) and displayed similar K' values (56-75 μM) for ribulose 5-phosphate. Rpe2-MGA3 showed displayed 2-fold lower V max (49 U/mg) and a significantly reduced thermostability compared to the two Rpe1 proteins. Pfk1-PB1* was shown to be non-functional. The PFKs were active both as octamers and as tetramers, were catalytically stimulated by Mg(2+) and Mn(2+), and displayed similar thermostabilities. The PFKs have similar K m values for fructose 6-phosphate (0.61-0.94 μM) and for ATP (0.38-0.82 μM), while Pfk1-MGA3 had a 2-fold lower V max (6.3 U/mg) compared to the two Pfk2 proteins. Our results demonstrate that MGA3 and PB1 exert alternative solutions to plasmid-dependent methylotrophy, including genetic organization, regulation, and biochemistry of RuMP cycle enzymes.

  1. From metagenomic gene discovery to enzymatic breakdown of crosslinks in agricultural fibers for functional products

    USDA-ARS?s Scientific Manuscript database

    From the rumen microflora, more than twenty novel genes involved in the hydrolysis of glucuronoarabinoxylans have been discovered and isolated. The specific genes functioning in the breakdown of crosslinkages have been cloned and expressed in E. coli, and the active enzymes purified and extensively ...

  2. Structure of a D-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima.

    PubMed

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-03-01

    The crystal structure of a D-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 A. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of D-tagatose 3-epimerase from Pseudomonas cichorii and D-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an alpha-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other D-tagatose 3-epimerase family enzymes.

  3. Structure of a d-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima

    PubMed Central

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-01-01

    The crystal structure of a d-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 Å. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of d-tagatose 3-­epimerase from Pseudomonas cichorii and d-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an α-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other d-tagatose 3-­epimerase family enzymes. PMID:19255464

  4. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications.

  5. Fold Conservation and Proteolysis in Zebrafish IRBP Structure: Clues to Possible Enzymatic Function?

    PubMed Central

    Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico

    2016-01-01

    Multiple functions for Interphotoreceptor Retinoid-Binding Protein (IRBP) may explain its localization in the retina, vitreous and pineal gland and association with retinitis pigmentosa and myopia. We have been engaged in uncovering the structure-function relationships of this interesting protein long thought to bind visual-cycle retinoids and fatty acids in the subretinal space. Although hydrophobic domains capable of binding such ligands have now been found, we ask what other structural domains might be present that could predict new functions? Interestingly, IRBP possesses a fold similar to C-terminal processing proteases (CTPases) but is missing the PDZ domain. Here we present structural evidence that this fold may have a role in a recently observed autoproteolytic activity of the two-module zebrafish (z) IRBP (Ghosh et al. Exp. Eye Res., 2015). When the structure of Scenedesmus obliquus D1 CTPase (D1P) is superimposed with the first module of zIRBP (z1), the PDZ domain of D1P occupies roughly the same position in the amino acid sequence as the inter-domain tether in z1, between residues P71 and P85. The catalytic triad K397, S372 and E375 of D1P is located at the inter-domain interfacial cleft, similarly as the tetrad K241, S243, D177 and T179 of z1 residues, presumed to have proteolytic function. Packing of two adjacent symmetry-related molecules within the z1 crystal show that the helix α8 penetrates the interfacial cleft underneath the inter-domain tether, forming a simple intermolecular “knot”. The full-length zIRBP is cleaved at or immediately after T309, which is located at the end of α8 and is the ninth residue of the second module z2. We propose that the helix α8 within intact zIRBP bends at P301, away from the improbable knotted fold, and positions the cleavage site T309 near the putative catalytic tetrad of the neighboring zIRBP to be proteolytically cleaved. The conservation of this functional catalytic domain suggests that possible

  6. Fold conservation and proteolysis in zebrafish IRBP structure: Clues to possible enzymatic function?

    PubMed

    Ghosh, Debashis; Haswell, Karen M; Sprada, Molly; Gonzalez-Fernandez, Federico

    2016-06-01

    Multiple functions for Interphotoreceptor Retinoid-Binding Protein (IRBP) may explain its localization in the retina, vitreous and pineal gland and association with retinitis pigmentosa and myopia. We have been engaged in uncovering the structure-function relationships of this interesting protein long thought to bind visual-cycle retinoids and fatty acids in the subretinal space. Although hydrophobic domains capable of binding such ligands have now been found, we ask what other structural domains might be present that could predict new functions? Interestingly, IRBP possesses a fold similar to C-terminal processing proteases (CTPases) but is missing the PDZ domain. Here we present structural evidence that this fold may have a role in a recently observed autoproteolytic activity of the two-module zebrafish (z) IRBP (Ghosh et al. Exp. Eye Res., 2015). When the structure of Scenedesmus obliquus D1 CTPase (D1P) is superimposed with the first module of zIRBP (z1), the PDZ domain of D1P occupies roughly the same position in the amino acid sequence as the inter-domain tether in z1, between residues P71 and P85. The catalytic triad K397, S372 and E375 of D1P is located at the inter-domain interfacial cleft, similarly as the tetrad K241, S243, D177 and T179 of z1 residues, presumed to have proteolytic function. Packing of two adjacent symmetry-related molecules within the z1 crystal show that the helix α8 penetrates the interfacial cleft underneath the inter-domain tether, forming a simple intermolecular "knot". The full-length zIRBP is cleaved at or immediately after T309, which is located at the end of α8 and is the ninth residue of the second module z2. We propose that the helix α8 within intact zIRBP bends at P301, away from the improbable knotted fold, and positions the cleavage site T309 near the putative catalytic tetrad of the neighboring zIRBP to be proteolytically cleaved. The conservation of this functional catalytic domain suggests that possible

  7. Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Jo, C; Suh, J W; Ahn, D U

    2015-09-01

    Ovomucoid is well known as a "trypsin inhibitor" and is considered to be the main food allergen in egg. However, the negative functions of ovomucoid can be eliminated if the protein is cut into small peptides. The objectives of this study were to hydrolyze ovomucoid using various enzyme combinations, and compare the functional properties of the hydrolysates. Purified ovomucoid was dissolved in distilled water (20 mg/mL) and treated with 1% of pepsin, α-chymotrypsin, papain, and alcalase, singly or in combinations. Sodium sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) results of the hydrolysates indicated that pepsin (OMP), alcalase (OMAl), alcalase+trypsin (OMAlTr), and alcalase+papain (OMAlPa) treatments best hydrolyzed the ovomucoid, and the 4 treatments were selected to determine their functional characteristics. Among the 4 enzyme treatments, hydrolysate from OMAlTr showed the highest iron-chelating and antioxidant activities, while OMP showed higher ACE-inhibitory activity, but lower Fe-chelating activity than the other treatments. However, no difference in the copper-chelating activity among the treatments was found. MS/MS analysis identified numerous peptides from the hydrolysates of OMAlPa and OMAlTr, and majority of the peptides produced were <2 kDa. Pepsin treatment (OMP), however, hydrolyzed ovomucoid almost completely and produced only amino acid monomers, di- and tri-peptides. The ACE-inhibitory, antioxidant and iron-chelating activities of the enzyme hydrolysates were not consistent with the number and size of peptides in the hydrolysates, but we do not have information about the quantity of each peptide present in the hydrolysates at this point.

  8. Optimized enzymatic dual functions of PaPrx protein by proton irradiation

    PubMed Central

    Park, Chul-Hong; Lee, Seung Sik; Kim, Kye Ryung; Jung, Myung Hwan; Lee, Sang Yeol; Cho, Eun Ju; Singh, Sudhir; Chung, Byung Yeoup

    2014-01-01

    We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) complexes and fragmentation. Size-exclusion chromatography (SEC) analysis revealed that the number of fragments and very low molecular weight (LMW) structures increased as the proton irradiation dose increased. The peroxidase activity of irradiated PaPrx was preserved, and its chaperone activity was significantly increased by increasing the proton irradiation dose. The chaperone activity increased about 3–4 fold after 2.5 kGy proton irradiation, compared with that of non-irradiated PaPrx, and increased to almost the maximum activity after 10 kGy proton irradiation. We previously obtained functional switching in PaPrx proteins, by using gamma rays and electron beams as radiation sources, and found that the proteins exhibited increased chaperone activity but decreased peroxidase activity. Interestingly, in this study we newly found that proton irradiation could enhance both peroxidase and chaperone activities. Therefore, we can suggest proton irradiation as a novel protocol for conserved 2-Cys protein engineering. PMID:23753570

  9. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    PubMed

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  10. Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality.

    PubMed

    Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo

    2015-12-01

    In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60°C, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50°C and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.

  11. Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

    PubMed Central

    Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo

    2015-01-01

    In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60°C, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50°C and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability. PMID:26770916

  12. Valorisation of tuna processing waste biomass for recovery of functional and antioxidant peptides using enzymatic hydrolysis and membrane fractionation process.

    PubMed

    Saidi, Sami; Ben Amar, Raja

    2016-10-01

    The enzymatic hydrolysis using Prolyve BS coupled to membrane process (Ultrafiltration (UF) and nanofiltration (NF)) is a means of biotransformation of tuna protein waste to Tuna protein hydrolysate (TPH) with higher added values. This method could be an effective solution for the production of bioactive compounds used in various biotechnological applications and minimizing the pollution problems generated by the seafood processing industries. The amino acid composition, functional and antioxidant properties of produced TPH were evaluated. The results show that the glutamic acid, aspartic acid, glycine, alaline, valine and leucine were the major amino acids detected in the TPH profile. After membrane fractionation process, those major amino acids were concentrated in the NF retentate (NFR). The NFR and NF permeate (NFP) have a higher protein solubility (>95 %) when compared to TPH (80 %). Higher oil and water binding capacity were observed in TPH and higher emulsifying and foam stability was found in UF retentate. The NFP showed the highest DPPH radical scavenging activity (65 %). The NFR contained antioxidant amino acid (30.3 %) showed the highest superoxide radical and reducing power activities. The TPH showed the highest iron chelating activity (75 %) compared to other peptide fractions. The effect of the membrane fractionation on the molecular weight distribution of the peptide and their bioactivities was underlined. We concluded that the TPH is a valuable source of bioactive peptides and their peptide fractions may serve as useful ingredients for application in food industry and formulation of nutritional products.

  13. Structural basis for redox sensitivity in Corynebacterium glutamicum diaminopimelate epimerase: an enzyme involved in l-lysine biosynthesis

    PubMed Central

    Sagong, Hye-Young; Kim, Kyung-Jin

    2017-01-01

    Diaminopimelate epimerase (DapF) is one of the crucial enzymes involved in l-lysine biosynthesis, where it converts l,l-diaminopimelate (l,l-DAP) into d,l-DAP. DapF is also considered as an attractive target for the development of antibacterial drugs. Here, we report the crystal structure of DapF from Corynebacterium glutamicum (CgDapF). Structures of CgDapF obtained under both oxidized and reduced conditions reveal that the function of CgDapF is regulated by redox-switch modulation via reversible disulfide bond formation between two catalytic cysteine residues. Under oxidized condition, two catalytic cysteine residues form a disulfide bond; these same cysteine residues exist in reduced form under reduced condition. Disulfide bond formation also induces a subsequent structural change in the dynamic catalytic loop at the active site, which results in open/closed conformational change at the active site. We also determined the crystal structure of CgDapF in complex with its product d,l-DAP, and elucidated how the enzyme recognizes its substrate l,l-DAP as a substrate. Moreover, the structure in complex with the d,l-DAP product reveals that CgDapF undergoes a large open/closed domain movement upon substrate binding, resulting in a completely buried active site with the substrate bound. PMID:28176858

  14. Enzymatic characterization and functional groups of polyphenol oxidase from the pupae of blowfly (Sarcophaga bullata).

    PubMed

    Wang, Qin; Chen, Qing-Xi; Huang, Xiao-Hong; Ke, Li-Na; Shi, Yan; Wang, Jun

    2004-08-01

    Polyphenol oxidase (EC 1.14.18.1) was purified from the pupae of blowfly (Sarcophaga bullata) by a procedure involving ammonium sulfate fractionation and chromatography on DEAE-cellulose and Sephadex G-100. Kinetic characteristics of the enzyme were determined using L-DOPA as substrate. The specific activity of the enzyme was 770 U/mg, and the Michaelis constant (Km) was 1.5 +/- 0.1 mM (pH 6.8, 30 degrees C). Activity was maximal at 40 degrees C, pH 6.5. Chemical modification experiments demonstrated that cysteine and tryptophan residues are essential and arginine residues are not essential to the enzyme function. The enzyme is inhibited by quercetin with an IC50 of 0.20 +/- 0.06 mM. The inhibition is of competitive type, and the inhibition constant was determined to be 88 micro M.

  15. Probing Mechanisms for Enzymatic Activity Enhancement of Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Chen, Baowei; Lei, Chenghong; Shin, Yongsoon; Liu, Jun

    2009-12-25

    We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC - as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased a-helix/b-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.

  16. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    PubMed Central

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-01-01

    d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-­psicose has not been reported with epimerases other than P. cichorii D-­TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P21, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules. PMID:17277456

  17. Purification, crystallization and preliminary X-ray diffraction studies of D-tagatose 3-epimerase from Pseudomonas cichorii.

    PubMed

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-02-01

    D-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of D-psicose has not been reported with epimerases other than P. cichorii D-TE and D-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 A, beta = 102.82 degrees . Diffraction data were collected to 2.5 A resolution. The asymmetric unit is expected to contain four molecules.

  18. Enzymatic synthesis of catechol and hydroxyl-carboxic acid functionalized chitosan microspheres for iron overload therapy.

    PubMed

    Brzonova, Ivana; Steiner, Walter; Zankel, Armin; Nyanhongo, Gibson S; Guebitz, Georg M

    2011-10-01

    Excess "free" iron which occurs under certain physiological conditions participates in the formation of toxic reactive oxygen species via the "fenton" chemistry. The reactive oxygen species oxidize biomolecules and have been implicated in many oxidative stress-related diseases. However, the ideal therapy for treating iron overload problems in humans has not yet been developed. In this study, the phenolic molecules catechol, caffeic acid, and 2,5-dihydroxybenzoic acid were successfully coupled to glucosamine as model substrate in a 1:1 ratio using laccase. Furthermore, coupling of these molecules onto chitosans of different sizes was demonstrated, resulting in decrease in -NH(2) groups as quantified via derivatization. A concomitant increase in iron-chelating capacity from below 3% to up to 70% upon phenolic functionalization was measured for the chitosans based on reduced ferrozine/Fe(2+) complex formation. Interesting these phenolic compounds seems to also participate as cross-linkers in producing characteristic microspheres. This work therefore opens-up new strategies aimed at developing a new generation of iron-chelating biomedical polymers.

  19. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications.

    PubMed

    Nazaruk, E; Sadowska, K; Biernat, J F; Rogalski, J; Ginalska, G; Bilewicz, R

    2010-10-01

    Nanostructured bioelectrodes were designed and assembled into a biofuel cell with no separating membrane. The glassy carbon electrodes were modified with mediator-functionalized carbon nanotubes. Ferrocene (Fc) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) bound chemically to the carbon nanotubes were found useful as mediators of the enzyme catalyzed electrode processes. Glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139 were incorporated in a liquid-crystalline matrix-monoolein cubic phase. The carbon nanotubes-nanostructured electrode surface was covered with the cubic phase film containing the enzyme and acted as the catalytic surface for the oxidation of glucose and reduction of oxygen. Thanks to the mediating role of derivatized nanotubes the catalysis was almost ten times more efficient than on the GCE electrodes: catalytic current of glucose oxidation was 1 mA cm(-2) and oxygen reduction current exceeded 0.6 mA cm(-2). The open circuit voltage of the biofuel cell was 0.43 V. Application of carbon nanotubes increased the maximum power output of the constructed biofuel cell to 100 μW cm(-2) without stirring of the solution which was ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.

  20. Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress.

    PubMed

    Justo, Maria Luisa; Candiracci, Manila; Dantas, Ana Paula; de Sotomayor, Maria Alvarez; Parrado, Juan; Vila, Elisabet; Herrera, Maria Dolores; Rodriguez-Rodriguez, Rosalia

    2013-08-01

    Rice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action. Obese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits. RBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores.

    PubMed

    Li, Zijie; Li, Yi; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-08-01

    Saccharomyces cerevisiae spores are dormant cells, which can tolerate various types of environmental stress. In our previous work, we successfully developed biological and chemical methods for enzyme immobilization based on the structures of S. cerevisiae spore wall. In this study, we employed biological and chemical approaches for the immobilization of D-xylose isomerase (XI) from Thermus thermophilus and D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens with yeast spores, respectively. The enzymatic properties of both immobilized XI and DPEase were characterized and the immobilized enzymes exhibit higher thermostability, broader pH tolerance, and good repeatability compared with free enzymes. Furthermore, we established a two-step approach for the bioconversion of D-glucose to D-psicose using immobilized enzymes. To improve the conversion yield, a multi-pot strategy was adopted for D-psicose production by repeating the two-step process continually. As a result, the yield of D-psicose was obviously improved and the highest yield reached about 12.0 %.

  2. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    PubMed

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories.

  3. Epigenetic reprogramming of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) in HIV-1-infected CEM T cells.

    PubMed

    Giordanengo, Valerie; Ollier, Laurence; Lanteri, Marion; Lesimple, Josette; March, Denise; Thyss, Sylvain; Lefebvre, Jean-Claude

    2004-12-01

    Sialylated glycoconjugates mediate several key lymphocyte functions. We previously reported that hyposialylation occurred in latently HIV-1-infected CEM T cells, despite the fully preserved catalytic activity of several sialyltransferases. We show now that these cells are affected by a down-regulation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), which leads to a dramatic decrease in the synthesis of CMP-sialic acid, the donor substrate of all sialyltransferases. The GNE gene promoter was found to be located in a CpG island with several regulatory motifs CREB, SP1, and AP-2. De novo hypermethylation of this promoter was observed in HIV-1-infected CEM cells. This phenomenon might explain some immunological disorders that persist in infected individuals despite long-term therapeutically controlled viral replication. Indeed, an overall decrease in sialic acid engraftment can affect glycoproteins, notably those in which the sialylation status is crucial to ensure homing, recirculation, and survival of lymphocytes.

  4. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning.

    PubMed

    Belliard, Aude; Gulati, Gaurav K; Duan, Qiming; Alves, Rosana; Brewer, Shannon; Madan, Namrata; Sottejeau, Yoann; Wang, Xiaoliang; Kalisz, Jennifer; Pierre, Sandrine V

    2016-10-01

    Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na(+)/K(+)-ATPase-dependent ion transport. CG also trigger-specific signaling pathways through the cardiac Na(+)/K(+)-ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subsequent toxicity in the ischemic heart is mostly based on specific I/R-induced alterations of the Na(+)/K(+)-ATPase enzymatic function and has remained incomplete. The primary goal of this study was to investigate and compare the impact of I/R on Na(+)/K(+)-ATPase enzymatic and signaling functions. Second, we assessed the impact of OPC on both functions. Langendorff-perfused rat hearts were exposed to 30 min of ischemia and 30 min of reperfusion. At the inotropic concentration of 50 μmol/L, ouabain increased ERK and Akt phosphorylation in control hearts. In I/R hearts, this concentration did not induced positive inotropy and failed to induce Akt or ERK phosphorylation. The inotropic response to dobutamine as well as insulin signaling persisted, suggesting specific alterations of Na(+)/K(+)-ATPase. Indeed, Na(+)/K(+)-ATPase protein expression was intact, but the enzyme activity was decreased by 60% and the enzymatic function of the isoform with high affinity for ouabain was abolished following I/R. Strikingly, OPC prevented all I/R-induced alterations of the receptor. Further studies are needed to reveal the respective roles of I/R-induced modulations of Na(+)/K(+)-ATPase enzymatic and signaling functions in cardiomyocyte death. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. A non-enzymatic function of 17β-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival

    PubMed Central

    Rauschenberger, Katharina; Schöler, Katja; Sass, Jörn Oliver; Sauer, Sven; Djuric, Zdenka; Rumig, Cordula; Wolf, Nicole I; Okun, Jürgen G; Kölker, Stefan; Schwarz, Heinz; Fischer, Christine; Grziwa, Beate; Runz, Heiko; Nümann, Astrid; Shafqat, Naeem; Kavanagh, Kathryn L; Hämmerling, Günter; Wanders, Ronald J A; Shield, Julian P H; Wendel, Udo; Stern, David; Nawroth, Peter; Hoffmann, Georg F; Bartram, Claus R; Arnold, Bernd; Bierhaus, Angelika; Oppermann, Udo; Steinbeisser, Herbert; Zschocke, Johannes

    2010-01-01

    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17β-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10−/− mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required. PMID:20077426

  6. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival.

    PubMed

    Rauschenberger, Katharina; Schöler, Katja; Sass, Jörn Oliver; Sauer, Sven; Djuric, Zdenka; Rumig, Cordula; Wolf, Nicole I; Okun, Jürgen G; Kölker, Stefan; Schwarz, Heinz; Fischer, Christine; Grziwa, Beate; Runz, Heiko; Nümann, Astrid; Shafqat, Naeem; Kavanagh, Kathryn L; Hämmerling, Günter; Wanders, Ronald J A; Shield, Julian P H; Wendel, Udo; Stern, David; Nawroth, Peter; Hoffmann, Georg F; Bartram, Claus R; Arnold, Bernd; Bierhaus, Angelika; Oppermann, Udo; Steinbeisser, Herbert; Zschocke, Johannes

    2010-02-01

    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10(-/-) mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required.

  7. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A non-enzymatic function of Golgi glycosyltransferases: Mediation of Golgi fragmentation by interaction with non-muscle myosin IIA

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan

    2013-01-01

    The Golgi apparatus undergoes morphological changes under stress or malignant transformation, but the precise mechanisms are not known. We recently showed that non-muscle myosin IIA (NMIIA) binds to the cytoplasmic tail of Core 2 N-acetylglucosaminyltransferase mucus-type (C2GnT-M) and transports it to the endoplasmic reticulum for recycling. Here, we report that Golgi fragmentation induced by brefeldin A (BFA) or coatomer protein (β-COP) knockdown (KD) in Panc1-bC2GnT-M (c-Myc) cells is accompanied by the increased association of NMIIA with C2GnT-M and its degradation by proteasomes. Golgi fragmentation is prevented by inhibition or KD of NMIIA. Using multiple approaches, we have shown that the speed of BFA-induced Golgi fragmentation is positively correlated with the levels of this enzyme in the Golgi. The observation is reproduced in LNCaP cells which express high levels of two endogenous glycosyltransferases—C2GnT-L and β-galactoside α2,3 sialyltransferase 1. NMIIA is found to form complexes with these two enzymes but not Golgi matrix proteins. The KD of both enzymes or the prevention of Golgi glycosyltransferases from exiting endoplasmic reticulum reduced Golgi-associated NMIIA and decreased the BFA-induced fragmentation. Interestingly, the fragmented Golgi detected in colon cancer HT-29 cells can be restored to a compact morphology after inhibition or KD of NMIIA. The Golgi disorganization induced by the microtubule or actin destructive agent is NMIIA-independent and does not affect the levels of glycosyltransferases. We conclude that NMIIA interacts with Golgi residential but not matrix proteins, and this interaction is responsible for Golgi fragmentation induced by β-COP KD or BFA treatment. This is a novel non-enzymatic function of Golgi glycosyltransferases. PMID:23396488

  9. Non-enzymatic dissociation of human mesenchymal stromal cells improves chemokine-dependent migration and maintains immunosuppressive function.

    PubMed

    Garg, Abhilok; Houlihan, Diarmaid D; Aldridge, Victoria; Suresh, Shankar; Li, Ka Kit; King, Andrew L; Sutaria, Rupesh; Fear, Janine; Bhogal, Ricky H; Lalor, Patricia F; Newsome, Philip N

    2014-04-01

    Human bone marrow-derived mesenchymal stromal cells (MSC) can suppress inflammation; therefore their therapeutic potential is being explored in clinical trials. Poor engraftment of infused MSC limits their therapeutic utility; this may be caused by MSC processing before infusion, in particular the method of their detachment from culture. Enzymatic methods of detaching MSC (Accutase and TrypLE) were compared with non-enzymatic methods (Cell Dissociation Buffer [CDB], ethylenediamine tetra-acetic acid and scraping) for their effect on MSC viability, chemokine receptor expression, multi-potency, immunomodulation and chemokine-dependent migration. TrypLE detachment preserved MSC viability and tri-lineage potential compared with non-enzymatic methods; however, this resulted in near complete loss of surface chemokine receptor expression. Of the non-enzymatic methods, CDB detachment preserved the highest viability while retaining significant tri-lineage differentiation potential. Once re-plated, CDB-detached MSC regained their original morphology and reached confluence, unlike with the use of other non-enzymatic methods. Viability was significantly reduced with the use of ethylenediamine tetra-acetic acid and further reduced with the use of cell scraping. Addition of 1% serum during CDB detachment led to higher MSC numbers entering autophagy and increased MSC recovery after re-plating. TrypLE and CDB-detached MSC suppressed CD3(+)CD4(+)CD25(-) T-cell proliferation, although TrypLE-detached MSC exhibited superior suppression at 1:20 ratio. CDB detachment retained surface chemokine receptor expression and consequently increased migration to CCL22, CXCL12 and CCL4, in contrast with TrypLE-detached MSC. This study demonstrates that non-enzymatic detachment of MSC with the use of CDB minimizes the negative impact on cell viability, multipotency and immunomodulation while retaining chemokine-dependent migration, which may be of importance in MSC delivery and engraftment in

  10. Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen–Deuterium Exchange Mass Spectrometry

    PubMed Central

    Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders

    2015-01-01

    Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis. PMID:26900446

  11. Advances in the enzymatic production of L-hexoses.

    PubMed

    Chen, Ziwei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-08-01

    Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.

  12. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application.

    PubMed

    Chen, Xiao Yan; Levy, Clemens; Gänzle, Michael G

    2016-12-19

    Exopolysaccharides from lactic acid bacteria may improve texture and shelf life of bread. The effect of exopolysaccharides on bread quality, however, depends on properties of the EPS and the EPS producing strain. This study investigated structure-function relationships of EPS in baking application. The dextransucrase DsrM and the reuteransucrase GtfA were cloned from Weissella cibaria 10M and Lactobacillus reuteri TMW1.656, respectively, and heterologously expressed in Escherichia coli. Site-directed mutagenesis of GtfA was generates reuterans with different glycosidic bonds. NMR spectrum indicated reuteranPI, reuteranNS and reuteranPINS produced by GtfA-V1024P:V1027I, GtfA-S1135N:A1137S and GtfA-V1024P:V1027I:S1135N:A1137S, respectively, had a higher proportion of α-(1→4) linkages when compared to reuteran. ReuteranNS has the lowest molecular weight as measured by asymmetric flow-field-flow fractionation. The reuteransucrase negative mutant L. reuteri TMW1.656ΔgtfA was generated as EPS-negative derivative of L. reuteri TMW1.656. Cell counts, pH, and organic acid levels of sourdough fermented with L. reuteri TMW1.656 and TMW1.656ΔgtfA were comparable. Reuteran produced by L. reuteri TMW1.656 during growth in sourdough and reuteran produced ex situ by GtfA-ΔN had comparable effects on bread volume and crumb hardness. Enzymatically produced dextran improved volume and texture of wheat bread, and of bread containing 20% rye flour. ReuteranNS but not reuteranPI or reuteran was as efficient as dextran in enhancing wheat bread volume and texture. Overall, reuteran linkage type and molecular weight are determinants of EPS effects on bread quality. This study established a valuable method to elucidate structure-function relationships of glucans in baking applications.

  13. Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Haripriya, Sundaramoorthy

    2013-06-05

    The objective of this study was to evaluate the production, physico-chemical and functional properties of Resistant starch (RS) from red kidney bean starch by enzymatic method. Native and gelatinized starch were subjected to enzymatic hydrolysis (pullulanase, 40 U/g/10 h), autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h), and lyophilized. The enzymatic hydrolysis and thermal treatment of starch increased the formation of RS which showed an increase in water absorption and water solubility indexes and a decrease in swelling power due to hydrolytic and thermal process. The process for obtaining RS changed the crystallinity pattern from C to B and increased the crystallinity due to the retrogradation process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P<0.05).

  14. Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay.

    PubMed

    Cheng, Hui; Lai, Guosong; Fu, Li; Zhang, Haili; Yu, Aimin

    2015-09-15

    A novel ultrasensitive immunoassay method was developed by combination of the enzymatically catalytic gold deposition with the prepared gold nanoprobe and the gold stripping analysis at an electrochemical chip based immunosensor. The immunosensor was constructed through covalently immobilizing capture antibody at a carbon nanotube (CNT) modified screen-printed carbon electrode. The gold nanoprobe was prepared by loading signal antibody and high-content glucose oxidase (GOD) on the nanocarrier of gold nanorod (Au NR). After sandwich immunoreaction, the GOD-Au NR nanoprobe could be quantitatively captured onto the immunosensor surface and then induce the deposition of gold nanoparticles (Au NPs) via the enzymatically catalytic reaction. Based on the electrochemical stripping analysis of the Au NR nanocarriers and the enzymatically produced Au NPs, sensitive electrochemical signal was obtained for the immunoassay. Both the GOD-induced deposition of Au NPs by the nanoprobe and the sensitive electrochemical stripping analysis on the CNTs based sensing surface greatly amplified the signal response, leading to the ultrahigh sensitivity of this method. Using carcinoembryonic antigen as a model analyte, excellent analytical performance including a wide linear range from 0.01 to 100 ng/mL and a detection limit down to 4.2 pg/mL was obtained. In addition, this immunosensor showed high specificity and satisfactory reproducibility, stability and reliability. The relatively positive detection potential excluded the conventional interference from dissolved oxygen. Thus this electrochemical chip based immunosensing method provided great potentials for practical applications.

  15. Structure and catalytic mechanism of the cytosolic D-ribulose-5-phosphate 3-epimerase from rice.

    PubMed

    Jelakovic, Stefan; Kopriva, Stanislav; Süss, Karl Heinz; Schulz, Georg E

    2003-02-07

    Cytosolic D-ribulose-5-phosphate 3-epimerase from rice was crystallized after EDTA treatment and structurally elucidated by X-ray diffraction to 1.9A resolution. A prominent Zn(2+) site at the active center was established in a soaking experiment. The structure was compared with that of the EDTA-treated crystalline enzyme from the chloroplasts of potato plant leaves showing some structural differences, in particular the "closed" state of a strongly conserved mobile loop covering the substrate at its putative binding site. The previous proposal for the active center was confirmed and the most likely substrate binding position and conformation was derived from the locations of the bound zinc and sulfate ions and of three water molecules. Assuming that the bound zinc ion is an integral part of the enzyme, a reaction mechanism involving a well-stabilized cis-enediolate intermediate is suggested.

  16. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities

    PubMed Central

    Pardeshi, Peehu; Rao, K. Krishnamurthy

    2017-01-01

    A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb) contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c. PMID:28403215

  17. Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts.

    PubMed

    Teige, M; Melzer, M; Süss, K H

    1998-03-01

    The amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase have been purified from stroma extracts of spinach chloroplasts using ammonium sulfate fractionation and FPLC. For the native enzymes, a molecular mass of 180 kDa for epimerase and 160 kDa for transketolase was found and the molecular masses of the subunits was determined to be 23 kDa for epimerase and 74 kDa for transketolase. Protein sequencing of the purified chloroplast enzymes revealed the NH2-terminal amino acid sequences of mature epimerase (NH2-TSRVDKFSKSDIIVSP) and transketolase (NH2-AAVEALESTDTDQLVEG). The enzymic properties of both enzymes such as Km values or pH optima, were found to be very similar to those for epimerases and transketolases from other sources, including yeast and animal cells. In contrast to the light-activated enzymes of the Calvin cycle, the activity of these amphibolic enzymes was not redox-dependent. Immunogold electron microscopy on spinach leaf thin sections revealed that about 90% of the total epimerase and transketolase, and 96% of the total chloroplast H+-ATP synthase portion CF1 are associated with thylakoid membranes in situ. Ribulose-1,5-bisphosphate carboxylase/oxygenase, in contrast, was evenly distributed throughout chloroplasts. These and other results indicate that minor chloroplast enzymes are arranged in a thin layer on thylakoid membrane surfaces in vivo.

  18. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale.

    PubMed

    Milczek, Erika M

    2017-06-19

    The field of protein conjugation most commonly refers to the chemical, enzymatic, or chemoenzymatic formation of new covalent bonds between two polypeptides, or between a single polypeptide and a new molecule (polymer, small molecule, nucleic acid, carbohydrate, etc.). Due to the modest selectivity of chemical methods for protein conjugation, there are increased efforts to develop biocatalysts that confer regioselectivity for site-specific modification, thereby complementing the existing toolbox of chemical conjugation strategies. This review summarizes key advances in the use of enzymes to functionalize proteins with commercial relevance. The examples put forth have demonstrated value at the industrial level or show promising industrial potential in the laboratory.

  19. Unraveling the Enzymatic Basis of Wine "Flavorome": A Phylo-Functional Study of Wine Related Yeast Species.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Alastruey-Izquierdo, Ana; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-01-01

    Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species

  20. Unraveling the Enzymatic Basis of Wine “Flavorome”: A Phylo-Functional Study of Wine Related Yeast Species

    PubMed Central

    Belda, Ignacio; Ruiz, Javier; Alastruey-Izquierdo, Ana; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-01-01

    Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species

  1. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity.

    PubMed

    Emadi, Fatemeh; Amini, Abbas; Gholami, Ahmad; Ghasemi, Younes

    2017-02-10

    Proteins have short half-life because of enzymatic cleavage. Here, a new protein nanocarrier made of graphene oxide (GO) + Chitosan (CS) is proposed to successfully prevent proteolysis in protein and simultaneously retain its activity. Bovine serum albumin (BSA) and collagenase were loaded on GO and GO-CS to explore the stability and activity of proteins. SEM, AFM, TEM, DSC, UV-Vis, FT-IR, RBS, Raman, SDS-PAGE and zymography were utilized as characterization techniques. The protecting role of GO and GO-CS against enzymatic cleavage was probed by protease digestion analysis on BSA, where the protease solution was introduced to GO-BSA and GO-CS-BSA at 37 °C for 0.5-1-3-6 hours. Characterizations showed the successful synthesis of few layers of GO and the coverage by CS. According to gelatin zymographic analysis, the loaded collagenase on GO and GO-CS lysed the gelatin and created non-staining bands which confirmed the activity of loaded collagenase. SDS-PAGE analysis revealed no significant change in the intact protein in the GO-BSA and GO-CS-BSA solution after 30-minute and 1-hour exposure to protease; however, free BSA was completely digested after 1 hour. After 6 hours, intact proteins were detected in GO-BSA and GO-CS-BSA solutions, while no intact protein was detected in the free BSA solution.

  2. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity

    PubMed Central

    Emadi, Fatemeh; Amini, Abbas; Gholami, Ahmad; Ghasemi, Younes

    2017-01-01

    Proteins have short half-life because of enzymatic cleavage. Here, a new protein nanocarrier made of graphene oxide (GO) + Chitosan (CS) is proposed to successfully prevent proteolysis in protein and simultaneously retain its activity. Bovine serum albumin (BSA) and collagenase were loaded on GO and GO-CS to explore the stability and activity of proteins. SEM, AFM, TEM, DSC, UV-Vis, FT-IR, RBS, Raman, SDS-PAGE and zymography were utilized as characterization techniques. The protecting role of GO and GO-CS against enzymatic cleavage was probed by protease digestion analysis on BSA, where the protease solution was introduced to GO-BSA and GO-CS-BSA at 37 °C for 0.5-1-3-6 hours. Characterizations showed the successful synthesis of few layers of GO and the coverage by CS. According to gelatin zymographic analysis, the loaded collagenase on GO and GO-CS lysed the gelatin and created non-staining bands which confirmed the activity of loaded collagenase. SDS-PAGE analysis revealed no significant change in the intact protein in the GO-BSA and GO-CS-BSA solution after 30-minute and 1-hour exposure to protease; however, free BSA was completely digested after 1 hour. After 6 hours, intact proteins were detected in GO-BSA and GO-CS-BSA solutions, while no intact protein was detected in the free BSA solution. PMID:28186169

  3. Altered cofactor binding affects stability and activity of human UDP-galactose 4′-epimerase: implications for type III galactosemia

    PubMed Central

    McCorvie, Thomas J.; Liu, Ying; Frazer, Andrew; Gleason, Tyler J.; Fridovich-Keil, Judith L.; Timson, David J.

    2012-01-01

    Deficiency of UDP-galactose 4′-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and inability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD+. p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD+. These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation. PMID:22613355

  4. Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase.

    PubMed

    Ban, Yusuke; Honda, Chikako; Bessho, Hideo; Pang, Xiao-Ming; Moriguchi, Takaya

    2007-01-01

    Suppression subtractive hybridization (SSH) successfully identified 11 cDNAs in apple skin with highly induced expression as a result of ultraviolet (UV)-B irradiation. Apart from three putative flavonoid biosynthetic genes, chalcone synthase (CHS; A5C), flavanone-3-hydroxylase (F3H; B5F), and flavonol synthase (FLS; D1F), five clones (A1H, A10E, B11G, D5F, and D11H) were induced by low temperature (17 degrees C) as well, which is also known to induce anthocyanin accumulation in apple skin. Moreover, four clones (A1H, A10E, B11G, and D11H), showing higher expression levels in the skin, accumulated higher anthocyanin concentrations than their counterparts. Of the four clones, only A10E, a putative UDP-glucose 4-epimerase (UGE), was deemed to play an important role in anthocyanin accumulation in apple skin based on the facts that: (i) its transcription level was higher in the deep red cultivar, 'Jonathan', than in the pale red cultivar, 'Tsugaru'; and (ii) it could reversibly catalyse UDP-glucose to UDP-galactose, and the latter molecule is a major sugar donor for cyanidin-glycoside in apple. Therefore, the full-length cDNA of A10E was isolated by rapid amplification of cDNA ends (RACE) and designated as MdUGE1. Further analysis demonstrated that UGE enzymatic activity was positively correlated with anthocyanin accumulation in apple skin. Thus, MdUGE1 isolated by SSH could play an important role in anthocyanin biosynthesis in apple skin in concert with other flavonoid biosynthetic genes.

  5. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  6. Action of Azotobacter vinelandii poly-beta-D-mannuronic acid C-5-epimerase on synthetic D-glucuronans.

    PubMed

    Chang, P S; Mukerjea, R; Fulton, D B; Robyt, J F

    2000-12-01

    Eleven different glucans (wheat starch, potato amylopectin, potato amylose, pullulan, alternan, regular comb dextran, alpha-cellulose, microcrystalline cellulose, CM-cellulose, chitin, and chitosan) that had their C-6 primary alcohol groups oxidized to carboxyl groups by reaction with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO), were reacted with Azotobacter vinelandii poly-beta-(1-->4)-D-mannuronic acid C-5-epimerase. All of the oxidized polysaccharides reacted with the C-5-epimerase, as evidenced by comparing: (1) differences in the relative viscosities; (2) differences in the carbazole reaction; (3) differences in their susceptibility to acid hydrolysis, and (4) differences in their ability to form calcium gels, before and after reaction. We further show the formation of L-iduronic acid from D-glucuronic acid for oxidized and epimerized amylose by 2D NOESY and COSY + 1H NMR.

  7. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose.

    PubMed

    Kim, Hye-Jung; Hyun, Eun-Kyung; Kim, Yeong-Su; Lee, Yong-Joo; Oh, Deok-Kun

    2006-02-01

    The noncharacterized gene previously proposed as the D-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from D-fructose to D-psicose. The enzyme exhibited maximal activity at 50 degrees C and pH 8.0 with Mn2+. The turnover number (k(cat)) and catalytic efficiency (k(cat)/Km) of the enzyme for D-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not D-tagatose 3-epimerase but D-psicose 3-epimerase. The equilibrium ratio between D-psicose and D-fructose was 32:68 at 30 degrees C. D-Psicose was produced at 230 g/liter from 700-g/liter D-fructose at 50 degrees C after 100 min, corresponding to a conversion yield of 32.9%.

  9. Gene cloning and characterization of L-ribulose 3-epimerase from Mesorhizobium loti and its application to rare sugar production.

    PubMed

    Uechi, Keiko; Takata, Goro; Fukai, Yoshinori; Yoshihara, Akihide; Morimoto, Kenji

    2013-01-01

    A gene encoding L-ribulose 3-epimerase (L-RE) from Mesorhizobium loti, an important enzyme for rare sugar production by the Izumoring strategy, was cloned and overexpressed. The enzyme showed highest activity toward L-ribulose (230 U/mg) among keto-pentoses and keto-hexoses. This is the first report on a ketose 3-epimerase showing highest activity toward keto-pentose. The optimum enzyme reaction conditions for L-RE were determined to be sodium phosphate buffer (pH 8.0) at 60 °C. The enzyme showed of higher maximum reaction a rate (416 U/mg) and catalytic efficiency (43 M(-1) min(-1)) for L-ribulose than other known ketose 3-epimerases. It was able to produce L-xylulose efficiently from ribitol in two-step reactions. In the end, 7.2 g of L-xylulose was obtained from 20 g of ribitol via L-ribulose at a yield of 36%.

  10. Characterization of an Agrobacterium tumefaciens d-Psicose 3-Epimerase That Converts d-Fructose to d-Psicose

    PubMed Central

    Kim, Hye-Jung; Hyun, Eun-Kyung; Kim, Yeong-Su; Lee, Yong-Joo; Oh, Deok-Kun

    2006-01-01

    The noncharacterized gene previously proposed as the d-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from d-fructose to d-psicose. The enzyme exhibited maximal activity at 50°C and pH 8.0 with Mn2+. The turnover number (kcat) and catalytic efficiency (kcat/Km) of the enzyme for d-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not d-tagatose 3-epimerase but d-psicose 3-epimerase. The equilibrium ratio between d-psicose and d-fructose was 32:68 at 30°C. d-Psicose was produced at 230 g/liter from 700-g/liter d-fructose at 50°C after 100 min, corresponding to a conversion yield of 32.9%. PMID:16461638

  11. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis

    PubMed Central

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  12. High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids.

    PubMed

    Wang, Chueh-Han; Yang, Cheng-Hsien; Chang, Jeng-Kuei

    2017-03-15

    Nano-sized Pd particles are uniformly dispersed on graphene nanosheets (GNSs) using a supercritical-fluid-assisted deposition technique to increase the electrochemical sensing properties. The incorporation of different kinds of ionic liquid (IL) can increase the electrode sensing current toward different analytes. Butylmethylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (BMP-TFSI) IL is beneficial for glucose detection, whereas the electrode with butylmethylpyrrolidinium-dicyanamide (BMP-DCA) IL shows high sensitivity toward ascorbic acid (AA). The selective detection of glucose or AA from their mixture is for the first time demonstrated using a non-enzymatic electrode with the aid of an IL. Angle-resolved X-ray photoelectron spectroscopy analyses indicate that GNSs can create an aligned cation/anion orientation in the adsorbed IL film, with the anions preferentially occupying the topmost surface. As a result, the electrode sensitivity and selectivity are mainly determined by the IL constituent anions.

  13. The monitoring of Cu contaminated water through potato peel charcoal and impact on enzymatic functions of plants.

    PubMed

    Azmat, Rafia; Moin, Sumeira

    2017-12-01

    Enzymes are a biological catalyst, an important protein that accelerates the most biochemical reactions of a plants cell, investigated in this article as a provoked biomarkers under Cu stress. The study was conducted in comparison of (a) Control, (b) Cu stress plants and (c) treated plants in the greenhouse. The treated plants were grown in recycled water, prepared at laboratory scale using potato peel charcoal (PPC) as a sorbent. Weekly monitoring of various enzymes in plants (b) up to three months showed that peroxidase activity enhanced in comparison to control and treated plants, while protease, amylase and, nitrate and nitrite reductase were reduced. The enzymatic disorder under Cu stress reflects the generation of reactive oxygen species (ROS) and the failure of the key and um-lock action of enzymes for complex molecules, which plays a critical role in the biochemical reaction of plants to grow. Elevated peroxidase activity in roots and leaves of plant (b) indicated that it aid in minimizing the damages under activated ROS. The observed reduced activities of protease, amylase, nitrate and nitrite reductase presented that redox active metal (Cu) interfere at the molecular level and damages the normal C and N mechanism of development of plants (b) under abiotic stress over control. The ROS conflicts in plants (b) due to high accumulation of Cu was resolved by checking the mobility of Cu on PPC surface from Cu-contaminated wastewater. It appeared as a normal growth rate in plant (c), similar to that of plants grown in tap water (Plants a). The remediation of enzymatic disorder through Surface Science Technology (SST) in plant (c) validated that wastewater can easily manage through sorption of Cu metal on the PPC surface. The decontamination through SST showed that the wastewater could be restored economically which can use in irrigation without harmful impact on plant growth regulatory system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    SciTech Connect

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate

  15. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase

    PubMed Central

    Michels, Helen; Seinstra, Renée I.; Uitdehaag, Joost C. M.; Koopman, Mandy; van Faassen, Martijn; Martineau, Céline N.; Kema, Ido P.; Buijsman, Rogier; Nollen, Ellen A. A.

    2016-01-01

    The enzyme TDO (tryptophan 2,3-dioxygenase; TDO-2 in Caenorhabditis elegans) is a potential therapeutic target to cancer but is also thought to regulate proteotoxic events seen in the progression of neurodegenerative diseases. To better understand its function and develop specific compounds that target TDO we need to understand the structure of this molecule. In C. elegans we compared multiple different CRISPR/Cas9-induced tdo-2 deletion mutants and identified a motif of three amino acids (PLD) that is required for the enzymatic conversion of tryptophan to N-formylkynurenine. Loss of TDO-2’s enzymatic activity in PDL deletion mutants was accompanied by an increase in motility during aging and a prolonged lifespan, which is in line with the previously observed phenotypes induced by a knockdown of the full enzyme. Comparison of sequence structures suggests that blocking this motif might interfere with haem binding, which is essential for the enzyme’s activity. The fact that these three residues are situated in an evolutionary conserved structural loop of the enzyme suggests that the findings can be translated to humans. The identification of this specific loop region in TDO-2–essential for its catalytic function–will aid in the design of novel inhibitors to treat diseases in which the TDO enzyme is overexpressed or hyperactive. PMID:27995966

  16. Association between plasma soluble RAGE and renal function is unaffected by medication usage and enzymatic antioxidants in chronic kidney disease with type 2 diabetes.

    PubMed

    Wong, Foo Nian; Tan, Jin Ai Mary Anne; Keng, Tee Chau; Ng, Kok Peng; Chua, Kek Heng; Kuppusamy, Umah Rani

    2016-01-30

    This study aimed to investigate the relationship between soluble RAGE and estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease (CKD) after controlling for the potential confounding factors such as medication usage and enzymatic antioxidants. A total of 222 CKD patients whose eGFR is less than 60ml/min/1.73m(2) and 111 non-CKD individuals were recruited. The study subjects were classified based on their diabetes status. The plasma glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities as well as plasma soluble RAGE level were measured. The plasma GPx and SOD activities were significantly lower and the plasma soluble RAGE level was significantly higher in the CKD patients than in the non-CKD individuals, regardless of the diabetes status. Soluble RAGE was significantly correlated with eGFR in both diabetic CKD (D-CKD) and non-diabetic CKD (ND-CKD) patients. The association between soluble RAGE and eGFR remained largely unaffected by the confounding factors in D-CKD patients. However, the confounding effect of enzymatic antioxidants in the relationship between eGFR and soluble RAGE was observed in ND-CKD patients. The increased plasma level of soluble RAGE is a better indicator of renal function decline in diabetic CKD patients instead of non-diabetic CKD patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enzymatic modification by point mutation and functional analysis of an omega-6 fatty acid desaturase from Arctic Chlamydomonas sp.

    PubMed

    Jung, Woongsic; Kim, Eun Jae; Han, Se Jong; Kang, Sung-Ho; Choi, Han-Gu; Kim, Sanghee

    2017-02-07

    Arctic Chlamydomonas sp. is a dominant microalgal strain in cold or frozen freshwater in the Arctic region. The full-length open reading frame of the omega-6 fatty acid desaturase gene (AChFAD6) was obtained from the transcriptomic database of Arctic Chlamydomonas sp. from the KOPRI culture collection of polar micro-organisms. Amino acid sequence analysis indicated the presence of three conserved histidine-rich segments as unique characteristics of omega-6 fatty acid desaturases, and three transmembrane regions transported to plastidic membranes by chloroplast transit peptides in the N-terminal region. The AChFAD6 desaturase activity was examined by expressing wild-type and V254A mutant (Mut-AChFAD6) heterologous recombinant proteins. Quantitative gas chromatography indicated that the concentration of linoleic acids in AChFAD6-transformed cells increased more than 3-fold [6.73 ± 0.13 mg g(-1) dry cell weight (DCW)] compared with cells transformed with vector alone. In contrast, transformation with Mut-AChFAD6 increased the concentration of oleic acid to 9.23 ± 0.18 mg g(-1) DCW, indicating a change in enzymatic activity to mimic that of stearoyl-CoA desaturase. These results demonstrate that AChFAD6 of Arctic Chlamydomonas sp. increases membrane fluidity by enhancing denaturation of C18 fatty acids and facilitates production of large quantities of linoleic fatty acids in prokaryotic expression systems.

  18. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi.

    PubMed

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  19. Metabolic Mechanism of Mannan in a Ruminal Bacterium, Ruminococcus albus, Involving Two Mannoside Phosphorylases and Cellobiose 2-Epimerase

    PubMed Central

    Kawahara, Ryosuke; Saburi, Wataru; Odaka, Rei; Taguchi, Hidenori; Ito, Shigeaki; Mori, Haruhide; Matsui, Hirokazu

    2012-01-01

    Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose. PMID:23093406

  20. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi

    PubMed Central

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these

  1. The Pseudomonas fluorescens AlgG Protein, but Not Its Mannuronan C-5-Epimerase Activity, Is Needed for Alginate Polymer Formation

    PubMed Central

    Gimmestad, Martin; Sletta, Håvard; Ertesvåg, Helga; Bakkevig, Karianne; Jain, Sumita; Suh, Sang-jin; Skjåk-Bræk, Gudmund; Ellingsen, Trond E.; Ohman, Dennis E.; Valla, Svein

    2003-01-01

    Bacterial alginates are produced as 1-4-linked β-d-mannuronan, followed by epimerization of some of the mannuronic acid residues to α-l-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-l-erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex. PMID:12775688

  2. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    SciTech Connect

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.; Larimer, F.W.

    1998-09-01

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

  3. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  4. Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10.

    PubMed

    Mu, Wanmeng; Chu, Feifei; Xing, Qingchao; Yu, Shuhuai; Zhou, Leon; Jiang, Bo

    2011-07-27

    The noncharacterized protein ACL75304 encoded by the gene Ccel_0941 from Clostridium cellulolyticum H10 (ATCC 35319), previously proposed as the xylose isomerase domain protein TIM barrel, was cloned and expressed in Escherichia coli . The expressed enzyme was purified by nickel-affinity chromatography with electrophoretic homogeneity and then characterized as d-psicose 3-epimerase. The enzyme was strictly metal-dependent and showed a maximal activity in the presence of Co(2+). The optimum pH and temperature for enzyme activity were 55 °C and pH 8.0. The half-lives for the enzyme at 60 °C were 6.8 h and 10 min when incubated with and without Co(2+), respectively, suggesting that this enzyme was extremely thermostable in the presence of Co(2+) but readily inactivated without metal ion. The Michaelis-Menten constant (K(m)), turnover number (k(cat)), and catalytic efficiency (k(cat)/K(m)) values of the enzyme for substrate d-psicose were estimated to be 17.4 mM, 3243.4 min(-1), and 186.4 mM min(-1), respectively. The enzyme carried out the epimerization of d-fructose to d-psicose with a conversion yield of 32% under optimal conditions, suggesting that the enzyme is a potential d-psicose producer.

  5. Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens.

    PubMed

    Kim, Hye-Jung; Yeom, Soo-Jin; Kim, Kwangsoo; Rhee, Sangkee; Kim, Dooil; Oh, Deok-Kun

    2010-02-01

    D-Psicose 3-epimerase from Agrobacterium tumefacience catalyzes the conversion of D: -fructose to D-psicose. According to mutational analysis, the ring at position 112, the negative charge at position 156, and the positive charge at position 215 were essential components for enzyme activity and for binding fructose and psicose. The surface contact area and distance to the bound substrate by molecular modeling suggest that the positive charge of Arg215 was involved in stabilization of cis-endiol intermediate. The distances between the catalytic residues (Glu150 and Glu244) and Mn(2+) are critical to the catalysis, and the negative charges of the metal-binding residues are important for interaction with metal ion. The kinetic parameters of the D183E and H209A mutants for metal-binding residues with substrate and the near-UV circular dichroism spectra indicate that the metal ion bound to Asp183 and His209 is involved not only in catalysis but also in substrate binding.

  6. Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704.

    PubMed

    Zhang, Wenli; Fang, Dan; Xing, Qingchao; Zhou, Leon; Jiang, Bo; Mu, Wanmeng

    2013-01-01

    The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn²⁺ as optimum cofactor for activity. In addition, Mn²⁺ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (T m) and the urea midtransition concentration (C m) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn²⁺-bound enzyme showed higher T m and C m with 67.3°C and 5.09 M. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s⁻¹, and 64.5 mM⁻¹ s⁻¹, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%.

  7. Characterization of a Novel Metal-Dependent D-Psicose 3-Epimerase from Clostridium scindens 35704

    PubMed Central

    Zhang, Wenli; Fang, Dan; Xing, Qingchao; Zhou, Leon; Jiang, Bo; Mu, Wanmeng

    2013-01-01

    The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn2+ as optimum cofactor for activity. In addition, Mn2+ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (Tm) and the urea midtransition concentration (Cm) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn2+-bound enzyme showed higher Tm and Cm with 67.3°C and 5.09 M. The Michaelis-Menten constant (Km), turnover number (kcat), and catalytic efficiency (kcat/Km) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s−1, and 64.5 mM−1 s−1, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%. PMID:23646168

  8. Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp.

    PubMed

    Mu, Wanmeng; Zhang, Wenli; Fang, Dan; Zhou, Leon; Jiang, Bo; Zhang, Tao

    2013-09-01

    The gene coding for D-psicose 3-epimerase (DPEase) from Clostridium sp. BNL1100 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by Ni-affinity chromatography. It was a metal-dependent enzyme and required Co(2+) as optimum cofactor. It displayed catalytic activity maximally at pH 8.0 and 65 °C (as measured over 5 min). The optimum substrate was D-psicose, and the K m, turnover number (k cat), and catalytic efficiency (k cat/K m) for D-psicose were 227 mM, 32,185 min(-1), and 141 min(-1 )mM(-1), respectively. At pH 8.0 and 55 °C, 120 g D-psicose l(-1) was produced from 500 g D-fructose l(-1) after 5 h.

  9. Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus.

    PubMed

    Shen, Qiuyun; Zhang, Yuzhu; Yang, Ruijin; Pan, Siyi; Dong, Juan; Fan, Yuting; Han, Liang

    2016-09-15

    Industrial application of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (CsCE) for lactulose synthesis is limited by low enzyme activity and formation of epilactose as by-product. After four sequential rounds of random mutagenesis and screening, an optimal mutant G4-C5 was obtained. Compared with wild type (WT) enzyme, mutant G4-C5 demonstrated 2.8- and 3.0-fold increases in specific activity and kcat/Km for lactulose production, respectively, without compromising thermostability. DNA sequencing of mutant G4-C5 revealed five amino acid substitutions, namely, R5M, I52V, A12S, K328I and F231L, which were located on the protein surface, except for the mutation I52V. The yield of lactulose catalyzed by mutant G4-C5 increased to approximately 76% with no obvious epilactose detected, indicating that mutant G4-C5 was more suitable for lactulose production than the WT enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers.

    PubMed

    Gargouri, Mahmoud; Chaudière, Jean; Manigand, Claude; Maugé, Chloé; Bathany, Katell; Schmitter, Jean-Marie; Gallois, Bernard

    2010-01-01

    Anthocyanidin reductase (ANR) from Vitis vinifera catalyzes an NADPH-dependent double reduction of anthocyanidins producing a mixture of (2S,3R)- and (2S,3S)-flavan-3-ols. At pH 7.5 and 30 degrees C, the first hydride transfer to anthocyanidin is irreversible, and no intermediate is released during catalysis. ANR reverse activity was assessed in the presence of excess NADP(+). Analysis of products by reverse phase and chiral phase HPLC demonstrates that ANR acts as a flavan-3-ol C(3)-epimerase under such conditions, but this is only observed with 2R-flavan-3-ols, not with 2S-flavan-3-ols produced by the enzyme in the forward reaction. In the presence of deuterated coenzyme 4S-NADPD, ANR transforms anthocyanidins into dideuterated flavan-3-ols. The regiospecificity of deuterium incorporation into catechin and afzelechin - derived from cyanidin and pelargonidin, respectively - was analyzed by liquid chromatography coupled with electro- spray ionization-tandem mass spectrometry (LC/ESI-MS/MS), and it was found that deuterium was always incorporated at C(2) and C(4). We conclude that C(3)-epimerization should be achieved by tautomerization between the two hydride transfers and that this produces a quinone methide intermediate which serves as C(4) target of the second hydride transfer, thereby avoiding any stereospecific modification of carbon 3. The inversion of C(2) stereochemistry required for 'reverse epimerization' suggests that the 2S configuration induces an irreversible product dissociation.

  11. High-level intra- and extra-cellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis.

    PubMed

    Chen, Jingqi; Zhu, Yueming; Fu, Gang; Song, Yafeng; Jin, Zhaoxia; Sun, Yuanxia; Zhang, Dawei

    2016-11-01

    D-Psicose 3-epimerase (DPEase) converts D-fructose into D-psicose which exists in nature in limited quantities and has key physiological functions. In this study, RDPE (DPEase from Ruminococcus sp. 5_1_39BFAA) was successfully constitutively expressed in Bacillus subtilis, which is the first report of its kind. Three sugar-inducible promoters were compared, and the xylose-inducible promoter P xylA was proved to be the most efficient for RDPE production. Based on the analysis of the inducer concentration and RDPE expression, we surmised that there was an extremely close correlation between the intracellular RDPE expression and xylose accumulation level. Subsequently, after the metabolic pathway of xylose was blocked by deletion of xylAB, the intra- and extra-cellular RDPE expression was significantly enhanced. Meanwhile, the optimal xylose induction concentration was reduced from 4.0 to 0.5 %. Eventually, the secretion level of RDPE reached 95 U/mL and 2.6 g/L in a 7.5-L fermentor with the fed-batch fermentation, which is the highest production of DPEase by a microbe to date.

  12. Enzymatic liver function capacity correlates with disease severity of patients with liver cirrhosis: a study with the LiMAx test.

    PubMed

    Malinowski, Maciej; Jara, Maximilian; Lüttgert, Katja; Orr, James; Lock, Johan Friso; Schott, Eckart; Stockmann, Martin

    2014-12-01

    Assessment and quantification of actual liver function is crucial in patients with chronic liver disease to monitor disease progression and predict individual prognosis. Mathematical models, such as model for end-stage liver disease, are used for risk stratification of patients with chronic liver disease but do not include parameters that reflect the actual functional state of the liver. We aimed to evaluate the potential of a (13)C-based liver function test as a stratification tool by comparison with other liver function tests and clinical parameters in a large sample of healthy controls and cirrhotic patients. We applied maximum liver function capacity (LiMAx) to evaluate actual liver function in 347 patients with cirrhosis and in 86 controls. LiMAx showed strong negative correlation with Child-Pugh Score (r = -0.707; p < 0.001), MELD (r = -0.686; p < 0.001) and liver function tests. LiMAx was lower in patients with liver cirrhosis compared to healthy controls [99 (57-160) µg/kg/h vs. 412 (365-479) µg/kg/h, p < 0.001] and differed among Child-Pugh classes [a: 181 (144-227) µg/kg/h, b: 96 (62-132) µg/kg/h and c: 52 (37-81) µg/kg/h; p < 0.001]. When stratified patients according to disease severity, LiMAx results were not different between cirrhotic patients and cirrhotic patients with transjugular intrahepatic portosystemic shunt. LiMAx appears to provide reliable information on remnant enzymatic liver function in chronic liver disease and allows graduation of disease severity.

  13. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  14. Vi Antigen Biosynthesis in Salmonella typhi: Characterization of UDP-N-acetylglucosamine C-6 Dehydrogenase (TviB) and UDP-N-acetylglucosaminuronic Acid C-4 Epimerase (TviC)†

    PubMed Central

    Zhang, Hua; Zhou, Ying; Bao, Hongbo; Liu, Hung-wen

    2008-01-01

    Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of α-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD+ dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His6-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity, and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a kcat value of 15.5 ± 1.0 min−1. The Km values of TviB for UDP-GlcNAc and NAD+ are 77 ± 9 μM and 276 ± 52 μM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The Km values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 ± 1 μM and 42 ± 2 μM, respectively. The kcat value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 ± 0.5 min−1, while that for the reverse reaction is 39.1 ± 0.6 min−1. These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production. PMID:16800641

  15. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    PubMed

    Venner, Eric; Lisewski, Andreas Martin; Erdin, Serkan; Ward, R Matthew; Amin, Shivas R; Lichtarge, Olivier

    2010-12-13

    High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  16. Investigating the Functional Role of Prostate-Specific Membrane Antigen and its Enzymatic Activity in Prostate Cancer Metastasis

    DTIC Science & Technology

    2008-02-01

    2007 – 28 Jan 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigating the Functional Role of Prostate-Specific Membrane Antigen and its...Activity in Prostate Cancer Metastasis. IMPACT meeting, Atlanta GA, 2007 . Page 9 CONCLUSION The goal of the proposal is to investigate the function of...distribution of secondary growths in cancer of the breast. Lancet 1:571-573, 1889. 3. Fornaro M, Manes T and Languino LR: Integrins and prostate cancer

  17. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).

    PubMed

    Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin

    2015-07-15

    This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties.

  18. Enzymatic production of lactulose and epilactose in milk.

    PubMed

    Rentschler, Eva; Schuh, Katharina; Krewinkel, Manuel; Baur, Claudia; Claaßen, Wolfgang; Meyer, Susanne; Kuschel, Beatrice; Stressler, Timo; Fischer, Lutz

    2015-10-01

    The enzymatic production of lactulose was described recently through conversion of lactose by a thermophilic cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE). In the current study, we examined the application of CsCE for lactulose and epilactose production in milk (1.5% fat). The bioconversions were carried out in stirred reaction vessels at 2 different temperatures (50 and 8°C) at a scale of 25 mL volume. At 50°C, 2 highly different CsCE amounts were investigated for the time course of formation of lactulose and epilactose. The conversion of milk lactose (initial lactose content of 48.5 ± 2.1 g/L) resulted in a final yield of 57.7% (28.0 g/L) lactulose and 15.5% (7.49 g/L) epilactose in the case of the approximately 9.5-fold higher CsCE amount (39.5 µkat epilactose, 50°C) after 24 h. Another enzymatic lactose conversion was carried out at low 8°C, an industrially relevant temperature for milk processing. Although the CsCE originated from a thermophilic microorganism, it was still applicable at 8°C. This enzymatic lactose conversion resulted in 56.7% (27.5 g/L) lactulose and 13.6% (6.57 g/L) epilactose from initial milk lactose after 72 h. The time courses of lactose conversion by CsCE suggested that first epilactose formed and afterward lactulose via epilactose. To the best of our knowledge, this is the first time that an enzyme has produced lactulose directly in milk in situ at industrially relevant temperatures.

  19. Value Added Processing of Peanut Meal: Enzymatic Hydrolysis to Improve Functional and Nutritional Properties of Water Soluble Extracts

    USDA-ARS?s Scientific Manuscript database

    Value added applications are needed for peanut meal, which is the high protein byproduct of commercial peanut oil production. Peanut meal dispersions were hydrolyzed with alcalase, flavourzyme and pepsin in an effort to improve functional and nutritional properties of the resulting water soluble ex...

  20. IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

  1. IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

  2. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours.

    PubMed

    Abebe, Workineh; Collar, Concha; Ronda, Felicidad

    2015-01-22

    Tef grain is becoming very attractive in the Western countries since it is a gluten-free grain with appreciated nutritional advantages. However there is little information of its functional properties and starch digestibility and how they are affected by variety type and particle size distribution. This work evaluates the effect of the grain variety and the mill used on tef flour physico-chemical and functional properties, mainly derived from starch behavior. In vitro starch digestibility of the flours by Englyst method was assessed. Two types of mills were used to obtain whole flours of different granulation. Rice and wheat flours were analyzed as references. Protein molecular weight distribution and flour structure by SEM were also analyzed to justify some of the differences found among the cereals studied. Tef cultivar and mill type exhibited important effect on granulation, bulking density and starch damage, affecting the processing performance of the flours and determining the hydration and pasting properties. The color was darker although one of the white varieties had a lightness near the reference flours. Different granulation of tef flour induced different in vitro starch digestibility. The disc attrition mill led to higher starch digestibility rate index and rapidly available glucose, probably as consequence of a higher damaged starch content. The results confirm the adequacy of tef flour as ingredient in the formulation of new cereal based foods and the importance of the variety and the mill on its functional properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens.

    PubMed

    Taguchi, Hidenori; Senoura, Takeshi; Hamada, Shigeki; Matsui, Hirokazu; Kobayashi, Yasuo; Watanabe, Jun; Wasaki, Jun; Ito, Susumu

    2008-10-01

    Cellobiose 2-epimerase (CE; EC 5.1.3.11) is known to catalyze the reversible epimerization of cellobiose to 4-O-beta-D-glucopyranosyl-D-mannose in Ruminococcus albus cells. Here, we report a CE in a ruminal strain of Eubacterium cellulosolvens for the first time. The nucleotide sequence of the CE had an ORF of 1218 bp (405 amino acids; 46 963.3 Da). The CE from E. cellulosolvens showed 44-54% identity to N-acyl-D-glucosamine 2-epimerase-like hypothetical proteins in the genomes of Coprococcus eutactus, Faecalibacterium prausnitzii, Clostridium phytofermentans, Caldicellulosiruptor saccharolyticus, and Eubacterium siraeum. Surprisingly, it exhibited only 46% identity to a CE from R. albus. The recombinant enzyme expressed in Escherichia coli was purified by two-step chromatography. The purified enzyme had a molecular mass of 46.7 kDa and exhibited optimal activity at around 35 degrees C and pH 7.0-8.5. In addition to cello-oligosaccharides, it converted lactose to epilactose (4-O-beta-D-galactopyranosyl-D-mannose).

  4. Microbial conversion of L-arabinose to xylitol by coexpression of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase in Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    A microbial strain has been developed that can produce xylitol from L-arabinose at a high yield by transforming Escherichia coli with a new xylitol biosynthetic pathway consisting of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase. An E. coli strain that heterologously expre...

  5. Copper-Nitride Nanowires Array: An Efficient Dual-Functional Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose and Hydrogen Peroxide Sensing.

    PubMed

    Wang, Zao; Cao, Xiaoqin; Liu, Danni; Hao, Shuai; Kong, Rongmei; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-04-11

    It is highly attractive to develop non-noble-metal nanoarray architecture as a 3D-catalyst electrode for molecular detection due to its large specific surface area and easy accessibility to target molecules. Here, we report the development of a copper-nitride nanowires array on copper foam (Cu3 N NA/CF) as a dual-functional catalyst electrode for efficient glucose oxidation in alkaline solutions and hydrogen peroxide (H2 O2 ) reduction in neutral solutions. Electrochemical tests indicate that such Cu3 N NA/CF possesses superior non-enzymatic sensing ability toward rapid glucose and H2 O2 detection with high selectivity. At 0.40 V, this sensor offers a high sensitivity of 14 180 μA mm cm(-2) for glucose detection, with a wide linear range from 1 μm to 2 mm, a low detection limit of 13 nm (S/N=3), and satisfactory stability and reproducibility. Its application in determining glucose in human blood serum is also demonstrated. Amperometric H2 O2 sensing can also been realized with a sensitivity of 7600 μA mm cm(-2) , a linear range from 0.1 μm to 10 mm, and a detection limit of 8.9 nm (S/N=3). This 3D-nanoarray architecture holds great promise as an attractive sensing platform toward electrochemical small molecules detection.

  6. Class III alcohol dehydrogenase from Saccharomyces cerevisiae: structural and enzymatic features differ toward the human/mammalian forms in a manner consistent with functional needs in formaldehyde detoxication.

    PubMed

    Fernández, M R; Biosca, J A; Norin, A; Jörnvall, H; Parés, X

    1995-08-14

    Alcohol dehydrogenase class III (glutathione-dependent formaldehyde dehydrogenase) from Saccharomyces cerevisiae was purified and analyzed structurally and enzymatically. The corresponding gene was also analyzed after cloning from a yeast genome library by screening with a probe prepared through PCR amplification. As with class III alcohol dehydrogenase from other sources, the yeast protein was obtained in two active forms, deduced to reflect different adducts/modifications. Protein analysis established N-terminal and C-terminal positions, showing different and specific patterns in protein start positions between the human/mammalian, yeast, and prokaryotic forms. Km values with formaldehyde differ consistently, being about 10-fold higher in the yeast than the human/mammalian enzymes, but compensated for by similar changes in kcat values. This is compatible with the different functional needs, emphasizing low formaldehyde concentration in the animal cells but efficient formaldehyde elimination in the microorganisms. This supports a general role of the enzyme in formaldehyde detoxication rather than in long-chain alcohol turnover.

  7. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    PubMed

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function.

    PubMed

    Dickerhof, Nina; Schindler, Lisa; Bernhagen, Jürgen; Kettle, Anthony J; Hampton, Mark B

    2015-12-01

    Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF.

  9. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    PubMed

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    NASA Astrophysics Data System (ADS)

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  11. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    PubMed Central

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-ichi

    2016-01-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour. PMID:27140831

  12. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    PubMed

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.

  13. The Interaction of UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) and Alpha-Actinin 2 Is Altered in GNE Myopathy M743T Mutant.

    PubMed

    Harazi, Avi; Becker-Cohen, Michal; Zer, Hagit; Moshel, Ofra; Hinderlich, Stephan; Mitrani-Rosenbaum, Stella

    2017-05-01

    UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the gene mutated in GNE myopathy. In an attempt to elucidate GNE functions that could account for the muscle pathophysiology of this disorder, the interaction of GNE with α-actinins has been investigated. Surface plasmon resonance and microscale thermophoresis analysis revealed, that in vitro, GNE interacts with α-actinin 2, and that this interaction has a 10-fold higher affinity compared to the GNE-α-actinin 1 interaction. Further, GNE carrying the M743T mutation, the most frequent mutation in GNE myopathy, has a 10-fold lower binding affinity to α-actinin 2 than intact GNE. It is possible that this decrease eventually affects the interaction, thus causing functional imbalance of this complex in skeletal muscle that could contribute to the myopathy phenotype. In vivo, using bi-molecular fluorescent complementation, we show the specific binding of the two proteins inside the intact cell, in a unique interaction pattern between the two partners. This interaction is disrupted in the absence of the C-terminal calmodulin-like domain of α-actinin 2, which is altered in α-actinin 1. Moreover, the binding of GNE to α-actinin 2 prevents additional binding of α-actinin 1 but not vice versa. These results suggest that the interaction between GNE and α-actinin 1 and α-actinin 2 occur at different sites in the α-actinin molecules and that for α-actinin 2 the interaction site is located at the C-terminus of the protein.

  14. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development

    PubMed Central

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-01-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. PMID:27382114

  15. HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatase AtSgpp.

    PubMed

    Caparrós-Martín, José A; McCarthy-Suárez, Iva; Culiáñez-Macià, Francisco A

    2013-04-01

    This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-D-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.

  16. Prediction and Assignment of Function for a Divergent N-succinyl Amino Acid Racemase

    SciTech Connect

    Song,L.; Kalyanaraman, C.; Fedorov, A.; Fedorov, E.; Glasner, M.; Brown, S.; Imker, H.; Babbitt, P.; Almo, S.; et al.

    2007-01-01

    The protein databases contain many proteins with unknown function. A computational approach for predicting ligand specificity that requires only the sequence of the unknown protein would be valuable for directing experiment-based assignment of function. We focused on a family of unknown proteins in the mechanistically diverse enolase superfamily and used two approaches to assign function: (i) enzymatic assays using libraries of potential substrates, and (ii) in silico docking of the same libraries using a homology model based on the most similar (35% sequence identity) characterized protein. The results matched closely; an experimentally determined structure confirmed the predicted structure of the substrate-liganded complex. We assigned the N-succinyl arginine/lysine racemase function to the family, correcting the annotation (L-Ala-D/L-Glu epimerase) based on the function of the most similar characterized homolog. These studies establish that ligand docking to a homology model can facilitate functional assignment of unknown proteins by restricting the identities of the possible substrates that must be experimentally tested.

  17. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  18. In silico prediction of the effects of mutations in the human UDP-galactose 4'-epimerase gene: towards a predictive framework for type III galactosemia.

    PubMed

    McCorvie, Thomas J; Timson, David J

    2013-07-25

    The enzyme UDP-galactose 4'-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.

  19. Protein Similarity Networks Reveal Relationships among Sequence, Structure, and Function within the Cupin Superfamily

    PubMed Central

    Uberto, Richard; Moomaw, Ellen W.

    2013-01-01

    The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases. PMID:24040257

  20. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily.

    PubMed

    Uberto, Richard; Moomaw, Ellen W

    2013-01-01

    The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.

  1. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis.

  2. Human pancreas-specific protein disulfide-isomerase (PDIp) can function as a chaperone independently of its enzymatic activity by forming stable complexes with denatured substrate proteins.

    PubMed

    Fu, Xin-Miao; Zhu, Bao Ting

    2010-07-01

    Members of the PDI (protein disulfide-isomerase) family are critical for the correct folding of secretory proteins by catalysing disulfide bond formation as well as by serving as molecular chaperones to prevent protein aggregation. In the present paper, we report that the chaperone activity of the human pancreas-specific PDI homologue (PDIp) is independent of its enzymatic activity on the basis of the following lines of evidence. First, alkylation of PDIp by iodoacetamide fully abolishes its enzymatic activity, whereas it still retains most of its chaperone activity in preventing the aggregation of reduced insulin B chain and denatured GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Secondly, mutation of the cysteine residues in PDIp's active sites completely abolishes its enzymatic activity, but does not affect its chaperone activity. Thirdly, the b-b' fragment of PDIp, which does not contain the active sites and is devoid of enzymatic activity, still has chaperone activity. Mechanistically, we found that both the recombinant PDIp expressed in Escherichia coli and the natural PDIp present in human or monkey pancreas can form stable complexes with thermal-denatured substrate proteins independently of their enzymatic activity. The high-molecular-mass soluble complexes between PDIp and GAPDH are formed in a stoichiometric manner (subunit ratio of 1:3.5-4.5), and can dissociate after storage for a certain time. As a proof-of-concept for the biological significance of PDIp in intact cells, we demonstrated that its selective expression in E. coli confers strong protection of these cells against heat shock and oxidative-stress-induced death independently of its enzymatic activity.

  3. Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose.

    PubMed

    Zhang, Longtao; Mu, Wanmeng; Jiang, Bo; Zhang, Tao

    2009-06-01

    A non-characterized gene, previously proposed as the D-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with D-fructose and decreased for other substrates in the order: D-tagatose, D-psicose, D-ribulose, D-xylulose and D-sorbose. Its activity was maximal at pH 9 and 40 degrees C while being enhanced by Mn(2+). At pH 9 and 40 degrees C, 118 g D-psicose l(-1) was produced from 700 g D-fructose l(-1) after 3 h.

  4. Functional Mechanism of C-Terminal Tail in the Enzymatic Role of Porcine Testicular Carbonyl Reductase: A Combined Experiment and Molecular Dynamics Simulation Study of the C-Terminal Tail in the Enzymatic Role of PTCR

    PubMed Central

    Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo

    2014-01-01

    Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily. PMID:24646606

  5. Identification and Characterization of Bifunctional Proline Racemase/Hydroxyproline Epimerase from Archaea: Discrimination of Substrates and Molecular Evolution

    PubMed Central

    Watanabe, Seiya; Tanimoto, Yoshiaki; Nishiwaki, Hisashi; Watanabe, Yasuo

    2015-01-01

    Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily. PMID:25786142

  6. Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution.

    PubMed

    Watanabe, Seiya; Tanimoto, Yoshiaki; Nishiwaki, Hisashi; Watanabe, Yasuo

    2015-01-01

    Proline racemase (ProR) is a member of the pyridoxal 5'-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily.

  7. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  8. Enzymatic modification of schizophyllan

    USDA-ARS?s Scientific Manuscript database

    An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of ß-endoglucanase with specif...

  9. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  10. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  11. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  12. Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production.

    PubMed

    Zhu, Yueming; Men, Yan; Bai, Wei; Li, Xiaobo; Zhang, Lili; Sun, Yuanxia; Ma, Yanhe

    2012-10-01

    The D-psicose 3-epimerase (DPE) gene from Ruminococcus sp. was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at pH 7.5-8.0 and 60 °C. Activity was not dependent on the presence of metal ions; however, it became more thermostable with added Mn(2+). The K (m) of the enzyme for D-psicose (48 mM) was lower than that for D-tagatose (230 mM), suggesting that D-psicose is the optimum substrate. More importantly, the thermostability of the novel DPE from Ruminococcus is the strongest among all of the D-psicose and D-tagatose 3-epimerases and may be suitable for the industrial production of D-psicose from fructose.

  13. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Utility of hesperidinase for food function research: enzymatic digestion of botanical extracts alters cellular antioxidant capacities and anti-inflammatory properties.

    PubMed

    Yu, Lu; Huang, Haiqiu; Yu, Liangli Lucy; Wang, Thomas T Y

    2014-08-27

    Food-derived phytochemicals, many known for their health beneficial effects, often exist in conjugated forms containing sugar moieties such as glucose or rhamnose in foods. The uptake of these compounds requires colonic bacterial cleavage of sugar moieties. However, most studies involved in screening extracts for biological activities do not take this process into account. This study seeks to determine the utility of commercially available hesperidinase to mimic colonic digestion and to test the effects of this treatment on the biological properties of extracts. Using hesperidinase resulted in efficient hydrolysis of Engelhardia roxburghiana Wall. extract containing rhamnose conjugates. Enzymatic digestion enhanced the extract's cellular antioxidant ability by 2-fold in HepG2/C3A and the anti-inflammatory effect on lipopolysaccharide-induced interleukin (IL)-1β and IL-6 expression in mouse macrophage J774A.1 and human monocyte THP-1 cells. Enzymatic digestion also efficiently processed extracts with mixed rhamnose and glucose conjugates and altered their biological activities. Results of the present study supported the importance of considering enzymatic digestion during the biological activity studies of botanicals.

  15. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells.

    PubMed

    Pollack, J D; Williams, M V; McElhaney, R N

    1997-01-01

    discriminating. The arrangements attempt to follow phylogenetic relationships. The relationships of putative gene assignments and enzymatic function in My. genitalium, My. pneumoniae, and My. capricolum subsp. capricolum are specially analyzed. The data are arranged in four tables. One associates gene annotations with congruent reports of the enzymatic activity in these same Mollicutes, and hence confirms the annotations. Another associates putative annotations with reports of the enzyme activity but from different Mollicutes. A third identifies the discrepancies represented by those enzymatic activities found in Mollicutes with sequenced genomes but without any similarly annotated ORF. This suggests that the gene sequence is significantly different from those already deposited in the databanks and putatively annotated with the same function. Another comparison lists those enzymatic activities that are both undetected in Mollicutes and not associated with any ORF. Evidence is presented supporting the theory that there are relatively small gene sequences that code for functional centers of multiple enzymatic activity. This property is seemingly advantageous for an organism with a small genome and perhaps under some coding restraint. The data suggest that a concept of "remnant" or "useless genes" or "useless enzymes" should be considered when examining the relationship of gene annotation and enzymatic function. It also suggests that genes in addition to representing what cells are doing or what they may do, may also identify what they once might have done and may never do again.

  16. Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves.

    PubMed Central

    Schnarrenberger, C.; Flechner, A.; Martin, W.

    1995-01-01

    The intracellular localization of transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase was reexamined in spinach (Spinacia oleracea L.) leaves. We found highly predominant if not exclusive localization of these enzyme activities in chloroplasts isolated by isopyknic centrifugation in sucrose gradients. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose phosphate isomerase, and triose phosphate isomerase activity was present in the chloroplast fraction but showed additional activity in the cytosol (supernatant) fraction attributable to the cytosol-specific isoforms known to exist for these enzymes. Anion-exchange chromatography of proteins of crude extracts on diethylaminoethyl-Fractogel revealed only a single enzyme each for transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase. The data indicate that chloroplasts of spinach leaf cells possess the complete complement of enzymes of the oxidative pentose phosphate path-way (OPPP), whereas the cytosol contains only the first two reactions, contrary to the widely held view that plants generally possess a cytosolic OPPP capable of cyclic function. The chloroplast enzymes transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase appear to be amphibolic for the Calvin cycle and OPPP. PMID:12228497

  17. Enzymatic vitreous surgery.

    PubMed

    Trese, M T

    2000-06-01

    Enzymatic manipulation of the vitreous and vitreoretinal juncture is currently in the process of being evaluated in many centers around the world. The goals of such manipulation are either to disinsert the posterior hyaloid from the retina surface in an atraumatic, very clean, cleavage plane or, at this point, to try to disinsert the peripheral vitreous from the neurosensory retina. In addition, enzymatic manipulation of the central vitreous in terms of liquefaction has also been evaluated. Although this is certainly the beginning of this type of vitreal surgery, adjuvant or alternative, it does appear to be a new and exciting area of vitreoretinal surgery.

  18. A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation

    PubMed Central

    Christie, Michelle P.; Simerská, Pavla; Jen, Freda E.-C.; Hussein, Waleed M.; Rawi, Mohamad F. M.; Hartley-Tassell, Lauren E.; Day, Christopher J.; Jennings, Michael P.; Toth, Istvan

    2014-01-01

    Glycosylation of biopharmaceuticals can mediate cell specific delivery by targeting carbohydrate receptors. Additionally, glycosylation can improve the physico-chemical (drug-like) properties of peptide based drug candidates. The main purpose of this study was to examine if glycosylation of the peptide enkephalin could facilitate its binding to the carbohydrate receptor, asialoglycoprotein. Firstly, we described the one-pot enzymatic galactosylation of lactose modified enkephalin in the presence of uridine-5′-diphosphogalactose 4-epimerase and lipopolysaccharyl α-1,4-galactosyltransferase. Stability experiments using human plasma and Caco-2 cell homogenates showed that glycosylation considerably improved the stability of enkephalin (at least 60% remained stable after a 2 hr incubation at 37°C). In vitro permeability experiments using Caco-2 cells revealed that the permeability of mono- and trisaccharide conjugated enkephalins was 14 and 28 times higher, respectively, than that of enkephalin alone (Papp 3.1×10−8 cm/s). By the methods of surface plasmon resonance and molecular modeling, we demonstrated that the enzymatic glycosylation of enkephalin enabled binding the asialoglycoprotein receptor. The addition of a trisaccharide moiety to enkephalin improved the binding of enkephalin to the asialoglycoprotein receptor two fold (KD = 91 µM). The docking scores from molecular modeling showed that the binding modes and affinities of the glycosylated enkephalin derivatives to the asialoglycoprotein receptor complemented the results from the surface plasmon resonance experiments. PMID:24736570

  19. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  20. Enzymatic Modifications of Polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  1. Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: Enzymatic characterization with crystal structure analysis.

    PubMed

    Wu, Dalei; Hu, Tiancen; Zhang, Liang; Chen, Jing; Du, Jiamu; Ding, Jianping; Jiang, Hualiang; Shen, Xu

    2008-06-01

    Alanine racemase (Alr) is an important enzyme that catalyzes the interconversion of L-alanine and D-alanine, an essential building block in the peptidoglycan biosynthesis. For the small size of the Alr active site, its conserved substrate entryway has been proposed as a potential choice for drug design. In this work, we fully analyzed the crystal structures of the native, the D-cycloserine-bound, and four mutants (P219A, E221A, E221K, and E221P) of biosynthetic Alr from Escherichia coli (EcAlr) and studied the potential roles in substrate orientation for the key residues involved in the substrate entryway in conjunction with the enzymatic assays. Structurally, it was discovered that EcAlr is similar to the Pseudomonas aeruginosa catabolic Alr in both overall and active site geometries. Mutation of the conserved negatively charged residue aspartate 164 or glutamate 165 at the substrate entryway could obviously reduce the binding affinity of enzyme against the substrate and decrease the turnover numbers in both D- to L-Ala and L- to D-Ala directions, especially when mutated to lysine with the opposite charge. However, mutation of Pro219 or Glu221 had only negligible or a small influence on the enzymatic activity. Together with the enzymatic and structural investigation results, we thus proposed that the negatively charged residues Asp164 and Glu165 around the substrate entryway play an important role in substrate orientation with cooperation of the positively charged Arg280 and Arg300 on the opposite monomer. Our findings are expected to provide some useful structural information for inhibitor design targeting the substrate entryway of Alr.

  2. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars.

    PubMed

    Chan, Hsiu-Chien; Zhu, Yueming; Hu, Yumei; Ko, Tzu-Ping; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Ma, Yanhe; Guo, Rey-Ting; Sun, Yuanxia

    2012-02-01

    D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.

  3. Improvement in the thermostability of D-psicose 3-epimerase from Agrobacterium tumefaciens by random and site-directed mutagenesis.

    PubMed

    Choi, Jin-Geun; Ju, Yo-Han; Yeom, Soo-Jin; Oh, Deok-Kun

    2011-10-01

    The S213C, I33L, and I33L S213C variants of D-psicose 3-epimerase from Agrobacterium tumefaciens, which were obtained by random and site-directed mutagenesis, displayed increases of 2.5, 5, and 7.5°C in the temperature for maximal enzyme activity, increases of 3.3-, 7.2-, and 29.9-fold in the half-life at 50°C, and increases of 3.1, 4.3, and 7.6°C in apparent melting temperature, respectively, compared with the wild-type enzyme. Molecular modeling suggests that the improvement in thermostability in these variants may have resulted from increased putative hydrogen bonds and formation of new aromatic stacking interactions. The immobilized wild-type enzyme with and without borate maintained activity for 8 days at a conversion yield of 70% (350 g/liter psicose) and for 16 days at a conversion yield of 30% (150 g/liter psicose), respectively. After 8 or 16 days, the enzyme activity gradually decreased, and the conversion yields with and without borate were reduced to 22 and 9.6%, respectively, at 30 days. In contrast, the activities of the immobilized I33L S213C variant with and without borate did not decrease during the operation time of 30 days. These results suggest that the I33L S213C variant may be useful as an industrial producer of D-psicose.

  4. Food-Grade Expression of d-Psicose 3-Epimerase with Tandem Repeat Genes in Bacillus subtilis.

    PubMed

    He, Weiwei; Mu, Wanmeng; Jiang, Bo; Yan, Xin; Zhang, Tao

    2016-07-20

    An integrative food-grade expression system with tandem repeat target genes was constructed for the expression of d-psicose 3-epimerase (DPEase; EC 5.1.3.30). The DPEase gene fused with the P43 promoter constituted an independent monomeric expression cassette. Multimers of the expression cassette were constructed in vitro using the isocaudamer strategy. The recombinant integration plasmids pDG-nDPE (n = 1, 2, 3), which contained one, two, or three consecutive P43-DPEase tandem repeats, were integrated into the genome of B. subtilis. Then, the antibiotic resistance gene was deleted by the Cre/lox system, and the food-grade recombinant B. subtilis 1A751-nDPE (n = 1, 2, 3) with integrated tandem repeats of the P43-DPEase expression cassette were generated. The specific activity of the B. subtilis 1A751-3DPE was the highest among the recombinant strains and was ∼2.2-fold that of the 1A751-1DPE strain. Under the optimal conditions, 8 g/L of freeze-dried enzyme powder could convert 20% d-fructose (300 g/L) into d-allulose after 1 h.

  5. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass.

    PubMed

    Ali, Nasir; Ting, Zhang; Li, Hailong; Xue, Yong; Gan, Lihui; Liu, Jian; Long, Minnan

    2015-09-01

    Enzymatic hydrolysis of cellulosic biomass has caught much attention because of modest reaction conditions and environment friendly conditions. To reduce the cost and to achieve good quantity of cellulases, a heterologous expression system is highly favored. In this study, cellulose-degrading enzymes, GH3 family β-glucosidase (BGL), GH7 family-related cellobiohydrolases (CBHs), and endoglucanase (EG) from a newly isolated Aspergillus niger BE-2 are highly expressed in Pichia pastoris GS115. The strain produced EG, CBHs, and BGL enzymatic concentration of 0.56, 0.11, and 22 IU/mL, respectively. Mode of actions of the recombinant enzymes for substrate specificity and end product analysis are verified and found specific for cellulose degradation. Bamboo biomass saccharification with A. niger cellulase released a high level of fermentable sugars. Hydrolysis parameters are optimized to obtain reducing sugars level of 3.18 g/L. To obtain reducing sugars from a cellulosic biomass, A. niger could be a good candidate for enzymes resource of cellulase to produce reducing sugars from a cellulosic biomass. This study also facilitates the development of highly efficient enzyme cocktails for the bioconversion of lignocellulosic biomass into monosaccharides and oligosaccharides.

  6. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  7. Enzymatic disease of the podocyte

    PubMed Central

    Kistler, Andreas D.; Peev, Vasil; Forst, Anna-Lena; El Hindi, Shafic; Altintas, Mehmet M.

    2014-01-01

    Proteinuria is an early sign of kidney disease and has gained increasing attention over the past decade because of its close association with cardio-vascular and renal morbidity and mortality. Podocytes have emerged as the cell type that is critical in maintaining proper functioning of the kidney filter. A few genes have been identified that explain genetic glomerular failure and recent insights shed light on the pathogenesis of acquired proteinuric diseases. This review highlights the unique role of the cysteine protease cathepsin L as a regulatory rather than a digestive protease and its action on podocyte structure and function. We provide arguments why many glomerular diseases can be regarded as podocyte enzymatic disorders. PMID:20130922

  8. Enzymatic Synthesis of Psilocybin.

    PubMed

    Fricke, Janis; Blei, Felix; Hoffmeister, Dirk

    2017-09-25

    Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  10. [Enzymatic pancreatogenic omental bursitis].

    PubMed

    Tolstoĭ, A D; Kolupaev, I O; Sopiia, R A

    1996-01-01

    The most common causes of omental sac collections (OSC) are necrotic pancreatitis (90%) and pancreatic trauma (10%). Acute OSC is a form of local peritonitis in acute pancreatitis, subacute OSC are caused by internal pancreatic fistulas. The clinical and radiological signs, enzymatic activity of the exudate, morphological features of peritonitis were investigated. Treatment of acute OSC included conservative measures, of subacute OSC-surgical procedures.

  11. ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson's Disease.

    PubMed

    Villa, R F; Ferrari, F; Gorini, A

    2013-09-17

    The maximum rate (Vmax) of some enzymatic activities related to energy consumption was evaluated in synaptic plasma membranes from rat brain striatum, the synaptic energy state being a crucial factor in neurodegenerative diseases etiopathogenesis. Two types of synaptic plasma membranes were isolated from rats subjected to in vivo treatment with L-acetylcarnitine at two different doses (30 and 60 mg × kg(-1) i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; direct Mg(2+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase; and low- and high-affinity Ca(2+)-ATP-ase. In control (vehicle-treated) animals, enzymatic activities are differently expressed in synaptic plasma membranes type I (SPM1) with respect to synaptic plasma membranes type II (SPM2), the evaluated enzymatic activities being higher in SPM2. Subchronic treatment with L-acetylcarnitine decreased AChE on SPM1 and SPM2 at the dose of 30 mg × kg(-1). Pharmacological treatment decreased ouabain insensitive Mg(2+)-ATP-ase activity and high affinity Ca(2+)-ATP-ase activity at the doses of 30 and 60 mg × kg(-1) respectively on SPM1, while it decreased Na(+), K(+)-ATP-ase, direct Mg(2+)-ATP-ase and Ca(2+), Mg(2+)-ATP-ase activities at the dose of 30 mg × kg(-1) on SPM2. These results suggest that the sensitivity to drug treatment is different between these two populations of synaptic plasma membranes from the striatum, confirming the micro-heterogeneity of these subfractions, possessing different metabolic machinery with respect to energy consumption and utilization and the regional selective effect of L-acetylcarnitine on cerebral tissue, depending on the considered area. The drug potential effect at the synaptic level in Parkinson's Disease neuroprotection is also discussed with respect to acetylcholine and energy metabolism. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights

  12. Enzymatic vitreous disruption.

    PubMed

    Gandorfer, A

    2008-10-01

    Enzymatic vitreous disruption refers to cleaving the vitreoretinal junction by enzymatic means, thereby inducing posterior vitreous detachment (PVD) and liquefaction of the vitreous gel. Several enzymes have been proposed in this respect, including chondroitinase, hyaluronidase, dispase, and plasmin. In an experimental setting, chondroitinase induced PVD and was helpful in removing epiretinal membranes but no further data have been reported yet. Hyaluronidase liquefies the vitreous as demonstrated in a phase III trial in diabetic patients with vitreous haemorrhage. Dispase induces PVD but also causes inner retinal damage and is now used as an animal model of proliferative vitreoretinopathy. Plasmin has the capability of both PVD induction and liquefaction. However, plasmin is highly unstable and not available for clinical use. Microplasmin (ThromboGenics Ltd, Dublin, Ireland) is a truncated form of human plasmin sharing the same catalytic activity like plasmin. Recombinant microplasmin is under clinical investigation in patients with vitreomacular traction. This review article reports on the current knowledge of enzymatic vitreous disruption and discusses details of the enzyme candidates in basic and clinical research terms.

  13. Enzymatic glycosylation of multivalent scaffolds.

    PubMed

    Bojarová, Pavla; Rosencrantz, Ruben R; Elling, Lothar; Křen, Vladimír

    2013-06-07

    The design of glycoclusters, glycodendrimers, glycopolymers and other complex glycostructures that mimic the multivalent carbohydrate display on the cell surface is of immense interest for diagnosis and therapy. This review presents a detailed insight into the exciting possibilities of multiple glycosylation using enzymes, particularly glycosyltransferases (EC 2.4). A representative choice of available scaffolds for the enzyme action is practically infinite and comprises synthetic polymers, carbosilane dendrimers, multiantennary glycans or hyperbranched conjugates. The introduced glyco-patterns range from common sialyl Lewis(x) and sialyl lacto-chains to chemically functionalized carbohydrate units for detection purposes. The possibilities of in vitro enzymatic production of N- and O-glycans and other natural polymers are also discussed. In harmony with their natural tasks, glycosyltransferases may in vitro complete the imperfect glycosylation pattern of proteins, recombinantly produced in pro- and eukaryotic hosts. What is more, the required enzymatic battery may be directly co-expressed with the protein, in order to elegantly accomplish the production of eukaryotic glycans. Ingenious metabolic labeling enables facile imaging of glycostructures. The boom of glycoarray technology opens vast possibilities in high-throughput screening for novel enzymes and substrate specificities as well as in the synthesis. Though there is still a long way until the Nature's ideal of multivalent glycans is achievable in the laboratory, the sketched pathways to multivalent glycostructures open tremendous possibilities for the future glycobiological research.

  14. Graphene based enzymatic bioelectrodes and biofuel cells.

    PubMed

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-28

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  15. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  16. UDP-galactose 4'-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors.

    PubMed

    Zinsser, Veronika L; Lindert, Steffen; Banford, Samantha; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2015-03-01

    Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.

  17. Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion.

    PubMed

    Eibinger, Manuel; Sigl, Karin; Sattelkow, Jürgen; Ganner, Thomas; Ramoni, Jonas; Seiboth, Bernhard; Plank, Harald; Nidetzky, Bernd

    2016-01-01

    Through binding to cellulose, expansin-like proteins are thought to loosen the structural order of crystalline surface material, thus making it more accessible for degradation by hydrolytic enzymes. Swollenin SWO1 is the major expansin-like protein from the fungus Trichoderma reesei. Here, we have performed a detailed characterization of a recombinant native form of SWO1 with respect to its possible auxiliary role in the enzymatic saccharification of lignocellulosic substrates. The swo1 gene was overexpressed in T. reesei QM9414 Δxyr1 mutant, featuring downregulated cellulase production, and the protein was purified from culture supernatant. SWO1 was N-glycosylated and its circular dichroism spectrum suggested a folded protein. Adsorption isotherms (25 °C, pH 5.0, 1.0 mg substrate/mL) revealed SWO1 to be 120- and 20-fold more specific for binding to birchwood xylan and kraft lignin, respectively, than for binding to Avicel PH-101. The SWO1 binding capacity on lignin (25 µmol/g) exceeded 12-fold that on Avicel PH-101 (2.1 µmol/g). On xylan, not only the binding capacity (22 µmol/g) but also the affinity of SWO1 (K d = 0.08 µM) was enhanced compared to Avicel PH-101 (K d = 0.89 µM). SWO1 caused rapid release of a tiny amount of reducing sugars (<1 % of total) from different substrates (Avicel PH-101, nanocrystalline cellulose, steam-pretreated wheat straw, barley β-glucan, cellotetraose) but did not promote continued saccharification. Atomic force microscopy revealed that amorphous cellulose films were not affected by SWO1. Also with AFM, binding of SWO1 to cellulose nanocrystallites was demonstrated at the single-molecule level, but adsorption did not affect this cellulose. SWO1 exhibited no synergy with T. reesei cellulases in the hydrolysis of the different celluloses. However, SWO1 boosted slightly (1.5-fold) the reducing sugar release from a native grass substrate. SWO1 is a strongly glycosylated protein, which has implications for producing

  18. Enzymatic temperature change indicator

    DOEpatents

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  19. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  20. Sizing up single-molecule enzymatic conformational dynamics.

    PubMed

    Lu, H Peter

    2014-02-21

    Enzymatic reactions and related protein conformational dynamics are complex and inhomogeneous, playing crucial roles in biological functions. The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. It is extremely difficult to characterize and analyze such complex dynamics in an ensemble-averaged measurement, especially when the enzymes are associated with multiple-step, multiple-conformation complex chemical interactions and transformations. Beyond the conventional ensemble-averaged studies, real-time single-molecule approaches have been demonstrated to be powerful in dissecting the complex enzymatic reaction dynamics and related conformational dynamics. Single-molecule enzymology has come a long way since the early demonstrations of the single-molecule spectroscopy studies of enzymatic dynamics about two decades ago. The rapid development of this fundamental protein dynamics field is hand-in-hand with the new development of single-molecule imaging and spectroscopic technology and methodology, theoretical model analyses, and correlations with biological preparation and characterization of the enzyme protein systems. The complex enzymatic reactions can now be studied one molecule at a time under physiological conditions. Most exciting developments include active manipulation of enzymatic conformational changes and energy landscape to regulate and manipulate the enzymatic reactivity and associated conformational dynamics, and the new advancements have established a new stage for studying complex protein dynamics beyond by simply observing but by actively manipulating and observing the enzymatic dynamics at the single-molecule sensitivity temporally and spatially.

  1. Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase.

    PubMed

    Chen, Xiaoyan; Wang, Wen; Xu, Jingliang; Yuan, Zhenhong; Yuan, Tao; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2017-10-01

    d-Psicose has been drawing increasing attention in recent years because of its medical and health applications. The production of d-psicose from d-glucose requires the co-expression and synergistic action of xylose isomerase and d-psicose 3-epimerase. To co-express these genes, vector pET-28a(+)-dual containing two T7 promoters and RBS sites and an Multiple Cloning Sites was constructed using the Escherichia coli expression plasmid pET-28a(+). The xylose isomerase gene from E. coli MG1665 and the d-psicose 3-epimerase gene from Agrobacterium tumefaciens CGMCC 1.1488 were cloned and co-expressed in E. coli BL21(DE3). After 24h incubation with the dual enzyme system at 40°C, the sugar conversion ratio from d-glucose to d-psicose reached 10%. The optimal conditions were 50°C, pH 7.5 with Co(2+) and Mg(2+). The d-psicose yields from sugarcane bagasse and microalgae hydrolysate were 1.42 and 1.69g/L, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties.

    PubMed

    Shen, Qing; Guo, Rui; Dai, Zhiyuan; Zhang, Yanping

    2012-05-23

    This study was carried out to investigate the enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle of the marine fish species Collichthys niveatus. About 160 fish samples were tested, and the analyzed fish species was found to be a lean fish with low fat (1.77 ± 0.01%) and high protein (16.76 ± 1.21%). Fish muscle of C. niveatus was carefully collected and hydrolyzed with four commercial enzymes: Alcalase, Neutrase, Protamex, and Flavourzyme under the conditions recommended by the manufacturers. Among the tested proteases, Neutrase catalyzed the hydrolysis process most effectively since the hydrolysate generated by Neutrase has the highest content of sweet and umami taste amino acids (SUA). The effect of hydrolysis conditions was further optimized using response surface methodology (RSM), and the optimum values for temperature, pH, and enzyme/substrate ratio (E/S ratio) were found to be 40.7 °C, 7.68, and 0.84%, respectively. Finally, the amino acid composition of the hydrolysate was analyzed by AccQ·Tag derivatization and HPLC-PDA determination. Major amino acids of the muscle of C. niveatus were threonine, glutamic acid, phenyalanine, tryptophan, and lysine, accounting for respectively 10.92%, 10.85%, 10.79%, 9.86%, and 9.76% of total amino acid content. The total content of essential amino acids was 970.7 ng·mL(-1), while that of nonessential amino acids was 709.1 ng·mL(-1). The results suggest that the fish muscle and its protein hydrolysate from C. niveatus provide a versatile supply of the benefits and can be incorporated as supplements in health-care foods.

  3. Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

    PubMed Central

    Salinas-Chavira, J.; Arzola, C.; González-Vizcarra, V.; Manríquez-Núñez, O. M.; Montaño-Gómez, M. F.; Navarrete-Reyes, J. D.; Raymundo, C.; Zinn, R. A.

    2015-01-01

    In experiment 1, eighty crossbred steers (239±15 kg) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg) with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets. PMID:26194225

  4. Molecular characterization of endo-1,3-β-glucanase from Cellulosimicrobium cellulans: effects of carbohydrate-binding module on enzymatic function and stability.

    PubMed

    Tanabe, Yoichi; Oda, Masayuki

    2011-12-01

    An endo-1,3-β-glucanase was purified from Tunicase®, a crude enzyme preparation from Cellulosimicrobium cellulans DK-1, and determined to be a 383-residue protein (Ala1-Leu383), comprising a catalytic domain of the glycoside hydrolase family 16 and a C-terminal carbohydrate-binding module family 13. The Escherichia coli expression system of the catalytic domain (Ala1-Thr256) was constructed, and the protein with N-terminal polyhistidine tag was purified using a Ni-nitrilotriacetic acid column. We analyzed enzymatic properties of the recombinant catalytic domain, its variants, and the Tunicase®-derived full-length endo-1,3-β-glucanase. Substitution of Glu119 with Ala and deletion of Met123, both of the residues are located in the catalytic motif, resulted in the loss of hydrolytic activity. In comparison between the full-length enzyme and isolated catalytic domain, their hydrolytic activities for soluble substrates such as laminarin and laminarioligosaccharides were similar. In contrast, the hydrolytic activity of the full-length enzyme for insoluble substrates such as curdlan and yeast-glucan was significantly higher than that of the catalytic domain. It should be noted that the acid stabilities for the hydrolysis of laminarin were clearly different. Secondary structure analysis using circular dichroism showed that the full-length enzyme was more acid stable than was the catalytic domain, possibly because of domain interactions between the catalytic domain and the carbohydrate-binding module. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cephalopod alcohol dehydrogenase: purification and enzymatic characterization.

    PubMed

    Rosario Fernández, M; Jörnvall, H; Moreno, A; Kaiser, R; Parés, X

    1993-08-16

    Octopus, squid and cuttle-fish organs were examined for alcohol dehydrogenase activity. Only one form was detectable, with properties typical of mammalian class III alcohol dehydrogenase. The corresponding protein was purified from octopus and enzymatically characterized. Ion-exchange and affinity chromatography produced a pure protein in excellent yield (73%) after 1600-fold purification. Enzymatic parameters with several substrates were similar to those for the human class III alcohol dehydrogenase, demonstrating a largely conserved function of the enzyme through wide lines of divergence covering vertebrates, cephalopods and bacteria. The results establish the universal occurrence of class III alcohol dehydrogenase and its strictly conserved functional properties in separate living forms. The absence of other alcohol dehydrogenases in cephalopods is compatible with the emergence of the ethanol-active class I type at a later stage, in lineages leading to vertebrates.

  6. The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels.

    PubMed

    Müller, Ingrid B; Bergmann, Bärbel; Groves, Matthew R; Couto, Isabel; Amaral, Leonard; Begley, Tadhg P; Walter, Rolf D; Wrenger, Carsten

    2009-11-03

    Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.

  7. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.

    PubMed

    Cheng, Gang; Varanasi, Patanjali; Li, Chenlin; Liu, Hanbin; Melnichenko, Yuri B; Simmons, Blake A; Kent, Michael S; Singh, Seema

    2011-04-11

    Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellulose (Avicel), switchgrass (Panicum virgatum), pine ( Pinus radiata ), and eucalyptus ( Eucalyptus globulus ), and its influence on cellulose hydrolysis kinetics of the resultant biomass. These feedstocks were pretreated using 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]) at 120 and 160 °C for 1, 3, 6, and 12 h. The influence of the pretreatment conditions on the cellulose crystalline structure was analyzed by X-ray diffraction (XRD). On a larger length scale, the impact of ionic liquid pretreatment on the surface roughness of the biomass was determined by small-angle neutron scattering (SANS). Pretreatment resulted in a loss of native cellulose crystalline structure. However, the transformation processes were distinctly different for Avicel and for the biomass samples. For Avicel, a transformation to cellulose II occurred for all processing conditions. For the biomass samples, the data suggest that pretreatment for most conditions resulted in an expanded cellulose I lattice. For switchgrass, first evidence of cellulose II only occurred after 12 h of pretreatment at 120 °C. For eucalyptus, first evidence of cellulose II required more intense pretreatment (3 h at 160 °C). For pine, no clear evidence of cellulose II content was detected for the most intense pretreatment conditions of this study (12 h at 160 °C). Interestingly, the rate of enzymatic hydrolysis of Avicel was slightly lower for pretreatment at 160 °C compared with pretreatment at 120 °C. For the biomass samples, the hydrolysis rate was much greater for pretreatment at 160 °C compared with pretreatment

  8. The Intergenic Interplay between Aldose 1-Epimerase-Like Protein and Pectin Methylesterase in Abiotic and Biotic Stress Control

    PubMed Central

    Sheshukova, Ekaterina V.; Komarova, Tatiana V.; Pozdyshev, Denis V.; Ershova, Natalia M.; Shindyapina, Anastasia V.; Tashlitsky, Vadim N.; Sheval, Eugene V.; Dorokhov, Yuri L.

    2017-01-01

    The mechanical damage that often precedes the penetration of a leaf by a pathogen promotes the activation of pectin methylesterase (PME); the activation of PME leads to the emission of methanol, resulting in a “priming” effect on intact leaves, which is accompanied by an increased sensitivity to Tobacco mosaic virus (TMV) and resistance to bacteria. In this study, we revealed that mRNA levels of the methanol-inducible gene encoding Nicotiana benthamiana aldose 1-epimerase-like protein (NbAELP) in the leaves of intact plants are very low compared with roots. However, stress and pathogen attack increased the accumulation of the NbAELP mRNA in the leaves. Using transiently transformed plants, we obtained data to support the mechanism underlying AELP/PME-related negative feedback The insertion of the NbAELP promoter sequence (proNbAELP) into the N. benthamiana genome resulted in the co-suppression of the natural NbAELP gene expression, accompanied by a reduction in the NbAELP mRNA content and increased PME synthesis. Knockdown of NbAELP resulted in high activity of PME in the cell wall and a decrease in the leaf glucose level, creating unfavorable conditions for Agrobacterium tumefaciens reproduction in injected leaves. Our results showed that NbAELP is capable of binding the TMV movement protein (MPTMV) in vitro and is likely to affect the cellular nucleocytoplasmic transport, which may explain the sensitivity of NbAELP knockdown plants to TMV. Although NbAELP was primarily detected in the cell wall, the influence of this protein on cellular PME mRNA levels might be associated with reduced transcriptional activity of the PME gene in the nucleus. To confirm this hypothesis, we isolated the N. tabacum PME gene promoter (proNtPME) and showed the inhibition of proNtPME-directed GFP and GUS expression in leaves when co-agroinjected with the NbAELP-encoding plasmid. We hypothesized that plant wounding and/or pathogen attack lead to PME activation and increased methanol

  9. Glutathione S-transferase can be used as a C-terminal, enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of Escherichia coli.

    PubMed Central

    Tudyka, T.; Skerra, A.

    1997-01-01

    Glutathione S-transferase (GST) from Schistosoma japonicum, which is widely used for the production of fusion proteins in the cytoplasm of Escherichia coli, was employed as a functional fusion module that effects dimer formation of a recombinant protein and confers enzymatic reporter activity at the same time. For this purpose GST was linked via a flexible spacer to the C-terminus of the thiol-protease inhibitor cystatin, whose binding properties for papain were to be studied. The fusion protein was secreted into the bacterial periplasm by means of the OmpA signal peptide to ensure formation of the two disulfide bonds in cystatin. The formation of wrong crosslinks in the oxidizing milieu was prevented by replacing three of the four exposed cysteine residues in GST. Using the tetracycline promoter for tightly controlled gene expression the soluble fusion protein could be isolated from the periplasmic protein fraction. Purification to homogeneity was achieved in one step by means of an affinity column with glutathione agarose. Alternatively, the protein was isolated via streptavidin affinity chromatography after the Strep-tag had been appended to its C terminus. The GST moiety of the fusion protein was enzymatically active and the kinetic parameters were determined using glutathione and 1-chloro-2,4-dinitrobenzene as substrates. Furthermore, strong binding activity for papain was detected in an ELISA. The signal with the cystatin-GST fusion protein was much higher than with cystatin itself, demonstrating an avidity effect due to the dimer formation of GST. The quaternary structure was further confirmed by chemical crosslinking, which resulted in a specific reaction product with twice the molecular size. Thus, engineered GST is suitable as a moderately sized, secretion-competent fusion partner that can confer bivalency to a protein of interest and promote detection of binding interactions even in cases of low affinity. PMID:9336840

  10. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin.

    PubMed

    Singh, Ram Sarup; Singh, Rupinder Pal; Kennedy, John F

    2016-04-01

    In the past few years, people are paying more attention to their dietary habits, and functional foods are playing a key role in maintaining the health of man. Prebiotics are considered as a main component of the functional foods which are usually composed of short chains of carbohydrates. Fructooligosaccharides (FOSs) are considered as one of the main group of prebiotics which have recognisable bifidogenic properties. FOSs are obtained either by extraction from various plant materials or by enzymatic synthesis from different substrates. Enzymatically, these can be obtained either from sucrose using fructosyltransferase or from inulin by endoinulinase. Inulin is a potent substrate for the enzymatic production of FOSs. This review article will provide an overview on the inulin as potent substrate, microbial sources of endoinulinases, enzymatic synthesis of FOSs from inulin, commercial status of FOSs, and their future perspectives.

  11. Enzymatic Processing of Platinated RNAs

    PubMed Central

    Chapman, Erich G.; DeRose, Victoria J.

    2011-01-01

    The broadly prescribed anti-tumor drug cisplatin coordinates to DNA, altering the activity of cellular proteins whose functions rely upon sensing DNA structure. Cisplatin is also known to coordinate to RNA, but the effects of RNA-Pt adducts on the large number of proteins that process the transcriptome are currently unknown. In an effort to address how platination of an RNA alters the function of RNA processing enzymes, we have determined the influence of [Pt(NH3)2]2+-RNA adducts on the activities of 3’ → 5’ and 5’→3’ phosphodiesterases, a purine-specific endoribonuclease, and a reverse transcriptase. Single Pt(II) adducts on RNA oligonucleotides of form (5’-U6-XY-U5-3’: XY=GG, GA, AG, GU) are found to block exonucleolytic digestion. Similar disruption of endonucleolytic cleavage is observed, except for the platinated XY= GA RNA where RNase U2 uniquely tolerates platinum modification. Platinum adducts formed with a more complex RNA prevent reverse transcription, providing evidence that platination is capable of interfering with RNA’s role in relaying sequence information. The observed disruptions in enzymatic activity point to the possibility that cellular RNA processing may be similarly affected, which could contribute to the cell-wide effects of platinum anti-tumor drugs. Additionally, we show that thiourea reverses cisplatin-RNA adducts, providing a chemical tool for use in future studies regarding cisplatin targeting of cellular RNAs. PMID:20099814

  12. Structural Basis for the Aldolase and Epimerase Activities of Staphylococcus aureus Dihydroneopterin Aldolase

    SciTech Connect

    Blaszczyk,J.; Li, Y.; Gan, J.; Yan, H.; Ji, X.

    2007-01-01

    Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and also the epimerization of DHNP to 7,8-dihydromonopterin (DHMP). Although crystal structures of the enzyme from several microorganisms have been reported, no structural information is available about the critical interactions between DHNA and the trihydroxypropyl moiety of the substrate, which undergoes bond cleavage and formation. Here, we present the structures of Staphylococcus aureus DHNA (SaDHNA) in complex with neopterin (NP, an analog of DHNP) and with monapterin (MP, an analog of DHMP), filling the gap in the structural analysis of the enzyme. In combination with previously reported SaDHNA structures in its ligand-free form (PDB entry 1DHN) and in complex with HP (PDB entry 2DHN), four snapshots for the catalytic center assembly along the reaction pathway can be derived, advancing our knowledge about the molecular mechanism of SaDHNA-catalyzed reactions. An additional step appears to be necessary for the epimerization of DHMP to DHNP. Three active site residues (E22, K100, and Y54) function coordinately during catalysis: together, they organize the catalytic center assembly, and individually, each plays a central role at different stages of the catalytic cycle.

  13. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes.

  14. Enzymatic degradation of endomorphins.

    PubMed

    Janecka, Anna; Staniszewska, Renata; Gach, Katarzyna; Fichna, Jakub

    2008-11-01

    Centrally acting plant opiates, such as morphine, are the most frequently used analgesics for the relief of severe pain, even though their undesired side effects are serious limitation to their usefulness. The search for new therapeutics that could replace morphine has been mainly focused on the development of peptide analogs or peptidomimetics with high selectivity for one receptor type and high bioavailability, that is good blood-brain barrier permeability and enzymatic stability. Drugs, in order to be effective, must be able to reach the target tissue and to remain metabolically stable to produce the desired effects. The study of naturally occurring peptides provides a rational and powerful approach in the design of peptide therapeutics. Endogenous opioid peptides, endomorphin-1 and endomorphin-2, are two potent and highly selective mu-opioid receptor agonists, discovered only a decade ago, which display potent analgesic activity. However, extensive studies on the possible use of endomorphins as analgesics instead of morphine met with failure due to their instability. This review deals with the recent investigations that allowed determine degradation pathways of endomorphins in vitro and in vivo and propose modifications that will lead to more stable analogs.

  15. Enzymatic hydrolysis of poly(ethylene furanoate).

    PubMed

    Pellis, Alessandro; Haernvall, Karolina; Pichler, Christian M; Ghazaryan, Gagik; Breinbauer, Rolf; Guebitz, Georg M

    2016-10-10

    The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling.

  16. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  17. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  18. Enzymatic reactions in confined environments.

    PubMed

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-05

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  19. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  20. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  1. Enzymatic synthesis of organophosphorus compounds

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Oleg I.

    2011-09-01

    Data on biocatalytic methods for the preparation of chiral organophosphorus compounds are generalized and described systematically. Various examples of enzymatic and microbiological synthesis of hydroxyphosphonates, aminophosphonates, phosphinites, phosphine oxides and tertiary phosphines are discussed. The bibliography includes 154 references.

  2. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  3. The 2.35 A structure of the TenA homolog from Pyrococcus furiosus supports an enzymatic function in thiamine metabolism.

    PubMed

    Benach, Jordi; Edstrom, William C; Lee, Insun; Das, Kalyan; Cooper, Bonnie; Xiao, Rong; Liu, Jinfeng; Rost, Burkhard; Acton, Thomas B; Montelione, Gaetano T; Hunt, John F

    2005-05-01

    TenA (transcriptional enhancer A) has been proposed to function as a transcriptional regulator based on observed changes in gene-expression patterns when overexpressed in Bacillus subtilis. However, studies of the distribution of proteins involved in thiamine biosynthesis in different fully sequenced genomes have suggested that TenA may be an enzyme involved in thiamine biosynthesis, with a function related to that of the ThiC protein. The crystal structure of PF1337, the TenA homolog from Pyrococcus furiosus, is presented here. The protomer comprises a bundle of alpha-helices with a similar tertiary structure and topology to that of human heme oxygenase-1, even though there is no significant sequence homology. A solvent-sequestered cavity lined by phylogenetically conserved residues is found at the core of this bundle in PF1337 and this cavity is observed to contain electron density for 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate, the product of the ThiC enzyme. In contrast, the modestly acidic surface of PF1337 shows minimal levels of sequence conservation and a dearth of the basic residues that are typically involved in DNA binding in transcription factors. Without significant conservation of its surface properties, TenA is unlikely to mediate functionally important protein-protein or protein-DNA interactions. Therefore, the crystal structure of PF1337 supports the hypothesis that TenA homologs have an indirect effect in altering gene-expression patterns and function instead as enzymes involved in thiamine metabolism.

  4. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  5. Super-oxide anion production and antioxidant enzymatic activities associated with the executive functions in peripheral blood mononuclear cells of healthy adult samples.

    PubMed

    Pesce, M; Rizzuto, A; La Fratta, I; Tatangelo, R; Campagna, G; Iannasso, M; Ferrone, A; Franceschelli, S; Speranza, L; Patruno, A; De Lutiis, M A; Felaco, M; Grilli, A

    2016-05-01

    Executive Functions (EFs) involve a set of high cognitive abilities impairment which have been successfully related to a redox omeostasis imbalance in several psychiatric disorders. Firstly, we aimed to investigate the relationship between executive functioning and some oxidative metabolism parameters in Peripheral Blood Mononuclear Cells (PBMCs) from healthy adult samples. The Brown Attention-Deficit Disorder Scales were administered to assess five specific facets of executive functioning. Total superoxide anion production, Super Oxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) activities were evaluated on proteins extracted from the PBMCs. We found significant positive correlations between superoxide anion production and the total score of the 'Brown' Scale and some of its clusters. The GPx and CAT activities were negatively associated with the total score and some clusters. In a linear regression analysis, these biological variables were indicated as the most salient predictors of the total score, explaining the 24% variance (adjusted R(2)=0.24, ANOVA, p<.001). This study provides novel evidence that Executive Functions have underpinnings in the oxidative metabolism, as ascertained in healthy subjects.

  6. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action

    PubMed Central

    Makarova, Kira S; Grishin, Nick V; Shabalina, Svetlana A; Wolf, Yuri I; Koonin, Eugene V

    2006-01-01

    Background All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. Results The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding

  7. Mass production of D-psicose from d-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase.

    PubMed

    Takeshita, K; Suga, A; Takada, G; Izumori, K

    2000-01-01

    An improved process for the mass production of D-psicose from D-fructose was developed. A D-fructose solution (60%, pH 7.0) was passed at 45 degrees C through a column filled with immobilized D-tagatose 3-epimerase (D-TE) which was produced using recombinant Escherichia coli, and 25% of the substrate was converted to D-psicose. After epimerization, the substrate, D-fructose, was removed by treatment with baker's yeast. The supernatant was concentrated to a syrup by evaporation under vacuum and D-psicose was crystallized with ethanol. Approximately 20 kg of pure crystal D-psicose was obtained in 60 d.

  8. Roles of Ile66 and Ala107 of D-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, D-fructose.

    PubMed

    Kim, Hye-Jung; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Dooil; Oh, Deok-Kun

    2010-01-01

    Using site-directed mutagenesis, we investigated the roles of Ile66 and Ala107 of D: -psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its true substrate, D: -fructose. When Ile66 was substituted with alanine, glycine, cysteine, leucine, phenylalanine, tryptophan, tyrosine or valine, all the mutants dramatically increased the K (m) for D: -tagatose but slightly decreased the K (m) for D: -fructose, indicating that Ile66 is involved in substrate recognition. When Ala107 was substituted by either isoleucine or valine, the substituted mutants had lower thermostability than the wild-type enzyme whereas the proline-substituted mutant had higher thermostability. Thus, Ala107 is involved in enzyme stability.

  9. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution.

    PubMed

    Fuchs, Sebastian W; Lackner, Gerald; Morinaka, Brandon I; Morishita, Yohei; Asai, Teigo; Riniker, Sereina; Piel, Jörn

    2016-09-26

    Ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) exhibit diverse structures and bioactivities and are classified into distinct biosynthetic families. A recently reported family is the proteusins, with the prototype members polytheonamides being generated by almost 50 maturation steps, including introduction of d-residues at multiple positions by an unusual radical SAM epimerase. A region in the protein-like N-terminal leader of proteusin precursors is identified that is crucial for epimerization. It resembles a precursor motif previously shown to mediate interaction in thioether bridge-formation in class I lanthipeptide biosynthesis. Beyond this region, similarities were identified between proteusin and further RiPP families, including class I lanthipeptides. The data suggest that common leader features guide distinct maturation types and that nitrile hydratase-like enzymes are ancestors of several RiPP classes.

  10. Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the 'RED' family).

    PubMed Central

    Labesse, G; Vidal-Cros, A; Chomilier, J; Gaudry, M; Mornon, J P

    1994-01-01

    Using both primary- and tertiary-structure comparisons, we have established new structural similarities shared by reductases, epimerases and dehydrogenases not previously known to be related. Despite the low sequence identity (down to 10%), short consensus segments are identified. We show that the sequence, the active site and the supersecondary structure are well conserved in these proteins. New homologues (the protochlorophyllide reductases) are detected, and we define a new superfamily composed of single-domain dinucleotide-binding enzymes. Rules for the cofactor-binding specificity are deduced from our sequence alignment. The involvement of some amino acids in catalysis is discussed. Comparison with two-domain dehydrogenases allows us to distinguish two general mechanisms of divergent evolution. Images Figure 1 PMID:7998963

  11. High-resolution crystal structure of Trypanosoma brucei UDP-galactose 4'-epimerase: a potential target for structure-based development of novel trypanocides.

    PubMed

    Shaw, Matthew P; Bond, Charles S; Roper, Janine R; Gourley, David G; Ferguson, Michael A J; Hunter, William N

    2003-02-01

    The crystal structure of UDP-galactose 4'-epimerase from the protozoan parasite Trypanosoma brucei in complex with the cofactor NAD(+) and a fragment of the substrates, UDP, has been determined at 2.0 A resolution (1 A = 0.1 nm). This enzyme, recently proven to be essential for this pathogenic parasite, shares 33% sequence identity with the corresponding enzyme in the human host. Structural comparisons indicate that many of the protein-ligand interactions are conserved between the two enzymes. However, in the UDP-binding pocket there is a non-conservative substitution from Gly237 in the human enzyme to Cys266 in the T. brucei enzyme. Such a significant difference could be exploited by the structure-based design of selective inhibitors using the structure of the trypanosomatid enzyme as a template.

  12. An HPLC method for the assay of UDP-glucose pyrophosphorylase and UDP-glucose-4-epimerase in Solieria chordalis (Rhodophyceae).

    PubMed

    Goulard, F; Diouris, M; Deslandes, E; Floc'h, J Y

    2001-01-01

    An efficient method to assay both UDP-glucose pyrophosphorylase and UDP-glucose-4-epimerase in a crude extract of the red seaweed, Solieria chordalis is described. The method is based on the direct quantification by reverse-phase high-performance liquid chromatography of the UDP-sugars generated in the reaction mixture. UDP-glucose, UDP-galactose and UTP were detected by spectrophotometry at 254 nm and their recoveries ranged from 97 to 100%. In the course of the reaction, a correlation was observed between the reduction in the area of the substrate peak and the occurrence of product peak(s). This highly reproducible method for enzyme assay is fast since no intermediate reaction mixture is required.

  13. Michaelis-Menten equation and detailed balance in enzymatic networks.

    PubMed

    Cao, Jianshu

    2011-05-12

    Many enzymatic reactions in biochemistry are far more complex than the celebrated Michaelis-Menten scheme, but the observed turnover rate often obeys the hyperbolic dependence on the substrate concentration, a relation established almost a century ago for the simple Michaelis-Menten mechanism. To resolve the longstanding puzzle, we apply the flux balance method to predict the functional form of the substrate dependence in the mean turnover time of complex enzymatic reactions and identify detailed balance (i.e., the lack of unbalanced conformational current) as a sufficient condition for the Michaelis-Menten equation to describe the substrate concentration dependence of the turnover rate in an enzymatic network. This prediction can be verified in single-molecule event-averaged measurements using the recently proposed signatures of detailed balance violations. The finding helps analyze recent single-molecule studies of enzymatic networks and can be applied to other external variables, such as force-dependence and voltage-dependence.

  14. Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity.

    PubMed

    Myöhänen, Timo T; García-Horsman, J Arturo; Tenorio-Laranga, Jofre; Männistö, Pekka T

    2009-09-01

    Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30 amino acids. POP may be associated with cognitive functions, possibly via the cleavage of neuropeptides. Recent studies have also suggested novel non-hydrolytic and non-catalytic functions for POP. Moreover, POP has also been proposed as a regulator of inositol 1,4,5-triphosphate signaling and several other functions such as cell proliferation and differentiation, as well as signal transduction in the central nervous system, and it is suspected to be involved in pathological conditions such as Parkinson's and Alzheimer's diseases and cancer. POP inhibitors have been developed to restore the depleted neuropeptide levels encountered in aging or in neurodegenerative disorders. These compounds have shown some antiamnesic effects in animal models. However, the mechanisms of these hypothesized actions are still far from clear. Moreover, the physiological role of POP has remained unknown, and a lack of basic studies, including its distribution, is obvious. The aim of this review is to gather information about POP and to propose some novel roles for this enzyme based on its distribution and its discordant spatial association with its best known substrates.

  15. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization.

    PubMed

    Jia, Min; Mu, Wanmeng; Chu, Feifei; Zhang, Xiaoming; Jiang, Bo; Zhou, Liuming Leon; Zhang, Tao

    2014-01-01

    D-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for D-psicose production from D-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a D-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co²⁺. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using D-psicose as the substrate, the apparent K(m), k(cat), and catalytic efficiency (k(cat)/K(m)) were 27.4 mM, 49 s⁻¹, and 1.78 s⁻¹ mM⁻¹, respectively. Under the optimal conditions, the equilibrium ratio of D-fructose to D-psicose was 69:31. For high production of D-psicose, 216 g/L D-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate D-fructose, indicating that the enzyme was a potential D-psicose producer for industrial production.

  16. Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells

    SciTech Connect

    Krause, Sabine; Hinderlich, Stephan; Amsili, Shira; Horstkorte, Ruediger; Wiendl, Heinz; Argov, Zohar; Mitrani-Rosenbaum, Stella; Lochmueller, Hanns . E-mail: hanns@lmb.uni-muenchen.de

    2005-04-01

    The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.

  17. Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Pseudomonas putida KT2440

    PubMed Central

    Wehrmann, Matthias; Billard, Patrick; Martin-Meriadec, Audrey; Zegeye, Asfaw

    2017-01-01

    ABSTRACT The oxidation of alcohols and aldehydes is crucial for detoxification and efficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) that are often functionally redundant. Here we report the first description and characterization of a lanthanide-dependent PQQ-ADH (PedH) in a nonmethylotrophic bacterium based on the use of purified enzymes from the soil-dwelling model organism Pseudomonas putida KT2440. PedH (PP_2679) exhibits enzyme activity on a range of substrates similar to that of its Ca2+-dependent counterpart PedE (PP_2674), including linear and aromatic primary and secondary alcohols, as well as aldehydes, but only in the presence of lanthanide ions, including La3+, Ce3+, Pr3+, Sm3+, or Nd3+. Reporter assays revealed that PedH not only has a catalytic function but is also involved in the transcriptional regulation of pedE and pedH, most likely acting as a sensory module. Notably, the underlying regulatory network is responsive to as little as 1 to 10 nM lanthanum, a concentration assumed to be of ecological relevance. The present study further demonstrates that the PQQ-dependent oxidation system is crucial for efficient growth with a variety of volatile alcohols. From these results, we conclude that functional redundancy and inverse regulation of PedE and PedH represent an adaptive strategy of P. putida KT2440 to optimize growth with volatile alcohols in response to the availability of different lanthanides. PMID:28655819

  18. Molecular crowding and protein enzymatic dynamics.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2012-05-21

    The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding.

  19. Enzymatic labeling of proteins: techniques and approaches.

    PubMed

    Rashidian, Mohammad; Dozier, Jonathan K; Distefano, Mark D

    2013-08-21

    Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally occurring post-translational modifications, for creating antibody–drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics, and protein–protein interactions, and for the preparation of protein–polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups not only are inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase, and N-myristoyltransferase.

  20. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed Central

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme. PMID:8550452

  1. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme.

  2. Using Non-Enzymatic Chemistry to Influence Microbial Metabolism

    PubMed Central

    Wallace, Stephen; Schultz, Erica E.; Balskus, Emily P.

    2015-01-01

    The structural manipulation of small molecule metabolites occurs in all organisms and plays a fundamental role in essentially all biological processes. Despite an increasing interest in developing new, non-enzymatic chemical reactions capable of functioning in the presence of living organisms, the ability of such transformations to interface with cellular metabolism and influence biological function is a comparatively underexplored area of research. This review will discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight recent and historical uses of non-biological reactions to study microbial growth and function, the use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis. PMID:25579453

  3. Effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the presence of Salmonella spp. in the ceca of broiler breeder females.

    PubMed

    Walker, G K; Jalukar, S; Brake, J

    2017-03-31

    Broiler breeders hatched from Salmo-nella negative grandparents received either zero or 50 g/MT of refined functional carbohydrates (RFC) in their diets from d of placement to end of lay. There were no other treatments used. Pullets and cockerels were reared separately in an enclosed litter-floor house to 21 wk of age when 28 randomly selected pullets from each diet were transferred to individual cages for an additional 14 d before they were killed, and their ceca were excised aseptically and tested for Salmonella spp. The remaining birds were transferred to a two-thirds slat and one-third litter curtain-sided laying house. There were 8 pens of 60 to 65 females and 8 to 18 males, depending upon flock age and housing type, fed each diet, and there was no effort made to isolate pens from typical daily foot traffic between pens. At 51 wk of age, male progeny broiler chicks were hatched and received either zero or 50 g/MT of RFC to complete a 2 × 2 design with 4 replicate pens of 12 males per interaction. All broilers were tested for cecal Salmonella spp. at 34 d of age. Ceca were collected from 30 breeder hens from each treatment at 64 wk of age and tested for Salmonella spp. Of the ceca sampled at 23 wk from the control pullets, 71.4% were found to contain Salmonella spp., while none of the ceca from the RFC pullets tested positive. Of the ceca sampled from the control hens at 64 wk, 40% were found to contain Salmonella spp., while none of the ceca from the RFC hens tested positive. Salmonella spp. was isolated from broilers in one pen of the control broilers that were also progeny of control breeders out of 4 replicates but not from any pens in which the breeders had been fed RFC. These data demonstrated that RFC reduced natural Salmonella spp. colonization of broiler breeder hen and broiler progeny ceca during a complete production cycle.

  4. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    PubMed

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

  5. Structure of L-xylulose-5-Phosphate 3-epimerase (UlaE) from the anaerobic L-ascorbate utilization pathway of Escherichia coli: identification of a novel phosphate binding motif within a TIM barrel fold.

    PubMed

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2008-12-01

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a beta-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel beta-strands. The enzyme binds Zn(2+), which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the beta1/alpha1 loop and alpha3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands beta7 and beta8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  6. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    SciTech Connect

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  7. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation.

    PubMed

    Zhang, Kangyao; Lv, Shuzhen; Lin, Zhenzhen; Tang, Dianping

    2017-09-15

    A new photoelectrochemical (PEC) immunosensor based on Mn-doped CdS quantum dots (CdS:Mn QDs) on g-C3N4 nanosheets was developed for the sensitive detection of prostate specific antibody (PSA) in biological fluids. The signal derived from the as-synthesized Cd:Mn QDs-functionalized g-C3N4 nanohybrids via a hydrothermal method and was amplified through DNAzyme concatamers on gold nanoparticles accompanying enzymatic biocatalytic precipitation. Experimental results by UV-vis absorption spectra and photoluminescence revealed that CdS:Mn QDs/g-C3N4 nanohybrids exhibited higher photocurrent than those of CdS:Mn QDs and g-C3N4 alone. Upon addition of target PSA, a sandwich-type immunoreaction was carried out between capture antibodies and the labeled detection antibodies. Accompanying introduction of gold nanoparticles, the labeled initiator strands on the AuNPs triggered hybridization chain reaction and the formation of DNAzyme concatamers in the presence of hemin. The formed DNAzyme catalyzed 4-chloro-1-naphthol (4-CN) to produce an insoluble/insulating precipitate on the Mn:CdS QDs/g-C3N4, and blocked the light harvesting of Mn:CdS QDs/g-C3N4, thus resulting in the decreasing photocurrent. Under optimal conditions, the immunosensor exhibited good photocurrent responses for determination of target PSA, and allowed detection of PSA at a concentration as low as 3.8pgmL(-1). The specificity, reproducibility and precision of this system were acceptable. Significantly, this methodology was further evaluated for analyzing human serum samples, giving well-matched results with referenced PSA enzyme-linked immunosorbent assay (ELISA) method. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bioluminescence methods for enzymatic determinations

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1982-11-02

    An enzymatic method for continuous, on-line and rapid detection of diagnostically useful biomarkers, which are symptomatic of disease or trauma-related tissue damage, is disclosed. The method is characterized by operability on authentic samples of complex biological fluids which contain the biomarkers.

  9. Bioluminescence methods for enzymatic determinations

    DOEpatents

    Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.

    1982-01-01

    An enzymatic method for continuous, on-line and rapid detection of diagnostically useful biomarkers, which are symptomatic of disease or trauma-related tissue damage, is disclosed. The method is characterized by operability on authentic samples of complex biological fluids which contain the biomarkers.

  10. Multifractality in intracellular enzymatic reactions.

    PubMed

    Aranda, Juan S; Salgado, Edgar; Muñoz-Diosdado, Alejandro

    2006-05-21

    Enzymatic kinetics adjust well to the Michaelis-Menten paradigm in homogeneous media with dilute, perfectly mixed reactants. These conditions are quite different from the highly structured cell plasm, so applications of the classic kinetics theory to this environment are rather limited. Cytoplasmic structure produces molecular crowding and anomalous diffusion of substances, modifying the mass action kinetic laws. The reaction coefficients are no longer constant but time-variant, as stated in the fractal kinetics theory. Fractal kinetics assumes that enzymatic reactions on such heterogeneous media occur within a non-Euclidian space characterized by a certain fractal dimension, this fractal dimension gives the dependence on time of the kinetic coefficients. In this work, stochastic simulations of enzymatic reactions under molecular crowding have been completed, and kinetic coefficients for the reactions, including the Michaelis-Menten parameter KM, were calculated. The simulations results led us to confirm the time dependence of michaelian kinetic parameter for the enzymatic catalysis. Besides, other chaos related phenomena were pointed out from the obtained KM time series, such as the emergence of strange attractors and multifractality.

  11. Enzymatic reactions on immobilised substrates.

    PubMed

    Gray, Christopher J; Weissenborn, Martin J; Eyers, Claire E; Flitsch, Sabine L

    2013-08-07

    This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.

  12. Enzymatic hydrolysis of organic phosphorus

    USDA-ARS?s Scientific Manuscript database

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  13. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1990-03-23

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  14. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  15. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  16. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.

    PubMed

    Kawahara, Ryosuke; Saburi, Wataru; Odaka, Rei; Taguchi, Hidenori; Ito, Shigeaki; Mori, Haruhide; Matsui, Hirokazu

    2012-12-07

    Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-D-glucosyl-D-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-D-mannosyl-D-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-D-mannosyl 1-phosphate (Man1P) and D-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward D-glucose and 6-deoxy-D-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on D-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N'-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than D-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.

  17. Enzymatic role for soybean ecto-apyrase in nodulation

    PubMed Central

    Tanaka, Kiwamu; Nguyen, Tran HN

    2011-01-01

    Root nodulation is regulated by a variety of mechanisms. Ecto-apyrase is an enzyme proposed to control the concentration of extracellular nucleotides. Transgenic expression of the soybean GS52 ecto-apyrase was shown to stimulate nodulation. However, mutation of the enzyme to disrupt enzymatic activity prevented this effect. Therefore, the data suggest that the enzymatic activity of the ecto-apyrase is critical for nodulation enhancement, suggesting a direct effect on extracellular nucleotide hydrolysis. In this article, we propose a hypothetical mechanism for plant ecto-apyrase function during nodulation. PMID:21617385

  18. Escalation of error catastrophe for enzymatic self-replicators

    NASA Astrophysics Data System (ADS)

    Obermayer, B.; Frey, E.

    2009-11-01

    It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.

  19. Enzymatic role for soybean ecto-apyrase in nodulation.

    PubMed

    Tanaka, Kiwamu; Nguyen, Tran H N; Stacey, Gary

    2011-07-01

    Root nodulation is regulated by a variety of mechanisms. Ecto-apyrase is an enzyme proposed to control the concentration of extracellular nucleotides. Transgenic expression of the soybean GS52 ecto-apyrase was shown to stimulate nodulation. However, mutation of the enzyme to disrupt enzymatic activity prevented this effect. Therefore, the data suggest that the enzymatic activity of the ecto-apyrase is critical for nodulation enhancement, suggesting a direct effect on extracellular nucleotide hydrolysis. In this article, we propose a hypothetical mechanism for plant ecto-apyrase function during nodulation.

  20. Novel process for producing 6-deoxy monosaccharides from l-fucose by coupling and sequential enzymatic method.

    PubMed

    Shompoosang, Sirinan; Yoshihara, Akihide; Uechi, Keiko; Asada, Yasuhiko; Morimoto, Kenji

    2016-01-01

    We biosynthesized 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose, which rarely exist in nature, from L-fucose by coupling and sequential enzymatic reactions. The first product, 6-deoxy-L-talose, was directly produced from L-fucose by the coupling reactions of immobilized D-arabinose isomerase and immobilized L-rhamnose isomerase. In one-pot reactions, the equilibrium ratio of L-fucose, L-fuculose, and 6-deoxy-L-talose was 80:9:11. In contrast, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were produced from L-fucose by sequential enzymatic reactions. D-Arabinose isomerase converted L-fucose into L-fuculose with a ratio of 88:12. Purified L-fuculose was further epimerized into 6-deoxy-L-sorbose by D-allulose 3-epimerase with a ratio of 40:60. Finally, purified 6-deoxy-L-sorbose was isomerized into both 6-deoxy-L-gulose with an equilibrium ratio of 40:60 by L-ribose isomerase, and 6-deoxy-L-idose with an equilibrium ratio of 73:27 by D-glucose isomerase. Based on the amount of L-fucose used, the production yields of 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were 7.1%, 14%, 2%, and 2.4%, respectively.

  1. Improving the Thermostability and Catalytic Efficiency of the d-Psicose 3-Epimerase from Clostridium bolteae ATCC BAA-613 Using Site-Directed Mutagenesis.

    PubMed

    Zhang, Wenli; Jia, Min; Yu, Shuhuai; Zhang, Tao; Zhou, Leon; Jiang, Bo; Mu, Wanmeng

    2016-05-04

    d-Psicose is a highly valuable rare sugar because of its excellent physiological properties and commercial potential. d-Psicose 3-epimerase (DPEase) is the key enzyme catalyzing the isomerization of d-fructose to d-psicose. However, the poor thermostability and low catalytic efficiency are serious constraints on industrial application. To address these issues, site-directed mutagenesis of Tyr68 and Gly109 of the Clostridium bolteae DPEase was performed. Compared with the wild-type enzyme, the Y68I variant displayed the highest substrate-binding affinity and catalytic efficiency, and the G109P variant showed the highest thermostability. Furthermore, the double-site Y68I/G109P variant was generated and exhibited excellent enzyme characteristics. The Km value decreased by 17.9%; the kcat/Km increased by 1.2-fold; the t1/2 increased from 156 to 260 min; and the melting temperature (Tm) increased by 2.4 °C. Moreover, Co(2+) enhanced the thermostability significantly, including the t1/2 and Tm values. All of these indicated that the Y68I/G109P variant would be appropriate for the industrial production of d-psicose.

  2. Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens.

    PubMed

    Park, Chang-Su; Park, Chul-Soon; Shin, Kyung-Chul; Oh, Deok-Kun

    2016-02-01

    The specific activity of recombinant Escherichia coli cells expressing the double-site variant (I33L-S213C) d-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was highest at 24 h of cultivation time in Terrific Broth (TB) medium among the media tested. The contents of crude protein and DPEase in recombinant cells at 24 h were 37.0 and 8.6% (w/w), respectively, indicating that the enzyme was highly expressed. The reaction conditions for the production of d-psicose from d-fructose by whole recombinant cells with the highest specific activity were optimal at 60°C, pH 8.5, 4 g/l cells, and 700 g/l d-fructose. Under these conditions, whole recombinant cells produced 230 g/l d-psicose after 40 min, with a conversion yield of 33% (w/w), a volumetric productivity of 345 g/l/h, and a specific productivity of 86.2 g/g/h. These are the highest conversion yield and volumetric and specific productivities of d-psicose from d-fructose by cells reported thus far.

  3. Production of d-Allulose with d-Psicose 3-Epimerase Expressed and Displayed on the Surface of Bacillus subtilis Spores.

    PubMed

    He, Weiwei; Jiang, Bo; Mu, Wanmeng; Zhang, Tao

    2016-09-28

    The production of d-allulose is usually conducted via isolated-enzyme or whole-cell biocatalysis reactions. In the present study, an innovative biocatalyst, d-psicose 3-epimerase (DPEase) from Clostridium scindens ATCC 35704, presented on the surface of Bacillus subtilis spores, was applied for d-allulose production. DPEase was fused at the C-terminus of the anchoring protein, CotZ, via a peptide linker, and trophic genes were used as selection markers during the chromosomal integration. The optimal temperature and pH of the fusion protein CotZ-DPEase were 55 °C and pH 7.5-8.0, respectively, and the anchored DPEase exhibited high thermostability. Under optimal conditions, 30 g/L of recombinant spores can produce 85 g/L d-allulose from 500 g/L d-fructose after 12 h, and 60% of the yield was maintained after five cycles of utilization. Therefore, this biocatalyst system, capable of expressing and immobilizing DPEase on the spore surface of B. subtilis, was an appropriate alternative for d-allulose production.

  4. GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato.

    PubMed

    Gilbert, Louise; Alhagdow, Moftah; Nunes-Nesi, Adriano; Quemener, Bernard; Guillon, Fabienne; Bouchet, Brigitte; Faurobert, Mireille; Gouble, Barbara; Page, David; Garcia, Virginie; Petit, Johann; Stevens, Rebecca; Causse, Mathilde; Fernie, Alisdair R; Lahaye, Marc; Rothan, Christophe; Baldet, Pierre

    2009-11-01

    The GDP-D-mannose 3,5-epimerase (GME, EC 5.1.3.18), which converts GDP-d-mannose to GDP-l-galactose, is generally considered to be a central enzyme of the major ascorbate biosynthesis pathway in higher plants, but experimental evidence for its role in planta is lacking. Using transgenic tomato lines that were RNAi-silenced for GME, we confirmed that GME does indeed play a key role in the regulation of ascorbate biosynthesis in plants. In addition, the transgenic tomato lines exhibited growth defects affecting both cell division and cell expansion. A further remarkable feature of the transgenic plants was their fragility and loss of fruit firmness. Analysis of the cell-wall composition of leaves and developing fruit revealed that the cell-wall monosaccharide content was altered in the transgenic lines, especially those directly linked to GME activity, such as mannose and galactose. In agreement with this, immunocytochemical analyses showed an increase of mannan labelling in stem and fruit walls and of rhamnogalacturonan labelling in the stem alone. The results of MALDI-TOF fingerprinting of mannanase cleavage products of the cell wall suggested synthesis of specific mannan structures with modified degrees of substitution by acetate in the transgenic lines. When considered together, these findings indicate an intimate linkage between ascorbate and non-cellulosic cell-wall polysaccharide biosynthesis in plants, a fact that helps to explain the common factors in seemingly unrelated traits such as fruit firmness and ascorbate content.

  5. Characterization of a radical S-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis.

    PubMed

    Kudo, Fumitaka; Hoshi, Shota; Kawashima, Taiki; Kamachi, Toshiaki; Eguchi, Tadashi

    2014-10-01

    The last step of neomycin biosynthesis is the epimerization at C-5‴ of neomycin C to give neomycin B. A candidate enzyme responsible for the epimerization was a putative radical S-adenosyl-L-methionine (SAM) enzyme, NeoN, which is uniquely encoded in the neomycin biosynthetic gene cluster and remained an unassigned protein in the neomycin biosynthesis. The reconstituted and reduced NeoN showed the expected epimerization activity in the presence of SAM. In the epimerization, 1 equiv of SAM was consumed to convert neomycin C into neomycin B. The site of neomycin C reactive toward epimerization was clearly confirmed to be C-5‴ by detecting the incorporation of a deuterium atom from the deuterium oxide-based buffer solution. Further, alanine scanning of the NeoN cysteine residues revealed that C249 is a critical amino acid residue that provides a hydrogen atom to complete the epimerization. Furthermore, electron paramagnetic resonance analysis of the C249A variant in the presence of SAM and neomycin C revealed that a radical intermediate is generated at the C-5‴ of neomycin C. Therefore, the present study clearly illustrates that the epimerization of neomycin C to neomycin B is catalyzed by a unique radical SAM epimerase NeoN with a radical reaction mechanism.

  6. "Unknown genome" proteomics: a new NADP-dependent epimerase/dehydratase revealed by N-terminal sequencing, inverted PCR, and high resolution mass spectrometry.

    PubMed

    Simeonova, Diliana Dancheva; Susnea, Iuliana; Moise, Adrian; Schink, Bernhard; Przybylski, Michael

    2009-01-01

    We present here a new approach that enabled the identification of a new protein from a bacterial strain with unknown genomic background using a combination of inverted PCR with degenerate primers derived from N-terminal protein sequences and high resolution peptide mass determination of proteolytic digests from two-dimensional electrophoretic separation. Proteins of the sulfate-reducing bacterium Desulfotignum phosphitoxidans specifically induced in the presence of phosphite were separated by two-dimensional gel electrophoresis as a series of apparent soluble and membrane-bound isoforms with molecular masses of approximately 35 kDa. Inverted PCR based on N-terminal sequences and high resolution peptide mass fingerprinting by Fourier transform-ion cyclotron resonance mass spectrometry provided the identification of a new NAD(P) epimerase/dehydratase by specific assignment of peptide masses to a single ORF, excluding other possible ORF candidates. The protein identification was ascertained by chromatographic separation and sequencing of internal proteolytic peptides. Metal ion affinity isolation of tryptic peptides and high resolution mass spectrometry provided the identification of five phosphorylations identified in the domains 23-47 and 91-118 of the protein. In agreement with the phosphorylations identified, direct molecular weight determination of the soluble protein eluted from the two-dimensional gels by mass spectrometry provided a molecular mass of 35,400 Da, which is consistent with an average degree of three phosphorylations.

  7. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    PubMed

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  8. D-Allulose Production from D-Fructose by Permeabilized Recombinant Cells of Corynebacterium glutamicum Cells Expressing D-Allulose 3-Epimerase Flavonifractor plautii

    PubMed Central

    Park, Chul-Soon; Kim, Taeyong; Hong, Seung-Hye; Shin, Kyung-Chul; Kim, Kyoung-Rok; Oh, Deok-Kun

    2016-01-01

    A d-allulose 3-epimerase from Flavonifractor plautii was cloned and expressed in Escherichia coli and Corynebacterium glutamicum. The maximum activity of the enzyme purified from recombinant E. coli cells was observed at pH 7.0, 65°C, and 1 mM Co2+ with a half-life of 40 min at 65°C, Km of 162 mM, and kcat of 25280 1/s. For increased d-allulose production, recombinant C. glutamicum cells were permeabilized via combined treatments with 20 mg/L penicillin and 10% (v/v) toluene. Under optimized conditions, 10 g/L permeabilized cells produced 235 g/L d-allulose from 750 g/L d-fructose after 40 min, with a conversion rate of 31% (w/w) and volumetric productivity of 353 g/L/h, which were 1.4- and 2.1-fold higher than those obtained for nonpermeabilized cells, respectively. PMID:27467527

  9. High-level extracellular production of D-Psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach.

    PubMed

    Gu, Lei; Zhang, Juan; Liu, Baihong; Wu, Chongde; Du, Guocheng; Chen, Jian

    2013-11-01

    The aim of this study is to achieve high-level extracellular production of D-Psicose-3-epimerase (DPE) with recombinant Escherichia coli. High-level production of DPE is one of the key factors in D-Psicose production. In the present study, the gene AAL45544.1 from Agrobacterium tumefaciens str. C58 was modified by artificial synthesis for overexpression in E. coli. The total DPE activity reached 3.96 U mL(-1) after optimization of the media composition, induction temperature, and concentration of inducer. Furthermore, it was found that addition of glycine had a positive effect on the extracellular production of DPE, which reached 3.5 U mL(-1). Finally, a two-stage glycerol feeding strategy based on both the specific growth rate before induction and the amount of glycerol residues after induction was applied in a 3-L fermenter. After a series of optimal strategies in the 3-L fermenter, the total and extracellular DPE activity were 5.08- and 3.11-fold higher than that noted in the shake flask. The extracellular and intracellular DPE activity reached 10.9 and 13.2 U mL(-1), achieving 25.5 and 31.1 % conversion of D-fructose to D-psicose, respectively. The systemic strategies presented in this study provide valuable novel information for the industrial application of DPE.

  10. The metastability of human UDP-galactose 4'-epimerase (GALE) is increased by variants associated with type III galactosemia but decreased by substrate and cofactor binding.

    PubMed

    Pey, Angel L; Padín-Gonzalez, Esperanza; Mesa-Torres, Noel; Timson, David J

    2014-11-15

    Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.

  11. In Vivo Multienzyme Complex Coconstruction of N-Acetylneuraminic Acid Lyase and N-Acetylglucosamine-2-epimerase for Biosynthesis of N-Acetylneuraminic Acid.

    PubMed

    Wang, Zhenfu; Zhuang, Wei; Cheng, Jian; Sun, Wujin; Wu, Jinglan; Chen, Yong; Ying, Hanjie

    2017-08-30

    Metabolic channeling enables efficient transfer of the intermediates by forming a multienzyme complex. To leverage the metabolic channeling for improved biosynthesis, we coexpressed N-acetylneuraminic acid lyase from C. glutamicum ATCC 13032 (CgNal) and N-acetylglucosamine-2-epimerase from Anabaena sp. CH1 (anAGE) in Escherichia coli and used the whole cell to synthesize N-acetylneuraminic acid (Neu5Ac) from N-acetylglucosamine (GlcNAc) and pyruvate. To get the multienzyme complex, polycistronic plasmid with high levels of CgNal and anAGE expression was constructed by tuning the orders of the genes. The Shine-Dalgarno (SD) sequence and aligned spacing (AS) distance were optimized. The E. coli Rosetta harboring the polycistronic plasmid pET-28a-SD2-AS1-CgNal-SD-AS-anAGE increased the production of Neu5Ac by 58.7% to 92.5 g/L in 36 h by whole-cell catalysis and by 21.9% up to 112.8 g/L in 24 h with the addition of Triton X-100.

  12. Recent developments in enzymatic chlorination.

    PubMed

    Murphy, Cormac D

    2006-04-01

    While the existence of chlorinated natural products has been known for over 100 years, our understanding of the enzymology of biological chlorination reactions has been limited to chloroperoxidases, which are now known not to play a significant role in chlorometabolite biosynthesis. The discoveries of new classes of halogenases, described in this Highlight, have shed new light on the mechanisms of enzymatic chlorination of aromatic and aliphatic compounds.

  13. Enzymatic synthesis of prebiotic oligosaccharides.

    PubMed

    Rabelo, Maria C; Honorato, Talita L; Gonçalves, Luciana R B; Pinto, Gustavo A S; Rodrigues, Sueli

    2006-04-01

    Prebiotic oligosaccharides are nondigestible carbohydrates that can be obtained by enzymatic synthesis. Glucosyltransferases can be used to produce these carbohydrates through an acceptor reaction synthesis. When maltose is the acceptor a trisaccharide composed of one maltose unit and one glucose unit linked by an alpha-1,6-glycosidic bond (panose) is obtained as the primer product of the dextransucrase acceptor reaction. In this work, panose enzymatic synthesis was evaluated by a central composite experimental design in which maltose and sucrose concentration were varied in a wide range of maltose/sucrose ratios in a batch reactor system. A partially purified enzyme was used in order to reduce the process costs, because enzyme purification is one of the most expensive steps in enzymatic synthesis. Even using high maltose/sucrose ratios, dextran and higher-oligosaccharide formation were not avoided. The results showed that intermediate concentrations of sucrose and high maltose concentration resulted in high panose productivity with low dextran and higher-oligosaccharide productivity.

  14. Enzymatic Processes in Marine Biotechnology.

    PubMed

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  15. Enzymatic Processes in Marine Biotechnology

    PubMed Central

    Trincone, Antonio

    2017-01-01

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses. PMID:28346336

  16. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity.

    PubMed

    Shymanets, Aliaksei; Prajwal; Vadas, Oscar; Czupalla, Cornelia; LoPiccolo, Jaclyn; Brenowitz, Michael; Ghigo, Alessandra; Hirsch, Emilio; Krause, Eberhard; Wetzker, Reinhard; Williams, Roger L; Harteneck, Christian; Nürnberg, Bernd

    2015-07-01

    Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gβγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gβγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gβγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gβγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gβγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.

  17. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences.

    PubMed

    Mol, Marco; Regazzoni, Luca; Altomare, Alessandra; Degani, Genny; Carini, Marina; Vistoli, Giulio; Aldini, Giancarlo

    2017-02-02

    4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE

  18. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  19. Enzymatic degradation of multiwalled carbon nanotubes.

    PubMed

    Zhao, Yong; Allen, Brett L; Star, Alexander

    2011-09-01

    Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.

  20. Thermal stability of bioactive enzymatic papers.

    PubMed

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  1. Biosynthesis of dermatan sulphate. Defructosylated Escherichia coli K4 capsular polysaccharide as a substrate for the D-glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism.

    PubMed Central

    Hannesson, H H; Hagner-McWhirter, A; Tiedemann, K; Lindahl, U; Malmström, A

    1996-01-01

    The capsular polysaccharide from Escherichia coli K4 consists of a chondroitin ([GlcA(beta 1-->3)GalNAc(beta 1-->4)]n) backbone, to which beta-fructofuranose units are linked to C-3 of D-glucuronic acid (GlcA) residues. Removal of the fructose units by mild acid hydrolysis provided a substrate for the GlcA C-5 epimerase, which is involved in the generation of L-iduronic acid (IdoA) units during dermatan sulphate biosynthesis. Incubation of this substrate with solubilized fibroblast microsomal enzyme in the presence of 3H2O resulted in the incorporation of tritium at C-5 of hexuronyl units. A Km of 67 x 10(-6) M hexuronic acid (equivalent to disaccharide units) was determined, which is similar to that (80 x 10(-6) M) obtained for dermatan (desulphated dermatan sulphate). Vmax was about 4 times higher with dermatan than with the K4 substrate. A defructosylated K4 polysaccharide isolated after incubation of bacteria with D-[5-3H]glucose released 3H2O on reaction with the epimerase, and thus could be used to assay the enzyme. Incubation of a K4 substrate with solubilized microsomal epimerase for 6 h in the presence of 3H2O resulted in the formation of about 5% IdoA and approximately equal amounts of 3H in GlcA and IdoA. A corresponding incubation of dermatan yielded approx. 22% GlcA, which contained virtually all the 3H label. These results are tentatively explained in terms of a two-base reaction mechanism, involving a monoprotic L-ido-specific base and a polyprotic D-gluco-specific base. Most of the IdoA residues generated by the enzyme occurred singly, although some formation of two or three consecutive IdoA-containing disaccharide units was observed. PMID:8573097

  2. Biofuel cells: enhanced enzymatic bioelectrocatalysis.

    PubMed

    Meredith, Matthew T; Minteer, Shelley D

    2012-01-01

    Enzymatic biofuel cells represent an emerging technology that can create electrical energy from biologically renewable catalysts and fuels. A wide variety of redox enzymes have been employed to create unique biofuel cells that can be used in applications such as implantable power sources, energy sources for small electronic devices, self-powered sensors, and bioelectrocatalytic logic gates. This review addresses the fundamental concepts necessary to understand the operating principles of biofuel cells, as well as recent advances in mediated electron transfer- and direct electron transfer-based biofuel cells, which have been developed to create bioelectrical devices that can produce significant power and remain stable for long periods.

  3. The widespread role of non-enzymatic reactions in cellular metabolism

    PubMed Central

    Keller, Markus A; Piedrafita, Gabriel; Ralser, Markus

    2015-01-01

    Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design. PMID:25617827

  4. The widespread role of non-enzymatic reactions in cellular metabolism.

    PubMed

    Keller, Markus A; Piedrafita, Gabriel; Ralser, Markus

    2015-08-01

    Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design.

  5. Crystal Structure of Binary and Ternary Complexes of Archaeal UDP-galactose 4-Epimerase-like l-Threonine Dehydrogenase from Thermoplasma volcanium*

    PubMed Central

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2012-01-01

    A gene from the thermophilic archaeon Thermoplasma volcanium encoding an l-threonine dehydrogenase (l-ThrDH) with a predicted amino acid sequence that was remarkably similar to the sequence of UDP-galactose 4-epimerase (GalE) was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was moderately thermostable, retaining more than 90% of its activity after incubation for 10 min at up to 70 °C. The catalytic residue was assessed using site-directed mutagenesis, and Tyr137 was found to be essential for catalysis. To clarify the structural basis of the catalytic mechanism, four different crystal structures were determined using the molecular replacement method: l-ThrDH-NAD+, l-ThrDH in complex with NAD+ and pyruvate, Y137F mutant in complex with NAD+ and l-threonine, and Y137F in complex with NAD+ and l-3-hydroxynorvaline. Each monomer consisted of a Rossmann-fold domain and a C-terminal catalytic domain, and the fold of the catalytic domain showed notable similarity to that of the GalE-like l-ThrDH from the psychrophilic bacterium Flavobacterium frigidimaris KUC-1. The substrate binding model suggests that the reaction proceeds through abstraction of the β-hydroxyl hydrogen of l-threonine via direct proton transfer driven by Tyr137. The factors contributing to the thermostability of T. volcanium l-ThrDH were analyzed by comparing its structure to that of F. frigidimaris l-ThrDH. This comparison showed that the presence of extensive inter- and intrasubunit ion pair networks are likely responsible for the thermostability of T. volcanium l-ThrDH. This is the first description of the molecular basis for the substrate recognition and thermostability of a GalE-like l-ThrDH. PMID:22374996

  6. The TCF4/β-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer.

    PubMed

    Mostovich, Luydmila A; Prudnikova, Tatiana Y; Kondratov, Aleksandr G; Gubanova, Natalya V; Kharchenko, Olga A; Kutsenko, Olesya S; Vavilov, Pavel V; Haraldson, Klas; Kashuba, Vladimir I; Ernberg, Ingemar; Zabarovsky, Eugene R; Grigorieva, Elvira V

    2012-08-01

    D-glucuronyl C5-epimerase (GLCE) is a potential tumor-suppressor gene involved in heparan sulfate biosynthesis. GLCE expression is significantly decreased in breast tumors; however, the underlying molecular mechanisms remain unclear. This study examined the possible epigenetic mechanisms for GLCE inactivation in breast cancer. Very little methylation of the GLCE promoter region was detected in breast tumors in vivo and in breast cancer cells (MCF7 and T47D) in vitro and GLCE expression in breast cancer cells was not altered by 5-deoxyazacytidine (5-aza-dC) treatment, suggesting that promoter methylation is not involved in regulating GLCE expression. Chromatin activation by Trichostatin A (TSA) or 5-aza-dC/TSA treatment increased GLCE expression by two to 3-fold due to an increased interaction between the GLCE promoter and the TCF4/β-catenin transactivation complex, or H3K9ac and H3K4Me3 histone modifications. However, ectopic expression of TCF4/β-catenin was not sufficient to activate GLCE expression in MCF7 cells, suggesting that chromatin structure plays a key role in GLCE regulation. Although TSA treatment significantly repressed canonical WNT signaling in MCF7 cells, it did not influence endogenous TCF4/β-catenin mRNA levels and activated TCF4/β-catenin-driven transcription from the GLCE promoter, indicating GLCE as a novel target for TCF4/β-catenin complex in breast cancer cells. A correlation was observed between GLCE, TCF4 and β-catenin expression in breast cancer cells and primary tumors, suggesting an important role for TCF4/β-catenin in regulating GLCE expression both in vitro and in vivo. Taken together, the results indicate that GLCE expression in breast cancer is regulated by a combination of chromatin structure and TCF4/β-catenin complex activity.

  7. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE).

    PubMed

    Mumma, Jane Odhiambo; Chhay, Juliet S; Ross, Kerry L; Eaton, Jana S; Newell-Litwa, Karen A; Fridovich-Keil, Judith L

    2008-02-01

    Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.

  8. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  9. Enzymatic processing in microfluidic reactors.

    PubMed

    Miyazaki, Masaya; Honda, Takeshi; Yamaguchi, Hiroshi; Briones, Maria Portia P; Maeda, Hideaki

    2008-01-01

    Microreaction technology is an interdisciplinary area of science and engineering. It has attracted the attention of researchers from different fields in the past few years and consequently, several microreactors have been developed. Enzymes are organic catalysts used for the production useful substances in an environmentally friendly way, and have high potential for analytical applications. However, relatively few enzymatic processes have been commercialized because of problems in the stability of enzyme molecule, and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies and focus our discussion on enzyme microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared with the conventional reactors. Fundamental techniques for enzyme microreactors and important applications of this multidisciplinary technology in chemical processing are also included in our topics.

  10. Enzymatic approach to biodiesel production.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2007-10-31

    The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel.

  11. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  12. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-04-03

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing.

  13. beta. -Sulfopyruvate: chemical and enzymatic syntheses and enzymatic assay

    SciTech Connect

    Weinstein, C.L.; Griffith, O.W.

    1986-01-01

    BETA-Sulfopyruvic acid (2-carboxy-2-oxoethanesulfonic acid) is prepared in greater than 90% yield by reaction of bromopyruvic acid with sodium sulfite. ..beta..-(/sup 35/S)Sulfopyruvate is prepared by transamination between (/sup 35/)cysteinesulfonate (cysteate) and ..cap alpha..-ketoglutarate using mitochondrial aspartate aminotransferase isolated from rat liver. Following either chemical or enzymatic synthesis the crude reaction product is conveniently purified by chromatography on Dowex 1; ..beta..-sulfopyruvate is isolated as the stable, water-soluble dilithium salt. ..beta..-Sulfopyruvate is shown to be an alternative substrate of mitochondrial malate dehydrogenase; in the presence of 0.25 mM NADH, ..beta..-sulfopyruvate is reduced with an apparent K/sub m/ of 6.3 mM and a V/sub max/ equal to about 40% of that observed with oxaloacetate. This finding forms the basis of a convenient spectrophotometric assay of ..beta..-sulfopyruvate.

  14. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    SciTech Connect

    Santos, Camila Ramos; Meza, Andreia Navarro; Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto; Giesel, Guilherme Menegon; Verli, Hugo; Squina, Fabio Marcio; Prade, Rolf Alexander; Murakami, Mario Tyago

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  15. Macrophage migration inhibitory factor (MIF) enzymatic activity and lung cancer.

    PubMed

    Mawhinney, Leona; Armstrong, Michelle E; O' Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2015-04-16

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif (P1G)). Primary tumor growth was significantly attenuated in both Mif-KO and Mif (P1G) mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems.

  16. New developments of polysaccharide synthesis via enzymatic polymerization

    PubMed Central

    Kobayashi, Shiro

    2007-01-01

    This review focuses on the in vitro synthesis of polysaccharides, the method of which is “enzymatic polymerization” mainly developed by our group. Polysaccharides are formed by repeated glycosylation reactions between a glycosyl donor and a glycosyl acceptor. A hydrolysis enzyme was found very efficient as catalyst, where the monomer is designed based on the new concept of a “transition-state analogue substrate” (TSAS); sugar fluoride monomers for polycondensation and sugar oxazoline monomers for ring-opening polyaddition. Enzymatic polymerization enabled the first in vitro synthesis of natural polysaccharides such as cellulose, xylan, chitin, hyaluronan and chondroitin, and also of unnatural polysaccharides such as a cellulose–chitin hybrid, a hyaluronan–chondroitin hybrid, and others. Supercatalysis of hyaluronidase was disclosed as unusual enzymatic multi-catalyst functions. Mutant enzymes were very useful for synthetic and mechanistic studies. In situ observations of enzymatic polymerization by SEM, TEM, and combined SAS methods revealed mechanisms of the polymerization and of the self-assembling of high-order molecular structure formed by elongating polysaccharide molecules. PMID:24367148

  17. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.

    PubMed

    Wan, Hui-da; Sun, Shi-yu; Hu, Xue-yi; Xia, Yong-mei

    2012-03-01

    Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L(-1). The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.

  18. Enzymatic reactivity of glucose oxidase confined in nanochannels.

    PubMed

    Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin

    2014-05-15

    The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency.

  19. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    SciTech Connect

    Hosein, W. K.; Yorita, A. M.; Tolosa, V. M.

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  20. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  1. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    PubMed

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  2. Autoantibodies with Enzymatic Properties in Human Autoimmune Diseases

    PubMed Central

    Wootla, Bharath; Lacroix-Desmazes, Sébastien; Warrington, Arthur E.; Bieber, Allan J.; Kaveri, Srini V.; Rodriguez, Moses

    2011-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. In addition to this plethora of functions, some antibodies express enzymatic activity. Antibodies endowed with enzymatic properties have been described in human autoimmune manifestations for more than a decade in a variety of disorders such as autoimmune thyroiditis, systemic erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), multiple sclerosis (MS) and acquired hemophilia (AH). Antibodies isolated from these conditions were able to specifically hydrolyze thyroglobulin, DNA, RNA, myelin basic protein (MBP), and factor VIII (FVIII) or factor IX (FIX), respectively. The therapeutic relevance of these findings is discussed. PMID:21624820

  3. Gemini, a Bifunctional Enzymatic and Fluorescent Reporter of Gene Expression

    PubMed Central

    Endy, Drew

    2009-01-01

    Background The development of collections of quantitatively characterized standard biological parts should facilitate the engineering of increasingly complex and novel biological systems. The existing enzymatic and fluorescent reporters that are used to characterize biological part functions exhibit strengths and limitations. Combining both enzymatic and fluorescence activities within a single reporter protein would provide a useful tool for biological part characterization. Methodology/Principal Findings Here, we describe the construction and quantitative characterization of Gemini, a fusion between the β-galactosidase (β-gal) α-fragment and the N-terminus of full-length green fluorescent protein (GFP). We show that Gemini exhibits functional β-gal activity, which we assay with plates and fluorometry, and functional GFP activity, which we assay with fluorometry and microscopy. We show that the protein fusion increases the sensitivity of β-gal activity and decreases the sensitivity of GFP. Conclusions/Significance Gemini is therefore a bifunctional reporter with a wider dynamic range than the β-gal α-fragment or GFP alone. Gemini enables the characterization of gene expression, screening assays via enzymatic activity, and quantitative single-cell microscopy or FACS via fluorescence activity. The analytical flexibility afforded by Gemini will likely increase the efficiency of research, particularly for screening and characterization of libraries of standard biological parts. PMID:19888458

  4. Computational Investigations on Enzymatic Catalysis and Inhibition

    NASA Astrophysics Data System (ADS)

    Simard, Daniel

    Enzymes are the bimolecular "workhorses" of the cell due to their range of functions and their requirement for cellular success. The atomistic details of how they function can provide key insights into the fundamentals of catalysis and in turn, provide a blueprint for biotechnological advances. A wide range of contemporary computational techniques has been applied with the aim to characterize recently discovered intermediates or to provide insights into enzymatic mechanisms and inhibition. More specifically, an assessment of methods was conducted to evaluate the presence of the growing number 3-- and 4--coordinated sulfur intermediates in proteins/enzymes. Furthermore, two mechanisms have been investigated, the mu-OH mechanism of the hydrolysis of dimethylphosphate in Glycerophosphodiesterase (GpdQ) using five different homonuclear metal combinations Zn(II)/Zn(II), Co(II)/Co(II), Mn(II)/Mn(II), Cd(II)/Cd(II) and Ca(II)/Ca(II) as well as a preliminary study into the effectivness of boron as an inhibitor in the serine protease reaction of class A TEM-1 beta-lactamases.

  5. Identification of the ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD) and heptosyltransferase II (rfaF) biosynthesis genes from nontypeable Haemophilus influenzae 2019.

    PubMed Central

    Nichols, W A; Gibson, B W; Melaugh, W; Lee, N G; Sunshine, M; Apicella, M A

    1997-01-01

    Haemophilus influenzae is an important human pathogen. The lipooligosaccharide (LOS) of H. influenzae has been implicated as a virulence determinant. To better understand the assembly of LOS in nontypeable H. influenzae (NtHi), we have cloned and characterized the rfaD and rfaF genes of NtHi 2019, which encode the ADP-L-glycero-D-manno-heptose-6-epimerase and heptosyltransferase II enzymes, respectively. This cloning was accomplished by the complementation of Salmonella typhimurium lipopolysaccharide (LPS) biosynthesis gene mutants. These deep rough mutants are novobiocin susceptible until complemented with the appropriate gene. In this manner, we are able to use novobiocin resistance to select for specific NtHi LOS inner core biosynthesis genes. Such a screening system yielded a plasmid with a 4.8-kb insert. This plasmid was able to complement both rfaD and rfaF mutants of S. typhimurium. The LPS of these complemented strains appeared identical to the wild-type Salmonella LPS. The genes encoding the rfaD and rfaF genes from NtHi 2019 were sequenced and found to be similar to the analogous genes from S. typhimurium and Escherichia coli. The rfaD gene encodes a polypeptide of 35 kDa and the rfaF encodes a protein of 39 kDa, as demonstrated by in vitro transcription-translation studies. Isogenic mutants which demonstrated truncated LOS consistent with inner core biosynthesis mutants were constructed in the NtHi strain 2019. Primer extension analysis demonstrated the presence of a strong promoter upstream of rfaD but suggested only a very weak promoter upstream of rfaF. Complementation studies, however, suggest that the rfaF gene does have an independent promoter. Mass spectrometric analysis shows that the LOS molecules expressed by H. influenzae rfaD and rfaF mutant strains have identical molecular masses. Additional studies verified that in the rfaD mutant strain, D-glycero-D-manno-heptose is added to the LOS molecule in place of the usual L

  6. Crystal structures of D-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with D-tagatose and D-fructose.

    PubMed

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-11-23

    Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 A, respectively. A subunit of P. cichoriid-TE adopts a (beta/alpha)(8) barrel structure, and a metal ion (Mn(2+)) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the beta-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn(2+), and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.

  7. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling.

    PubMed

    Kulkarni, Rhushikesh A; Worth, Andrew J; Zengeya, Thomas T; Shrimp, Jonathan H; Garlick, Julie M; Roberts, Allison M; Montgomery, David C; Sourbier, Carole; Gibbs, Benjamin K; Mesaros, Clementina; Tsai, Yien Che; Das, Sudipto; Chan, King C; Zhou, Ming; Andresson, Thorkell; Weissman, Allan M; Linehan, W Marston; Blair, Ian A; Snyder, Nathaniel W; Meier, Jordan L

    2017-02-16

    Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease. Published by Elsevier Ltd.

  8. Enzymatic Vitrectomy and Pharmacologic Vitreodynamics.

    PubMed

    Shah, Ankoor R; Trese, Michael T

    2016-01-01

    The field of vitreoretinal surgery has evolved substantially over the last several decades. Scientific advances have improved our understanding of disease pathophysiology, and new surgical adjuncts and techniques have decreased surgical time and improved patient outcomes. Pharmacologic agents have recently been developed for intraocular use in order to enhance vitreous removal and even as a nonsurgical treatment for pathology due to an abnormal vitreoretinal interface. Plasmin can successfully cause vitreous liquefaction and induce a posterior vitreous detachment. Additionally, ocriplasmin has been approved for symptomatic vitreomacular adhesion and others appear to be promising for pharmacologic manipulation of the vitreous. The ability to induce vitreous liquefaction and a complete posterior vitreous detachment (PVD) with a single intravitreal injection has potential implications for the management of multiple vitreoretinopathies. Enzymatic vitrectomy may help to reduce vitreous viscosity, thereby facilitating removal during vitrectomy and reducing surgical time, especially when using smaller-gauge vitrectomy instruments. The induction of a PVD also has the potential to reduce intraoperative complications. As we improve our understanding of the molecular flux in the vitreous cavity, pharmacologic vitreodynamics will likely become more important as it may allow for improved manipulation of intravitreal molecules.

  9. Enzymatic Reactions in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Wan, J.; Stone, H. A.

    2008-11-01

    We establish simple scaling laws for enzymatic reactions in microfluidic devices, and we demonstrate that kinetic parameters obtained conventionally using multiple stop-flow experiments may instead be extracted from a single microfluidic experiment. Introduction of an enzyme and substrate species in different arms of a Y-shaped channel allows the two species to diffuse across the parallel streamlines and to begin reacting. Measurements of the product concentration versus distance down the channel provide information about the kinetics of the reaction. In the limit where the enzyme is much larger (and thus less diffusive) than the substrate, we show that near the entrance the total amount of product (P) formed varies as a power law in the distance x down the channel. For reactions that follow standard Michaelis-Menten kinetics, the power law takes the form P˜(Vmax/Km) x^5/2, where Vmax and Km are the maximum reaction rate and Michaelis constant respectively. If a large excess of substrate is used, then Km is identified by measuring Vmax far downstream where the different species are completely mixed by diffusion. Numerical simulations and experiments using the bioluminescent reaction between luciferase and ATP as a model system are both shown to accord with the model. We discuss the implications for significant savings in the amount of time and enzyme required for determination of kinetic parameters.

  10. Enzymatic cybernetics: an unpublished work by Jacques Monod.

    PubMed

    Gayon, Jean

    2015-06-01

    In 1959, Jacques Monod wrote a manuscript entitled Cybernétique enzymatique [Enzymatic cybernetics]. Never published, this unpublished manuscript presents a synthesis of how Monod interpreted enzymatic adaptation just before the publication of the famous papers of the 1960s on the operon. In addition, Monod offers an example of a philosophy of biology immersed in scientific investigation. Monod's philosophical thoughts are classified into two categories, methodological and ontological. On the methodological side, Monod explicitly hints at his preferences regarding the scientific method in general: hypothetical-deductive method, and use of theoretical models. He also makes heuristic proposals regarding molecular biology: the need to analyse the phenomena in question at the level of individual cells, and the dual aspect of all biological explanation, functional and evolutionary. Ontological issues deal with the notions of information and genetic determinism, "cellular memory", the irrelevance of the notion of "living matter", and the usefulness of a cybernetic comprehension of molecular biology.

  11. Catalytic metal ions and enzymatic processing of DNA and RNA.

    PubMed

    Palermo, Giulia; Cavalli, Andrea; Klein, Michael L; Alfonso-Prieto, Mercedes; Dal Peraro, Matteo; De Vivo, Marco

    2015-02-17

    CONSPECTUS: Two-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz ( Proc. Natl. Acad. Sci. U.S.A. 1993 , 90 ( 14 ), 6498 - 6502 ). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving from reactants to products, passing through metastable intermediates and high-energy transition states. In this Account, we discuss the role of multiscale molecular simulations in further disclosing mechanistic insights of 2M-aided catalysis for two prototypical enzymatic targets for drug discovery, namely, ribonuclease H (RNase H) and type II topoisomerase (topoII). In both examples, first-principles molecular simulations, integrated with structural data, emphasize a cooperative motion of the bimetal motif during catalysis. The coordinated motion of both ions is crucial for maintaining a flexible metal-centered structural architecture exquisitely tailored to accommodate the DNA or RNA sugar-phosphate backbone during phosphodiester bond cleavage. Furthermore, our analysis of RNase H and the N-terminal domain (PAN) of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe

  12. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls.

    PubMed

    Sun, Tie-hua; Heimark, Douglas B; Nguygen, Thang; Nadler, Jerry L; Larner, Joseph

    2002-05-10

    Previous data from our and other labs demonstrated a decreased chiro-inositol content in urine and tissues of human subjects and animals with type 2 diabetes. In urine this decrease in chiro-inositol was accompanied by an increase in myo-inositol content. Decreased urine levels of chiro-inositol in monkeys were next correlated with the severity of underlying insulin resistance determined by five separate assays. To investigate the decreased chiro-inositol and the accompanying increased myo-inositol excretions in urine in humans and monkeys, we postulated a defect in the epimerization of myo-inositol to chiro-inositol. [(3)H]Myo-inositol was then shown to be converted to [(3)H]chiro-inositol in rats in vivo and in fibroblasts in vitro in a process stimulated by insulin. We next demonstrated that the conversion of [(3)H]myo-inositol to [(3)H]chiro-inositol in vivo was markedly decreased in GK type 2 diabetic rats compared to Wistar controls in liver, muscle, and fat, insulin sensitive tissues. Decreases of 20-25% conversion to baseline levels of under 5% conversion were observed. In the present work, we initially compared the total contents of myo-inositol and chiro-inositol in GK type 2 diabetic rat kidney, liver, and muscle compared to Wistar controls. We demonstrated a consistent decreased total chiro-inositol to myo-inositol ratio in kidney, liver, and muscle compared to controls. We next established the presence of a myo-inositol to chiro-inositol epimerase activity in rat liver cytosol. Enzyme activity was shown to be time and enzyme concentration dependent with a broad pH optimum. It required NADH and NADPH for full activity, which is compatible with its action via an oxido-reductive mechanism. Lastly, we demonstrated that the epimerase enzyme bioactivity was significantly decreased in muscle, liver, and fat cytosolic extracts of GK type 2 diabetic rats versus Wistar controls. Decreased myo-inositol to chiro-inositol epimerase activity may therefore play a

  13. Enzymatic Activity of Xyloglucan Xylosyltransferase 51[OPEN

    PubMed Central

    Culbertson, Alan T.; Chou, Yi-Hsiang; Smith, Adrienne L.; Young, Zachary T.; Tietze, Alesia A.; Cottaz, Sylvain

    2016-01-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  14. Enzymatically degradable mussel-inspired adhesive hydrogel.

    PubMed

    Brubaker, Carrie E; Messersmith, Phillip B

    2011-12-12

    Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.

  15. Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel

    PubMed Central

    2011-01-01

    Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G′) achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material’s adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials. PMID:22059927

  16. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    SciTech Connect

    Claridge, Shelley A.

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  17. Analytical techniques for characterizing enzymatic biofuel cells.

    PubMed

    Moehlenbrock, Michael J; Arechederra, Robert L; Sjöholm, Kyle H; Minteer, Shelley D

    2009-12-01

    Enzymatic biofuel cells, which replace expensive metal catalysts with enzymes, are still in an early stage of development. This article details the analytical techniques that are often employed for evaluating and characterizing enzymatic biofuel cells and their corresponding bioanodes and biocathodes. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  18. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement.

    PubMed

    Sun, Wenjie; Vallooran, Jijo J; Zabara, Alexandru; Mezzenga, Raffaele

    2014-06-21

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.

  19. Elucidation of Factors Effecting Enzymatic Saccharification using Transgenic Hardwoods

    NASA Astrophysics Data System (ADS)

    Min, Douyong

    Three groups of transgenic wood samples were used as starting materials to elucidate the recalcitrance of enzymatic saccharification with/without pretreatments. The first group of transgenic wood samples is low lignin P. trichocarpa. The second group is low xylan P. trichocarpa. The third one is 12 hybrid poplars which have different levels of S/V ratio and lignin content. Four pretreatments were carried out in this research including dilute sulfuric acid, green liquor, auto hydrolysis and ozone delignification. The behavior among pretreatments as a function of removal of lignin appears to be different. Lignin is the major factor of recalcitrance of the lignocellulosic material to ethanol conversion process. Xylan also plays key role in this process. In addition, the crude milled wood lignin was isolated from these three groups of transgenic samples. Lignin carbohydrate complexes was characterized by 1H-13C HMQC and 13C NMR. Thus the effect of LCCs on enzymatic saccharification was elucidated. High S/V ratio propels the lignin removal during pretreatments however; high S/V ratio retards the enzymatic saccharification on the lignocellulosic material without pretreatments. The level of LCCs linkages accounts for additional recalcitrance of the lignocellulosic material to ethanol conversion process. The amount of LCCs linkages is affected by xylan content, lignin content and S/V ratio.

  20. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells.

    PubMed

    Godoy-Gallardo, Maria; Labay, Cédric; Trikalitis, Vasileios D; Kempen, Paul J; Larsen, Jannik B; Andresen, Thomas L; Hosta-Rigau, Leticia

    2017-02-13

    Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows for multiple processes to take place in close vicinity and in a parallel manner without the risk of interference or degradation. Here, we report on a subcompartmentalized and intracellularly active carrier, a crucial step for advancing artificial organelles. In particular, we develop and characterize a novel capsosome system, which consists of multiple liposomes and fluorescent gold nanoclusters embedded within a polymer carrier capsule. We subsequently demonstrate that encapsulated enzymes preserve their activity intracellularly, allowing for controlled enzymatic cascade reaction within a host cell.

  1. Enzymatic assay of beta-lactamase using circular dichroism spectropolarimetry.

    PubMed

    Long, D M

    1997-05-01

    A method for measuring the rates of enzymatic hydrolysis of beta-lactam antibiotics based on circular dichroism spectropolarimetry is described. Unhydrolyzed beta-lactam antibiotics have high molar ellipticities, but the hydrolyzed compounds are circular dichroism (CD) inactive in the case of penams or have significantly different CD spectra in the case of cephems. By measuring CD at constant wavelength as a function of time for reaction mixtures containing beta-lactamase and beta-lactam antibiotics, rates of hydrolysis and steady-state enzyme kinetic constants can be derived. The method was applied to measurement of a wide range of enzymatic reaction constants for wild-type and four mutant RTEM-1 beta-lactamases. Compared to the commonly employed assay based on ultraviolet spectroscopy, the new method offers several advantages. These include the ability to measure larger enzymatic Michaelis-Menten constants, less interference from high concentrations of beta-lactamase, higher sensitivity, and potentially less interference from other uv-absorbing components of complex reaction mixtures.

  2. Cytometric, morphologic and enzymatic characterisation of haemocytes in Anodonta cygnea.

    PubMed

    Soares-da-Silva, I M; Ribeiro, J; Valongo, C; Pinto, R; Vilanova, M; Bleher, R; Machado, J

    2002-07-01

    The haemocytes in bivalve mussels are involved in many processes such as lesion repair, shell repair, elimination of small particles and toxic substances. In Anodonta cygnea there are two categories of haemolymph cells, the granulocytes and hyalinocytes. Two groups of cells were identified by flow cytometry and morphological studies: one with larger size and granularity representing 75%, and another group of cells (25%) which were approximately half the size. The cytochemical reactions showed peroxidase activity in the larger cells and a weak prophenoloxidase activity in the smaller cells. These characteristics suggest that the most common haemocytes are granulocytes and hyalinocytes are less common. Enzymatic studies showed clear activities of few enzymes in different compartments of the mantle. Both haemocytes presented significant variations for alpha-manosidase and beta-glucurosidase activities depending on the acid or alkaline pH. Almost all were sensitive to the pH changes, mainly the beta-galactosidase in the haemolymph plasma. On the contrary, the same enzymatic analysis in the extrapallial elements showed more stabilised activities. The simulation of acidic and alkaline condition with the observation of significant morphological and enzymatic activity changes, allow us to speculate some functional role, mainly in the haemolymph elements. The granulocytes may be speculated to have intense involvement in the digestion of small residues with the formation of calcareous stores while the hyalinocytes are more responsible for the elimination of soluble cytotoxic compounds.

  3. Enzymatic Basis for N-Glycan Sialylation

    PubMed Central

    Meng, Lu; Forouhar, Farhad; Thieker, David; Gao, Zhongwei; Ramiah, Annapoorani; Moniz, Heather; Xiang, Yong; Seetharaman, Jayaraman; Milaninia, Sahand; Su, Min; Bridger, Robert; Veillon, Lucas; Azadi, Parastoo; Kornhaber, Gregory; Wells, Lance; Montelione, Gaetano T.; Woods, Robert J.; Tong, Liang; Moremen, Kelley W.

    2013-01-01

    Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases. PMID:24155237

  4. Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases from respiratory pathogens

    PubMed Central

    Westman, Erin L.; Mcnally, David J.; Rejzek, Martin; Miller, Wayne L.; Kannathasan, Vellupillai Sri; Preston, Andrew; Maskell, Duncan J.; Field, Robert A.; Brisson, Jean-Robert; Lam, Joseph S.

    2007-01-01

    evidence that WbpI and WlbD are UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases. PMID:17346239

  5. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  6. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  7. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase.

    PubMed

    Scannapieco, F A; Bhandary, K; Ramasubbu, N; Levine, M J

    1990-12-31

    Previous studies have demonstrated that human salivary alpha-amylase specifically binds to the oral bacterium Streptococcus gordonii. This interaction is inhibited by substrates such as starch and maltotriose suggesting that bacterial binding may involve the enzymatic site of amylase. Experiments were performed to determine if amylase bound to the bacterial surface possessed enzymatic activity. It was found that over one-half of the bound amylase was enzymatically active. In addition, bacterial-bound amylase hydrolyzed starch to glucose which was then metabolized to lactic acid by the bacteria. In further studies, the role of amylase's histidine residues in streptococcal binding and enzymatic function was assessed after their selective modification with diethyl pyrocarbonate. DEP-modified amylase showed a marked reduction in both enzymatic and streptococcal binding activities. These effects were diminished when DEP modification occurred in the presence of maltotriose. DEP-modified amylase had a significantly altered secondary structure when compared with native enzyme or amylase modified in the presence of maltotriose. Collectively, these results suggest that human salivary alpha-amylase may possess multiple sites for bacterial binding and enzymatic activity which share structural similarities.

  8. Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads.

    PubMed

    Chen, Wei-Yu; Chen, Yu-Chie

    2007-03-15

    In this study, we demonstrated that microwave-assisted enzymatic digestion could be greatly accelerated by multifunctional magnetite beads. The acceleration of microwave-assisted enzymatic digestion by the presence of the magnetite beads was attributable to several features of the beads. Their capacity to absorb microwave radiation leads to rapid heating of the beads. Furthermore, their negatively charged functionalities cause adsorption of proteins with opposite charges onto their surfaces by electrostatic interactions, leading to a concentration on the surfaces of the beads of proteins present in trace amounts in the solution. The adsorbed proteins are denatured and hence rendered vulnerable to enzymatic digestion and are digested on the beads. For microwave heating, 30 s was sufficient for carrying out the tryptic digestion of cytochrome c, in the presence of magnetite beads, while 1 min was adequate for tryptic digestion of myoglobin. The digestion products were characterized by MALDI-MS. This rapid enzymatic digestion allowed the entire time for identification of proteins to be greatly reduced. Furthermore, specific proteins present in trace quantities were enriched from the sample on the magnetite beads and could be rapidly isolated from the sample by employing an external magnetic field. These multiple roles of magnetite beads, as the absorber for microwave irradiation, the concentrating probe, and the agent for unfolding proteins, contributed to their capability of accelerating microwave-assisted enzymatic digestion. We also demonstrated that trypsin immobilized magnetite beads were suitable for use in microwave-assisted enzymatic digestion.

  9. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele

    2014-05-01

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  10. Synergistic enzymatic and microbial lignin conversion

    SciTech Connect

    Zhao, Cheng; Xie, Shangxian; Pu, Yunqiao; Zhang, Rui; Huang, Fang; Ragauskas, Arthur J.; Yuan, Joshua S.

    2015-10-02

    We represent the utilization of lignin for fungible fuels and chemicals and it's one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like iron and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. 31P nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell–laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion.

  11. Synergistic enzymatic and microbial lignin conversion

    DOE PAGES

    Zhao, Cheng; Xie, Shangxian; Pu, Yunqiao; ...

    2015-10-02

    We represent the utilization of lignin for fungible fuels and chemicals and it's one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like ironmore » and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. 31P nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell–laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion.« less

  12. Advances in Enzymatic Glycoside Synthesis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2016-07-15

    A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.

  13. Enzymatic preparation of nanocrystalline and microcrystalline cellulose

    Treesearch

    Sarah R. Anderson; Dominic Esposito; William Gillette; J.Y. Zhu; Ulrich Baxa; Scott E. Mcneil

    2014-01-01

    Traditional cellulose nanocrystal (CNC) production methods use harsh chemicals, are energetically expensive, and result in a hydrophilic sulfate surface chemistry with limited utility. Enzymatic production of CNCs is a less expensive alternative production method that eliminates the need for harsh chemicals and requires much less energy for mechanical fibrillation and...

  14. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  15. Enhanced enzymatic hydrolysis of cellulose in microgels.

    PubMed

    Chang, Aiping; Wu, Qingshi; Xu, Wenting; Xie, Jianda; Wu, Weitai

    2015-07-04

    A cellulose-based microgel, where an individual microgel contains approximately one cellulose chain on average, is synthesized via free radical polymerization of a difunctional small-molecule N,N'-methylenebisacrylamide in cellulose solution. This microgelation leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.

  16. Ultrasonic acceleration of enzymatic processing of cotton

    USDA-ARS?s Scientific Manuscript database

    Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. It has been found that the intr...

  17. Frank Westheimer's Early Demonstration of Enzymatic Specificity

    ERIC Educational Resources Information Center

    Ault, Addison

    2008-01-01

    In this article I review one of the most significant accomplishments of Frank H. Westheimer, one of the most respected chemists of the 20th century. This accomplishment was a series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize what we now call the enantiotopic and diastereotopic relationships of…

  18. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Frank Westheimer's Early Demonstration of Enzymatic Specificity

    ERIC Educational Resources Information Center

    Ault, Addison

    2008-01-01

    In this article I review one of the most significant accomplishments of Frank H. Westheimer, one of the most respected chemists of the 20th century. This accomplishment was a series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize what we now call the enantiotopic and diastereotopic relationships of…

  20. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  1. In vitro cyclooxygenase-2 protein expression and enzymatic activity in neoplastic cells.

    PubMed

    Heller, David A; Fan, Timothy M; de Lorimier, Louis-Philippe; Charney, Sarah C; Barger, Anne M; Tannehill-Gregg, Sarah H; Rosol, Thomas J; Wallig, Matthew A

    2007-01-01

    Cyclooxygenase-2 (COX-2) and its principle enzymatic metabolite, prostaglandin E2 (PGE2), are implicated in cancer progression. Based upon immunohistochemical (IHC) evidence that several tumor types in animals overexpress COX-2 protein, COX-2 inhibitors are used as anticancer agents in dogs and cats. IHC is inaccurate for assessing tumor-associated COX-2 protein and enzymatic activity. Five mammalian cell lines were assessed for COX-2 protein expression by IHC and Western blot analysis (WB), and functional COX-2 activity was based upon PGE2 production. Detection of COX-2 protein by IHC and WB were in agreement in 4 of 5 cell lines. In 1 cell line that lacked COX-2 gene transcription because of promoter hypermethylation (HCT-116), IHC produced false-positive staining for COX-2 protein expression. Functional COX-2 enzymatic activity was dissociated from relative IHC-based COX-2 protein expression in 2 cell lines (RPMI 2650 and SCCF1). The RPMI 2650 cell line demonstrated strong COX-2 protein expression but minimal PGE2 production. Western blot is more accurate than IHC for the detection of COX-2 protein in the cell lines studied. Furthermore, the semiquantitative identification of COX-2 protein by IHC or WB does not necessarily correlate with enzymatic activity. Based upon the potential inaccuracy of IHC and dissociation of COX-2 protein expression from enzymatic activity, the practice of instituting treatment of tumors with COX-2 inhibitors based solely on IHC results should be reconsidered.

  2. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics.

    PubMed

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2014-10-08

    Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.

  3. A designed supramolecular protein assembly with in vivo enzymatic activity.

    PubMed

    Song, Woon Ju; Tezcan, F Akif

    2014-12-19

    The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(k(cat)/K(m))/k(uncat)] for ampicillin hydrolysis of 2.3 × 10(6) and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.

  4. Enzymatic biotransformation of terpenes as bioactive agents.

    PubMed

    Sultana, Nighat; Saify, Zafar Saeed

    2013-12-01

    The plant-derived terpenoids are considered to be the most potent anticancer, anti-inflammatory and anticarcinogenic compounds known. Enzymatic biotransformation is a very useful approach to expand the chemical diversity of natural products. Recent enzymatic biotransformation studies on terpenoids have resulted in the isolation of novel compounds. 14-hydroxy methyl caryophyllene oxide produced from caryophyllene oxide showed a potent inhibitory activity against the butyryl cholinesterase enzyme, and was found to be more potent than parent caryophyllene oxide. The metabolites 3β,7β-dihydroxy-11-oxo-olean-12-en-30-oic acid, betulin, betulonic acid, argentatin A, incanilin, 18β glycyrrhetinic acid, 3,11-dioxo-olean-12-en-30-oic acid produced from 18β glycyrrhetinic acid were screened against the enzyme lipoxygenase. 3,11-Dioxo-olean-12-en-30-oic acid, was found to be more active than the parent compound. The metabolites 3β-hydroxy sclareol 18α-hydroxy sclareol, 6α,18α-dihydroxy sclareol, 11S,18α-dihydroxy sclareol, and 1β-hydroxy sclareol and 11S,18α-dihydroxy sclareol produced from sclareol were screened for antibacterial activity. 1β-Hydroxy sclareol was found to be more active than parent sclareol. There are several reports on natural product enzymatic biotransformation, but few have been conducted on terpenes. This review summarizes the classification, advantages and agents of enzymatic transformation and examines the potential role of new enzymatically transformed terpenoids and their derivatives in the chemoprevention and treatment of other diseases.

  5. Enzymatic mineralization of silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Declercq, Heidi A; Gheysens, Tom; Dendooven, Jolien; Van Der Voort, Pascal; Cornelissen, Ria; Dubruel, Peter; Kaplan, David L

    2014-07-01

    The present study focuses on the alkaline phosphatase (ALP) mediated formation of apatitic minerals on porous silk fibroin protein (SFP) scaffolds. Porous SFP scaffolds impregnated with different concentrations of ALP are homogeneously mineralized under physiological conditions. The mineral structure is apatite while the structures differ as a function of the ALP concentration. Cellular adhesion, proliferation, and colonization of osteogenic MC3T3 cells improve on the mineralized SFP scaffolds. These findings suggest a simple process to generate mineralized scaffolds that can be used to enhanced bone tissue engineering-related utility.

  6. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    PubMed

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016.

  7. Redox polymer mediation for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  8. Enzymatic induction of supramolecular order and bioactivity

    NASA Astrophysics Data System (ADS)

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-01

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity.We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine

  9. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    PubMed

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M

    2012-11-01

    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  10. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity.

    PubMed

    Al Khamici, Heba; Brown, Louise J; Hossain, Khondker R; Hudson, Amanda L; Sinclair-Burton, Alxcia A; Ng, Jane Phui Mun; Daniel, Elizabeth L; Hare, Joanna E; Cornell, Bruce A; Curmi, Paul M G; Davey, Mary W; Valenzuela, Stella M

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function.

  11. Hydroxylamine as a competitive inhibitor for the kinetic enzymatic assay of ethanol in relatively concentrated solutions

    SciTech Connect

    Bostick, W.D.; Burtis, C.A.

    1980-01-01

    The kinetic enzymatic assay of ethanol may be optimized for a selected range of substrate concentrations by a judicious choice of acetaldehyde trapping agent and ADH competitive inhibitor. Hydrazine and hydroxylamine can serve both of these functions. If the two agents were used simultaneously, hydrazine would serve as the more potent trapping agent and hydroxylamine as the more potent competitive inhibitor.

  12. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance.

    PubMed

    Badur, Mehmet G; Zhang, Hui; Metallo, Christian M

    2015-10-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications.

  13. Novel enhancement mechanism of tyrosine hydroxylase enzymatic activity by nitric oxide through S-nitrosylation

    PubMed Central

    Wang, Yuanyuan; Sung, Chun Chau; Chung, Kenny K. K.

    2017-01-01

    Tyrosine hydroxylase (TH) is a rate-limiting step enzyme in the synthesis of catecholamines. Catecholamines function both as hormone and neurotransmitters in the peripheral and central nervous systems, therefore TH’s expression and enzymatic activity is tightly regulated by various mechanisms. Several post-translational modifications have been shown to regulate TH’s enzymatic activity such as phosphorylation, nitration and S-glutathionylation. While phosphorylation at N-terminal of TH can activate its enzymatic activity, nitration and S-glutathionylation can inactivate TH. In this study, we found that TH can also be S-nitrosylated by nitric oxide (NO). S-nitrosylation is a reversible modification of cysteine (cys) residue in protein and is known to be an emerging signaling mechanism mediated by NO. We found that TH can be S-nitrosylated at cys 279 and TH S-nitrosylation enhances its enzymatic activity both in vitro and in vivo. These results provide a novel mechanism of how NO can modulate TH’s enzymatic activity through S-nitrosylation. PMID:28287127

  14. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance

    PubMed Central

    Badur, Mehmet G.; Zhang, Hui; Metallo, Christian M.

    2016-01-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications. PMID:26289220

  15. Enzymatic activity preservation and protection through entrapment within degradable hydrogels.

    PubMed

    Mariani, Angela M; Natoli, Mary E; Kofinas, Peter

    2013-11-01

    This work aims to develop a repeatable enzyme entrapment method that preserves activity within an amicable environment while resisting activity reduction in the presence of environmental challenges. Advances in such methods have wide potential use in biosensor applications. In this work β-galactosidase (lactase) enzyme was entrapped within hydrogel matrices of acrylamide (ACR) crosslinked with N,N'-methylenebisacrylamide (BIS, non-degradable) or poly(ethylene glycol) diacrylate (PEGDA, degradable) to create "biogels." Diffusivity studies of control, enzyme free, hydrogel constructs showed near-Fickian swelling behavior in PBS regardless of crosslinker type or density. As expected, the swelling rate, Ks , decreased when increasing the crosslink density from 78.6 to 14.7 min⁻¹ over a range of 1-20 mol% PEGDA indicating that diffusivity into the matrix is dependent on crosslink density. Fabricated biogels were evaluated for maintained enzyme activity in the 7 and 8 pH range. PEGDA crosslinked gels consistently showed improved enzymatic activity retention as compared to BIS crosslinked gels. As PEGDA crosslink density increased from 5 to 10 mol%, enzymatic activity retention post-initial entrapment increased. Higher PEGDA crosslink densities between 15% and 40% decreased enzymatic activity due to assumed steric hindrance of the entrapped enzyme and also decreased substrate and product diffusion. Increased enzymatic stability was observed in 40 mol% PEGDA crosslinked gels. The biogels were pH challenged to 8.0 and stability, measured as retention of activity, was observed to be 91%. Free, non-entrapped, solution based enzyme conversion only retained 23% activity under the same pH challenge conditions. No significant loss of active enzyme was determined to elute out of the biogels during storage in PBS or during biogel wash and recycling. This entrapment method illustrates the potential to sterically hinder and diffusively impede enzymes from performing their

  16. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes.

    PubMed

    Wang, Xiaoyan; Zhang, Yun; Banks, Craig E; Chen, Qiyuan; Ji, Xiaobo

    2010-07-01

    A non-enzymatic amperometric glucose biosensor based on the modification of functional nickel hexacyanoferrate nanoparticles was prepared via electrochemical deposition. The electrochemical deposition of the nickel hexacyanoferrate nanoparticles was obtained by potential cycling in a solution containing nickel (II) and hexacyanoferrate (III) producing a modified surface with a high degree of uniformity. The modified electrode is exemplified towards the non-enzymatic sensing of glucose where using cyclic voltammetry and amperometry, low micro-molar up to milli-molar glucose concentrations are readily detectable. The non-enzymatic sensing of glucose also shows a modest selectivity over ascorbic acid. This platform offers a novel route for glucose sensors with wide analytical applications.

  17. Membrane-Binding and Enzymatic Properties of RPE65

    PubMed Central

    Kiser, Philip D.; Palczewski, Krzysztof

    2010-01-01

    Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties. PMID:20304090

  18. Site specific protein labeling by enzymatic posttranslational modification.

    PubMed

    Sunbul, Murat; Yin, Jun

    2009-09-07

    Site specific protein labeling plays a key role in elucidating the function of the proteins at the molecular level by revealing their locations in the cell, their interaction networks with other cellular components and the dynamic mechanisms of their bio-generation, trafficking and degradation in response to regulatory signals in a biological system. Site specific protein labeling is, in essence, artificial modification of proteins with new chemical entities at the posttranslational stage. Based on the analogy between protein labeling and protein posttranslational modification, enzymatic tools have been developed for site specific and efficient labeling of target proteins with chemical probes of diverse structures and functionalities. This perspective surveys a number of protein labeling methods based on the application of protein posttranslational modification enzymes.

  19. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  20. Production of MAG via enzymatic glycerolysis

    NASA Astrophysics Data System (ADS)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  1. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  2. Biofunctional Properties of Enzymatic Squid Meat Hydrolysate

    PubMed Central

    Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo

    2015-01-01

    Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752

  3. Enzymatic Decontamination: From Concept To Commercialization

    DTIC Science & Technology

    2004-12-01

    granules are: • Particle size: 600-1000 microns • Dissolution rate: 1 kg in 500 gallons of water in 5 minutes • Enzyme activity : TBD (expected protein...enzymatic activity in a variety of tissues could catalytically detoxify diisopropylfluorophosphate (DFP). More recently, a variety of enzymes with activity ...large areas for retrograde and resupply operations, and to reconstitute individual equipment, vehicles, and weapon platforms. The objective of

  4. New starch preparations resistant to enzymatic digestion.

    PubMed

    Jochym, Kamila; Kapusniak, Janusz; Barczynska, Renata; Sliżewska, Katarzyna

    2012-03-15

    New starch preparations were produced by thermolysis of potato starch in the presence of inorganic (hydrochloric) and organic (citric and tartaric) acids under controlled conditions. The starch preparations were physicochemically and structurally characterised and analysed for their resistance to enzymatic digestion in vitro. The content of resistant fraction in dextrin D1, obtained by heating starch acidified with hydrochloric and citric acids, determined by the AOAC 2001.03 and pancreatin-gravimetric methods was similar (~200 g kg⁻¹). In the case of dextrin D3, obtained by heating starch acidified with hydrochloric and tartaric acids, the result of determination by the pancreatin-gravimetric method was almost four times higher than that obtained with the AOAC 2001.03 method. The enzymatic tests revealed that dextrin D3 obtained with excess tartaric acid can be classified as RS4, which can only be partially determined by enzymatic-gravimetric methods. Tartaric acid at high concentration had a significantly stronger influence on starch hydrolysis than citric acid. This was confirmed by chromatographic analysis of dextrins and chemical investigation of the reducing power. The results confirmed the possibility of applying dextrins, prepared under specific conditions, as soluble dietary fibre. Copyright © 2011 Society of Chemical Industry.

  5. Enzymatic transformation of nonfood biomass to starch.

    PubMed

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y-H Percival

    2013-04-30

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world's future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture's environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.

  6. Extracellular enzymatic activity of Microsporum canis isolates.

    PubMed

    Papini, R; Mancianti, F

    The enzymatic activity of 70 feline and canine Microsporum canis isolates was determined by the Api-Zym test. The liquid phase of cultures, inoculated into Tryptic Soy Broth, was used to examine 19 enzymes. Considerable differences were observed among the extracellular enzymatic patterns. All the isolates produced alkaline phosphatase and beta-glucosidase, while lipase (C14), trypsin, chymotrypsin, beta-glucuronidase, and alpha-fucosidase activity was never revealed. Esterase (C4) activity was present in 57 samples (81%), esterase lipase (C8) in 31 (44%), leucine arylamidase in 35 (50%), valine arylamidase and cystine arylamidase in 7 (10%), acid phosphatase in 64 (91%), naphthol-AS-BI-phosphohydrolase in 60 (86%), alpha-galactosidase in 5 (7%), beta-galactosidase in 6 (8%), alpha-glucosidase in 25 (36%), N-acetyl-beta-glucosaminidase in 41 (58%), and alpha-mannosidase in 51 (73%). The beta-galactosidase activity of M. canis has not been reported previously. Remarkable variations of intensity for each enzymatic activity were also detected. It is believed that these results could provide basic data for further investigations on the pathogenic role of enzymes secreted by M. canis.

  7. Microbial Enzymatic Degradation of Biodegradable Plastics.

    PubMed

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Enzymatic transformation of nonfood biomass to starch

    PubMed Central

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  9. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2017-08-09

    Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s(-1). Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.

  10. Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

    PubMed Central

    SAUNDERS, SAMUEL E.; BARTZ, JASON C.; VERCAUTEREN, KURT C.; BARTELT-HUNT, SHANNON L.

    2010-01-01

    Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity. PMID:20450190

  11. Synergism and Mutualism in Non-Enzymatic RNA Polymerization

    PubMed Central

    Kaddour, Hussein; Sahai, Nita

    2014-01-01

    The link between non-enzymatic RNA polymerization and RNA self-replication is a key step towards the “RNA world” and still far from being solved, despite extensive research. Clay minerals, lipids and, more recently, peptides were found to catalyze the non-enzymatic synthesis of RNA oligomers. Herein, a review of the main models for the formation of the first RNA polymers is presented in such a way as to emphasize the cooperation between life’s building blocks in their emergence and evolution. A logical outcome of the previous results is a combination of these models, in which RNA polymerization might have been catalyzed cooperatively by clays, lipids and peptides in one multi-component prebiotic soup. The resulting RNAs and oligopeptides might have mutualistically evolved towards functional RNAs and catalytic peptides, preceding the first RNA replication, thus supporting an RNA-peptide world. The investigation of such a system is a formidable challenge, given its complexity deriving from a tremendously large number of reactants and innumerable products. A rudimentary experimental design is outlined, which could be used in an initial attempt to study a quaternary component system. PMID:25370531

  12. Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation.

    PubMed

    Vichier-Guerre, S; Dugué, L; Bonhomme, F; Pochet, S

    2016-04-14

    A straightforward route to original imidazole-based nucleosides that makes use of an enzymatic N-transglycosylation step is reported in both the ribo- and deoxyribo-series. To illustrate the scope of this approach, a diverse set of 4-aryl and 4-heteroaryl-1H-imidazoles featuring variable sizes and hydrogen-bonding patterns was prepared using a microwave-assisted Suzuki-Miyaura cross-coupling reaction. These imidazole derivatives were examined as possible substrates for the nucleoside 2'-deoxyribosyltransferase from L. leichmannii and the purine nucleoside phosphorylase from E. coli. The optimum transglycosylation conditions, including the use of co-adjuvants to address solubility issues, were defined. Enzymatic conversion of 4-(hetero)arylimidazoles to 2'-deoxyribo- or ribo-nucleosides proceeded in good to high conversion yields, except bulky hydrophobic imidazole derivatives. Nucleoside deoxyribosyltransferase of class II was found to convert the widest range of functionalized imidazoles into 2'-deoxyribonucleosides and was even capable of bis-glycosylating certain heterocyclic substrates. Our findings should enable chemoenzymatic access to a large diversity of flexible nucleoside analogues as molecular probes, drug candidates and original building blocks for synthetic biology.

  13. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    PubMed

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight.

  14. Cold enzymatic bleaching of fluid whey.

    PubMed

    Campbell, R E; Drake, M A

    2013-01-01

    Chemical bleaching of fluid whey and retentate with hydrogen peroxide (HP) alone requires high concentrations (100-500 mg of HP/kg) and recent studies have demonstrated that off-flavors are generated during chemical bleaching that carry through to spray-dried whey proteins. Bleaching of fluid whey and retentate with enzymes such as naturally present lactoperoxidase or an exogenous commercial peroxidase (EP) at cold temperatures (4°C) may be a viable alternative to traditional chemical bleaching of whey. The objective of this study was to determine the optimum level of HP for enzymatic bleaching (both lactoperoxidase and EP) at 4°C and to compare bleaching efficacy and sensory characteristics to HP chemical bleaching at 4°C. Selected treatments were subsequently applied for whey protein concentrate with 80% protein (WPC80) manufacture. Fluid Cheddar whey and retentate (80% protein) were manufactured in triplicate from pasteurized whole milk. The optimum concentration of HP (0 to 250 mg/kg) to activate enzymatic bleaching at 4°C was determined by quantifying the loss of norbixin. In subsequent experiments, bleaching efficacy, descriptive sensory analysis, and volatile compounds were monitored at selected time points. A control with no bleaching was also evaluated. Enzymatic bleaching of fluid whey and retentate at 4°C resulted in faster bleaching and higher bleaching efficacy (color loss) than bleaching with HP alone at 250 mg/kg. Due to concentrated levels of naturally present lactoperoxidase, retentate bleached to completion (>80% norbixin destruction in 30 min) faster than fluid whey at 4°C (>80% norbixin destruction in 12h). In fluid whey, the addition of EP decreased bleaching time. Spray-dried WPC80 from bleached wheys, regardless of bleaching treatment, were characterized by a lack of sweet aromatic and buttery flavors, and the presence of cardboard flavor concurrent with higher relative abundance of 1-octen-3-ol and 1-octen-3-one. Among enzymatically

  15. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    PubMed

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  16. Putrescine metabolism: enzymatic formation and non-enzymatic isotope exchange of delta1-pyrroline.

    PubMed

    Callery, P S; Nayar, M S; Geelhaar, L A

    1984-03-01

    The deamination of putrescine catalysed by diamine oxidase was carried out in deuterium oxide and deuterated buffers. Enamine and alpha, beta-unsaturated intermediates were excluded, based on the observation that deuterium was not incorporated into delta 1-pyrroline during its enzymatic formation in deuterium oxide. When the reaction mixture was buffered with phosphate, isolated delta 1-pyrroline contained two deuterium atoms at C-3, indicating that a phosphate-promoted, non-enzymatic isotope exchange had occurred. Using 5,5-dimethyl-delta 1-pyrroline as a model compound, the nature of the non-enzymatic deuterium exchange was studied and a bifunctional catalysis mechanism proposed. The results suggest that the choice of buffer could alter the conclusions drawn from enzyme mechanism studies involving imine-enamine tautomerism .

  17. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  18. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella.

    PubMed

    Eckhard, Ulrich; Bandukwala, Hina; Mansfield, Michael J; Marino, Giada; Cheng, Jiujun; Wallace, Iain; Holyoak, Todd; Charles, Trevor C; Austin, John; Overall, Christopher M; Doxey, Andrew C

    2017-09-12

    Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species. In the pathogen, Clostridium haemolyticum, metallopeptidase-containing flagellin (which we termed flagellinolysin) is the second most abundant protein in the flagella and is localized to the extracellular flagellar surface. Purified flagellar filaments and recombinant flagellin exhibit proteolytic activity, cleaving nearly 1000 different peptides. With ~ 20,000 flagellin copies per  ~ 10-μm flagella this assembles the largest proteolytic complex known. Flagellum-mediated extracellular proteolysis expands our understanding of the functional plasticity of bacterial flagella, revealing this family as enzymatic biopolymers that mediate interactions with diverse peptide substrates.So far no enzymatic activity has been attributed to flagellin, the major component of bacterial flagella. Here the authors use bioinformatic analysis and identify a metallopeptidase insertion in flagellins from 74 bacterial species and show that recombinant flagellin and flagellar filaments have proteolytic activity.

  19. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution.

    PubMed

    Choi, Won Jae

    2009-08-01

    Enantiopure epoxides are high value-added synthons for the production of pharmaceuticals, agrochemicals, as well as versatile fine chemicals and have broad scope of market demand for their applications. A major challenge in conventional organic synthesis is to generate such compounds in high enantiopurity with reasonable yield. Among possible chemical and biological technologies for enantiopure epoxide preparation, enzymatic kinetic resolution has been paid much attention with respect to its high enantioselectivity. Epoxide hydrolase (EH) has shown promising characteristics for the preparation of enantiopure epoxides and vicinal diols during enantioselective hydrolysis of racemic epoxides. EH is readily available from microbial resources thus it is being employed for biohydrolysis of a variety of epoxides. Recent technical progress in EH-catalyzed enantioselective hydrolysis is summarized in terms of exploration of novel EH, its functional improvement, high throughput assay, and preparative scale resolution process.

  20. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate.

    PubMed

    Bernal, Claudia; Illanes, Andres; Wilson, Lorena

    2015-04-15

    Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%).

  1. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation.

    PubMed

    Li, Lei; Cao, Yu; Wu, Haitao; Ye, Xinchun; Zhu, Zhihui; Xing, Guanglin; Shen, Chengyong; Barik, Arnab; Zhang, Bin; Xie, Xiaoling; Zhi, Wenbo; Gan, Lin; Su, Huabo; Xiong, Wen-Cheng; Mei, Lin

    2016-12-07

    Neurotransmission is ensured by a high concentration of neurotransmitter receptors at the postsynaptic membrane. This is mediated by scaffold proteins that bridge the receptors with cytoskeleton. One such protein is rapsyn (receptor-associated protein at synapse), which is essential for acetylcholine receptor (AChR) clustering and NMJ (neuromuscular junction) formation. We show that the RING domain of rapsyn contains E3 ligase activity. Mutation of the RING domain that abolishes the enzyme activity inhibits rapsyn- as well as agrin-induced AChR clustering in heterologous and muscle cells. Further biological and genetic studies support a working model where rapsyn, a classic scaffold protein, serves as an E3 ligase to induce AChR clustering and NMJ formation, possibly by regulation of AChR neddylation. This study identifies a previously unappreciated enzymatic function of rapsyn and a role of neddylation in synapse formation, and reveals a potential target of therapeutic intervention for relevant neurological disorders.

  2. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2016-01-01

    Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules. PMID:26805855

  3. Enzymatic characterization of a lysin encoded by bacteriophage EL.

    PubMed

    Tafoya, Diana A; Hildenbrand, Zacariah L; Herrera, Nadia; Molugu, Sudheer K; Mesyanzhinov, Vadim V; Miroshnikov, Konstantin A; Bernal, Ricardo A

    2013-04-01

    The bacteriophage EL is a virus that specifically attacks the human pathogen Pseudomonas aeruginosa. This phage carries a large genome that encodes for its own chaperonin which presumably facilitates the proper folding of phage proteins independently of the host chaperonin system. EL also encodes a lysin enzyme, a critical component of the lytic cycle that is responsible for digesting the peptidoglycan layer of the host cell wall. Previously, this lysin was believed to be a substrate of the chaperonin encoded by phage EL. In order to characterize the activity of the EL lysin, and to determine whether lysin activity is contingent on chaperonin-mediated folding, a series of peptidoglycan hydrolysis activity assays were performed. Results indicate that the EL-encoded lysin has similar enzymatic activity to that of the Gallus gallus lysozyme and that the EL lysin folds into a functional enzyme in the absence of phage chaperonin and should not be considered a substrate.

  4. Continuous enzymatic liquefaction of starch for saccharification

    SciTech Connect

    Carr, M.E.; Black, L.T.; Bagby, M.O.

    1982-01-01

    A process was explored for continuous enzymatic liquefaction of corn starch at high concentration and subsequent saccharification to glucose. The process appears to be quite efficient for conversion of starch to glucose and enzymatic liquefaction and should be readily adaptable to industrial fermentation processes. Preliminary work indicated that milled corn or other cereal grains also can be suitably converted by such a process. Essentially, the process involved incorporation of a thermostable, bacterial alpha-amylase for liquefaction and, subsequently, of a glucoamylase into the continuous mixer under conditions conductive to rapid enzymatic hydrolyses. Also studied was the effect on substrate liquefaction of variables such as starch concentration (40-70%), level of alpha-amylase (0.14-0.4%, dry starch basis), temperature (70-100 degrees C), pH (5.8-7.1), and residence time (6 and 12 minutes). The degree of liquefaction was assessed by determining 1) the Brookfield viscosity, 2) the amount of reducing groups, and 3) the rate and extent of glucose formed after glucoamylase treatment. Best liquefaction processing conditions were achieved by using 50-60% starch concentration, at 95 degrees C, with 0.4% alpha-amylase, and a 6 minute residence period in the mixer. Under these conditions, rates and extents of glucose obtained after glucoamylase treatment approached those obtained in longer laboratory batch liquefactions. The amount of glucose formed in 24 hours with the use of 0.4% glucoamylase was 86% of theory after a 6-min continuous liquefaction, compared to 90% for a 30-min laboratory batch liquefaction (95 degrees C, 0.4% alpha-amylase). (Refs. 15).

  5. Continuous enzymatic liquefaction of starch for saccharification.

    PubMed

    Carr, M E; Black, L T; Bagby, M O

    1982-11-01

    A process was explored for continuous enzymatic liquefaction of corn starch at high concentration and subsequently saccharification to glucose. The process appears to be quite efficient for conversion of starch to glucose and enzymatic liquefaction and should be readily adaptable to industrial fermentation processes. Preliminary work indicated that milled corn or other cereal grains also can be suitably converted by such a process. Essentially, the process involved incorporation of a thermostable, bacterial alpha-amylase for liquefaction and, subsequently, of a glucoamylase into the continuous mixer under conditions conductive to rapid enzymatic hydrolyses. Also studied was the effect on substrate liquefaction of variable such as starch concentration (40-70 degrees ), level of alpha-amylase (0.14-0.4%, dry starch basis), temperature (70-100 degrees C), pH (5.8-7.1), and residence time (6 and 12 min). The degree of liquefaction was assessed by determining (1) the Brookfield viscosity, (2) the amount of reducing groups, and (3) the rate and extent of glucose formed after glucoamylase treatment. Best liquefaction process conditions were achieved by using 50-60% starch concentration, at 95 degrees C, with 0.4% alpha-amylase, and a 6-min residence period in the mixture. Under these conditions, rate and extents of glucose obtained after glucoamylase treatment approached those obtained in longer laboratory batch liquefactions. The amount of glucose formed in 24h with the use of 0.4% glucoamylase was 86% of theory after a 6-min continuous liquefaction, compared to 90% for a 30-min laboratory batch liquefaction (95 degrees C, 0.4% alpha-amylase).

  6. Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage.

    PubMed

    Rollini, Manuela; Sambusiti, Cecilia; Musatti, Alida; Ficara, Elena; Retinò, Isabella; Malpei, Francesca

    2014-12-01

    This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.

  7. Enzymatic synthesis of isotopically labeled isoprenoid diphosphates.

    PubMed

    Christensen, D J; Poulter, C D

    1994-07-01

    Recombinant yeast isopentenyl diphosphate (IPP) isomerase and avian farnesyl diphosphate (FPP) synthase from overproducing strains of Escherichia coli were used to synthesize FPP from IPP and dimethylallyl diphosphate (DMAPP). [2,4,5-13C3]IPP and [2,4,5-13C3]DMAPP were synthesized from ethyl [2-13C]bromoacetate and [1,3-13C2]acetone. Thes compounds were used as substrates for enzymatic synthesis of FPP selectivity labeled at the first or third isoprene residue or at all three.

  8. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  9. [Enzymatic utilization of cotton soap stock].

    PubMed

    Davranov, K D; Guliamova, K A; Alimova, B Kh; Turapova, N M

    2000-01-01

    Enzymatic hydrolysis of neutral fat of cotton oil soap stock with a nonspecific lipase produced by Oospora lactis F-500 was designed. The culture liquid and a preparation of enzyme obtained by precipitation with isopropanol from a filtrate of the culture liquid were used. Utilization of cotton oil soap stock as the only source of carbon during cultivation of the fungus was studied. The rate of hydrolysis of soap stock fat strongly depended on the way of biological conversion of cotton oil soap stock. The most effective utilization was observed during cultivation of the fungus in the medium containing soap stock.

  10. Enzymatic Activity versus Structural Dynamics: The Case of Acetylcholinesterase Tetramer

    PubMed Central

    Gorfe, Alemayehu A.; Lu, Benzhuo; Yu, Zeyun; McCammon, J. Andrew

    2009-01-01

    Abstract The function of many proteins, such as enzymes, is modulated by structural fluctuations. This is especially the case in gated diffusion-controlled reactions (where the rates of the initial diffusional encounter and of structural fluctuations determine the overall rate of the reaction) and in oligomeric proteins (where function often requires a coordinated movement of individual subunits). A classic example of a diffusion-controlled biological reaction catalyzed by an oligomeric enzyme is the hydrolysis of synaptic acetylcholine (ACh) by tetrameric acetylcholinesterase (AChEt). Despite decades of efforts, the extent to which enzymatic efficiency of AChEt (or any other enzyme) is modulated by flexibility is not fully determined. This article attempts to determine the correlation between the dynamics of AChEt and the rate of reaction between AChEt and ACh. We employed equilibrium and nonequilibrium electro-diffusion models to compute rate coefficients for an ensemble of structures generated by molecular dynamics simulation. We found that, for the static initial model, the average reaction rate per active site is ∼22–30% slower in the tetramer than in the monomer. However, this effect of tetramerization is modulated by the intersubunit motions in the tetramer such that a complex interplay of steric and electrostatic effects either guides or blocks the substrate into or from each of the four active sites. As a result, the rate per active site calculated for some of the tetramer structures is only ∼15% smaller than the rate in the monomer. We conclude that structural dynamics minimizes the adverse effect of tetramerization, allowing the enzyme to maintain similar enzymatic efficiency in different oligomerization states. PMID:19651048

  11. Endogenous non-enzymatic antioxidants in the human body.

    PubMed

    Mirończuk-Chodakowska, Iwona; Witkowska, Anna Maria; Zujko, Małgorzata Elżbieta

    2017-08-16

    The exposure of cells, tissues and extracellular matrix to harmful reactive species causes a cascade of reactions and induces activation of multiple internal defence mechanisms (enzymatic or non-enzymatic) that provide removal of reactive species and their derivatives. The non-enzymatic antioxidants are represented by molecules characterized by the ability to rapidly inactivate radicals and oxidants. This paper focuses on the major intrinsic non-enzymatic antioxidants, including metal binding proteins (MBPs), glutathione (GSH), uric acid (UA), melatonin (MEL), bilirubin (BIL) and polyamines (PAs). Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  12. COMPUTATIONAL STRATEGIES FOR THE DESIGN OF NEW ENZYMATIC FUNCTIONS

    PubMed Central

    Świderek, K; Tuñón, I.; Moliner, V.; Bertran, J.

    2015-01-01

    In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and retro-aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies. PMID:25797438

  13. Enzymatic catalysis: New functional twists for P450s

    NASA Astrophysics Data System (ADS)

    Fasan, Rudi

    2017-07-01

    Two papers provide insight into the reactivity of cytochrome P450s. A direct link between electron donation and reactivity has been shown with a selenocysteine-ligated P450 compound I, whereas a serine-ligated P450 (P411) has been engineered to catalyse an intermolecular C-H amination via nitrene transfer.

  14. Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors.

    PubMed

    Ogończyk, D; Jankowski, P; Garstecki, P

    2012-08-07

    This paper examines a set of techniques for the immobilization of enzymes on the surface of microchannels fabricated in polycarbonate (PC). Our experiments identify the method that uses combined physico-chemical immobilization on a layer of polyethyleneimine (PEI) as a reproducible vista for the robust immobilization of proteins. As an example, we demonstrate the fabrication, throughput and stability of an open-tubular reactor draped with alkaline phosphatase (ALP, EC 3.1.3.1) as a model enzyme. As PC is suitable for industrial applications the method could potentially be used to immobilize proteins in numbered-up implementations.

  15. Computational strategies for the design of new enzymatic functions.

    PubMed

    Świderek, K; Tuñón, I; Moliner, V; Bertran, J

    2015-09-15

    In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies.

  16. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    SciTech Connect

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.; Lee, Byeongdu; Schatz, George C.; Mirkin, Chad A.

    2016-08-01

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.

  17. Mapping the Reaction Coordinates of Enzymatic Defluorination

    PubMed Central

    Chan, Peter W. Y.; Yakunin, Alexander F.; Edwards, Elizabeth A.; Pai, Emil F.

    2011-01-01

    The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights of how this formidable feat is achieved. Here, we present a series of high-resolution (1.15–1.80 Å) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion, but is also finely tailored for the smaller fluorine halogen atom to establish selectivity towards fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling and regulatory strategies for the growing markets of organofluorines across major industrial sectors. PMID:21510690

  18. Fluorometric enzymatic assay of L-arginine

    NASA Astrophysics Data System (ADS)

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of L-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415 nm under excitation at 360 nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100 nM to 6 μМ with a limit of detection of 34 nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples.

  19. Palm date fibers: analysis and enzymatic hydrolysis.

    PubMed

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2010-11-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

  20. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    PubMed Central

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J.

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes. PMID:21151438

  1. Mapping the Reaction Coordinates of Enzymatic Defluorination

    SciTech Connect

    Chan, Peter W.Y.; Yakunin, Alexander F.; Edwards, Elizabeth A.; Pai, Emil F.

    2011-09-28

    The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights into how this formidable feat is achieved. Here, we present a series of high-resolution (1.15-1.80 {angstrom}) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate, and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion but also is finely tailored for the smaller fluorine halogen atom to establish selectivity toward fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling, and regulatory strategies for the growing markets of organofluorines across major industrial sectors.

  2. Stability of Enzyma